Science.gov

Sample records for receptors nociceptive stimulus

  1. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities

    PubMed Central

    Tu, Yiheng; Tan, Ao; Bai, Yanru; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR). Further, we used support vector machine (SVM) to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications. PMID:27148029

  2. Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates

    PubMed Central

    Di Stefano, G.; Stubbs, M. T.; Djeugam, B.; Liang, M.

    2016-01-01

    Abstract Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site. PMID:27419217

  3. Modification of formalin-induced nociception by different histamine receptor agonists and antagonists.

    PubMed

    Farzin, Davood; Nosrati, Farnaz

    2007-01-15

    The present study evaluated the effects of different histamine receptor agonists and antagonists on the nociceptive response in the mouse formalin test. Intracerebroventricular (20-40 microg/mouse i.c.v.) or subcutaneous (1-10 mg/kg s.c.) injection of HTMT (H(1) receptor agonist) elicited a dose-related hyperalgesia in the early and late phases. Conversely, intraperitoneal (20 and 30 mg/kg i.p.) injection of dexchlorpheniramine (H(1) receptor antagonist) was antinociceptive in both phases. At a dose ineffective per se, dexchlorpheniramine (10 mg/kg i.p.) antagonized the hyperalgesia induced by HTMT (40 mug/mouse i.c.v. or 10 mg/kg s.c.). Dimaprit (H(2) receptor agonist, 30 mg/kg i.p.) and ranitidine (H(2) receptor antagonist, 20 and 40 mg/kg i.p.) reduced the nociceptive responses in the early and late phases. No significant change in the antinociceptive activity was found following the combination of dimaprit (30 mg/kg i.p.) with ranitidine (10 mg/kg i.p.). The antinociceptive effect of dimaprit (30 mg/kg i.p.) was prevented by naloxone (5 mg/kg i.p.) in the early phase or by imetit (H(3) receptor agonist, 25 mg/kg i.p.) in both early and late phases. The histamine H(3) receptor agonist imetit was hyperalgesic following i.p. administration of 50 mg/kg. Imetit-induced hyperalgesia was completely prevented by treatment with a dose ineffective per se of thioperamide (H(3) receptor antagonist, 5 mg/kg i.p.). The results suggest that histamine H(1) and H(3) receptor activations increase sensitivity to nociceptive stimulus in the formalin test.

  4. Effects of the mas-related gene (Mrg) C receptor agonist BAM6-22 on nociceptive reflex activity in naive, monoarthritic and mononeuropathic rats after intraplantar and intrathecal administration.

    PubMed

    Schröder, Wolfgang; Alique, Matilde; Herrero, Juan Fernando

    2016-01-05

    MrgC receptors are selectively expressed on peripheral and central terminals of small calibre nociceptive fibres. Peptide agonists of the MrgC receptor were reported to modulate nociceptive transmission exerting either pro- or antinociceptive effects depending on site of action and pain model used. Here, we investigated the effect of intraplantar and intrathecal administration of the selective MrgC receptor agonist BAM6-22 on mechanically and electrically evoked nociceptive reflex activity as a uniform readout measure in naïve, monoarthritic and mononeuropathic rats. In naïve rats, intraplantar BAM6-22 enhanced, whereas intrathecal BAM6-22 did not modulate mechanically-evoked nociceptive reflex activity. In monoarthritic rats, intraplantar BAM6-22 had no effect, whereas intrathecal BAM6-22 inhibited mechanically evoked nociceptive reflex activity. In mononeuropathic rats, BAM6-22 reduced mechanically evoked nociceptive reflex activity after both intraplantar and intrathecal administration. BAM6-22 did not modulate electrically evoked nociceptive reflex activity in any condition. Thus, the results of the present investigation confirm and add to previous studies demonstrating that site of action, (patho)-physiological state and stimulus modality determine the effect quality of MrgC receptor agonists. It still needs to be explored how concurrent activation of peripheral and spinal MrgC receptors modulates nociceptive processing under conditions of both acute and chronic pain to evaluate the therapeutic potential of putative small molecule MrgC receptor agonists as innovative analgesics.

  5. Contribution of peripheral vanilloid receptor to the nociception induced by injection of spermine in mice.

    PubMed

    Gewehr, Camila; da Silva, Mariane Arnoldi; dos Santos, Gabriela Trevisan; Rossato, Mateus Fortes; de Oliveira, Sara Marchesan; Drewes, Carine Cristiane; Pazini, Andréia Martini; Guerra, Gustavo Petri; Rubin, Maribel A; Ferreira, Juliano

    2011-10-01

    Polyamines (putrescine, spermidine and spermine) are important endogenous regulators of ion channels, such as vanilloid (TRPV1), glutamatergic (NMDA or AMPA/kainate) and acid-sensitive (ASIC) receptors. In the present study, we have investigated the possible nociceptive effect induced by polyamines and the mechanisms involved in this nociception in vivo. The subcutaneous (s.c.) injection of capsaicin (as positive control), spermine, spermidine or putrescine produced nociception with ED(50) of 0.16 (0.07-0.39)nmol/paw, 0.4 (0.2-0.7) μmol/paw, 0.3 (0.1-0.9) μmol/paw and 3.2 (0.9-11.5) μmol/paw, respectively. The antagonists of NMDA (MK801, 1 nmol/paw), AMPA/kainate (DNQX, 1 nmol/paw) or ASIC receptors (amiloride, 100 nmol/paw) failed to reduce the spermine-trigged nociception. However, the TRPV1 antagonists capsazepine or SB366791 (1 nmol/paw) reduced spermine-induced nociception, with inhibition of 81 ± 10 and 68 ± 9%, respectively. The previous desensitization with resiniferatoxin (RTX) largely reduced the spermine-induced nociception and TRPV1 expression in the sciatic nerve, with reductions of 82 ± 9% and 67 ± 11%, respectively. Furthermore, the combination of spermine (100 nmol/paw) and RTX (0.005 fmol/paw), in doses which alone were not capable of inducing nociception, produced nociceptive behaviors. Moreover, different concentrations of spermine (3-300 μM) enhanced the specific binding of [(3)H]-RTX to TRPV1 receptor. Altogether, polyamines produce spontaneous nociceptive effect through the stimulation of TRPV1, but not of ionotropic glutamate or ASIC receptors.

  6. Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin.

    PubMed

    Entrena, J M; Sánchez-Fernández, C; Nieto, F R; González-Cano, R; Yeste, S; Cobos, E J; Baeyens, J M

    2016-11-25

    Sigma-1 receptor antagonists promote antinociception in several models of pain, but the effects of sigma-1 agonists on nociception (particularly when the nociceptive system is primed) are not so well characterized; therefore we evaluated the effects of sigma-1 agonists on pain under different experimental conditions. The systemic administration of the selective sigma-1 agonists (+)-pentazocine and PRE-084, as well as the nonselective sigma-1 agonist carbetapentane (used clinically as an antitussive drug), did not alter sensitivity to mechanical stimulation under baseline conditions. However, they greatly promoted secondary mechanical allodynia after priming the nociceptive system with capsaicin. These effects of sigma-1 agonists were consistent in terms potency with the affinities of these drugs for sigma-1 receptors, were reversed by sigma-1 antagonists, and were not observed in sigma-1 knockout mice, indicating that they are sigma-1-mediated. Repeated systemic treatment with PRE-084 induced proallodynic effects even 24 h after treatment completion, but only after the nociceptive system was primed. However, neither the presence of this drug in the organism nor changes in sigma-1 receptor expression in areas involved in pain processing explains its long-term effects, suggesting that sustained sigma-1 agonism induces plastic changes in the nociceptive system that promote nociception.

  7. Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin

    PubMed Central

    Entrena, J. M.; Sánchez-Fernández, C.; Nieto, F. R.; González-Cano, R.; Yeste, S.; Cobos, E. J.; Baeyens, J. M.

    2016-01-01

    Sigma-1 receptor antagonists promote antinociception in several models of pain, but the effects of sigma-1 agonists on nociception (particularly when the nociceptive system is primed) are not so well characterized; therefore we evaluated the effects of sigma-1 agonists on pain under different experimental conditions. The systemic administration of the selective sigma-1 agonists (+)-pentazocine and PRE-084, as well as the nonselective sigma-1 agonist carbetapentane (used clinically as an antitussive drug), did not alter sensitivity to mechanical stimulation under baseline conditions. However, they greatly promoted secondary mechanical allodynia after priming the nociceptive system with capsaicin. These effects of sigma-1 agonists were consistent in terms potency with the affinities of these drugs for sigma-1 receptors, were reversed by sigma-1 antagonists, and were not observed in sigma-1 knockout mice, indicating that they are sigma-1-mediated. Repeated systemic treatment with PRE-084 induced proallodynic effects even 24 h after treatment completion, but only after the nociceptive system was primed. However, neither the presence of this drug in the organism nor changes in sigma-1 receptor expression in areas involved in pain processing explains its long-term effects, suggesting that sustained sigma-1 agonism induces plastic changes in the nociceptive system that promote nociception. PMID:27886264

  8. Oxidative damage and sensitivity to nociceptive stimulus and opioids in aging rats

    PubMed Central

    Raut, Atul; Ratka, Anna

    2009-01-01

    Oxidative stress contributes to aging and may cause alterations in pain and analgesia. Knowledge about effects of oxidative stress on the opioid system is very limited. This project was designed to determine the relationship between age-related oxidative damage and opioid antinocicpetion. Three age groups of male Fischer 344 rats were tested for pain sensitivity and responses to morphine and fentanyl using the hot plate method. Oxidative stress markers in various brain regions were measured. With advancing age, nociceptive threshold and antinociceptive effects of opioids decreased significantly. There was a significant negative correlation between morphine antinociception and protein oxidation in cortex, striatum, and midbrain (r2 = 0.73, 0.87, and 0.77, respectively), and lipid peroxidation in cerebral cortex, hippocampus, and striatum (r2 = 0.73, 0.61 and 0.71, respectively). Similar correlation was observed between oxidative stress markers and fentanyl antinociception. These findings demonstrate that the age-related increase in oxidative damage in brain is associated with a significant decrease in the antinociceptive effects of opioids. PMID:17997197

  9. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Modulate Nociception Only in the Presence of Systemic Leptin

    PubMed Central

    Watson, Sarah L.; Watson, Christopher J.; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n = 14) mice and leptin-deficient, obese B6.Cg-Lepob/J (obese, n = 10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A1 receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p = 0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p = 0.0003) concentration-dependent increase in %MPE. SPA also significantly (p < 0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of the mouse super-active leptin antagonist (SMLA) into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A1 receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A1 receptors

  10. Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.

    PubMed

    Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui

    2016-09-26

    Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc.

  11. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons.

    PubMed

    Moreno-López, Y; Martínez-Lorenzana, G; Condés-Lara, M; Rojas-Piloni, G

    2013-04-01

    Oxytocin (OT) secreted by the hypothalamo-spinal projection exerts antinociceptive effects in the dorsal horn. Electrophysiological evidence indicates that OT could exert these effects by activating OT receptors (OTR) directly on dorsal horn neurons and/or primary nociceptive afferents in the dorsal root ganglia (DRG). However, little is known about the identity of the dorsal horn and DRG neurons that express the OTR. In the dorsal horn, we found that the OTR is expressed principally in neurons cell bodies. However, neither spino-thalamic dorsal horn neurons projecting to the contralateral thalamic ventral posterolateral nucleus (VPL) and posterior nuclear group (Po) nor GABaergic dorsal horn neurons express the OTR. The OTR is not expressed in skin nociceptive terminals or in dorsal horn nociceptive fibers. In the DRG, however, the OTR is expressed predominantly in non-peptidergic C-fiber cell bodies, but not in peptidergic or mechanoreceptor afferents or in skin nociceptive terminals. Our results suggest that the antinociceptive effects of OT are mediated by direct activation of dorsal horn neurons and peripheral actions on nociceptive, non-peptidergic C-afferents in the DRG.

  12. Spinal vasopressin alleviates formalin-induced nociception by enhancing GABAA receptor function in mice.

    PubMed

    Peng, Fang; Qu, Zu-Wei; Qiu, Chun-Yu; Liao, Min; Hu, Wang-Ping

    2015-04-23

    Arginine vasopressin (AVP) plays a regulatory role in nociception. Intrathecal administration of AVP displays an antinociceptive effect. However, little is understood about the mechanism underlying spinal AVP analgesia. Here, we have found that spinal AVP dose dependently reduced the second, but not first, phase of formalin-induced spontaneous nociception in mice. The AVP analgesia was completely blocked by intrathecal injected SR 49059, a vasopressin-1A (V1A) receptor antagonist. However, spinal AVP failed to exert its antinociceptive effect on the second phase formalin-induced spontaneous nociception in V1A receptor knock-out (V1A-/-) mice. The AVP analgesia was also reversed by bicuculline, a GABAA receptor antagonist. Moreover, AVP potentiated GABA-activated currents in dorsal root ganglion neurons from wild-type littermates, but not from V1A-/- mice. Our results may reveal a novel spinal mechanism of AVP analgesia by enhancing the GABAA receptor function in the spinal cord through V1A receptors.

  13. Two histamine H2 receptor antagonists, zolantidine and cimetidine, modulate nociception in cholestatic rats.

    PubMed

    Hasanein, Parisa

    2011-02-01

    Cholestasis is associated with analgesia. The histamine H(2) receptors control pain perception. The involvement of histamine H(2) receptors on modulation of nociception in a model of elevated endogenous opioid tone, cholestasis, was investigated in this study using zolantidine and cimetidine as two H(2) receptor antagonists and dimaprit as a selective H(2) receptor agonist. Cholestasis was induced by ligation of the main bile duct using two ligatures and transsection of the duct at the midpoint between them. A significant increase in tail-flick latencies was observed in cholestatic rats compared to non-cholestatic rats. Administration of zolantidine (10, 20 and 40 mg/kg) and cimetidine (25, 50 and 100 mg/kg) in the cholestatic group significantly increased tail-flick latencies while dimaprit (10 and 20 mg/kg) injection in the cholestatic group decreased tail-flick latencies compared to the saline treated cholestatic group. Antinociception produced by injection of zolantidine and cimetidine in cholestatic rats was attenuated by co-administration of naloxone. Drug injection in non-cholestatic rats did not alter tail-flick latencies compared to the saline treated rats at any of the doses. At the doses used here, none of the drugs impaired motor coordination as revealed by the rota rod test. These data show that the histamine H(2) receptor system may be involved in the regulation of nociception during cholestasis. According to the hypothesis that increasing the nociception threshold in cholestasis may lead to a decrease in the perception of pruritus, the provision of the drugs that increase the threshold to nociception may be a novel approach to the treatment of cholestatic pruritus.

  14. CB1 receptor activation in the basolateral amygdala produces antinociception in animal models of acute and tonic nociception.

    PubMed

    Hasanein, Parisa; Parviz, Mohsen; Keshavarz, Mansoor; Javanmardi, Kazem

    2007-01-01

    1. Recent studies have suggested that the basolateral nucleus of the amygdala (BLA) participates in the processing of pain information, especially noxious somatic information. Cannabinoid receptors or CB1 mRNA are expressed more in the BLA than in other nuclei of the amygdala. Thus, the aim of the present study was to examine whether CB1 receptors in the BLA may be involved in modulating acute and/or tonic nociceptive processing. 2. Adult rats were exposed to intra-BLA microinjection of the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo [1,2,3,-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate [WIN 55,212-2 (1, 2.5, 5 or 10 microg/side)] and subjected to the tail flick and formalin tests. 3. The rats demonstrated a dose-dependent increase in latency to withdraw from a thermal noxious stimulus in the tail flick test and a decrease in formalin-induced pain behaviours. The antinociceptive effects of the CB1 receptor agonist WIN 55,212-2 (10 microg/side) in both tests were attenuated in the presence of the selective CB1 receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3- carboxamide (AM251; 0.55 ng/side). Administration of the CB1 receptor antagonist AM251 (0.55, 5.5, or 55.5 ng/side) alone did not alter the nociceptive thresholds in either test. Bilateral microinjection of the selective CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; 1 microg/side) had no effect on the antinociception produced by WIN 55,212-2, suggesting that the antinociceptive actions of WIN 55,212-2 are mediated by CB1 receptors. 4. The findings suggest the existence of a CB1-mediated inhibitory system in the BLA that, when activated, can diminish responsivity to acute and tonic noxious stimuli, but that normally has no tonic effect on the response threshold of these stimuli.

  15. Intracerebroventricular injection of trazodone produces 5-HT receptor subtype mediated anti-nociception at the supraspinal and spinal levels.

    PubMed

    Zhang, Rihui; Nagata, Tomonari; Hayashi, Takayuki; Miyata, Mariko; Kawakami, Yoriko

    2004-10-01

    Serotonin (5-HT) mediated anti-nociceptive effects induced by an anti-depressant, trazodone, are related to 5-HT(1A) receptor activities at the supraspinal level. 5-HT(3) receptor activation via the descending anti-nociceptive pathways may contribute to the trazodone mediated anti-nociception at the spinal level. Intracerebroventricular (i.c.v.) injection of trazodone dose-dependently impaired nociceptive responses in the formalin test in mice. Six and 15 microg of trazodone inhibited the early (P<0.05 or 0.01) and the late phases of the formalin test (P<0.05 or 0.01), while 3 microg had no effect. We examined the effects of a selective 5-HT(1A) receptor antagonist, WAY-100635, a single injection of which induced hyperalgesia (P<0.05), and blocked the anti-nociceptive effects of trazodone (P<0.01) when the two were simultaneously injected i.c.v. Intrathecal (i.t.) injection of a selective 5-HT(3) receptor antagonist, 3-tropanylindole-3-carboxylate hydrochloride, blocked the anti-nociceptive effects of i.c.v. trazodone (P<0.01), while WAY-100635 (i.t.) did not impair trazodone mediated anti-nociception. Trazodone mediated anti-nocicepton is related to serotonergic activity at both the supraspinal and the spinal level.

  16. Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism.

    PubMed

    Hall, Jason D; DeWitte, Cary; Ness, Timothy J; Robbins, Meredith T

    2015-09-14

    Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated. 5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors.

  17. Mechanisms of G protein-coupled estrogen receptor-mediated spinal nociception

    PubMed Central

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.; Oprea, Tudor I.; Benamar, Khalid; Dun, Nae J.; Brailoiu, Eugen

    2012-01-01

    Human and animal studies suggest estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pro-nociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER) activation. Membrane depolarization, increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological and fluorescent imaging studies, we evaluated GPER involvement in spinal nociceptive processing. Intrathecal challenging of mice with the GPER agonist G-1 results in pain-related behaviors. GPER antagonism with G15 reduces the G-1 induced response. Electrophysiological recordings from superficial dorsal horn neurons indicate neuronal membrane depolarization upon G-1 application, which is G15 sensitive. In cultured spinal sensory neurons G-1 increases intracellular calcium concentration and induces mitochondrial and cytosolic ROS accumulation. In the presence of G15, G-1 does not elicit the calcium and ROS responses, confirming specific GPER involvement in this process. Following G-1 intracellular microinjections, cytosolic calcium concentration elevates faster and with higher amplitude compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium increase, ROS accumulation and neuronal membrane depolarization. Perspective Our results suggest that GPER modulates pain processing in spinal sensory neurons via cytosolic calcium increase and ROS accumulation. These findings extend the current knowledge on GPER involvement in physiology and disease, providing the first evidence of its pro-nociceptive effects at central levels and characterizing some of the underlying mechanisms. PMID:22858342

  18. Morphine in combination with metabotropic glutamate receptor antagonists on schedule-controlled responding and thermal nociception.

    PubMed

    Fischer, Bradford D; Zimmerman, Eric I; Picker, Mitchell J; Dykstra, Linda A

    2008-02-01

    The present study examined the interactive effects of morphine in combination with metabotropic glutamate (mGlu) receptor antagonists on schedule-controlled responding and thermal nociception. Drug interaction data were examined with isobolographic and dose-addition analysis. Morphine, the mGlu1 receptor antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone], the mGlu5 receptor antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride], and the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] all decreased rates of schedule-controlled responding. JNJ16259685/morphine, MPEP/morphine, and LY341495/morphine mixtures produced additive effects on this endpoint. Morphine also produced dose-dependent antinociception in the assay of thermal nociception, whereas JNJ16259685, MPEP, and LY341495 failed to produce an effect. In this assay, JNJ16259685 and LY341495 potentiated the antinociceptive effects of morphine, whereas MPEP/morphine mixtures produced additive effects. These results suggest that an mGlu1 and an mGlu2/3 receptor antagonist, but not an mGlu5 receptor antagonist, selectively enhance the antinociceptive effects of morphine. In addition, these data confirm that the behavioral effects of drug mixtures depend on the endpoint under study.

  19. Can correlations among receptors affect the information about the stimulus?

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Tchernookov, Martin; Nemenman, Ilya

    2014-03-01

    In the context of neural information processing, it has been observed that, compared to the case of independent receptors, correlated receptors can often carry more information about the stimulus. We explore similar ideas in the context of molecular information processing, analyzing a cell with receptors whose activity is intrinsically negatively correlated because they compete for the same ligand molecules. We show analytically that, in case the involved biochemical interactions are linear, the information between the number of molecules captured by the receptors and the ligand concentration does not depend on correlations among the receptors. For a nonlinear kinetic network, correlations similarly do not change the amount of information for observation times much shorter or much longer than the characteristic time scale of ligand molecule binding and unbinding. However, at intermediate times, correlations can increase the amount of available information. This work has been supported by the James S McDonnell foundation.

  20. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  1. Evidence for spinal N-methyl-D-aspartate receptor involvement in prolonged chemical nociception in the rat.

    PubMed

    Haley, J E; Sullivan, A F; Dickenson, A H

    1990-06-04

    Subcutaneous injection of formalin into the hindpaw peripheral receptive field of deep dorsal horn multireceptive (convergent) nociceptive neurones was used to produce a prolonged (1 h) activation of the cells. This chemical noxious stimulus produced a first peak of firing which lasted 10 min followed by a second peak of prolonged activity which was monitored for 50 min. gamma-D-glutamylglycine (DGG), a non-selective N-methyl-D-aspartate (NMDA) and quisqualate/kainate (non-NMDA) receptor antagonist was applied intrathecally both as a pretreatment and after the formalin. A complete abolition of both peaks of the formalin response was produced by DGG pretreatment (1000 micrograms) (n = 4). This dose produced profound inhibition of the acute C-fibre evoked responses of the same cells. However, no inhibitions were produced when the antagonist was applied once the formalin response had developed (n = 4). The selective NMDA receptor antagonist 5-amino-phosphonovaleric acid (AP5) was administered intrathecally (250 and 500 micrograms) as a 40 min pretreatment and caused a small inhibition of the first peak but a marked dose-related reduction in the second prolonged phase (n =7). AP5 did not influence the C-fibre inputs onto the cells. The non-competitive NMDA receptor channel blockers, ketamine and MK801, were administered i.v. during the second phase of firing. Ketamine (1-8 mg/kg) caused a short-lasting but marked and dose-related inhibition of the neuronal responses to formalin (n = 11). MK801 (0.5-1 mg/kg) resulted in a prolonged inhibition of cell firing during the second phase of the response (n = 11).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris

    PubMed Central

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom. PMID:26974325

  3. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris.

    PubMed

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William; Muscoli, Carolina; Colasanti, Marco

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom.

  4. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  5. P2X3 receptors induced inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors.

    PubMed

    Krimon, Suzy; Araldi, Dionéia; do Prado, Filipe César; Tambeli, Cláudia Herrera; Oliveira-Fusaro, Maria Cláudia G; Parada, Carlos Amílcar

    2013-11-01

    It has been described that endogenous ATP via activation of P2X3 and P2X2/3 receptors contributes to inflammatory nociception in different models, including the formalin injected in subcutaneous tissue of the rat's hind paw. In this study, we have evaluated whether TRPA1, 5-HT3 and 5-HT1A receptors, whose activation is essential to formalin-induced inflammatory nociception, are involved in the nociception induced by activation of P2X3 receptors on subcutaneous tissue of the rat's hind paw. We have also evaluated whether the activation of P2X3 receptors increases the susceptibility of primary afferent neurons to formalin action modulated by activation of TRPA1, 5-HT3 or 5-HT1A receptors. Nociceptive response intensity was measured by observing the rat's behavior and considering the number of times the animal reflexively raised its hind paw (flinches) in 60min. Local subcutaneous administration of the selective TRPA1, 5-HT3 or 5-HT1A receptor antagonists HC 030031, tropisetron and WAY 100,135, respectively, prevented the nociceptive responses induced by the administration in the same site of the non-selective P2X3 receptor agonist αβmeATP. Administration of the selective P2X3 and P2X2/3 receptor antagonist A-317491 or pretreatment with oligonucleotides antisense against P2X3 receptor prevented the formalin-induced behavioral nociceptive responses during the first and second phases. Also, the co-administration of a subthreshold dose of αβmeATP with a subthreshold dose of formalin induced nociceptive behavior, which was prevented by local administration of tropisetron, HC 030031 or WAY 100, 135. These findings have demonstrated that the activation of P2X3 receptors induces inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors. Also, they suggest that inflammatory nociception is modulated by the release of endogenous ATP and P2X3 receptor activation, which in turn, increases primary afferent nociceptor susceptibility to the action of inflammatory

  6. [Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1].

    PubMed

    Tominaga, Makoto

    2010-03-01

    TRP channels are well recognized for their contributions to sensory transduction, responding to a wide variety of stimuli including temperature, nociceptive stimuli, touch, osmolarity and pheromones. In particular, the involvement of TRP channels in nociception has been extensively studied following the cloning of the capsaicin receptor, TRPV1. Painful diabetic peripheral neuropathy is described as a superficial burning pain, and it is one of the most commonly encountered neuropathic pain syndromes in clinical practice. We found that hypoxic and high glucose conditions commonly observed in diabetes potentiate TRPV1 activity without affecting TRPV1 expression both in native rat sensory neurons and HEK293 cells expressing rat TRPV1. The potentiation seems to be caused by phosphorylation of the serine residues of TRPV1 by PKC. These data indicate that PKC-dependent potentiation of TRPV1 activities under hypoxia and hyperglycemia might be involved in early diabetic neuropathy. Mechanisms for the detection of alkaline pH by sensory neurons are not well understood, although it is well accepted that acidic pH monitoring can be attributed to several ion channels, including TRPV1 and ASICs. We found that alkaline pH activates TRPA1 and that the TRPA1 activation is involved in nociception, using Ca(2+)-imaging and patch-clamp methods. In addition, intracellular alkalization activated TRPA1 at the whole-cell level, and single-channel openings were observed in the inside-out configuration. Furthermore, intraplantar injection of ammonium chloride into the mouse hind paw caused pain-related behaviors, which were not observed in TRPA1-deficient mice. These results suggest that alkaline pH causes pain sensation through activation of TRPA1.

  7. Effects of neurokinin-1 receptor agonism and antagonism in the rostral ventromedial medulla of rats with acute or persistent inflammatory nociception.

    PubMed

    Hamity, M V; White, S R; Hammond, D L

    2010-02-03

    The rostral ventromedial medulla (RVM), a central relay in the bulbospinal pathways that modulate nociception, contains high concentrations of substance P (Sub P) and neurokinin-1 (NK1) receptors. However, the function of Sub P in the RVM is poorly understood. This study characterized the actions of Sub P in the RVM in the absence of injury and then used two NK1 receptor antagonists, L-733,060 and L-703, 606, to probe the role of endogenously released Sub P in the development and maintenance of persistent inflammatory nociception of immune or neurogenic origin. In uninjured rats, microinjection of Sub P in the RVM produced a transient thermal antinociception that was attenuated by pretreatment with L-733,060 or L-703,606. It did not alter threshold to withdrawal from tactile stimulation with von Frey filaments. Microinjection of the antagonists alone did not alter paw withdrawal latency (PWL) or threshold suggesting that Sub P is not tonically released in the RVM in the absence of injury. However, microinjection of either antagonist in the RVM was sufficient to reverse heat hyperalgesia 4 h, 4 days or 2 weeks after intraplantar (ipl) injection of complete Freund's adjuvant (CFA). Antagonism of NK1 receptors in the RVM did not prevent or reverse tactile hypersensitivity induced by CFA, but did attenuate that produced by capsaicin. NK1 receptor antagonism did not prevent the development of thermal hyperalgesia, tactile hypersensitivity or spontaneous pain behaviors induced by mustard oil (MO). The results suggest that Sub P has bimodal actions in the RVM and that following inflammatory injury, it can play a critical role as a pronociceptive agent in the development and maintenance of hyperalgesia and tactile hypersensitivity. However, its actions are highly dependent on the stimulus modality and the type of injury, and this may be an additional basis for the poor efficacy of NK1 receptor antagonists in clinical trials.

  8. Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon

    PubMed Central

    Kayssi, Ahmed; Amadesi, Silvia; Bautista, Francisco; Bunnett, Nigel W; Vanner, Stephen

    2007-01-01

    Agonists of protease-activated receptor 2 (PAR2) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR2-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retrograde tracers into the mouse colon. Using immunofluorescence, we found that DiI-labelled neurons contained PAR2 immunoreactivity, confirming the presence of receptors on colonic neurons. Whole-cell current-clamp recordings of acutely dissociated neurons demonstrated that PAR2 activation with a brief application (3 min) of PAR2 agonists, SLIGRL-NH2 and trypsin, evoked sustained depolarizations (up to 60 min) which were associated with increased input resistance and a marked reduction in rheobase (50% at 30 min). In voltage clamp, SLIGRL-NH2 markedly suppressed delayed rectifier IK currents (55% at 10 min), but had no effect on the transient IA current or TTX-resistant Na+ currents. In whole-cell current-clamp recordings, the sustained excitability evoked by PAR2 activation was blocked by the PKC inhibitor, calphostin, and the ERK1/2 inhibitor PD98059. Studies of ERK1/2 phosphorylation using confocal microscopy demonstrated that SLIGRL-NH2 increased levels of immunoreactive pERK1/2 in DRG neurons, particularly in proximity to the plasma membrane. Thus, activation of PAR2 receptors on colonic nociceptive neurons causes sustained hyperexcitability that is related, at least in part, to suppression of delayed rectifier IK currents. Both PKC and ERK1/2 mediate the PAR2-induced hyperexcitability. These studies describe a novel mechanism of sensitization of colonic nociceptive neurons that may be implicated in conditions of visceral hyperalgesia such as irritable bowel syndrome. PMID:17289784

  9. Periaqueductal Grey EP3 Receptors Facilitate Spinal Nociception in Arthritic Secondary Hypersensitivity

    PubMed Central

    Drake, R.A.R.; Leith, J.L.; Almahasneh, F.; Martindale, J.; Wilson, A.W.; Lumb, B.

    2016-01-01

    Descending controls on spinal nociceptive processing play a pivotal role in shaping the pain experience after tissue injury. Secondary hypersensitivity develops within undamaged tissue adjacent and distant to damaged sites. Spinal neuronal pools innervating regions of secondary hypersensitivity are dominated by descending facilitation that amplifies spinal inputs from unsensitized peripheral nociceptors. Cyclooxygenase–prostaglandin (PG) E2 signaling within the ventrolateral periaqueductal gray (vlPAG) is pronociceptive in naive and acutely inflamed animals, but its contributions in more prolonged inflammation and, importantly, secondary hypersensitivity remain unknown. In naive rats, PG EP3 receptor (EP3R) antagonism in vlPAG modulated noxious withdrawal reflex (EMG) thresholds to preferential C-nociceptor, but not A-nociceptor, activation and raised thermal withdrawal thresholds in awake animals. In rats with inflammatory arthritis, secondary mechanical and thermal hypersensitivity of the hindpaw developed and was associated with spinal sensitization to A-nociceptor inputs alone. In arthritic rats, blockade of vlPAG EP3R raised EMG thresholds to C-nociceptor activation in the area of secondary hypersensitivity to a degree equivalent to that evoked by the same manipulation in naive rats. Importantly, vlPAG EP3R blockade also affected responses to A-nociceptor activation, but only in arthritic animals. We conclude that vlPAG EP3R activity exerts an equivalent facilitation on the spinal processing of C-nociceptor inputs in naive and arthritic animals, but gains in effects on spinal A-nociceptor processing from a region of secondary hypersensitivity. Therefore, the spinal sensitization to A-nociceptor inputs associated with secondary hypersensitivity is likely to be at least partly dependent on descending prostanergic facilitation from the vlPAG. SIGNIFICANCE STATEMENT After tissue damage, sensitivity to painful stimulation develops in undamaged areas (secondary

  10. Surgical incision-induced nociception causes cognitive impairment and reduction in synaptic NMDA receptor 2B in mice.

    PubMed

    Zhang, Xiaoqin; Xin, Xin; Dong, Yuanlin; Zhang, Yiying; Yu, Buwei; Mao, Jianren; Xie, Zhongcong

    2013-11-06

    Postoperative cognitive dysfunction (POCD) is associated with impairments in daily functioning, and increased morbidity and mortality. However, the causes and neuropathogenesis of POCD remain largely unknown. Uncontrolled pain often occurs postoperatively. We therefore set out to determine the effects of surgical incision-induced nociception on the cognitive function and its underlying mechanisms in 3- and 9-month-old mice. The mice had surgical incision in the hindpaw and then were tested for nociceptive threshold, learning, and memory. Brain levels of NMDA receptor and cyclin-dependent kinase 5 (CDK5) were also assessed. We found that surgical incision-induced nociception in mice led to a decreased freezing time in the tone test (which assesses the hippocampus-independent learning and memory function), but not the context test, of Fear Conditioning System at 3 and 7 d, but not 30 d post incision in 9-month-old, but not 3-month-old mice. Consistently, the surgical incision selectively decreased synaptic NMDA receptor 2B levels in the medial prefrontal cortex, and increased levels of tumor necrosis factor-α and CDK5 in the cortex, but not hippocampus, of the mice. Finally, eutectic mixture of local anesthetics and CDK5 inhibitor, roscovitine, attenuated the surgical incision-induced reduction in the synaptic NMDA receptor 2B levels and learning impairment. These results suggested that surgical incision-induced nociception reduced the synaptic NMDA receptor 2B level in the medial prefrontal cortex of mice, which might lead to hippocampus-independent learning impairment, contributing to POCD. These findings call for further investigation to determine the role of surgical incision-induced nociception in POCD.

  11. Influence of intramuscular heat stimulation on modulation of nociception: complex role of central opioid receptors in descending facilitation and inhibition.

    PubMed

    You, Hao-Jun; Lei, Jing; Ye, Gang; Fan, Xiao-Li; Li, Qiang

    2014-10-01

    It has been reported that the threshold to activate 'silent' or inactive descending facilitation of nociception is lower than that of descending inhibition. Thus, the development of pain therapy to effectively drive descending inhibition alone, without the confounding influences of facilitation is a challenge. To address this issue we investigated the effects of intramuscular stimulation with a heating-needle on spinal nociception, assessed by measuring nociceptive paw withdrawal reflex in rats. Additionally, involvement of the thalamic 'nociceptive discriminators' (thalamic mediodorsal (MD) and ventromedial (VM) nuclei), and opioid-mediated mechanisms were further explored. Descending facilitation and inhibition were elicited by 46°C noxious heating-needle stimulation, and were regulated by thalamic MD and VM nuclei, respectively. In contrast, innocuous heating-needle stimulation at a temperature of 43°C elicited descending inhibition modulated by the thalamic VM nucleus alone. Microinjection of μ/δ/κ-opioid receptor antagonists β-funaltrexamine hydrochloride/naltrindole/nor-binaltorphimine, into the VM nucleus attenuated the 46°C intramuscular heating-needle stimulation-evoked descending inhibition, whereas treatment of the MD nucleus with β-funaltrexamine hydrochloride significantly decreased the descending facilitation. By contrast, descending inhibition evoked by 43°C heating-needle stimulation was only depressed by naltrindole, as opposed to μ- and κ-opioid receptor antagonists, which failed to influence descending inhibition. The present study reveals distinct roles of μ-opioid receptors in the function of thalamic MD and VM nuclei,which exert facilitatory and inhibitory actions on nociception. Furthermore, innocuous, but not noxious, intramuscular heating-needle stimulation targeting δ-opioid receptors is suggested to be a promising avenue for the effective inhibition of pain.

  12. Assessment of 5-HT(7) Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice.

    PubMed

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT(7) receptor agonists on nociception by using 5-HT(7) receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT(7) receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT(7) receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT(7) receptor knockout mice. At these active analgesic doses, none of the three 5-HT(7) receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT(7) receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT(7) receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT(7) receptors. These results also strengthen the idea that the 5-HT(7) receptor plays a role in thermoregulation, but by acting in concert with other receptors.

  13. Assessment of 5-HT7 Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice

    PubMed Central

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT7 receptor agonists on nociception by using 5-HT7 receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT7 receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT7 receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT7 receptor knockout mice. At these active analgesic doses, none of the three 5-HT7 receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT7 receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT7 receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT7 receptors. These results also strengthen the idea that the 5-HT7 receptor plays a role in thermoregulation, but by acting in concert with other receptors. PMID:22761612

  14. GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection.

    PubMed

    Martins, Isabel; Carvalho, Paulina; de Vries, Martin G; Teixeira-Pinto, Armando; Wilson, Steven P; Westerink, Ben H C; Tavares, Isaura

    2015-08-01

    The dorsal reticular nucleus (DRt) plays a key role in facilitation of nociceptive transmission at the spinal cord. In this study, we evaluated the mechanisms involved in GABA-mediated control of the DRt focusing on the role of local GABAB receptors. First, we used in vivo microdialysis to study the release of GABA in the DRt during the course of the formalin test. An increase of GABA levels in comparison with baseline values was detected in the second phase of the test. Because we previously showed that GABAB receptors are expressed by opioidergic DRt neurons, which respond to nociceptive stimuli and inhibit spinally projecting DRt neurons involved in descending pronociception, we then interfered with local GABAB receptors using gene transfer and pharmacological approaches. Lentiviral-mediated knockdown of GABAB1a expression decreased nociceptive responses during the second phase of the test. Local administration of the GABAB receptor antagonist CGP 35348 also decreased nociceptive responses in the second phase of the test, whereas the opposite was detected after injection of the GABAB agonist baclofen. Finally, we determined the GABAergic afferents of the DRt, namely those arising from its main brain afferents, which are located at the telencephalon and diencephalon. For that purpose, we combined retrograde tract-tracing from the DRt with immunodetection of glutamate decarboxylase, the GABA-synthesizing enzyme. The higher numbers of retrogradely labelled glutamate decarboxylase-immunoreactive neurons were located at insular, somatosensory, and motor cortices. Collectively, the results suggest that GABA acting on GABAB receptors may enhance pain facilitation from the DRt during inflammatory pain.

  15. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  16. Spinal alpha3beta2* nicotinic acetylcholine receptors tonically inhibit the transmission of nociceptive mechanical stimuli.

    PubMed

    Young, Tracey; Wittenauer, Shannon; McIntosh, J Michael; Vincler, Michelle

    2008-09-10

    The presence of non-alpha4beta2, non-alpha7 nicotinic acetylcholine receptors (nAChR) in the rat spinal cord has been suggested previously, but the identity of these nAChRs had not been shown. Intrathecal administration of the alpha3beta2*/alpha6beta2* selective alpha-conotoxin MII (alpha-CTX MII) dose- and time-dependently reduced paw withdrawal thresholds to mechanical pressure in normal rats. The pronociceptive effect of alpha-CTX MII was partially blocked by NMDA receptor antagonism and lost completely following ablation of C-fibers. The effect of spinal nerve ligation on alpha-CTX MII-induced mechanical hypersensitivity was also assessed. Sensitivity was lost in the hind paw ipsilateral to spinal nerve ligation, but maintained in the contralateral hind paw at control levels. Radioligand binding in spinal cord membranes revealed high and low affinity alpha-CTX MII binding sites. Spinal nerve ligation did not significantly alter alpha-CTX MII binding ipsilateral to ligation. Finally, no evidence for the presence of alpha6-containing nAChRs was identified. The results of these studies show the presence of 2 populations of alpha-CTX MII-sensitive nAChRs containing the alpha3 and beta2, but not the alpha6, subunits in the rat spinal cord that function to inhibit the transmission of nociceptive mechanical stimuli via inhibiting the release of glutamate from C-fibers. Spinal nerve ligation produces a unilateral loss of alpha-CTX MII-induced mechanical hypersensitivity without altering alpha-CTX MII binding sites. Our data support a peripheral injury-induced loss of a cholinergic inhibitory tone at spinal alpha3beta2* nAChRs, without the loss of the receptors themselves, which may contribute to mechanical hypersensitivity following spinal nerve ligation.

  17. Spinal α3β2* nicotinic acetylcholine receptors tonically inhibit the transmission of nociceptive mechanical stimuli

    PubMed Central

    Young, Tracey; Wittenauer, Shannon; McIntosh, J. Michael; Vincler, Michelle

    2008-01-01

    The presence of non-α4β2, non-α7 nicotinic acetylcholine receptors (nAChR) in the rat spinal cord has been suggested previously, but the identity of these nAChRs had not been shown. Intrathecal administration of the α3β2*/α6β2* selective α-conotoxin MII (α-CTX MII) dose- and time-dependently reduced paw withdrawal thresholds to mechanical pressure in normal rats. The pronociceptive effect of α-CTX MII was partially blocked by NMDA receptor antagonism and lost completely following ablation of C-fibers. The effect of spinal nerve ligation on α-CTX MII-induced mechanical hypersensitivity was also assessed. Sensitivity was lost in the hind paw ipsilateral to spinal nerve ligation, but maintained in the contralateral hind paw at control levels.. Radioligand binding in spinal cord membranes revealed high and low affinity α-CTX MII binding sites. Spinal nerve ligation did not significantly alter α-CTX MII binding ipsilateral to ligation. Finally, no evidence for the presence of α6-containing nAChRs was identified. The results of these studies show the presence of 2 populations of α-CTX MII-sensitive nAChRs containing the α3 and β2, but not the α6, subunits in the rat spinal cord that function to inhibit the transmission of nociceptive mechanical stimuli via inhibiting the release of glutamate from C-fibers. Spinal nerve ligation produces a unilateral loss of α-CTX MII-induced mechanical hypersensitivity without altering α-CTX MII binding sites. Our data support a peripheral injury-induced loss of a cholinergic inhibitory tone at spinal α3β2* nAChRs, without the loss of the receptors themselves, which may contribute to mechanical hypersensitivity following spinal nerve ligation. PMID:18634758

  18. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents.

    PubMed

    Ayachi, Safia; Simonin, Frédéric

    2014-01-01

    Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.

  19. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents

    PubMed Central

    Ayachi, Safia; Simonin, Frédéric

    2014-01-01

    Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg–Phe–NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates. PMID:25324831

  20. Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord.

    PubMed

    Young, M R; Fleetwood-Walker, S M; Dickinson, T; Blackburn-Munro, G; Sparrow, H; Birch, P J; Bountra, C

    1997-11-28

    A combined study of behavioural and electrophysiological tests was carried out in order to assess the role of metabotropic glutamate receptors (mGluRs) in mediating sensory inputs to the spinal cord of the rat. In the behavioural study the responses of conscious animals, with or without carrageenan-induced inflammation, to noxious mechanical and thermal stimuli were observed both before and after the intrathecal administration of mGluR antagonists L(+)-2-amino-3-phosphonopropionic acid (L-AP3) and (S)-4-carboxy-3-hydroxyphenylglycine (CHPG). It was found that the mGluR antagonist (S)-CHPG was capable of increasing both mechanical threshold and thermal latency in both groups of animals, and L-AP3 did so in those with inflammation induced in their hindpaw. Following this study, the responses of single lamina III-V dorsal horn neurons to an innocuous A beta fibre brush stimulus and a noxious C fibre (mustard oil) stimulus were extracellularly recorded and the effect of ionophoretically applied drugs was examined. Cyclothiazide (CTZ), a selective antagonist at mGluR1, markedly reduced the activity evoked by mustard oil, but not that elicited by brushing of the receptive field. Activity induced in dorsal horn neurons by ionophoresing various mGluR subgroup agonists was examined. CTZ successfully inhibited the activity evoked by group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG). In comparison to the neurons which responded to the ionophoresis of DHPG, less were activated by the selective mGluR5 agonist trans-azetidine dicarboxylic acid (t-ADA). Together these results indicate that group I mGlu receptors, in particular mGluR1, play a crucial role in mediating nociception, particularly following a sustained noxious input.

  1. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats

    PubMed Central

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-01-01

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain. PMID:26224622

  2. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse.

    PubMed

    Tanabe, Mitsuo; Takasu, Keiko; Kasuya, Noriyo; Shimizu, Shinobu; Honda, Motoko; Ono, Hideki

    2005-03-01

    1. To gain further insight into the mechanisms underlying the antihyperalgesic and antiallodynic actions of gabapentin, a chronic pain model was prepared by partially ligating the sciatic nerve in mice. The mice then received systemic or local injections of gabapentin combined with either central noradrenaline (NA) depletion by 6-hydroxydopamine (6-OHDA) or alpha-adrenergic receptor blockade. 2. Intraperitoneally (i.p.) administered gabapentin produced antihyperalgesic and antiallodynic effects that were manifested by elevation of the withdrawal threshold to a thermal (plantar test) or mechanical (von Frey test) stimulus, respectively. 3. Similar effects were obtained in both the plantar and von Frey tests when gabapentin was injected intracerebroventricularly (i.c.v.) or intrathecally (i.t.), suggesting that it acts at both supraspinal and spinal loci. This novel supraspinal analgesic action of gabapentin was only obtained in ligated neuropathic mice, and gabapentin (i.p. and i.c.v.) did not affect acute thermal and mechanical nociception. 4. In mice in which central NA levels were depleted by 6-OHDA, the antihyperalgesic and antiallodynic effects of i.p. and i.c.v. gabapentin were strongly suppressed. 5. The antihyperalgesic and antiallodynic effects of systemic gabapentin were reduced by both systemic and i.t. administration of yohimbine, an alpha2-adrenergic receptor antagonist. By contrast, prazosin (i.p. or i.t.), an alpha1-adrenergic receptor antagonist, did not alter the effects of gabapentin. 6. It was concluded that the antihyperalgesic and antiallodynic effects of gabapentin are mediated substantially by the descending noradrenergic system, resulting in the activation of spinal alpha2-adrenergic receptors.

  3. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    PubMed

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue.

  4. Excitability changes of somatic and viscero-somatic nociceptive reflexes in the decerebrate-spinal rabbit: role of NMDA receptors.

    PubMed

    Laird, J M; de la Rubia, P G; Cervero, F

    1995-12-01

    1. Wind-up (frequency-dependent potentiation of the responses of spinal neurones to stimulation of unmyelinated afferents) and other N-methyl-D-aspartate (NMDA) receptor-mediated phenomena have been proposed as key mechanisms underlying persistent pain states. In this study we have compared wind-up in visceral and somatic nociceptive pathways to examine the possible contribution of these mechanisms to visceral pain and hyperalgesia. 2. Experiments were performed on thirteen decerebrate spinalized rabbits. A somato-somatic (SS) reflex (evoked by stimulating skin and muscle afferents from the L2 spinal nerve) and a viscero-somatic (VS) reflex (evoked by stimulating visceral afferents in the splanchnic nerve) were recorded from the L1 spinal nerve. The reflexes consisted of an early (A fibre) and a late (C fibre) component. 3. Conditioning trains of sixteen high intensity electrical stimuli at 1 Hz were applied to the somatic or visceral nerve. These conditioning stimuli did not produce wind-up in the early component of either reflex but evoked powerful wind-up in the late SS reflex (mean percentage of baseline +/- S.E.M., 191 +/- 30%). In contrast wind-up was weak or absent in the late VS reflex (mean percentage of baseline +/- S.E.M., 21 +/- 6%). Conditioning of somatic afferents facilitated both the early and late SS reflex but strongly depressed the early and late VS reflex. Conditioning of visceral afferents had little effect on the early SS reflex, but depressed the early VS reflex and the late components of both reflexes. 4. Intravenous administration (1-10 mg kg-1) of the NMDA receptor antagonist ketamine dose-dependently inhibited the strong wind-up in the late SS reflex and the weak wind-up in the late VS reflex, but also dose-dependently inhibited the early and late components of both baseline reflexes. 5. We conclude that neural mechanisms other than wind-up may underlie the development of visceral pain and hyperalgesia. The present results emphasize the

  5. The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55.

    PubMed

    Schuelert, Niklas; McDougall, Jason J

    2011-08-01

    Cannabinoids classically act via CB₁ and CB₂ receptors to modulate nociception; however, recent findings suggest that some cannabinoids bind to atypical receptors. One such receptor is GPR55 which is activated by the abnormal cannabidiol analogue O-1602. This study investigated whether the synthetic GPR55 agonist O-1602 can alter joint nociception in a rat model of acute joint inflammation. Acute (24 h) inflammatory joint pain was induced in male Wistar rats by intra-articular injection of 2% kaolin and 2% carrageenan. Single unit extracellular recordings were made from arthritic joint afferents in response to mechanical rotation of the knee. Peripheral administration of O-1602 significantly reduced movement-evoked firing of nociceptive C fibres and this effect was blocked by the GPR55 receptor antagonist O-1918. Co-administration of the CB₁ and CB₂ antagonists (AM281 and AM630 respectively) had no effect on O-1602 responses. This study clearly shows that atypical cannabinoid receptors are involved in joint nociception and these novel targets may be advantageous for the treatment of inflammatory pain.

  6. Clonidine Reduces Nociceptive Responses in Mouse Orofacial Formalin Model: Potentiation by Sigma-1 Receptor Antagonist BD1047 without Impaired Motor Coordination.

    PubMed

    Yoon, Seo-Yeon; Kang, Suk-Yun; Kim, Hyun-Woo; Kim, Hyung-Chan; Roh, Dae-Hyun

    2015-01-01

    Although the administration of clonidine, an alpha-2 adrenoceptor agonist, significantly attenuates nociception and hyperalgesia in several pain models, clinical trials of clonidine are limited by its side effects such as drowsiness, hypotension and sedation. Recently, we determined that the sigma-1 receptor antagonist BD1047 dose-dependently reduced nociceptive responses in a mouse orofacial formalin model. Here we examined whether intraperitoneal injection of clonidine suppressed the nociceptive responses in the orofacial formalin test, and whether co-administration with BD1047 enhances lower-dose clonidine-induced anti-nociceptive effects without the disruption of motor coordination and blood pressure. Formalin (5%, 10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with the ipsilateral fore- or hind-paw were counted for 45 min. Clonidine (10, 30 or 100 µg/kg) was intraperitoneally administered 30 min before formalin injection. Clonidine alone dose-dependently reduced nociceptive responses in both the first and second phases. Co-localization for alpha-2A adrenoceptors and sigma-1 receptors was determined in trigeminal ganglion cells. Interestingly, the sub-effective dose of BD1047 (3 mg/kg) significantly potentiated the anti-nociceptive effect of lower-dose clonidine (10 or 30 µg/kg) in the second phase. In particular, the middle dose of clonidine (30 µg/kg) in combination with BD1047 produced an anti-nociceptive effect similar to that of the high-dose clonidine, but without a significant motor dysfunction or hypotension. In contrast, mice treated with the high dose of clonidine developed severe impairment in motor coordination and blood pressure. These data suggest that a combination of low-dose clonidine with BD1047 may be a novel and safe therapeutic strategy for orofacial pain management.

  7. The dopamine D(1) receptor agonist SKF-82958 serves as a discriminative stimulus in the rat.

    PubMed

    Haile, C N; Carey, G; Varty, G B; Coffin, V L

    2000-01-28

    We examined the discriminative stimulus effects of the high-efficacy dopamine D(1) receptor agonist (+/-)6-chloro-7, 8-dihydroxy-3-ally1-phenyl-2,3,4,5-tetrahydro-1H-3benzazepine++ + hydrobromide (SKF-82958) in rats trained to discriminate SKF-82958 (0.03 mg/kg) from vehicle in a two-lever food-reinforced drug discrimination task. SKF-82958 produced dose-related increases in responding to the SKF-82958 appropriate lever with full substitution occurring at the training dose. Pretreatment with the dopamine D(1)/D(5) receptor antagonist (-)-trans-6,7,7a,8,9, 13b-hexahydro-3-chloro-2hydroxy-N-methyl-5H-benzo-[d]naphtho -¿2, 1-b¿azepine (SCH-39166) (0.01 mg/kg) attenuated the discriminative stimulus effects of SKF-82958. Pretreatment with the dopamine D(2) receptor antagonist raclopride (0.03 mg/kg) had no effect. The high-efficacy dopamine D(1) receptor agonist R(+)6chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) fully substituted for SKF-82958, whereas the low-efficacy dopamine D(1) receptor agonist (+/-)1-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF-38393) produced only partial substitution. The dopamine D(2) receptor agonist trans-(+/-)-4,4a,5,6,7,8,8a, 9-octahydro-5-propyl-1H-propyl-1H-pyrazolo[3,4-g]quinoline dihydrochloride (quinpirole) and the indirect dopamine agonist cocaine did not substitute fully for the SKF-82958 discriminative stimulus cue. These results demonstrate that the high-efficacy dopamine D(1) receptor agonist SKF-82958 can serve as an effective discriminative stimulus in the rat, and that these effects are mediated by a dopamine D(1)-like receptor mechanism.

  8. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  9. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.

    PubMed

    Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-04-15

    This study examined the role of spinal metabotropic glutamate receptor 5 (mGluR5) in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in the inhibtion of this reflex by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats after spinal cord transection at the T9/T10 level, intravesical infusion of 0.25% acetic acid irritated the bladder, activated nociceptive C-fiber afferents, and induced spinal reflex bladder contractions of low amplitude (<50 cmH2O) and short duration (<20 s) at a smaller bladder capacity ∼80% of saline control capacity. PNS significantly (P < 0.01) increased bladder capacity from 85.5 ± 10.1 to 137.3 ± 14.1 or 148.2 ± 11.2% at 2T or 4T stimulation, respectively, where T is the threshold intensity for PNS to induce anal twitch. MTEP {3-[(2-methyl-4-thiazolyl)ethynyl]pyridine; 3 mg/kg iv, a selective mGluR5 antagonist} completely removed the PNS inhibition and significantly (P < 0.05) increased bladder capacity from 71.8 ± 9.9 to 94.0 ± 13.9% of saline control, but it did not change the bladder contraction amplitude. After propranolol (3 mg/kg iv, a β1/β2-adrenergic receptor antagonist) treatment, PNS inhibition remained but MTEP significantly (P < 0.05) reduced the bladder contraction amplitude from 18.6 ± 2.1 to 6.6 ± 1.2 cmH2O and eliminated PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P < 0.05) reduced the bladder contraction amplitude from 20.9 ± 3.2 to 8.1 ± 1.5 cmH2O on average demonstrating that spinal reflexes were responsible for a major component of the contractions. This study shows that spinal mGluR5 plays an important role in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in pudendal inhibition of this spinal reflex.

  10. Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat's insular cortex

    PubMed Central

    2010-01-01

    Background The insular cortex (IC) receives somatosensory afferent input and has been related to nociceptive input. It has dopaminergic terminals and D1 (D1R) -excitatory- and D2 (D2R) -inhibitory- receptors. D2R activation with a selective agonist, as well as D1R blockade with antagonists in the IC, diminish neuropathic nociception in a nerve transection model. An intraplantar injection of carrageenan and acute thermonociception (plantar test) were performed to measure the response to inflammation (paw withdrawal latency, PWL). Simultaneously, a freely moving microdyalisis technique and HPLC were used to measure the release of dopamine and its metabolites in the IC. Plantar test was applied prior, one and three hours after inflammation. Also, mRNA levels of D1 and D2R's were measured in the IC after three hours of inflammation. Results The results showed a gradual decrease in the release of dopamine, Dopac and HVA after inflammation. The decrease correlates with a decrease in PWL. D2R's increased their mRNA expression compared to the controls. In regard of D1R's, there was a decrease in their mRNA levels compared to the controls. Conclusions Our results showed that the decreased extracellular levels of dopamine induced by inflammation correlated with the level of pain-related behaviour. These results also showed the increase in dopaminergic mediated inhibition by an increase in D2R's and a decrease in D1R's mRNA. There is a possible differential mechanism regarding the regulation of excitatory and inhibitory dopaminergic receptors triggered by inflammation. PMID:21050459

  11. H(2)S functions as a nociceptive messenger through transient receptor potential ankyrin 1 (TRPA1) activation.

    PubMed

    Ogawa, H; Takahashi, K; Miura, S; Imagawa, T; Saito, S; Tominaga, M; Ohta, T

    2012-08-30

    Hydrogen sulfide (H(2)S), an endogenous gasotransmitter, modulates various biological functions, including nociception. It is known that H(2)S causes neurogenic inflammation and elicits hyperalgesia. Here we show that H(2)S activates mouse transient receptor potential ankyrin 1 (TRPA1) channels and elicits acute pain, using TRPA1-gene deficient mice (TRPA1(-/-)) and heterologous expression system. In wild-type mouse sensory neurons, H(2)S increased the intracellular Ca(2+) concentration ([Ca(2+)](i)), which was inhibited by ruthenium red (a nonselective TRP channel blocker) and HC-030031 (a TRPA1 blocker). H(2)S-responsive neurons highly corresponded to TRPA1 agonist-sensitive ones. [Ca(2+)](i) responses to H(2)S were observed in neurons from transient receptor potential vanilloid 1 (TRPV1(-/-)) mice but not from TRPA1(-/-) mice. Heterologously expressed mouse TRPA1, but not mouse TRPV1, was activated by H(2)S. H(2)S-induced [Ca(2+)](i) responses were inhibited by dithiothreitol, a reducing agent. Analyses of the TRPA1 mutant channel revealed that two cysteine residues located in the N-terminal internal domain were responsible for the activation by H(2)S. Intraplantar injection of H(2)S into the mouse hind paw caused acute pain which was significantly less in TRPA1(-/-) mice. The [Ca(2+)](i) responses to H(2)S in sensory neurons and in heterologously expressed channels, and pain-related behavior induced by H(2)S were enhanced under acidic conditions. These results suggest that H(2)S functions as a nociceptive messenger through the activation of TRPA1 channels. TRPA1 may be a therapeutic target for H(2)S-related algesic action, especially under inflammatory conditions.

  12. Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex.

    PubMed Central

    Moreau, J. L.; Pieri, L.

    1988-01-01

    1. The effects of an intrathecally administered benzodiazepine receptor (BZR) agonist (midazolam, up to 50 micrograms), antagonist (flumazenil, Ro 15-1788, 5 micrograms) and inverse agonist (Ro 19-4603, 15 micrograms) on nociception and on morphine-induced antinociception were studied in rats. 2. By themselves, none of these compounds significantly altered pain threshold. 3. The BZR agonist midazolam enhanced the morphine-induced antinociceptive effect whereas the antagonist flumazenil did not alter it. In contrast, the BZR inverse agonist Ro 19-4603 decreased the morphine-induced antinociceptive effect. 4. Naloxone (1 mg kg-1 i.p.) completely reversed all these effects. 5. These results demonstrate that BZR agonists and inverse agonists are able to affect, by allosteric up- or down-modulation of gamma-aminobutyric acidA (GABAA)-receptors, the transmission of nociceptive information at the spinal cord level, when this transmission is depressed by mu-opioid receptor activation. PMID:2898960

  13. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli.

    PubMed

    Chatchaisak, Duangthip; Connor, Mark; Srikiatkhachorn, Anan; Chetsawang, Banthit

    2017-02-15

    Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.

  14. Sigma-1 receptor antagonist, BD1047 reduces nociceptive responses and phosphorylation of p38 MAPK in mice orofacial formalin model.

    PubMed

    Roh, Dae-Hyun; Yoon, Seo-Yeon

    2014-01-01

    Sigma-1 receptors (Sig-1Rs) play a role in different types of pain and in central sensitization mechanism in spinal cord. However, it is currently unexplored whether Sig-1Rs are involved in orofacial pain processing. Here we show whether a selective Sig-1R antagonist, BD1047 reduces nociceptive responses in the mouse orofacial formalin model and the number of Fos-immunoreactive (ir) cells in the trigeminal nucleus caudalis (TNC). In addition, it was examined whether the phosphorylation of extracellular signal-regulated kinase (pERK) or p38 (pp38) mitogen-activated protein kinases (MAPK), which are closely linked to pain signaling and sensitization, in TNC was modified by BD1047. The 5% formalin (10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with ipsilateral fore- or hind paw were counted for 45 min. BD1047 (1, 3 or 10 mg/kg) were intraperitoneally treated 30 min before formalin injection. High dose of BD1047 (10 mg/kg) produced significant anti-nociceptive effects in the first and the second phase. The number of Fos-ir cells in ipsilateral side of TNC was also reduced by BD1047 as compared to that in saline-treated animals. In addition, the number of pp38-ir cells in ipsilateral TNC was decreased in BD1047-treated animals, whereas the number of pERK-ir cells was not modified. Collectively, these results demonstrate that Sig-1Rs play a pivotal role in the orofacial pain processing, and the pp38 signaling pathway can be associated with Sig-1R's action in TNC.

  15. The relation between stimulus and response in olfactory receptor cells of the tiger salamander.

    PubMed Central

    Firestein, S; Picco, C; Menini, A

    1993-01-01

    1. Olfactory receptor cells were isolated from the adult tiger salamander Ambystoma tigrinum and the current in response to odorant stimuli was measured with the whole-cell voltage-clamp technique while odorants at known concentrations were rapidly applied for controlled exposure times. 2. Three odorants, cineole, isoamyl acetate and acetophenone, were first applied at 5 x 10(-4) M. Out of forty-nine cells tested, 53% responded to one odorant only, 22% to two odorants and 25% to all three odorants. 3. The amplitude of the current in response to a given odorant concentration was found to be dependent on the duration of the odorant stimulus and reached a saturating peak value at 1.2 s of stimulus duration. 4. The current measured at the peak of the response for odorant steps of 1.2 s as a function of odorant concentration was well described by the Hill equation for the three odorants with Hill coefficients higher than 1 and K1/2 (odorant concentration needed to activate half the maximal current) ranging from 3 x 10(-6) to 9 x 10(-5) M. 5. It is concluded that olfactory receptor cells are broadly tuned and have a low apparent affinity for odorants, integrate stimulus information over time, and have a narrow dynamic range. PMID:8254501

  16. An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons.

    PubMed

    Toulmé, Estelle; Blais, Dominique; Léger, Claire; Landry, Marc; Garret, Maurice; Séguéla, Philippe; Boué-Grabot, Eric

    2007-08-01

    Functional cross-talk between structurally unrelated P2X ATP receptors and members of the 'cys-loop' receptor-channel superfamily represents a recently-discovered mechanism for rapid modulation of information processing. The extent and the mechanism of the inhibitory cross-talks between these two classes of ionotropic receptors remain poorly understood, however. Both ionic and molecular coupling were proposed to explain cross-inhibition between P2X subtypes and GABA(A) receptors, suggesting a P2X subunit-dependent mechanism. We show here that cross-inhibition between neuronal P2X(3) or P2X(2+3) and GABA(A) receptors does not depend on chloride and calcium ions. We identified an intracellular QST(386-388) motif in P2X(3) subunits which is required for the functional coupling with GABA(A) receptors. Moreover the cross-inhibition between native P2X(3) and GABA receptors in cultured rat dorsal root ganglia (DRG) neurons is abolished by infusion of a peptide containing the QST motif as well as by viral expression of the main intracellular loop of GABA(A)beta3 subunits. We provide evidence that P2X(3) and GABA(A) receptors are colocalized in the soma and central processes of nociceptive DRG neurons, suggesting that specific intracellular P2X(3)-GABA(A) subunit interactions underlie a pre-synaptic cross-talk that might contribute to the regulation of sensory synaptic transmission in the spinal cord.

  17. Nociception originating from the crural fascia in rats.

    PubMed

    Taguchi, Toru; Yasui, Masaya; Kubo, Asako; Abe, Masahiro; Kiyama, Hiroshi; Yamanaka, Akihiro; Mizumura, Kazue

    2013-07-01

    Little is documented in the literature as to the function of muscle fascia in nociception and pain. The aim of this study was to examine the distribution of presumptive nociceptive nerve fibers, to characterize fascial thin-fiber sensory receptors, and to examine the spinal projection of nociceptive input from the rat crural fascia (CF). Nerve fibers labeled with specific antibodies to calcitonin gene-related peptide (CGRP) and peripherin were found to be densely distributed in the distal third of the CF. Thin-fiber receptors (Aδ- and C-fibers) responding to pinching stimuli to the CF with sharpened watchmaker's forceps, identified in vivo with the teased fiber technique from the common peroneal nerve, exist in the CF. Forty-three percent of the mechano-responsive fascial C-fibers were polymodal receptors (nociceptors) responding to mechanical, chemical (bradykinin), and heat stimuli, whereas almost all Aδ-fibers were responsive only to mechanical stimuli. Repetitive pinching stimulus to the CF induced c-Fos protein expression in the middle to medial part of superficial layers ie, laminae I-II of the spinal dorsal horn at segments L2 to L4, peaking at L3. These results clearly demonstrate the following: 1) peptidergic and non-peptidergic axons of unmyelinated C-fibers with nerve terminals are distributed in the CF; 2) peripheral afferents responding to noxious stimuli exist in the fascia, and 3) nociceptive information from the CF is mainly processed in the spinal dorsal horn at the segments L2 to L4. These results together indicate that the "muscle fascia," a tissue often overlooked in pain research, can be an important source of nociception under normal conditions.

  18. Inflammation-induced increase in nicotinic acetylcholine receptor current in cutaneous nociceptive DRG neurons from the adult rat.

    PubMed

    Zhang, X-L; Albers, K M; Gold, M S

    2015-01-22

    The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery.

  19. Involvement of galanin and galanin receptor 2 in nociceptive modulation in anterior cingulate cortex of normal rats and rats with mononeuropathy

    PubMed Central

    Zhang, Meng-Lin; Wang, Hong-Bo; Fu, Feng-Hua; Yu, Long-Chuan

    2017-01-01

    The present study was performed to explore the role of galanin and galanin receptor 2 in nociceptive modulation in anterior cingulate cortex (ACC) of normal rats and rats with mononeuropathy. Intra-ACC injection of galanin induced significant increases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulations in both normal rats and rats with mononeuropathy, the increased HWLs were attenuated significantly by intra-ACC injection of galanin receptor 2 antagonist M871, indicating an involvement of galanin receptor 2 in nociceptive modulation in ACC. Interestingly, the galanin-induced HWL was significant higher in rats with mononeuropathy than that in normal rats tested by Randall Selitto test. Furthermore, both the galanin mRNA expression and galanin content increased significantly in ACC in rats with mononeuropathy than that in normal rats. Moreover, both the mRNA levels of galanin receptor 2 and the content of galanin receptor 2 in ACC increased significantly in rats with mononeuropathy than that in normal rats. These results found that galanin induced antinociception in ACC in both normal rats and rats with mononeuropathy. And there may be plastic changes in the expression of galanin and galanin receptor 2 in rats with mononeuropathy, as well as in the galanin-induced antinociception. PMID:28378856

  20. Nociceptive transmission and modulation via P2X receptors in central pain syndrome.

    PubMed

    Kuan, Yung-Hui; Shyu, Bai-Chuang

    2016-05-26

    Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.

  1. Centrally mediated antinociceptive effects of cannabinoid receptor ligands in rat models of nociception

    PubMed Central

    Hama, Aldric; Sagen, Jacqueline

    2011-01-01

    The endogenous nonapeptide hemopressin (HE) demonstrates potent block of the cannabinoid subtype-1 (CB1) receptor in vitro and robust antinociception in vivo. The current study evaluated the effects of centrally administered HE in mechanistically distinct pre-clinical rat models of pain—the hot plate test and the hind paw formalin test. The non-subtype selective CB receptor agonist WIN 55,212-2 was tested concurrently as a positive control. In the hot plate test, neither intrathecal (i.t.) HE nor WIN 55,212-2 significantly altered the latency to respond to noxious heat. By contrast, i.t. HE and WIN 55,212-2 significantly reduced pain-related behaviors in the formalin test. Possible HE functionality as a CB1 receptor antagonist at the spinal level was evaluated in the formalin test. Intrathecal pretreatment with HE did not attenuate the antinociceptive effect of i.t. WIN 55,212-2. However, pretreatment with the CB1 receptor antagonist rimonabant did; i.t. rimonabant pretreatment was not antinociceptive. Potential supraspinal antinociceptive activity of HE was also evaluated. Whereas intracerebroventricular (i.c.v.) injection of WIN 55,212-2 reduced pain-related behaviors in the formalin test, interestingly, i.c.v. HE increased behaviors. In the current study, an antinociceptive effect with the CB receptor ligand HE was obtained under the specific condition of tissue injury and not in the uninjured state. Thus, HE could be a useful analgesic peptide with a novel spinal mechanism of action. PMID:21958947

  2. Meta-chlorophenylpiperazine attenuates formalin-induced nociceptive responses through 5-HT1/2 receptors in both normal and diabetic mice.

    PubMed Central

    Takeshita, N.; Yamaguchi, I.

    1995-01-01

    1. This study was designed to investigate the effect of meta-chlorophenylpiperazine (m-CPP; a 5-hydroxytryptamine (5-HT) receptor agonist) on the formalin-induced nociceptive responses in normal, insulin-dependent streptozotocin (STZ) diabetic and non-insulin dependent genetically diabetic (db/db) mice. 2. A subcutaneous injection of diluted formalin (1% formaldehyde in 0.9% saline, 10 microliters) under the plantar surface of the left hindpaw induced biphasic nociceptive responses, the first and second phases considered to represent acute and chronic pain, respectively. The former response in db/db mice was significantly lower than those in normal mice, and the latter responses in STZ and db/db mice were significantly lower than those in normal mice. 3. In normal mice, m-CPP (0.32-3.2 mg ml-1, p.o.) exhibited potent antinociceptive activity, dose-dependently attenuating the first and second phase; the ID50 value of the second phase was 0.4 mg kg-1. m-CPP (0.32-3.2 mg kg-1, p.o.) also dose-dependently attenuated the formalin-induced nociceptive responses in STZ-induced diabetic mice and genetically diabetic db/db mice, and the activities were comparable to those in normal mice. 4. The antinociceptive activities of m-CPP (1 mg kg-1, p.o.) were significantly inhibited by pretreatment with pindolol (a 5-HT1-receptor antagonist, 1 mg kg-1, i.p.) or ketanserin (a 5-HT2 receptor antagonist, 1 mg kg-1, i.p.) but were hardly affected by ICS205-930 (a 5-HT3 receptor antagonist, 1 mg kg-1, i.p.). 5. These results suggest that m-CPP inhibits not only acute but also chronic pain transmission through 5-HT1 and 5-HT2 receptors, and that the 5-hydroxytryptaminergic antinociceptive pathways are little affected by diabetes. PMID:8719787

  3. TRR469, a potent A(1) adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice.

    PubMed

    Vincenzi, Fabrizio; Targa, Martina; Romagnoli, Romeo; Merighi, Stefania; Gessi, Stefania; Baraldi, Pier Giovanni; Borea, Pier Andrea; Varani, Katia

    2014-06-01

    A(1) adenosine receptors (ARs) have been identified as a potential target for the development of anti-nociceptive compounds. The present study explores the analgesic effects of a novel A(1)AR positive allosteric modulator, TRR469, in different models of acute and chronic pain in mice. To evaluate the allosteric enhancement, in vitro binding experiments were performed. The anti-nociceptive properties were investigated in formalin and writhing tests, and in the streptozotocin-induced diabetic neuropathic pain model. Rotarod and catalepsy tests were used to identify potential side effects, while the functional effect of TRR469 was studied using [(3)H]-d-aspartate release from synaptosomes. TRR469 effectively inhibited nociceptive responses in the formalin and writhing tests, with effects comparable to those of the reference analgesic morphine. Isobolographic analysis of the combination of TRR469 and morphine revealed an additive interaction. TRR469 was anti-allodynic in the neuropathic pain model and did not display locomotor or cataleptic side effects. TRR469 enhanced the binding of the agonist radioligand [(3)H]-CCPA and induced a 33-fold increase of adenosine affinity in spinal cord membranes. In mouse spinal cord synaptosomes, TRR469 enhanced the inhibitory effect of A(1)AR activation on [(3)H]-d-aspartate release, a non-metabolizable analogue of glutamate. In conclusion, this research demonstrates the anti-nociceptive effect of the novel compound TRR469, one of the most potent and effective A(1)AR positive allosteric modulators so far synthesized. The use of TRR469 allows for the possibility of exploiting analgesic properties of endogenous adenosine, with a minor potential to develop the various side effects often associated with the use of direct receptor agonists.

  4. Peripheral NMDA and non-NMDA receptors contribute to nociception: an electrophysiological study.

    PubMed

    Wang, C; Wang, Y; Zhao, Z

    2000-05-01

    The present study investigated the effects of peripheral administration of N-methy-D-aspartate (NMDA) and non-NMDA receptor antagonists on C-fiber evoked responses of the spinal dorsal horn neurons in the spinalized rats. When DL-2-amino-5-phosphonovaleric acid (AP5) (10 mM, 1 mM, 0.1 mM, 20 microl) or 6, 7-dinitroquinoxaline-2, 3-dione (DNQX) (1 mM, 0.1 mM, 0.01 mM, 20 microl) was subcutaneously injected into the receptive field on the hindplantar region, C-fiber evoked responses of the dorsal horn neurons were profoundly inhibited in a dose-dependent manner. Three hours after subcutaneous injection of carrageenan into the ipsilateral hindpaw, NMDA and non-NMDA antagonist-induced inhibition of C-fiber evoked responses was more potent than that in the normal rat (Student's t-test, p < 0.05). In the carragenan-treated rats, DNQX-induced inhibition was stronger than AP-5-induced one (Student's t-test, p < 0.05). The results suggest that peripheral NMDA and non-NMDA receptors are involved in mediating excitation of nociceptors.

  5. Discriminative Stimulus Effects of the GABAB Receptor-Positive Modulator rac-BHFF: Comparison with GABAB Receptor Agonists and Drugs of Abuse

    PubMed Central

    Cheng, Kejun; Rice, Kenner C.

    2013-01-01

    GABAB receptor-positive modulators are thought to have advantages as potential medications for anxiety, depression, and drug addiction. They may have fewer side effects than GABAB receptor agonists, because selective enhancement of activated receptors could have effects different from nonselective activation of all receptors. To examine this, pigeons were trained to discriminate the GABAB receptor-positive modulator (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) from its vehicle. The discriminative stimulus effects of rac-BHFF were not mimicked by the GABAB receptor agonists baclofen and γ-hydroxybutyrate (GHB), not by diazepam, and not by alcohol, cocaine, and nicotine, whose self-administration has been reported to be attenuated by GABAB receptor-positive modulators. The discriminative stimulus effects of rac-BHFF were not antagonized by the GABAB receptor antagonist 3-aminopropyl (diethoxymethyl)phosphinic acid (CGP35348) but were attenuated by the less efficacious GABAB receptor-positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)phenol (CGP7930), suggesting the possibility that rac-BHFF produces its discriminative stimulus effects by directly activating GABAB2 subunits of GABAB receptors. At a dose 10-fold lower than the training dose, rac-BHFF enhanced the discriminative stimulus effects of baclofen, but not of GHB. This study provides evidence that the effects of GABAB receptor-positive modulators are not identical to those of GABAB receptor agonists. In addition, the results suggest that positive modulation of GABAB receptors does not produce discriminative stimulus effects similar to those of benzodiazepines, alcohol, cocaine, and nicotine. Finally, the finding that rac-BHFF enhanced effects of baclofen but not of GHB is consistent with converging evidence that the populations of GABAB receptors mediating the effects of baclofen and GHB are not identical. PMID:23275067

  6. Capsaicin, Nociception and Pain.

    PubMed

    Frias, Bárbara; Merighi, Adalberto

    2016-06-18

    Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.

  7. Effects of the nicotinic acetylcholine receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in male rhesus monkeys.

    PubMed

    Banks, Matthew L

    2014-06-01

    Preclinical drug discrimination procedures have been useful in understanding the pharmacological mechanisms of the subjective-like effects of abused drugs. Converging lines of evidence from neurochemical and behavioral studies implicate a potential role of nicotinic acetylcholine (nACh) receptors in the abuse-related effects of cocaine. The aim of the present study was to determine the effects of the nACh receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in nonhuman primates. The effects of mecamylamine on the cocaine-like discriminative stimulus effects of nicotine were also examined. Male rhesus monkeys (n = 5) were trained to discriminate 0.32 mg/kg, IM cocaine from saline in a 2-key, food-reinforced discrimination procedure. Initially, potency and time course of cocaine-like discriminative stimulus effects were determined for nicotine and mecamylamine alone. Test sessions were then conducted examining the effects of mecamylamine on cocaine or the cocaine-like discriminative stimulus effects of nicotine. Curiously, mecamylamine produced partial cocaine-like discriminative stimulus effects. Mecamylamine did not significantly alter the discriminative stimulus effects of cocaine up to doses that significantly decreased rates of operant responding. Mecamylamine and nicotine combinations were not different than saline. These results confirm previous nonhuman primate studies of partial substitution with nicotine and extend these findings with mecamylamine. Furthermore, these results extend previous results in rats suggesting cocaine may have nACh receptor antagonist properties.

  8. Gene silencing of NR2B-containing NMDA receptor by intrathecal injection of short hairpin RNA reduces formalin-induced nociception in C57BL/6 mouse.

    PubMed

    Zhang, Rao-Xiang; Yan, Xue-Bin; Gu, Yong-Hong; Huang, Dong; Gan, Li; Han, Rui; Huang, Li-Hua

    2013-09-01

    Spinal NR2B-containing N-methyl-D-aspartate receptors (NR2B) play a critical role in the formation of central sensitization and persistent pain. Previous studies show that gene silencing of the spinal NR2B subunit by small interfering RNA (siRNA) could alleviate nociception in animals. The siRNA is a 19- to 23-nt RNA duplex, which can be synthesized in vitro or derived from short hairpin RNAs (shRNAs). In the present study, we investigated whether intrathecal injection of shRNAs targeting NR2B (GRIN2B shRNA) could affect nociception on formalin-induced pain in mice. Our results showed that intrathecal injection of GRIN2B shRNA could decrease NR2B mRNA and protein expression levels and hence effectively relieve formalin-induced nociception in mice, suggesting that intrathecal delivery of GRIN2B shRNA can be an efficient way to silence the target gene and provide new insights into the treatment of chronic pain.

  9. Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys

    PubMed Central

    Zelenock, Kathy A.; Lindsey, Angela M.; Sulima, Agnieszka; Rice, Kenner C.; Prinssen, Eric P.; Wichmann, Jürgen; Woods, James H.

    2016-01-01

    Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects. PMID:26801398

  10. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    PubMed Central

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions

  11. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    PubMed

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2016-12-21

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.Neuropsychopharmacology advance online publication, 21 December 2016; doi:10.1038/npp.2016.262.

  12. Activation of Group II Metabotropic Glutamate Receptors Inhibits the Discriminative Stimulus Effects of Alcohol via Selective Activity Within the Amygdala

    PubMed Central

    Cannady, Reginald; Grondin, Julie JM; Fisher, Kristen R; Hodge, Clyde W; Besheer, Joyce

    2011-01-01

    Metabotropic glutamate receptor subtypes (mGlu2/3) regulate a variety of alcohol-associated behaviors, including alcohol reinforcement, and relapse-like behavior. To date, the role of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol has not been examined. Given that the discriminative stimulus effects of drugs are determinants of abuse liability and can influence drug seeking, we examined the contributions of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol. In male Long-Evans rats trained to discriminate between alcohol (1 g/kg, IG) and water, the mGlu2/3 agonist LY379268 (0.3–10 mg/kg) did not produce alcohol-like stimulus effects. However, pretreatment with LY379268 (1 and 3 mg/kg; in combination with alcohol) inhibited the stimulus effects of alcohol (1 g/kg). Systemic LY379268 (3 mg/kg, i.p.) was associated with increases in neuronal activity within the amygdala, but not the nucleus accumbens, as assessed by c-Fos immunoreactivity. Intra-amygdala activation of mGlu2/3 receptors by LY379268 (6 μg) inhibited the discriminative stimulus effects of alcohol, without altering response rate. In contrast, intra-accumbens LY379268 (3 μg) profoundly reduced response rate; however, at lower LY379268 doses (0.3, 1 μg), the discriminative stimulus effects of alcohol and response rate were not altered. These data suggest that amygdala mGlu2/3 receptors have a functional role in modulating the discriminative stimulus properties of alcohol and demonstrate differential motor sensitivity to activation of mGlu2/3 receptors in the amygdala and the accumbens. Understanding the neuronal mechanisms that underlie the discriminative stimulus effects of alcohol may prove to be important for future development of pharmacotherapies for treating alcoholism. PMID:21734651

  13. A General Odorant Background Affects the Coding of Pheromone Stimulus Intermittency in Specialist Olfactory Receptor Neurones

    PubMed Central

    Rouyar, Angela; Party, Virginie; Prešern, Janez; Blejec, Andrej; Renou, Michel

    2011-01-01

    In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal. PMID:22028879

  14. Nociceptive neuronal Fc-gamma receptor I is involved in IgG immune complex induced pain in the rat.

    PubMed

    Jiang, Haowu; Shen, Xinhua; Chen, Zhiyong; Liu, Fan; Wang, Tao; Xie, Yikuan; Ma, Chao

    2017-03-02

    Antigen-specific immune diseases such as rheumatoid arthritis are often accompanied by pain and hyperalgesia. Our previous studies have demonstrated that Fc-gamma-receptor type I (FcγRI) is expressed in a subpopulation of rat dorsal root ganglion (DRG) neurons and can be directly activated by IgG immune complex (IgG-IC). In this study we investigated whether neuronal FcγRI contributes to antigen-specific pain in the naïve and rheumatoid arthritis model rats. In vitro calcium imaging and whole-cell patch clamp recordings in dissociated DRG neurons revealed that only the small-, but not medium- or large-sized DRG neurons responded to IgG-IC. Accordingly, in vivo electrophysiological recordings showed that intradermal injection of IgG-IC into the peripheral receptive field could sensitize only the C- (but not A-) type sensory neurons and evoke action potential discharges. Pain-related behavioral tests showed that intradermal injection of IgG-IC dose-dependently produced mechanical and thermal hyperalgesia in the hindpaw of rats. These behavioral effects could be alleviated by localized administration of non-specific IgG or an FcγRI antibody, but not by mast cell stabilizer or histamine antagonist. In a rat model of antigen-induced arthritis (AIA) produced by methylated bovine serum albumin, FcγRI were found upregulated exclusively in the small-sized DRG neurons. In vitro calcium imaging revealed that significantly more small-sized DRG neurons responded to IgG-IC in the AIA rats, although there was no significant difference between the AIA and control rats in the magnitude of calcium changes in the DRG neurons. Moreover, in vivo electrophysiological recordings showed that C-nociceptive neurons in the AIA rats exhibited a greater incidence of action potential discharges and stronger responses to mechanical stimuli after IgG-IC was injected to the receptive fields. These results suggest that FcγRI expressed in the peripheral nociceptors might be directly activated

  15. GABAB receptors in the NTS mediate the inhibitory effect of trigeminal nociceptive inputs on parasympathetic reflex vasodilation in the rat masseter muscle.

    PubMed

    Ishii, Hisayoshi; Izumi, Hiroshi

    2012-03-15

    The present study was designed to examine whether trigeminal nociceptive inputs are involved in the modulation of parasympathetic reflex vasodilation in the jaw muscles. This was accomplished by investigating the effects of noxious stimulation to the orofacial area with capsaicin, and by microinjecting GABA(A) and GABA(B) receptor agonists or antagonists into the nucleus of the solitary tract (NTS), on masseter hemodynamics in urethane-anesthetized rats. Electrical stimulation of the central cut end of the cervical vagus nerve (cVN) in sympathectomized animals bilaterally increased blood flow in the masseter muscle (MBF). Increases in MBF evoked by cVN stimulation were markedly reduced following injection of capsaicin into the anterior tongue in the distribution of the lingual nerve or lower lip, but not when injected into the skin of the dorsum of the foot. Intravenous administration of either phentolamine or propranolol had no effect on the inhibitory effects of capsaicin injection on the increases of MBF evoked by cVN stimulation, which were largely abolished by microinjecting the GABA(B) receptor agonist baclofen into the NTS. Microinjection of the GABA(B) receptor antagonist CGP-35348 into the NTS markedly attenuated the capsaicin-induced inhibition of MBF increase evoked by cVN stimulation, while microinjection of the GABA(A) receptor antagonist bicuculline did not. Our results indicate that trigeminal nociceptive inputs inhibit vagal-parasympathetic reflex vasodilation in the masseter muscle and suggest that the activation of GABA(B) rather than GABA(A) receptors underlies the observed inhibition in the NTS.

  16. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Aβ-fiber stimulation.

    PubMed

    Yang, Fei; Xu, Qian; Shu, Bin; Tiwari, Vinod; He, Shao-Qiu; Vera-Portocarrero, Louis P; Dong, Xinzhong; Linderoth, Bengt; Raja, Srinivasa N; Wang, Yun; Guan, Yun

    2016-11-01

    Activation of Aβ-fibers is an intrinsic feature of spinal cord stimulation (SCS) pain therapy. Cannabinoid receptor type 1 (CB1) is important to neuronal plasticity and pain modulation, but its role in SCS-induced pain inhibition remains unclear. In this study, we showed that CB1 receptors are expressed in both excitatory and inhibitory interneurons in substantia gelatinosa (SG). Patch-clamp recording of the evoked excitatory postsynaptic currents (eEPSCs) in mice after spinal nerve ligation (SNL) showed that electrical stimulation of Aβ-fibers (Aβ-ES) using clinical SCS-like parameters (50 Hz, 0.2 millisecond, 10 μA) induced prolonged depression of eEPSCs to C-fiber inputs in SG neurons. Pretreatment with CB1 receptor antagonist AM251 (2 μM) reduced the inhibition of C-eEPSCs by Aβ-ES in both excitatory and inhibitory SG neurons. We further determined the net effect of Aβ-ES on spinal nociceptive transmission in vivo by recording spinal local field potential in SNL rats. Epidural SCS (50 Hz, Aβ-plateau, 5 minutes) attenuated C-fiber-evoked local field potential. This effect of SCS was partially reduced by spinal topical application of AM251 (25 μg, 50 μL), but not CB2 receptor antagonist AM630 (100 μg). Finally, intrathecal pretreatment with AM251 (50 μg, 15 μL) in SNL rats blocked the inhibition of behavioral mechanical hypersensitivity by SCS (50 Hz, 0.2 millisecond; 80% of motor threshold, 60 minutes). Our findings suggest that activation of spinal CB1 receptors may contribute to synaptic depression to high-threshold afferent inputs in SG neurons after Aβ-ES and may be involved in SCS-induced inhibition of spinal nociceptive transmission after nerve injury.

  17. Peripheral group II metabotropic glutamate receptors (mGluR2/3) regulate prostaglandin E2-mediated sensitization of capsaicin responses and thermal nociception.

    PubMed

    Yang, Dongni; Gereau, Robert W

    2002-08-01

    Previous studies have shown that group II metabotropic glutamate receptors (mGluRs) are present on the peripheral terminals of primary sensory neurons, suggesting that they might be involved in nociception. In this study, we investigated the modulation of nociception by peripheral group II mGluRs and the molecular basis of this modulation. Subcutaneous injection of a group II mGluR agonist, 2R,4R 4-aminopyrrolidine-2,4-dicarboxylate (APDC), did not alter thermal sensitivity but blocked prostaglandin E2 (PGE2)-induced thermal hyperalgesia. This effect was blocked by (2s)-2-amino-2-[(1s,2s)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid, a selective group II mGluR antagonist. In cultured primary sensory neurons, APDC blocked PGE2-induced potentiation of capsaicin responses, which was abolished when neurons were pretreated with pertussis toxin. Similar potentiating effects induced by forskolin but not 8-bromo-cAMP were also blocked by the activation of group II mGluRs. These results indicate that peripheral group II mGluRs act via inhibition of adenylyl cyclase to reverse the sensitization of capsaicin receptors and the thermal hyperalgesia induced by PGE2, and suggest that peripheral group II mGluRs might be targeted for therapeutic intervention in inflammatory pain states.

  18. Discriminative stimulus effects of the GABAB receptor-positive modulator rac-BHFF: comparison with GABAB receptor agonists and drugs of abuse.

    PubMed

    Koek, Wouter; Cheng, Kejun; Rice, Kenner C

    2013-03-01

    GABA(B) receptor-positive modulators are thought to have advantages as potential medications for anxiety, depression, and drug addiction. They may have fewer side effects than GABA(B) receptor agonists, because selective enhancement of activated receptors could have effects different from nonselective activation of all receptors. To examine this, pigeons were trained to discriminate the GABA(B) receptor-positive modulator (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) from its vehicle. The discriminative stimulus effects of rac-BHFF were not mimicked by the GABA(B) receptor agonists baclofen and γ-hydroxybutyrate (GHB), not by diazepam, and not by alcohol, cocaine, and nicotine, whose self-administration has been reported to be attenuated by GABA(B) receptor-positive modulators. The discriminative stimulus effects of rac-BHFF were not antagonized by the GABA(B) receptor antagonist 3-aminopropyl (diethoxymethyl)phosphinic acid (CGP35348) but were attenuated by the less efficacious GABA(B) receptor-positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)phenol (CGP7930), suggesting the possibility that rac-BHFF produces its discriminative stimulus effects by directly activating GABA(B2) subunits of GABA(B) receptors. At a dose 10-fold lower than the training dose, rac-BHFF enhanced the discriminative stimulus effects of baclofen, but not of GHB. This study provides evidence that the effects of GABA(B) receptor-positive modulators are not identical to those of GABA(B) receptor agonists. In addition, the results suggest that positive modulation of GABA(B) receptors does not produce discriminative stimulus effects similar to those of benzodiazepines, alcohol, cocaine, and nicotine. Finally, the finding that rac-BHFF enhanced effects of baclofen but not of GHB is consistent with converging evidence that the populations of GABA(B) receptors mediating the effects of baclofen and GHB are not identical.

  19. Discriminative stimulus effects of benzodiazepine (BZ)(1) receptor-selective ligands in rhesus monkeys.

    PubMed

    McMahon, Lance R; Gerak, Lisa R; Carter, Lawrence; Ma, Chunrong; Cook, James M; France, Charles P

    2002-02-01

    Drug discrimination was used to examine the effects of benzodiazepine (BZ)(1) receptor-selective ligands in rhesus monkeys. In diazepam-treated (5.6 mg/kg, p.o.) monkeys discriminating the nonselective BZ antagonist flumazenil (0.32 mg/kg, s.c.), the BZ(1)-selective antagonist beta-carboline-3-carboxylate-t-butyl ester (beta-CCt) substituted for flumazenil. The onset of action of beta-CCt was delayed with a dose of 5.6 mg/kg beta-CCt substituting for flumazenil 2 h after injection. In monkeys discriminating the nonselective BZ agonist midazolam (0.56 mg/kg, s.c.), the BZ(1)-selective agonists zaleplon (ED(50) = 0.78 mg/kg) and zolpidem (ED(50) = 1.73 mg/kg) substituted for midazolam. The discriminative stimulus effects of midazolam, zaleplon, and zolpidem were antagonized by beta-CCt (1.0-5.6 mg/kg, s.c.), and the effects of zaleplon and zolpidem were also antagonized by flumazenil (0.01-0.32 mg/kg, s.c.). Schild analyses supported the notion of a simple, competitive interaction between beta-CCt and midazolam (slope = -1.08; apparent pA(2) = 5.41) or zaleplon (slope = -1.57; apparent pA(2) = 5.49) and not between beta-CCt and zolpidem. Schild analyses also were consistent with a simple, competitive interaction between flumazenil and zaleplon (slope = -1.03; apparent pA(2) = 7.45) or zolpidem (slope = -1.11; apparent pA(2) = 7.63). These results suggest that the same BZ receptor subtype(s) mediate(s) the effects of midazolam, zolpidem, and zaleplon under these conditions and that selective binding of BZ ligands does not necessarily confer selective effects in vivo.

  20. Evidence for the participation of peripheral α5 subunit-containing GABAA receptors in GABAA agonists-induced nociception in rats.

    PubMed

    Bravo-Hernández, Mariana; Feria-Morales, Luis Alberto; Torres-López, Jorge Elías; Cervantes-Durán, Claudia; Delgado-Lezama, Rodolfo; Granados-Soto, Vinicio; Rocha-González, Héctor Isaac

    2014-07-05

    The activation of GABAA receptor by γ-amino butyric acid (GABA) in primary afferent fibers produces depolarization. In normal conditions this depolarization causes a reduction in the release of neurotransmitters. Therefore, this depolarization remains inhibitory. However, previous studies have suggested that in inflammatory pain, GABA shifts its signaling from inhibition to excitation by an increased GABA-induced depolarization. The contribution of peripheral α5 subunit-containing GABAA receptors to the inflammatory pain is unknown. The purpose of this study was to investigate the possible pronociceptive role of peripheral α5 subunit-containing GABAA receptors in the formalin test. Formalin (0.5%) injection into the dorsum of the right hind paw produced flinching behavior in rats. Ipsilateral local peripheral pre-treatment (-10min) with exogenous GABA (0.003-0.03µg/paw) or common GABAA receptor agonists muscimol (0.003-0.03µg/paw), diazepam (0.017-0.056µg/paw) or phenobarbital (1-100µg/paw) significantly increased 0.5% formalin-induced nociceptive behavior. The pronociceptive effects of GABA (0.03µg/paw), muscimol (0.03µg/paw), diazepam (0.056µg/paw) and phenobarbital (100µg/paw) were prevented by either the GABAA receptor antagonist bicuculline (0.01-0.1µg/paw) or selective α5 subunit-containing GABAA receptor inverse agonist L-655,708 (0.017-0.17µg/paw). The α5 subunit-containing GABAA receptor protein was expressed in dorsal root ganglion (DRG) and dorsal spinal cord of naïve rats. The formalin injection did not modify α5 subunit-containing GABAA receptor expression. Overall, these results suggest that peripheral α5 subunit-containing GABAA receptors play a pronociceptive role in the rat formalin test.

  1. The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice.

    PubMed

    Leffler, A; Mönter, B; Koltzenburg, M

    2006-05-12

    A local elevation of H+-ion concentrations often occurs in inflammation and usually evokes pain by excitation of primary nociceptive neurons. Expression patterns and functional properties of the capsaicin receptor and acid-sensing ion channels suggest that they may be the main molecular substrates underlying this proton sensitivity. Here, we asked how the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) contribute to the proton response in subpopulations of nociceptive neurons from adult rats and mice (wildtype C57/Bl6, Balb/C and TRPV1-null). In cultured dorsal root ganglion neurons, whole cell patch clamp recordings showed that the majority of capsaicin-sensitive rat dorsal root ganglion neurons displayed large proton-evoked inward currents with transient ASIC-like properties. In contrast, the prevalence of ASIC-like currents was smaller in both mouse wildtype strains and more frequent in capsaicin-insensitive neurons. Transient ASIC-like currents were more frequent in both species among isolectin B4-negative neurons. A significantly reduced proton response was observed for dissociated dorsal root ganglion neurons in TRPV1 deficient mice. Unmyelinated, but not thin myelinated nociceptors recorded extracellularly from TRPV1-null mutants showed a profound reduction of proton sensitivity. Together these findings indicate that there are significant differences between rat and mouse in the contribution of TRPV1 and ASIC subunits to proton sensitivity of sensory neurons. In both species ASIC subunits are more prevalent in the isolectin B4-negative neurons, some of which may represent thin myelinated nociceptors. However, the main acid-sensor in isolectin B4-positive and isolectin B4-negative unmyelinated nociceptors in mice is TRPV1.

  2. Antinociceptive effects of a new sigma-1 receptor antagonist (N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy)acetamide) in two types of nociception.

    PubMed

    García-Martínez, Betzabeth Anali; Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; Navarrete-Vázquez, Gabriel; Melo-Hernández, Luis Alberto; Medina-López, José Raúl; Domínguez-Ramírez, Adriana Miriam; Schepmann, Dirk; Wünsch, Bernhard; López-Muñoz, Francisco Javier

    2016-01-15

    Pain has become an active clinical challenge due its etiological heterogeneity, symptoms and mechanisms of action. In the search for new pharmacological therapeutic alternatives, sigma receptors have been proposed as drug targets. This family consists of sigma-1 and sigma-2 receptors. The sigma-1 system is involved in nociception through its chaperone activity. Additionally, it has been shown that agonist to these receptors promote related sensitisation and pain hypersensitisation, suggesting the possible use of antagonists for sigma-1 receptors as an alternative therapy. The aim of this study was to evaluate the antinociceptive effect of a new sigma-1 receptor antagonist N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy)acetamida (NMIN) in two types of pain (arthritic and neuropathic) and to compare its efficacy and potency with reference drugs. The antinociceptive effects of NMIN were quantitatively evaluated using the pain-induced functional impairment model in the rat and the acetone test in a rat model of neuropathic pain. NMIN (sigma-1 receptor affinity of 324nM) did not show any antinociceptive activity in the arthritic pain model but showed a dose-dependent anti-allodynic effect in neuropathic pain. NMIN showed a similar efficacy compared to the effects obtained with morphine and the sigma-1 antagonist BD-1063. However, these reference drugs showed increased potency compared with NMIN. Our results suggest that sigma-1 receptors may play an important direct role in neuropathic pain but not in arthritic pain, supporting the hypothesis that NMIN may be useful for the treatment of neuropathic pain.

  3. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus

    PubMed Central

    Stefanescu, Roxana A.; Shore, Susan E.

    2015-01-01

    Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry. PMID:26622224

  4. Differential involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine and methamphetamine.

    PubMed

    Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Goldberg, Steven R

    2002-02-01

    Involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine versus methamphetamine was studied in Sprague Dawley rats (n=10) trained to discriminate 10 mg/kg cocaine, i.p., from saline under a fixed-ratio 10 (FR10) schedule of food presentation. The ability of (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT(2A) receptor agonist, and ketanserin, a 5-HT(2A) receptor antagonist, to either substitute for or block the discriminative-stimulus effects of cocaine, or to shift the cocaine dose-response curve, was evaluated. DOI (0.18-1.0 mg/kg) partially substituted for the training dose of 10 mg/kg cocaine, but only at doses that decreased rates of responding. At the highest dose of DOI tested (1.0 mg/kg), there was about 65% cocaine-appropriate responding. Substitution of DOI for cocaine and DOI-induced decreases in rates of responding were completely reversed by ketanserin (3.0 mg/kg). Ketanserin (3.0 mg/kg) also produced a significant shift to the right of the cocaine dose-response curve and antagonized increases in rates of responding produced by lower doses of cocaine. Ketanserin (1.0-10.0 mg/kg), however, did not block the discriminative-stimulus effects of the training dose of cocaine. When DOI (0.3 mg/kg) was co-administered with different doses of cocaine, there was a slight leftward shift in the cocaine dose-response curve, which was not significant and appeared to reflect simple additive effects of DOI and cocaine. In contrast, the same dose of DOI (0.3 mg/kg) produced a marked and highly significant shift to the left of the methamphetamine (0.18-1.0 mg/kg) dose-response curve in the same subjects and the effects of DOI and methamphetamine were clearly more than additive. The present findings provide new evidence that there is some serotonergic modulation of cocaine's discriminative-stimulus actions, which appears to involve stimulation of 5-HT(2A) receptors. However, involvement of 5-HT(2A) receptor activity in the

  5. Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns.

    PubMed

    Sun, H Y; Bartley, A F; Dobrunz, L E

    2009-02-01

    Schaffer collateral synapses in hippocampus show target-cell specific short-term plasticity. Using GFP-expressing Inhibitory Neuron (GIN) transgenic mice that express enhanced green fluorescent protein (EGFP) in a subset of somatostatin-containing interneurons (SOM interneurons), we previously showed that Schaffer collateral synapses onto SOM interneurons in stratum (S.) radiatum have unusually large (up to 6-fold) paired-pulse facilitation. This results from a low initial release probability and the enhancement of facilitation by synaptic activation of presynaptic kainate receptors. Here we further investigate the properties of these kainate receptors and examine their effects on short-term facilitation during physiologically derived stimulation patterns, using excitatory postsynaptic currents recorded in S. radiatum interneurons during Schaffer collateral stimulation in acute slices from juvenile GIN mice. We find that GluR5 and GluR6 antagonists decrease short-term facilitation at Schaffer collateral synapses onto SOM interneurons with no additive effects, suggesting that the presynaptic kainate receptors are heteromers containing both GluR5 and GluR6 subunits. The calcium-permeable receptor antagonist 1-napthyl acetyl spermine (NASPM) both mimics and occludes the effect of the kainate receptor antagonists, indicating that the presynaptic kainate receptors are calcium permeable. Furthermore, Schaffer collateral synapses onto SOM interneurons show up to 11-fold short-term facilitation during physiologically derived stimulus patterns, in contrast to other interneurons that have less than 1.5-fold facilitation. Blocking the kainate receptors reduces facilitation in SOM interneurons by approximately 50% during the physiologically derived patterns and reduces the dynamic range. Activation of calcium-permeable kainate receptors containing GluR5/GluR6 causes a dramatic increase in short-term facilitation during physiologically derived stimulus patterns, a mechanism

  6. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect

    PubMed Central

    Ang, Seok Ting; Lee, Andy Thiam Huat; Foo, Fang Chee; Ng, Lynn; Low, Chian-Ming; Khanna, Sanjay

    2015-01-01

    The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB. The GABAergic lesion attenuated formalin-induced unconditioned cellular response in the anterior cingulate cortex (ACC) and blocked formalin-induced conditioned place avoidance (F-CPA), and as well as the contextual fear induced on conditioning with brief footshock. The effects of lesion on nociceptive-conditioned cellular responses were, however, variable. Interestingly, the lesion attenuated the conditioned representation of experimental context in dorsal hippocampus field CA1 in the F-CPA task. Collectively, the preceding suggests that the MSDB is a nodal centre wherein the GABAergic neurons mediate nociceptive affect-motivation by regulating cellular mechanisms in ACC that confer an aversive value to the noxious stimulus. Further, in conjunction with a modulatory influence on hippocampal contextual processing, MSDB may integrate affect with context as part of associative learning in the F-CPA task. PMID:26487082

  7. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect.

    PubMed

    Ang, Seok Ting; Lee, Andy Thiam Huat; Foo, Fang Chee; Ng, Lynn; Low, Chian-Ming; Khanna, Sanjay

    2015-10-21

    The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB. The GABAergic lesion attenuated formalin-induced unconditioned cellular response in the anterior cingulate cortex (ACC) and blocked formalin-induced conditioned place avoidance (F-CPA), and as well as the contextual fear induced on conditioning with brief footshock. The effects of lesion on nociceptive-conditioned cellular responses were, however, variable. Interestingly, the lesion attenuated the conditioned representation of experimental context in dorsal hippocampus field CA1 in the F-CPA task. Collectively, the preceding suggests that the MSDB is a nodal centre wherein the GABAergic neurons mediate nociceptive affect-motivation by regulating cellular mechanisms in ACC that confer an aversive value to the noxious stimulus. Further, in conjunction with a modulatory influence on hippocampal contextual processing, MSDB may integrate affect with context as part of associative learning in the F-CPA task.

  8. 4-oxo-2-nonenal (4-ONE): evidence of transient receptor potential ankyrin 1-dependent and -independent nociceptive and vasoactive responses in vivo.

    PubMed

    Graepel, Rabea; Fernandes, Elizabeth S; Aubdool, Aisah A; Andersson, David A; Bevan, Stuart; Brain, Susan D

    2011-04-01

    This study explores the in vivo effects of the proposed transient receptor potential ankyrin 1 (TRPA1) agonist 4-oxo-2-nonenal (4-ONE). Pharmacological inhibitors and genetically modified mice were used to investigate the ability of 4-ONE to act via TRPA1 receptors and possible mechanisms involving transient receptor potential vanilloid 1 (TRPV1). We hypothesized that 4-ONE activates sensory nerves, via TRPA1 or possibly TRPV1, and thus triggers mechanical hyperalgesia, edema formation, and vasodilatation in mice. An automated dynamic plantar aesthesiometer was used to determine hind paw withdrawal thresholds, and a laser Doppler flowmeter was used to measure skin blood flow. Edema formation was determined by measuring paw weights and thickness. 4-ONE (10 nmol) triggers unilateral mechanical hyperalgesia, edema formation, and vasodilatation in mice and is shown here to exhibit TRPA1-dependent and -independent effects. Neurogenic vasodilatation and mechanical hyperalgesia at 0.5 h postinjection were significantly greater in TRPA1 wild-type (WT) mice compared with TRPA1 knockout (KO) mice. Edema formation throughout the time course as well as mechanical hyperalgesia from 1 to 4 h postinjection were similar in WT and TRPA1 KO mice. Studies involving TRPV1 KO mice revealed no evidence of TRPV1 involvement or interactions between TRPA1 and TRPV1 in mediating the in vivo effects of 4-ONE. Previously, 4-ONE was shown to be a potent TRPA1 agonist in vitro. We demonstrate its ability to mediate vasodilatation and certain nociceptive effects in vivo. These data indicate the potential of TRPA1 as an oxidant sensor for vasodilator responses in vivo. However, 4-ONE also triggers TRPA1-independent effects that relate to edema formation and pain.

  9. Quantifying cerebral contributions to pain beyond nociception

    PubMed Central

    Woo, Choong-Wan; Schmidt, Liane; Krishnan, Anjali; Jepma, Marieke; Roy, Mathieu; Lindquist, Martin A.; Atlas, Lauren Y.; Wager, Tor D.

    2017-01-01

    Cerebral processes contribute to pain beyond the level of nociceptive input and mediate psychological and behavioural influences. However, cerebral contributions beyond nociception are not yet well characterized, leading to a predominant focus on nociception when studying pain and developing interventions. Here we use functional magnetic resonance imaging combined with machine learning to develop a multivariate pattern signature—termed the stimulus intensity independent pain signature-1 (SIIPS1)—that predicts pain above and beyond nociceptive input in four training data sets (Studies 1–4, N=137). The SIIPS1 includes patterns of activity in nucleus accumbens, lateral prefrontal and parahippocampal cortices, and other regions. In cross-validated analyses of Studies 1–4 and in two independent test data sets (Studies 5–6, N=46), SIIPS1 responses explain variation in trial-by-trial pain ratings not captured by a previous fMRI-based marker for nociceptive pain. In addition, SIIPS1 responses mediate the pain-modulating effects of three psychological manipulations of expectations and perceived control. The SIIPS1 provides an extensible characterization of cerebral contributions to pain and specific brain targets for interventions. PMID:28195170

  10. Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate

    PubMed Central

    Pires de Sousa, Marcelo Victor; Ferraresi, Cleber; Kawakubo, Masayoshi; Kaippert, Beatriz; Yoshimura, Elisabeth Mateus; Hamblin, Michael R.

    2016-01-01

    Abstract. Photobiomodulation or low-level light therapy has been shown to attenuate both acute and chronic pain, but the mechanism of action is not well understood. In most cases, the light is applied to the painful area, but in the present study we applied light to the head. We found that transcranial laser therapy (TLT) applied to mouse head with specific parameters (810 nm laser, 300  mW/cm2, 7.2 or 36  J/cm2) decreased the reaction to pain in the foot evoked either by pressure (von Frey filaments), cold, or inflammation (formalin injection) or in the tail (evoked by heat). The pain threshold increasing is maximum around 2 h after TLT, remains up to 6 h, and is finished 24 h after TLT. The mechanisms were investigated by quantification of adenosine triphosphate (ATP), immunofluorescence, and hematoxylin and eosin (H&E) staining of brain tissues. TLT increased ATP and prostatic acid phosphatase (an endogenous analgesic) and reduced the amount of glutamate receptor (mediating a neurotransmitter responsible for conducting nociceptive information). There was no change in the concentration of tubulin, a constituent of the cytoskeleton, and the H&E staining revealed no tissue damage. PMID:26835486

  11. Dorsolateral frontal cortex and peripheral muscarinic receptors participation in the discriminative stimulus properties of scopolamine in rats.

    PubMed

    Aguayo-DelCastillo, Alejandra; Vélazquez-Martínez, David N; Sánchez-Castillo, Hugo; Casasola, César

    2013-08-01

    Organisms are capable of making decisions based on their ability to discriminate between different stimuli. This principle is fundamental for the adaptation of organisms to their environment, by emitting appropriate behaviors based on a previously acquired discriminative process. The present study analyzed the participation of the peripheral nervous system, the M₁ muscarinic receptor subtype, as well as the contribution of the dorsolateral frontal cortex to discrimination process using scopolamine as discriminative stimulus. Male Wistar rats were trained to discriminate between scopolamine (1.0 mg/kg) and saline injections (i.p.) using a two-lever operant procedure. Once discrimination was acquired, generalization curves for scopolamine, methylscopolamine, pirenzepine, dorsolateral frontal cortex lesion and control conditions were obtained. Results showed that rats were able to discriminate and generalize its responses to different doses of scopolamine but not for methylscopolamine or pirenzepine, thus the data suggest that discriminative properties of scopolamine are processed in CNS and that the M₁ receptor does not participate in this process. Dorsolateral frontal cortex lesion did not produce any statistically significant difference in the generalization curve, which suggests that a system different from the dorsolateral prefrontal cortex may be responsible for the control of stimulus produced by scopolamine.

  12. Activation of spinal group I metabotropic glutamate receptors in rats evokes local glutamate release and spontaneous nociceptive behaviors: effects of 2-methyl-6-(phenylethynyl)-pyridine pretreatment.

    PubMed

    Lorrain, Daniel S; Correa, Lucia; Anderson, Jeffery; Varney, Mark

    2002-07-26

    Intrathecal (i.t.) administration of the group I metabotropic glutamate receptor (mGluR) agonist (RS)-3,5-dihydroxyphenylglycine ((RS)-3,5-DHPG) to rats produces an immediate display of spontaneous nociceptive behaviors (SNBs) persisting for up to 10 h after injection (NeuroReport 7 (1996) 2743). The mechanisms underlying these behavioral effects are not entirely understood but may include enhanced release of glutamate within the dorsal horn of the spinal cord. The current experiments used microdialysis in awake moving animals to test: (1), whether i.t. (S)-3,5-DHPG increases the local release of glutamate at doses that also induce SNBs; and (2), whether the effects on glutamate release (as well as SNBs) can be blocked by pretreatment with the mGluR5 selective antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP). Male Sprague-Dawley rats were implanted with a microdialysis probe inserted into the i.t. space of the spinal cord (J. Neurosci. Methods 62 (1995) 43) and then tested under i.t. drug conditions (0.01, 0.1 and 1 mM (S)-3,5-DHPG) following a 2-3 day recovery period. As predicted, local application of (S)-3,5-DHPG via the microdialysis probe increased the release of glutamate in a dose-dependent manner. Significant SNBs were also noted in the 0.1 and 1 mM groups in a manner paralleling the onset and duration of the glutamate response. Pretreatment with MPEP (55 mg/kg, intraperitoneally) blocked glutamate release to the 0.1 mM dose of (S)-3,5-DHPG, and also decreased the proportion of animals displaying SNBs in this dose group. No effects of MPEP were seen against the higher dose of (S)-3,5-DHPG (1 mM). These results suggest that stimulation of spinal mGluR5 leads to glutamate release within the spinal cord, a response that may in part account for the nociceptive behaviors evoked by i.t. (S)-3,5-DHPG.

  13. A potent and selective calcitonin gene-related peptide (CGRP) receptor antagonist, MK-8825, inhibits responses to nociceptive trigeminal activation: Role of CGRP in orofacial pain.

    PubMed

    Romero-Reyes, Marcela; Pardi, Vanessa; Akerman, Simon

    2015-09-01

    Temporomandibular disorders (TMDs) are orofacial pains within the trigeminal distribution, which involve the masticatory musculature, the temporomandibular joint or both. Their pathophysiology remains unclear, as inflammatory mediators are thought to be involved, and clinically TMD presents pain and sometimes limitation of function, but often appears without gross indications of local inflammation, such as visible edema, redness and increase in temperature. Calcitonin gene-related peptide (CGRP) has been implicated in other pain disorders with trigeminal distribution, such as migraine, of which TMD shares a significant co-morbidity. CGRP causes activation and sensitization of trigeminal primary afferent neurons, independent of any inflammatory mechanisms, and thus may also be involved in TMD. Here we used a small molecule, selective CGRP receptor antagonist, MK-8825, to dissect the role of CGRP in inducing spontaneous nociceptive facial grooming behaviors, neuronal activation in the trigeminal nucleus, and systemic release of pro-inflammatory cytokines, in a mouse model of acute orofacial masseteric muscle pain that we have developed, as a surrogate of acute TMD. We show that CFA masseteric injection causes significant spontaneous orofacial pain behaviors, neuronal activation in the trigeminal nucleus, and release of interleukin-6 (IL-6). In mice pre-treated with MK-8825 there is a significant reduction in these spontaneous orofacial pain behaviors. Also, at 2 and 24h after CFA injection the level of Fos immunoreactivity in the trigeminal nucleus, used as a marker of neuronal activation, was much lower on both ipsilateral and contralateral sides after pre-treatment with MK-8825. There was no effect of MK-8825 on the release of IL-6. These data suggest that CGRP may be involved in TMD pathophysiology, but not via inflammatory mechanisms, at least in the acute stage. Furthermore, CGRP receptor antagonists may have therapeutic efficacy in the treatment of TMD, as they

  14. Lateral Inhibition during Nociceptive Processing.

    PubMed

    Quevedo, Alexandre S; Mørch, Carsten Dahl; Andersen, Ole K; Coghill, Robert C

    2017-02-11

    Spatial summation of pain is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is sub-additive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation for sub-additive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit spatial summation of pain, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer-controlled CO2-laser. Lines (5mm wide) of variable lengths (4cm, 8cm) were compared to two-point stimuli delivered at the same position/separation as the length of lines. When compared to one-point control stimuli, two-point stimulus patterns produced statistically significant spatial summation of pain, while no such summation was detected during line stimulus patterns. Direct comparison of pain intensity evoked by two-point pattern stimuli with line pattern stimuli revealed that two-point patterns were perceived as significantly more painful, despite the fact that the two-point pattern stimulated far smaller areas of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits spatial summation of pain and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition may contribute substantially to the radiation of some types of chronic pain.

  15. [Physiology of nociception].

    PubMed

    Guirimand, F; Le Bars, D

    1996-01-01

    Nociception is related to the mechanisms elicited by stimuli threatening the integrity of the organism. At the peripheral level, unmyelinated C fibres (C polymodal nociceptores) or fine myelinated A delta fibres are excited by noxious stimulation, directly or indirectly by inflammatory processes. Nociceptive afferent fibres terminate in the superficial laminae of the dorsal horn of the spinal cord where informations are integrated and controlled. These first synapses are modulated by excitatory amino acids (glutamate and aspartate) and many peptides (substance P, CGRP, CCK, endogenous opiods). The majority of ascending pathways involved in nociception are located in the ventrolateral controlateral quadrant of the cord (spinorelicular and spinothalamic tracts). Many supraspinal sites are activated following nociceptive stimuli, with relays in the reticular formation of the brain stem (including the subnucleus reticularis dorsalis), the ponto-mesencephalic regions (periaqueducal gray matter and parabrachial area) and thalamic sites. Amygdala and hypothamic targets could be involved in motivational reactions and neuroendocrine adaptations to a noxious event. The cingular, insular and somatosensory cortices also receive nociceptive informations. Nociceptive signals are modulated at all levels of their transmission; the more extensively studied controls are located at the spinal level. Segmental controls are inhibitory effects produced by non-noxious mechanical stimuli. Spinal signals can also be inhibited following activation of bulbopinal descending inhibitor pathways and release of serotonin, norepinephrine and, indirectly, endogenous opiods. Inhibitory controls triggered by noxious stimuli could facilitate the extraction of the nociceptive tone of informations having priority over other stimuli.

  16. Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats

    PubMed Central

    Rahn, E J; Makriyannis, A; Hohmann, A G

    2007-01-01

    Background and purpose: The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified. Experimental approach: Mechanical hypersensitivity developed over the course of ten daily injections of vincristine relative to groups receiving saline at the same times. Effects of the CB1/CB2 receptor agonist WIN55,212-2, the receptor-inactive enantiomer WIN55,212-3, the CB2-selective agonist (R,S)-AM1241, the opiate agonist morphine and vehicle on chemotherapy-induced neuropathy were evaluated. WIN55,212-2 was administered intrathecally (i.t.) or locally in the hindpaw to identify sites of action. Pharmacological specificity was established using competitive antagonists for CB1 (SR141716) or CB2 receptors (SR144528). Key results: Systemic administration of WIN55,212-2, but not WIN55,212-3, suppressed vincristine-evoked mechanical allodynia. A leftward shift in the dose-response curve was observed following WIN55,212-2 relative to morphine treatment. The CB1 (SR141716) and CB2 (SR144528) antagonists blocked the anti-allodynic effects of WIN55,212-2. (R,S)-AM1241 suppressed vincristine-induced mechanical hypersensitivity through a CB2 mechanism. Both cannabinoid agonists suppressed vincristine-induced mechanical hypersensitivity without inducing catalepsy. Spinal sites of action are implicated in cannabinoid modulation of chemotherapy-induced neuropathy. WIN55,212-2, but not WIN55,212-3, administered i.t. suppressed vincristine-evoked mechanical hypersensitivity at doses that were inactive following local hindpaw administration. Spinal coadministration of both the CB1 and CB2 antagonists blocked the anti-allodynic effects of WIN55,212-2. Conclusions and implications: Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects

  17. Spinal 5-HT3 receptor mediates nociceptive effect on central neuropathic pain; possible therapeutic role for tropisetron

    PubMed Central

    Nasirinezhad, Farinaz; Hosseini, Marjan; Karami, Zohre; Yousefifard, Mahmoud; Janzadeh, Autosa

    2016-01-01

    Objectives To test the analgesic effect of 5-HT-3 receptor antagonist, tropisetron, in a clip compression injury model of spinal cord pain in rats. Methods Four weeks post compression of the spinal cord at lumbar level, tropisetron was administered intrathecally at 100 μg and 150 μg dosages. Behavioral tests were assessed before administration. Fifteen minutes after injection, behavioral tests were repeated. Randall-Sellitto and plantar test was used for mechanical and thermal hyperalgesia, respectively. Mechanical and cold allodynia were evaluated by Von Frey filament and acetone droplets, respectively. The analgesic effect of tropisetron was compared with intrathecal administration of salicylate. Locomotor score was evaluated by Basso, Beattie and Bresnahan (BBB) test every week after spinal cord injury. Results Intrathecal administration of tropisetron, decreased hyperalgesia and mechanical allodynia, but not cold allodynia were observed after compression of the spinal cord. Conclusion Blockade of 5-HT-3 receptors by tropisetron at the spinal level induces an antinociceptive effect on chronic central neuropathic pain and suggests that this compound may have potential clinical utility for the management of central neuropathic pain, particularly in patients with hyperalgesia and tactile allodynia. PMID:26338446

  18. Effects of direct- and indirect-acting serotonin receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in rhesus monkeys.

    PubMed

    Li, Jun-Xu; Koek, Wouter; Rice, Kenner C; France, Charles P

    2011-04-01

    Serotonergic (5-HT) systems modulate pain, and drugs acting on 5-HT systems are used with opioids to treat pain. This study examined the effects of 5-HT receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in monkeys. Morphine increased tail-withdrawal latency in a dose-related manner; 5-HT receptor agonists alone increased tail-withdrawal latency at 50 °C but not 55 °C water. The antinociceptive effects of morphine occurred with smaller doses when monkeys received an indirect-acting (fenfluramine) or direct acting (8-OH-DPAT, F13714, buspirone, quipazine, DOM, and 2C-T-7) agonist. The role of 5-HT receptor subtypes in these interactions was confirmed with selective 5-HT(1A) (WAY100635) and 5-HT(2A) (MDL100907) receptor antagonists. None of the 5-HT drugs had morphine-like discriminative stimulus effects; however, fenfluramine and 5-HT(2A) receptor agonists attenuated the discriminative stimulus effects of morphine and this attenuation was prevented by MDL100907. The 5-HT(1A) receptor agonists did not alter the discriminative stimulus effects of morphine. Thus, 5-HT receptor agonists increase the potency of morphine in an assay of antinociception, even under conditions where 5-HT agonists are themselves without effect (ie, 55 °C water), without increasing (and in some cases decreasing) the potency of morphine in a drug discrimination assay. Whereas 5-HT(2A) receptor agonists increase the potency of morphine for antinociception at doses that have no effect on the rate of operant responding, 5-HT(1A) receptor agonists increase the potency of morphine only at doses that eliminate operant responding. These data suggest that drugs acting selectively on 5-HT receptor subtypes could help to improve the use of opioids for treating pain.

  19. Involvement of the glutamatergic system in the nociception induced intrathecally for a TRPA1 agonist in rats.

    PubMed

    Klafke, J Z; da Silva, M A; Trevisan, G; Rossato, M F; da Silva, C R; Guerra, G P; Villarinho, J G; Rigo, F K; Dalmolin, G D; Gomez, M V; Rubin, M A; Ferreira, J

    2012-10-11

    The transient receptor potential ankyrin 1 (TRPA1) is expressed in peripheral and spinal terminals of sensory neurons, jointly to the vanilloid receptor (TRPV1). A relevant peripheral role of TRPA1 receptor has been implicated in a variety of processes, including the detection of noxious cold, and diverse painful stimulus, but the functional role of TRPA1 receptor in nociceptive transmission at spinal cord in vivo is poorly known. Therefore, the aim of this study was to evaluate whether the glutamatergic system is involved in the transmission of nociceptive stimulus induced for a TRPA1 agonist in the rat spinal cord. We observed that cinnamaldehyde, a TRPA1 agonist, on spinal cord synaptosomes leads to an increase in [Ca(2+)](i) and a rapid release of glutamate, but was not able to change the specific [(3)H]-glutamate binding. In addition, spinally administered cinnamaldehyde produced heat hyperalgesia and mechanical allodynia in rats. This behavior was reduced by the co-injection (i.t.) of camphor (TRPA1 antagonist) or MK-801 (N-methyl-D-aspartate (NMDA) receptor antagonist) to cinnamaldehyde. Besides, the pretreatment with resiniferatoxin (RTX), a potent TRPV1 agonist, abolished the cinnamaldehyde-induced heat hyperalgesia. Here, we showed that intrathecal RTX results in a decrease in TRPA1 and TRPV1 immunoreactivity in dorsal root ganglion. Collectively, our results demonstrate the pertinent participation of spinal TRPA1 in the possible enhancement of glutamatergic transmission of nociceptive signals leading to increase of the hypersensitivity, here observed as heat hyperalgesia. Then the modulation of spinal TRPA1 might be a valuable target in painful conditions associated with central pain hypersensitivity.

  20. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels.

    PubMed

    Li, Simin; Bhave, Devayani; Chow, Jennifer M; Riera, Thomas V; Schlee, Sandra; Rauch, Simone; Atanasova, Mariya; Cate, Richard L; Whitty, Adrian

    2015-04-17

    A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome.

  1. Quantitative Analysis of Receptor Tyrosine Kinase-Effector Coupling at Functionally Relevant Stimulus Levels*♦

    PubMed Central

    Li, Simin; Bhave, Devayani; Chow, Jennifer M.; Riera, Thomas V.; Schlee, Sandra; Rauch, Simone; Atanasova, Mariya; Cate, Richard L.; Whitty, Adrian

    2015-01-01

    A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pm) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pm ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5–10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25–50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome. PMID:25635057

  2. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii

    PubMed Central

    Pickering, Anthony E; Boscan, Pedro; Paton, Julian F R

    2003-01-01

    Somatic noxious stimulation can evoke profound cardiovascular responses by altering activity in the autonomic nervous system. This noxious stimulation attenuates the cardiac vagal baroreflex, a key cardiovascular homeostatic reflex. This attenuation is mediated via NK1 receptors expressed on GABAergic interneurones within the nucleus of the solitary tract (NTS). We have investigated the effect of noxious stimulation and exogenous substance P (SP) on the sympathetic component of the baroreflex. We recorded from the sympathetic chain in a decerebrate, artificially perfused rat preparation. Noxious hindlimb pinch was without effect on the sympathetic baroreflex although the cardiac vagal baroreflex gain was decreased (56%, P < 0.01). Bilateral NTS microinjection of SP (500 fmol) produced a similar selective attenuation of the cardiac vagal baroreflex gain (62%, P < 0.005) without effect on the sympathetic baroreflex. Recordings from the cardiac sympathetic and vagal nerves confirmed the selectivity of the SP inhibition. Control experiments using a GABAA receptor agonist, isoguvacine, indicated that both components of the baroreflex (parasympathetic and sympathetic) could be blocked from the NTS injection site. The NTS microinjection of a NK1 antagonist (CP-99,994) in vivo attenuated the tachycardic response to hindlimb pinch. Our data suggest that noxious pinch releases SP within the NTS to selectively attenuate the cardiac vagal, but not the sympathetic, component of the baroreflex. This selective withdrawal of the cardiac vagal baroreflex seems to underlie the pinch-evoked tachycardia seen in vivo. Further, these findings confirm that baroreflex sympathetic and parasympathetic pathways diverge, and can be independently controlled, within the NTS. PMID:12813142

  3. Sensory TRP channels: the key transducers of nociception and pain.

    PubMed

    Mickle, Aaron D; Shepherd, Andrew J; Mohapatra, Durga P

    2015-01-01

    Peripheral detection of nociceptive and painful stimuli by sensory neurons involves a complex repertoire of molecular detectors and/or transducers on distinct subsets of nerve fibers. The majority of such molecular detectors/transducers belong to the transient receptor potential (TRP) family of cation channels, which comprise both specific receptors for distinct nociceptive stimuli, as well as for multiple stimuli. This chapter discusses the classification, distribution, and functional properties of individual TRP channel types that have been implicated in various nociceptive and/or painful conditions.

  4. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors.

    PubMed

    St-Jacques, Bruno; Ma, Weiya

    2014-11-01

    Prostaglandin E2 (PGE2), a well-known pain mediator enriched in inflamed tissues, plays a pivotal role in the genesis of chronic pain conditions such as inflammatory and neuropathic pain. PGE2-prolonged sensitization of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) may contribute to the transition from acute to chronic pain. However, the underlying cellular mechanisms are poorly understood. In this study, we tested the hypothesis that facilitating synthesis and anterograde axonal trafficking of EP receptors contribute to PGE2-prolonged nociceptor sensitization. Intraplantar (i.pl.) injection of a stabilized PGE2 analog, 16,16 dimethyl PGE2 (dmPGE2), in a dose- and time-dependent manner, not only elicited primary tactile allodynia which lasted for 1d, but also prolonged tactile allodynia evoked by a subsequent i.pl. injection of dmPGE2 from 1d to 4d. Moreover, the duration of tactile allodynia was progressively prolonged following multiple sequential i.pl. injections of dmPGE2. Co-injection of the selective EP1 or EP4 receptor antagonist, the inhibitors of cAMP, PKA, PKC, PKCε or PLC as well as an interleukin-6 (IL-6) neutralizing antiserum differentially blocked primary tactile allodynia elicited by the 1st dmPGE2 and the prolonged tactile allodynia evoked by the 2nd dmPGE2, suggesting the involvement of these signaling events in dmPGE2-induced nociceptor activation and sensitization. Co-injection of a selective COX2 inhibitor or two EP4 antagonists prevented or shortened inflammagen-prolonged nociceptor sensitization. I.pl. injection of dmPGE2 or carrageenan time-dependently increased EP4 levels in L4-6 DRG neurons and peripheral nerves. EP4 was expressed in almost half of IB4-binding nociceptors of L4-6 DRG. Taken together, our data suggest that stimulating the synthesis and anterograde axonal trafficking to increase EP4 availability at the axonal terminals of nociceptors is likely a novel mechanism underlying PGE2-prolonged nociceptor

  5. The anoctamin family channel subdued mediates thermal nociception in Drosophila.

    PubMed

    Jang, Wijeong; Kim, Ji Young; Cui, Shanyu; Jo, Juyeon; Lee, Byoung-Cheol; Lee, Yeonwoo; Kwon, Ki-Sun; Park, Chul-Seung; Kim, Changsoo

    2015-01-23

    Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli.

  6. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors.

    PubMed

    Winter, J C; Filipink, R A; Timineri, D; Helsley, S E; Rabin, R A

    2000-01-01

    Stimulus control was established in rats trained to discriminate either 5-methoxy-N,N-dimethyltryptamine (3 mg/kg) or (-)-2,5-dimethoxy-4-methylamphetamine (0.56 mg/kg) from saline. Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone. In rats trained with 5-MeO-DMT, pindolol and WAY-100635 both produced a significant degree of antagonism of stimulus control, but pirenperone was much less effective. Likewise, the full generalization of 5-MeO-DMT to the selective 5-HT1A agonist [+/-]-8-hydroxy-dipropylaminotetralin was blocked by WAY-100635, but unaffected by pirenperone. In contrast, the partial generalization of 5-MeO-DMT to the 5-HT2 agonist DOM was completely antagonized by pirenperone, but was unaffected by WAY-100635. Similarly, in rats trained with (-)-DOM, pirenperone completely blocked stimulus control, but WAY-100635 was inactive. The results obtained in rats trained with (-)-DOM and tested with 5-MeO-DMT were more complex. Although the intraperitoneal route had been used for both training drugs, a significant degree of generalization of (-)-DOM to 5-MeO-DMT was seen only when the latter drug was administered subcutaneously. Furthermore, when the previously effective dose of pirenperone was given in combination with 5-MeO-DMT (s.c.), complete suppression of responding resulted. However, the combination of pirenperone and WAY-100635 given prior to 5-MeO-DMT restored responding in (-)-DOM-trained rats, and provided evidence of antagonism of the partial substitution of 5-MeO-DMT for (-)-DOM. The present data indicate that 5-MeO-DMT-induced stimulus control is mediated primarily by interactions with 5-HT1A receptors. In addition, however, the present findings suggest that 5-MeO-DMT induces a compound stimulus that includes an element mediated by interactions with a 5-HT2 receptors. The latter component is not essential for 5-MeO-DMT-induced stimulus

  7. Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats.

    PubMed

    Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R

    2003-12-01

    Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the

  8. Peripheral and central alterations affecting spinal nociceptive processing and pain at adulthood in rats exposed to neonatal maternal deprivation.

    PubMed

    Juif, Pierre-Eric; Salio, Chiara; Zell, Vivien; Melchior, Meggane; Lacaud, Adrien; Petit-Demouliere, Nathalie; Ferrini, Francesco; Darbon, Pascal; Hanesch, Ulrike; Anton, Fernand; Merighi, Adalberto; Lelièvre, Vincent; Poisbeau, Pierrick

    2016-08-01

    The nociceptive system of rodents is not fully developed and functional at birth. Specifically, C fibers transmitting peripheral nociceptive information establish synaptic connections in the spinal cord already during the embryonic period that only become fully functional after birth. Here, we studied the consequences of neonatal maternal deprivation (NMD, 3 h/day, P2-P12) on the functional establishment of C fiber-mediated neurotransmission in spinal cord and of pain-related behavior. In vivo recording revealed that C fiber-mediated excitation of spinal cord neurons could be observed at P14 only in control but not in NMD rats. NMD was associated with a strong alteration in the expression of growth factors controlling C nociceptor maturation as well as two-pore domain K+ channels known to set nociceptive thresholds. In good agreement, C-type sensory neurons from NMD animals appeared to be hypoexcitable but functionally connected to spinal neurons, especially those expressing TRPV1 receptors. In vivo and in vitro recordings of lamina II spinal neurons at P14 revealed that the NMD-related lack of C fiber-evoked responses resulted from an inhibitory barrage in the spinal cord dorsal horn. Eventually, C-type sensory-spinal processing could be recovered after a delay of about 10 days in NMD animals. However, animals remained hypersensitive to noxious stimulus up to P100 and this might be due to an excessive expression of Nav1.8 transcripts in DRG neurons. Together, our data provide evidence for a deleterious impact of perinatal stress exposure on the maturation of the sensory-spinal nociceptive system that may contribute to the nociceptive hypersensitivity in early adulthood.

  9. Comparison of the discriminative-stimulus effects of SKF 38393 with those of other dopamine receptor agonists.

    PubMed

    Desai, R I; Terry, P; Katz, J L

    2003-05-01

    The dopamine D(1)-like receptor agonists have traditionally been defined molecularly by their efficacy in stimulating adenylyl cyclase. However, evidence correlating the effectiveness of these drugs in behavioral assays and their effectiveness biochemically has not been forthcoming. The present study compared the discriminative-stimulus effects of the D(1)-like partial agonist SKF 38393 with several other D(1)-like agonists, an indirect agonist, cocaine, and a D(2)-like agonist, quinpirole. Rats were trained under a fixed-ratio 30-response schedule to discriminate SKF 38393 (5.6 mg/kg) from vehicle. Under this schedule, 30 consecutive responses on one of two keys were reinforced with food presentation after a pre-session injection of 5.6 mg/kg SKF 38393, and 30 consecutive responses on the alternative key were reinforced after saline injection. When daily performances were stable, substitution patterns for several compounds were assessed during test sessions in which 30 consecutive responses on either key were reinforced. Quinpirole and cocaine each produced saline-appropriate responding. In contrast, the D(1)-like agonists, SKF 75670 and SKF 77434, fully substituted for SKF 38393. Curiously, SKF 82958, which is considered a full agonist based on adenylyl cyclase assays, was less effective in substituting for SKF 38393 (maximum drug-appropriate responding 66%) than was the partial agonist SKF 75670. The present results suggest that second messenger effects other than stimulation of adenylyl cyclase may play an important role in the behavioral effects of dopamine D(1)-like agonists.

  10. Nociceptive primary afferents: they have a mind of their own

    PubMed Central

    Carlton, Susan M

    2014-01-01

    Nociceptive primary afferents have three surprising properties: they are highly complex in their expression of neurotransmitters and receptors and most probably participate in autocrine and paracrine interactions; they are capable of exerting tonic and activity-dependent inhibitory control over incoming nociceptive input; they can generate signals in the form of dorsal root reflexes that are transmitted antidromically out to the periphery and these signals can result in neurogenic inflammation in the innervated tissue. Thus, nociceptive primary afferents are highly complicated structures, capable of modifying input before it is ever transmitted to the central nervous system and capable of altering the tissue they innervate. PMID:24879874

  11. What’s Coming Near? The Influence of Dynamical Visual Stimuli on Nociceptive Processing

    PubMed Central

    De Paepe, Annick L.; Crombez, Geert; Legrain, Valéry

    2016-01-01

    Objects approaching us may pose a threat, and signal the need to initiate defensive behavior. Detecting these objects early is crucial to either avoid the object or prepare for contact most efficiently. This requires the construction of a coherent representation of our body, and the space closely surrounding our body, i.e. the peripersonal space. This study, with 27 healthy volunteers, investigated how the processing of nociceptive stimuli applied to the hand is influenced by dynamical visual stimuli either approaching or receding from the hand. On each trial a visual stimulus was either approaching or receding the participant’s left or right hand. At different temporal delays from the onset of the visual stimulus, a nociceptive stimulus was applied either at the same or the opposite hand, so that it was presented when the visual stimulus was perceived at varying distances from the hand. Participants were asked to respond as fast as possible at which side they perceived a nociceptive stimulus. We found that reaction times were fastest when the visual stimulus appeared near the stimulated hand. Moreover, investigating the influence of the visual stimuli along the continuous spatial range (from near to far) showed that approaching lights had a stronger spatially dependent effect on nociceptive processing, compared to receding lights. These results suggest that the coding of nociceptive information in a peripersonal frame of reference may constitute a safety margin around the body that is designed to protect it from potential physical threat. PMID:27224421

  12. Facilitation of a nociceptive flexion reflex in man by nonnoxious radiant heat produced by a laser.

    PubMed

    Plaghki, L; Bragard, D; Le Bars, D; Willer, J C; Godfraind, J M

    1998-05-01

    Electromyographic recordings were made in healthy volunteers from the knee-flexor biceps femoris muscle of the nociceptive RIII reflex elicited by electrical stimulation of the cutaneous sural nerve. The stimulus intensity was adjusted to produce a moderate pricking-pain sensation. The test responses were conditioned by a nonnoxious thermal (stimulus applied to the receptive field of the sural nerve. This stimulus was delivered by a CO2 laser stimulator and consisted of a 100-ms pulse of heat with a beam diameter of 20 mm. Its power was 22.7 +/- 4.2 W (7.2 mJ/mm2), and it produced a sensation of warmth. The maximum surface temperature reached at the end of the period of stimulation was calculated to be 7 degrees C above the actual reference temperature of the skin (32 degrees C). The interval between the laser (conditioning) and electrical (test) stimuli was varied from 50 to 3, 000 ms in steps of 50 ms. It was found that the nociceptive flexion reflex was facilitated by the thermal stimulus; this modulation occurred with particular conditioning-test intervals, which peaked at 500 and 1,100 ms with an additional late, long-lasting phase between 1,600 and 2,300 ms. It was calculated that the conduction velocities of the cutaneous afferent fibers responsible for facilitating the RIII reflex, fell into three ranges: one corresponding to A delta fibers (3.2 m/s) and two in the C fiber range (1.3 and 0.7 m/s). It is concluded that information emanating from warm receptors and nociceptors converges. In this respect, the present data show, for the first time, that in man, conditioning nonnociceptive warm thermoreceptive A delta and C fibers results in an interaction at the spinal level with a nociceptive reflex. This interaction may constitute a useful means whereby signals add together to trigger flexion reflexes in defensive reactions and other basic motor behaviors. It also may contribute to hyperalgesia in inflammatory processes. The methodology used

  13. Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models

    PubMed Central

    Klein, AH; Trannyguen, Minh; Joe, Christopher L.; Iodi, Carstens M.; Carstens, E

    2015-01-01

    Introduction The present paper summarizes research using animal models to investigate the roles of thermosensitive transient receptor potential (TRP) channels in somatosensory functions including touch, temperature and pain. We present new data assessing the effects of eugenol and carvacrol, agonists of the warmth-sensitive TRPV3, on thermal, mechanical and pain sensitivity in rats. Methods Thermal sensitivity was assessed using a thermal preference test, which measured the amount of time the animal occupied one of two adjacent thermoelectric plates set at different temperatures. Pain sensitivity was assessed as an increase in latency of hindpaw withdrawal away from a noxious thermal stimulus directed to the plantar hindpaw (Hargreaves test). Mechanical sensitivity was assessed by measuring the force exerted by an electronic von Frey filament pressed against the plantar surface that elicited withdrawal. Results Topical application of eugenol and carvacrol did not significantly affect thermal preference, although there was a trend toward avoidance of the hotter surface in a 30 vs. 45°C preference test for rats treated with 1 or 10% eugenol and carvacrol. Both eugenol and carvacrol induced a concentration-dependent increase in thermal withdrawal latency (analgesia), with no significant effect on mechanosensitivity. Conclusions The analgesic effect of eugenol and carvacrol is consistent with previous studies. The tendency for these chemicals to increase the avoidance of warmer temperatures suggests a possible role for TRPV3 in warmth detection, also consistent with previous studies. Additional roles of other thermosensitive TRP channels (TRPM8 TRPV1, TRPV2, TRPV4, TRPM3, TRPM8, TRPA1, TRPC5) in touch, temperature and pain are reviewed. PMID:26388966

  14. Molecular basis determining inhibition/activation of nociceptive receptor TRPA1 protein: a single amino acid dictates species-specific actions of the most potent mammalian TRPA1 antagonist.

    PubMed

    Banzawa, Nagako; Saito, Shigeru; Imagawa, Toshiaki; Kashio, Makiko; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2014-11-14

    The transient receptor potential ankyrin 1 (TRPA1) is a Ca(2+)-permeable, nonselective cation channel mainly expressed in a subset of nociceptive neurons. TRPA1 functions as a cellular sensor detecting mechanical, chemical, and thermal stimuli. Because TRPA1 is considered to be a key player in nociception and inflammatory pain, TRPA1 antagonists have been developed as analgesic agents. Recently, by utilizing species differences, we identified the molecular basis of the antagonistic action of A967079, one of the most potent mammalian TRPA1 antagonists. Here, we show a unique effect of A967079 on TRPA1 from diverse vertebrate species, i.e. it acts as an agonist but not as an antagonist for chicken and frog TRPA1s. By characterizing chimeric channels of human and chicken TRPA1s, as well as point mutants, we found that a single specific amino acid residue located within the putative fifth transmembrane domain was involved in not only the stimulatory but also the inhibitory actions of A967079. AP18, structurally related to A967079, exerted similar pharmacological properties to A967079. Our findings and previous reports on species differences in the sensitivity to TRPA1 antagonists supply useful information in the search for novel analgesic medicines targeting TRPA1.

  15. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates.

    PubMed

    Saito, Shigeru; Nakatsuka, Kazumasa; Takahashi, Kenji; Fukuta, Naomi; Imagawa, Toshiaki; Ohta, Toshio; Tominaga, Makoto

    2012-08-31

    Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1.

  16. Transient receptor potential vanilloid 1 - a polymodal nociceptive receptor - plays a crucial role in formaldehyde-induced skin inflammation in mice.

    PubMed

    Usuda, Haruki; Endo, Takumi; Shimouchi, Ayumi; Saito, Asaka; Tominaga, Makoto; Yamashita, Hirotaka; Nagai, Hiroichi; Inagaki, Naoki; Tanaka, Hiroyuki

    2012-01-01

    Formaldehyde (FA) is irritating to the skin and is the main cause of sick building syndrome. However, the cutaneous reaction induced by long-term FA exposure has not been fully investigated. In our previous study, we demonstrated that repeated painting of 2% - 10% FA on mouse ears caused marked ear swelling and increased mRNA expression of transient receptor potential vanilloid 1 (TRPV1) and neurotrophins in the ear. TRPV1 is reported to be involved in neurogenic inflammation; therefore, in the present study, we investigated the role of TRPV1 in FA-induced skin inflammation using TRPV1 gene-knockout mice. Mice were painted with 5% FA once a week for 5 weeks, and ear swelling and mRNA expression were investigated. Ear swelling and increased expression of neurotrophins mRNA by FA provocation in wild-type mice were attenuated by disruption of the TRPV1 gene. Furthermore, painting with a threshold dose of capsaicin, which does not induce ear swelling in intact mice, caused marked ear swelling after painting the ear 5 times with FA, indicating that inflamed tissues after FA application are hypersensitive to various ligands of TRPV1 in mice. These results demonstrated that neurogenic inflammation via TRPV1 and neurotrophins could be involved in FA-induced dermatitis.

  17. ZBTB20 regulates nociception and pain sensation by modulating TRP channel expression in nociceptive sensory neurons.

    PubMed

    Ren, An-Jing; Wang, Kai; Zhang, Huan; Liu, Anjun; Ma, Xianhua; Liang, Qing; Cao, Dongmei; Wood, John N; He, David Z; Ding, Yu-Qiang; Yuan, Wen-Jun; Xie, Zhifang; Zhang, Weiping J

    2014-11-05

    In mammals, pain sensation is initiated by the detection of noxious stimuli through specialized transduction ion channels and receptors in nociceptive sensory neurons. Transient receptor potential (TRP) channels are the key sensory transducers that confer nociceptors distinct sensory modalities. However, the regulatory mechanisms about their expression are poorly defined. Here we show that the zinc-finger protein ZBTB20 regulates TRP channels expression in nociceptors. ZBTB20 is highly expressed in nociceptive sensory neurons of dorsal root ganglia. Disruption of ZBTB20 in nociceptors led to a marked decrease in the expression levels of TRPV1, TRPA1 and TRPM8 and the response of calcium flux and whole-cell currents evoked by their respective specific agonists. Phenotypically, the mice lacking ZBTB20 specifically in nociceptors showed a defect in nociception and pain sensation in response to thermal, mechanical and inflammatory stimulation. Our findings point to ZBTB20 as a critical regulator of nociception and pain sensation by modulating TRP channels expression in nociceptors.

  18. Roles of phosphotase 2A in nociceptive signal processing.

    PubMed

    Wang, Yun; Lei, Yongzhong; Fang, Li; Mu, Yonggao; Wu, Jing; Zhang, Xuan

    2013-09-08

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules.

  19. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    PubMed

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  20. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Przegaliński, Edmund; Filip, Malgorzata

    2007-10-01

    The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that

  1. Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene.

    PubMed

    Xu, S Y; Cang, C L; Liu, X F; Peng, Y Q; Ye, Y Z; Zhao, Z Q; Guo, A K

    2006-11-01

    Nociception, warning of injury that should be avoided, serves an important protective function in animals. In this study, we show that adult Drosophila avoids noxious heat by a jump response. To quantitatively analyze this nociceptive behavior, we developed two assays. In the CO2 laser beam assay, flies exhibit this behavior when a laser beam heats their abdomens. The consistency of the jump latency in this assay meets an important criterion for a good nociceptive assay. In the hot plate assay, flies jump quickly to escape from a hot copper plate (>45 degrees C). Our results demonstrate that, as in mammals, the latency of the jump response is inversely related to stimulus intensity, and innoxious thermosensation does not elicit this nociceptive behavior. To explore the genetic mechanisms of nociception, we examined several mutants in both assays. Abnormal nociceptive behavior of a mutant, painless, indicates that painless, a gene essential for nociception in Drosophila larvae, is also required for thermal nociception in adult flies. painless is expressed in certain neurons of the peripheral nervous system and thoracic ganglia, as well as in the definite brain structures, the mushroom bodies. However, chemical or genetic insults to the mushroom bodies do not influence the nociceptive behavior, suggesting that different painless-expressing neurons play diverse roles in thermal nociception. Additionally, no-bridge(KS49), a mutant that has a structural defect in the protocerebral bridge, shows defective response to noxious heat. Thus, our results validate adult Drosophila as a useful model to study the genetic mechanisms of thermal nociception.

  2. Differential effects of GABA in modulating nociceptive vs. non-nociceptive synapses.

    PubMed

    Wang, Y; Summers, T; Peterson, W; Miiller, E; Burrell, B D

    2015-07-09

    GABA (γ-amino-butyric acid) -mediated signaling is normally associated with synaptic inhibition due to ionotropic GABA receptors that gate an inward Cl(-) current, hyperpolarizing the membrane potential. However, there are also situations where ionotropic GABA receptors trigger a Cl(-) efflux that results in depolarization. The well-characterized central nervous system of the medicinal leech was used to study the functional significance of opposing effects of GABA at the synaptic circuit level. Specifically, we focused on synapses made by the nociceptive N cell and the non-nociceptive P (pressure) cell that converge onto a common postsynaptic target. It is already known that GABA hyperpolarizes the P cell, but depolarizes the N cell and that inhibition of ionotropic GABA receptors by bicuculline (BIC) has opposing effects on the synapses made by these two inputs; enhancing P cell synaptic transmission, but depressing N cell synapses. The goal of the present study was to determine whether the opposing effects of GABA were due to differences in Cl(-) homeostasis between the two presynaptic neurons. VU 0240551 (VU), an inhibitor of the Cl(-) exporter K-Cl co-transporter isoform 2 (KCC2), attenuated GABA-mediated hyperpolarization of the non-nociceptive afferent while bumetanide (BUM), an inhibitor of the Cl(-) importer Na-K-Cl co-transporter isoform 1 (NKCC1), reduced GABA-mediated depolarization of the nociceptive neuron. VU treatment also enhanced P cell synaptic signaling, similar to the previously observed effects of BIC and consistent with the idea that GABA inhibits synaptic signaling at the presynaptic level. BUM treatment depressed N cell synapses, again similar to what is observed following BIC treatment and suggests that GABA has an excitatory effect on these synapses. The opposing effects of GABA could also be observed at the behavioral level with BIC and VU increasing responsiveness to non-nociceptive stimulation while BIC and BUM decreased responsiveness

  3. Ethanol attenuates sensory stimulus-evoked responses in cerebellar granule cells via activation of GABA(A) receptors in vivo in mice.

    PubMed

    Wu, Guang; Liu, Heng; Jin, Juan; Hong, Lan; Lan, Yan; Chu, Chun-Ping; Qiu, De-Lai

    2014-02-21

    Acute alcohol intoxication affects cerebellar motor regulation possibly by altering the transfer and integration of external information in cerebellar cortical neurons, resulting in a dysfunction of cerebellar motor regulation or a cerebellar atexia. However, the synaptic mechanisms of ethanol induced impairments of sensory information processing in cerebellar cortical neurons are not fully understand. In the present study, we used electrophysiological and pharmacological methods to study the effects of ethanol on the sensory stimulation-evoked responses in cerebellar granule cells (GCs) in vivo in urethane anesthetized mice. Air-puff stimulation of the ipsilateral whisker-pad evoked stimulus-on (P1) and stimulus-off responses (P2) in GCs of cerebellar Crus II. Cerebellar surface perfusion of ethanol did not alter the onset latency of the sensory stimulation-evoked responses, but reversible reduced the amplitude of P1 and P2. The ethanol-induced reduction of the GCs sensory responses was concentration-dependent. In the presence of ethanol, the mean half-width, area under curve, rise Tau and decay Tau of P1 were significantly decreased. Blockade of gamma-aminobutyric acid type A (GABA(A)) receptors activity induced an increase in amplitude of P1, and abolished the ethanol induced inhibition of the GCs sensory responses. These results indicate that ethanol inhibits the tactile evoked responses in cerebellar GCs through enhancement of GABA(A) receptors activity.

  4. A classification of opiate receptors that mediate antinociception in animals.

    PubMed Central

    Tyers, M. B.

    1980-01-01

    1 To investigate the opiate receptors that mediate antinociception, the activity profiles of opioid analgesic drugs have been determined against different nociceptive stimuli in the mouse and rat. 2 In tests that employ heat as the nociceptive stimulus, mu-opiate receptor agonists, such as morphine, pethidine and dextropropoxyphene, had steep and parallel dose-response curves and were capable of achieving maximum effects. In addition, the antinociceptive potency ratios of these drugs in heat tests were similar to those for analgesia in man. 3 The kappa-agonists, such as ethylketazocine, nalorphine, Mr2034 and pentazocine, were essentially inactive against heat nociception except at doses that caused sedation and motor incapacitation. 4 In the writhing and paw pressure tests both mu- and kappa-agonists produced steep and parallel dose-response curves. 5 It is concluded that both mu- and kappa-opiate receptors mediate antinociception in animals and that the interactions of analgesic drugs with these receptors may be classified in terms of their antinociceptive activities against qualitatively different nociceptive stimuli. PMID:6249436

  5. Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion.

    PubMed

    Yu, Jianfeng; Fu, Peng; Zhang, Yan; Liu, Shuzhen; Cui, Donghong

    2013-12-01

    P2X3 receptors are present in the spinal dorsal horn (SDH) and play an essential role in the regulation of nociception and pain. Pregabalin (PGB) has been used as a new antiepileptic drug in the treatment of neuropathic pain. However, it is unclear whether PGB-induced analgesia was associated with the P2X3 receptor in SDH. Here, rats were randomly divided into four groups (n = 12 per group), including 2 sham operation groups, which was treated by normal saline (Sham + NS group) or PGB (Sham + PGB group), other 2 groups with chronic compression of the dorsal root ganglion, a normal saline-treated CCD group (CCD+NS group), and a PGB-treated CCD group (CCD + PGB group). A rat model of neuropathic pain was used by compressing the right L4 and L5 dorsal root ganglia. Each group was evaluated using the mechanical withdrawal threshold (MWT). The mRNA and protein levels of the P2X3 receptor in the ipsilateral SDH were measured by RT-PCR, western blot, and immunofluorescence on 14 day after CCD operation. CCD rats showed the highest mechanical hyperalgesia and the lowest pain threshold in the four groups. Simultaneously, CCD rats showed higher P2X3 mRNA and protein expression in ipsilateral side of the SDH than the sham operation rats. However, the MWT was increased and expression of P2X3 mRNA and protein in the ipsilateral SDH in CCD rats was decreased 3 days after PGB treatment. Thus, PGB may partially reverse mechanical hyperalgesia in CCD rats by inhibiting P2X3 receptor expression in the ipsilateral SDH.

  6. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state

    PubMed Central

    de Tommaso, Marina; Navarro, Jorge; Lanzillotti, Crocifissa; Ricci, Katia; Buonocunto, Francesca; Livrea, Paolo; Lancioni, Giulio E.

    2015-01-01

    Aims: Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient visual, acoustic, somatosensory electric non-nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation. Methods: Five Vegetative State (VS), 4 Minimally Conscious State (MCS) patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 s. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2) vertex complex in the 500 ms post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R) and Coma Recovery Scale (CRS-R) for clinical evaluation of pain perception and consciousness impairment. Results: The laser evoked potentials (LEPs) were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the degree of cognitive and motor

  7. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants.

    PubMed

    Hartley, Caroline; Goksan, Sezgi; Poorun, Ravi; Brotherhood, Kelly; Mellado, Gabriela Schmidt; Moultrie, Fiona; Rogers, Richard; Adams, Eleri; Slater, Rebeccah

    2015-07-31

    Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p < 0.001), significantly correlated (r = 0.53, p = 0.001) and elicited at an intensity that does not evoke changes in clinical pain scores (p = 0.55). The strong correlation between reflex withdrawal and nociceptive brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures.

  8. Tolerance to morphine analgesia: evidence for stimulus intensity as a key factor and complete reversal by a glycine site-specific NMDA antagonist.

    PubMed

    Adam, Frédéric; Bonnet, Francis; Le Bars, Daniel

    2006-08-01

    N-methyl-D-aspartate (NMDA) receptors are widely involved in opioid tolerance. However, it is less clear whether NMDA receptor antagonists reverse already-established tolerance and whether the intensity of the nociceptive stimulus influences morphine tolerance. Three days after implantation of morphine or control pellets the effects of i.v. morphine and pre-administration of saline or (+)-HA966 (a glycine site-specific NMDA receptor antagonist), were studied on the C-fibre reflex elicited by a wide range of stimulus intensities. Morphine both increased the threshold and decreased the slope of the recruitment curve in the "non-tolerant" group of animals. In the "morphine-tolerant" group, the threshold did not change but the gain of the stimulus-response curve decreased. The expression of tolerance to morphine depended on the intensity of the stimulus, being maximal when threshold stimulus intensities were used but considerably less with supra-threshold stimulation. As expected, a single treatment with (+)-HA966, potentiated morphine antinociception in "non-tolerant" rats. However, in "morphine-tolerant" rats (+)-HA966 reversed established morphine tolerance and increased the antinociceptive effects of morphine. These results suggest that (+)-HA966 interfered with expression of morphine tolerance, and offered an encouraging therapeutic approach for pain management in opioid abusers.

  9. Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors.

    PubMed

    Elhabazi, Khadija; Humbert, Jean-Paul; Bertin, Isabelle; Schmitt, Martine; Bihel, Frédéric; Bourguignon, Jean-Jacques; Bucher, Bernard; Becker, Jérôme A J; Sorg, Tania; Meziane, Hamid; Petit-Demoulière, Benoit; Ilien, Brigitte; Simonin, Frédéric

    2013-12-01

    Mammalian RF-amide peptides are encoded by five different genes and act through five different G protein-coupled receptors. RF-amide-related peptides-1 and -3, neuropeptides AF and FF, Prolactin releasing peptides, Kisspeptins and RFa peptides are currently considered endogenous peptides for NPFF1, NPFF2, GPR10, GPR54 and GPR103 receptors, respectively. However, several studies suggest that the selectivity of these peptides for their receptors is low and indicate that expression patterns for receptors and their corresponding ligands only partially overlap. In this study, we took advantage of the cloning of the five human RF-amide receptors to systematically examine their affinity for and their activation by all human RF-amide peptides. Binding experiments, performed on membranes from CHO cells expressing GPR10, GPR54 and GPR103 receptors, confirmed their high affinity and remarkable selectivity for their cognate ligands. Conversely, NPFF1 and NPFF2 receptors displayed high affinity for all RF-amide peptides. Moreover, GTPγS and cAMP experiments showed that almost all RF-amide peptides efficiently activate NPFF1 and NPFF2 receptors. As NPFF is known to modulate morphine analgesia, we undertook a systematic analysis in mice of the hyperalgesic and anti morphine-induced analgesic effects of a representative set of endogenous RF-amide peptides. All of them induced hyperalgesia and/or prevented morphine analgesia following intracerebroventricular administration. Importantly, these effects were prevented by administration of RF9, a highly selective NPFF1/NPFF2 antagonist. Altogether, our results show that all endogenous RF-amide peptides display pain-modulating properties and point to NPFF receptors as essential players for these effects.

  10. Taste modulation of nociception differently affects chronically stressed rats.

    PubMed

    Fontella, Fernanda Urruth; Nunes, Marcele Leon; Crema, Leonardo M; Balk, Rodrigo S; Dalmaz, Carla; Netto, Carlos Alexandre

    2004-01-01

    Stress responses cover a wide range of physiological changes, including alterations in the perception of and response to pain. Animals submitted to repeated stress present altered nociception and this effect is part of this process of adaptation; in addition pleasant and unpleasant experiences with tastes and odors have been shown to affect distinct behavioral aspects, such as pain perception. The aim of the present study is to verify the responses of repeatedly stressed rats (1 h of daily immobilization during 40 days) to pleasant and unpleasant tastes on nociception, when compared to control animals. An increase in the tail-flick latency (TFL) was observed 5 min after exposure to a sweet taste in the control group, whereas no effect was observed in chronically stressed animals. When submitted to an unpleasant taste (5% acetic acid), the chronically stressed group presented an increase in TFL, whereas no effect was observed in the control group. In conclusion, chronically stressed animals present different nociceptive responses to sweet and acid tastes; although control animals suitably respond to a sweet stimulus, stressed animals seem to be more apt to react to the unpleasant stimulus.

  11. Genetic evidence for involvement of multiple effector systems in alpha 2A-adrenergic receptor inhibition of stimulus-secretion coupling.

    PubMed

    Lakhlani, P P; Lovinger, D M; Limbird, L E

    1996-07-01

    The alpha 2A-adrenergic receptor (alpha 2AAR), via its interaction with the pertussis toxin-sensitive Gi/G(o) class of G proteins, modulates multiple effector systems, including inhibition of adenylyl cyclase and Ca2+ channels and activation of K+ channels. Mutation of a membrane-embedded aspartate residue, highly conserved among G protein-coupled receptors, in the alpha 2AAR to asparagine (D79N alpha 2AAR) results in selective uncoupling of the receptor to K+ currents but retention of inhibition of cAMP production and of voltage-sensitive Ca2+ currents when expressed in AtT20 anterior pituitary cells in culture. It is known that attenuation of cAMP synthesis alone cannot account for alpha 2AAR suppression of stimulus-secretion coupling; thus, the D79N alpha 2AAR provides a unique tool with which to assess the relative contribution of K+ current activation and Ca2+ current suppression in mediating the cellular responses of alpha 2AAR. The wild-type alpha 2AAR suppresses basal and secretagogue-evoked adrenocorticotropic hormone (ACTH) release in a manner indistinguishable from response to the endogenous somatostatin receptor. In contrast, the D79N alpha 2AAR does not attenuate basal ACTH release and is only partially effective in suppressing ACTH secretion evoked by the secretagogue isoproterenol. Regulation of ACTH release evoked by 8-bromo-cAMP, which bypasses receptor regulation of cAMP synthesis, suggests that attenuation of cAMP production, although not sufficient for inhibition of ACTH secretion, nevertheless participates in a functionally relevant manner. Taken together, the present findings indicate that alpha 2AAR-mediated suppression of neuropeptide secretion requires concomitant regulation of K+ and Ca2+ currents in parallel with attenuation of cAMP production.

  12. A stimulus-specific role for CREB-binding protein (CBP) in T cell receptor-activated tumor necrosis factor gene expression

    NASA Astrophysics Data System (ADS)

    Falvo, James V.; Brinkman, Brigitta M. N.; Tsytsykova, Alla V.; Tsai, Eunice Y.; Yao, Tso-Pang; Kung, Andrew L.; Goldfeld, Anne E.

    2000-04-01

    The cAMP response element binding protein (CREB)-binding protein (CBP)/p300 family of coactivator proteins regulates gene transcription through the integration of multiple signal transduction pathways. Here, we show that induction of tumor necrosis factor (TNF-) gene expression in T cells stimulated by engagement of the T cell receptor (TCR) or by virus infection requires CBP/p300. Strikingly, in mice lacking one copy of the CBP gene, TNF- gene induction by TCR activation is inhibited, whereas virus induction of the TNF- gene is not affected. Consistent with these findings, the transcriptional activity of CBP is strongly potentiated by TCR activation but not by virus infection of T cells. Thus, CBP gene dosage and transcriptional activity are critical in TCR-dependent TNF-α gene expression, demonstrating a stimulus-specific requirement for CBP in the regulation of a specific gene.

  13. Monitoring the nociception level: a multi-parameter approach.

    PubMed

    Ben-Israel, Nir; Kliger, Mark; Zuckerman, Galit; Katz, Yeshayahu; Edry, Ruth

    2013-12-01

    The aim of the present study was to develop and validate an objective index for nociception level (NoL) of patients under general anesthesia, based on a combination of multiple physiological parameters. Twenty-five patients scheduled for elective surgery were enrolled. For clinical reference of NoL, the combined index of stimulus and analgesia was defined as a composite of the surgical stimulus level and a scaled effect-site concentration of opioid. The physiological parameters heart rate, heart rate variability (0.15-0.4 Hz band power), plethysmograph wave amplitude, skin conductance level, number of skin conductance fluctuations, and their time derivatives, were extracted. Two techniques to incorporate these parameters into a single index representing the NoL have been proposed: NoLlinear, based on an ordinary linear regression, and NoLnon-linear, based on a non-linear Random Forest regression. NoLlinear and NoLnon-linear significantly increased after moderate to severe noxious stimuli (Wilcoxon rank test, p < 0.01), while the individual parameters only partially responded. Receiver operating curve analysis showed that NoL index based on both techniques better discriminated noxious and non-noxious surgical events [area under curve (AUC) = 0.97] compared with individual parameters (AUC = 0.56-0.74). NoLnon-linear better ranked the level of nociception compared with NoLlinear (R = 0.88 vs. 0.77, p < 0.01). These results demonstrate the superiority of multi-parametric approach over any individual parameter in the evaluation of nociceptive response. In addition, advanced non-linear technique may have an advantage over ordinary linear regression for computing NoL index. Further research will define the usability of the NoL index as a clinical tool to assess the level of nociception during general anesthesia.

  14. Activation of the Cl− Channel ANO1 by Localized Calcium Signals in Nociceptive Sensory Neurons Requires Coupling with the IP3 Receptor*

    PubMed Central

    Jin, Xin; Shah, Shihab; Liu, Yani; Zhang, Huiran; Lees, Meredith; Fu, Zhaojun; Lippiat, Jonathan D.; Beech, David J.; Sivaprasadarao, Asipu; Baldwin, Stephen A.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    We report that ANO1 (also known as TMEM16A) Ca2+-activated Cl− channels in small neurons from dorsal root ganglia are preferentially activated by particular pools of intracellular Ca2+. These ANO1 channels can be selectively activated by the G protein-coupled receptor (GPCR)-induced release of Ca2+ from intracellular stores, but not by Ca2+ influx through voltage-gated Ca2+ channels. This ability to discriminate between Ca2+ pools was achieved by the tethering of ANO1-containing plasma membrane domains, which also contained GPCRs such as bradykinin receptor-2 and protease-activated receptor-2, to juxtamembrane regions of the endoplasmic reticulum. Interaction of the C-terminus and the first intracellular loop of ANO1 with IP3R1 (inositol 1,4,5-trisphosphate receptor 1) contributed to the tethering. Disruption of membrane microdomains blocked the ANO1 and IP3R1 interaction and resulted in the loss of coupling between GPCR signaling and ANO1. The junctional signaling complex enabled ANO1-mediated excitation in response to specific Ca2+ signals rather than to global changes in intracellular Ca2+. PMID:23982204

  15. Stimulus transmission in the auditory receptor organs of the foreleg of bushcrickets (Tettigoniidae) I. The role of the tympana.

    PubMed

    Bangert, M; Kalmring, K; Sickmann, T; Stephen, R; Jatho, M; Lakes-Harlan, R

    1998-01-01

    The auditory organs of the tettigoniid are located just below the femoral tibial joint in the forelegs. Structurally each auditory organ consists of a tonotopically organized crista acustica and intermediate organ and associated sound conducting structures; an acoustic trachea and two lateral tympanic membranes located at the level of the receptor complex. The receptor cells and associated satellite structures are located in a channel filled with hemolymph fluid. The vibratory response characteristics of the tympanic membranes generated by sound stimulation over the frequency range 2-40 kHz have been studied using laser vibrometry. The acoustic trachea was found to be the principal structure through which sound energy reached the tympana. The velocity of propagation down the trachea was observed to be independent of the frequency and appreciably lower than the velocity of sound in free space. Structurally the tympana are found to be partially in contact with the air in the trachea and with the hemolymph in the channel containing the receptor cells. The two tympana were found to oscillate in phase, with a broad band frequency response, have linear coherent response characteristics and small time constant. Higher modes of vibration were not observed. Measurements of the pattern of vibration of the tympana showed that these structures vibrate as hinged flaps rather than vibrating stretched membranes. These findings, together with the morphology of the organ and physiological data from the receptor cells, suggest the possibility of an impedance matching function for the tympana in the transmission of acoustic energy to the receptor cells in the tettigoniid ear.

  16. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    SciTech Connect

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-06-17

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with /sup 3/H-naloxone or /sup 3/H-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables.

  17. Cellular and molecular mechanisms of dental nociception.

    PubMed

    Chung, G; Jung, S J; Oh, S B

    2013-11-01

    Due, in part, to the unique structure of the tooth, dental pain is initiated via distinct mechanisms. Here we review recent advances in our understanding of inflammatory tooth pain and discuss 3 hypotheses proposed to explain dentinal hypersensitivity: The first hypothesis, supported by functional expression of temperature-sensitive transient receptor potential channels, emphasizes the direct transduction of noxious temperatures by dental primary afferent neurons. The second hypothesis, known as hydrodynamic theory, attributes dental pain to fluid movement within dentinal tubules, and we discuss several candidate cellular mechanical transducers for the detection of fluid movement. The third hypothesis focuses on the potential sensory function of odontoblasts in the detection of thermal or mechanical stimuli, and we discuss the accumulating evidence that supports their excitability. We also briefly update on a novel strategy for local nociceptive anesthesia via nociceptive transducer molecules in dental primary afferents with the potential to specifically silence pain fibers during dental treatment. Further understanding of the molecular mechanisms of dental pain would greatly enhance the development of therapeutics that target dental pain.

  18. Involvement of spinal glutamate in nociceptive behavior induced by intrathecal administration of hemokinin-1 in mice.

    PubMed

    Watanabe, Chizuko; Mizoguchi, Hirokazu; Bagetta, Giacinto; Sakurada, Shinobu

    2016-03-23

    The most recently identified tachykinin, hemokinin-1, was cloned from mouse bone marrow. While several studies indicated that hemokinin-1 is involved in pain and inflammation, the physiological functions of hemokinin-1 are not fully understood. Our previous research demonstrated that the intrathecal (i.t.) administration of hemokinin-1 (0.00625-1.6 nmol) dose-dependently induced nociceptive behaviors, consisting of scratching, biting and licking in mice, which are very similar with the nociceptive behaviors induced by the i.t. administration of substance P. Low-dose (0.0125 nmol) hemokinin-1-induced nociceptive behavior was inhibited by a specific NK1 receptor antagonist; however, high-dose (0.1 nmol) hemokinin-1-induced nociceptive behavior was not affected. In the present study, we found that the nociceptive behaviors induced by hemokinin-1 (0.1 nmol) were inhibited by the i.t. co-administration of MK-801 or D-APV, which are NMDA receptor antagonists. Moreover, we measured glutamate in the extracellular fluid of the mouse spinal cord using microdialysis. The i.t. administration of hemokinin-1 produced a significant increase in glutamate in the spinal cord, which was significantly reduced by co-administration with NMDA receptor antagonists. These results suggest that hemokinin-1-induced nociceptive behaviors may be mediated by the NMDA receptor in the spinal cord.

  19. The C. elegans D2-Like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol

    PubMed Central

    Ezak, Meredith J.; Ferkey, Denise M.

    2010-01-01

    We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of Gα signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn), but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol. PMID:20209143

  20. Persistent Nociception Triggered by Nerve Growth Factor (NGF) Is Mediated by TRPV1 and Oxidative Mechanisms.

    PubMed

    Eskander, Michael A; Ruparel, Shivani; Green, Dustin P; Chen, Paul B; Por, Elaine D; Jeske, Nathaniel A; Gao, Xiaoli; Flores, Eric R; Hargreaves, Kenneth M

    2015-06-03

    Nerve growth factor (NGF) is elevated in certain chronic pain conditions and is a sufficient stimulus to cause lasting pain in humans, but the actual mechanisms underlying the persistent effects of NGF remain incompletely understood. We developed a rat model of NGF-induced persistent thermal hyperalgesia and mechanical allodynia to determine the role of transient receptor potential vanilloid 1 (TRPV1) and oxidative mechanisms in the persistent effects of NGF. Persistent thermal hypersensitivity and mechanical allodynia require de novo protein translation and are mediated by TRPV1 and oxidative mechanisms. By comparing effects after systemic (subcutaneous), spinal (intrathecal) or hindpaw (intraplantar) injections of test compounds, we determined that TRPV1 and oxidation mediate persistent thermal hypersensitivity via peripheral and spinal sites of action and mechanical allodynia via only a spinal site of action. Therefore, NGF-evoked thermal and mechanical allodynia are mediated by spatially distinct mechanisms. NGF treatment evoked sustained increases in peripheral and central TRPV1 activity, as demonstrated by increased capsaicin-evoked nocifensive responses, increased calcitonin gene-related peptide release from hindpaw skin biopsies, and increased capsaicin-evoked inward current and membrane expression of TRPV1 protein in dorsal root ganglia neurons. Finally, we showed that NGF treatment increased concentrations of linoleic and arachidonic-acid-derived oxidized TRPV1 agonists in spinal cord and skin biopsies. Furthermore, increases in oxidized TRPV1-active lipids were reduced by peripheral and spinal injections of compounds that completely blocked persistent nociception. Collectively, these data indicate that NGF evokes a persistent nociceptive state mediated by increased TRPV1 activity and oxidative mechanisms, including increased production of oxidized lipid TRPV1 agonists.

  1. Centralization of noxious stimulus-induced analgesia (NSIA) is related to activity at inhibitory synapses in the spinal cord.

    PubMed

    Tambeli, Claudia H; Levine, Jon D; Gear, Robert W

    2009-06-01

    The duration of noxious stimulus-induced antinociception (NSIA) has been shown to outlast the pain stimulus that elicited it, however, the mechanism that determines the duration of analgesia is unknown. We evaluated the role of spinal excitatory and inhibitory receptors (NMDA, mGluR(5), mu-opioid, GABA(A), and GABA(B)), previously implicated in NSIA initiation, in its maintenance. As in our previous studies, the supraspinal trigeminal jaw-opening reflex (JOR) in the rat was used for nociceptive testing because of its remoteness from the region of drug application, the lumbar spinal cord. NSIA was reversed by antagonists for two inhibitory receptors (GABA(B) and mu-opioid) but not by antagonists for either of the two excitatory receptors (NMDA and mGluR(5)), indicating that NSIA is maintained by ongoing activity at inhibitory synapses in the spinal cord. Furthermore, spinal administration of the GABA(B) agonist baclofen mimicked NSIA in that it could be blocked by prior injection of the mu-opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) in nucleus accumbens. CTAP also blocked baclofen antinociception when administered in the spinal cord. We conclude that analgesia induced by noxious stimulation is maintained by activity in spinal inhibitory receptors.

  2. Differential magnetic field effects on heart rate and nociception in anosmic pigeons.

    PubMed

    Del Seppia, Cristina; Mencacci, Resi; Luschi, Paolo; Varanini, Maurizio; Ghione, Sergio

    2012-05-01

    Several studies have shown that exposure to altered magnetic fields affects nociception by suppressing stress-induced hypoalgesia, and that this effect is reduced or abolished if the treatment is performed in the absence of light. This raises the question as to whether other sources of sensory stimuli may also modulate these magnetic effects. We investigated the possible role of olfaction in the magnetically induced effects on sensitivity to nociceptive stimuli and heart rate (HR) in restraint-stressed homing pigeons exposed to an Earth-strength, irregularly varying (<1 Hz) magnetic field. The magnetic treatment decreased the nociceptive threshold in normally smelling birds and an opposite effect was observed in birds made anosmic by nostril plugging. Conversely, no differential effect of olfactory deprivation was observed on HR, which was reduced by the magnetic treatment both in smelling and anosmic pigeons. The findings highlight an important role of olfactory environmental information in the mediation of magnetic effects on nociception, although the data cannot be interpreted unambiguously because of the lack of an additional control group of olfactory-deprived, non-magnetically exposed pigeons. The differential effects on a pigeon's sensitivity to nociceptive stimulus and HR additionally indicate that the magnetic stimuli affect nociception and the cardiovascular system in different ways.

  3. Perceptual learning to discriminate the intensity and spatial location of nociceptive stimuli

    PubMed Central

    Mancini, Flavia; Dolgevica, Karina; Steckelmacher, James; Haggard, Patrick; Friston, Karl; Iannetti, Giandomenico D.

    2016-01-01

    Accurate discrimination of the intensity and spatial location of nociceptive stimuli is essential to guide appropriate behaviour. The ability to discriminate the attributes of sensory stimuli is continuously refined by practice, even throughout adulthood - a phenomenon called perceptual learning. In the visual domain, perceptual learning to discriminate one of the features that define a visual stimulus (e.g., its orientation) can transfer to a different feature of the same stimulus (e.g., its contrast). Here, we performed two experiments on 48 volunteers to characterize perceptual learning in nociception, which has been rarely studied. We investigated whether learning to discriminate either the intensity or the location of nociceptive stimuli (1) occurs during practice and is subsequently maintained, (2) requires feedback on performance, and (3) transfers to the other, unpractised stimulus feature. First, we found clear evidence that perceptual learning in discriminating both the intensity and the location of nociceptive stimuli occurs, and is maintained for at least 3 hours after practice. Second, learning occurs only when feedback is provided during practice. Finally, learning is largely confined to the feature for which feedback was provided. We discuss these effects in a predictive coding framework, and consider implications for future studies. PMID:27996022

  4. Stereotypical Escape Behavior in Caenorhabditis elegans Allows Quantification of Effective Heat Stimulus Level

    PubMed Central

    Leung, Kawai; Mohammadi, Aylia; Ryu, William S.; Nemenman, Ilya

    2016-01-01

    A goal of many sensorimotor studies is to quantify the stimulus-behavioral response relation for specific organisms and specific sensory stimuli. This is especially important to do in the context of painful stimuli since most animals in these studies cannot easily communicate to us their perceived levels of such noxious stimuli. Thus progress on studies of nociception and pain-like responses in animal models depends crucially on our ability to quantitatively and objectively infer the sensed levels of these stimuli from animal behaviors. Here we develop a quantitative model to infer the perceived level of heat stimulus from the stereotyped escape response of individual nematodes Caenorhabditis elegans stimulated by an IR laser. The model provides a method for quantification of analgesic-like effects of chemical stimuli or genetic mutations in C. elegans. We test ibuprofen-treated worms and a TRPV (transient receptor potential) mutant, and we show that the perception of heat stimuli for the ibuprofen treated worms is lower than the wild-type. At the same time, our model shows that the mutant changes the worm’s behavior beyond affecting the thermal sensory system. Finally, we determine the stimulus level that best distinguishes the analgesic-like effects and the minimum number of worms that allow for a statistically significant identification of these effects. PMID:28027302

  5. Stereotypical Escape Behavior in Caenorhabditis elegans Allows Quantification of Effective Heat Stimulus Level.

    PubMed

    Leung, Kawai; Mohammadi, Aylia; Ryu, William S; Nemenman, Ilya

    2016-12-01

    A goal of many sensorimotor studies is to quantify the stimulus-behavioral response relation for specific organisms and specific sensory stimuli. This is especially important to do in the context of painful stimuli since most animals in these studies cannot easily communicate to us their perceived levels of such noxious stimuli. Thus progress on studies of nociception and pain-like responses in animal models depends crucially on our ability to quantitatively and objectively infer the sensed levels of these stimuli from animal behaviors. Here we develop a quantitative model to infer the perceived level of heat stimulus from the stereotyped escape response of individual nematodes Caenorhabditis elegans stimulated by an IR laser. The model provides a method for quantification of analgesic-like effects of chemical stimuli or genetic mutations in C. elegans. We test ibuprofen-treated worms and a TRPV (transient receptor potential) mutant, and we show that the perception of heat stimuli for the ibuprofen treated worms is lower than the wild-type. At the same time, our model shows that the mutant changes the worm's behavior beyond affecting the thermal sensory system. Finally, we determine the stimulus level that best distinguishes the analgesic-like effects and the minimum number of worms that allow for a statistically significant identification of these effects.

  6. Nociception at the diabetic foot, an uncharted territory

    PubMed Central

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  7. Nociception at the diabetic foot, an uncharted territory.

    PubMed

    Chantelau, Ernst A

    2015-04-15

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy.

  8. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex.

    PubMed

    López-Avila, Alberto; Coffeen, Ulises; Ortega-Legaspi, J Manuel; del Angel, Rosendo; Pellicer, Francisco

    2004-09-01

    The anterior cingulate cortex (ACC) plays a key role in pain processing. It has been reported that increased activity of glutamatergic projections into the ACC intensifies nociception; whereas dopaminergic projections inhibit it. The aim of this study was to evaluate the role of dopaminergic and NMDA systems of the ACC in the modulation of long-term nociception elicited by sciatic denervation in the rat. Score, onset and incidence of long-term nociception were measured by the autotomy behavior. The effects of a single microinjection into the ACC of different doses of dopamine (100 nM, 100 microM and 100 mM), a NMDA receptor antagonist (MK801 200 nM and 9.34 mM) and amantadine, a dopamine agonist and NMDA receptor antagonist (10, 100 and 1000 microM) were tested on long-term nociception. Dopamine diminished autotomy behavior in an inverse dose-dependent manner, with dopamine 100 nM as most effective concentration. MK801 and amantadine elicited a significant reduction on autotomy score. Prior injections of D1 and D2 receptor antagonists blocked the antinociceptive effects of amantadine on long-term nociceptive behavior. The present study suggests an interaction between dopaminergic and glutamatergic systems within the ACC in the genesis and maintenance of long-term nociception.

  9. Recovery of cellular E-cadherin precedes replenishment of estrogen receptor and estrogen-dependent proliferation of breast cancer cells rescued from a death stimulus.

    PubMed

    Malaguti, Claudia; Rossini, Gian Paolo

    2002-08-01

    Loss of estrogen-responsiveness and impaired E-cadherin expression/function has been linked to increased metastatic potential of breast cancer cells. In this study, we report that proliferation of breast cancer cells can resume following removal of a toxic stimulus causing severe impairment of cell adhesion and estrogen responsiveness. This type of response was induced by okadaic acid (OA) in MCF-7 cells, and was accompanied by an almost complete block of DNA synthesis, loss of cell-cell contact and cell detachment from culture dishes, loss of estrogen receptor (ER), progesterone receptor (PR) and E-cadherin, whereas only a weak, if any, inhibition of protein synthesis could be observed. These responses were detected in MCF-7 cells after a 1-day treatment with 50 nM OA, and could be reversed if OA-treated cells were recovered in a culture medium devoid of the toxin, so that rescued cells resumed growth 8-12 days after replating. By pulse-chase experiments, we found that protein synthesis was not significantly affected in rescued cells, whose DNA synthesis, instead, was almost completely blocked during the first days of MCF-7 cell rescue from OA treatment. We also analyzed E-cadherin, mitogen activated protein kinase isoforms ERK1 and ERK2, Bcl-2 and BAX proteins during the rescue of MCF-7 cells from OA-induced cell death, and found that their expression followed temporally defined patterns. Cellular levels of E-cadherin returned to control levels within the first days of the rescue, followed by ER, ERK1, and ERK2, and finally by Bcl-2 and BAX proteins. Under our experimental conditions, restoration of cell adhesion did not require a functional ER system, but recovery of a normal ER pool accompanied resumption of estrogen-dependent proliferation of OA-treated MCF-7 cells.

  10. Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents.

    PubMed

    Lam, David K; Sessle, Barry J; Hu, James W

    2009-01-28

    We have examined the effect of the peripheral application of glutamate and capsaicin to deep craniofacial tissues in influencing the activation and peripheral sensitization of deep craniofacial nociceptive afferents. The activity of single trigeminal nociceptive afferents with receptive fields in deep craniofacial tissues were recorded extracellularly in 55 halothane-anesthetized rats. The mechanical activation threshold (MAT) of each afferent was assessed before and after injection of 0.5 M glutamate (or vehicle) and 1% capsaicin (or vehicle) into the receptive field. A total of 68 afferents that could be activated by blunt noxious mechanical stimulation of the deep craniofacial tissues (23 masseter, 5 temporalis, 40 temporomandibular joint) were studied. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization reflected as MAT reduction in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to glutamate alone. These findings indicate that peripheral application of glutamate or capsaicin may activate or induce peripheral sensitization in a subpopulation of trigeminal nociceptive afferents innervating deep craniofacial tissues, as reflected in changes in MAT and other afferent response properties. The data further suggest that peripheral glutamate and capsaicin receptor mechanisms may interact to modulate the activation and peripheral sensitization in some deep craniofacial nociceptive afferents.

  11. Nociception and Conditioned Fear in Rats: Strains Matter

    PubMed Central

    Schaap, Manon W. H.; van Oostrom, Hugo; Doornenbal, Arie; van 't Klooster, José; Baars, Annemarie M.; Arndt, Saskia S.; Hellebrekers, Ludo J.

    2013-01-01

    When using rats in pain research, strain-related differences in outcomes of tests for pain and nociception are acknowledged. However, very little is known about the specific characteristics of these strain differences. In this study four phylogenetically distant inbred rat strains, i.e. Wistar Kyoto (WKY), Fawn Hooded (FH), Brown Norway (BN) and Lewis (LE), were investigated in different tests related to pain and nociception. During Pavlovian fear conditioning, the LE and WKY showed a significantly longer duration of freezing behaviour than the FH and BN. Additionally, differences in c-Fos expression in subregions of the prefrontal cortex and amygdala between rat strains during retrieval and expression of conditioned fear were found. For example, the BN did not show recruitment of the basolateral amygdala, whereas the WKY, FH and LE did. During the hot plate test, the WKY and LE showed a lower thermal threshold compared to the BN and FH. In a follow-up experiment, the two most contrasting strains regarding behaviour during the hot plate test and Pavlovian fear conditioning (i.e. FH and WKY) were selected and the hot plate test, Von Frey test and somatosensory-evoked potential (SEP) were investigated. During the Von Frey test, the WKY showed a lower mechanical threshold compared to the FH. When measuring the SEP, the FH appeared to be less reactive to increasing stimulus intensities when considering both peak amplitudes and latencies. Altogether, the combined results indicate various differences between rat strains in Pavlovian fear conditioning, nociception related behaviours and nociceptive processing. These findings demonstrate the necessity of using multiple rat strains when using tests including noxious stimuli and suggest that the choice of rat strains should be considered. When selecting a strain for a particular study it should be considered how this strain behaves during the tests used in that study. PMID:24376690

  12. Intraplantar injection of tetrahydrobiopterin induces nociception in mice.

    PubMed

    Nasser, Arafat; Ali, Sawsan; Wilsbech, Signe; Bjerrum, Ole J; Møller, Lisbeth B

    2015-01-01

    Tetrahydrobiopterin (BH4) is implicated in the development and maintenance of chronic pain. After injury/inflammation, the biosynthesis of BH4 is markedly increased in sensory neurons, and the pharmacological and genetic inhibition of BH4 shows analgesic effects in pre-clinical animal pain models. Intrathecal injections of BH4 have been shown to induce and enhance pain-like behaviours in rats, suggesting that under chronic pain conditions BH4 may act by facilitating central sensitisation. So far it is unknown whether BH4 acts on peripheral sites of the somatosensory system or whether BH4 per se provokes nociceptive pain behaviours. The purpose of this study was therefore to investigate the acute nociceptive effects of intraplantar injection of BH4. BH4 was found to induce dose-dependent licking/biting of the paw lasting 5 min, which was not observed following an injection of biopterin (inactive BH4 metabolite). Paw swelling, measured as paw thickness and weight, was not observed after BH4 injection. To explore possible mechanisms of action of BH4, the effect of local pre-treatment with indomethacin, Nω-nitro-L-arginine methyl ester, Nω-nitro-L-arginine, capsazepine and ruthenium red was tested. Morphine served as a positive control. Intraplantar pre-injection of morphine dose-dependently inhibited BH4-induced nociception, while none of the other compounds showed any statistical significant antinociception. These results suggest that BH4 exhibits nociceptive properties at peripheral sites of the somatosensory system, proposing an as yet unexplored involvement of BH4 in peripheral nociceptive processes. However, this appears not to be mediated through nitric oxide and prostaglandin release or by activation of the transient receptor potential vanilloid 1.

  13. Mechanisms Involved in the Nociception Triggered by the Venom of the Armed Spider Phoneutria nigriventer

    PubMed Central

    Gewehr, Camila; Oliveira, Sara Marchesan; Rossato, Mateus Fortes; Trevisan, Gabriela; Dalmolin, Gerusa Duarte; Rigo, Flávia Karine; de Castro Júnior, Célio José; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus V.

    2013-01-01

    Background The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). Methodology/Principal Findings Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na+ channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. Conclusion/Significance Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for

  14. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting TRPA1 channel

    PubMed Central

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A.; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-01-01

    While feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons, express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously, which are known to trigger migraine or cluster headache attacks, as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel, and renders peptidergic, TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide. PMID:23933184

  15. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel.

    PubMed

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-12-01

    Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew's antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.

  16. EEG frequency-tagging to dissociate the cortical responses to nociceptive and non-nociceptive stimuli

    PubMed Central

    Colon, Elisabeth; Legrain, Valéry; Mouraux, André

    2017-01-01

    Whether the cortical processing of nociceptive input relies on the activity of nociceptive-specific neurons or whether it relies on the activity of neurons also involved in processing non-nociceptive sensory input remains a matter of debate. Here, we combined EEG “frequency-tagging” of steady-state evoked-potentials (SS-EPs) with an intermodal selective attention paradigm to test whether the cortical processing of nociceptive input relies on nociceptive-specific neuronal populations that can be selectively modulated by top-down attention. Trains of nociceptive and vibrotactile stimuli (experiment 1) and trains of nociceptive and visual stimuli (experiment 2) were applied concomitantly to the same hand, thus eliciting nociceptive, vibrotactile and visual SS-EPs. In each experiment, a target detection task was used to focus attention towards one of the two concurrent streams of sensory input. We found that selectively attending to nociceptive or vibrotactile somatosensory input indistinctly enhances the magnitude of nociceptive and vibrotactile SS-EPs, whereas selectively attending to nociceptive or visual input independently enhances the magnitude of the SS-EP elicited by the attended sensory input. This differential effect indicates that the processing of nociceptive input involves neuronal populations also involved in the processing of touch, but distinct from the neuronal populations involved in vision. PMID:24738772

  17. Effects of Aging on Current Vocalization Threshold in Mice Measured by a Novel Nociception Assay

    PubMed Central

    Finkel, Julia C.; Besch, Virginia G.; Hergen, Adrienne; Kakareka, John; Pohida, Thomas; Melzer, Jonathan M.; Koziol, Deloris; Wesley, Robert; Quezado, Zenaide M. N.

    2016-01-01

    Background Age-related changes in nociception have been extensively studied in the past decades. However, it remains unclear whether in addition to the increased incidence of chronic illness, age-related changes in nociception contribute to increased prevalence of pain in the elderly. Although a great deal of evidence suggests that nociception thresholds increase with aging, other studies yield disparate results. The aim of this investigation was to longitudinally determine the effect of aging on nociception. Methods The authors developed a nociception assay for mice using electrical stimuli at 2,000, 250, and 5 Hz that reportedly stimulate Aβ, Aδ, and C sensory nerve fibers, respectively. A system was designed to automate a method that elicits and detects pain-avoiding behavior in mice. Using a Latin square design, the authors measured current vocalization thresholds serially over the course of mice’s life span. Results For 2,000-Hz (Aβ), 250-Hz (Aδ), and 5-Hz (C) electrical stimuli, current vocalization thresholds first decreases and then increases with aging following a U-shaped pattern (P < 0.001). In addition, average current vocalization thresholds at youth and senescence are significantly higher than those at middle age for the 250-Hz (Aδ) and 5-Hz (C fiber) electrical stimulus (P < 0.05). Conclusions Using a novel and noninjurious nociception assay, the authors showed that over the life span of mice, current vocalization threshold to electrical stimuli changes in a U-shaped pattern. The findings support the notion that age-related changes in nociception are curvilinear, and to properly study and treat pain, the age of subjects should be considered. PMID:16871071

  18. Alfaxalone Anaesthesia Facilitates Electrophysiological Recordings of Nociceptive Withdrawal Reflexes in Dogs (Canis familiaris)

    PubMed Central

    Hunt, James; Murrell, Jo; Knazovicky, David; Harris, John; Kelly, Sara; Knowles, Toby G.; Lascelles, B. Duncan X.

    2016-01-01

    Naturally occurring canine osteoarthritis represents a welfare issue for affected dogs (Canis familiaris), but is also considered very similar to human osteoarthritis and has therefore been proposed as a model of disease in humans. Central sensitisation is recognized in human osteoarthritis sufferers but identification in dogs is challenging. Electromyographic measurement of responses to nociceptive stimulation represents a potential means of investigating alterations in central nociceptive processing, and has been evaluated in conscious experimental dogs, but is likely to be aversive. Development of a suitable anaesthetic protocol in experimental dogs, which facilitated electrophysiological nociceptive withdrawal reflex assessment, may increase the acceptability of using the technique in owned dogs with naturally occurring osteoarthritis. Seven purpose bred male hound dogs underwent electromyographic recording sessions in each of three states: acepromazine sedation, alfaxalone sedation, and alfaxalone anaesthesia. Electromyographic responses to escalating mechanical and electrical, and repeated electrical, stimuli were recorded. Subsequently the integral of both early and late rectified responses was calculated. Natural logarithms of the integral values were analysed within and between the three states using multi level modeling. Alfaxalone increased nociceptive thresholds and decreased the magnitude of recorded responses, but characteristics of increasing responses with increasing stimulus magnitude were preserved. Behavioural signs of anxiety were noted in two out of seven dogs during recordings in the acepromazine sedated state. There were few significant differences in response magnitude or nociceptive threshold between the two alfaxalone states. Following acepromazine premedication, induction of anaesthesia with 1–2 mg kg-1 alfaxalone, followed by a continuous rate infusion in the range 0.075–0.1 mg kg-1 min-1 produced suitable conditions to enable

  19. Brain measures of nociception using near-infrared spectroscopy in patients undergoing routine screening colonoscopy.

    PubMed

    Becerra, Lino; Aasted, Christopher M; Boas, David A; George, Edward; Yücel, Meryem A; Kussman, Barry D; Kelsey, Peter; Borsook, David

    2016-04-01

    Colonoscopy is an invaluable tool for the screening and diagnosis of many colonic diseases. For most colonoscopies, moderate sedation is used during the procedure. However, insufflation of the colon produces a nociceptive stimulus that is usually accompanied by facial grimacing/groaning while under sedation. The objective of this study was to evaluate whether a nociceptive signal elicited by colonic insufflation could be measured from the brain. Seventeen otherwise healthy patients (age 54.8 ± 9.1; 6 female) undergoing routine colonoscopy (ie, no history of significant medical conditions) were monitored using near-infrared spectroscopy (NIRS). Moderate sedation was produced using standard clinical protocols for midazolam and meperidine, titrated to effect. Near-infrared spectroscopy data captured during the procedure was analyzed offline to evaluate the brains' responses to nociceptive stimuli evoked by the insufflation events (defined by physician or observing patients' facial responses). Analysis of NIRS data revealed a specific, reproducible prefrontal cortex activity corresponding to times when patients grimaced. The pattern of the activation is similar to that previously observed during nociceptive stimuli in awake healthy individuals, suggesting that this approach may be used to evaluate brain activity evoked by nociceptive stimuli under sedation, when there is incomplete analgesia. Although some patients report recollection of procedural pain after the procedure, the effects of repeated nociceptive stimuli in surgical patients may contribute to postoperative changes including chronic pain. The results from this study indicate that NIRS may be a suitable technology for continuous nociceptive afferent monitoring in patients undergoing sedation and could have applications under sedation or anesthesia.

  20. Is temporal summation of pain and spinal nociception altered during normal aging?

    PubMed

    Marouf, Rafik; Piché, Mathieu; Rainville, Pierre

    2015-10-01

    This study examines the effect of normal aging on temporal summation (TS) of pain and the nociceptive flexion reflex (RIII). Two groups of healthy volunteers, young and elderly, received transcutaneous electrical stimulation applied to the right sural nerve to assess pain and the nociceptive flexion reflex (RIII-reflex). Stimulus intensity was adjusted individually to 120% of RIII-reflex threshold, and shocks were delivered as a single stimulus or as a series of 5 stimuli to assess TS at 5 different frequencies (0.17, 0.33, 0.66, 1, and 2 Hz). This study shows that robust TS of pain and RIII-reflex is observable in individuals aged between 18 and 75 years and indicates that these effects are comparable between young and older individuals. These results contrast with some previous findings and imply that at least some pain regulatory processes, including TS, may not be affected by normal aging, although this may vary depending on the method.

  1. (-)-α-Bisabolol reduces orofacial nociceptive behavior in rodents.

    PubMed

    Melo, Luana Torres; Duailibe, Mariana Araújo Braz; Pessoa, Luciana Moura; da Costa, Flávio Nogueira; Vieira-Neto, Antonio Eufrásio; de Vasconcellos Abdon, Ana Paula; Campos, Adriana Rolim

    2017-02-01

    The purposes of this study were to evaluate the anti-nociceptive effect of oral and topical administration of (-)-α-bisabolol (BISA) in rodent models of formalin- or cinnamaldehyde-induced orofacial pain and to explore the inhibitory mechanisms involved. Orofacial pain was induced by injecting 1.5% formalin into the upper lip of mice (20 μL) or into the temporomandibular joint (TMJ) of rats (50 μL). In another experiment, orofacial pain was induced with cinnamaldehyde (13.2 μg/lip). Nociceptive behavior was proxied by time (s) spent rubbing the injected area and by the incidence of head flinching. BISA (100, 200, or 400 mg/kg p.o. or 50, 100, or 200 mg/mL topical) or vehicle was administered 60 min before pain induction. The two formulations (lotion and syrup) were compared with regard to efficacy. The effect of BISA remained after incorporation into the formulations, and nociceptive behavior decreased significantly in all tests. The high binding affinity observed for BISA and TRPA1 in the molecular docking study was supported by in vivo experiments in which HC-030031 (a TRPA1 receptor antagonist) attenuated pain in a manner qualitatively and quantitatively similar to that of BISA. Blockers of opioid receptors, NO synthesis, and K(+) ATP channels did not affect orofacial pain, nor inhibit the effect of BISA. In conclusion, BISA had a significant anti-nociceptive effect on orofacial pain. The effect may in part be due to TRPA1 antagonism. The fact that the effect of BISA remained after incorporation into oral and topical formulations suggests that the compound may be a useful adjuvant in the treatment of orofacial pain.

  2. Operant nociception in nonhuman primates.

    PubMed

    Kangas, Brian D; Bergman, Jack

    2014-09-01

    The effective management of pain is a longstanding public health concern. Morphine-like opioids have long been front-line analgesics, but produce undesirable side effects that can limit their application. Slow progress in the introduction of novel improved medications for pain management over the last 5 decades has prompted a call for innovative translational research, including new preclinical assays. Most current in vivo procedures (eg, tail flick, hot plate, warm water tail withdrawal) assay the effects of nociceptive stimuli on simple spinal reflexes or unconditioned behavioral reactions. However, clinical treatment goals may include the restoration of previous behavioral activities, which can be limited by medication-related side effects that are not measured in such procedures. The present studies describe an apparatus and procedure to study the disruptive effects of nociceptive stimuli on voluntary behavior in nonhuman primates, and the ability of drugs to restore such behavior through their analgesic actions. Squirrel monkeys were trained to pull a cylindrical thermode for access to a highly palatable food. Next, sessions were conducted in which the temperature of the thermode was increased stepwise until responding stopped, permitting the determination of stable nociceptive thresholds. Tests revealed that several opioid analgesics, but not d-amphetamine or Δ(9)-THC, produced dose-related increases in threshold that were antagonist sensitive and efficacy dependent, consistent with their effects using traditional measures of antinociception. Unlike traditional reflex-based measures, however, the results also permitted the concurrent evaluation of response disruption, providing an index with which to characterize the behavioral selectivity of antinociceptive drugs.

  3. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception

    PubMed Central

    Dimitrov, Eugene L.; Petrus, Emily; Usdin, Ted B.

    2010-01-01

    Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55 °C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions. PMID:20696160

  4. Application of calibrated forceps for assessing mechanical nociception with high time resolution in mice

    PubMed Central

    Kashiwadani, Hideki; Kanmura, Yuichi; Kuwaki, Tomoyuki

    2017-01-01

    In order to investigate the basic physiological mechanisms of pain and the anti-nociceptive effects of analgesics, development of pain assays in mice is critical due to the advances of genetic manipulation techniques. The von Frey hairs/Semmes-Weinstein monofilaments test (von Frey test) has long been applied to examine mechanical nociception in mice. Though the von Frey test is a well-established and standardized method, it is inappropriate to assess a rapid change in the nociceptive threshold because voluntary resting/sleeping states are necessary to examine the response. In this study, we assessed the effectiveness of calibrated forceps to determine the mechanical nociceptive threshold in mice. Repeated daily measurements of the threshold over 5 days indicated that the device obtained stable and reliable values. Furthermore, repeated measurements with 5 minute intervals revealed that the device detected the rapid change of the threshold induced by remifentanil, a short-acting μ-receptor agonist. These results indicate that the calibrated forceps are well-suited for measuring the mechanical nociceptive threshold in mice, and are useful in assessing the effects of short-acting analgesics on mechanical nociception. PMID:28212389

  5. Forebrain medial septum region facilitates nociception in a rat formalin model of inflammatory pain.

    PubMed

    Lee, Andy Thiam-Huat; Ariffin, Mohammed Zacky; Zhou, Mingyi; Ye, Jenn Zhou; Moochhala, Shabbir M; Khanna, Sanjay

    2011-11-01

    The medial septum is anatomically and functionally linked to the hippocampus, a region implicated in nociception. However, the role of medial septum in nociception remains unclear. To investigate the role of the region in nociception in rats, muscimol, a GABA agonist, or zolpidem, a positive allosteric modulator of GABA(A) receptors, was microinjected into medial septum to attenuate the activity of neurons in the region. Electrophysiological studies in anesthetized rats indicated that muscimol evoked a stronger and longer-lasting suppression of medial septal-mediated activation of hippocampal theta field activity than zolpidem. Similarly, microinjection of muscimol (1 or 2 μg/0.5 μl) into the medial septum of awake rats suppressed both licking and flinching behaviors in the formalin test of inflammatory pain, whereas only the latter behavior was affected by zolpidem (8 or 12 μg/0.5 μl) administered into the medial septum. Interestingly, both drugs selectively attenuated nociceptive behaviors in the second phase of the formalin test that are partly driven by central plasticity. Indeed, muscimol reduced the second phase behaviors by 30% to 60%, which was comparable to the reduction seen with systemic administration of a moderate dose of the analgesic morphine. The reduction was accompanied by a decrease in formalin-induced expression of spinal c-Fos protein that serves as an index of spinal nociceptive processing. The drug effects on nociceptive behaviors were without overt sedation and were distinct from the effects observed after septal lateral microinjections. Taken together, these findings suggest that the activation of medial septum is pro-nociceptive and facilitates aspects of central neural processing underlying nociception.

  6. The influence of gender and sex steroids on craniofacial nociception.

    PubMed

    Cairns, Brian E

    2007-02-01

    Several pain conditions localized to the craniofacial region show a remarkable sex-related difference in their prevalence. These conditions include temporomandibular disorders and burning mouth syndrome as well as tension-type, migraine, and cluster headaches. The mechanisms that underlie sex-related differences in the prevalence of these craniofacial pain conditions remain obscure and likely involve both physiological and psychosocial factors. In terms of physiological factors relevant to the development of headache, direct evidence of sex-related differences in the properties of dural afferent fibers or durally activated second-order trigeminal sensory neurons has yet to be provided. There is, however, evidence for sex-related differences in the response properties of afferent fibers and second-order trigeminal sensory neurons that convey nociceptive input from other craniofacial tissues associated with sex-related differences in chronic pain conditions, such as those that innervate the masseter muscle and temporomandibular joint. Further, modulation of craniofacial nociceptive input by opioidergic receptor mechanisms appears to be dependent on biological sex. Research into mechanisms that may contribute to sex-related differences in trigeminal nociceptive processing has primarily focused on effect of the female sex hormone estrogen, which appears to alter the excitability of trigeminal afferent fibers and sensory neurons to noxious stimulation of craniofacial tissues. This article discusses current knowledge of potential physiological mechanisms that could contribute to sex-related differences in certain craniofacial pain conditions.

  7. The zebrafish as a model for nociception studies.

    PubMed

    Malafoglia, Valentina; Bryant, Bruce; Raffaeli, William; Giordano, Antonio; Bellipanni, Gianfranco

    2013-10-01

    Nociception is the sensory mechanism used to detect cues that can harm an organism. The understanding of the neural networks and molecular controls of the reception of pain remains an ongoing challenge for biologists. While we have made significant progress in identifying a number of molecules and pathways that are involved in transduction of noxious stimuli, from the skin through the sensory receptor cell and from this to the spinal cord on into the central nervous system, we still lack a clear understanding of the perceptual processes, the responses to pain and the regulation of pain perception. Mice and rat animal models have been extensively used for nociception studies. However, the study of pain and noiception in these organisms can be rather laborious, costly and time consuming. Conversely, the use of Drosophila and Caenorhabditis elegans may be affected by the large evolutionary distance between these animals and humans. We outline here the reasons why zebrafish presents a new and attractive model for studying pain reception and responses and the most interesting findings in the study of nociception that have been obtained using the zebrafish model.

  8. Transcranial magnetic stimulation reduces nociceptive threshold in rats.

    PubMed

    Ambriz-Tututi, Mónica; Sánchez-González, Violeta; Drucker-Colín, René

    2012-05-01

    Transcranial magnetic stimulation (TMS) is a procedure that uses magnetic fields to stimulate or inhibit nerve cells in the brain noninvasively. TMS induces an electromagnetic current in the underlying cortical neurons. Varying frequencies and intensities of TMS increase or decrease excitability in the cortical area directly targeted. It has been suggested that TMS has potential in the treatment of some neurological disorders such as Parkinson's disease, stroke, and depression. Initial case reports and open label trials reported by several groups support the use of TMS in pain treatment. In the present study, we evaluated the effect of TMS on the nociceptive threshold in the rat. The parameters used were a frequency of 60 Hz and an intensity of 2 and 6 mT for 2 hr twice per day. After 5 days of TMS treatment, rats were evaluated for mechanical, chemical, and cold stimulation. We observed a significant reduction in the nociceptive threshold in TMS-treated rats but not in sham-treated rats in all behavioral tests evaluated. When TMS treatment was stopped, a slow recovery to normal mechanic threshold was observed. Interestingly, i.c.v. MK-801 or CNQX administration reverted the TMS-induced pronociception. The results suggest that high-frequency TMS can alter the nociceptive threshold and produce allodynia in the rats; results suggest the involvement of NMDA and AMPA/KA receptors on TMS-induced allodynia in the rat.

  9. Quantification of Nociceptive Escape Response in C.elegans

    NASA Astrophysics Data System (ADS)

    Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya

    2013-03-01

    Animals cannot rank and communicate their pain consciously. Thus in pain studies on animal models, one must infer the pain level from high precision experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. Here we explore the feasibility of C.elegans as a model for pain transduction. The nematode has a robust neurally mediated noxious escape response, which we show to be partially decoupled from other sensory behaviors. We develop a nociceptive behavioral response assay that allows us to apply controlled levels of pain by locally heating worms with an IR laser. The worms' motions are captured by machine vision programming with high spatiotemporal resolution. The resulting behavioral quantification allows us to build a statistical model for inference of the experienced pain level from the behavioral response. Based on the measured nociceptive escape of over 400 worms, we conclude that none of the simple characteristics of the response are reliable indicators of the laser pulse strength. Nonetheless, a more reliable statistical inference of the pain stimulus level from the measured behavior is possible based on a complexity-controlled regression model that takes into account the entire worm behavioral output. This work was partially supported by NSF grant No. IOS/1208126 and HFSP grant No. RGY0084/2011.

  10. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies

    PubMed Central

    Mickle, Aaron D.; Shepherd, Andrew J.; Mohapatra, Durga P.

    2016-01-01

    Specialized receptors belonging to the transient receptor potential (TRP) family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics. PMID:27854251

  11. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    NASA Astrophysics Data System (ADS)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  12. Effects of μ-opioid receptor agonists in assays of acute pain-stimulated and pain-depressed behavior in male rats: role of μ-agonist efficacy and noxious stimulus intensity.

    PubMed

    Altarifi, Ahmad A; Rice, Kenner C; Negus, S Stevens

    2015-02-01

    Pain is associated with stimulation of some behaviors and depression of others, and μ-opioid receptor agonists are among the most widely used analgesics. This study used parallel assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats to compare antinociception profiles for six μ-agonists that varied in efficacy at μ-opioid receptors (from highest to lowest: methadone, fentanyl, morphine, hydrocodone, buprenorphine, and nalbuphine). Intraperitoneal injection of diluted lactic acid served as an acute noxious stimulus to either stimulate stretching or depress operant responding maintained by electrical stimulation in an intracranial self-stimulation (ICSS). All μ-agonists blocked both stimulation of stretching and depression of ICSS produced by 1.8% lactic acid. The high-efficacy agonists methadone and fentanyl were more potent at blocking acid-induced depression of ICSS than acid-stimulated stretching, whereas lower-efficacy agonists displayed similar potency across assays. All μ-agonists except morphine also facilitated ICSS in the absence of the noxious stimulus at doses similar to those that blocked acid-induced depression of ICSS. The potency of the low-efficacy μ-agonist nalbuphine, but not the high-efficacy μ-agonist methadone, to block acid-induced depression of ICSS was significantly reduced by increasing the intensity of the noxious stimulus to 5.6% acid. These results demonstrate sensitivity of acid-induced depression of ICSS to a range of clinically effective μ-opioid analgesics and reveal distinctions between opioids based on efficacy at the μ-receptor. These results also support the use of parallel assays of pain-stimulated and -depressed behaviors to evaluate analgesic efficacy of candidate drugs.

  13. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons

    PubMed Central

    Taylor, Bradley K.; Fu, Weisi; Kuphal, Karen E.; Stiller, Carl-Olav; Winter, Michelle K.; Chen, Wenling; Corder, Gregory F.; Urban, Janice H.; McCarson, Kenneth E.; Marvizon, Juan Carlos

    2014-01-01

    Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu31, Pro34]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu31, Pro34]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu31, Pro34]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [35S]GTPγS binding simulated by [Leu31, Pro34]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception. PMID:24184981

  14. Acute estrogen surge enhances inflammatory nociception without altering spinal Fos expression.

    PubMed

    Ralya, Andrew; McCarson, Kenneth E

    2014-07-11

    Chronic pain is a major neurological disorder that can manifest differently between genders or sexes. The complex actions of sex hormones may underlie these differences; previous studies have suggested that elevated estrogen levels can enhance pain perception. The purpose of this study was to investigate the hypothesis that acute, activational effects of estradiol (E2) increase persistent inflammatory nociception, and anatomically where this modulation occurs. Spinal expression of Fos is widely used as a marker of nociceptive activation. This study used formalin-evoked nociception in ovariectomized (OVX) adult female rats and measured late-phase hindlimb flinching and Fos expression in the spinal cord, and their modification by acute estrogen supplementation similar to a proestrus surge. Six days after ovariectomy, female rats were injected subcutaneously (s.c.) with 10μg/kg E2 or vehicle. Twenty-four hours later, 50μL of 1.25% or 100μL of 5% formalin was injected into the right hindpaw; hindlimb flinches were counted, and spinal cords removed 2h after formalin injection. The numbers of Fos-expressing neurons in sections of the lumbar spinal cord were analyzed using immunohistochemistry. Formalin-induced inflammation produced a dose-dependent increase in late-phase hindlimb flinching, and E2 pretreatment increased flinching following 5%, but not 1.25% formalin injection. Despite the modification of behavior by E2, the number of spinal Fos-positive neurons was not altered by E2 pretreatment. These findings demonstrate that an acute proestrus-like surge in serum estrogen can produce a stimulus-intensity-dependent increase in inflammation-evoked nociceptive behavior. However, the lack of effect on spinal Fos expression suggests that this enhancement of nociceptive signaling by estrogen is independent of changes in peripheral activation of, expression of the immediate early gene Fos by, or signal throughput of spinal nociceptive neurons.

  15. Inhibitory control of nociceptive responses of trigeminal spinal nucleus cells by somatosensory corticofugal projection in rat.

    PubMed

    Malmierca, E; Martin, Y B; Nuñez, A

    2012-09-27

    The caudal division of the trigeminal spinal nucleus (Sp5C) is an important brainstem relay station of orofacial pain transmission. The aim of the present study was to examine the effect of cortical electrical stimulation on nociceptive responses in Sp5C neurons. Extracellular recordings were performed in the Sp5C nucleus by tungsten microelectrodes in urethane-anesthetized Sprague-Dawley rats. Nociceptive stimulation was produced by application of capsaicin cream on the whisker pad or by constriction of the infraorbital nerve. Capsaicin application evoked a long-lasting increase in the spontaneous firing rate from 1.4±0.2 to 3.4±0.6 spikes/s. Non-noxious tactile responses from stimuli delivered to the receptive field (RF) center decreased 5 min. after capsaicin application (from 2.3±0.1 to 1.6±0.1 spikes/stimulus) while responses from the whisker located at the RF periphery increased (from 1.3±0.2 to 2.0±0.1 spikes/stimulus under capsaicin). Electrical train stimulation of the primary (S1) or secondary (S2) somatosensory cortical areas reduced the increase in the firing rate evoked by capsaicin. Also, S1, but not S2, cortical stimulation reduced the increase in non-noxious tactile responses from the RF periphery. Inhibitory cortical effects were mediated by the activation of GABAergic and glycinergic neurons because they were blocked by bicuculline or strychnine. The S1 and S2 cortical stimulation also inhibited Sp5C neurons in animals with constriction of the infraorbital nerve. Consequently, the corticofugal projection from S1 and S2 cortical areas modulates nociceptive responses of Sp5C neurons and may control the transmission of nociceptive sensory stimulus.

  16. 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice.

    PubMed

    Brenchat, Alex; Romero, Luz; García, Mónica; Pujol, Marta; Burgueño, Javier; Torrens, Antoni; Hamon, Michel; Baeyens, José Manuel; Buschmann, Helmut; Zamanillo, Daniel; Vela, José Miguel

    2009-02-01

    This work aimed to evaluate the potential role of the 5-HT(7) receptor in nociception secondary to a sensitizing stimulus in mice. For this purpose, the effects of relevant ligands (5-HT(7) receptor agonists: AS-19, MSD-5a, E-55888; 5-HT(7) receptor antagonists: SB-258719, SB-269970; 5-HT(1A) receptor agonist: F-13640; 5-HT(1A) receptor antagonist: WAY-100635) were assessed on capsaicin-induced mechanical hypersensitivity, a pain behavior involving hypersensitivity of dorsal horn neurons (central sensitization). For the 5-HT(7) receptor agonists used, binding profile and intrinsic efficacy to stimulate cAMP formation in HEK-293F cells expressing the human 5-HT(7) receptor were also evaluated. AS-19 and E-55888 were selective for 5-HT(7) receptors. E-55888 was a full agonist whereas AS-19 and MSD-5a behaved as partial agonists, with maximal effects corresponding to 77% and 61%, respectively, of the cAMP response evoked by the full agonist 5-HT. Our in vivo results revealed that systemic administration of 5-HT(7) receptor agonists exerted a clear-cut dose-dependent antinociceptive effect that was prevented by 5-HT(7) receptor antagonists, but not by the 5-HT(1A) receptor antagonist. The order of efficacy (E-55888>AS-19>MSD-5a) matched their in vitro efficacy as 5-HT(7) receptor agonists. Contrary to agonists, a dose-dependent promotion of mechanical hypersensitivity was observed after administration of 5-HT(7) receptor antagonists, substantiating the involvement of the 5-HT(7) receptor in the control of capsaicin-induced mechanical hypersensitivity. These findings suggest that serotonin exerts an inhibitory role in the control of nociception through activation of 5-HT(7) receptors, and point to a new potential therapeutic use of 5-HT(7) receptor agonists in the field of analgesia.

  17. Effects of nicotine in combination with drugs described as positive allosteric nicotinic acetylcholine receptor modulators in vitro: discriminative stimulus and hypothermic effects in mice.

    PubMed

    Moerke, Megan J; de Moura, Fernando B; Koek, Wouter; McMahon, Lance R

    2016-09-05

    Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56mg/kg and 0.91mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms.

  18. Cognitive aspects of nociception and pain: bridging neurophysiology with cognitive psychology.

    PubMed

    Legrain, V; Mancini, F; Sambo, C F; Torta, D M; Ronga, I; Valentini, E

    2012-10-01

    The event-related brain potentials (ERPs) elicited by nociceptive stimuli are largely influenced by vigilance, emotion, alertness, and attention. Studies that specifically investigated the effects of cognition on nociceptive ERPs support the idea that most of these ERP components can be regarded as the neurophysiological indexes of the processes underlying detection and orientation of attention toward the eliciting stimulus. Such detection is determined both by the salience of the stimulus that makes it pop out from the environmental context (bottom-up capture of attention) and by its relevance according to the subject's goals and motivation (top-down attentional control). The fact that nociceptive ERPs are largely influenced by information from other sensory modalities such as vision and proprioception, as well as from motor preparation, suggests that these ERPs reflect a cortical system involved in the detection of potentially meaningful stimuli for the body, with the purpose to respond adequately to potential threats. In such a theoretical framework, pain is seen as an epiphenomenon of warning processes, encoded in multimodal and multiframe representations of the body, well suited to guide defensive actions. The findings here reviewed highlight that the ERPs elicited by selective activation of nociceptors may reflect an attentional gain apt to bridge a coherent perception of salient sensory events with action selection processes.

  19. The place escape/avoidance paradigm: a novel method to assess nociceptive processing.

    PubMed

    Fuchs, Perry N; McNabb, Christopher T

    2012-03-01

    This paper summarizes a behavioral paradigm that was developed as a novel method to dissociate the multidimensional pain experience in rodents. The place escape/avoidance paradigm (PEAP) is based on the assumption that if animals escape and/or avoid a noxious stimulus, then the stimulus is aversive to the animal. Data is presented showing that when animals are placed in a specific environmental condition, they will perform purposeful behavior to escape and/or avoid the noxious stimulus. Additional data is presented to demonstrate the validity of the behavioral paradigm and how the paradigm has been used to test the hypothesis that the affective/motivational dimension of pain can be dissociated and studied independent of sensory pain processing. The behavioral paradigm highlights the emerging trend in the area of pain research and management towards developing more realistic behavioral paradigms to assess nociceptive processing in rodent models of chronic pain.

  20. FGF13 Selectively Regulates Heat Nociception by Interacting with Nav1.7.

    PubMed

    Yang, Liu; Dong, Fei; Yang, Qing; Yang, Pai-Feng; Wu, Ruiqi; Wu, Qing-Feng; Wu, Dan; Li, Chang-Lin; Zhong, Yan-Qing; Lu, Ying-Jin; Cheng, Xiaoyang; Xu, Fu-Qiang; Chen, Limin; Bao, Lan; Zhang, Xu

    2017-02-22

    The current knowledge about heat nociception is mainly confined to the thermosensors, including the transient receptor potential cation channel V1 expressed in the nociceptive neurons of dorsal root ganglion (DRG). However, the loss of thermosensors only partially impairs heat nociception, suggesting the existence of undiscovered mechanisms. We found that the loss of an intracellular fibroblast growth factor (FGF), FGF13, in the mouse DRG neurons selectively abolished heat nociception. The noxious heat stimuli could not evoke the sustained action potential firing in FGF13-deficient DRG neurons. Furthermore, FGF13 interacted with the sodium channel Nav1.7 in a heat-facilitated manner. FGF13 increased Nav1.7 sodium currents and maintained the membrane localization of Nav1.7 during noxious heat stimulation, enabling the sustained firing of action potentials. Disrupting the FGF13/Nav1.7 interaction reduced the heat-evoked action potential firing and nociceptive behavior. Thus, beyond the thermosensors, the FGF13/Nav1.7 complex is essential for sustaining the transmission of noxious heat signals.

  1. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway

    PubMed Central

    Ma, Lihua; Trinh, Thu; Ren, Yanfang; Dirksen, Robert T.; Liu, Xiuxin

    2016-01-01

    ATP induces pain via activation of purinergic receptors in nociceptive sensory nerves. ATP signaling is terminated by ATP hydrolysis mediated by cell surface-localized ecto-nucleotidases. Using enzymatic histochemical staining, we show that ecto-ATPase activity is present in mouse trigeminal nerves. Using immunofluorescence staining, we found that ecto-NTPDase3 is expressed in trigeminal nociceptive neurons and their projections to the brainstem. In addition, ecto-ATPase activity and ecto-NTPDase3 are also detected in the nociceptive outermost layer of the trigeminal subnucleus caudalis. Furthermore, we demonstrate that incubation with anti-NTPDase3 serum reduces extracellular ATP degradation in the nociceptive lamina of both the trigeminal subnucleus caudalis and the spinal cord dorsal horn. These results are consistent with neuronal NTPDase3 activity modulating pain signal transduction and transmission by affecting extracellular ATP hydrolysis within the trigeminal nociceptive pathway. Thus, disruption of trigeminal neuronal NTPDase3 expression and localization to presynaptic terminals during chronic inflammation, local constriction and injury may contribute to the pathogenesis of orofacial neuropathic pain. PMID:27706204

  2. Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception.

    PubMed

    Jurik, Angela; Auffenberg, Eva; Klein, Sabine; Deussing, Jan M; Schmid, Roland M; Wotjak, Carsten T; Thoeringer, Christoph K

    2015-12-01

    Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.

  3. Stimulus Reporting Advances

    ERIC Educational Resources Information Center

    McNeil, Michele

    2009-01-01

    Faced with their first reporting deadlines for economic-stimulus aid to education, school districts are toiling over how every stimulus penny has been spent so far and how many jobs have been saved--numbers that will be scrutinized not just by the public, but by government auditors as well. The American Recovery and Reinvestment Act, passed by…

  4. Systemic blood pressure alters cortical blood flow and neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat.

    PubMed

    Uchida, Sae; Bois, Suzie; Guillemot, Jean-Paul; Leblond, Hugues; Piché, Mathieu

    2017-02-20

    Inference on nociceptive and pain-related processes from functional magnetic resonance imaging is made with the assumption that the coupling of neuronal activity and cerebral hemodynamic changes is stable. However, since nociceptive stimulation is associated with increases in systemic arterial pressure, it is essential to determine whether this coupling remains the same during different levels of nociception and pain. The main objective of the present study was to compare the amplitude of local field potentials (LFP) and cerebral blood flow (CBF) changes in the primary somatosensory cortex during nociceptive electrical stimulation of the contralateral or ipsilateral forepaw in isoflurane-anesthetized rats, while manipulating mean arterial pressure (MAP). MAP changes induced by nociceptive stimulation were manipulated by transecting the spinal cord at the upper thoracic segments (T1-T2), which interrupts sympathetic pathways and prevents nociception-related MAP increases, while sensory pathways between the forepaws and the brain remain intact. Intensity-dependent increases in MAP and CBF were observed and these effects were abolished or significantly decreased after spinal transection (p<0.001 and p<0.05, respectively). In contrast, the intensity-dependent changes in LFP amplitude were decreased for the contralateral stimulation but increased for the ipsilateral stimulation after spinal transection (p<0.05). Thus, neurovascular coupling was altered differently by stimulus-induced MAP changes, depending on stimulus intensity and location. This demonstrates that CBF changes evoked by nociceptive processing do not always match neuronal activity, which may lead to inaccurate estimation of neuronal activity from hemodynamic changes. These results have important implications for neuroimaging of nociceptive and pain-related processes.

  5. Opioid receptor trafficking and interaction in nociceptors

    PubMed Central

    Zhang, X; Bao, L; Li, S

    2015-01-01

    Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24611685

  6. Endogenous inhibition of pain and spinal nociception in women with premenstrual dysphoric disorder

    PubMed Central

    Palit, Shreela; Bartley, Emily J; Kuhn, Bethany L; Kerr, Kara L; DelVentura, Jennifer L; Terry, Ellen L; Rhudy, Jamie L

    2016-01-01

    Purpose Premenstrual dysphoric disorder (PMDD) is characterized by severe affective and physical symptoms, such as increased pain, during the late-luteal phase of the menstrual cycle. The mechanisms underlying hyperalgesia in women with PMDD have yet to be identified, and supraspinal pain modulation has yet to be examined in this population. The present study assessed endogenous pain inhibitory processing by examining conditioned pain modulation (CPM, a painful conditioning stimulus inhibiting pain evoked by a test stimulus at a distal body site) of pain and the nociceptive flexion reflex (NFR, a spinally-mediated withdrawal reflex) during the mid-follicular, ovulatory, and late-luteal phases of the menstrual cycle. Methods Participants were regularly-cycling women (14 without PMDD; 14 with PMDD). CPM was assessed by delivering electrocutaneous test stimuli to the sural nerve before, during, and after a painful conditioning ischemia task. Participants rated their pain to electrocutaneous stimuli, and NFR magnitudes were measured. A linear mixed model analysis was used to assess the influence of group and menstrual phase on CPM. Results Compared with controls, women with PMDD experienced greater pain during the late-luteal phase and enhanced spinal nociception during the ovulation phase, both of which were independent of CPM. Both groups showed CPM inhibition of pain that did not differ by menstrual phase. Only women with PMDD evidenced CPM inhibition of NFR. Conclusion Endogenous modulation of pain and spinal nociception is not disrupted in women with PMDD. Additionally, greater NFR magnitudes during ovulation in PMDD may be due to tonically-engaged descending mechanisms that facilitate spinal nociception, leading to enhanced pain during the premenstrual phase. PMID:26929663

  7. Attenuation of thermal nociception and hyperalgesia by VR1 blockers

    PubMed Central

    García-Martínez, Carolina; Humet, Marc; Planells-Cases, Rosa; Gomis, Ana; Caprini, Marco; Viana, Felix; De la Peña, Elvira; Sanchez-Baeza, Francisco; Carbonell, Teresa; De Felipe, Carmen; Pérez-Payá, Enrique; Belmonte, Carlos; Messeguer, Angel; Ferrer-Montiel, Antonio

    2002-01-01

    Vanilloid receptor subunit 1 (VR1) appears to play a critical role in the transduction of noxious chemical and thermal stimuli by sensory nerve endings in peripheral tissues. Thus, VR1 antagonists are useful compounds to unravel the contribution of this receptor to pain perception, as well as to induce analgesia. We have used a combinatorial approach to identify new, nonpeptidic channel blockers of VR1. Screening of a library of trimers of N-alkylglycines resulted in the identification of two molecules referred to as DD161515 {N-[2-(2-(N-methylpyrrolidinyl)ethyl]glycyl]-[N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinamide} and DD191515 {[N-[3-(N,N-diethylamino)propyl]glycyl]-[N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinamide} that selectively block VR1 channel activity with micromolar efficacy, rivaling that characteristic of vanilloid-related inhibitors. These compounds appear to be noncompetitive VR1 antagonists that recognize a receptor site distinct from that of capsaicin. Intraperitoneal administration of both trialkylglycines into mice significantly attenuated thermal nociception as measured in the hot plate test. It is noteworthy that these compounds eliminated pain and neurogenic inflammation evoked by intradermal injection of capsaicin into the animal hindpaw, as well as the thermal hyperalgesia induced by tissue irritation with nitrogen mustard. In contrast, responses to mechanical stimuli were not modified by either compound. Modulation of sensory nerve fibers excitability appears to underlie the peptoid analgesic activity. Collectively, these results indicate that blockade of VR1 activity attenuates chemical and thermal nociception and hyperalgesia, supporting the tenet that this ionotropic receptor contributes to chemical and thermal sensitivity and pain perception in vivo. These trialkylglycine-based, noncompetitive VR1 antagonists may likely be developed into analgesics to treat inflammatory pain. PMID:11854530

  8. Role of NHE1 in Nociception.

    PubMed

    Torres-López, Jorge Elías; Guzmán-Priego, Crystell Guadalupe; Rocha-González, Héctor Isaac; Granados-Soto, Vinicio

    2013-01-01

    Intracellular pH is a fundamental parameter to cell function that requires tight homeostasis. In the absence of any regulation, excessive acidification of the cytosol would have the tendency to produce cellular damage. Mammalian Na(+)/H(+) exchangers (NHEs) are electroneutral Na(+)-dependent proteins that exchange extracellular Na(+) for intracellular H(+). To date, there are 9 identified NHE isoforms where NHE1 is the most ubiquitous member, known as the housekeeping exchanger. NHE1 seems to have a protective role in the ischemia-reperfusion injury and other inflammatory diseases. In nociception, NHE1 is found in neurons along nociceptive pathways, and its pharmacological inhibition increases nociceptive behavior in acute pain models at peripheral and central levels. Electrophysiological studies also show that NHE modulates electrical activity of primary nociceptive terminals. However, its role in neuropathic pain still remains controversial. In humans, NHE1 may be responsible for inflammatory bowel diseases since its expression is reduced in Crohn's disease and ulcerative colitis. The purpose of this work is to provide a review of the evidence about participation of NHE1 in the nociceptive processing.

  9. Specific features of the planarian Dugesia tigrina regeneration and mollusk Helix albescens nociception under weak electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Temur'yants, N. A.; Demtsun, N. A.; Kostyuk, A. S.; Yarmolyuk, N. S.

    2012-12-01

    It has been demonstrated that weak electromagnetic shielding stimulates regeneration in the planarian Dugesia tigrina, the stimulating intensity being dependent on both the initial state of the animals, which is determined by season, and their functional asymmetry. As has been shown, the effect of a weak electromagnetic field induces phasic changes in the nociceptive sensitivity of the mollusk Helix albescens: an increase in the sensitivity to a thermal stimulus is replaced by the development of the hypalgesic effect.

  10. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    PubMed

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways.

  11. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats

    PubMed Central

    Chichorro, Juliana G; Lorenzetti, Berenice B; Zampronio, Aleksander R

    2004-01-01

    This study characterises some of the mechanisms and mediators involved in the orofacial nociception triggered by injection of formalin into the upper lip of the rat, by assessing the influence of various treatments on behavioural nociceptive responses (duration of facial rubbing) elicited either by a low subthreshold (i.e. non-nociceptive; 0.63%) or a higher concentration of the algogen (2.5%). The kininase II inhibitor captopril (5 mg kg−1, s.c.) and prostaglandin(PG) E2 (100 ng lip−1) potentiated both phases of the response to 0.63% formalin, whereas tumour necrosis factor (TNFα; 5 pg lip−1), interleukin(IL)-1β (0.5 pg lip−1), IL-6 (2 ng lip−1) and IL-8 (200 pg lip−1), or the indirectly acting sympathomimetic drug tyramine (200 μg lip−1), each augmented only the second phase of nociception. Conversely, both phases of nociception induced by 2.5% formalin were inhibited by the bradykinin (BK) B2 receptor antagonist HOE140 (5 μg lip−1) or the selective β1-adrenoceptor antagonist atenolol (100 μg lip−1). However, the BK B1 receptor antagonist des-Arg9-Leu8-BK (1 and 2 μg lip−1), antibody and/or antiserum against each of the cytokines, the adrenergic neurone blocker guanethidine (30 mg kg−1 day−1, s.c., for 3 days) and the cyclooxygenase(COX)-2 inhibitor celecoxib (50 and 200 μg lip−1, s.c.; or 1 and 3 mg kg−1, i.p.) reduced only the second phase of the response. The nonselective COX inhibitor indomethacin and the 5-lipoxygenase activating protein inhibitor MK886 did not change formalin-induced nociception. Our results indicate that BK, TNF-α, IL-1β, IL-6, IL-8, sympathetic amines and PGs (but not leukotrienes) contribute significantly to formalin-induced orofacial nociception in the rat and the response seems to be more susceptible to inhibition by B2 receptor antagonist and selective COX-2 inhibitor than by B1 receptor antagonist or nonselective COX inhibitor. PMID:15006904

  12. Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception

    PubMed Central

    Liberati, Giulia; Klöcker, Anne; Safronova, Marta M.; Ferrão Santos, Susana; Ribeiro Vaz, Jose-Geraldo; Raftopoulos, Christian; Mouraux, André

    2016-01-01

    The insula, particularly its posterior portion, is often regarded as a primary cortex for pain. However, this interpretation is largely based on reverse inference, and a specific involvement of the insula in pain has never been demonstrated. Taking advantage of the high spatiotemporal resolution of direct intracerebral recordings, we investigated whether the human insula exhibits local field potentials (LFPs) specific for pain. Forty-seven insular sites were investigated. Participants received brief stimuli belonging to four different modalities (nociceptive, vibrotactile, auditory, and visual). Both nociceptive stimuli and non-nociceptive vibrotactile, auditory, and visual stimuli elicited consistent LFPs in the posterior and anterior insula, with matching spatial distributions. Furthermore, a blind source separation procedure showed that nociceptive LFPs are largely explained by multimodal neural activity also contributing to non-nociceptive LFPs. By revealing that LFPs elicited by nociceptive stimuli reflect activity unrelated to nociception and pain, our results confute the widespread assumption that these brain responses are a signature for pain perception and its modulation. PMID:26734726

  13. Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum.

    PubMed

    Trevisan, Gabriela; Rossato, Mateus F; Hoffmeister, Carin; Oliveira, Sara M; Silva, Cássia R; Matheus, Filipe C; Mello, Gláucia C; Antunes, Edson; Prediger, Rui D S; Ferreira, Juliano

    2013-08-15

    Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation.

  14. Nociception, Pain, Negative Moods, and Behavior Selection.

    PubMed

    Baliki, Marwan N; Apkarian, A Vania

    2015-08-05

    Recent neuroimaging studies suggest that the brain adapts with pain, as well as imparts risk for developing chronic pain. Within this context, we revisit the concepts for nociception, acute and chronic pain, and negative moods relative to behavior selection. We redefine nociception as the mechanism protecting the organism from injury, while acute pain as failure of avoidant behavior, and a mesolimbic threshold process that gates the transformation of nociceptive activity to conscious pain. Adaptations in this threshold process are envisioned to be critical for development of chronic pain. We deconstruct chronic pain into four distinct phases, each with specific mechanisms, and outline current state of knowledge regarding these mechanisms: the limbic brain imparting risk, and the mesolimbic learning processes reorganizing the neocortex into a chronic pain state. Moreover, pain and negative moods are envisioned as a continuum of aversive behavioral learning, which enhance survival by protecting against threats.

  15. Nociception, pain, negative moods and behavior selection

    PubMed Central

    Baliki, Marwan N.; Apkarian, A. Vania

    2015-01-01

    Recent neuroimaging studies suggest that the brain adapts with pain, as well as imparts risk for developing chronic pain. Within this context we revisit the concepts for nociception, acute and chronic pain, and negative moods relative to behavior selection. We redefine nociception as the mechanism protecting the organism from injury; while acute pain as failure of avoidant behavior; and a mesolimbic threshold process that gates the transformation of nociceptive activity to conscious pain. Adaptations in this threshold process are envisioned to be critical for development of chronic pain. We deconstruct chronic pain into four distinct phases, each with specific mechanisms; and outline current state of knowledge regarding these mechanisms: The limbic brain imparting risk, while mesolimbic learning processes reorganizing the neocortex into a chronic pain state. Moreover, pain and negative moods are envisioned as a continuum of aversive behavioral learning, which enhance survival by protecting against threats. PMID:26247858

  16. Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate.

    PubMed

    Zhou, Hong-Yi; Zhang, Hong-Mei; Chen, Shao-Rui; Pan, Hui-Lin

    2007-01-01

    Stimulation of nociceptive primary afferents elicits pain by promoting glutamatergic transmission in the spinal cord. Little is known about how increased nociceptive input controls GABAergic tone in the spinal dorsal horn. In this study, we determined how increased nociceptive inflow affects GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of lamina II neurons by using whole cell recordings in rat spinal cord slices. Bath application of capsaicin for 3 min induced a long-lasting inhibition of sIPSCs in 50% of the neurons tested. In the other half of the neurons, capsaicin either increased the frequency of sIPSCs (34.6%) or had no effect on sIPSCs (15.4%). The GABA(A) current elicited by puff application of GABA was not altered by capsaicin. Capsaicin did not inhibit sIPSCs in rats treated with intrathecal pertussis toxin. Also, capsaicin failed to inhibit sIPSCs in the presence of ionotropic glutamate receptor antagonists or in the presence of both LY341495 and CPPG (group II and group III metabotropic glutamate receptor antagonists, respectively). However, when LY341495 or CPPG was used alone, capsaicin still decreased the frequency of sIPSCs in some neurons. Additionally, bradykinin significantly inhibited sIPSCs in a population of lamina II neurons and this inhibitory effect was also abolished by LY341495 and CPPG. Our study provides novel information that stimulation of nociceptive primary afferents rapidly suppresses GABAergic input to many dorsal horn neurons through endogenous glutamate and activation of presynaptic group II and group III metabotropic glutamate receptors. These findings extend our understanding of the microcircuitry of the spinal dorsal horn involved in nociception.

  17. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  18. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  19. Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade

    PubMed Central

    Mills, Holly; Ortega, Amanda; Law, Wenjing; Hapiak, Vera; Summers, Philip; Clark, Tobias

    2016-01-01

    The ability to detect noxious stimuli, process the nociceptive signal, and elicit an appropriate behavioral response is essential for survival. In Caenorhabditis elegans, opioid receptor agonists, such as morphine, mimic serotonin, and suppress the overall withdrawal from noxious stimuli through a pathway requiring the opioid-like receptor, NPR-17. This serotonin- or morphine-dependent modulation can be rescued in npr-17-null animals by the expression of npr-17 or a human κ opioid receptor in the two ASI sensory neurons, with ASI opioid signaling selectively inhibiting ASI neuropeptide release. Serotonergic modulation requires peptides encoded by both nlp-3 and nlp-24, and either nlp-3 or nlp-24 overexpression mimics morphine and suppresses withdrawal. Peptides encoded by nlp-3 act differentially, with only NLP-3.3 mimicking morphine, whereas other nlp-3 peptides antagonize NLP-3.3 modulation. Together, these results demonstrate that opiates modulate nociception in Caenorhabditis elegans through a complex monoaminergic/peptidergic cascade, and suggest that this model may be useful for dissecting opiate signaling in mammals. SIGNIFICANCE STATEMENT Opiates are used extensively to treat chronic pain. In Caenorhabditis elegans, opioid receptor agonists suppress the overall withdrawal from noxious chemical stimuli through a pathway requiring an opioid-like receptor and two distinct neuropeptide-encoding genes, with individual peptides from the same gene functioning antagonistically to modulate nociception. Endogenous opioid signaling functions as part of a complex, monoaminergic/peptidergic signaling cascade and appears to selectively inhibit neuropeptide release, mediated by a α-adrenergic-like receptor, from two sensory neurons. Importantly, receptor null animals can be rescued by the expression of the human κ opioid receptor, and injection of human opioid receptor ligands mimics exogenous opiates, highlighting the utility of this model for dissecting opiate

  20. Effects of chlorpheniramine and ranitidine on the visceral nociception induced by acetic acid in rats: role of opioid system.

    PubMed

    Zanboori, A; Tamaddonfard, E; Mojtahedein, A

    2008-10-15

    In this study, effects of chlorpheniramine (H1-receptor blocker), ranitidine (H2-receptor blocker), morphine (an opioid agonist) and naloxone (an opioid antagonist) in separate and combined treatments were investigated on the visceral nociception in rats. Visceral nociception was induced by intraperitoneal injection of acetic acid (1 mL, 1%). The latency time to the beginning of the first abdominal wall contraction (first writhe) was measured and the numbers of writhes were counted for 1 h after acetic acid injection. Intraperitoneal injections of chlorpheniramine and ranitidine significantly (p < 0.05) increased the latency time to the beginning of the first writhe and also significantly (p < 0.05) decreased the numbers of writhes. The same results were obtained after subcutaneous injection of morphine. Subcutaneous injection of naloxone did not change the intensity of visceral nociception, but significantly (p < 0.05) prevented the morphine-induced antinociception. Intraperitoneal injection of chlorpheniramine significantly (p < 0.05) enhanced the morphine-induced analgesia, but did not reverse the effect of naloxone on nociceptive responses. Intraperitoneal injection of ranitidine, with no effect on the morphine-induced antinociception, significantly (p < 0.05) reversed the effect of naloxone on pain responses. These results suggest that both chlorpheniramine and ranitidine exert antinociceptive effect in the visceral nociception. In addition, morphine through a naloxone-dependent mechanism produces visceral antinociception. Moreover, the endogenous opioid system may participate in the chlorpheniramine- but not in the ranitidine-induced antinociception.

  1. Visceral Nociceptive Afferent Facilitates Reaction of Subnucleus Reticularis Dorsalis to Acupoint Stimulation in Rats

    PubMed Central

    Li, Liang; Yu, Lingling; Rong, Peijing; Ben, Hui; Li, Xia; Zhu, Bing; Chen, Rixin

    2013-01-01

    Objective. To explore the area and sensitization variance of acupoint when internal organs are under pathological condition. To observe quantity-effect variance of subnucleus reticularis dorsalis (SRD) to electroacupuncture under both physiological and pathological conditions. To explain medulla oblongata mechanism of acupoint sensitization. Method. Mustard oil was imported into colon and rectum of 20 male SD rats in order to observe its influence on acupoint sensitization. SRD neuron activity was recorded. Visceral nociceptive stimulus was generated by colorectal distension (CRD). Quantity-effect variance of neuron activity to electroacupuncture to “Zusanli-Shangjuxu” area both before and after CRD was observed. Paired t-test is used for cross-group comparison; P < 0.05 is deemed as of statistical differences. Result. Visceral inflammation could facilitate SRD neuron activity to acupoint stimulation. Visceral nociceptive afference could enhance neuron activity to acupoint acupuncture. Wide dynamic range (WDR) neuron activity caused by electroacupuncture increased when visceral nociception increased. Conclusion. The size and function of the acupoints comply with the functionality of the internal organs. The sensitive degree of acupoints changed according to malfunction of internal organs. PMID:23762171

  2. Distinct interactions of cannabidiol and morphine in three nociceptive behavioral models in mice.

    PubMed

    Neelakantan, Harshini; Tallarida, Ronald J; Reichenbach, Zachary W; Tuma, Ronald F; Ward, Sara J; Walker, Ellen A

    2015-04-01

    Cannabinoid and opioid agonists can display overlapping behavioral effects and the combination of these agonists is known to produce enhanced antinociception in several rodent models of acute and chronic pain. The present study investigated the antinociceptive effects of the nonpsychoactive cannabinoid, cannabidiol (CBD) and the µ-opioid agonist morphine, both alone and in combination, using three behavioral models in mice, to test the hypothesis that combinations of morphine and CBD would produce synergistic effects. The effects of morphine, CBD, and morphine/CBD combinations were assessed in the following assays: (a) acetic acid-stimulated stretching; (b) acetic acid-decreased operant responding for palatable food; and (c) hot plate thermal nociception. Morphine alone produced antinociceptive effects in all three models of acute nociception, whereas CBD alone produced antinociception only in the acetic acid-stimulated stretching assay. The nature of the interactions between morphine and CBD combinations were assessed quantitatively based on the principle of dose equivalence. Combinations of CBD and morphine produced synergistic effects in reversing acetic acid-stimulated stretching behavior, but subadditive effects in the hot plate thermal nociceptive assay and the acetic acid-decreased operant responding for palatable food assay. These results suggest that distinct mechanisms of action underlie the interactions between CBD and morphine in the three different behavioral assays and that the choice of appropriate combination therapies for the treatment of acute pain conditions may depend on the underlying pain type and stimulus modality.

  3. Modulation of the human nociceptive flexion reflex by pleasant and unpleasant odors.

    PubMed

    Bartolo, Michelangelo; Serrao, Mariano; Gamgebeli, Zurab; Alpaidze, Marina; Perrotta, Armando; Padua, Luca; Pierelli, Francesco; Nappi, Giuseppe; Sandrini, Giorgio

    2013-10-01

    The nociceptive withdrawal reflex (NWR), a defensive response that allows withdrawal from a noxious stimulus, is a reliable index of spinal nociception in humans. It has been shown that various kinds of stimuli (emotional, visual, auditory) can modulate the transmission and perception of pain. The aim of the present study was to evaluate, by means of the NWR, the modulatory effect on the spinal circuitry of olfactory stimuli with different emotional valence. The magnitude of the NWR elicited by electrical stimulation of the sural nerve was measured while 18 subjects (9 women, 9 men) smelled pleasant, unpleasant, or neutral odors. The NWR was conditioned by odor probe with interstimulus intervals (ISIs) of 500 ms and 1,500 ms. The magnitude of NWR was significantly greater after the unpleasant odor probe (P <.001) and reduced following the pleasant odor probe (P<.001) at both ISIs. A significant effect of olfactory stimuli on subjective pain ratings were found at both ISIs for pleasant vs unpleasant odors (P<.000), and for both pleasant and unpleasant odors vs neutral and basal conditions (P<.000). No statistical differences in subjective pain ratings at different ISIs were found. Consistent with the notion that NWR magnitude and pain perception can be modulated by stimuli with different emotional valence, these results show that olfactory stimuli, too, can modulate spinal nociception in humans.

  4. Nociceptor-enriched genes required for normal thermal nociception

    PubMed Central

    Honjo, Ken; Mauthner, Stephanie E.; Wang, Yu; Skene, J.H. Pate; Tracey, W. Daniel

    2016-01-01

    Summary Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (ie. boilerman, fire dancer, oven mitt, trivet, thawb and bunker gear) or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil). Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals. PMID:27346357

  5. Nociceptor-Enriched Genes Required for Normal Thermal Nociception.

    PubMed

    Honjo, Ken; Mauthner, Stephanie E; Wang, Yu; Skene, J H Pate; Tracey, W Daniel

    2016-07-12

    Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear) or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil). Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.

  6. Effects of opioid blockade on nociceptive flexion reflex thresholds and nociceptive responding in hypertensive and normotensive individuals

    PubMed Central

    Edwards, Louisa; Ring, Christopher; France, Christopher R.; McIntyre, David; Martin, Una

    2008-01-01

    Hypertension and risk for hypertension have been associated with reduced pain sensitivity. It has been hypothesised that endogenous opioids contribute to this hypertensive hypoalgesia. The nociceptive flexion reflex can be used as a tool to investigate modulation of nociceptive transmission at spinal level. The current study employed a double-blind placebo-controlled design to compare the effects of naltrexone, an opioid antagonist, and placebo on nociceptive flexion reflex thresholds and nociceptive responding in unmedicated patients with essential hypertension and normotensive individuals. Neither nociceptive flexion reflex thresholds nor nociceptive responding differed between hypertensives and normotensives during placebo or naltrexone. These data provide no support for the hypothesis that essential hypertension is characterised by higher levels endogenous opioids in the central nervous system and reveal no association between blood pressure status and nociceptive flexion reflex responses. PMID:18436318

  7. Pharmacological specificity of the discriminative stimulus properties of 2-amino-4,5-(1,2-cyclohexyl)-7-phosphono-heptanoic acid (NPC 12626), a competitive N-methyl-D-aspartate receptor antagonist.

    PubMed

    Bobelis, D J; Balster, R L

    1993-02-01

    A drug discrimination based upon the competitive N-methyl-D-aspartate (NMDA) antagonist 2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid (NPC 12626) was assessed for pharmacological specificity. Adult male Sprague-Dawley rats were trained to discriminate 20 mg/kg i.p. of NPC 12626 from saline under a standard two-lever fixed ratio 32 schedule of food reinforcement. Stimulus generalization tests were conducted to examine the similarities and differences between NPC 12626, its active (2R,4R,5S) enantiomer NPC 17742, other competitive and noncompetitive NMDA antagonists and a number of drugs representative of other classes. During test sessions, the competitive NMDA antagonists NPC 12626, CGS 19755, [1-(cis-2-carboxypiperidine-4-yl)- methyl-1-phosphonic acid], NPC 17742, CSP 37849 [DL-(E)-2-amino-4-methyl-5-phosphono-3-pen-tenoic acid] and CPPene [D-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid] all completely substituted for the training dose of NPC 12626 with ED50 values of 18.1, 2.3, 2.1, 0.8 and 0.8 mg/kg, respectively. In contrast, drugs that failed to substitute for NPC 12626 included (+)-amphetamine, baclofen, chlorpromazine, dextromethorphan, diazepam, dizocilpine (MK-801), imipramine, (-)-ketocyclazocine, L-N6-phenylisopropyladenosine, methocarbamol, morphine, muscimol, phenytoin, physostigmine and valproate. These results provide evidence that the NPC 12626 discriminative stimulus is unique and specific, shared fully only by its active enantiomer NPC 17742 and other competitive NMDA antagonists. This specificity provides further support for the hypothesis of NMDA receptor mediation of NPC 12626 discrimination, and suggests that this is a useful model to evaluate behavioral effects of competitive NMDA antagonists.

  8. Reflections on Stimulus Control

    ERIC Educational Resources Information Center

    Sidman, Murray

    2008-01-01

    The topic of stimulus control is too broad and complex to be traceable here. It would probably take a two-semester course to cover just the highlights of that field's evolution. The more restricted topic of equivalence relations has itself become so broad that even an introductory summary requires more time than we have available. An examination…

  9. Interests and Stimulus Seeking

    ERIC Educational Resources Information Center

    Kish, George B.; Donnenwerth, Gregory V.

    1969-01-01

    Examines relationships between Sensation-Seeking Scale (SSS) and vocational interests measured by the Kuder and Strong Vocational Interest Blank, among alcoholics and undergraduates. Results support construct validity of the SSS and provide further evidence of modes of expression of stimulus-seeking needs in personality. (Author/CJ)

  10. Effects of inducible nitric oxide synthase blockade within the periaqueductal gray on cardiovascular responses during mechanical, heat, and cold nociception.

    PubMed

    Chaitoff, Kevin A; Toner, Francis; Tedesco, Anthony; Maher, Timothy J; Ally, Ahmmed

    2012-02-01

    We have examined the role of inducible nitric oxide synthase (iNOS) within the dorsolateral periaqueductal gray mater (dlPAG) on cardiovascular responses during mechanical, thermal, and cold nociception in anesthetized rats. Mechanical stimulus was applied by a unilateral hindpaw pinch for 10 s that increased mean arterial pressure (MAP) and heart rate (HR). Bilateral microdialysis of a selective iNOS inhibitor, aminoguanidine (AGN; 10 μM), into the dlPAG for 30 min augmented MAP and HR responses during a mechanical stimulation. The cardiovascular responses recovered following discontinuation of the drug. Heat stimulus was generated by immersing one hindpaw metatarsus in a water bath at 52°C for 10 s, and this increased MAP and HR. Administration of AGN into the PAG potentiated these cardiovascular responses. Cardiovascular responses recovered following discontinuation of the drug. In contrast, application of a cold stimulus by immersing one hindpaw at 10°C for 10 s resulted in depressor and bradycardic responses. A second cold stimulus resulted in a response that was not significantly different from that prior to or after recovery from the AGN infusion. These results demonstrate that iNOS within the dlPAG plays a differential role in modulating cardiovascular responses during mechanical-, heat-, and cold-mediated nociception.

  11. Differential effects of stress on escape and reflex responses to nociceptive thermal stimuli in the rat.

    PubMed

    King, C D; Devine, D P; Vierck, C J; Rodgers, J; Yezierski, R P

    2003-10-17

    Acute stress has been shown to increase latencies of nociceptive reflexes, and this effect is considered evidence for stress-induced analgesia. However, tests for nociception that rely on motivated operant escape assess cerebral processing of pain and could be modulated independent of reflex responses. We therefore compared the effects of an acute stressor (restraint) on escape responses and lick/guard reflexes to stimulation of the paws by a thermally regulated floor. Testing sessions included a pre-test exposure to 36 degrees C, followed by a test trial in which either escape from 44 or 36 degrees C or reflex responses to 44 degrees C were observed. Behavioral responses to stress were assessed during a three day period, with baseline testing on day 1, post-stress or control testing on day 2, and evaluation of long-term stress effects on day 3. On day 2, half the animals received 15 min of restraint stress, followed by 15-min pre-test and test trials. Licking and guarding responses to thermal stimulation during 44 degrees C test trials were significantly reduced by restraint stress, confirming previously reported stress effects on nociceptive reflexes. In contrast, learned escape responses to the same thermal stimulus were significantly enhanced after stress. The increase in operant sensitivity suggests that acute restraint, a form of psychological stress, produces hyperalgesia for a level of thermal stimulation that preferentially activates C nociceptors. These results are discussed in relation to studies involving physical or psychological forms of stress, different nociceptive stimuli, and assessment strategies used to evaluate thermal pain sensitivity.

  12. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase

    PubMed Central

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather

    2016-01-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  13. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase.

    PubMed

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather; Hohmann, Andrea G

    2016-01-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  14. Hypergravity modulates behavioral nociceptive responses in rats

    NASA Astrophysics Data System (ADS)

    Kumei, Y.; Shimokawa, R.; Toda, K.; Kawauchi, Y.; Makita, K.; Terasawa, M.; Ohya, K.; Shimokawa, H.

    Hypergravity (2G) exposure elevated the nociceptive threshold (pain suppression) concomitantly with evoked neuronal activity in the hypothalamus. Young Wistar male rats were exposed to 2G by centrifugal rotation for 10 min. Before and after 2G exposure, the nociceptive threshold was measured as the withdrawal reflex by using the von Frey type needle at a total of 8 sites of each rat (nose, four quarters, upper and lower back, tail), and then rats were sacrificed. Fos expression was examined immunohistochemically in the hypothalamic slices of the 2G-treated rats. When rats were exposed to 2G hypergravity, the nociceptive threshold was significantly elevated to approximately 150 to 250% of the 1G baseline control levels in all the examination sites. The 2G hypergravity remarkably induced Fos expression in the paraventricular and arcuate nuclei of the hypothalamus. The analgesic effects of 2G hypergravity were attenuated by naloxone pretreatment. Data indicate that hypergravity induces analgesic effects in rats, mediated through hypothalamic neuronal activity in the endogenous opioid system and hypothalamo-pituitary-adrenal axis.

  15. Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD

    PubMed Central

    2012-01-01

    Background Clinical studies indicate that post-traumatic stress disorder (PTSD) frequently shares co-morbidity with chronic pain. Although in animals acute stress-induced antinociception is well documented, the effect of PTSD-like stress on nociceptive sensitivity is unclear. Though a few studies measured nociceptive responses at a single time point, no studies have examined changes in nociceptive sensitivity over time following exposure to PTSD-like stress. Nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for the N/OFQ peptide (NOP) receptor, modulates various biological functions in the central nervous system that are affected by PTSD, including nociceptive sensitivity, stress and anxiety, learning and memory. Results The present study examined thermal and mechanical nociceptive sensitivity in male Sprague Dawley rats between 7 and 28 days after single-prolonged stress (SPS), an established animal model for PTSD. Rat paw withdrawal thresholds (PWT) to von Frey and paw withdrawal latencies (PWL) to radiant heat stimuli, respectively, dramatically decreased as early as 7 days after initiation of SPS and lasted the length of the study, 28 days. In addition, N/OFQ levels increased in cerebrospinal fluid (CSF; on days 9, 14 and 28) and serum (day 28), while levels of circulating corticosterone (CORT) decreased 28 days after initiation of SPS. SPS exposure induced anxiety-like behavior and enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, as previously reported for this model. Conclusions Our results demonstrate that SPS induces the development of persistent mechanical allodynia and thermal hyperalgesia that is accompanied by increased N/OFQ content in the CSF, and eventually, in serum. These findings suggest a link between N/OFQ and the development of hyperalgesia and allodynia in a rat model of PTSD. PMID:23082795

  16. DNIC-mediated analgesia produced by a supramaximal electrical or a high-dose formalin conditioning stimulus: roles of opioid and α2-adrenergic receptors

    PubMed Central

    2010-01-01

    Background Diffuse noxious inhibitory controls (DNIC) can be produced by different types of conditioning stimuli, but the analgesic properties and underlying mechanisms remain unclear. The aim of this study was to differentiate the induction of DNIC analgesia between noxious electrical and inflammatory conditioning stimuli. Methods First, rats subjected to either a supramaximal electrical stimulation or an injection of high-dose formalin in the hind limb were identified to have pain responses with behavioral evidence and spinal Fos-immunoreactive profiles. Second, suppression of tail-flick latencies by the two noxious stimuli was assessed to confirm the presence of DNIC. Third, an opioid receptor antagonist (naloxone) and an α2-adrenoreceptor antagonist (yohimbine) were injected, intraperitoneally and intrathecally respectively, before conditioning noxious stimuli to test the involvement of descending inhibitory pathways in DNIC-mediated analgesia. Results An intramuscular injection of 100 μl of 5% formalin produced noxious behaviors with cumulative pain scores similar to those of 50 μl of 2% formalin in the paw. Both electrical and chemical stimulation significantly increased Fos expression in the superficial dorsal horns, but possessed characteristic distribution patterns individually. Both conditioning stimuli prolonged the tail-flick latencies indicating a DNIC response. However, the electrical stimulation-induced DNIC was reversed by yohimbine, but not by naloxone; whereas noxious formalin-induced analgesia was both naloxone- and yohimbine-reversible. Conclusions It is demonstrated that DNIC produced by different types of conditioning stimuli can be mediated by different descending inhibitory controls, indicating the organization within the central nervous circuit is complex and possibly exhibits particular clinical manifestations. PMID:20302612

  17. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling

    PubMed Central

    Kollert, Sina; Dombert, Benjamin; Döring, Frank; Wischmeyer, Erhard

    2015-01-01

    In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K+ currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders. PMID:26224542

  18. Infusion of Gabrα6 siRNA into the trigeminal ganglia increased the myogenic orofacial nociceptive response of ovariectomized rats treated with 17β-estradiol.

    PubMed

    Kramer, P R; Bellinger, L L

    2014-10-10

    High levels of 17β-estradiol (E2) have been found to reduce inflammatory temporomandibular joint (TMJ) pain. A search for genes effected by a high concentration of estradiol showed an increase in GABAA receptor subunit alpha 6 (Gabrα6) in the trigeminal ganglia (TG). Blockade of Gabrα6 expression in the TG increases masseter muscle nociception in male rats, but the relationship between estradiol's effect on nociception and Gabrα6 expression remains unclear in females. To address this knowledge gap we hypothesized that reducing Gabrα6 expression in the TG will increase the orofacial nociceptive response of ovariectomized female rats treated with estradiol. To administer hormone osmotic pumps were placed in rats that dispensed a low diestrus plasma concentration of 17β-estradiol, in addition, 17β-estradiol was injected to produce a high proestrus plasma concentration of estradiol. A ligature was then placed around the masseter tendon to induce a nociceptive response; a model for TMJ muscle pain. Gabrα6 small interfering RNA (siRNA) was later infused into the TG and the nociceptive response was measured using von Frey filaments and a meal duration assay. GABAA receptor expression was measured in the TG and trigeminal nucleus caudalis and upper cervical region (Vc-C1). Ligature significantly increased the nociceptive response but a high proestrus concentration of 17β-estradiol attenuated this response. Gabrα6 siRNA infusion decreased Gabrα6 expression in the TG and Vc-C1 but increased the nociceptive response after 17β-estradiol treatment. The results suggest estradiol decreased the orofacial nociceptive response, in part, by causing an increase in Gabrα6 expression.

  19. Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception.

    PubMed

    Nita, Iulia I; Caspi, Yaki; Gudes, Sagi; Fishman, Dimitri; Lev, Shaya; Hersfinkel, Michal; Sekler, Israel; Binshtok, Alexander M

    2016-12-01

    The nociceptive noxious heat-activated receptor - TRPV1, conducts calcium and sodium, thus producing a depolarizing receptor potential, leading to activation of nociceptive neurons. TRPV1-mediated calcium and sodium influx is negatively modulated by calcium, via calcium-dependent desensitization of TRPV1 channels. A mitochondrial Ca(2+) uniporter - MCU, controls mitochondrial Ca(2+) entry while a sodium/calcium transporter - NCLX shapes calcium and sodium transients by mediating sodium entry into and removing calcium from the mitochondria. The functional interplay between TRPV1, MCU and NCLX, in controlling the cytosolic and mitochondrial calcium and sodium transients and subsequently the nociceptive excitability, is poorly understood. Here, we used cytosolic and mitochondrial fluorescent calcium and sodium imaging together with electrophysiological recordings of TRPV1-induced currents in HEK293T cells and nociceptor-like dissociated rat dorsal root ganglion neurons, while modulating NCLX or MCU expression using specific small interfering RNA (siNCLX). We show that the propagation of the TRPV1-induced cytosolic calcium and sodium fluxes into mitochondria is dependent on coordinated activity of NCLX and MCU. Thus, knocking-down of NCLX triggers down regulation of MCU dependent mitochondrial Ca(2+) uptake. This in turn decreases rate and amplitude of TRPV1-mediated cytosolic calcium, which inhibits capsaicin-induced inward current and neuronal firing. TRPV1-mediated currents were fully rescued by intracellular inclusion of the fast calcium chelator BAPTA. Finally, NCLX controls capsaicin-induced cell death, by supporting massive mitochondrial Ca(2+) shuttling. Altogether, our results suggest that NCLX, by regulating cytosolic and mitochondrial ionic transients, modulates calcium-dependent desensitization of TRPV1 channels, thereby, controlling nociceptive signaling.

  20. Factors affecting mechanical (nociceptive) thresholds in piglets

    PubMed Central

    Janczak, Andrew M; Ranheim, Birgit; Fosse, Torunn K; Hild, Sophie; Nordgreen, Janicke; Moe, Randi O; Zanella, Adroaldo J

    2012-01-01

    Objective To evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer. Study design Descriptive, prospective cohort. Animals Forty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age. Methods Mechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data. Results Variance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p < 0.04 for all). Correlations between repeated measures increased from the first to the second week. Conclusions and Clinical relevance Repeatability was acceptable only during the second week of testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and

  1. Estimation and Identifiability of Model Parameters in Human Nociceptive Processing Using Yes-No Detection Responses to Electrocutaneous Stimulation

    PubMed Central

    Yang, Huan; Meijer, Hil G. E.; Buitenweg, Jan R.; van Gils, Stephan A.

    2016-01-01

    Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system. PMID:27994563

  2. Estimation and Identifiability of Model Parameters in Human Nociceptive Processing Using Yes-No Detection Responses to Electrocutaneous Stimulation.

    PubMed

    Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.

  3. The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and non-nociceptive somatosensory inputs.

    PubMed

    Hu, Li; Zhang, Li; Chen, Rui; Yu, Hongbo; Li, Hong; Mouraux, André

    2015-11-01

    Transient nociceptive stimuli elicit consistent brain responses in the primary and secondary somatosensory cortices (S1, S2), the insula and the anterior and mid-cingulate cortex (ACC/MCC). However, the functional significance of these responses, especially their relationship with sustained pain perception, remains largely unknown. Here, using functional magnetic resonance imaging, we characterize the differential involvement of these brain regions in the processing of sustained nociceptive and non-nociceptive somatosensory input. By comparing the spatial patterns of activity elicited by transient (0.5 ms) and long-lasting (15 and 30 s) stimuli selectively activating nociceptive or non-nociceptive afferents, we found that the contralateral S1 responded more strongly to the onset of non-nociceptive stimulation as compared to the onset of nociceptive stimulation and the sustained phases of nociceptive and non-nociceptive stimulation. Similarly, the anterior insula responded more strongly to the onset of nociceptive stimulation as compared to the onset of non-nociceptive stimulation and the sustained phases of nociceptive and non-nociceptive stimulation. This suggests that S1 is specifically sensitive to changes in incoming non-nociceptive input, whereas the anterior insula is specifically sensitive to changes in incoming nociceptive input. Second, we found that the MCC responded more strongly to the onsets as compared to the sustained phases of both nociceptive and non-nociceptive stimulation, suggesting that it could be involved in the detection of change regardless of sensory modality. Finally, the posterior insula and S2 responded maximally during the sustained phase of non-nociceptive stimulation but not nociceptive stimulation, suggesting that these regions are preferentially involved in processing non-nociceptive somatosensory input.

  4. Inverted Perceptual Judgment of Nociceptive Stimuli at Threshold Level following Inconsistent Cues

    PubMed Central

    Walter, Carmen; Dimova, Violeta; Bu, Julia; Parnham, Michael J.; Oertel, Bruno G.; Lötsch, Jörn

    2015-01-01

    Objective The perception of pain is susceptible to modulation by psychological and contextual factors. It has been shown that subjects judge noxious stimuli as more painful in a respective suggestive context, which disappears when the modifying context is resolved. However, a context in which subjects judge the painfulness of a nociceptive stimulus in exactly the opposite direction to that of the cues has never been shown so far. Methods Nociceptive stimuli (300 ms intranasal gaseous CO2) at the individual pain threshold level were applied after a visual cue announcing the stimulus as either “no pain”, merely a “stimulus”, or “pain”. Among the stimuli at threshold level, other CO2 stimuli that were clearly below or above pain threshold were randomly interspersed. These were announced beforehand in 12 subjects randomly with correct or incorrect cues, i.e., clearly painful or clearly non-painful stimuli were announced equally often as not painful or painful. By contrast, in a subsequent group of another 12 subjects, the stimuli were always announced correctly with respect to the evoked pain. Results The random and often incorrect announcement of stimuli clearly below or above pain threshold caused the subjects to rate the stimuli at pain-threshold level in the opposite direction of the cue, i.e., when the stimuli were announced as “pain” significantly more often than as non-painful and vice versa (p < 10-4). By contrast, in the absence of incongruence between announcement and perception of the far-from-threshold stimuli, stimuli at pain threshold were rated in the cued direction. Conclusions The present study revealed the induction of associations incongruent with a given message in the perception of pain. We created a context of unreliable cues whereby subjects perceived the stimulus opposite to that suggested by a prior cue, i.e., potentially nociceptive stimuli at pain threshold level that were announced as painful were judged as non-painful and

  5. Descending effect on spinal nociception by amygdaloid glutamate varies with the submodality of noxious test stimulation.

    PubMed

    Bourbia, Nora; Sagalajev, Boriss; Pertovaara, Antti

    2014-06-06

    Amygdala has an important role in the processing of primary emotions, such as fear. Additionally, amygdala is involved in processing and modulation of pain. While the amygdala, particularly its central nucleus (CeA), has been shown to contribute to pain control, the descending pain regulation by the CeA is still only partly characterized. Here heat and mechanical nociception was tested in both hind limbs of healthy rats with a chronic guide cannula for microinjection of glutamate into the CeA of the left or right hemisphere. The aim was to assess whether the descending pain regulatory effect by glutamate in the amygdala varies with the submodality or the body side of nociceptive testing, brain hemisphere or the amygdaloid glutamate receptor. Motor performance was assessed with the Rotarod test. Amygdaloid glutamate, independent of the treated hemisphere, produced a dose-related heat and mechanical antinociception that varied with the submodality of testing. Heat antinociception was short lasting (minutes), bilateral and not reversed by blocking the amygdaloid NMDA receptor with MK-801. In contrast, mechanical antinociception lasted longer (>20 min), was predominantly contralateral and reversed by blocking the amygdaloid NMDA receptor. At an antinociceptive dose, amygdaloid glutamate failed to influence motor performance. The results indicate that independent of the brain hemisphere, the spatial extent and duration of the descending antinociceptive effect induced by amygdaloid glutamate varies with the amygdaloid glutamate receptor and the submodality of pain.

  6. Psychophysics of a Nociceptive Test in the Mouse: Ambient Temperature as a Key Factor for Variation

    PubMed Central

    Pincedé, Ivanne; Pollin, Bernard; Meert, Theo; Plaghki, Léon; Le Bars, Daniel

    2012-01-01

    Background The mouse is increasingly used in biomedical research, notably in behavioral neurosciences for the development of tests or models of pain. Our goal was to provide the scientific community with an outstanding tool that allows the determination of psychophysical descriptors of a nociceptive reaction, which are inaccessible with conventional methods: namely the true threshold, true latency, conduction velocity of the peripheral fibers that trigger the response and latency of the central decision-making process. Methodology/Principal Findings Basically, the procedures involved heating of the tail with a CO2 laser, recording of tail temperature with an infrared camera and stopping the heating when the animal reacted. The method is based mainly on the measurement of three observable variables, namely the initial temperature, the heating rate and the temperature reached at the actual moment of the reaction following random variations in noxious radiant heat. The initial temperature of the tail, which itself depends on the ambient temperature, very markedly influenced the behavioral threshold, the behavioral latency and the conduction velocity of the peripheral fibers but not the latency of the central decision-making. Conclusions/Significance We have validated a psychophysical approach to nociceptive reactions for the mouse, which has already been described for rats and Humans. It enables the determination of four variables, which contribute to the overall latency of the response. The usefulness of such an approach was demonstrated by providing new fundamental findings regarding the influence of ambient temperature on nociceptive processes. We conclude by challenging the validity of using as “pain index" the reaction time of a behavioral response to an increasing heat stimulus and emphasize the need for a very careful control of the ambient temperature, as a prevailing environmental source of variation, during any behavioral testing of mice. PMID:22629325

  7. Development of mechanical and thermal nociceptive threshold testing devices in unrestrained birds (broiler chickens).

    PubMed

    Hothersall, B; Caplen, G; Nicol, C J; Taylor, P M; Waterman-Pearson, A E; Weeks, C A; Murrell, J C

    2011-09-30

    Behavioural signs of pain are difficult to quantify and interpret in animals. Nociceptive threshold testing is therefore a useful method for examining the perception and processing of noxious stimuli underlying pain states. Devices were developed to measure response thresholds to quantified, ramped mechanical and thermal nociceptive stimuli applied to the leg or keel of unrestrained birds. Up to 9N mechanical force was delivered via a single round-ended 2mm pin using a pneumatic actuator at 0.4Ns(-1). Heat was applied through a small copper element at 0.8°Cs(-1) to a maximum of 50°C. The repeatability and reliability of threshold measures were validated using 10-12 broiler chickens (aged 49-66 days) per site and modality. Mechanical threshold, or skin and threshold temperature, were recorded over three sessions across a 36h period. Both stimulus types elicited clear, reproducible behavioural responses. Mechanical threshold means and 95% confidence intervals were 3.0 (2.8-3.2)N for keel and 2.0 (1.8-2.1)N for leg sites. Keel thermal tests gave a mean skin temperature of 39.3 (39.1-39.5)°C, and threshold of 46.8 (46.6-47.1)°C. Leg skin temperature was 35.7 (35.6-35.9)°C and threshold 42.5 (42.2-42.8)°C. Threshold measures were consistent within and across sessions and birds showed individual repeatability across tests within sessions. Individual birds' mechanical keel thresholds were also repeatable across sessions. The apparatus gave reliable, reproducible measurements of thresholds to noxious mechanical and thermal stimuli. The range recorded was comparable with previously published nociceptor thresholds in dissected chicken nerve filament fibres, and the method appears suitable for studying nociceptive processes in broiler chickens.

  8. Effects of nociceptive stimuli on the pulmonary circulation in the ovine fetus.

    PubMed

    Houfflin-Debarge, V; Delelis, A; Jaillard, S; Larrue, B; Deruelle, P; Ducloy, A S; Puech, F; Storme, L

    2005-02-01

    The fetus is able to exhibit a stress response to painful events, and stress hormones have been shown to modulate pulmonary vascular tone. At birth, the increased level of stress hormones plays a significant role in the adaptation to postnatal life. We therefore hypothesized that pain may alter pulmonary circulation in the perinatal period. The hemodynamic response to subcutaneous injection of formalin, which is used in experimental studies as nociceptive stimulus, was evaluated in chronically prepared, fetal lambs. Fetal lambs were operated on at 128 days gestation. Catheters were placed into the ascending aorta, superior vena cava, and main pulmonary artery. An ultrasonic flow transducer was placed around the left pulmonary artery. Three subcutaneous catheters were placed in the lambs' limb. The hemodynamic responses to subcutaneous injection of formalin, to formalin after fetal analgesia by sufentanil, and to sufentanil alone were recorded. Cortisol and catecholamine concentrations were also measured. Pulmonary vascular resistances (PVR) increased by 42% (P < 0.0001) after formalin injection. Cortisol increased by 54% (P = 0.05). During sufentanil infusion, PVR did not change significantly after formalin. Cortisol increased by 56% (P < 0.05). PVR did not change during sufentanil infusion. Norepinephrine levels did not change during any of the protocols. Our results indicate that nociceptive stimuli may increase the pulmonary vascular tone. This response is not mediated by an increase in circulating catecholamine levels. Analgesia prevents this effect. We speculate that this pulmonary vascular response to nociceptive stimulation may explain some hypoxemic events observed in newborn infants during painful intensive care procedures.

  9. Neural Correlates of Stimulus Reportability

    PubMed Central

    Hulme, Oliver J.; Friston, Karl F.; Zeki, Semir

    2012-01-01

    Most experiments on the “neural correlates of consciousness” employ stimulus reportability as an operational definition of what is consciously perceived. The interpretation of such experiments therefore depends critically on understanding the neural basis of stimulus reportability. Using a high volume of fMRI data, we investigated the neural correlates of stimulus reportability using a partial report object detection paradigm. Subjects were presented with a random array of circularly arranged disc-stimuli and were cued, after variable delays (following stimulus offset), to report the presence or absence of a disc at the cued location, using variable motor actions. By uncoupling stimulus processing, decision, and motor response, we were able to use signal detection theory to deconstruct the neural basis of stimulus reportability. We show that retinotopically specific responses in the early visual cortex correlate with stimulus processing but not decision or report; a network of parietal/temporal regions correlates with decisions but not stimulus presence, whereas classical motor regions correlate with report. These findings provide a basic framework for understanding the neural basis of stimulus reportability without the theoretical burden of presupposing a relationship between reportability and consciousness. PMID:18823251

  10. Identification of multisegmental nociceptive afferents that modulate locomotor circuits in the neonatal mouse spinal cord.

    PubMed

    Mandadi, Sravan; Hong, Peter; Tran, Michelle A; Bráz, Joao M; Colarusso, Pina; Basbaum, Allan I; Whelan, Patrick J

    2013-08-15

    Compared to proprioceptive afferent collateral projections, less is known about the anatomical, neurochemical, and functional basis of nociceptive collateral projections modulating lumbar central pattern generators (CPG). Quick response times are critical to ensure rapid escape from aversive stimuli. Furthermore, sensitization of nociceptive afferent pathways can contribute to a pathological activation of motor circuits. We investigated the extent and role of collaterals of capsaicin-sensitive nociceptive sacrocaudal afferent (nSCA) nerves that directly ascend several spinal segments in Lissauer's tract and the dorsal column and regulate motor activity. Anterograde tracing demonstrated direct multisegmental projections of the sacral dorsal root 4 (S4) afferent collaterals in Lissauer's tract and in the dorsal column. Subsets of the traced S4 afferent collaterals expressed transient receptor potential vanilloid 1 (TRPV1), which transduces a nociceptive response to capsaicin. Electrophysiological data revealed that S4 dorsal root stimulation could evoke regular rhythmic bursting activity, and our data suggested that capsaicin-sensitive collaterals contribute to CPG activation across multiple segments. Capsaicin's effect on S4-evoked locomotor activity was potent until the lumbar 5 (L5) segments, and diminished in rostral segments. Using calcium imaging we found elevated calcium transients within Lissauer's tract and dorsal column at L5 segments when compared to the calcium transients only within the dorsal column at the lumbar 2 (L2) segments, which were desensitized by capsaicin. We conclude that lumbar locomotor networks in the neonatal mouse spinal cord are targets for modulation by direct multisegmental nSCA, subsets of which express TRPV1 in Lissauer's tract and the dorsal column. J. Comp. Neurol. 521:2870-2887, 2013. © 2013 Wiley Periodicals, Inc.

  11. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture

    PubMed Central

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Sun, Yuan; Wei, Tzuping; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glia activation and central sensitization. At 4 weeks after tibia fracture and casting in rats, the cast was removed and hind paw allodynia, unweighting, warmth, and edema were measured, then the antinociceptive effects of microglia (minocycline) or astrocyte (LAA) inhibitors or an SP receptor antagonist (LY303870) were tested. Immunohistochemistry and PCR were used to evaluate microglia and astrocyte activation in the dorsal horn. Similar experiments were performed in intact rats after brief sciatic nerve electric stimulation at C-fiber intensity. Microglia and astrocytes were chronically activated at 4 weeks after fracture and contributed to the maintenance of hind paw allodynia and unweighting. Furthermore, LY303870 treatment initiated at 4 weeks after fracture partially reversed both spinal glial activation and nociceptive sensitization. Similarly, persistent spinal microglial activation and hind paw nociceptive sensitization were observed at 48 hours after sciatic nerve C-fiber stimulation and this effect was inhibited by treatment with minocycline, LAA, or LY303870. These data support the hypothesis that C-fiber afferent SP signaling chronically supports spinal neuroglia activation after limb fracture and that glial activation contributes to the maintenance of central nociceptive sensitization in CRPS. Treatments inhibiting glial activation and spinal inflammation may be therapeutic for CRPS. PMID:26386297

  12. Stimulus Equivalence, Generalization, and Contextual Stimulus Control in Verbal Classes

    ERIC Educational Resources Information Center

    Sigurdardottir, Zuilma Gabriela; Mackay, Harry A.; Green, Gina

    2012-01-01

    Stimulus generalization and contextual control affect the development of equivalence classes. Experiment 1 demonstrated primary stimulus generalization from the members of trained equivalence classes. Adults were taught to match six spoken Icelandic nouns and corresponding printed words and pictures to one another in computerized three-choice…

  13. Hargreaves does not evaluate nociception following a surgical laparotomy in Xenopus leavis frogs.

    PubMed

    Vachon, P

    2014-10-01

    The present study was performed to determine the effectiveness of the Hargreaves test for the evaluation of nociception in frogs, more precisely to determine if cutaneous thresholds to a radiant heat stimulus would increase with analgesics following an abdominal laparotomy performed under general anaesthesia. Non breeding female Xenopus leavis frogs (3 groups (non-anaesthetized, anaesthetized with tricaine methanesulfonate (MS222), with or without an abdominal laparotomy) were used to evaluate the effectiveness of the Hargreaves test. Cutaneous thresholds were evaluated at baseline and following anaesthetic recovery (over 8 h) at six different body locations. Increased reaction times were observed in the gular area only at 1 h post-recovery following a MS222 bath immersion in frogs with (p < 0.02) and without the abdominal laparotomy (p < 0.002). In conclusion, the Hargreaves test does not provide an adequate test to evaluate nociception induced by an abdominal laparotomy and consequently cannot be used to evaluate analgesics in X. leavis frogs.

  14. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.

    PubMed

    Woo, Choong-Wan; Roy, Mathieu; Buhle, Jason T; Wager, Tor D

    2015-01-01

    Cognitive self-regulation can strongly modulate pain and emotion. However, it is unclear whether self-regulation primarily influences primary nociceptive and affective processes or evaluative ones. In this study, participants engaged in self-regulation to increase or decrease pain while experiencing multiple levels of painful heat during functional magnetic resonance imaging (fMRI) imaging. Both heat intensity and self-regulation strongly influenced reported pain, but they did so via two distinct brain pathways. The effects of stimulus intensity were mediated by the neurologic pain signature (NPS), an a priori distributed brain network shown to predict physical pain with over 90% sensitivity and specificity across four studies. Self-regulation did not influence NPS responses; instead, its effects were mediated through functional connections between the nucleus accumbens and ventromedial prefrontal cortex. This pathway was unresponsive to noxious input, and has been broadly implicated in valuation, emotional appraisal, and functional outcomes in pain and other types of affective processes. These findings provide evidence that pain reports are associated with two dissociable functional systems: nociceptive/affective aspects mediated by the NPS, and evaluative/functional aspects mediated by a fronto-striatal system.

  15. Respiratory hypoalgesia? Breath-holding, but not respiratory phase modulates nociceptive flexion reflex and pain intensity.

    PubMed

    Jafari, Hassan; Van de Broek, Karlien; Plaghki, Léon; Vlaeyen, Johan W S; Van den Bergh, Omer; Van Diest, Ilse

    2016-03-01

    Several observations suggest that respiratory phase (inhalation vs. exhalation) and post-inspiratory breath-holds could modulate pain and the nociceptive reflex. This experiment aimed to investigate the role of both mechanisms. Thirty-two healthy participants received supra-threshold electrocutaneous stimulations to elicit both the Nociceptive Flexion Reflex (NFR) and pain, either during spontaneous inhalations or exhalations, or during three types of instructed breath-holds: following exhalation, at mid-inhalation and at full-capacity inhalation. Whether the electrocutaneous stimulus was applied during inhalation or exhalation did not affect the NFR or pain. Self-reported pain was reduced and the NFR was increased during breath-holding compared to spontaneous breathing. Whereas the type of breath-hold did not impact on self-reported pain, breath-holds at full-capacity inhalation and following exhalation were associated with a lower NFR amplitude compared to breath-holds at mid-inhalation. The present findings confirm that breath-holding can modulate pain (sensitivity) and suggest that both attentional distraction and changes in vagal activity may underlie the observed effects.

  16. Correlations among stimuli affect stimulus matching and stimulus liking.

    PubMed

    Pimenta, Dióghenes; Tonneau, François

    2016-09-01

    Human subjects were exposed to AB, AC stimulus pairs and then to matching-to-sample tests of stimulus equivalence (B-A, C-A, B-C, C-B) or to a task in which stimulus compounds (BA, CA, BC, CB) were rated for attractiveness. Matching-to-sample tests revealed emergent B-A, C-A, B-C, and C-B choices, replicating previous results in the literature. The mean proportion of correct, emergent choices increased as a function of exposure to the AB, AC pairs. On the rating task, the liking scores of all stimulus compounds also increased as a function of exposure to the AB, AC pairs. After limited exposure to these pairs, however, the liking scores of the BC and CB compounds were negative. These findings are discussed in relation to perceptual and associative perspectives on the behavioral effects of stimulus correlations.

  17. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  18. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo.

    PubMed

    Krügel, Ute; Straub, Isabelle; Beckmann, Holger; Schaefer, Michael

    2017-01-12

    The melastatin-related transient receptor potential channel TRPM3 is a nonselective cation channel expressed in nociceptive neurons and activated by heat. Since TRPM3-deficient mice show inflammatory thermal hyperalgesia, pharmacological inhibition of TRPM3 may exert antinociceptive properties. Fluorometric Ca influx assays and a compound library containing approved or clinically tested drugs were used to identify TRPM3 inhibitors. Biophysical properties of channel inhibition were assessed using electrophysiological methods. The nonsteroidal anti-inflammatory drug diclofenac, the tetracyclic antidepressant maprotiline and the anticonvulsant primidone were identified as highly efficient TRPM3 blockers with half-maximal inhibition at 0.6-6 µM and marked specificity for TRPM3. Most prominently, primidone was biologically active to suppress TRPM3 activation by pregnenolone sulfate (PregS) and heat at concentrations markedly lower than plasma concentrations commonly used in antiepileptic therapy. Primidone blocked PregS-induced [Ca]i influx through TRPM3 by allosteric modulation, and reversibly inhibited atypical inwardly rectifying TRPM3 currents induced by co-application of PregS and clotrimazole. In vivo, analgesic effects of low doses of primidone were demonstrated in mice, applying PregS- and heat-induced pain models, including inflammatory hyperalgesia. Thus, applying the approved drug at concentrations that are lower than those needed to induce anticonvulsive effects offers a shortcut for studying physiological and pathophysiological roles of TRPM3 in vivo.

  19. Annexin A2 Regulates TRPA1-Dependent Nociception

    PubMed Central

    Avenali, Luca; Narayanan, Pratibha; Rouwette, Tom; Cervellini, Ilaria; Sereda, Michael

    2014-01-01

    The transient receptor potential A1 (TRPA1) channel is essential for vertebrate pain. Even though TRPA1 activation by ligands has been studied extensively, the molecular machinery regulating TRPA1 is only poorly understood. Using an unbiased proteomics-based approach we uncovered the physical association of Annexin A2 (AnxA2) with native TRPA1 in mouse sensory neurons. AnxA2 is enriched in a subpopulation of sensory neurons and coexpressed with TRPA1. Furthermore, we observe an increase of TRPA1 membrane levels in cultured sensory neurons from AnxA2-deficient mice. This is reflected by our calcium imaging experiments revealing higher responsiveness upon TRPA1 activation in AnxA2-deficient neurons. In vivo these findings are associated with enhanced nocifensive behaviors specifically in TRPA1-dependent paradigms of acute and inflammatory pain, while heat and mechanical sensitivity as well as TRPV1-mediated pain are preserved in AnxA2-deficient mice. Our results support a model whereby AnxA2 limits the availability of TRPA1 channels to regulate nociceptive signaling in vertebrates. PMID:25355205

  20. Annexin A2 regulates TRPA1-dependent nociception.

    PubMed

    Avenali, Luca; Narayanan, Pratibha; Rouwette, Tom; Cervellini, Ilaria; Sereda, Michael; Gomez-Varela, David; Schmidt, Manuela

    2014-10-29

    The transient receptor potential A1 (TRPA1) channel is essential for vertebrate pain. Even though TRPA1 activation by ligands has been studied extensively, the molecular machinery regulating TRPA1 is only poorly understood. Using an unbiased proteomics-based approach we uncovered the physical association of Annexin A2 (AnxA2) with native TRPA1 in mouse sensory neurons. AnxA2 is enriched in a subpopulation of sensory neurons and coexpressed with TRPA1. Furthermore, we observe an increase of TRPA1 membrane levels in cultured sensory neurons from AnxA2-deficient mice. This is reflected by our calcium imaging experiments revealing higher responsiveness upon TRPA1 activation in AnxA2-deficient neurons. In vivo these findings are associated with enhanced nocifensive behaviors specifically in TRPA1-dependent paradigms of acute and inflammatory pain, while heat and mechanical sensitivity as well as TRPV1-mediated pain are preserved in AnxA2-deficient mice. Our results support a model whereby AnxA2 limits the availability of TRPA1 channels to regulate nociceptive signaling in vertebrates.

  1. Activity-dependent dephosphorylation of paxillin contributed to nociceptive plasticity in spinal cord dorsal horn.

    PubMed

    Wang, Xin-Tai; Zheng, Rui; Suo, Zhan-Wei; Liu, Yan-Ni; Zhang, Zi-Yang; Ma, Zheng-An; Xue, Ye; Xue, Man; Yang, Xian; Hu, Xiao-Dong

    2016-03-01

    The enzymatic activity of protein tyrosine kinase Src is subjected to the regulation by C-terminal Src kinase (CSK) and protein tyrosine phosphatases (PTPs). Aberrant Src activation in the spinal cord dorsal horn is pivotal for the induction and development of nociceptive behavioral sensitization. In this study, we found that paxillin, one of the well-characterized cell adhesion components involved in cell migration and survival, integrated CSK and PTPs' signaling to regulate Src-dependent nociceptive plasticity. Paxillin localized at excitatory glutamatergic synapses in the spinal dorsal horn of mice, and the phosphorylation of Tyr118 on paxillin was necessary to associate with and target CSK at synapses. After peripheral tissue injury, the enhanced neuronal activity stimulated N-methyl-D-aspartate (NMDA) subtype glutamate receptors, which initiated PTPs' signaling to catalyze Tyr118 dephosphorylation. The reduced Tyr118 phosphorylation disrupted paxillin interaction with CSK, leading to the dispersal of CSK out of synapses. With the loss of CSK-mediated inhibition, Src activity was persistently increased. The active Src potentiated the synaptic transmission specifically mediated by GluN2B subunit-containing NMDA receptors. The active Src also facilitated the induction of long-term potentiation of C fiber-evoked field potentials and exaggerated painful responses. In complete Freund's adjuvant-injected mice, viral expression of phosphomimicking paxillin mutant to resume CSK synaptic localization repressed Src hyperactivity. Meanwhile, this phosphomimicking paxillin mutant blunted NMDA receptor-mediated synaptic transmission and alleviated chronic inflammatory pain. These data showed that PTPs-mediated dephosphorylation of paxillin at Tyr118 was involved in the modification of nociceptive plasticity through CSK-Src signaling.

  2. An altered spinal serotonergic system contributes to increased thermal nociception in an animal model of depression.

    PubMed

    Rodríguez-Gaztelumendi, Antonio; Rojo, María Luisa; Pazos, Angel; Díaz, Alvaro

    2014-06-01

    The olfactory bulbectomized (OB) rat, an animal model of chronic depression with comorbid anxiety, exhibits a profound dysregulation of the brain serotonergic signalling, a neurotransmission system involved in pain transmission and modulation. We here report an increased nociceptive response of OB rats in the tail flick test which is reverted after chronic, but not acute, administration of fluoxetine. Autoradiographic studies demonstrated down-regulation of 5-HT transporters ([(3)H]citalopram binding) and decreased functionality of 5-HT1A receptors (8-OH-DPAT-stimulated [(35)S]GTPγS binding) in the dorsal horn of the lumbar spinal cord in OB rats. Acute administration of fluoxetine (5-40 mg/kg i.p.) did not modify tail flick latencies in OB rats. However, chronic fluoxetine (10 mg/kg/day s.c., 14 days; osmotic minipumps) progressively attenuated OB-associated thermal hyperalgesia, and a total normalization of the nociceptive response was achieved at the end of the treatment with the antidepressant. In these animals, autoradiographic studies revealed further down-regulation of 5-HT transporters and normalization in the functionality of 5-HT1A receptors on the spinal cord. On the other hand, acute morphine (0.5-10 mg/kg s.c.) produced a similar analgesic effect in OB and sham and OB rats, and no changes were detected in the density ([(3)H]DAMGO binding) and functionality (DAMGO-stimulated [(35)S]GTPγS binding) of spinal μ-opioid receptors in OB rats before and after chronic fluoxetine. Our findings demonstrate the participation of the spinal serotonergic system in the increased thermal nociception exhibited by the OB rat and the antinociceptive effect of chronic fluoxetine in this animal model of depression.

  3. Cellular and subcellular localization of CXCL12 and CXCR4 in rat nociceptive structures: physiological relevance.

    PubMed

    Reaux-Le Goazigo, Annabelle; Rivat, Cyril; Kitabgi, Patrick; Pohl, Michel; Melik Parsadaniantz, Stéphane

    2012-09-01

    Initial studies implicated the chemokine CXC motif ligand 12 (CXCL12) and its cognate CXC motif receptor 4 (CXCR4) in pain modulation. However, there has been no description of the distribution, transport and axonal sorting of CXCL12 and CXCR4 in rat nociceptive structures, and their direct participation in nociception modulation has not been demonstrated. Here, we report that acute intrathecal administration of CXCL12 induced mechanical hypersensitivity in naive rats. This effect was prevented by a CXCR4-neutralizing antibody. To determine the morphological basis of this behavioural response, we used light and electron microscopic immunohistochemistry to map CXCL12- and CXCR4-immunoreactive elements in dorsal root ganglia, lumbar spinal cord, sciatic nerve and skin. Light microscopy analysis revealed CXCL12 and CXCR4 immunoreactivity in calcitonin gene related peptide-containing peptidergic primary sensory neurons, which were both conveyed to central and peripheral sensory nerve terminals. Electron microscopy clearly demonstrated CXCL12 and CXCR4 immunoreactivity in primary sensory nerve terminals in the dorsal horn; both were sorted into small clear vesicles and large dense-core vesicles. This suggests that CXCL12 and CXCR4 are trafficked from nerve cell bodies to the dorsal horn. Double immunogold labelling for CXCL12 and calcitonin gene related peptide revealed partial vesicular colocalization in axonal terminals. We report, for the first time, that CXCR4 receptors are mainly located on the neuronal plasma membrane, where they are present at pre-synaptic and post-synaptic sites of central terminals. Receptor inactivation experiments, behavioural studies and morphological analyses provide strong evidence that the CXCL12/CXCR4 system is involved in modulation of nociceptive signalling.

  4. Spinal modulation of nociception by music.

    PubMed

    Roy, M; Lebuis, A; Hugueville, L; Peretz, I; Rainville, P

    2012-07-01

    Numerous studies have demonstrated the capacity of music to modulate pain. However, the neurophysiological mechanisms responsible for this phenomenon remain unknown. In order to assess the involvement of descending modulatory mechanisms in the modulation of pain by music, we evaluated the effects of musical excerpts conveying different emotions (pleasant-stimulating, pleasant-relaxing, unpleasant-stimulating) on the spinally mediated nociceptive flexion reflex (or RIII), as well as on pain ratings and skin conductance responses. The RIII reflex and pain ratings were increased during the listening of unpleasant music compared with pleasant music, suggesting the involvement of descending pain-modulatory mechanisms in the effects of musical emotions on pain. There were no significant differences between the pleasant-stimulating and pleasant-relaxing musical condition, indicating that the arousal of music had little influence on pain processing.

  5. Mast Cell-Mediated Mechanisms of Nociception.

    PubMed

    Aich, Anupam; Afrin, Lawrence B; Gupta, Kalpna

    2015-12-04

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner.

  6. Mast Cell-Mediated Mechanisms of Nociception

    PubMed Central

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  7. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    PubMed

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique.

  8. Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion.

    PubMed

    Mitchell, Kendall; Lebovitz, Evan E; Keller, Jason M; Mannes, Andrew J; Nemenov, Michael I; Iadarola, Michael J

    2014-04-01

    TRPV1 is expressed in a subpopulation of myelinated Aδ and unmyelinated C-fibers. TRPV1+ fibers are essential for the transmission of nociceptive thermal stimuli and for the establishment and maintenance of inflammatory hyperalgesia. We have previously shown that high-power, short-duration pulses from an infrared diode laser are capable of predominantly activating cutaneous TRPV1+ Aδ-fibers. Here we show that stimulating either subtype of TRPV1+ fiber in the paw during carrageenan-induced inflammation or following hind-paw incision elicits pronounced hyperalgesic responses, including prolonged paw guarding. The ultrapotent TRPV1 agonist resiniferatoxin (RTX) dose-dependently deactivates TRPV1+ fibers and blocks thermal nociceptive responses in baseline or inflamed conditions. Injecting sufficient doses of RTX peripherally renders animals unresponsive to laser stimulation even at the point of acute thermal skin damage. In contrast, Trpv1-/- mice, which are generally unresponsive to noxious thermal stimuli at lower power settings, exhibit withdrawal responses and inflammation-induced sensitization using high-power, short duration Aδ stimuli. In rats, systemic morphine suppresses paw withdrawal, inflammatory guarding, and hyperalgesia in a dose-dependent fashion using the same Aδ stimuli. The qualitative intensity of Aδ responses, the leftward shift of the stimulus-response curve, the increased guarding behaviors during carrageenan inflammation or after incision, and the reduction of Aδ responses with morphine suggest multiple roles for TRPV1+ Aδ fibers in nociceptive processes and their modulation of pathological pain conditions.

  9. Understanding the mechanisms through which spatial attention acts on nociception.

    PubMed

    Torta, Diana M E

    2015-11-01

    Previous studies have shown that spatial attention can influence the magnitude of brain responses to nociceptive inputs. In their recent article (Franz M, Nickel MM, Ritter A, Miltner WH, Weiss T. J Neurophysiol 113: 2760-2768, 2015), Franz and colleagues expand this observation by showing that spatial attention is further able to modify the chronometry of nociceptive processing by modulating the latency and temporal jitter of the recorded responses. The mechanisms through which attention could possibly modulate nociceptive processing are discussed here, with a particular focus on novel findings and future perspectives.

  10. Altered Nociceptive Neuronal Circuits After Neonatal Peripheral Inflammation

    NASA Astrophysics Data System (ADS)

    Ruda, M. A.; Ling, Qing-Dong; Hohmann, Andrea G.; Peng, Yuan Bo; Tachibana, Toshiya

    2000-07-01

    Nociceptive neuronal circuits are formed during embryonic and postnatal times when painful stimuli are normally absent or limited. Today, medical procedures for neonates with health risks can involve tissue injury and pain for which the long-term effects are unknown. To investigate the impact of neonatal tissue injury and pain on development of nociceptive neuronal circuitry, we used an animal model of persistent hind paw peripheral inflammation. We found that, as adults, these animals exhibited spinal neuronal circuits with increased input and segmental changes in nociceptive primary afferent axons and altered responses to sensory stimulation.

  11. Stimulus control and associative learning.

    PubMed Central

    Williams, B A

    1984-01-01

    Interest in operant research on stimulus control has declined at the same time that much interest has burgeoned in nonoperant areas. Several examples of this shift toward traditional learning theory are considered, all of which have sponsored theoretical approaches that attempt to characterize the underlying associative units. These theoretical approaches are defended on the grounds that they have generated a deeper understanding of a variety of often puzzling phenomena. My projection is that future research will be determined even more strongly by theories about the structure of associations. Particular issues for which such discussion will have major impact include (1) whether conditional stimulus control is qualitatively different than simpler forms of stimulus control, (2) whether stimulus control is organized hierarchically, and (3) the origin of categories of stimulus equivalence. PMID:6520579

  12. Increased Brain Neurotensin and NTSR2 Lead to Weak Nociception in NTSR3/Sortilin Knockout Mice

    PubMed Central

    Devader, Christelle; Moreno, Sébastien; Roulot, Morgane; Deval, Emmanuel; Dix, Thomas; Morales, Carlos R.; Mazella, Jean

    2016-01-01

    The neuropeptide neurotensin (NT) elicits numerous pharmacological effects through three different receptors (NTSR1, NTSR2, and NTSR3 also called sortilin). Pharmacological approaches and generation of NTSR1 and NTSR2-deficient mice allowed to determine the NT-induced antipsychotic like behavior, the inhibitory of weak fear memory and the nociceptive signaling in a rat formalin tonic pain model to NTSR1. Conversely, the effects of NT on thermal and tonic nociceptions were mediated by NTSR2. However, the role of NTSR3/sortilin on the neurotensinergic system was not investigated. Here, by using C57Bl/6J mouse model in which the gene coding for NTSR3/sortilin has been inactivated, we observed a modification of the expression of both NTSR2 and NT itself. Quantitative PCR and protein expression using Western blot analyses and AlphaLisa™ technology resulted in the observation that brain NTSR2 as well as brain and blood NT were 2-fold increased in KO mice leading to a resistance of these mice to thermal and chemical pain. These data confirm that NTSR3/sortilin interacts with other NT receptors (i.e., NTSR2) and that its deletion modifies also the affinity of this receptor to NT. PMID:27932946

  13. The ankyrin repeat domain of the TRPA protein painless is important for thermal nociception but not mechanical nociception.

    PubMed

    Hwang, Richard Y; Stearns, Nancy A; Tracey, W Daniel

    2012-01-01

    The Drosophila TRPA channel Painless is required for the function of polymodal nociceptors which detect noxious heat and noxious mechanical stimuli. These functions of Painless are reminiscent of mammalian TRPA channels that have also been implicated in thermal and mechanical nociception. A popular hypothesis to explain the mechanosensory functions of certain TRP channels proposes that a string of ankyrin repeats at the amino termini of these channels acts as an intracellular spring that senses force. Here, we describe the identification of two previously unknown Painless protein isoforms which have fewer ankyrin repeats than the canonical Painless protein. We show that one of these Painless isoforms, that essentially lacks ankyrin repeats, is sufficient to rescue mechanical nociception phenotypes of painless mutant animals but does not rescue thermal nociception phenotypes. In contrast, canonical Painless, which contains Ankyrin repeats, is sufficient to largely rescue thermal nociception but is not capable of rescuing mechanical nociception. Thus, we propose that in the case of Painless, ankryin repeats are important for thermal nociception but not for mechanical nociception.

  14. Psilocybin-induced stimulus control in the rat.

    PubMed

    Winter, J C; Rice, K C; Amorosi, D J; Rabin, R A

    2007-10-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT(2A) receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT(1A/7) receptor antagonist, WAY-100635, or the DA D(2) antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT(2A) receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT(1A) receptors appears to play no role in psilocybin-induced stimulus control.

  15. Psilocybin-induced stimulus control in the rat

    PubMed Central

    Winter, J.C.; Rice, K.C.; Amorosi, D.J.; Rabin, R.A.

    2007-01-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT2A receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT1A/7 receptor antagonist, WAY-100635, or the DA D2 antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT2A receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT1A receptors appears to play no role in psilocybin-induced stimulus control. PMID:17688928

  16. Inhibition of nociceptive responses after systemic administration of amidated kyotorphin

    PubMed Central

    Ribeiro, MMB; Pinto, A; Pinto, M; Heras, M; Martins, I; Correia, A; Bardaji, E; Tavares, I; Castanho, M

    2011-01-01

    BACKGROUND AND PURPOSE Kyotorphin (KTP; L-Tyr-L-Arg), an endogenous neuropeptide, is potently analgesic when delivered directly to the central nervous system. Its weak analgesic effects after systemic administration have been explained by inability to cross the blood–brain barrier (BBB) and detract from the possible clinical use of KTP as an analgesic. In this study, we aimed to increase the lipophilicity of KTP by amidation and to evaluate the analgesic efficacy of a new KTP derivative (KTP-amide – KTP-NH2). EXPERIMENTAL APPROACH We synthesized KTP-NH2. This peptide was given systemically to assess its ability to cross the BBB. A wide range of pain models, including acute, sustained and chronic inflammatory and neuropathic pain, were used to characterize analgesic efficacies of KTP-NH2. Binding to opioid receptors and toxicity were also measured. KEY RESULTS KTP-NH2, unlike its precursor KTP, was lipophilic and highly analgesic following systemic administration in several acute and chronic pain models, without inducing toxic effects or affecting motor responses and blood pressure. Binding to opioid receptors was minimal. KTP-NH2 inhibited nociceptive responses of spinal neurons. Its analgesic effects were prevented by intrathecal or i.p. administration of naloxone. CONCLUSIONS AND IMPLICATIONS Amidation allowed KTP to show good analgesic ability after systemic delivery in acute and chronic pain models. The indirect opioid-mediated actions of KTP-NH2 may explain why this compound retained its analgesic effects although the usual side effects of opioids were absent, which is a desired feature in next-generation pain medications. PMID:21366550

  17. Understanding smell--the olfactory stimulus problem.

    PubMed

    Auffarth, Benjamin

    2013-09-01

    The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception.

  18. Heterosynaptic long-term depression of craniofacial nociception: divergent effects on pain perception and blink reflex in man.

    PubMed

    Yekta, Sareh Said; Lamp, Susanne; Ellrich, Jens

    2006-04-01

    Noxious low-frequency stimulation (LFS) of presynaptic nerve fibers induces long-term depression (LTD) of synaptic transmission. In vitro studies suggest a sole homosynaptic effect. Consequently, the present study addressed the hypothesis that LTD of craniofacial nociception in man is mediated by a homosynaptic mechanism. Nociceptive supraorbital afferents were excited by electric pulses via a concentric electrode in ten healthy volunteers. The electrically evoked bilateral blink reflex (BR) was recorded from both orbicularis oculi muscles by surface electrodes. The BR was evoked in blocks of ten electric stimuli each (0.1 Hz) with an interblock interval of 8 min. Conditioning noxious LFS (1 Hz, 20 min) was applied via concentric electrode either to the same site as BR test stimuli (ipsilateral) or to the corresponding contralateral forehead area (contralateral). LFS and test stimulus intensities corresponded to about threefold the pain threshold. After three baseline stimulus blocks, either conditioning ipsilateral or contralateral LFS were applied or stimulation was interrupted for 20 min as a control task. Afterwards, test stimulation blocks were continued for 40 min. Each volunteer participated in all three sessions on different days. Noxious LFS induced LTD of the BR independently from the side of conditioning stimulation. Pain perception decreased after ipsilateral LFS but not after contralateral LFS. The bilateral effect of noxious LFS on the BR provides evidence for heterosynaptic LTD based on bilateral projections of supraorbital nerve afferents onto spinal trigeminal nuclei. The divergent effect on pain perception may be due to a preferential contralateral projection of nociceptive afferents onto reflex interneurons but not onto trigeminothalamic projection neurons.

  19. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1).

    PubMed

    Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara

    2013-07-01

    Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with

  20. Learned control over spinal nociception reduces supraspinal nociception as quantified by late somatosensory evoked potentials.

    PubMed

    Ruscheweyh, Ruth; Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Sommer, Jens; Straube, Andreas

    2015-12-01

    We have recently shown that subjects can learn to use cognitive-emotional strategies to suppress their spinal nociceptive flexor reflex (RIII reflex) under visual RIII feedback and proposed that this reflects learned activation of descending pain inhibition. Here, we investigated whether learned RIII suppression also affects supraspinal nociception and whether previous relaxation training increases success. Subjects were trained over 3 sessions to reduce their RIII size by self-selected cognitive-emotional strategies. Two groups received true RIII feedback (with or without previous relaxation training) and a sham group received false feedback (15 subjects per group). RIII reflexes, late somatosensory evoked potentials (SEPs), and F-waves were recorded and pain intensity ratings collected. Both true feedback groups achieved significant (P < 0.01) but similar RIII suppression (to 79% ± 21% and 70% ± 17% of control). Somatosensory evoked potential amplitude (100-150 milliseconds after stimulation) was reduced in parallel with the RIII size (r = 0.57, P < 0.01). In the sham group, neither RIII size nor SEP amplitude was significantly reduced during feedback training. Pain intensity was significantly reduced in all 3 groups and also correlated with RIII reduction (r = 0.44, P < 0.01). F-wave parameters were not affected during RIII suppression. The present results show that learned RIII suppression also affects supraspinal nociception as quantified by SEPs, although effects on pain ratings were less clear. Lower motor neuron excitability as quantified by F-waves was not affected. Previous relaxation training did not significantly improve RIII feedback training success.

  1. Stimulus Structure, Discrimination, and Interference

    ERIC Educational Resources Information Center

    Runquist, Willard N.

    1975-01-01

    The general purpose of this experiment was to determine whether differences in stimulus discrimination, as determined by the MIR (missing-item recognition) test, are correlated with interference in recall, as demanded by the discriminative coding hypothesis. (Author/RK)

  2. Effects of anethole in nociception experimental models.

    PubMed

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators.

  3. Effects of Anethole in Nociception Experimental Models

    PubMed Central

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators. PMID:25506382

  4. Voltage-Gated Calcium Channels in Nociception

    NASA Astrophysics Data System (ADS)

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  5. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats.

    PubMed

    Arreola-Espino, Rosaura; Urquiza-Marín, Héctor; Ambriz-Tututi, Mónica; Araiza-Saldaña, Claudia Ivonne; Caram-Salas, Nadia L; Rocha-González, Héctor I; Mixcoatl-Zecuatl, Teresa; Granados-Soto, Vinicio

    2007-12-22

    The purpose of this study was to assess the antinociceptive and antiallodynic effect of melatonin as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral administration of melatonin (10-300 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. In addition, K-185 (a melatonin MT(2) receptor antagonist, 0.2-2 mg/kg, s.c.) completely blocked the melatonin-induced antinociception in diabetic rats, whereas that naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) and naltrindole (a selective delta opioid receptor antagonist, 0.5 mg/kg, s.c.), but not 5'-guanidinonaltrindole (a selective kappa opioid receptor antagonist, 1 mg/kg, s.c.), partially reduced the antinociceptive effect of melatonin. Given alone K-185, naltrexone, naltrindole or 5'-guanidinonaltrindole did not modify formalin-induced nociception in diabetic rats. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of melatonin (75-300 mg/kg) dose-dependently reduced tactile allodynia in diabetic rats. Both antinociceptive and antiallodynic effects were not related to motor changes as melatonin did not modify number of falls in the rotarod test. Results indicate that melatonin is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that melatonin MT(2) and delta opioid receptors may play an important role in these effects.

  6. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions

    PubMed Central

    Liu, Chien-Cheng; Gao, Yong-Jing; Luo, Hao; Berta, Temugin; Xu, Zhen-Zhong; Ji, Ru-Rong; Tan, Ping-Heng

    2016-01-01

    It is well known that interferons (IFNs), such as type-I IFN (IFN-α) and type-II IFN (IFN-γ) are produced by immune cells to elicit antiviral effects. IFNs are also produced by glial cells in the CNS to regulate brain functions. As a proinflammatory cytokine, IFN-γ drives neuropathic pain by inducing microglial activation in the spinal cord. However, little is known about the role of IFN-α in regulating pain sensitivity and synaptic transmission. Strikingly, we found that IFN-α/β receptor (type-I IFN receptor) was expressed by primary afferent terminals in the superficial dorsal horn that co-expressed the neuropeptide CGRP. In the spinal cord IFN-α was primarily expressed by astrocytes. Perfusion of spinal cord slices with IFN-α suppressed excitatory synaptic transmission by reducing the frequency of spontaneous excitatory postsynaptic current (sEPSCs). IFN-α also inhibited nociceptive transmission by reducing capsaicin-induced internalization of NK-1 and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial dorsal horn neurons. Finally, spinal (intrathecal) administration of IFN-α reduced inflammatory pain and increased pain threshold in naïve rats, whereas removal of endogenous IFN-α by a neutralizing antibody induced hyperalgesia. Our findings suggest a new form of neuronal-glial interaction by which IFN-α, produced by astrocytes, inhibits nociceptive transmission in the spinal cord. PMID:27670299

  7. Stimulus Equivalence, Generalization, and Contextual Stimulus Control in Verbal Classes

    PubMed Central

    Sigurðardóttir, Zuilma Gabriela; Mackay, Harry A; Green, Gina

    2012-01-01

    Stimulus generalization and contextual control affect the development of equivalence classes. Experiment 1 demonstrated primary stimulus generalization from the members of trained equivalence classes. Adults were taught to match six spoken Icelandic nouns and corresponding printed words and pictures to one another in computerized three-choice matching-to-sample tasks. Tests confirmed that six equivalence classes had formed. Without further training, plural forms of the stimuli were presented in tests for all matching performances. All participants demonstrated virtually errorless performances. In Experiment 2, classifications of the nouns used in Experiment 1 were brought under contextual control. Three nouns were feminine and three were masculine. The match-to-sample training taught participants to select a comparison of the same number as the sample (i.e., singular or plural) in the presence of contextual stimulus A regardless of noun gender. Concurrently, in the presence of contextual stimulus B, participants were taught to select a comparison of the same gender as the sample (i.e., feminine or masculine), regardless of number. Generalization was assessed using a card-sorting test. All participants eventually sorted the cards correctly into gender and number stimulus classes. When printed words used in training were replaced by their picture equivalents, participants demonstrated almost errorless performances. PMID:22754102

  8. Teleantagonism: A pharmacodynamic property of the primary nociceptive neuron

    PubMed Central

    Funez, Mani I.; Ferrari, Luiz F.; Duarte, Djane B.; Sachs, Daniela; Cunha, Fernando Q.; Lorenzetti, Berenice B.; Parada, Carlos A.; Ferreira, Sérgio H.

    2008-01-01

    Previous work from our group showed that intrathecal (i.t.) administration of substances such as glutamate, NMDA, or PGE2 induced sensitization of the primary nociceptive neuron (PNN hypernociception) that was inhibited by a distal intraplantar (i.pl.) injection of either morphine or dipyrone. This pharmacodynamic phenomenon is referred to in the present work as “teleantagonism”. We previously observed that the antinociceptive effect of i.t. morphine could be blocked by injecting inhibitors of the NO signaling pathway in the paw (i.pl.), and this effect was used to explain the mechanism of opioid-induced peripheral analgesia by i.t. administration. The objective of the present investigation was to determine whether this teleantagonism phenomenon was specific to this biochemical pathway (NO) or was a general property of the PNNs. Teleantagonism was investigated by administering test substances to the two ends of the PNN (i.e., to distal and proximal terminals; i.pl. plus i.t. or i.t. plus i.pl. injections). We found teleantagonism when: (i) inhibitors of the NO signaling pathway were injected distally during the antinociception induced by opioid agonists; (ii) a nonselective COX inhibitor was tested against PNN sensitization by IL-1β; (iii) selective opioid-receptor antagonists tested against antinociception induced by corresponding selective agonists. Although the dorsal root ganglion seems to be an important site for drug interactions, the teleantagonism phenomenon suggests that, in PNNs, a local sensitization spreads to the entire cell and constitutes an intriguing and not yet completely understood pharmacodynamic property of this group of neurons. PMID:18799742

  9. De novo expression of neurokinin-1 receptors by spinoparabrachial lamina I pyramidal neurons following a peripheral nerve lesion.

    PubMed

    Saeed, Abeer W; Ribeiro-da-Silva, Alfredo

    2013-06-01

    Lamina I of the spinal dorsal horn is a major site of integration and transmission to higher centers of nociceptive information from the periphery. One important primary afferent population that transmits such information to the spinal cord expresses substance P (SP). These fibers terminate in contact with lamina I projection neurons that express the SP receptor, also known as the neurokinin-1 receptor (NK-1r). Three types of lamina I projection neurons have been described: multipolar, fusiform, and pyramidal. Most neurons of the first two types are thought to be nociceptive and express the NK-1r, whereas most pyramidal neurons are nonnociceptive and do not express the NK-1r. In this immunocytochemical and behavioral study, we induced a neuropathic pain-like condition in the rat by means of a polyethylene cuff placed around in the sciatic nerve. We document that this lesion led to a de novo expression of NK-1r on pyramidal neurons as well as a significant increase in SP-immunoreactive innervation onto these neurons. These phenotypic changes were evident at the time of onset of neuropathic pain-related behavior. Additionally, we show that, after a noxious stimulus (intradermal capsaicin injection), these NK-1r on pyramidal neurons were internalized, providing evidence that these neurons become responsive to peripheral noxious stimulation. We suggest that the changes following nerve lesion in the phenotype and innervation pattern of pyramidal neurons are of significance for neuropathic pain and/or limb temperature regulation.

  10. Carving Executive Control at Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, but Not Stimulus-Response, Conflict

    ERIC Educational Resources Information Center

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…

  11. Nicotine dependence produces hyperalgesia: role of corticotropin-releasing factor-1 receptors (CRF1Rs) in the central amygdala (CeA).

    PubMed

    Baiamonte, Brandon A; Valenza, Marta; Roltsch, Emily A; Whitaker, Annie M; Baynes, Brittni B; Sabino, Valentina; Gilpin, Nicholas W

    2014-02-01

    Because tobacco use has a large negative health and financial impact on society, it is critical to identify the factors that drive excessive use. These factors include the aversive withdrawal symptoms that manifest upon cessation of tobacco use, and may include increases in nociceptive processing. Corticotropin-releasing factor (CRF) signalling in the central amygdala (CeA) has been attributed an important role in: (1) central processing of pain, (2) excessive nicotine use that results in nicotine dependence, and (3) in mediating the aversive symptoms that manifest following cessation of tobacco exposure. Here, we describe three experiments in which the main hypothesis was that CRF/CRF1 receptor (CRF1R) signalling in the CeA mediates nicotine withdrawal-induced increases in nociceptive sensitivity in rats that are dependent on nicotine. In Experiment 1, nicotine-dependent rats withdrawn from chronic intermittent (14-h/day) nicotine vapor exhibited decreased hind paw withdrawal latencies in response to a painful thermal stimulus in the Hargreaves test, and this effect was attenuated by systemic administration of the CRF1R antagonist, R121919. In Experiment 2, nicotine-dependent rats withdrawn from nicotine vapor exhibited robust increases in mRNA for CRF and CRF1Rs in CeA. In Experiment 3, intra-CeA administration of R121919 reduced thermal nociception only in nicotine-dependent rats. Collectively, these results suggest that nicotine dependence increases CRF/CRF1R signalling in the CeA that mediates withdrawal-induced increases in sensitivity to a painful stimulus. Future studies will build on these findings by exploring the hypothesis that nicotine withdrawal-induced reduction in pain thresholds drive excessive nicotine use via CRF/CRF1R signalling pathways.

  12. Looking at the hand modulates the brain responses to nociceptive and non-nociceptive somatosensory stimuli but does not necessarily modulate their perception.

    PubMed Central

    Torta, DM; Legrain, V; Mouraux, A

    2017-01-01

    Looking at the hand can reduce the perception of pain and the magnitude of the event-related potentials (ERPs) elicited by nociceptive stimuli delivered onto the hand, whereas it can increase that of tactile ERPs. These differences could be related to the use of different experimental designs. Importantly, most studies on the effects of vision on pain have relied on a mirror to create the illusion that the reflected hand is a direct view of the stimulated hand. Here, we compared the effects of direct vs. mirror vision of the hand vs. an object on the perception and ERPs elicited by non-nociceptive and nociceptive stimuli. We did not observe any significant effect of vision on the perceived intensity. Vision of the hand reduced the nociceptive N240, and enhanced the non-nociceptive P200. Our results confirm that vision of the body differentially affects nociceptive and non-nociceptive processing, but question the robustness of visual analgesia. PMID:25917217

  13. Larval defense against attack from parasitoid wasps requires nociceptive neurons.

    PubMed

    Robertson, Jessica L; Tsubouchi, Asako; Tracey, W Daniel

    2013-01-01

    Parasitoid wasps are a fierce predator of Drosophila larvae. Female Leptopilina boulardi (LB) wasps use a sharp ovipositor to inject eggs into the bodies of Drosophila melanogaster larvae. The wasp then eats the Drosophila larva alive from the inside, and an adult wasp ecloses from the Drosophila pupal case instead of a fly. However, the Drosophila larvae are not defenseless as they may resist the attack of the wasps through somatosensory-triggered behavioral responses. Here we describe the full range of behaviors performed by the larval prey in immediate response to attacks by the wasps. Our results suggest that Drosophila larvae primarily sense the wasps using their mechanosensory systems. The range of behavioral responses included both "gentle touch" like responses as well as nociceptive responses. We found that the precise larval response depended on both the somatotopic location of the attack, and whether or not the larval cuticle was successfully penetrated during the course of the attack. Interestingly, nociceptive responses are more likely to be triggered by attacks in which the cuticle had been successfully penetrated by the wasp. Finally, we found that the class IV neurons, which are necessary for mechanical nociception, were also necessary for a nociceptive response to wasp attacks. Thus, the class IV neurons allow for a nociceptive behavioral response to a naturally occurring predator of Drosophila.

  14. Inflammatory nociception responses do not vary with age, but diminish with the pain history

    PubMed Central

    Simón-Arceo, Karina; Contreras, Bernardo; León-Olea, Martha; Coffeen, Ulises; Jaimes, Orlando; Pellicer, Francisco

    2014-01-01

    Some of the relevant factors that must be considered when dealing with old age include its growing numbers in the general population and pain contention in this age group. In this sense, it is important to study whether antinociceptive responses change with age. To elucidate this point, persistent pain in animals is the preferred model. In addition, the response to inflammatory pain in the same individual must be explored along its lifetime. Male Wistar rats were infiltrated with carrageenan (50 μl intraplantar) and tested 3 h and 24 h after injection using thermal (plantar test) and mechanociceptive tests (von Frey). The rats were divided into the following groups: (a) young rats infiltrated for the first time at 12 weeks of age and re-infiltrated at 15 and 17 weeks; (b) adult rats infiltrated for the first time at 28 weeks of age and re-infiltrated at 44 and 56 weeks; and (c) old rats infiltrated for the first time at 56 weeks of age and re-infiltrated at 72 weeks. The rats tested for the first time at 12 and 56 weeks of age showed hyperalgesia due to carrageenan infiltration at 3 h and 24 h after injection. This result showed that old rats maintain the same antialgesic response due to inflammation. However, when the injection was repeated in the three age groups, the latency to the thermal and mechanociceptive responses at 3 h is increased when compared to animals exposed for the first time to inflammation. The response to thermal and mechanociception in old rats is the same as in young animals as long as the nociceptive stimulus is not repeated. The repetition of the stimulus produces changes compatible with desensitization of the response and evidences the significance of algesic stimulus repetition in the same individual rather than the age of the individual. PMID:25120479

  15. Modulation of visceral nociception, inflammation and gastric mucosal injury by cinnarizine.

    PubMed

    Abdel-Salam, Omar M E

    2007-01-01

    The effect of cinnarizine, a drug used for the treatment of vertigo was assessed in animal models of visceral nociception, inflammation and gastric mucosal injury. Cinnarizine (1.25-20 mg/kg, s.c.) caused dose-dependent inhibition of the abdominal constrictions evoked by i.p. injection of acetic acid by 38.7-99.4%. This effect of cinnarizine (2.5 mg/kg) was unaffected by co-administration of the centrally acting dopamine D2 receptor antagonists, sulpiride, haloperidol or metoclopramide, the peripherally acting D2 receptor antagonist domperidone, but increased by the D2 receptor agonist bromocryptine and by the non-selective dopamine receptor antagonist chlorpromazine. The antinociception caused by cinnarizine was naloxone insenstive, but enhanced by propranolol, atropine and by yohimbine. The antinociceptive effect of cinnarizine was prevented by co-treatment with the adenosine receptor blocker theophylline or by the ATP-sensitive potassium channel (K(ATP)) blocker glibenclamide. Cinnarizine at 2.5 mg/kg reversed the baclofen-induced antinociception. Cinnarizine at 2.5 mg/kg reduced immobility time in the Porsolt's forced-swimming test by 24%. Cinnarizine inhibited the paw oedema response to carrageenan and reduced gastric mucosal lesions caused by indomethacin in rats. It is suggested that cinnarizine exerts anti-inflammatory, antinociceptive and gastric protective properties. The mechanism by which cinnarizine modulates pain transmission is likely to involve adenosine receptors and K(ATP) channels.

  16. Pro-neurotrophins, sortilin, and nociception

    PubMed Central

    Lewin, Gary R; Nykjaer, Anders

    2014-01-01

    Nerve growth factor (NGF) signaling is important in the development and functional maintenance of nociceptors, but it also plays a central role in initiating and sustaining heat and mechanical hyperalgesia following inflammation. NGF signaling in pain has traditionally been thought of as primarily engaging the classic high-affinity receptor tyrosine kinase receptor TrkA to initiate sensitization events. However, the discovery that secreted proforms of nerve NGF have biological functions distinct from the processed mature factors raised the possibility that these proneurotrophins (proNTs) may have distinct function in painful conditions. ProNTs engage a novel receptor system that is distinct from that of mature neurotrophins, consisting of sortilin, a type I membrane protein belonging to the VPS10p family, and its co-receptor, the classic low-affinity neurotrophin receptor p75NTR. Here, we review how this new receptor system may itself function with or independently of the classic TrkA system in regulating inflammatory or neuropathic pain. PMID:24494677

  17. Effects of juvenile exposure to predator odor on adolescent and adult anxiety and pain nociception.

    PubMed

    Post, Ryan J; Dahlborg, Kaitlyn M; O'Loughlin, Lauren E; Bloom, Christopher M

    2014-05-28

    Clinical researchers have tracked patients with early life trauma and noted generalized anxiety disorder, unipolar depression, and risk-taking behaviors developing in late adolescence and into early adulthood. Animal models provide an opportunity to investigate the neural and developmental processes that underlie the relationship between early stress and later abnormal behavior. The present model used repeated exposure to 2,3,5-trimethyl-3-thiazoline (TMT), a component of fox feces, as an unconditioned fear-eliciting stimulus in order to induce stress in juvenile rats aged postnatal day (PND) 23 through 27. After further physical maturation characteristic of the adolescent stage (PND 42), animals were tested using an elevated plus maze (EPM) for anxiety and plantar test (Hargreaves method) for pain to assess any lingering effects of the juvenile stress. To assess how an additional stress later in life affects anxiety and pain nociception, PND 43 rats were exposed to inescapable shock (0.8mA) and again tested on EPM and plantar test. A final testing period was conducted in the adult (PND 63) rats to assess resulting changes in adult behaviors. TMT-exposed rats were significantly more anxious in adolescence than controls, but this difference disappeared after exposure to the secondary stressor. In adulthood, but not in adolescence, TMT-exposed rats demonstrated lower pain sensitivity than controls. These results suggest that early life stress can play a significant role in later anxiety and pain nociception, and offer insight into the development and manifestation of anxiety- and trauma-related disorders.

  18. Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone.

    PubMed

    Huang, Y; Brodda-Jansen, G; Lundeberg, T; Yu, L C

    2000-08-04

    The present study investigated the role of calcitonin gene-related peptide (CGRP) on nociception in nucleus raphe magnus (NRM) and the interaction between CGRP and opioid peptides in NRM of rats. CGRP-like immunoreactivity was found at a concentration of 6.0+/-0. 77 pmol/g in NRM tissue of ten samples of rats, suggesting that it may contribute to physiological responses orchestrated by the NRM. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation increased significantly after intra-NRM administration of 0.5 or 1 nmol of CGRP in rats, but not 0.25 nmol. The anti-nociceptive effect induced by CGRP was antagonized by following intra-NRM injection of 1 nmol of the CGRP receptor antagonist CGRP8-37. Furthermore, the CGRP-induced anti-nociceptive effect was attenuated by following intra-NRM administration of 6 nmol of naloxone. The results indicate that CGRP and its receptors play an important role in anti-nociception, and there is a possible interaction between CGRP and opioid peptides in NRM of rats.

  19. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    PubMed Central

    Takeda, Mamoru; Takehana, Shiori; Sekiguchi, Kenta; Kubota, Yoshiko; Shimazu, Yoshihito

    2016-01-01

    Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM) candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM. PMID:27727178

  20. Quantification of a contact stimulus by diapers

    NASA Astrophysics Data System (ADS)

    Nomata, Takuya; Okuyama, Takeshi; Teraoka, Hiromi; Murakami, Yasuo; Miyazawa, Kiyoshi; Tanaka, Mami

    2010-01-01

    This paper describes a development of a sensor system for measurement of a contact stimulus which diapers give to infants. A polyvinyliden fluoride (PVDF) film and a strain gauge are used as the sensor receptors. The PVDF is a kind of piezoelectric material. The sensor consists of a surface contact layer, a PVDF film, a strain gauge and an aluminum plate. First, in order to investigate the sensor performance, the sensor was located on a silicone plate and the upper part of the sensor was rubbed with an acrylic artificial finger. The finger enabled the measurement to carry out at a constant speed and force. Next, the sensor was attached on an infant dummy and the sensor outputs were measured under conditions with and without diapers. By comparison of the output under two different conditions, it was confirmed that there is a clearly difference between the two conditions. It was found that the developed sensor system has the possibility to quantify a contact stimulus which diapers give infants.

  1. Quantification of a contact stimulus by diapers

    NASA Astrophysics Data System (ADS)

    Nomata, Takuya; Okuyama, Takeshi; Teraoka, Hiromi; Murakami, Yasuo; Miyazawa, Kiyoshi; Tanaka, Mami

    2009-12-01

    This paper describes a development of a sensor system for measurement of a contact stimulus which diapers give to infants. A polyvinyliden fluoride (PVDF) film and a strain gauge are used as the sensor receptors. The PVDF is a kind of piezoelectric material. The sensor consists of a surface contact layer, a PVDF film, a strain gauge and an aluminum plate. First, in order to investigate the sensor performance, the sensor was located on a silicone plate and the upper part of the sensor was rubbed with an acrylic artificial finger. The finger enabled the measurement to carry out at a constant speed and force. Next, the sensor was attached on an infant dummy and the sensor outputs were measured under conditions with and without diapers. By comparison of the output under two different conditions, it was confirmed that there is a clearly difference between the two conditions. It was found that the developed sensor system has the possibility to quantify a contact stimulus which diapers give infants.

  2. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.

    PubMed

    Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R

    2016-08-25

    Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor.

  3. Defining the Stimulus - A Memoir

    PubMed Central

    Terrace, Herbert

    2010-01-01

    The eminent psychophysicist, S. S. Stevens, once remarked that, “the basic problem of psychology was the definition of the stimulus” (Stevens, 1951, p. 46). By expanding the traditional definition of the stimulus, the study of animal learning has metamorphosed into animal cognition. The main impetus for that change was the recognition that it is often necessary to postulate a representation between the traditional S and R of learning theory. Representations allow a subject to re-present a stimulus it learned previously that is currently absent. Thus, in delayed-matching-to-sample, one has to assume that a subject responds to a representation of the sample during test if it responds correctly. Other examples, to name but a few, include concept formation, spatial memory, serial memory, learning a numerical rule, imitation and metacognition. Whereas a representation used to be regarded as a mentalistic phenomenon that was unworthy of scientific inquiry, it can now be operationally defined. To accommodate representations, the traditional discriminative stimulus has to be expanded to allow for the role of representations. The resulting composite can account for a significantly larger portion of the variance of performance measures than the exteroceptive stimulus could by itself. PMID:19969047

  4. Stimulus Effects on Local Preference: Stimulus-Response Contingencies, Stimulus-Food Pairing, and Stimulus-Food Correlation

    ERIC Educational Resources Information Center

    Davison, Michael; Baum, William M.

    2010-01-01

    Four pigeons were trained in a procedure in which concurrent-schedule food ratios changed unpredictably across seven unsignaled components after 10 food deliveries. Additional green-key stimulus presentations also occurred on the two alternatives, sometimes in the same ratio as the component food ratio, and sometimes in the inverse ratio. In eight…

  5. Decreased Nociceptive Sensitization in Mice Lacking the Fragile X Mental Retardation Protein: Role of mGluR1/5 and mTOR

    PubMed Central

    Price, Theodore J.; Rashid, Md Harunor; Millecamps, Magali; Sanoja, Raul; Entrena, Jose M.; Cervero, Fernando

    2008-01-01

    Fragile X mental retardation is caused by silencing of the gene (FMR1) that encodes the RNA-binding protein (FMRP) that influences translation in neurons. A prominent feature of the human disorder is self-injurious behavior, suggesting an abnormality in pain processing. Moreover, FMRP regulates group I metabotropic glutamate receptor (mGluR1/5)-dependent plasticity, which is known to contribute to nociceptive sensitization. We demonstrate here, using the Fmr1 knock-out (KO) mouse, that FMRP plays an important role in pain processing because Fmr1 KO mice showed (1) decreased (∼50%) responses to ongoing nociception (phase 2, formalin test), (2) a 3 week delay in the development of peripheral nerve injury-induced allodynia, and (3) a near absence of wind-up responses in ascending sensory fibers after repetitive C-fiber stimulation. We provide evidence that the behavioral deficits are related to a mGluR1/5- and mammalian target of rapamycin (mTOR)-mediated mechanism because (1) spinal mGluR5 antagonism failed to inhibit the second phase of the formalin test, and we observed a marked reduction in nociceptive response to an intrathecal injection of an mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice; (2) peripheral DHPG injection had no effect in KO mice yet evoked thermal hyperalgesia in wild types; and (3) the mTOR inhibitor rapamycin inhibited formalin- and DHPG-induced nociception in wild-type but not Fmr1 KO mice. These experiments show that translation regulation via FMRP and mTOR is an important feature of nociceptive plasticity. These observations also support the hypothesis that the persistence of self-injurious behavior observed in fragile X mental retardation patients could be related to deficits in nociceptive sensitization. PMID:18094233

  6. Benzodiazepine-like discriminative stimulus effects of toluene vapor

    PubMed Central

    Shelton, Keith L.; Nicholson, Katherine L.

    2013-01-01

    In vitro studies show that the abused inhalant toluene affects a number of ligand-gated ion channels. The two most consistently implicated of these are γ-aminobutyric acid type A (GABAA) receptors which are positively modulated by toluene and N-methyl-D-aspartate (NMDA) receptors which are negatively modulated by toluene. Behavioral studies also suggest an interaction of toluene with GABAA and/or NMDA receptors but it is unclear if these receptors underlie the abuse-related intoxicating effects of toluene. Seventeen B6SJLF1/J mice were trained using a two-choice operant drug discrimination procedure to discriminate 10 min of exposure to 2000 ppm toluene vapor from 10 min of exposure to air. The discrimination was acquired in a mean of 65 training sessions. The stimulus effects of 2000 ppm toluene vapor were exposure concentration-dependent but rapidly diminished following the cessation of vapor exposure. The stimulus effects of toluene generalized to the chlorinated hydrocarbon vapor perchloroethylene but not 1,1,2-trichloroethane nor the volatile anesthetic isoflurane. The competitive NMDA antagonist CGS-17955, the uncompetitive antagonist dizocilpine and the glycine-site antagonist L701,324 all failed to substitute for toluene. The classical nonselective benzodiazepines midazolam and chlordiazepoxide produced toluene-like stimulus effects but the alpha 1 subunit preferring positive GABAA modulator zaleplon failed to substitute for toluene. The barbiturates pentobarbital and methohexital and the GABAA-positive modulator neurosteroid allopregnanolone did not substitute for toluene. These data suggest that the stimulus effects of toluene may be at least partially mediated by benzodiazepine-like positive allosteric modulation of GABAA receptors containing alpha 2, 3 or 5 subunits. PMID:24436974

  7. Neonatal tissue damage facilitates nociceptive synaptic input to the developing superficial dorsal horn via NGF-dependent mechanisms

    PubMed Central

    Li, Jie; Baccei, Mark L.

    2011-01-01

    Tissue injury during a critical period of early life can facilitate spontaneous glutamatergic transmission within developing pain circuits in the superficial dorsal horn (SDH) of the spinal cord. However, the extent to which neonatal tissue damage strengthens nociceptive synaptic input to specific subpopulations of SDH neurons, as well as the mechanisms underlying this distinct form of synaptic plasticity, remains unclear. Here we use in vitro whole-cell patch clamp recordings from rodent spinal cord slices to demonstrate that neonatal surgical injury selectively potentiates high-threshold primary afferent input to immature lamina II neurons. In addition, the increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs) after hindpaw incision was prevented by neonatal capsaicin treatment, suggesting that early tissue injury enhances glutamate release from nociceptive synapses. This occurs in a widespread manner within the developing SDH, as incision elevated mEPSC frequency in both GABAergic and presumed glutamatergic lamina II neurons of Gad-GFP transgenic mice. The administration of exogenous nerve growth factor (NGF) into the rat hindpaw mimicked the effects of early tissue damage on excitatory synaptic function, while blocking trkA receptors in vivo abolished the changes in both spontaneous and primary afferent-evoked glutamatergic transmission following incision. These findings illustrate that neonatal tissue damage can alter the gain of developing pain pathways by activating NGF-dependent signaling cascades which modify synaptic efficacy at the first site of nociceptive processing within the CNS. PMID:21550171

  8. Thermal nociception as a measure of non-steroidal anti-inflammatory drug effectiveness in broiler chickens with articular pain.

    PubMed

    Caplen, Gina; Baker, Laurence; Hothersall, Becky; McKeegan, Dorothy E F; Sandilands, Victoria; Sparks, Nick H C; Waterman-Pearson, Avril E; Murrell, Joanna C

    2013-12-01

    Pain associated with poultry lameness is poorly understood. The anti-nociceptive properties of two non-steroidal anti-inflammatory drugs (NSAIDs) were evaluated using threshold testing in combination with an acute inflammatory arthropathy model. Broilers were tested in six groups (n=8 per group). Each group underwent a treatment (saline, meloxicam (3 or 5mg/kg) or carprofen (15 or 25mg/kg)) and a procedure (Induced (arthropathy-induction) or sham (sham-handling)) prior to testing. Induced groups had Freund's complete adjuvant injected intra-articularly into the left intertarsal joint (hock). A ramped thermal stimulus (1°C/s) was applied to the skin of the left metatarsal. Data were analysed using random-intercept multi-level models. Saline-induced birds had a significantly higher skin temperature (± SD) than saline-sham birds (37.6 ± 0.8°C vs. 36.5 ± 0.5°C; Z=-3.47, P<0.001), consistent with an inflammatory response. Saline was associated with significantly lower thermal thresholds (TT) than analgesic treatment (meloxicam: Z=2.72, P=0.007; carprofen: Z=2.58, P=0.010) in induced birds. Saline-induced birds also had significantly lower TT than saline-sham birds (Z=-2.17, P=0.030). This study found direct evidence of an association between inflammatory arthropathies and thermal hyperalgesia, and showed that NSAID treatment maintained baseline thermal sensitivity (via anti-nociception). Quantification of nociceptive responsiveness in a predictable broiler pain model identified thermal anti-hyperalgesic properties of two NSAIDs, which suggested that therapeutically effective treatment was provided at the doses administered. Such validation of analgesic strategies will increase the understanding of pain associated with specific natural broiler lameness types.

  9. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1.

    PubMed

    Taylor-Clark, Thomas E; Ghatta, Srinivas; Bettner, Weston; Undem, Bradley J

    2009-04-01

    Transient Receptor Potential A1 (TRPA1) is a nonselective cation channel, preferentially expressed on a subset of nociceptive sensory neurons, that is activated by a variety of reactive irritants via the covalent modification of cysteine residues. Excessive nitric oxide during inflammation (nitrative stress), leads to the nitration of phospholipids, resulting in the formation of highly reactive cysteine modifying agents, such as nitrooleic acid (9-OA-NO(2)). Using calcium imaging and electrophysiology, we have shown that 9-OA-NO(2) activates human TRPA1 channels (EC(50), 1 microM), whereas oleic acid had no effect on TRPA1. 9-OA-NO(2) failed to activate TRPA1 in which the cysteines at positions 619, 639, and 663 and the lysine at 708 had been mutated. TRPA1 activation by 9-OA-NO(2) was not inhibited by the NO scavenger carboxy-PTIO. 9-OA-NO(2) had no effect on another nociceptive-specific ion channel, TRPV1. 9-OA-NO(2) activated a subset of mouse vagal and trigeminal sensory neurons, which also responded to the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. 9-OA-NO(2) failed to activate neurons derived from TRPA1(-/-) mice. The action of 9-OA-NO(2) at nociceptive nerve terminals was investigated using an ex vivo extracellular recording preparation of individual bronchopulmonary C fibers in the mouse. 9-OA-NO(2) evoked robust action potential discharge from capsaicin-sensitive fibers with slow conduction velocities (0.4-0.7 m/s), which was inhibited by the TRPA1 antagonist AP-18. These data demonstrate that nitrooleic acid, a product of nitrative stress, can induce substantial nociceptive nerve activation through the selective and direct activation of TRPA1 channels.

  10. Comparison of trigeminal and spinal modulation of pain and nociception.

    PubMed

    Rehberg, Benno; Baars, Jan H; Kotsch, Julia; Koppe, Peter; von Dincklage, Falk

    2012-06-01

    Modulation of pain and nociception by noxious counterstimulation, also called "diffuse noxious inhibitory controls" or DNIC-like effect, is often used in studies of pain disorders. It can be elicited in the trigeminal and spinal innervation areas, but no study has previously compared effects in both innervation areas. Therefore, we performed a study comparing DNIC-like effects on the nociceptive flexion reflex (NFR) and the nociceptive blink reflex as well as the respective pain sensations. In 50 healthy volunteers, the blink reflex elicited with a concentric electrode and the NFR were recorded before and after immersion of the contralateral hand in cold water. Responses were recorded as the subjective pain sensation and the reflex size. The cold water immersion of the contralateral hand elicited a reduction of both subjective pain sensation and reflex amplitude following the stimulation of both reflexes. However, there were no strong correlations between the individual reductions of both subjective pain sensation and reflex amplitude for both reflexes, and neither when results of the two reflexes were compared with each other. The dissociation between DNIC-like effects on pain and on nociception, which had been found previously already for the NFR, implies that both effects need to be studied separately.

  11. Tests and models of nociception and pain in rodents.

    PubMed

    Barrot, M

    2012-06-01

    Nociception and pain is a large field of both neuroscience and medical research. Over time, various tests and models were developed in rodents to provide tools for fundamental and translational research on the topic. Tests using thermal, mechanical, and chemical stimuli, measures of hyperalgesia and allodynia, models of inflammatory or neuropathic pain, constitute a toolbox available to researchers. These tests and models allowed rapid progress on the anatomo-molecular basis of physiological and pathological pain, even though they have yet to translate into new analgesic drugs. More recently, a growing effort has been put forth trying to assess pain in rats or mice, rather than nociceptive reflexes, or at studying complex states affected by chronic pain. This aids to further improve the translational value of preclinical research in a field with balanced research efforts between fundamental research, preclinical work, and human studies. This review describes classical tests and models of nociception and pain in rodents. It also presents some recent and ongoing developments in nociceptive tests, recent trends for pain evaluation, and raises the question of the appropriateness between tests, models, and procedures.

  12. Emotional modulation of pain and spinal nociception in fibromyalgia

    PubMed Central

    Rhudy, Jamie L.; DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Olech, Ewa; Palit, Shreela; Kerr, Kara L.

    2013-01-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in four blocks; two blocks assessed only physiological-emotional reactions (i.e., pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (e.g., reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all three groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762

  13. Oxidation Sensitive Nociception Involved in Endometriosis Associated Pain

    PubMed Central

    Ray, Kristeena; Fahrmann, Johannes; Mitchell, Brenda; Paul, Dennis; King, Holly; Crain, Courtney; Cook, Carla; Golovko, Mikhail; Brose, Stephen; Golovko, Svetlana; Santanam, Nalini

    2015-01-01

    Endometriosis is a disease characterized by the growth of endometrial tissue outside the uterus and is associated with chronic pelvic pain. Peritoneal fluid (PF) of women with endometriosis is a dynamic milieu, rich in inflammatory markers and pain-inducing prostaglandins PGE2/PGF2α and lipid peroxides, and the endometriotic tissue is innervated with nociceptors. Our clinical study showed the abundance of oxidatively-modified lipoproteins in the PF of women with endometriosis and the ability of antioxidant supplementation to alleviate endometriosis-associated pain. We hypothesized that oxidatively-modified lipoproteins present in the PF are the major source of nociceptive molecules that play a key role in endometriosis-associated pain. In this study, PF obtained from women with endometriosis or control women were used for (i) the detection of lipoprotein derived oxidation-sensitive pain molecules, (ii) the ability of such molecules to induce nociception, and (iii) the ability of antioxidants to suppress this nociception. LC-MS/MS showed the generation of eicosanoids by oxidized-lipoproteins similar to that seen in the PF. The oxidatively-modified lipoproteins induced hypothermia (intra-cerebroventricular) in CD-1 mice and nociception in the Hargreaves paw-withdrawal latency assay in Sprague-Dawley rats. Antioxidants, vitamin-E and N-acetylcysteine and the NSAID, indomethacin suppressed the pain inducing ability of oxidatively-modified lipoproteins. Treatment of human endometrial cells with oxidatively-modified lipoproteins or PF from women with endometriosis showed up-regulation of similar genes belonging to the opioid and inflammatory pathways. Our finding that oxidatively-modified lipoproteins can induce nociception has a broader impact not only in the treatment of endometriosis-associated pain but also in other diseases associated with chronic pain. PMID:25599233

  14. Reticular thalamic responses to nociceptive inputs in anesthetized rats.

    PubMed

    Yen, Chen-Tung; Shaw, Fu-Zen

    2003-04-11

    The present study compares nociceptive responses of neurons in the reticular thalamic nucleus (RT) to those of the ventroposterior lateral nucleus (VPL). Extracellular single-unit activities of cells in the RT and VPL were recorded in anesthetized rats. Only units with identified tactile receptive fields in the forepaw or hindpaw were studied. In the first series of experiments, RT and VPL responses to pinching with a small artery clamp were tested with the rats under pentobarbital, urethane, ketamine, or halothane anesthesia. Under all types of anesthesia, many RT units were inhibited. Second, the specificity of the nociceptive response was tested by pinching and noxious heating of the unit's tactile receptive field. Of the 39 VPL units tested, 20 were excited by both types of noxious stimuli. In sharp contrast, of the 30 RT units tested, none were excited and 17 were inhibited. In a third series of experiments, low-intensity and beam-diffused CO(2) laser irradiation was used to activate peripheral nociceptive afferents. Wide-dynamic-range VPL units responded with short- and long-latency excitations. In contrast, RT units had short-latency excitation followed by long-latency inhibition. Nociceptive input inhibited RT units in less than 500 ms. We conclude that a significant portion of RT neurons were polysynaptically inhibited by nociceptive inputs. Since all the cells tested were excited by light tactile inputs, the somatosensory RT may serve in the role of a modality gate, which modifies (i.e. inhibits) tactile inputs while letting noxious inputs pass.

  15. Emotional modulation of pain and spinal nociception in fibromyalgia.

    PubMed

    Rhudy, Jamie L; DelVentura, Jennifer L; Terry, Ellen L; Bartley, Emily J; Olech, Ewa; Palit, Shreela; Kerr, Kara L

    2013-07-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (eg, depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in 4 blocks; 2 blocks assessed only physiological-emotional reactions (ie, pleasure/arousal ratings, corrugator electromyography, startle modulation, skin conductance) in the absence of pain, and 2 blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (eg, reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all 3 groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes.

  16. Oxidation-sensitive nociception involved in endometriosis-associated pain.

    PubMed

    Ray, Kristeena; Fahrmann, Johannes; Mitchell, Brenda; Paul, Dennis; King, Holly; Crain, Courtney; Cook, Carla; Golovko, Mikhail; Brose, Stephen; Golovko, Svetlana; Santanam, Nalini

    2015-03-01

    Endometriosis is a disease characterized by the growth of endometrial tissue outside the uterus and is associated with chronic pelvic pain. Peritoneal fluid (PF) of women with endometriosis is a dynamic milieu and is rich in inflammatory markers, pain-inducing prostaglandins prostaglandin E2 and prostaglandin F2α, and lipid peroxides; and the endometriotic tissue is innervated with nociceptors. Our clinical study showed that the abundance of oxidatively modified lipoproteins in the PF of women with endometriosis and the ability of antioxidant supplementation to alleviate endometriosis-associated pain. We hypothesized that oxidatively modified lipoproteins present in the PF are the major source of nociceptive molecules that play a key role in endometriosis-associated pain. In this study, PF obtained from women with endometriosis or control women were used for (1) the detection of lipoprotein-derived oxidation-sensitive pain molecules, (2) the ability of such molecules to induce nociception, and (3) the ability of antioxidants to suppress this nociception. LC-MS/MS showed the generation of eicosanoids by oxidized-lipoproteins to be similar to that seen in the PF. Oxidatively modified lipoproteins induced hypothermia (intracerebroventricular) in CD-1 mice and nociception in the Hargreaves paw withdrawal latency assay in Sprague-Dawley rats. Antioxidants, vitamin E and N-acetylcysteine, and the nonsteroidal anti-inflammatory drug indomethacin suppressed the pain-inducing ability of oxidatively modified lipoproteins. Treatment of human endometrial cells with oxidatively modified lipoproteins or PF from women with endometriosis showed upregulation of similar genes belonging to opioid and inflammatory pathways. Our finding that oxidatively modified lipoproteins can induce nociception has a broader impact not only on the treatment of endometriosis-associated pain but also on other diseases associated with chronic pain.

  17. Impact of Behavioral Control on the Processing of Nociceptive Stimulation

    PubMed Central

    Grau, James W.; Huie, J. Russell; Garraway, Sandra M.; Hook, Michelle A.; Crown, Eric D.; Baumbauer, Kyle M.; Lee, Kuan H.; Hoy, Kevin C.; Ferguson, Adam R.

    2012-01-01

    How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain. PMID:22934018

  18. Economic Stimulus: Issues and Policies

    DTIC Science & Technology

    2009-01-16

    that “fiscal action could be helpful in principle , as fiscal and monetary stimulus together may provide broader support for the economy than monetary...have sought to contain damages spilling over from housing and financial markets to the broader economy , including monetary policy, which is the...including leaving the government holding large amounts of mortgage debt. With the worsening performance of the economy , congressional leaders and

  19. Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers

    PubMed Central

    Cho, Kyeongwon; Jang, Jun Ho; Kim, Sung-Phil; Lee, Sang Hoon; Chung, Soon-Cheol; Kim, In Young; Jang, Dong Pyo; Jung, Sung Jun

    2016-01-01

    The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of C-fibers according to different agonist chemicals, we have developed a quantitative approach using three consecutive spikes. By using this method, the generation of pain in response to chemical stimuli is shown to be dependent on the temporal aspect of the spike trains. Furthermore, under pathological conditions, gamma-aminobutyric acid resulted in pain behavior without change of spike number but with an altered discharge pattern. Our results suggest that information about the agonist chemicals may be encoded in specific temporal patterns of signals in C-fibers, and nociceptive sensation may be influenced by the extent of temporal summation originating from the temporal patterns. PMID:27917120

  20. Discriminative Stimulus Effects of Psychostimulants.

    PubMed

    Berquist, Michael D; Fantegrossi, William E

    2017-03-25

    Numerous drugs elicit locomotor stimulant effects at appropriate doses; however, we typically reserve the term psychostimulant to refer to drugs with affinity for monoamine reuptake transporters. This chapter comprises select experiments that have characterized the discriminative stimulus effects of psychostimulants using drug discrimination procedures. The substitution profiles of psychostimulants in laboratory rodents are generally consistent with those observed in human and nonhuman primate drug discrimination experiments. Notably, two major classes of psychostimulants can be distinguished as those that function as passive monoamine reuptake inhibitors (such as cocaine) and those that function as substrates for monoamine transporters and stimulate monoamine release (such as the amphetamines). Nevertheless, the discriminative stimulus effects of both classes of psychostimulant are quite similar, and drugs from different classes will substitute for one another. Most importantly, for both the cocaine-like and amphetamine-like psychostimulants, dopaminergic mechanisms most saliently determine discriminative stimulus effects, but these effects can be modulated by alterations in noradrenergic and serotonergic neurotransmission as well. Thusly, the drug discrimination assay is useful for characterizing the interoceptive effects of psychostimulants and determining the mechanisms that contribute to their subjective effects in humans.

  1. [Central effects of ORL1 receptor ligands].

    PubMed

    Maslov, L N; Lishmanov, Iu B; Calo, G; Ma, L

    2003-01-01

    It has been discussed literature data on molecular structure of ORL1 receptor and its interaction with intracellular signal systems and neurotransmitters. Data on chemical structure of ORL1 receptor ligands and their central effects (nociception, locomotion, feeding, cognition) are presented.

  2. Bak Foong Pills induce an analgesic effect by inhibiting nociception via the somatostatin pathway in mice.

    PubMed

    Rowlands, Dewi Kenneth; Cui, Yu Gui; So, Siu Cheung; Tsang, Lai Ling; Chung, Yiu Wa; Chan, Hsiao Chang

    2012-01-01

    Dysmenorrhoea, defined as cramping pain in the lower abdomen occurring before or during menstruation, affects, to varying degrees, up to 90% of women of child-bearing age. We investigated whether BFP (Bak Foong Pills), a traditional Chinese medicine treatment for dysmenorrhoea, possesses analgesic properties. Results showed that BFP was able to significantly reduce pain responses following subchronic treatment for 3 days, but not following acute (1 h) treatment in response to acetic acid-induced writhing in C57/B6 mice. The analgesic effect was not due to inhibition of COX (cyclo-oxygenase) activity, evidenced by the lack of inhibition of prostacyclin and PGE2 (prostaglandin E2) production. Molecular analysis revealed that BFP treatment modulated the expression of a number of genes in the spinal cord of mice subjected to acetic acid writhing. RT-PCR (reverse transcription-PCR) analysis of spinal cord samples showed that both sst4 (somatostatin receptor 4) and sst2 receptor mRNA, but not μOR (μ-opiate receptor) and NK1 (neurokinin-1) receptor mRNA, were down-regulated following BFP treatment, thus implicating somatostatin involvement in BFP-induced analgesia. Administration of c-som (cyclo-somatostatin), a somatostatin antagonist, prior to acetic acid-induced writhing inhibited the analgesic effect. Thus subchronic treatment with BFP has anti-nociceptive qualities mediated via the somatostatin pathway.

  3. Upper thoracic postsynaptic dorsal column neurons conduct cardiac mechanoreceptive information, but not cardiac chemical nociception in rats.

    PubMed

    Goodman-Keiser, Melanie D; Qin, Chao; Thompson, Ann M; Foreman, Robert D

    2010-12-17

    Postsynaptic dorsal column (PSDC) neurons transmit noxious visceral information from the lower thoracic and lumbosacral spinal cord. Cuneothalamic neurons in the PSDC pathway and upper thoracic (T(3)-T(4)) spinal neurons ascending through the ventrolateral funiculus (VLF) have been shown to transmit nociceptive cardiac information. Therefore, we hypothesized that upper thoracic PSDC neurons transmit noxious cardiac information. Neuronal responses to intrapericardially injected mechanical (1.0 ml saline) and noxious chemical (0.2 ml algogenic chemicals) stimuli were recorded from antidromically activated PSDC and VLF neurons in the T(3)-T(4) spinal cord of anesthetized Sprague-Dawley rats. Of the PSDC neurons, 43% responded to mechanical stimulation, but only one responded to noxious chemical stimuli. Fifty-eight percent of VLF neurons responded to mechanical stimulation and all responded to noxious chemical stimulation. Fluoro-Ruby (FR)-labeled PSDC neurons in the T(3)-T(4) spinal cord of Sprague-Dawley rats were processed for c-fos immunohistochemistry following intrapericardial stimulation with mechanical, chemical, or control stimuli. Sections were viewed under epifluorescence and light microscopy to detect FR-labeled neurons containing a c-fos immunoreactive (IR) nucleus. An average of 6 PSDC neurons per rat was found in the T(3) and T(4) spinal segments. The average number of c-fos-IR neurons per segment varied by type of stimulus: 12 (control), 67 (chemical) and 85 (mechanical) for T(3) and 8 (control), 37 (chemical) and 62 (mechanical) for T(4). None of the 200 PSDC neurons examined expressed c-fos-IR regardless of stimulus. Together, these results suggest that thoracic PSDC neurons transmit mechanical cardiac information, but they play a minimal role in cardiac nociception.

  4. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-03-22

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge.

  5. Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (GDNF).

    PubMed

    Salio, Chiara; Ferrini, Francesco; Muthuraju, Sangu; Merighi, Adalberto

    2014-10-08

    The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.

  6. 17Beta-estradiol mediates the sex difference in capsaicin-induced nociception in rats.

    PubMed

    Lu, Yu-Ching; Chen, Chao-Wei; Wang, Su-Yi; Wu, Fong-Sen

    2009-12-01

    We have previously shown that the male sex steroid testosterone inhibits slightly, but the female sex steroid 17beta-estradiol (E(2)) potentiates dramatically, the capsaicin receptor-mediated current in rat dorsal root ganglion (DRG) neurons. Here, we used pharmacological methods and the nociceptive behavioral test to determine whether there is a sex difference in capsaicin-induced acute pain in rats in vivo and what mechanism underlies this sex difference. Results revealed that intradermal injection of capsaicin induced a dose-dependent nocifensive response in males and females, with the dose required to produce a comparable level of nociception being approximately 3- to 4-fold higher in males than in females. In addition, females during the proestrus stage exhibited significantly greater capsaicin-induced nocifensive responses compared with the estrus stage. Moreover, the female's enhanced sensitivity to the capsaicin-induced nocifensive response was completely reversed by ovariectomy 6 weeks before capsaicin injection. It is noteworthy that intradermal coinjection of E(2) but not progesterone with capsaicin potentiated the capsaicin-induced nocifensive response in ovariectomized rats. Likewise, intradermal E(2) injection dose-dependently potentiated the capsaicin-induced nocifensive response in male rats. Furthermore, potentiation by E(2) of the capsaicin-induced nocifensive response in male rats was not significantly reduced by a selective protein kinase C (PKC) inhibitor or by a selective protein kinase A (PKA) inhibitor, indicating that neither PKC nor PKA was involved in the effect of E(2). These data demonstrate that E(2) mediates the female's enhanced sensitivity to capsaicin-induced acute pain, consistent with potentiation by E(2) of the capsaicin receptor-mediated current in rat DRG neurons.

  7. Effect of plantar subcutaneous administration of bergamot essential oil and linalool on formalin-induced nociceptive behavior in mice.

    PubMed

    Katsuyama, Soh; Otowa, Akira; Kamio, Satomi; Sato, Kazuma; Yagi, Tomomi; Kishikawa, Yukinaga; Komatsu, Takaaki; Bagetta, Giacinto; Sakurada, Tsukasa; Nakamura, Hitoshi

    2015-01-01

    This study investigated the effect of bergamot essential oil (BEO) or linalool, a major volatile component of BEO, on the nociceptive response to formalin. Plantar subcutaneous injection of BEO or linalool into the ipsilateral hindpaw reduced both the first and late phases of the formalin-induced licking and biting responses in mice. Plantar subcutaneous injection of BEO or linalool into the contralateral hindpaw did not yield an antinociceptive effect, suggesting that the antinociceptive effect of BEO or linalool in the formalin test occurred peripherally. Intraperitoneal and plantar subcutaneous injection pretreatment with naloxone hydrochloride, an opioid receptor antagonist, significantly attenuated both BEO- and linalool-induced antinociception. Pretreatment with naloxone methiodide, a peripherally acting opioid receptor antagonists, also significantly antagonized the antinociceptive effects of BEO and linalool. Our results provide evidence for the involvement of peripheral opioids in antinociception induced by BEO and linalool. These results suggest that activation of peripheral opioid receptors may play an important role in reducing formalin-induced nociception.

  8. SA 4503 attenuates cocaine-induced hyperactivity and enhances methamphetamine substitution for a cocaine discriminative stimulus.

    PubMed

    Rodvelt, Kelli R; Lever, Susan Z; Lever, John R; Blount, Lucas R; Fan, Kuo-Hsien; Miller, Dennis K

    2011-02-01

    Cocaine exhibits preferential (~15-fold) affinity for σ₁ over σ₂ sigma receptors, and previous research has shown an interaction of σ₁ receptor-selective ligands and cocaine's behavioral effects. The present study investigated the effect of the putative sigma receptor agonist SA 4503 (1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride) on cocaine's locomotor stimulatory and discriminative stimulus properties. At doses without intrinsic activity, SA 4503 dose-dependently attenuated cocaine-induced hyperactivity in mice. This inhibition was overcome by increasing the cocaine dose. In rats trained to use cocaine as a discriminative stimulus in a drug discrimination task, doses of SA 4503 that did not substitute for the cocaine stimulus did not alter the cocaine substitution curve. However, SA 4503 potentiated the effect of methamphetamine to substitute for the cocaine stimulus. These data support a role for sigma receptors in the locomotor-activating properties of cocaine and, importantly, indicate a role for these receptors in the discriminative stimulus effects of methamphetamine. The data also suggest sigma receptors mediate the activity of different dopamine pathways responsible for the behavioral effects of psychostimulants.

  9. Pronociceptive response elicited by TRPA1 receptor activation in mice.

    PubMed

    Andrade, E L; Luiz, A P; Ferreira, J; Calixto, J B

    2008-03-18

    Ankyrin-repeat transient receptor potential 1 (TRPA1) is a member of the transient receptor potential (TRP) channel family and it is found in sensory neurons. In the present study, we found that TRPA1 receptor activation with allyl isothiocyanate or cinnamaldehyde caused dose-dependent spontaneous nociception when injected into the mouse hind paw. Very similar results were obtained when stimulating transient receptor potential vanilloid 1 (TRPV1) receptors with capsaicin. Pretreatment with the TRP receptor antagonist Ruthenium Red (1 nmol/paw) inhibited capsaicin-(0.1 nmol/paw) and allyl isothiocyanate-(1 nmol/paw) induced nociceptive responses. However, the nonselective TRPV1 receptor antagonist capsazepine (1 nmol/paw) and the selective TRPV1 receptor antagonist SB 366791 (1 nmol/paw) only attenuated capsaicin-induced nociception. In contrast, the intrathecal treatment with TRPA1 antisense oligodeoxynucleotide (2.5 nmol/site) and the degeneration of the subset of primary afferent fibers sensitive to capsaicin significantly reduced allyl isothiocyanate-induced nociception. Consequently to TRPA1 antisense oligodeoxynucleotide treatment there was a marked decrease of the expression of TRPA1 receptor in both sciatic nervous and spinal cord segments. Moreover, capsaicin and allyl isothiocyanate-induced nociception were not significantly changed by chemical sympathectomy produced by guanethidine. The previous degranulation of mast cells by compound 48/80 and treatment with antagonist H(1) receptor antagonist pyrilamine (400 microg/paw) both significantly inhibited the capsaicin- and allyl isothiocyanate-induced nociception. The selective NK(1) receptor antagonist N(2)-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl) carbony-1-L-prolyl]-N-methyl-N-phenylmethyl-3-2-(2-naphtyl)-L-alaninamide (10 nmol/paw) reduced either capsaicin- or allyl isothiocyanate-induced nociception. Collectively, the present findings demonstrate that the TRPA1 agonist allyl isothiocyanate produces a

  10. Nociceptive temporalis inhibitory reflexes evoked by CO2-laser stimulation in tension-type headache.

    PubMed

    de Tommaso, M; Guido, M; Libro, G; Losito, L; Sciruicchio, V; Specchio, L M; Puca, F

    2003-06-01

    The aim of the study was to evaluate the laser-induced suppression periods of the temporalis muscle in patients with tension-type headache, compared with the pattern of temporalis activity suppression induced by electrical stimulation. Fifteen patients with chronic and 10 with episodic tension-type headaches were selected. Suppression periods were recorded simultaneously from both temporalis muscles using both electrical stimuli and CO2-laser stimuli. A significant reduction in the later electrically induced suppression period was found in both tension-type headache groups. Laser stimulation induced a first suppression period (LSP1) with a latency of about 50 ms in all patients. The features of LSP1 were similar across groups. The LSP1 should correspond to the first suppression period induced by electrical stimulus, which is partly a nociceptive response, whereas the second period seemed negligibly linked with the activation of pain-related afferents, though probably their activation may contribute to increase the reflex duration and to emphasize abnormalities in tension-type headache.

  11. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    PubMed Central

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus. PMID:26821826

  12. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    NASA Astrophysics Data System (ADS)

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.

  13. The effects of acute restraint stress on nociceptive responses evoked by the injection of formalin into the temporomandibular joint of female rats.

    PubMed

    Botelho, Ana Paula; Gameiro, Gustavo Hauber; Tuma, Carlos Eduardo da Silva Nossa; Marcondes, Fernanda Klein; de Arruda Veiga, Maria Cecília Ferraz

    2010-05-01

    The temporomandibular joint (TMJ) formalin test was used to evaluate the effects of acute restraint stress on the nociceptive behavioral responses of female rats during proestrus and estrus phases of the estrous cycle. Rats were subjected to one session of restraint stress (15, 30 min or 1 h). They were then either immediately killed to allow the collection of blood for hormonal radioimmunoassay determinations or subjected to TMJ formalin test to evaluate nociception. All stress protocols significantly raised the plasma concentrations of corticosterone. The performance of rats subjected to 15 and 30 min of restraint stress was similar to that of control rats, whereas rats that were stressed for 1 h showed a decrease in nociceptive responses, during both proestrus and estrus phases. The stress-induced analgesia (SIA) was greater in the proestrus phase. To evaluate the role of kappa-opioid receptors, the selective receptor kappa-opioid antagonist nor-binaltorphimine (nor-BNI; 200 microg or saline) was injected into the TMJ 24 h prior to the 1 h stress period and the TMJ formalin test. The local administration of nor-BNI partially reversed the SIA during the proestrus phase. These findings suggest that (1) acute stress for 1 h can produce analgesia both during proestrus and estrus phases; this effect is greater during the proestrus phase and (2) kappa-opioid receptor activation is involved in the SIA observed in the proestrus phase.

  14. Application of nucleus pulposus to L5 dorsal root ganglion in rats enhances nociceptive dorsal horn neuronal windup.

    PubMed

    Cuellar, J M; Montesano, P X; Antognini, J F; Carstens, E

    2005-07-01

    Herniation of the nucleus pulposus (NP) from lumbar intervertebral discs commonly results in radiculopathic pain possibly through a neuroinflammatory response. NP sensitizes dorsal horn neuronal responses, but it is unknown whether this reflects a central or peripheral sensitization. To study central sensitization, we tested if NP enhances windup--the progressive increase in the response of a nociceptive spinal neuron to repeated electrical C-fiber stimulation--a phenomenon that may partly account for temporal summation of pain. Single-unit recordings were made from wide dynamic range (WDR; n = 36) or nociceptive-specific (NS; n = 8) L5 dorsal horn neurons in 44 isoflurane-anesthetized rats. Subcutaneous electrodes delivered electrical stimuli (20 pulses, 3 times the C-fiber threshold, 0.5 ms) to the receptive field on the hindpaw. Autologous NP was harvested from a tail disc and placed onto the L5 dorsal root ganglion after recording of baseline responses (n = 22). Controls had saline applied similarly (n = 22). Electrical stimulus trains (0.1, 0.3, and 1 Hz; 5-min interstimulus interval) were repeated every 30 min for 3-6 h after each treatment. The total number of evoked spikes (summed across all 20 stimuli) to 0.1 Hz was enhanced 3 h after NP, mainly in the after-discharge (AD) period (latency > 400 ms). Total responses to 0.3 and 1.0 Hz were also enhanced at > or = 60 min after NP in both the C-fiber (100- to 400-ms latency) and AD periods, whereas the absolute windup (C-fiber + AD - 20 times the initial response) increased at > or = 90 min after treatment. In saline controls, windup was not enhanced at any time after treatment for any stimulus frequency, although there was a trend toward enhancement at 0.3 Hz. These results are consistent with NP-induced central sensitization. Mechanical responses were not significantly enhanced after saline or NP treatment. We speculate that inflammatory agents released from (or recruited by) NP affect the dorsal root

  15. Discriminative stimulus properties of clenbuterol: evidence for beta adrenergic involvement.

    PubMed

    McElroy, J F; O'Donnell, J M

    1988-04-01

    Thirty rats were trained to discriminate the centrally acting beta adrenergic agonist clenbuterol (0.1 mg/kg) from saline using a water-reinforced (fixed-ratio 10 schedule) two-lever operant task. Discrimination acquisition required a mean +/- S.E.M. of 42 +/- 7 training sessions (median of 26 training sessions). The clenbuterol stimulus was dose-dependent (ED50 = 0.03 mg/kg) and stereoselective, and had a rapid onset (5 min) and a duration of approximately 1 hr. The beta adrenergic antagonist propranolol fully antagonized the clenbuterol discriminative stimulus (IC50 = 0.18 mg/kg). Other beta adrenergic agonists such as SOM 1122 (ED50 = 0.01 mg/kg), zinterol (ED50 = 0.03 mg/kg), salbutamol (ED50 = 0.23 mg/kg) and prenalterol (ED50 = 1.91 mg/kg) substituted for clenbuterol. The monoamine uptake inhibitor despiramine (ED50 = 2.25 mg/kg), the psychomotor stimulants amphetamine (ED50 = 0.33 mg/kg) and pentylenetetrazol (ED50 = 0.31 mg/kg), and the dopamine receptor antagonists haloperidol (ED50 = 0.08 mg/kg) and chlorpromazine (ED50 = 2.32 mg/kg) similarly substituted for clenbuterol. However, chlordiazepoxide, pentobarbital, fentanyl, cocaine and fenfluramine produced little or no clenbuterol lever selection up to doses that decreased response rate markedly. The ability of SOM 1122, zinterol, salbutamol, despiramine, amphetamine, pentylenetetrazol and haloperiol to substitute for the clenbuterol stimulus was antagonized by prior treatment with propranolol. Taken together, these results suggest that the discriminative stimulus properties of clenbuterol are mediated, at least in part, through an interaction with beta adrenergic receptors. The same drugs also were assayed for in vitro inhibition of [125I]iodopindolol binding to beta adrenergic receptor preparations of rat cerebral cortex and cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Looking at the hand modulates the brain responses to nociceptive and non-nociceptive somatosensory stimuli but does not necessarily modulate their perception.

    PubMed

    Torta, Diana M; Legrain, Valéry; Mouraux, André

    2015-08-01

    Previous studies have suggested that looking at the hand can reduce the perception of pain and the magnitude of the ERPs elicited by nociceptive stimuli delivered onto the hand. In contrast, other studies have suggested that looking at the hand can increase tactile sensory discrimination performance, and enhance the magnitude of the ERPs elicited by tactile stimulation. These opposite effects could be related to differences in the crossmodal effects between vision, nociception, and touch. However, these differences could also be related to the use of different experimental designs. Importantly, most studies on the effects of vision on pain have relied on a mirror to create the illusion that the reflected hand is a direct view of the stimulated hand. Here, we compared the effects of direct versus mirror vision of the hand versus an object on the perception and ERPs elicited by non-nociceptive and nociceptive stimuli. We did not observe any significant effect of vision on the perceived intensity. However, vision of the hand did reduce the magnitude of the nociceptive N240 wave, and enhanced the magnitude of the non-nociceptive P200. Our results confirm that vision of the body differentially affects nociceptive and non-nociceptive processing, but question the robustness of visual analgesia.

  17. Differential Responses of Thalamic Reticular Neurons to Nociception in Freely Behaving Mice

    PubMed Central

    Huh, Yeowool; Cho, Jeiwon

    2016-01-01

    Pain serves an important protective role. However, it can also have debilitating adverse effects if dysfunctional, such as in pathological pain conditions. As part of the thalamocortical circuit, the thalamic reticular nucleus (TRN) has been implicated to have important roles in controlling nociceptive signal transmission. However studies on how TRN neurons, especially how TRN neuronal subtypes categorized by temporal bursting firing patterns—typical bursting, atypical bursting and non-bursting TRN neurons—contribute to nociceptive signal modulation is not known. To reveal the relationship between TRN neuronal subtypes and modulation of nociception, we simultaneously recorded behavioral responses and TRN neuronal activity to formalin induced nociception in freely moving mice. We found that typical bursting TRN neurons had the most robust response to nociception; changes in tonic firing rate of typical TRN neurons exactly matched changes in behavioral nociceptive responses, and burst firing rate of these neurons increased significantly when behavioral nociceptive responses were reduced. This implies that typical TRN neurons could critically modulate ascending nociceptive signals. The role of other TRN neuronal subtypes was less clear; atypical bursting TRN neurons decreased tonic firing rate after the second peak of behavioral nociception and the firing rate of non-bursting TRN neurons mostly remained at baseline level. Overall, our results suggest that different TRN neuronal subtypes contribute differentially to processing formalin induced sustained nociception in freely moving mice. PMID:27917114

  18. Comparative biology of pain: What invertebrates can tell us about how nociception works.

    PubMed

    Burrell, Brian D

    2017-04-01

    The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.

  19. Nocistatin and prepro-nociceptin/orphanin FQ 160-187 cause nociception through activation of Gi/o in capsaicin-sensitive and of Gs in capsaicin-insensitive nociceptors, respectively.

    PubMed

    Inoue, Makoto; Kawashima, Toshiko; Allen, Richard G; Ueda, Hiroshi

    2003-07-01

    Nociceptin/orphanin FQ (N/OFQ), nocistatin, and prepro-N/OFQ 160-187 (C-peptide) are all derived from the same precursor protein. We examine the pharmacological mechanisms of nocistatin- and C-peptide-induced pronociceptive responses in a novel algogenic-induced nociceptive flexion test in mice. The intraplantar (i.pl.) injection of nocistatin- and C-peptide induced pronociceptive responses in a range of 0.01 to 10 or 1 pmol, respectively, which showed 100- to 1000-fold less potent effects than the N/OFQ. The nociceptive effects of both peptides were not affected by 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazole-2-one (J-113397) (i.pl.), an N/OFQ receptor antagonist, indicating that they are mediated by a novel mechanism independent of activation of N/OFQ receptor. Like N/OFQ, nocistatin-induced nociception was abolished by i.pl. injection of pertussis toxin, phospholipase C inhibitor, or CP-99994, a neurokinin 1 receptor antagonist, indicating that nocistatin may elicit nociception through a substance P release from nociceptor endings via activation of Gi/o and phospholipase C. The nociception was abolished by neonatal pretreatment (s.c.) with capsaicin or by i.t. pretreatment with CP-99994, but not MK-801 (i.t.), an N-methyl-d-aspartate receptor antagonist. In contrast, C-peptide-induced nociception was attenuated by the pretreatment with antisense oligodeoxynucleotide for Galphas (i.t.) and with KT-5720 (i.pl.), a cyclic AMP-dependent protein kinase inhibitor, but not with pertussis toxin. The nociception was neither attenuated by neonatal capsaicin nor by i.t. injection with CP-99994, but it was attenuated by i.t. injection with MK-801. These results suggest that nocistatin and C-peptide derived from prepro-N/OFQ stimulate distinct nociceptive fibers through different in vivo signaling mechanisms.

  20. Nerve growth factor derivative NGF61/100 promotes outgrowth of primary sensory neurons with reduced signs of nociceptive sensitization.

    PubMed

    Severini, C; Petrocchi Passeri, P; Ciotti, M T; Florenzano, F; Petrella, C; Malerba, F; Bruni, B; D'Onofrio, M; Arisi, I; Brandi, R; Possenti, R; Calissano, P; Cattaneo, A

    2017-02-02

    Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease. However, the development of an NGF-based therapy is limited by its potent pain activity. We have developed a "painless" derivative form of human NGF (NGF61/100), characterized by identical neurotrophic properties but a reduced nociceptive sensitization activity in vivo. Here we characterized the response of rat dorsal root ganglia neurons (DRG) to the NGF derivative NGF61/100, in comparison to that of control NGF (NGF61), analyzing the expression of noxious pro-nociceptive mediators. NGF61/100 displays a neurotrophic activity on DRG neurons comparable to that of control NGF61, despite a reduced activation of PLCγ, Akt and Erk1/2. NGF61/100 does not differ from NGF61 in its ability to up-regulate Substance P (SP) and Calcitonin Gene Related Peptide (CGRP) expression. However, upon Bradykinin (BK) stimulation, NGF61/100-treated DRG neurons release a much lower amount of SP and CGRP, compared to control NGF61 pre-treated neurons. This effect of painless NGF is explained by the reduced up-regulation of BK receptor 2 (B2R), respect to control NGF61. As a consequence, BK treatment reduced phosphorylation of the transient receptor channel subfamily V member 1 (TRPV1) in NGF61/100-treated cultures and induced a significantly lower intracellular Ca(2+) mobilization, responsible for the lower release of noxious mediators. Transcriptomic analysis of DRG neurons treated with NGF61/100 or control NGF allowed identifying a small number of nociceptive-related genes that constitute an "NGF pain fingerprint", whose differential regulation by NGF61/100 provides a strong mechanistic basis for its selective reduced pain sensitizing actions.

  1. The hypothalamic NPVF circuit modulates ventral raphe activity during nociception

    PubMed Central

    Madelaine, Romain; Lovett-Barron, Matthew; Halluin, Caroline; Andalman, Aaron S.; Liang, Jin; Skariah, Gemini M.; Leung, Louis C.; Burns, Vanessa M.; Mourrain, Philippe

    2017-01-01

    RFamide neuropeptide VF (NPVF) is expressed by neurons in the hypothalamus and has been implicated in nociception, but the circuit mechanisms remain unexplored. Here, we studied the structural and functional connections from NPVF neurons to downstream targets in the context of nociception, using novel transgenic lines, optogenetics, and calcium imaging in behaving larval zebrafish. We found a specific projection from NPVF neurons to serotonergic neurons in the ventral raphe nucleus (vRN). We showed NPVF neurons and vRN are suppressed and excited by noxious stimuli, respectively. We combined optogenetics with calcium imaging and pharmacology to demonstrate that stimulation of NPVF cells suppresses neuronal activity in vRN. During noxious stimuli, serotonergic neurons activation was due to a suppression of an inhibitory NPVF-ventral raphe peptidergic projection. This study reveals a novel NPVF-vRN functional circuit modulated by noxious stimuli in vertebrates. PMID:28139691

  2. Attention effects on vicarious modulation of nociception and pain.

    PubMed

    Khatibi, Ali; Vachon-Presseau, Etienne; Schrooten, Martien; Vlaeyen, Johan; Rainville, Pierre

    2014-10-01

    The observation of others' facial expressions of pain has been shown to facilitate the observer's nociceptive responses and to increase pain perception. We investigated how this vicarious facilitation effect is modulated by directing the observer's attention toward the meaning of pain expression or the facial movements. In separate trials, participants were instructed to assess the "intensity of the pain expression"(meaning) or to "discriminate the facial movements" in the upper vs lower part of the face shown in 1-second dynamic clips displaying mild, moderate, or strong pain expressions or a neutral control. In 50% of the trials, participants received a painful electrical stimulation to the sural nerve immediately after the presentation of the expression. Low-level nociceptive reactivity was measured with the RIII-response, and pain perception was assessed using pain ratings. Pain induced by the electrical stimulation increased after viewing stronger pain expressions in both tasks, but the RIII-response showed this vicarious facilitation effect only in the movement discrimination task at the strongest expression intensity. These findings are consistent with the notion that vicarious processes facilitate self-pain and may prime automatic nociceptive responses. However, this priming effect is influenced by top-down attentional processes. These results provide another case of dissociation between reflexive and perceptual processes, consistent with the involvement of partly separate brain networks in the regulation of cortical and lower-level nociceptive responses. Combined with previous results, these findings suggest that vicarious pain facilitation is an automatic process that may be diminished by top-down attentional processes directed at the meaning of the expression.

  3. Stimulus conflict triggers behavioral avoidance.

    PubMed

    Dignath, David; Eder, Andreas B

    2015-12-01

    According to a recent extension of the conflict-monitoring theory, conflict between two competing response tendencies is registered as an aversive event and triggers a motivation to avoid the source of conflict. In the present study, we tested this assumption. Over five experiments, we examined whether conflict is associated with an avoidance motivation and whether stimulus conflict or response conflict triggers an avoidance tendency. Participants first performed a color Stroop task. In a subsequent motivation test, participants responded to Stroop stimuli with approach- and avoidance-related lever movements. These results showed that Stroop-conflict stimuli increased the frequency of avoidance responses in a free-choice motivation test, and also increased the speed of avoidance relative to approach responses in a forced-choice test. High and low proportions of response conflict in the Stroop task had no effect on avoidance in the motivation test. Avoidance of conflict was, however, obtained even with new conflict stimuli that had not been presented before in a Stroop task, and when the Stroop task was replaced with an unrelated filler task. Taken together, these results suggest that stimulus conflict is sufficient to trigger avoidance.

  4. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Lin, Heng-Teng; Chen, Yu-Wen; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-04-05

    This study aimed to assess the local anesthetic effects of chlorpheniramine in spinal anesthesia and is compared with mepivacaine, a widely-used local anesthetic. Spinal anesthesia with chlorpheniramine and mepivacaine was constructed in a dosage-dependent fashion after the rats were injected intrathecally. The spinal block effect of chlorpheniramine in motor function, nociception, and proprioception was compared to that of mepivacaine. We revealed that intrathecal chlorpheniramine and mepivacaine exhibited a dose-dependent spinal block of motor function, nociception, and proprioception. On the 50% effective dose (ED50) basis, the ranks of potencies in motor function, nociception, and proprioception were chlorpheniramine>mepivacaine (P<0.01 for the differences). On the equianesthetic basis (ED25, ED50, ED75), the duration of spinal anesthesia with chlorpheniramine was greater than that of mepivacaine (P<0.01 for the differences). Instead of mepivacaine, chlorpheniramine produced a greater duration of sensory blockade than the motor blockade. These preclinical data showed that chlorpheniramine has a better sensory-selective action over motor block to produce more potent and long-lasting spinal anesthesia than mepivacaine.

  5. Inference of pain stimulus level from stereotypical behavioral response of C.elegans allows quantification of effects of anesthesia and mutation

    NASA Astrophysics Data System (ADS)

    Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya

    In animals, we must infer the pain level from experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. To establish C.elegans as a model for pain research, we propose for the first time a quantitative model that allows inference of a thermal nociceptive stimulus level from the behavior of an individual worm. We apply controlled levels of pain by locally heating worms with an infrared laser and capturing the subsequent behavior. We discover that the behavioral response is a product of stereotypical behavior and a nonlinear function of the strength of stimulus. The same stereotypical behavior is observed in normal, anesthetized and mutated worms. From this result we build a Bayesian model to infer the strength of laser stimulus from the behavior. This model allows us to measure the efficacy of anaesthetization and mutation by comparing the inferred strength of stimulus. Based on the measured nociceptive escape of over 200 worms, our model is able to significantly differentiate normal, anaesthetized and mutated worms with 40 worm samples. This work was partially supported by NSF Grant No. IOS/1208126 and HFSP Grant No. RGY0084/.

  6. Nociception and escape behavior in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  7. [Roles of histamine receptors in pain perception: a study using receptors gene knockout mice].

    PubMed

    Yanai, Kazuhiko; Mobarakeh, Jalal Izadi; Kuramasu, Atsuo; Sakurada, Shinobu

    2003-11-01

    To study the participation of histamine H1- and H2-receptors in pain perception, H1 and H2 receptor knockout (KO) mice were examined for pain threshold by means of three kinds of nociceptive tasks. These included assays for thermal, mechanical, and chemical nociception. H1KO mice showed significantly fewer nociceptive responses to the hot-plate, tail-flick, tail-pressure, paw-withdrawal, formalin, capsaicin, and abdominal constriction tests. Sensitivity to noxious stimuli in H1KO mice was significantly decreased when compared to wild-type mice. The antinociceptive phenotypes of H2KO were relatively less prominent when compared to H1KO mice. We also examined the antinociceptive effects of intrathecally-, intracerebroventricularly-, and subcutaneously-administered morphine in H1KO and H2KO mice. In these nociceptive assays, the antinociceptive effects produced by morphine were more enhanced in both H1KO and H2KO mice. The effects of histamine H1- and H2-receptor antagonists on morphine-induced antinociception were studied in ICR mice. The intrathecal, intracerebroventricular and subcutaneous co-administrations of d-chlorpheniramine enhanced the effects of morphine in all nociceptive assays examined. In addition, intrathecal co-administrations of cimetidine enhanced the antinociception of morphine in the hot plate tests. These results suggest that existing H1 and H2 receptors play an inhibitory role in morphine-induced antinociception in the spinal and supra-spinal levels.

  8. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects.

    PubMed

    Zvejniece, Liga; Vavers, Edijs; Svalbe, Baiba; Veinberg, Grigory; Rizhanova, Kristina; Liepins, Vilnis; Kalvinsh, Ivars; Dambrova, Maija

    2015-10-01

    Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain

  9. Discriminative stimulus properties of indorenate, a serotonin agonist.

    PubMed Central

    Velázquez-Martínez, D N; López Cabrera, M; Sánchez, H; Ramírez, J I; Hong, E

    1999-01-01

    OBJECTIVE: To determine whether indorenate, a serotonin-receptor agonist, can exert discriminative control over operant responses, to establish the temporal course of discriminative control and to compare its stimulus properties to a (5-HT)IA receptor agonist. [3H]-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT). DESIGN: Prospective animal study. ANIMALS: Ten male Wistar rats. INTERVENTIONS: Rats were trained to press either of 2 levers for sucrose solution according to a fixed ratio schedule, which was gradually increased. Rats were given injections of either indorenate or saline solution during discrimination training. Once they had achieved an 83% accuracy rate, rats underwent generalization tests after having received a different dose of indorenate, the training dose of indorenate at various intervals before the test, various doses of 8-OH-DPT, or NAN-190 administered before indorenate or 8-OH-DPAT. OUTCOME MEASURES: Distribution of responses between the 2 levers before the first reinforcer of the session, response rate for all the responses in the session, and a discrimination index that expressed the drug-appropriate responses as a proportion of the total responses. RESULTS: Indorenate administration resulted in discriminative control over operant responses, maintained at fixed ratio 10, at a dose of 10.0 mg/kg (but not 3.0 mg/kg). When the interval between the administration of indorenate and the start of the session was varied, the time course of its cue properties followed that of its described effects on 5-HT turnover. In generalization tests, the discrimination index was a function of the dose of indorenate employed; moreover, administration of 8-OH-DPAT (from 0.1 to 1.0 mg/kg) fully mimicked the stimulus properties of indorenate in a dose-dependent way. The (5-HT)IA antagonist NAN-190 prevented the stimulus generalization from indorenate to 8-OH-DPAT. Also, NAN-190 antagonized the stimulus control of indorenate when administered 45 minutes before

  10. Mildly Increased Mechanical Nociceptive Sensitivity in REV-ERBα Knock-out Mice

    PubMed Central

    Lee, Jaehyun; Ko, Hyoung-Gon; Kim, Kyungjin

    2016-01-01

    Nociception is one of the most complex senses that is affected not only by external stimulation but also internal conditions. Previous studies have suggested that circadian rhythm is important in modulating nociception. REV-ERBα knock-out (KO) mice have disrupted circadian rhythm and altered mood-related phenotypes. In this study, we examined the role of REV-ERBα in inflammatory nociception. We found that the nociceptive sensitivity of KO mice was partially enhanced in mechanical nociception. However, this partial alteration was independent of the circadian rhythm. Taken together, deletion of REV-ERBα induced a mild change in mechanical nociceptive sensitivity but this alteration was not dependent on the circadian rhythm. PMID:28035185

  11. The use of small molecule probes to study spatially separated stimulus-induced signaling pathways

    PubMed Central

    Kravchenko, Vladimir V.; Glöckner, Christian; Stowe, G. Neil; Kang, Young J.; Tobias, Peter S.; Mathison, John C.; Ulevitch, Richard J.; Kaufmann, Gunnar F.; Janda, Kim D.

    2012-01-01

    Simultaneous activation of signaling pathways requires dynamic assembly of higher-order protein complexes at the cytoplasmic domains of membrane-associated receptors in a stimulus-specific manner. Here, using the paradigm of cellular activation through cytokine and innate immune receptors, we demonstrate the proof-of-principle application of small molecule probes for the dissection of receptor-proximal signaling processes, such as activation of the transcription factor NF- B and the protein kinase p38. PMID:22300658

  12. Does stimulus appearance affect learning?

    PubMed

    Pothos, Emmanuel M; Chater, Nick; Ziori, Eleni

    2006-01-01

    We examined the learning process with 3 sets of stimuli that have identical symbolic structure but differ in appearance (meaningless letter strings, arrangements of geometric shapes, and sequences of cities). One hypothesis is that the learning process aims to encode symbolic regularity in the same way, largely regardless of appearance. Another is that different types of stimuli bias the learning process to operate in different ways. Using the experimental paradigm of artificial grammar learning, we provided a preliminary test of these hypotheses. In Experiments 1 and 2 we measured performance in terms of grammaticality and found no difference across the 3 sets of stimuli. In Experiment 3 we analyzed performance in terms of both grammaticality and chunk strength. Again we found no differences in performance. Our tentative conclusion is that the learning process aims to encode symbolic regularity independent of stimulus appearance.

  13. Poverty of the stimulus revisited.

    PubMed

    Berwick, Robert C; Pietroski, Paul; Yankama, Beracah; Chomsky, Noam

    2011-01-01

    A central goal of modern generative grammar has been to discover invariant properties of human languages that reflect "the innate schematism of mind that is applied to the data of experience" and that "might reasonably be attributed to the organism itself as its contribution to the task of the acquisition of knowledge" (Chomsky, 1971). Candidates for such invariances include the structure dependence of grammatical rules, and in particular, certain constraints on question formation. Various "poverty of stimulus" (POS) arguments suggest that these invariances reflect an innate human endowment, as opposed to common experience: Such experience warrants selection of the grammars acquired only if humans assume, a priori, that selectable grammars respect substantive constraints. Recently, several researchers have tried to rebut these POS arguments. In response, we illustrate why POS arguments remain an important source of support for appeal to a priori structure-dependent constraints on the grammars that humans naturally acquire.

  14. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice.

    PubMed

    Entrena, José Manuel; Cobos, Enrique José; Nieto, Francisco Rafael; Cendán, Cruz Miguel; Gris, Georgia; Del Pozo, Esperanza; Zamanillo, Daniel; Baeyens, José Manuel

    2009-06-01

    We evaluated the role of sigma(1) receptors on capsaicin-induced mechanical hypersensitivity and on nociceptive pain induced by punctate mechanical stimuli, using wild-type and sigma(1) receptor knockout (sigma(1)-KO) mice and selective sigma(1) receptor-acting drugs. Mutation in sigma(1)-KO mice was confirmed by PCR analysis of genomic DNA and, at the protein level, by [(3)H](+)-pentazocine binding assays. Both wild-type and sigma(1)-KO mice not treated with capsaicin showed similar responses to different intensities of mechanical stimuli (0.05-8 g force), ranging from innocuous to noxious, applied to the hind paw. This indicates that sigma(1) gene inactivation does not modify the perception of punctate mechanical stimuli. The intraplantar (i.pl.) administration of capsaicin induced dose-dependent mechanical allodynia in wild-type mice (markedly reducing both the threshold force necessary to induce paw withdrawal and the latency to paw withdrawal induced by a given force). In contrast, capsaicin was completely unable to induce mechanical hypersensitivity in sigma(1)-KO mice. The high-affinity and selective sigma(1) antagonists BD-1063, BD-1047 and NE-100, administered subcutaneously (s.c.), dose-dependently inhibited mechanical allodynia induced by capsaicin (1 microg,i.pl.), yielding ED(50) (mg/kg) values of 15.80+/-0.93, 29.31+/-1.65 and 40.74+/-7.20, respectively. The effects of the sigma(1) antagonists were reversed by the sigma(1) agonist PRE-084 (32 mg/kg, s.c.). None of the drugs tested modified the responses induced by a painful mechanical punctate stimulus (4 g force) in nonsensitized animals. These results suggest that sigma(1) receptors are essential for capsaicin-induced mechanical hypersensitivity, but are not involved in mechanical nociceptive pain.

  15. Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain.

    PubMed

    Lagard, Camille; Chevillard, Lucie; Guillemyn, Karel; Risède, Patricia; Laplanche, Jean-Louis; Spetea, Mariana; Ballet, Steven; Mégarbane, Bruno

    2017-03-01

    Drugs able to treat both nociceptive and neuropathic pain effectively without major side effects are lacking. We developed a bifunctional peptide-based hybrid (KGNOP1) that structurally combines a mu-opioid receptor agonist (KGOP1) with antinociceptive activity and a weak nociceptin receptor antagonist (KGNOP3) with anti-neuropathic pain activity. We investigated KGNOP1-related behavioral effects after intravenous administration in rats by assessing thermal nociception, cold hyperalgesia in a model of neuropathic pain induced by chronic constriction injury of the sciatic nerve, and plethysmography parameters including inspiratory time (TI) and minute ventilation (VM) in comparison to the well-known opioid analgesics, tramadol and morphine. Time-course and dose-dependent effects were investigated for all behavioral parameters to determine the effective doses 50% (ED50). Pain-related effects on cold hyperalgesia were markedly increased by KGNOP1 as compared to KGNOP3 and tramadol (ED50: 0.0004, 0.32, and 12.1 μmol/kg, respectively), whereas effects on thermal nociception were significantly higher with KGNOP1 as compared to morphine (ED50: 0.41 and 14.7 μmol/kg, respectively). KGNOP1 and KGOP1 produced a larger increase in TI and deleterious decrease in VM in comparison to morphine and tramadol (ED50(TI): 0.63, 0.52, 12.2, and 50.9 μmol/kg; ED50(VM): 0.57, 0.66, 10.6, and 50.0 μmol/kg, respectively). Interestingly, the calculated ratios of anti-neuropathic pain/antinociceptive to respiratory effects revealed that KGNOP1 was safer than tramadol (ED50 ratio: 5.44 × 10 vs 0.24) and morphine (ED50 ratio: 0.72 vs 1.39). We conclude that KGNOP1 is able to treat both experimental neuropathic and nociceptive pain, more efficiently and safely than tramadol and morphine, respectively, and thus should be a candidate for future clinical developments.

  16. Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain

    PubMed Central

    Lagard, Camille; Chevillard, Lucie; Guillemyn, Karel; Risède, Patricia; Laplanche, Jean-Louis; Spetea, Mariana; Ballet, Steven; Mégarbane, Bruno

    2016-01-01

    Abstract Drugs able to treat both nociceptive and neuropathic pain effectively without major side effects are lacking. We developed a bifunctional peptide-based hybrid (KGNOP1) that structurally combines a mu-opioid receptor agonist (KGOP1) with antinociceptive activity and a weak nociceptin receptor antagonist (KGNOP3) with anti-neuropathic pain activity. We investigated KGNOP1-related behavioral effects after intravenous administration in rats by assessing thermal nociception, cold hyperalgesia in a model of neuropathic pain induced by chronic constriction injury of the sciatic nerve, and plethysmography parameters including inspiratory time (TI) and minute ventilation (VM) in comparison to the well-known opioid analgesics, tramadol and morphine. Time-course and dose-dependent effects were investigated for all behavioral parameters to determine the effective doses 50% (ED50). Pain-related effects on cold hyperalgesia were markedly increased by KGNOP1 as compared to KGNOP3 and tramadol (ED50: 0.0004, 0.32, and 12.1 μmol/kg, respectively), whereas effects on thermal nociception were significantly higher with KGNOP1 as compared to morphine (ED50: 0.41 and 14.7 μmol/kg, respectively). KGNOP1 and KGOP1 produced a larger increase in TI and deleterious decrease in VM in comparison to morphine and tramadol (ED50(TI): 0.63, 0.52, 12.2, and 50.9 μmol/kg; ED50(VM): 0.57, 0.66, 10.6, and 50.0 μmol/kg, respectively). Interestingly, the calculated ratios of anti-neuropathic pain/antinociceptive to respiratory effects revealed that KGNOP1 was safer than tramadol (ED50 ratio: 5.44 × 10−3 vs 0.24) and morphine (ED50 ratio: 0.72 vs 1.39). We conclude that KGNOP1 is able to treat both experimental neuropathic and nociceptive pain, more efficiently and safely than tramadol and morphine, respectively, and thus should be a candidate for future clinical developments. PMID:28135212

  17. The effects in rats of lisdexamfetamine in combination with olanzapine on mesocorticolimbic dopamine efflux, striatal dopamine D2 receptor occupancy and stimulus generalization to a D-amphetamine cue.

    PubMed

    Hutson, Peter H; Rowley, Helen L; Gosden, James; Kulkarni, Rajiv S; Slater, Nigel; Love, Patrick L; Wang, Yiyun; Heal, David

    2016-02-01

    The etiology of schizophrenia is poorly understood and two principle hypotheses have dominated the field. Firstly, that subcortical dopamine function is enhanced while cortical dopamine function is reduced and secondly, that cortical glutamate systems are dysfunctional. It is also widely accepted that currently used antipsychotics have essentially no impact on cognitive deficits and persistent negative symptoms in schizophrenia. Reduced dopamine transmission via dopamine D1 receptors in the prefrontal cortex has been hypothesized to be involved in the aetiology of these symptom domains and enhancing cortical dopamine transmission within an optimal window has been suggested to be potentially beneficial. In these pre-clinical studies we have determined that combined administration of the d-amphetamine pro-drug, lisdexamfetamine and the atypical antipsychotic olanzapine increased dopamine efflux in the rat prefrontal cortex and nucleus accumbens to an extent greater than either drug given separately without affecting olanzapine's ability to block striatal dopamine D2 receptors which is important for its antipsychotic activity. Furthermore, in an established rodent model used to compare the subjective effects of novel compounds the ability of lisdexamfetamine to generalize to a d-amphetamine cue was dose-dependently attenuated when co-administered with olanzapine suggesting that lisdexamfetamine may produce less marked subjective effects when administered adjunctively with olanzapine.

  18. Calcium-permeable acid-sensing ion channel in nociceptive plasticity: a new target for pain control.

    PubMed

    Xu, Tian-Le; Duan, Bo

    2009-02-01

    The development of chronic pain involves increased sensitivity of peripheral nociceptors and elevated neuronal activity in many regions of the central nervous system. Much of these changes are caused by the amplification of nociceptive signals resulting from the modulation and altered expression of specific ion channels and receptors in the central and peripheral nervous system. Understanding the processes by which these ion channels and receptors are regulated and how these mechanisms malfunction may lead to new treatments for chronic pain. Here we review the contribution of the Ca2+-permeable acid-sensing ion channel (ASIC(Ca)) in the development and persistence of chronic pain, and the potential underlying mechanisms. Accumulating evidence suggests that ASIC(Ca) represents an attractive new target for developing effective therapies for chronic pain.

  19. Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons.

    PubMed

    Cornelison, Lauren E; Hawkins, Jordan L; Durham, Paul L

    2016-12-17

    Orofacial pain conditions including temporomandibular disorder (TMD) and migraine are characterized by peripheral and central sensitization of trigeminal nociceptive neurons. The goal of this study was to investigate the role of calcitonin gene-related peptide (CGRP) in promoting bidirectional signaling within the trigeminal system to mediate sensitization of primary nociceptive neurons. Adult male Sprague-Dawley rats were injected intercisternally with CGRP or co-injected with the receptor antagonist CGRP8-37 or KT 5720, a protein kinase A (PKA) inhibitor. Nocifensive head withdrawal response to mechanical stimulation was investigated using von Frey filaments. Expression of PKA, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the spinal cord and phosphorylated extracellular signal-regulated kinase (P-ERK) in the ganglion was studied using immunohistochemistry. Some animals were co-injected with CGRP and Fast Blue dye and the ganglion was imaged using fluorescent microscopy. CGRP increased nocifensive responses to mechanical stimulation when compared to control. Co-injection of CGRP8-37 or KT 5720 with CGRP inhibited the nocifensive response. CGRP stimulated PKA and GFAP expression in the spinal cord, and P-ERK in ganglion neurons. Seven days post injection, Fast Blue was observed in ganglion neurons and satellite glial cells. Our results demonstrate that elevated levels of CGRP in the upper spinal cord promote sensitization of primary nociceptive neurons via a mechanism that involves activation of PKA centrally and P-ERK in ganglion neurons. Our findings provide evidence of bidirectional signaling within the trigeminal system that facilitate increased neuron-glia communication within the ganglion associated with trigeminal sensitization.

  20. The transition from naïve to primed nociceptive state: A novel wind-up protocol in mice.

    PubMed

    Ziv, Nadav Y; Tal, Michael; Shavit, Yehuda

    2016-01-01

    Wind-up (WU) is a progressive, frequency-dependent facilitation of spinal cord neurons in response to repetitive nociceptive stimulation of constant intensity. We identified a new WU-associated phenomenon in naïve mice (not exposed to noxious stimulation immediately prior to WU stimulation), which were subjected to a novel experimental protocol composed of three consecutive trains of WU stimulation. The 1st train produced a typical linear 'wind-up' curve as expected following a repeating series of stimuli; in addition, this 1st train sensitized ('primed') the nociceptive system so that the responses to two subsequent trains (inter-train interval of 10 min) were significantly amplified compared with the response to the 1st train. We named this augmented response potentiation-of-windup, or "PoW". The PoW phenomenon appears to be centrally mediated, as the augmented response was suppressed by administration of an NMDA receptor antagonist (MK-801) and by cutting the spinal cord. Furthermore, the PoW protocol is accompanied by enhanced pain behavior. The 'priming' effect of the 1st train could be mimicked by exposure to natural noxious stimuli prior to the PoW protocol. Presumably, the PoW phenomenon has not been previously reported due to a procedural reason: typically, WU protocols have been executed in 'primed' rather than naïve animals, i.e., animals exposed to nociceptive stimulation prior to the actual WU recording. Our findings indicate that the PoW paradigm can distinguish between 'naïve' and 'primed' states, suggesting its use as a tool for the assessment of central sensitization.

  1. MDMA stimulus generalization to the 5-HT(1A) serotonin agonist 8-hydroxy-2- (di-n-propylamino)tetralin.

    PubMed

    Glennon, R A; Young, R

    2000-07-01

    The abused substance N-methyl-1-(3, 4-methylenedioxyphenyl)-2-aminopropane, or MDMA, serves as a training drug in animals. Because the 5-HT(1A) receptor antagonist NAN-190 has been shown to partially antagonize the MDMA stimulus, and because NAN-190 binds at several different types of receptors, in the present study we examined other agents (e.g., adrenergic, dopaminergic, sigma) in tests of stimulus generalization and stimulus antagonism to determine their influence on the MDMA stimulus. Each of these agents (i.e., clenbuterol, S(-)propranolol, R(+)SCH-23390, amantadine, NANM) was without effect on MDMA-appropriate responding. The finding that NAN-190 behaves as a 5-HT(1A) partial agonist in some studies prompted examination of the 5-HT(1A) receptor agonist 8-OH DPAT and its optical isomers. MDMA-stimulus generalization occurred to racemic 8-OH DPAT (ED(50) = 0.3 mg/kg), R(+)8-OH DPAT (ED(50) = 0.2 mg/kg), and to the 5-HT(1A) receptor partial agonist S(-)8-OH DPAT (ED(50) = 0.4 mg/kg). The results suggest that the MDMA stimulus might possess a 5-HT(1A) component of action. Furthermore, because 8-OH DPAT is known to enhance the stimulus effects of hallucinogens as discriminative stimuli, and because MDMA reportedly enhances the effects of hallucinogenic agents in humans ("flipping," "candy flipping"), this latter MDMA-induced phenomenon might involve a 5-HT(1A) mechanism.

  2. Investigation of Stimulus-Response Compatibility Using a Startling Acoustic Stimulus

    ERIC Educational Resources Information Center

    Maslovat, Dana; Carlsen, Anthony N.; Franks, Ian M.

    2012-01-01

    We investigated the processes underlying stimulus-response compatibility by using a lateralized auditory stimulus in a simple and choice reaction time (RT) paradigm. Participants were asked to make either a left or right key lift in response to either a control (80dB) or startling (124dB) stimulus presented to either the left ear, right ear, or…

  3. (-)-α-Bisabolol attenuates visceral nociception and inflammation in mice.

    PubMed

    Leite, Gerlânia de O; Leite, Laura H I; Sampaio, Renata de S; Araruna, Mariana Késsia A; de Menezes, Irwin Rose A; da Costa, José Galberto M; Campos, Adriana R

    2011-03-01

    The study examined the antiinflammatory and antinociceptive effects of the sesquiterpene (-)-α-bisabolol (BISA). The antiinflammatory effect was evaluated on acute models of dermatitis induced by Croton oil, arachidonic acid, phenol and capsaicin, respectively, in mouse ear. BISA inhibited the dermatitis induced by all noxious agents, except capsaicin. BISA was assessed in two established mouse models of visceral nociception. Mice were pretreated orally with BISA, and the pain-related behavioral responses to intraperitoneal cyclophosphamide or to intracolonic mustard oil were analyzed. BISA showed a dose-unrelated significant antinociception. Collectively, the results suggest that BISA may be an topical antiinflammatory and visceral antinociceptive agent.

  4. Why Additional Presentations Help Identify a Stimulus

    ERIC Educational Resources Information Center

    Guest, Duncan; Kent, Christopher; Adelman, James S.

    2010-01-01

    Nosofsky (1983) reported that additional stimulus presentations within a trial increase discriminability in absolute identification, suggesting that each presentation creates an independent stimulus representation, but it remains unclear whether exposure duration or the formation of independent representations improves discrimination in such…

  5. Stimulus Intensity and the Perception of Duration

    ERIC Educational Resources Information Center

    Matthews, William J.; Stewart, Neil; Wearden, John H.

    2011-01-01

    This article explores the widely reported finding that the subjective duration of a stimulus is positively related to its magnitude. In Experiments 1 and 2 we show that, for both auditory and visual stimuli, the effect of stimulus magnitude on the perception of duration depends upon the background: Against a high intensity background, weak stimuli…

  6. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  7. Stimulus Overselectivity: Empirical Basis and Diagnostic Methods

    ERIC Educational Resources Information Center

    Cipani, Ennio

    2012-01-01

    This paper presents the empirical basis for the phenomena known as stimulus overselectivity. Stimulus overselectivity involves responding on the basis of a restricted range of elements or features that are discriminative for reinforcement. The manner in which such a response pattern impedes the skill acquisition in children is identified. A…

  8. The role of mu and kappa opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia.

    PubMed

    Bellgowan, P S; Helmstetter, F J

    1998-04-27

    The periaqueductal gray (PAG) is a midbrain structure involved in the modulation of pain and expression of classically conditioned fear responses. Non-selective opioid antagonists applied to the PAG block the expression of hypoalgesia in rats exposed to a Pavlovian signal for shock. This study was conducted to determine the anatomical and pharmacological specificity of the PAG's role in conditional hypoalgesia. Rat subjects received injections of either the mu opioid antagonist CTAP (6.6 nMol), the kappa opioid antagonist Nor-binaltorphimine (Nor-BNI, 6.6 nMol) or saline. Injections were made into either the dorsolateral (dlPAG) or ventrolateral (vlPAG) PAG prior to the presentation of an auditory stimulus that had previously been paired with foot shock while measuring nociception with the radiant heat tail flick (TF) test. Elevation in TF latency in response to the auditory stimulus was blocked only by administration of CTAP into the vlPAG. These results suggest that conditional hypoalgesia (CHA) is subserved by mu but not kappa opioid receptors located in the vlPAG but not the dlPAG.

  9. Electrophysiological Measurements and Analysis of Nociception in Human Infants

    PubMed Central

    Patten, D.; Holdridge, S.; Cornelissen, L.; Meek, J.; Boyd, S.; Slater, R.

    2011-01-01

    Pain is an unpleasant sensory and emotional experience. Since infants cannot verbally report their experiences, current methods of pain assessment are based on behavioural and physiological body reactions, such as crying, body movements or changes in facial expression. While these measures demonstrate that infants mount a response following noxious stimulation, they are limited: they are based on activation of subcortical somatic and autonomic motor pathways that may not be reliably linked to central sensory processing in the brain. Knowledge of how the central nervous system responds to noxious events could provide an insight to how nociceptive information and pain is processed in newborns. The heel lancing procedure used to extract blood from hospitalised infants offers a unique opportunity to study pain in infancy. In this video we describe how electroencephalography (EEG) and electromyography (EMG) time-locked to this procedure can be used to investigate nociceptive activity in the brain and spinal cord. This integrative approach to the measurement of infant pain has the potential to pave the way for an effective and sensitive clinical measurement tool. PMID:22214879

  10. Collecting and Measuring Nociceptive and Inflammatory Mediators in Surgical Wounds

    PubMed Central

    Carvalho, Brendan; Clark, David J.; Yeomans, David; Angst, Martin S.

    2008-01-01

    The objectives of this study were to test the feasibility of collecting and measuring inflammatory and nociceptive biochemical mediators at the surgical site; to evaluate the relationship between wound and serum levels; and to determine any associations between mediator release, pain and analgesic consumption post-cesarean delivery. Twenty healthy women undergoing elective cesarean delivery with spinal anesthesia were enrolled. Wound exudate and serum mediators, pain scores and analgesics consumption were measured at 1, 6, 24, and 48 hours post-cesarean. In wound exudate, 19 out of 20 mediators were reliably detected including IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα, INFγ, G-CSF, GM-CSF, MCP-1 and MIP-1β, nerve growth factor (NGF), prostaglandin E2 (PG-E2) and substance P. Wound PG-E2 and various cytokines peaked early, whereas NGF showed a more delayed release. There were no correlations between the concentration versus time profile of wound and serum cytokines. This study demonstrates the feasibility of collecting and measuring nociceptive and inflammatory mediators in surgical wounds at specific time points. The lack of significant correlations between wound and serum levels emphasizes the importance of determining site-specific release if localized pathologies are to be studied. PMID:19078937

  11. Comparison of operant escape and reflex tests of nociceptive sensitivity.

    PubMed

    Vierck, Charles J; Yezierski, Robert P

    2015-04-01

    Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.

  12. Inflammation and hyperalgesia in rats neonatally treated with capsaicin: effects on two classes of nociceptive neurons in the superficial dorsal horn.

    PubMed

    Ren, K; Williams, G M; Ruda, M A; Dubner, R

    1994-11-01

    To address the mechanisms of hyperalgesia and dorsal horn plasticity following peripheral tissue inflammation, the effects of adjuvant-induced inflammation of the rat hindpaw on behavioral nociception and nociceptive neuronal activity in the superficial dorsal horn were examined in neonatally capsaicin-treated rats 6-8 weeks of age. Capsaicin treatment resulted in an 82% loss of unmyelinated fibers in L5 dorsal roots, a dramatic reduction of substance P-like immunoreactivity in the spinal cord, and a significant decrease in the percentage of dorsal horn nociceptive neurons that responded to C-fiber stimulation and noxious heating of the skin. The thermal nociceptive threshold was significantly increased in capsaicin-treated rats, but behavioral hyperalgesia to thermal stimuli still developed in response to inflammation. Following inflammation, there was a significant decrease in mechanical threshold and an increase in response duration to mechanical stimuli in both vehicle- and capsaicin-treated rats, suggesting that a state of mechanical hyperalgesia was also induced. The capsaicin treatment appears to have differential effects on nociceptive specific (NS) and wide-dynamic-range (WDR) neurons in inflamed rats. Expansion of the receptive fields of nociceptive neurons, a measure of the effect of inflammation-induced CNS plasticity, was less extensive for NS than for WDR neurons in capsaicin-treated rats. Compared to vehicle-treated rats, a smaller population of NS neurons, but a similar percentage of WDR neurons, had background activity in inflamed capsaicin-treated rats. C-fiber strength electrical stimulation of the sciatic nerve produced expansion of the receptive fields in a greater portion of NS neurons (53%, P < 0.05) in capsaicin- than in vehicle-treated rats (32%). There was no difference in stimulation-induced expansion of the receptive fields for WDR neurons between vehicle- or capsaicin-treated rats. An N-methyl-D-aspartate receptor antagonist, MK-801

  13. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception.

    PubMed

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E; Nordmann, Grégory C; Schladt, Moritz; Milenkovic, Vladimir M; Kulkarni, Ashok B; Wetzel, Christian H

    2016-02-23

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity.

  14. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception

    PubMed Central

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E.; Nordmann, Grégory C.; Schladt, Moritz; Milenkovic, Vladimir M.; Kulkarni, Ashok B.; Wetzel, Christian H.

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca2+-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  15. Physiological Signal Processing for Individualized Anti-nociception Management During General Anesthesia: A Review

    PubMed Central

    Bonhomme, V.; Jeanne, M.; Boselli, E.; Gruenewald, M.; Logier, R.; Richebé, P.

    2015-01-01

    Summary Objective The aim of this paper is to review existing technologies for the nociception / anti-nociception balance evaluation during surgery under general anesthesia. Methods General anesthesia combines the use of analgesic, hypnotic and muscle-relaxant drugs in order to obtain a correct level of patient non-responsiveness during surgery. During the last decade, great efforts have been deployed in order to find adequate ways to measure how anesthetic drugs affect a patient’s response to surgical nociception. Nowadays, though some monitoring devices allow obtaining information about hypnosis and muscle relaxation, no gold standard exists for the nociception / anti-nociception balance evaluation. Articles from the PubMed literature search engine were reviewed. As this paper focused on surgery under general anesthesia, articles about nociception monitoring on conscious patients, in post-anesthesia care unit or in intensive care unit were not considered. Results In this article, we present a review of existing technologies for the nociception / anti-nociception balance evaluation, which is based in all cases on the analysis of the autonomous nervous system activity. Presented systems, based on sensors and physiological signals processing algorithms, allow studying the patients’ reaction regarding anesthesia and surgery. Conclusion Some technological solutions for nociception / antinociception balance monitoring were described. Though presented devices could constitute efficient solutions for individualized anti-nociception management during general anesthesia, this review of current literature emphasizes the fact that the choice to use one or the other mainly relies on the clinical context and the general purpose of the monitoring. PMID:26293855

  16. Brief Isolation Changes Nociceptive Behaviors and Compromises Drug Tests in Mice.

    PubMed

    Han, Rafael Taeho; Lee, Hyunkyoung; Lee, JaeHee; Lee, Sat-Byol; Kim, Hee Jin; Back, Seung Keun; Na, Heung Sik

    2016-07-01

    Herding with a litter is known to comfort rodents, whereas isolation and grouping with noncagemates provoke stress. The effects of stress induced by isolation and grouping with noncagemates on pain responses, and their underlying mechanisms remain elusive. We assessed the effect of isolation, a common condition during behavioral tests, and of grouping on defecation and pain behaviors of mice. Fecal pellets were counted 2 hours after exposure to the test chamber. It is significantly more in the isolated mice than in the grouped mice. Hindpaw withdrawal threshold and withdrawal latency were adopted as the indicatives of mechanical and thermal pain sensitivities, respectively. Interestingly, isolated mice showed higher pain thresholds than mice grouping with cagemates, and even those with noncagemates, indicating analgesic effects. Such effects were reduced by intrathecal injection of 0.01 mg/kg of naloxone (opioid receptor antagonist), atosiban (oxytocin and vasopressin receptor antagonist), and ketanserin (5-HT receptor antagonist). Intraperitoneal delivery of 1 mg/kg of naloxone and atosiban, but not ketanserin, also alleviated the isolation-induced analgesic effects. In contrast, these drugs at the same dose had no significant effect on the mice grouping with cagemates. In addition, the effect of morphine on thermal pain was more robust in the mice grouping with cagemates than in the isolated mice. These data demonstrated that brief isolation caused analgesia, mediated by endogenous opioidergic, oxytocinergic, and serotonergic pathways. These results indicate that isolation during pain behavioral tests can affect pain responses and the efficacy of drugs; thus, nociception tests should be conducted in grouping.

  17. Continuous- and discrete-time stimulus sequences for high stimulus rate paradigm in evoked potential studies.

    PubMed

    Wang, Tao; Huang, Jiang-hua; Lin, Lin; Zhan, Chang'an A

    2013-01-01

    To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.

  18. Continuous- and Discrete-Time Stimulus Sequences for High Stimulus Rate Paradigm in Evoked Potential Studies

    PubMed Central

    Wang, Tao; Huang, Jiang-hua; Lin, Lin

    2013-01-01

    To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm. PMID:23606900

  19. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    PubMed

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-04

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  20. Redox-Dependent Modulation of T-Type Ca2+ Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P

    PubMed Central

    Huang, Dongyang; Huang, Sha; Gao, Haixia; Liu, Yani; Qi, Jinlong; Chen, Pingping; Wang, Caixue; Scragg, Jason L.; Vakurov, Alexander; Peers, Chris; Du, Xiaona

    2016-01-01

    Abstract Aims: Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. Results: SP acutely inhibited T-type voltage-gated Ca2+ channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca2+ channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K+ channels described earlier. Innovation: Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca2+ current and concurrent enhancement of anti-algesic M-type K+ current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. Conclusion: SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233–251. PMID:27306612

  1. Hindlimb flexion withdrawal evoked by noxious heat in conscious rats: magnitude measurement of stimulus-response function, suppression by morphine and habituation.

    PubMed

    Carstens, E; Ansley, D

    1993-08-01

    1. The aim of this study was to develop a quantitative behavioral model of nociception. Electromyographic (EMG) recordings from a hamstring flexor muscle provided a measure of the magnitude of hindlimb withdrawals elicited by brief, graded noxious contact thermal stimuli applied to the hindpaw in conscious rats. 2. The magnitude of limb withdrawals showed a significant, usually linear, increase with stimulus temperature from a threshold of approximately 40 up to 52 degrees C. Stimulus-response functions of withdrawal magnitude versus temperature were reproducible within and across rats. Withdrawal magnitude was much more tightly correlated with stimulus temperature (r2 = 0.76, 0.73) than was withdrawal latency (r2 = 0.57, 0.55). 3. Systemic administration of the opiate analgesic morphine (3.5 mg/kg ip) suppressed withdrawals in a naloxone-reversible manner, such that the slope of the stimulus-response function was significantly reduced without an increase in threshold. 4. Successive withdrawals to repeated, identical noxious heat stimuli decreased in a manner consistent with habituation. The response recovered to the prehabituated level after a 15-min rest period, and subsequently decremented even more quickly. The decrement in withdrawal magnitude was greater at lower stimulus intensities and shorter interstimulus intervals, and transferred to a nearby (7.5 mm) but not distant (2.5 cm) site. Evidence for dishabituation was also obtained. 5. The advantages of this method as an animal model of nociception are presented and discussed in terms of the underlying neural circuitry and its modulation.

  2. Effects and underlying mechanisms of human opiorphin on colonic motility and nociception in mice.

    PubMed

    Tian, Xiao-zhu; Chen, Juan; Xiong, Wei; He, Tian; Chen, Qiang

    2009-07-01

    In the present study, we investigated the effects of human opiorphin on colonic motility and nociception in mice. In in vitro bioassay, opiorphin (10(-6) to 10(-4)M) caused colonic contraction in a concentration-dependent manner, which was completely blocked by naloxone and partially attenuated by beta-funaltrexamine and naltrindole. Moreover, opiorphin (10(-4)M) significantly enhanced the contractile response induced by Met-enkephalin. The data suggested that the effect of opiorphin on colonic contraction may be due to the protection of enkephalins. In in vivo bioassay, intracerebroventricular (i.c.v.) administration of opiorphin (1.25-10 microg/kg) dose- and time-dependently induced potent analgesic effect (ED(50)=3.22 microg/kg). This effect was fully blocked by naloxone and significantly inhibited by co-injection (i.c.v.) with beta-funaltrexamine or naltrindole, but not by nor-binaltorphimine, indicating the involvement of both mu- and delta-opioid receptors in the analgesic response evoked by opiorphin. In addition, i.c.v. administration of 5 microg/kg opiorphin produced the comparative effect as 10 microg/kg morphine on the analgesia, suggesting that opiorphin displayed more potent analgesic effect than that induced by morphine.

  3. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior

    PubMed Central

    Harte, Steven E.; Meyers, Jessica B.; Donahue, Renee R.; Taylor, Bradley K.; Morrow, Thomas J.

    2016-01-01

    A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents. PMID:26915030

  4. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception

    PubMed Central

    Kang, Kyeongjin; Pulver, Stefan R.; Panzano, Vincent C.; Chang, Elaine C.; Griffith, Leslie C.; Theobald, Douglas L.; Garrity, Paul A.

    2010-01-01

    Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, like allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke)1–3. Insects to humans find reactive electrophiles aversive1–3, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that dTRPA1, the Drosophila melanogaster ortholog of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologs are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose human pain perception relies on an ancient chemical sensor conserved across ~500 million years of animal evolution. PMID:20237474

  5. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli

    PubMed Central

    Puri, Sakshi; Faulkes, Zen

    2015-01-01

    Nociceptors are sensory neurons that are tuned to tissue damage. In many species, nociceptors are often stimulated by noxious extreme temperatures and by chemical agonists that do not damage tissue (e.g., capsaicin and isothiocyanate). We test whether crustaceans have nociceptors by examining nociceptive behaviours and neurophysiological responses to extreme temperatures and potentially nocigenic chemicals. Crayfish (Procambarus clarkii) respond quickly and strongly to high temperatures, and neurons in the antenna show increased responses to transient high temperature stimuli. Crayfish showed no difference in behavioural response to low temperature stimuli. Crayfish also showed no significant changes in behaviour when stimulated with capsaicin or isothiocyanate compared to controls, and neurons in the antenna did not change their firing rate following application of capsaicin or isothiocyanate. Noxious high temperatures appear to be a potentially ecologically relevant noxious stimulus for crayfish that can be detected by sensory neurons, which may be specialized nociceptors. PMID:25819841

  6. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    PubMed

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information.

  7. Changes in Activity of the Same Thalamic Neurons to Repeated Nociception in Behaving Mice.

    PubMed

    Huh, Yeowool; Cho, Jeiwon

    2015-01-01

    The sensory thalamus has been reported to play a key role in central pain sensory modulation and processing, but its response to repeated nociception at thalamic level is not well known. Current study investigated thalamic response to repeated nociception by recording and comparing the activity of the same thalamic neuron during the 1st and 2nd formalin injection induced nociception, with a week interval between injections, in awake and behaving mice. Behaviorally, the 2nd injection induced greater nociceptive responses than the 1st. Thalamic activity mirrored these behavioral changes with greater firing rate during the 2nd injection. Analysis of tonic and burst firing, characteristic firing pattern of thalamic neurons, revealed that tonic firing activity was potentiated while burst firing activity was not significantly changed by the 2nd injection relative to the 1st. Likewise, burst firing property changes, which has been consistently associated with different phases of nociception, were not induced by the 2nd injection. Overall, data suggest that repeated nociception potentiated responsiveness of thalamic neurons and confirmed that tonic firing transmits nociceptive signals.

  8. Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray

    PubMed Central

    Grajales-Reyes, Jose G.; Copits, Bryan A.; O’Brien, Daniel E.; Trigg, Sarah L.; Gomez, Adrian M.

    2017-01-01

    Abstract The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception. PMID:28374016

  9. Tactile localization depends on stimulus intensity.

    PubMed

    Steenbergen, Peter; Buitenweg, Jan R; Trojan, Jörg; Veltink, Peter H

    2014-02-01

    Few experimental data are available about the influence of stimulus intensity on localization of cutaneous stimuli. The localization behavior of an individual as function of the veridical stimulus sites can be represented in the form of a perceptual map. It is unknown how the intensity of cutaneous stimuli influences these perceptual maps. We investigated the effect of stimulus intensity on trial-to-trial localization variability and on perceptual maps. We applied non-painful electrocutaneous stimuli of three different intensities through seven surface electrodes on the lower arm of healthy participants. They localized the stimuli on a tablet monitor mounted directly above their arm, on which a photograph of this arm was presented. The length of the arm over which the stimuli were localized was contracted when compared to the real electrode positions. This length increased toward veridical with increasing stimulus intensity. The trial-to-trial variance of the localizations dropped significantly with increasing intensity. Furthermore, localization biases of individual stimulus positions were shown to decrease with increasing stimulus intensity. We conclude that tactile stimuli are localized closer to veridical with increasing intensity in two respects: the localizations become more consistent and more accurate.

  10. Observing Behavior and Atypically Restricted Stimulus Control

    PubMed Central

    Dube, William V; Dickson, Chata A; Balsamo, Lyn M; O'Donnell, Kristin Lombard; Tomanari, Gerson Y; Farren, Kevin M; Wheeler, Emily E; McIlvane, William J

    2010-01-01

    Restricted stimulus control refers to discrimination learning with atypical limitations in the range of controlling stimuli or stimulus features. In the study reported here, 4 normally capable individuals and 10 individuals with intellectual disabilities (ID) performed two-sample delayed matching to sample. Sample-stimulus observing was recorded with an eye-tracking apparatus. High accuracy scores indicated stimulus control by both sample stimuli for the 4 nondisabled participants and 4 participants with ID, and eye tracking data showed reliable observing of all stimuli. Intermediate accuracy scores indicated restricted stimulus control for the remaining 6 participants. Their eye-tracking data showed that errors were related to failures to observe sample stimuli and relatively brief observing durations. Five of these participants were then given interventions designed to improve observing behavior. For 4 participants, the interventions resulted initially in elimination of observing failures, increased observing durations, and increased accuracy. For 2 of these participants, contingencies sufficient to maintain adequate observing were not always sufficient to maintain high accuracy; subsequent procedure modifications restored it, however. For the 5th participant, initial improvements in observing were not accompanied by improved accuracy, an apparent instance of observing without attending; accuracy improved only after an additional intervention that imposed contingencies on observing behavior. Thus, interventions that control observing behavior seem necessary but may not always be sufficient for the remediation of restricted stimulus control. PMID:21541173

  11. A monocular contribution to stimulus rivalry.

    PubMed

    Brascamp, Jan; Sohn, Hansem; Lee, Sang-Hun; Blake, Randolph

    2013-05-21

    When corresponding areas of the two eyes view dissimilar images, stable perception gives way to visual competition wherein perceptual awareness alternates between those images. Moreover, a given image can remain visually dominant for several seconds at a time even when the competing images are swapped between the eyes multiple times each second. This perceptual stability across eye swaps has led to the widespread belief that this unique form of visual competition, dubbed stimulus rivalry, is governed by eye-independent neural processes at a purely binocular stage of cortical processing. We tested this idea by investigating the influence of stimulus rivalry on the buildup of the threshold elevation aftereffect, a form of contrast adaptation thought to transpire at early cortical stages that include eye-specific neural activity. Weaker threshold elevation aftereffects were observed when the adapting image was engaged in stimulus rivalry than when it was not, indicating diminished buildup of adaptation during stimulus-rivalry suppression. We then confirmed that this reduction occurred, in part, at eye-specific neural stages by showing that suppression of an image at a given moment specifically diminished adaptation associated with the eye viewing the image at that moment. Considered together, these results imply that eye-specific neural events at early cortical processing stages contribute to stimulus rivalry. We have developed a computational model of stimulus rivalry that successfully implements this idea.

  12. Single stimulus learning in zebrafish larvae

    PubMed Central

    O’Neale, Ashley; Ellis, Joseph; Creton, Robbert; Colwill, Ruth M.

    2014-01-01

    Learning about a moving visual stimulus was examined in zebrafish larvae using an automated imaging system and a t1-t2 design. In three experiments, zebrafish larvae were exposed to one of two inputs at t1 (either a gray bouncing disk or an identical but stationary disk) followed by a common test at t2 (the gray bouncing disk). Using 7 days post-fertilization (dpf) larvae and 12 stimulus exposures, Experiment 1 established that these different treatments produced differential responding to the moving disk during testing. Larvae familiar with the moving test stimulus were significantly less likely to be still in its presence than larvae that had been exposed to the identical but stationary stimulus. Experiment 2 confirmed this result in 7 dpf larvae and extended the finding to 5 and 6 dpf larvae. Experiment 3 found differential responding to the moving test stimulus with 4 or 8 stimulus exposures but not with just one exposure in 7 dpf larvae. These results provide evidence for learning in very young zebrafish larvae. The merits and challenges of the t1-t2 framework to study learning are discussed. PMID:24012906

  13. Occlusion for stimulus deprivation amblyopia

    PubMed Central

    Antonio-Santos, Aileen; Vedula, Satyanarayana S; Hatt, Sarah R; Powell, Christine

    2014-01-01

    Background Stimulus deprivation amblyopia (SDA) develops due to an obstruction to the passage of light secondary to a condition such as cataract. The obstruction prevents formation of a clear image on the retina. SDA can be resistant to treatment, leading to poor visual prognosis. SDA probably constitutes less than 3% of all amblyopia cases, although precise estimates of prevalence are unknown. In developed countries, most patients present under the age of one year; in less developed parts of the world patients are likely to be older at the time of presentation. The mainstay of treatment is removal of the cataract and then occlusion of the better-seeing eye, but regimens vary, can be difficult to execute, and traditionally are believed to lead to disappointing results. Objectives Our objective was to evaluate the effectiveness of occlusion therapy for SDA in an attempt to establish realistic treatment outcomes. Where data were available, we also planned to examine evidence of any dose response effect and to assess the effect of the duration, severity, and causative factor on the size and direction of the treatment effect. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 9), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to October 2013), EMBASE (January 1980 to October 2013), the Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to October 2013), PubMed (January 1946 to October 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 28 October 2013. Selection criteria We planned

  14. Specific activation of the paralemniscal pathway during nociception.

    PubMed

    Frangeul, Laura; Porrero, Cesar; Garcia-Amado, Maria; Maimone, Benedetta; Maniglier, Madlyne; Clascá, Francisco; Jabaudon, Denis

    2014-05-01

    Two main neuronal pathways connect facial whiskers to the somatosensory cortex in rodents: (i) the lemniscal pathway, which originates in the brainstem principal trigeminal nucleus and is relayed in the ventroposterior thalamic nucleus and (ii) the paralemniscal pathway, originating in the spinal trigeminal nucleus and relayed in the posterior thalamic nucleus. While lemniscal neurons are readily activated by whisker contacts, the contribution of paralemniscal neurons to perception is less clear. Here, we functionally investigated these pathways by manipulating input from the whisker pad in freely moving mice. We report that while lemniscal neurons readily respond to neonatal infraorbital nerve sectioning or whisker contacts in vivo, paralemniscal neurons do not detectably respond to these environmental changes. However, the paralemniscal pathway is specifically activated upon noxious stimulation of the whisker pad. These findings reveal a nociceptive function for paralemniscal neurons in vivo that may critically inform context-specific behaviour during environmental exploration.

  15. Endomorphins suppress nociception-induced c-Fos and Zif/268 expression in the rat spinal dorsal horn.

    PubMed

    Tateyama, Shingo; Ikeda, Tetsuya; Kosai, Kazuko; Nakamura, Tadashi; Kasaba, Toshiharu; Takasaki, Mayumi; Nishimori, Toshikazu

    2002-09-06

    We evaluated the potency of endomorphin-1 and -2 as endogenous ligands on c-Fos and Zif/268 expression in the spinal dorsal horn by formalin injection to the rat hind paw. Endomorphin-1, -2, or morphine was administered intrathecally or intracerebroventricularly 5 min before formalin injection (5%, 100 microl). All drugs produced marked reductions of formalin-induced c-Fos and Zif/268 immunoreactivity in laminae I and II, and laminae V and VI in the rat lumbar spinal cord. The reductions of Zif/268 expression by endomorphins were greater than those by morphine, while the reductions of c-Fos expression by endomorphins were smaller than those by morphine. These effects of endomorphins were attenuated by pretreatment with naloxone. These results indicate that endomorphin-1 and -2 act as endogenous ligands of mu-opioid receptor in neurons of the spinal dorsal horn and suppress the processing of nociceptive information in the central nervous system.

  16. A role for nociceptive, myelinated nerve fibers in itch sensation.

    PubMed

    Ringkamp, Matthias; Schepers, Raf J; Shimada, Steven G; Johanek, Lisa M; Hartke, Timothy V; Borzan, Jasenka; Shim, Beom; LaMotte, Robert H; Meyer, Richard A

    2011-10-19

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of nonhistaminergic mechanisms. To investigate the role of small myelinated afferents in nonhistaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: (1) a selective conduction block in myelinated fibers substantially reduces itch in a subgroup of subjects with A-fiber-dominated itch, (2) the time course of itch sensation differs between subjects with A-fiber- versus C-fiber-dominated itch, (3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, (4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, (5) the time of peak itch sensation for subjects with A-fiber-dominated itch matches the time for peak response in myelinated fibers, and (6) the time for peak itch sensation for subjects with C-fiber-dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that nonhistaminergic itch is mediated through activity in both unmyelinated and myelinated afferents.

  17. Nociceptive nerve activity in an experimental model of knee joint osteoarthritis of the guinea pig: effect of intra-articular hyaluronan application.

    PubMed

    Gomis, Ana; Miralles, Ana; Schmidt, Robert F; Belmonte, Carlos

    2007-07-01

    Nociceptive impulse activity was recorded extracellularly from single A delta and C primary afferents of the guinea pig's medial articular nerve after induction of an experimental osteoarthritis in the knee joint by partial medial menisectomy and transection of the anterior cruciate ligament (PMM+TACL). Also, the analgesic effects of intra-articular hyaluronan solutions were evaluated. Healthy, PMM+TACL operated, sham-operated (opening of the joint capsule without PMM and TACL surgery) and acutely inflamed (intra-articular kaolin-carrageenan, K-C) animals were used. The stimulus protocol consisted of torque meter-controlled, standardized innocuous and noxious inward and outward rotations of the joint. This stimulus protocol of 50 s duration was repeated every 5 min for 70 min. One day, one week and three weeks after PMM+TACL, the movement-evoked discharges of A delta articular afferents were increased significantly over values found in sham-operated animals. The discharges of C fibers were significantly augmented only one week after PMM+TACL surgery. Filling of the joint cavity with a high viscosity hyaluronan solution (hylan G-F 20, Synvisc) immediately and three days after surgery reduced significantly the enhanced nerve activity observed in joint afferent fibers one day and one week after surgery. Augmentation of movement-evoked discharges in K-C acutely inflamed knee joints was similar to that observed one week after PMM+TACL. Our results indicate that in the PMM+TACL model of osteoarthritis in guinea pigs, enhancement of nociceptive responses to joint movement was primarily associated to post-surgical inflammation. Intra-articular injection of an elastoviscous hyaluronan solution reduced the augmented nerve activity.

  18. Enhanced descending modulation of nociception in rats with persistent hindpaw inflammation.

    PubMed

    Ren, K; Dubner, R

    1996-11-01

    1. The role of descending brain stem modulatory systems in the development of persistent behavioral hyperalgesia and dorsal horn hyperexcitability was studied in rats with unilateral hindpaw inflammation. Inflammation was induced by intraplantar injection of complete Freund's adjuvant (CFA, 0.05 ml of an 1:1 oil/saline emulsion, 25 micrograms Mycobacterium), or lambda carrageenan (1 mg/ 0.1 ml saline). Thermal hyperalgesia was assessed by testing paw withdrawal latency (PWL) to a noxious heat stimulus. Superficial dorsal horn nociceptive (nociceptive specific, NS, and wide dynamic range, WDR) neuronal activity in the lumbar spinal cord was recorded extracellularly in chloralose-anesthetized rats. 2. Bilateral lesions of the dorsolateral funiculus (DLFX) at the T10 level were made in 13 rats, and the development of thermal hyperalgesia in these rats was compared with sham-operated or nonoperated control rats. In rats receiving a 0.05-ml CFA injection, a similar magnitude of hyperalgesia developed in the inflamed paw in DLFX (n = 7) and control (n = 8) rats. In addition, there appeared to be a contralateral hyperalgesia that was most apparent between 2 and 24 h after injection of CFA in DLFX rats. The CFA-induced contralateral effects were significantly different (P < 0.05) from the control rats at 2 and 6 h. 3. The intensity of the thermal stimulus was reduced and a low dose of carrageenan (1 mg) was injected into one hindpaw to further reveal the potentiation of hyperalgesia in DLFX rats. Throughout the 0.5- to 4-h time period after the injection of carrageenan, the PWL of the inflamed paws in DLFX rats (n = 6) was significantly shorter than that of control rats (n = 10; 2-way analysis of variance, F1,14 = 14.04, P < 0.01), suggesting the enhancement of hyperalgesia in DLFX rats. A hyperalgesia on the noninflamed paws was also more apparent in this experiment in DLFX rats, when compared with control rats. DLFX did not affect the baseline PWL of the rats. 4. A

  19. Pharmacologic characterization of a nicotine-discriminative stimulus in rhesus monkeys.

    PubMed

    Cunningham, Colin S; Javors, Martin A; McMahon, Lance R

    2012-06-01

    This study examined mechanisms by which nicotine (1.78 mg/kg base s.c.) produces discriminative stimulus effects in rhesus monkeys. In addition to nicotine, various test compounds were studied including other nicotinic acetylcholine receptor agonists (varenicline and cytisine), antagonists [mecamylamine and the α4β2 receptor-selective antagonist dihydro-β-erythroidine (DHβE)], a nicotinic acetylcholine receptor antagonist/indirect-acting catecholamine agonist (bupropion), and non-nicotinics (cocaine and midazolam). Nicotine, varenicline, and cytisine dose-dependently increased drug-lever responding; the ED(50) values were 0.47, 0.53, and 39 mg/kg, respectively. Bupropion and cocaine produced 100% nicotine-lever responding in a subset of monkeys, whereas mecamylamine, DHβE, and midazolam produced predominantly vehicle-lever responding. The training dose of nicotine resulted in 1128 ng/ml cotinine in saliva. Mecamylamine antagonized the discriminative stimulus effects of nicotine and varenicline, whereas DHβE was much less effective. Nicotine and varenicline had synergistic discriminative stimulus effects. In monkeys responding predominantly on the vehicle lever after a test compound (bupropion, cocaine, and midazolam), that test compound blocked the nicotine-discriminative stimulus, perhaps reflecting a perceptual-masking phenomenon. These results show that nicotine, varenicline, and cytisine produce discriminative stimulus effects through mecamylamine-sensitive receptors (i.e., nicotinic acetylcholine) in primates, whereas the involvement of DHβE-sensitive receptors (i.e., α4β2) is unclear. The current nicotine-discrimination assay did not detect a difference in agonist efficacy between nicotine, varenicline, and cytisine, but did show evidence of involvement of dopamine. The control that nicotine has over choice behavior can be disrupted by non-nicotinic compounds, suggesting that non-nicotinics could be exploited to decrease the control that tobacco has

  20. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings.

  1. A laser-based method to measure thermal nociception in dairy cows: short-term repeatability and effects of power output and skin condition.

    PubMed

    Herskin, M S; Müller, R; Schrader, L; Ladewig, J

    2003-04-01

    To validate a laser-based method to measure thermal nociception in dairy cows (e.g., for the use in studies on stress-induced analgesia), we performed three experiments to observe the behavioral responses to a computer-controlled CO2 laser beam applied to the skin on the caudal aspect of the metatarsus. In Exp. 1, effects of power output (0, 1.3, 1.8, 2.2, 2.4 and 2.6 W) on nociceptive responses were examined using 18 dairy cows kept and tested in tie stalls. Increasing the power output affected the latencies to respond (decreasing latencies, P < or = 0.01), types of response (less nonresponding and more kicking, P < 0.0001), and behavior during (increasing frequency of tail flicking, P = 0.003) and between single laser exposures (increasing frequency of kicking, P = 0.02). Therefore, behavioral responses to a laser stimulus seem to be a valid measure of nociception in dairy cows. Repeatability within 15 min was investigated in Exp. 2 using n = 36 dairy cows kept and tested in tie stalls and a power output of 1.8 W. The variables' latency to move the exposed leg and frequency of tail flicking during laser exposure showed the highest level of repeatability (0.50 and 0.38, respectively). However, retesting at t = 15 min led to increased responses in terms of shorter latencies to respond (P < 0.05), increased kicking (P = 0.05), and tail flicking (P = 0.02), which probably can be explained by sensitization. Effects of power output (1.0 vs. 1.8 W) and skin condition (naked vs. intact) were examined in Exp. 3 on 11 group-housed dairy cows, tested just outside their home pen. Increasing the power output and shaving off hair led to increased responses as seen by shorter latencies to respond (P < 0.0001), less nonresponding (P < 0.0001), and increased kicking (P = 0.0003), as well as reduced intra- and interindividual variability (P < or = 0.04). In conclusion, the results of these experiments suggest that behavioral responses to laser stimulation are a valid and reliable

  2. Dishabituation of laser-evoked EEG responses: dissecting the effect of certain and uncertain changes in stimulus modality.

    PubMed

    Valentini, Elia; Torta, Diana M E; Mouraux, André; Iannetti, Gian Domenico

    2011-10-01

    The repetition of nociceptive stimuli of identical modality, intensity, and location at short and constant interstimulus intervals (ISIs) determines a strong habituation of the corresponding EEG responses, without affecting the subjective perception of pain. To understand what determines this response habituation, we (i) examined the effect of introducing a change in the modality of the repeated stimulus, and (ii) dissected the relative contribution of bottom-up, stimulus-driven changes in modality and top-down, cognitive expectations of such a change, on both laser-evoked and auditory-evoked EEG responses. Multichannel EEG was recorded while participants received trains of three stimuli (S1-S2-S3, a triplet) delivered to the hand dorsum at 1-sec ISI. S3 belonged either to the same modality as S1 and S2 or to the other modality. In addition, participants were either explicitly informed or not informed of the modality of S3. We found that introducing a change in stimulus modality produced a significant dishabituation of the laser-evoked N1, N2, and P2 waves; the auditory N1 and P2 waves; and the laser- and auditory-induced event-related synchronization and desynchronization. In contrast, the lack of explicit knowledge of a possible change in the sensory modality of the stimulus (i.e., uncertainty) only increased the ascending portion of the laser-evoked and auditory-evoked P2 wave. Altogether, these results indicate that bottom-up novelty resulting from the change of stimulus modality, and not top-down cognitive expectations, plays a major role in determining the habituation of these brain responses.

  3. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation

    PubMed Central

    Inutsuka, Ayumu; Yamashita, Akira; Chowdhury, Srikanta; Nakai, Junichi; Ohkura, Masamichi; Taguchi, Toru; Yamanaka, Akihiro

    2016-01-01

    The level of wakefulness is one of the major factors affecting nociception and pain. Stress-induced analgesia supports an animal’s survival via prompt defensive responses against predators or competitors. Previous studies have shown the pharmacological effects of orexin peptides on analgesia. However, orexin neurons contain not only orexin but also other co-transmitters such as dynorphin, neurotensin and glutamate. Thus, the physiological importance of orexin neuronal activity in nociception is unknown. Here we show that adult-stage selective ablation of orexin neurons enhances pain-related behaviors, while pharmacogenetic activation of orexin neurons induces analgesia. Additionally, we found correlative activation of orexin neurons during nociception using fiber photometry recordings of orexin neurons in conscious animals. These findings suggest an integrative role for orexin neurons in nociceptive perception and pain regulation. PMID:27385517

  4. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons.

    PubMed

    Cho, Hawon; Yang, Young Duk; Lee, Jesun; Lee, Byeongjoon; Kim, Tahnbee; Jang, Yongwoo; Back, Seung Keun; Na, Heung Sik; Harfe, Brian D; Wang, Fan; Raouf, Ramin; Wood, John N; Oh, Uhtaek

    2012-05-27

    Nociceptors are a subset of small primary afferent neurons that respond to noxious chemical, thermal and mechanical stimuli. Ion channels in nociceptors respond differently to noxious stimuli and generate electrical signals in different ways. Anoctamin 1 (ANO1 also known as TMEM16A) is a Ca(2+)-activated chloride channel that is essential for numerous physiological functions. We found that ANO1 was activated by temperatures over 44 °C with steep heat sensitivity. ANO1 was expressed in small sensory neurons and was highly colocalized with nociceptor markers, which suggests that it may be involved in nociception. Application of heat ramps to dorsal root ganglion (DRG) neurons elicited robust ANO1-dependent depolarization. Furthermore, knockdown or deletion of ANO1 in DRG neurons substantially reduced nociceptive behavior in thermal pain models. These results indicate that ANO1 is a heat sensor that detects nociceptive thermal stimuli in sensory neurons and possibly mediates nociception.

  5. Oxytocin, but not vassopressin, modulates nociceptive responses in dorsal horn neurons.

    PubMed

    Rojas-Piloni, Gerardo; Gerardo, Rojas-Piloni; Mejía-Rodríguez, Rosalinda; Rosalinda, Mejía-Rodríguez; Martínez-Lorenzana, Guadalupe; Guadalupe, Martínez-Lorenzana; Condés-Lara, Miguel; Miguel, Condés-Lara

    2010-05-26

    Oxytocin (OT) and vasopressin (VP) are synthesized and secreted by the paraventricular hypothalamic nucleus (PVN), and both peptides have been implicated in the pain modulatory system. In the spinal cord, activation of OT-containing axons modulates nociceptive neuronal responses in dorsal horn neurons; however, it is not known whether the direct VPergic descending projection participates. Here, we show that both PVN electrical stimulation and topical application of OT in the vicinity of identified and recorded dorsal horn WDR selectively inhibit Adelta and C-fiber responses. In contrast, the topical administration of VP on the same neurons did not affect the nociceptive responses. In addition, the reduction in nociceptive responses caused by PVN stimulation or OT administration was blocked with a selective OT antagonist. The results suggest that the VP descending projection does not modulate the antinociceptive effects mediated by the PVN on dorsal horn neurons; instead, it is the hypothalamic-spinal OT projection that regulates nociceptive information.

  6. Role of L-DOPA in spinal nociceptive reflex activity: higher sensitivity of Aδ versus C fibre-evoked nociceptive reflexes to L-DOPA.

    PubMed

    Schomburg, E D; Dibaj, P; Steffens, H

    2011-01-01

    The role of L-DOPA in spinal nociceptive reflex activity has been re-evaluated. In high spinal cats, with supraspinal loops being excluded, the onset of reflex facilitation induced by noxious radiant heat is delayed after injection of L-DOPA by 4 to 10 s, i.e. the early component of nociceptive reflex facilitation is blocked, while the late component persisted. Further investigations have shown that the early component of reflex facilitation induced by noxious radiant heat is mediated by Adelta-fibres and the late component by C-fibres. Therefore, it can be assumed that L-DOPA, like opioids, preferentially blocks the transmission in nociceptive reflex pathways from Adelta-fibres.

  7. [Study of the "stimulus--excitation" function in the peripheral portion of the frog taste analyzer].

    PubMed

    Shmarov, D A; Samoĭlov, V O

    1979-04-01

    The intensity of glossopharyngeal nerve afferent discharges in the frog was studied during stimulation of gustatory receptors by caffeine, acetic acid, saccharose and sodium chloride ranging widely in the concentration changes. It was shown, that the function "stimulus-exitation" for the summary discharges in response on the coffeine and acetic acid was being logaryphmic. The character of off-effects dependence on the concentration of bitter and sour stimuli. Was proved to be the same. The curve "stimulus-exitation" for the saccharose was "S" shaped, but for the sodium chloride it might be described by the power function with the exponent equal 0,8.

  8. Sample Stimulus Control Shaping and Restricted Stimulus Control in Capuchin Monkeys: A Methodological Note

    ERIC Educational Resources Information Center

    Brino, Ana Leda F., Barros, Romariz S., Galvao, Ol; Garotti, M.; Da Cruz, Ilara R. N.; Santos, Jose R.; Dube, William V.; McIlvane, William J.

    2011-01-01

    This paper reports use of sample stimulus control shaping procedures to teach arbitrary matching-to-sample to 2 capuchin monkeys ("Cebus apella"). The procedures started with identity matching-to-sample. During shaping, stimulus features of the sample were altered gradually, rendering samples and comparisons increasingly physically dissimilar. The…

  9. Emergent Stimulus Relations Depend on Stimulus Correlation and Not on Reinforcement Contingencies

    ERIC Educational Resources Information Center

    Minster, Sara Tepaeru; Elliffe, Douglas; Muthukumaraswamy, Suresh D.

    2011-01-01

    We aimed to investigate whether novel stimulus relations would emerge from stimulus correlations when those relations explicitly conflicted with reinforced relations. In a symbolic matching-to-sample task using kanji characters as stimuli, we arranged class-specific incorrect comparison stimuli in each of three classes. After presenting either Ax…

  10. Scopolamine into the anterior cingulate cortex diminishes nociception in a neuropathic pain model in the rat: an interruption of 'nociception-related memory acquisition'?

    PubMed

    Ortega-Legaspi, J Manuel; López-Avila, Alberto; Coffeen, Ulises; del Angel, Rosendo; Pellicer, Francisco

    2003-01-01

    The cingulate cortex plays a key role in the affective component related to pain perception. This structure receives cholinergic projections and also plays a role in memory processing. Therefore, we propose that the cholinergic system in the anterior cingulate cortex is involved in the nociceptive memory process. We used scopolamine (10 microg in 0.25 mircrol/saline) microinjected into the anterior cingulate cortex, either before thermonociception followed by a sciatic denervation, between thermonociception and denervation or after both procedures (n=10 each). The vehicle group (saline solution 0.9%, n=14) was microinjected before thermonociception. Chronic nociception was measured by the autotomy score, which onset and incidence were also determined. Group scopolamine-thermonociception-denervation (STD) presented the lowest autotomy score as compared to vehicle and group thermonociception-denervation-scopolamine (TDS) (vehicle vs. STD, p=0.002, STD vs. TDS, p=0.001). Group thermonociception-scopolamine-denervation (TSD) showed a diminished autotomy score when compared to TDS (p=0.053). STD group showed a delay in the onset of AB as compared to the rest of the groups. Group TSD presented a significative delay (p=0.048) in AB onset when compared to group TDS. There were no differences in the incidence between groups. The results show that nociception-related memory processed in the anterior cingulate cortex is susceptible of being modified by the cholinergic transmission blockade. When scopolamine is microinjected prior to the nociceptive stimuli, nociception-related memory acquisition is prevented. The evidence obtained in this study shows the role of the anterior cingulate cortex in the acquisition of nociception-related memory.

  11. Anti-nociceptive Effect of 7-methoxy Coumarin from Eupatorium Triplinerve vahl (Asteraceae)

    PubMed Central

    Cheriyan, Binoy Varghese; Kadhirvelu, Parimala; Nadipelly, Jagan; Shanmugasundaram, Jaikumar; Sayeli, Vijaykumar; Subramanian, Viswanathan

    2017-01-01

    Aim: To evaluate the anti-nociceptive activity of 7-methoxy coumarin isolated from ethyl acetate fraction of the alcoholic extract of Eupatorium triplinerve Vahl. Materials and Methods: The shade dried leaves of E. triplinerve were extracted with ethyl alcohol and the extract was condensed. This extract was fractionated with n-hexane, ethyl acetate, and n-butanol. The ethyl acetate fraction was subjected to column chromatography which yielded a crystalline compound-A, which was investigated for spectral characteristics. Pharmacological studies: The isolated compound-A was subjected to behavioral studies and anti-nociceptive evaluation in mice by acetic acid induced writhing and formalin induced nociception. Results: The spectral studies indicated that the structure of compound-A complies with 7- methoxy coumarin. Pre-treatment with 7-methoxy coumarin reduced the number of abdominal constrictions in mice and decreased the time spent in paw licking and biting response in formalin assay. There were no significant behavioral changes. Conclusion: A dose dependent anti-nociceptive action of 7- methoxy coumarin was revealed by the present experiments which support the traditional use of E. triplinerve in pain and inflammatory disorders. SUMMARY Bio-guided fractionation of alcoholic extract of E. triplinerve yielded 7-methoxy coumarin.7-methoxy coumarin was evaluated for its anti-nociceptive potential by acetic acid induced writhing and formalin induced nociception assays.7-methoxy coumarin exhibited significant inhibition of acetic acid induced writhing response and the second phase of formalin nociception.The anti-nociceptive action of 7-methoxy coumarin revealed by the present experiments supports the traditional use of E. triplinerve in pain and inflammatory disorders. Abbreviation used: TLC-Thin layer chromatography, Kg-kilogram, g-gram, TXB2-Thromboxane B2, UV-Ultraviolet, IgE-Immunoglobulin E, s.c-subcutaneous, p.o-oral route PMID:28216887

  12. Pain hypersensitivity and spinal nociceptive hypersensitivity in chronic pain: prevalence and associated factors.

    PubMed

    Curatolo, Michele; Müller, Monika; Ashraf, Aroosiah; Neziri, Alban Y; Streitberger, Konrad; Andersen, Ole K; Arendt-Nielsen, Lars

    2015-11-01

    Hypersensitivity of pain pathways is considered a relevant determinant of symptoms in chronic pain patients, but data on its prevalence are very limited. To our knowledge, no data on the prevalence of spinal nociceptive hypersensitivity are available. We studied the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity in 961 consecutive patients with various chronic pain conditions. Pain threshold and nociceptive withdrawal reflex threshold to electrical stimulation were used to assess pain hypersensitivity and spinal nociceptive hypersensitivity, respectively. Using 10th percentile cutoff of previously determined reference values, the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity (95% confidence interval) was 71.2 (68.3-74.0) and 80.0 (77.0-82.6), respectively. As a secondary aim, we analyzed demographic, psychosocial, and clinical characteristics as factors potentially associated with pain hypersensitivity and spinal nociceptive hypersensitivity using logistic regression models. Both hypersensitivity parameters were unaffected by most factors analyzed. Depression, catastrophizing, pain-related sleep interference, and average pain intensity were significantly associated with hypersensitivity. However, none of them was significant for both unadjusted and adjusted analyses. Furthermore, the odds ratios were very low, indicating modest quantitative impact. To our knowledge, this is the largest prevalence study on central hypersensitivity and the first one on the prevalence of spinal nociceptive hypersensitivity in chronic pain patients. The results revealed an impressively high prevalence, supporting a high clinical relevance of this phenomenon. Electrical pain thresholds and nociceptive withdrawal reflex explore aspects of pain processing that are mostly independent of sociodemographic, psychological, and clinical pain-related characteristics.

  13. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.

    PubMed

    Schulte, Laura H; Sprenger, Christian; May, Arne

    2016-01-01

    The brainstem is a major site of processing and modulation of nociceptive input and plays a key role in the pathophysiology of various headache disorders. However, human imaging studies on brainstem function following trigeminal nociceptive stimulation are scarce as brainstem specific imaging approaches have to address multiple challenges such as magnetic field inhomogeneities and an enhanced level of physiological noise. In this study we used a viable protocol for brainstem fMRI of standardized trigeminal nociceptive stimulation to achieve detailed insight into physiological brainstem mechanisms of trigeminal nociception. We conducted a study of 21 healthy participants using a nociceptive ammonia stimulation of the left nasal mucosa with an optimized MR acquisition protocol for high resolution brainstem echoplanar imaging in combination with two different noise correction techniques. Significant BOLD responses to noxious ammonia stimulation were observed in areas typically involved in trigeminal nociceptive processing such as the spinal trigeminal nuclei (sTN), thalamus, secondary somatosensory cortex, insular cortex and cerebellum as well as in a pain modulating network including the periaqueductal gray area, hypothalamus (HT), locus coeruleus and cuneiform nucleus (CNF). Activations of the left CNF were positively correlated with pain intensity ratings. Employing psychophysiological interaction (PPI) analysis we found enhanced functional connectivity of the sTN with the contralateral sTN and HT following trigeminal nociception. We also observed enhanced functional connectivity of the CNF with the RVM during painful stimulation thus implying an important role of these two brainstem regions in central pain processing. The chosen approach to study trigeminal nociception with high-resolution fMRI offers new insight into human pain processing and might thus lead to a better understanding of headache pathophysiology.

  14. Stimulus-responsive metal-organic frameworks.

    PubMed

    Nagarkar, Sanjog S; Desai, Aamod V; Ghosh, Sujit K

    2014-09-01

    Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future "smart" technology materials. Metal-organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host-guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus-responsive MOFs or so-called smart MOFs. In particular, the various stimuli used and the utility of stimulus-responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus-responsive smart MOFs and their applications are proposed from a personal perspective.

  15. Impact of stimulus uncanniness on speeded response.

    PubMed

    Takahashi, Kohske; Fukuda, Haruaki; Samejima, Kazuyuki; Watanabe, Katsumi; Ueda, Kazuhiro

    2015-01-01

    In the uncanny valley phenomenon, the causes of the feeling of uncanniness as well as the impact of the uncanniness on behavioral performances still remain open. The present study investigated the behavioral effects of stimulus uncanniness, particularly with respect to speeded response. Pictures of fish were used as visual stimuli. Participants engaged in direction discrimination, spatial cueing, and dot-probe tasks. The results showed that pictures rated as strongly uncanny delayed speeded response in the discrimination of the direction of the fish. In the cueing experiment, where a fish served as a task-irrelevant and unpredictable cue for a peripheral target, we again observed that the detection of a target was slowed when the cue was an uncanny fish. Conversely, the dot-probe task suggested that uncanny fish, unlike threatening stimulus, did not capture visual spatial attention. These results suggested that stimulus uncanniness resulted in the delayed response, and importantly this modulation was not mediated by the feelings of threat.

  16. Attenuation of capsaicin-induced acute and visceral nociceptive pain by alpha- and beta-amyrin, a triterpene mixture isolated from Protium heptaphyllum resin in mice.

    PubMed

    Oliveira, Francisco A; Costa, Charllynton L S; Chaves, Mariana H; Almeida, Fernanda R C; Cavalcante, Italo J M; Lima, Alana F; Lima, Roberto C P; Silva, Regilane M; Campos, Adriana Rolim; Santos, Flavia A; Rao, Vietla S N

    2005-10-21

    The triterpene mixture, alpha- and beta-amyrin, isolated from Protium heptaphyllum resin was evaluated on capsaicin-evoked nociception in mice. Orally administered alpha- and beta-amyrin (3 to 100 mg/kg) significantly suppressed the nociceptive behaviors--evoked by either subplantar (1.6 microg) or intracolonic (149 microg) application of capsaicin. The antinociception produced by alpha- and beta-amyrin against subplantar capsaicin-induced paw-licking behavior was neither potentiated nor attenuated by ruthenium red (1.5 mg/kg, s.c.), a non-specific antagonist of vanilloid receptor (TRPV1), but was greatly abolished in animals pretreated with naloxone (2 mg/kg, s.c.), suggesting an opioid mechanism. However, participation of alpha2-adrenoceptor involvement was unlikely since yohimbine (2 mg/kg, i.p.) pretreatment failed to block the antinociceptive effect of alpha- and beta-amyrin in the experimental model of visceral nociception evoked by intracolonic capsaicin. The triterpene mixture (3 to 30 mg/kg, p.o.) neither altered significantly the pentobarbital sleeping time, nor impaired the ambulation or motor coordination in open-field and rota-rod tests, respectively, indicating the absence of sedative or motor abnormality that could account for its antinociception. Nevertheless, alpha- and beta-amyrin could significantly block the capsaicin (10 mg/kg, s.c.)-induced hyperthermic response but not the initial hypothermia. These results suggest that the triterpene mixture, alpha- and beta-amyrin has an analgesia inducing effect, possibly involving vanilloid receptor (TRPV1) and an opioid mechanism.

  17. Contributions to drug abuse research of Steven R. Goldberg's behavioral analysis of stimulus-stimulus contingencies.

    PubMed

    Katz, Jonathan L

    2016-05-01

    By the mid-1960s, the concept that drugs can function as reinforcing stimuli through response-reinforcer contingencies had created a paradigm shift in drug abuse science. Steve Goldberg's first several publications focused instead on stimulus-stimulus contingencies (respondent conditioning) in examining Abraham Wikler's two-factor hypothesis of relapse involving conditioned withdrawal and reinforcing effects of drugs. Goldberg provided a compelling demonstration that histories of contingencies among stimuli could produce lasting withdrawal reactions in primates formerly dependent on opioids. Other studies conducted by Goldberg extended the analysis of effects of stimulus-stimulus contingencies on behavior maintained by opioid reinforcing effects and showed that withdrawal-inducing antagonist administration can produce conditioned increases in self-administration. Subsequent studies of the effects of stimuli associated with cocaine injection under second-order schedules showed that the maintenance of behavior with drug injections was in most important aspects similar to the maintenance of behavior with more conventional reinforcers when the behavior-disrupting pharmacological effects of the drugs were minimized. Studies on second-order schedules demonstrated a wide array of conditions under which behavior could be maintained by drug injection and further influenced by stimulus-stimulus contingencies. These schedules present opportunities to produce in the laboratory complex situations involving response- and stimulus-stimulus contingencies, which go beyond simplistic pairings of stimuli and more closely approximate those found with human drug abusers. A focus on the response- and stimulus-stimulus contingencies, and resulting quantifiable changes in objective and quantifiable behavioral endpoints exemplified by the studies by Steve Goldberg, remains the most promising way forward for studying problems of drug dependence.

  18. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  19. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain

    PubMed Central

    Zambelli, Vanessa O.; Gross, Eric R.; Chen, Che-Hong; Gutierrez, Vanessa P.; Cury, Yara; Mochly-Rosen, Daria

    2014-01-01

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase 2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2=0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than wild-type mice. Finally, Alda-1 treatment was also beneficial when given even after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance. PMID:25163478

  20. The dolognawmeter: a novel instrument and assay to quantify nociception in rodent models of orofacial pain.

    PubMed

    Dolan, John C; Lam, David K; Achdjian, Stacy H; Schmidt, Brian L

    2010-03-30

    Rodent pain models play an important role in understanding the mechanisms of nociception and have accelerated the search for new treatment approaches for pain. Creating an objective metric for orofacial nociception in these models presents significant technical obstacles. No animal assay accurately measures pain-induced orofacial dysfunction that is directly comparable to human orofacial dysfunction. We developed and validated a high throughput, objective, operant, nociceptive animal assay, and an instrument to perform the assay termed the dolognawmeter, for evaluation of conditions known to elicit orofacial pain in humans. Using the device our assay quantifies gnawing function in the mouse. We quantified a behavioral index of nociception and demonstrated blockade of nociception in three models of orofacial pain: (1) TMJ inflammation, (2) masticatory myositis, and (3) head and neck cancer. This assay will be useful in the study of nociceptive mediators involved in the development and progression of orofacial pain conditions and it will also provide a unique tool for development and assessment of new therapeutic approaches.

  1. Age-Dependent Changes in the Inflammatory Nociceptive Behavior of Mice

    PubMed Central

    King-Himmelreich, Tanya S.; Möser, Christine V.; Wolters, Miriam C.; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-01-01

    The processing of pain undergoes several changes in aging that affect sensory nociceptive fibers and the endogenous neuronal inhibitory systems. So far, it is not completely clear whether age-induced modifications are associated with an increase or decrease in pain perception. In this study, we assessed the impact of age on inflammatory nociception in mice and the role of the hormonal inhibitory systems in this context. We investigated the nociceptive behavior of 12-month-old versus 6–8-week-old mice in two behavioral models of inflammatory nociception. Levels of TRP channels, and cortisol as well as cortisol targets, were measured by qPCR, ELISA, and Western blot in the differently aged mice. We observed an age-related reduction in nociceptive behavior during inflammation as well as a higher level of cortisol in the spinal cord of aged mice compared to young mice, while TRP channels were not reduced. Among potential cortisol targets, the NF-κB inhibitor protein alpha (IκBα) was increased, which might contribute to inhibition of NF-κB and a decreased expression and activity of the inducible nitric oxide synthase (iNOS). In conclusion, our results reveal a reduced nociceptive response in aged mice, which might be at least partially mediated by an augmented inflammation-induced increase in the hormonal inhibitory system involving cortisol. PMID:26593904

  2. The inhibitory effect of locally injected dexmedetomidine on carrageenan-induced nociception in rats.

    PubMed

    Honda, Yuka; Higuchi, Hitoshi; Matsuoka, Yoshikazu; Yabuki-Kawase, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Morimatsu, Hiroshi; Miyawaki, Takuya

    2015-10-05

    Recent studies showed that the administration of dexmedetomidine relieved hyperalgesia in the presence of neuropathic pain. These findings have led to the hypothesis that the local administration of dexmedetomidine is useful for relieving acute inflammatory nociception, such as postoperative pain. Thus, we evaluated the inhibitory effect of locally injected dexmedetomidine on acute inflammatory nociception. Acute inflammatory nociception was induced by an intraplantar injection of 1% carrageenan into the hindpaws of rats, and dexmedetomidine was also injected combined with carrageenan. The paw withdrawal threshold based on von Frey filament stimulation was measured until 12 h after injection. We compared the area under the time-curve (AUC) between carrageenan and carrageenan with dexmedetomidine. To clarify that the action of dexmedetomidine was via α2-adrenoceptors, we evaluated the effect of yohimbine, a selective antagonist of α2-adrenoceptors, on the anti-nociception of dexmedetomidine. As the results, the intraplantar injection of carrageenan with over 10 μM dexmedetomidine significantly increased AUC, compared to that with only carrageenan injection. This effect of dexmedetomidine was reversed by the addition of yohimbine to carrageenan and dexmedetomidine. These results demonstrated that the locally injected dexmedetomidine was effective against carrageenan-induced inflammatory nociception via α2-adrenoceptors. The findings suggest that the local injection of dexmedetomidine is useful for relieving local acute inflammatory nociception.

  3. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain.

    PubMed

    Zambelli, Vanessa O; Gross, Eric R; Chen, Che-Hong; Gutierrez, Vanessa P; Cury, Yara; Mochly-Rosen, Daria

    2014-08-27

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R(2) = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians' apparent lower pain tolerance.

  4. Antinociceptive Effects of Prim-O-Glucosylcimifugin in Inflammatory Nociception via Reducing Spinal COX-2.

    PubMed

    Wu, Liu-Qing; Li, Yu; Li, Yuan-Yan; Xu, Shi-Hao; Yang, Zong-Yong; Lin, Zheng; Li, Jun

    2016-07-01

    We measured anti-nociceptive activity of prim-o-glucosylcimifugin (POG), a molecule from Saposhnikovia divaricate (Turcz) Schischk. Anti-nociceptive or anti-inflammatory effects of POG on a formalin-induced tonic nociceptive response and a complete Freund's adjuvant (CFA) inoculation-induced rat arthritis pain model were studied. Single subcutaneous injections of POG produced potent anti-nociception in both models that was comparable to indomethacin analgesia. Anti-nociceptive activity of POG was dose-dependent, maximally reducing pain 56.6% with an ED50 of 1.6 mg. Rats given POG over time did not develop tolerance. POG also time-dependently reduced serum TNFα, IL-1β and IL-6 in arthritic rats and both POG and indomethacin reduced spinal prostaglandin E2 (PGE2). Like indomethacin which inhibits cyclooxygenase-2 (COX-2) activity, POG dose-dependently decreased spinal COX-2 content in arthritic rats. Additionally, POG, and its metabolite cimifugin, downregulated COX-2 expression in vitro. Thus, POG produced potent anti-nociception by downregulating spinal COX-2 expression.

  5. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae

    PubMed Central

    Zhong, Lixian; Hwang, Richard Y.; Tracey, W. Daniel

    2010-01-01

    Summary Highly branched Class IV multidendritic sensory neurons of the Drosophila larva function as polymodal nociceptors that are necessary for behavioral responses to noxious heat (>39°C) or noxious mechanical (>30 mN) stimuli. However, the molecular mechanisms that allow these cells to detect both heat and force are unknown. Here, we report that the pickpocket(ppk) gene, which encodes a Degenerin/ Epithelial Sodium Channel (DEG/ENaC) subunit, is required for mechanical nociception but not thermal nociception in these sensory cells. Larvae mutant for pickpocket show greatly reduced nociception behaviors in response to harsh mechanical stimuli. However, pickpocket mutants display normal behavioral responses to gentle touch. Tissue specific knockdown of pickpocket in nociceptors phenocopies the mechanical nociception impairment without causing defects in thermal nociception behavior. Finally, optogenetically-triggered nociception behavior is unaffected by pickpocket RNAi which indicates that ppk is not generally required for the excitability of the nociceptors. Interestingly, DEG/ENaCs are known to play a critical role in detecting gentle touch stimuli in C. elegans and have also been implicated in some aspects of harsh touch sensation in mammals. Our results suggest that neurons which detect harsh touch in Drosophila utilize similar mechanosensory molecules. PMID:20171104

  6. Painful engrams: Oscillatory correlates of working memory for phasic nociceptive laser stimuli.

    PubMed

    Valentini, Elia; Nicolardi, Valentina; Aglioti, Salvatore Maria

    2017-04-05

    Research suggests that working memory (WM) is impaired in chronic pain. Yet, information on how potentially noxious stimuli are maintained in memory is limited in patients as well as in healthy people. We recorded electroencephalography (EEG) in healthy volunteers during a modified delayed match-to-sample task where maintenance in memory of relevant attributes of nociceptive laser stimuli was essential for subsequent cued-discrimination. Participants performed in high and low load conditions (i.e. three vs. two stimuli to keep in WM). Modulation of EEG oscillations in the beta band during the retention interval and in the alpha band during the pre-retention interval reflected performance in the WM task. Importantly, both a non-verbal and a verbal neuropsychological WM test predicted oscillatory modulations. Moreover, these two neuropsychological tests and self-reported personality measures predicted the performance in the nociceptive WM task. Results demonstrate (i) that beta and alpha EEG oscillations can represent WM for nociceptive stimuli; (ii) the association between neuropsychological measures of WM and the brain representation of phasic nociceptive painful stimuli; and (iii) that personality factors can predict memory for nociceptive stimuli at the behavioural level. Altogether, our findings offer a promising approach for investigating cortical correlates of nociceptive memory in clinical pain conditions.

  7. Carving Executive Control At Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, But Not Stimulus-Response, Conflict

    PubMed Central

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774

  8. Carving executive control at its joints: Working memory capacity predicts stimulus-stimulus, but not stimulus-response, conflict.

    PubMed

    Meier, Matt E; Kane, Michael J

    2015-11-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones.

  9. Glycine Transporter Type 2 (GlyT2) Inhibitor Ameliorates Bladder Overactivity and Nociceptive Behavior in Rats

    PubMed Central

    Yoshikawa, Satoru; Oguchi, Tomohiko; Funahashi, Yasuhito; de Groat, William C.; Yoshimura, Naoki

    2012-01-01

    Background Glycine is a major inhibitory neurotransmitter in the spinal cord, the concentration of which is regulated by two types of glycine transporters (GlyTs): GlyT1 and GlyT2. We hypothesized that the inhibition of GlyTs could ameliorate bladder overactivity and/or pain sensation in the lower urinary tract. Objective Investigate the effects of GlyT inhibitors on bladder overactivity and pain behavior in rats. Design, setting, and participants Cystometry was performed under urethane anesthesia in cyclophosphamide (CYP)–treated rats. In behavioral studies using conscious rats, nociceptive responses were induced by intravesical administration of resiniferatoxin (3 µM). Selective GlyT1 or GlyT2 inhibitors were administered intrathecally to evaluate their effects. Measurements Cystometric parameters, nociceptive behaviors (licking and freezing), and messenger RNA (mRNA) levels of GlyTs and glycine receptor (GlyR) subunits in the dorsal spinal cord (L6–S1) were measured. Results and limitations During cystometry in CYP-treated rats, significant increases in intercontraction interval and micturition pressure threshold were elicited by ALX-1393, a selective GlyT2 inhibitor, but not by sarcosine, a GlyT1 inhibitor. These effects were completely reversed by strychnine, a GlyR antagonist. ALX-1393 also significantly suppressed nociceptive behaviors in a dose-dependent manner. In sham rats, GlyT2 mRNA was expressed at a much higher level (23-fold) in the dorsal spinal cord than GlyT1 mRNA. In CYP-treated rats, mRNA levels of GlyT2 and the GlyR α1 and β subunits were significantly reduced. Conclusions These results indicate that GlyT2 plays a major role in the clearance of extracellular glycine in the spinal cord and that GlyT2 inhibition leads to amelioration of CYP-induced bladder overactivity and pain behavior. GlyT2 may be a novel therapeutic target for the treatment of overactive bladder and/or bladder hypersensitive disorders such as bladder pain syndrome

  10. Peripheral nerve injury induces loss of nociceptive neuron-specific Gαi-interacting protein in neuropathic pain rat

    PubMed Central

    Liu, Zhen; Wang, Fei; Fischer, Gregory; Hogan, Quinn H.

    2016-01-01

    Background Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Results Immunolabeling with validated antibody revealed GINIP expression in ∼40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ∼80% of IB4-positive (nonpeptidergic) and ∼30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Conclusion Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain. PMID:27145804

  11. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury

    PubMed Central

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  12. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    PubMed

    Huie, J Russell; Stuck, Ellen D; Lee, Kuan H; Irvine, Karen-Amanda; Beattie, Michael S; Bresnahan, Jacqueline C; Grau, James W; Ferguson, Adam R

    2015-01-01

    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.

  13. Keratinocytes can modulate and directly initiate nociceptive responses

    PubMed Central

    Baumbauer, Kyle M; DeBerry, Jennifer J; Adelman, Peter C; Miller, Richard H; Hachisuka, Junichi; Lee, Kuan Hsien; Ross, Sarah E; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2015-01-01

    How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. DOI: http://dx.doi.org/10.7554/eLife.09674.001 PMID:26329459

  14. Trait anxiety affects the orofacial nociceptive response in rats.

    PubMed

    Matos, Anne Caroline C; Teixeira-Silva, Flavia; Goes, Tiago C; Quintans, Lucindo J; Albuquerque, Ricardo Luiz C; Bonjardim, Leonardo R

    2011-01-01

    The aims of the present study were to assess the influence of: a) trait anxiety on orofacial pain; and b) orofacial pain on state anxiety. Forty-four rats were initially exposed to the free-exploratory paradigm for the evaluation of their anxiety profiles. In accordance to the parameter "Percentage of time in the novel side", the animals were considered as presenting high or low levels of trait anxiety when presenting values below the 1st quartile, or above the 3rd quartile, respectively. A week later, formalin-1.5% was injected into the upper lip of each animal. The behavioural nociceptive response, characterized by increased orofacial rubbing (OR), was quantified for 30 minutes, as follows: Total time OR (0-30 minutes: total pain), 1st phase OR (0-6 minutes: neurogenic pain), and 2nd phase OR (12-30 minutes: inflammatory pain). Immediately after this test, but still under the effect of formalin, the rats were submitted to the Elevated Plus-maze test (EPM). The results showed that the high trait anxiety individuals presented higher frequency of OR than the low trait anxiety ones, except during the neurogenic pain period. However, no correlation was found between OR frequency and levels of state anxiety presented on the EPM. In conclusion, the animals presenting higher anxiety profiles were the most susceptible to orofacial pain, nevertheless, orofacial pain did not influence state anxiety.

  15. Facilities Bonds Prove Hot Item under Stimulus

    ERIC Educational Resources Information Center

    Klein, Alyson

    2009-01-01

    Construction bonding authority--a technical, and often obscure, source of capital funding for school districts--has emerged as a hot ticket for those looking to finance school facilities work under the federal government's economic-stimulus program. School districts left out of the loop for direct funding are lining up for some of at least $24…

  16. States Hurt as Stimulus Loses Steam

    ERIC Educational Resources Information Center

    Cavanagh, Sean; Hollingsworth, Heather

    2011-01-01

    States are finally arriving at the "funding cliff"--the point where about $100 billion in federal economic-stimulus aid for education runs out. The loss seems certain to compound severe budget woes and could mean thousands of school layoffs and the elimination of popular programs and services in districts across the country. The bulk of…

  17. Electrophysiological Correlates of Stimulus Equivalence Processes

    ERIC Educational Resources Information Center

    Haimson, Barry; Wilkinson, Krista M.; Rosenquist, Celia; Ouimet, Carolyn; McIlvane, William J.

    2009-01-01

    Research reported here concerns neural processes relating to stimulus equivalence class formation. In Experiment 1, two types of word pairs were presented successively to normally capable adults. In one type, the words had related usage in English (e.g., uncle, aunt). In the other, the two words were not typically related in their usage (e.g.,…

  18. States Anxious to Get Details about Stimulus

    ERIC Educational Resources Information Center

    Hoff, David J.

    2009-01-01

    As Congress began debate last week over the size and scope of more than $120 billion in proposed emergency education aid, state leaders were anxiously awaiting the details so they could make specific plans to spend the economic-stimulus money. Governors, state legislators, and state schools chiefs have yet to learn what rules Congress will attach…

  19. The Poverty of the Mayan Stimulus

    ERIC Educational Resources Information Center

    Pye, Clifton

    2012-01-01

    Poverty of the stimulus (POS) arguments have instigated considerable debate in the recent linguistics literature. This article uses the comparative method to challenge the logic of POS arguments. Rather than question the premises of POS arguments, the article demonstrates how POS arguments for individual languages lead to a "reductio ad absurdum"…

  20. Stimulus polarity and conditioning in planaria.

    PubMed

    BARNES, C D; KATZUNG, B G

    1963-08-23

    Orientation in the monopolar pulse field used as the unconditioned stimulus was found to influence formation of a conditioned response to light in planarians. Planarians trained while oriented with the head toward the cathode reached maximal response rates rapidly, while those trained while oriented toward the anode showed no evidence of conditioned response formation.

  1. Stimulus Picture Identification in Articulation Testing

    ERIC Educational Resources Information Center

    Mullen, Patricia A.; Whitehead, Robert L.

    1977-01-01

    Compared with 20 normal speaking and 20 articulation defective Ss (7 and 8 years old) was the percent of correct initial identification of stimulus pictures on the Goldman-Fristoe Test of Articulation with the percent correct identification on the Arizona Articulation Proficiency Scale. (Author/IM)

  2. Bigrams and the Richness of the Stimulus

    ERIC Educational Resources Information Center

    Kam, Xuan-Nga Cao; Stoyneshka, Iglika; Tornyova, Lidiya; Fodor, Janet D.; Sakas, William G.

    2008-01-01

    Recent challenges to Chomsky's "poverty of the stimulus" thesis for language acquisition suggest that children's primary data may carry "indirect evidence" about linguistic constructions despite containing no instances of them. Indirect evidence is claimed to suffice for grammar acquisition, without need for innate knowledge. This article reports…

  3. Verbal Stimulus Control and the Intraverbal Relation

    ERIC Educational Resources Information Center

    Sundberg, Mark L.

    2016-01-01

    The importance of the intraverbal relation is missed in most theories of language. Skinner (1957) attributes this to traditional semantic theories of meaning that focus on the nonverbal referents of words and neglect verbal stimuli as separate sources of control for linguistic behavior. An analysis of verbal stimulus control is presented, along…

  4. Stimulus control of cocaine self-administration.

    PubMed Central

    Weiss, Stanley J; Kearns, David N; Cohn, Scott I; Schindler, Charles W; Panlilio, Leigh V

    2003-01-01

    Environmental stimuli that set the occasion wherein drugs are acquired can "trigger" drug-related behavior. Investigating the stimulus control of drug self-administration in laboratory animals should help us better understand this aspect of human drug abuse. Stimulus control of cocaine self-administration was generated here for the first time using multiple and chained schedules with short, frequently-alternating components--like those typically used to study food-maintained responding. The procedures and results are presented along with case histories to illustrate the strategies used to produce this stimulus control. All these multicomponent schedules contained variable-interval (VI) components as well as differential-reinforcement-of-other-behavior (DRO) or extinction components. Schedule parameters and unit dose were adjusted for each rat to produce stable, moderate rates in VI components, with minimal postreinforcement (infusion) pausing, and response cessation in extinction and DRO components. Whole-body drug levels on terminal baselines calculated retrospectively revealed that all rats maintained fairly stable drug levels (mean, 2.3 to 3.4 mg/kg) and molar rates of intake (approximately 6.0 mg/kg/hr). Within this range, no relation between local VI response rates and drug level was found. The stimulus control revealed in cumulative records was indistinguishable from that achieved with food under these schedules, suggesting that common mechanisms may underlie the control of cocaine- and food-maintained behavior. PMID:12696744

  5. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors.

    PubMed

    Pesquero, J B; Araujo, R C; Heppenstall, P A; Stucky, C L; Silva, J A; Walther, T; Oliveira, S M; Pesquero, J L; Paiva, A C; Calixto, J B; Lewin, G R; Bader, M

    2000-07-05

    Kinins are important mediators in cardiovascular homeostasis, inflammation, and nociception. Two kinin receptors have been described, B1 and B2. The B2 receptor is constitutively expressed, and its targeted disruption leads to salt-sensitive hypertension and altered nociception. The B1 receptor is a heptahelical receptor distinct from the B2 receptor in that it is highly inducible by inflammatory mediators such as bacterial lipopolysaccharide and interleukins. To clarify its physiological function, we have generated mice with a targeted deletion of the gene for the B1 receptor. B1 receptor-deficient animals are healthy, fertile, and normotensive. In these mice, bacterial lipopolysaccharide-induced hypotension is blunted, and there is a reduced accumulation of polymorphonuclear leukocytes in inflamed tissue. Moreover, under normal noninflamed conditions, they are analgesic in behavioral tests of chemical and thermal nociception. Using whole-cell patch-clamp recordings, we show that the B1 receptor was not necessary for regulating the noxious heat sensitivity of isolated nociceptors. However, by using an in vitro preparation, we could show that functional B1 receptors are present in the spinal cord, and their activation can facilitate a nociceptive reflex. Furthermore, in B1 receptor-deficient mice, we observed a reduction in the activity-dependent facilitation (wind-up) of a nociceptive spinal reflex. Thus, the kinin B1 receptor plays an essential physiological role in the initiation of inflammatory responses and the modulation of spinal cord plasticity that underlies the central component of pain. The B1 receptor therefore represents a useful pharmacological target especially for the treatment of inflammatory disorders and pain.

  6. Possible involvement of TRPV1 and TRPV4 in nociceptive stimulation- induced nocifensive behavior and neuroendocrine response in mice.

    PubMed

    Ishikura, Toru; Suzuki, Hitoshi; Shoguchi, Kanako; Koreeda, Yuki; Aritomi, Takafumi; Matsuura, Takanori; Yoshimura, Mitsuhiro; Ohkubo, Jun-ichi; Maruyama, Takashi; Kawasaki, Makoto; Ohnishi, Hideo; Sakai, Akinori; Mizuno, Atsuko; Suzuki, Makoto; Ueta, Yoichi

    2015-09-01

    Members of the transient receptor potential (TRP) family of ion channels play important roles in inflammation and pain. Here, we showed that both TRPV1 and TRPV4 might contribute to biphasic nocifensive behavior and neuroendocrine response following a formalin test. We subcutaneously injected saline, formalin, or the TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD) into one hindpaw of wild-type (WT), TRPV1-deficient (Trpv1(-/-)), and TRPV4-deficient (Trpv4(-/-)) mice to investigate nocifensive behaviors (phase I [0-10 min] and phase II [10-60 min]) and Fos expression in the dorsal horn of the spinal cord and other brain regions related to pain, in the paraventricular nucleus (PVN), paraventricular nucleus of the thalamus, the medial habenular nucleus, the medial nucleus of the amygdala and capsular part of the central amygdala. Subcutaneous (s.c.) injection of formalin caused less nocifensive behavior in Trpv1(-/-) and Trpv4(-/-) mice than in WT mice during phase I. In phase II, however, formalin induced less nocifensive behavior only in the Trpv1(-/-) mice, but not in the Trpv4(-/-) mice, relative to WT mice. The number of Fos-like immunoreactive (LI) neurons in laminae I-II of the dorsal horn increased in all types of mice 90 min after s.c. injection of formalin; however, there was no difference in the other regions between saline- and formalin-treated mice. Furthermore, s.c. injection of 4α-PDD did not induce nociceptive behavior nor influence the number of Fos-LI neurons in the all above mentioned regions in any of the mice. These results suggest that TRPV4-mediated nociceptive information from the peripheral tissue excluding the spinal pathway might be involved the formalin behavioral response during phase I. Only TRPV1 might regulate the formalin behavioral response in peripheral neuron.

  7. Evaluation of mechanical and thermal nociception as objective tools to measure painful and nonpainful lameness phases in multiparous sows.

    PubMed

    Mohling, C M; Johnson, A K; Coetzee, J F; Karriker, L A; Stalder, K J; Abell, C E; Tyler, H D; Millman, S T

    2014-07-01

    The objective of this study was to quantify pain sensitivity differences using mechanical nociception threshold (MNT) and thermal nociception threshold (TNT) tests when sows were in painful and nonpainful transient lameness phases. A total of 24 mixed parity crossbred sows (220.15 ± 21.23 kg) were utilized for the MNT test, and a total of 12 sows (211.41 ± 20.21 kg) were utilized for the TNT test. On induction day (D0), all sows were anesthetized and injected with Amphotericin B (10mg/mL) in the distal interphalangeal joint space in both claws of one randomly selected hind limb to induce transient lameness. Three days were compared: (1) D-1 (sound phase, defined as 1 d before induction), (2) D+1 (most lame phase, defined as 1 d after induction), and (3) D+6 (resolution phase, defined as 6 d after induction). After completion of the first round, sows were given a 7-d rest period and then the procedures were repeated with lameness induced in the contralateral hind limb. During the MNT test, pressure was applied perpendicularly to 3 landmarks in a randomized sequence for each sow: 1) middle of cannon on the hind limb (cannon), 2) 1 cm above the coronary band on the medial hind claw (medial claw), and 3) 1 cm above the coronary band on the lateral hind claw (lateral claw). During the TNT test, a radiant heat stimulus was directed 1 cm above the coronary band. The data were analyzed using the MIXED procedure in SAS with sow as the experimental unit. Differences were analyzed between sound and lame limbs on each day. For the MNT test, pressure tolerated by the lame limb decreased for every landmark (P < 0.05) when comparing D-1 and D+1. The sound limb tolerated more pressure on D+1 and D+6 than on baseline D-1 (P < 0.05). Thermal stimulation tolerated by the sound limb did not change over the 3 d (P > 0.05). However, the sows tolerated less heat stimulation on their lame limb on D+1 compared to D-1 levels (P < 0.05). Both MNT and TNT tests indicated greater pain

  8. Asymmetrical stimulus generalization following differential fear conditioning.

    PubMed

    Bang, Sun Jung; Allen, Timothy A; Jones, Lauren K; Boguszewski, Pawel; Brown, Thomas H

    2008-07-01

    Rodent ultrasonic vocalizations (USVs) are ethologically critical social signals. Rats emit 22kHz USVs and 50kHz USVs, respectively, in conjunction with negative and positive affective states. Little is known about what controls emotional reactivity to these social signals. Using male Sprague-Dawley rats, we examined unconditional and conditional freezing behavior in response to the following auditory stimuli: three 22kHz USVs, a discontinuous tone whose frequency and on-off pattern matched one of the USVs, a continuous tone with the same or lower frequencies, a 4kHz discontinuous tone with an on-off pattern matched to one of the USVs, and a 50kHz USV. There were no differences among these stimuli in terms of the unconditional elicitation of freezing behavior. Thus, the stimuli were equally neutral before conditioning. During differential fear conditioning, one of these stimuli (the CS(+)) always co-terminated with a footshock unconditional stimulus (US) and another stimulus (the CS(-)) was explicitly unpaired with the US. There were no significant differences among these cues in CS(+)-elicited freezing behavior. Thus, the stimuli were equally salient or effective as cues in supporting fear conditioning. When the CS(+) was a 22kHz USV or a similar stimulus, rats discriminated based on the principal frequency and/or the temporal pattern of the stimulus. However, when these same stimuli served as the CS(-), discrimination failed due to generalization from the CS(+). Thus, the stimuli differed markedly in the specificity of conditioning. This strikingly asymmetrical stimulus generalization is a novel bias in discrimination.

  9. Activation of 5-HT(2C) receptors in the dorsal periaqueductal gray increases antinociception in mice exposed to the elevated plus-maze.

    PubMed

    Baptista, Daniela; Nunes-de-Souza, Ricardo Luiz; Canto-de-Souza, Azair

    2012-11-01

    Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT(1A) and 5-HT(2A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT(1A) and 5-HT(2B/2C) receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 μl intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT(1A) receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT(2B/2C) receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAA), mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 μl), a 5-HT(2A/2C) receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAA enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT(2C) receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice.

  10. Role of the NKCC1 co-transporter in sensitization of spinal nociceptive neurons.

    PubMed

    Pitcher, Mark H; Cervero, Fernando

    2010-12-01

    The Na(+), K(+), 2Cl(-) co-transporter type 1 (NKCC1) plays a pivotal role in hyperalgesia associated with inflammatory stimuli. NKCC1 contributes to maintain high [Cl(-)](i) in dorsal root ganglia (DRG) neurons which cause primary afferent depolarization (PAD) when GABA(A) receptors are activated. Enhanced GABA-induced depolarization, through increased NKCC1 activity, has been hypothesized to produce orthodromic spike activity of sufficient intensity to account for touch-induced pain. In the present study, we investigate this hypothesis using in vivo electrophysiology on rat dorsal horn neurons; the effects of spinal blockade of NKCC1 on intraplantar capsaicin-induced sensitization of dorsal horn neurons were examined. Single wide dynamic range (WDR) and nociceptive specific (NS) neuron activity in the dorsal horn was recorded using glass microelectrodes in anesthetized rats. Dorsal horn neurons with a receptive field on the plantar surface of the hindpaw were studied. Neuronal responses to mechanical stimuli (brush, von Frey filaments) were recorded ten minutes before intraplantar injection of 0.3 ml 0.1% capsaicin (CAP), 40 min after CAP and 15 min after local application of the NKCC1 blocker bumetanide (BTD; 500 μM) on the spinal cord. After CAP, low and high threshold stimulation of the cutaneous receptive field produced a significant enhancement in spike frequency over pre-CAP values in both WDR and NS neurons. Spinal BTD application reduced the spike frequency to baseline levels as well as attenuated the CAP-induced increases in background activity. Our data support the hypothesis that NKCC1 plays an important role in the sensitization of dorsal horn neurons following a peripheral inflammatory insult.

  11. Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress.

    PubMed

    Gameiro, Gustavo Hauber; Gameiro, Paula Hauber; Andrade, Annicele da Silva; Pereira, Lígia Ferrinho; Arthuri, Mariana Trevisani; Marcondes, Fernanda Klein; Veiga, Maria Cecília Ferraz de Arruda

    2006-04-15

    The aim of this study was to evaluate the effect of acute, sub-chronic and chronic stress on nociception induced by formalin injection in rats' temporomandibular joint (TMJ). It was evaluated the relation between blood levels of adrenocorticotropin, corticosterone, the levels of anxiety and nociceptive responses recorded after different stress protocols. Animals were initially submitted to acute restraint stress (15; 30 min and 1 h), or exposed to sub-chronic (3 days-1 h/day) or chronic stress (40 days-1 h/day). Then, animals were (1) killed immediately to collect blood for hormonal determinations; or (2) submitted to the elevated plus-maze to evaluate anxiety; or (3) submitted to the TMJ formalin test to evaluate nociception. It was also evaluated the role of serotoninergic and opioid systems in nociceptive changes induced by stress. For this, the serotonin-selective reuptake inhibitor (fluoxetine 10 mg/kg) and the opioid agonist (morphine 1-5 mg/kg) were administered before the nociception test. All stress protocols significantly raised the levels of ACTH or corticosterone, as well as the anxiety behavior. In relation to nociception, the chronic stressed animals showed an increase in nociceptive responses (hyperalgesia). In this group, there was a reduction in the morphine analgesic effects, suggesting dysfunction in the endogenous opioid system. Fluoxetine had an analgesic effect in both stressed and control groups, although this effect was more evident in the stressed group. It was concluded that stress-induced hyperalgesia may result from changes in the serotoninergic and opioid systems, which can explain, at least in part, the important link between stress and orofacial pain.

  12. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword

    PubMed Central

    Chen, Jun; Lariviere, William R.

    2010-01-01

    Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study. PMID:20558236

  13. JWH-018 in rhesus monkeys: differential antagonism of discriminative stimulus, rate-decreasing, and hypothermic effects.

    PubMed

    Rodriguez, Jesse S; McMahon, Lance R

    2014-10-05

    Several effects of the abused synthetic cannabinoid JWH-018 were compared to those of Δ9-tetrahydrocannabinol (Δ9-THC) in rhesus monkeys. JWH-018 (0.1 mg/kg i.v.) was established as a discriminative stimulus and rimonabant was used to examine mechanisms responsible for discrimination as well as operant response rate-decreasing and hypothermic effects. JWH-018 dose-dependently increased drug-lever responding (ED50=0.01 mg/kg) and decreased response rate (ED50=0.064 mg/kg). Among various cannabinoids, the relative potency for producing discriminative stimulus and rate-decreasing effects was the same: CP-55940=JWH-018>Δ9-THC=WIN-55212-2=JWH-073. The benzodiazepine agonist midazolam and the NMDA antagonist ketamine did not exert JWH-018 like discriminative stimulus effects up to doses that disrupted responding. JWH-018 and Δ9-THC decreased rectal temperature by 2.2 and 2.8°C, respectively; the doses decreasing temperature by 2°C were 0.21 and 1.14 mg/kg, respectively. Antagonism did not differ between JWH-018 and Δ9-THC, but did differ among effects. The apparent affinities of rimonabant calculated in the presence of JWH-018 and Δ9-THC were not different from each other for antagonism of discriminative stimulus effects (6.58 and 6.59, respectively) or hypothermic effects (7.08 and 7.19, respectively). Apparent affinity estimates are consistent with the same receptors mediating the discriminative stimulus and hypothermic effects of both JWH-018 and Δ9-THC. However, there was more limited and less orderly antagonism of rate-decreasing effects, suggesting that an additional receptor mechanism is involved in mediating the effects of cannabinoids on response rate. Overall, these results strongly suggest that JWH-018 and Δ9-THC act at the same receptors to produce several of their shared psychopharmacological effects.

  14. Discriminative stimulus effects of hallucinogenic drugs: a possible relation to reinforcing and aversive effects.

    PubMed

    Mori, Tomohisa; Yoshizawa, Kazumi; Shibasaki, Masahiro; Suzuki, Tsutomu

    2012-01-01

    The subjective effects of drugs are related to the kinds of feelings they produce, such as euphoria or dysphoria. One of the methods that can be used to study these effects is the drug discrimination procedure. Many researchers are trying to elucidate the mechanisms that underlie the discriminative stimulus effects of abused drugs (e.g., alcohol, psychostimulants, and opioids). Over the past two decades, the patterns of drug abuse have changed, so that club/recreational drugs such as phencyclidine (PCP), 3,4-methylenedioxymethamphetamine (MDMA), lysergic acid diethylamide (LSD), and ketamine, which induce perceptual distortions, like hallucinations, are now more commonly abused, especially in younger generations. However, the mechanisms of the discriminative stimulus effects of hallucinogenic drugs are not yet fully clear. This review will briefly focus on the recent findings regarding hallucinogenic/psychotomimetic drug-induced discriminative stimulus effects in animals. In summary, recent research has demonstrated that there are at least two plausible mechanisms that can explain the cue of the discriminative stimulus effects of hallucinogenic drugs; one is mediated mainly by 5-HT(2) receptors, and the other is mediated through sigma-1 (σ(1))-receptor chaperone regulated by endogenous hallucinogenic ligand.

  15. Understanding complex behavior: The transformation of stimulus functions

    PubMed Central

    Dymond, Simon; Rehfeldt, Ruth Anne

    2000-01-01

    The transformation of stimulus functions is said to occur when the functions of one stimulus alter or transform the functions of another stimulus in accordance with the derived relation between the two, without additional training. This effect has been demonstrated with a number of derived stimulus relations, behavioral functions, experimental preparations, and subject populations. The present paper reviews much of the existing research on the transformation of stimulus functions and outlines a number of important methodological and conceptual issues that warrant further attention. We conclude by advocating the adoption of the generic terminology of relational frame theory to describe both the derived transformation of stimulus functions and relational responding more generally. PMID:22478349

  16. Spinal nociceptive transmission by mechanical stimulation of bone marrow

    PubMed Central

    Tanaka, Satoshi; Sekiguchi, Takemi; Sugiyama, Daisuke; Kawamata, Mikito

    2016-01-01

    Background Since bone marrow receives innervation from A-delta and C-fibers and since an increase in intramedullary pressure in bone marrow may induce acute pain in orthopedic patients during surgery and chronic pain in patients with bone marrow edema, skeletal pain may partly originate from bone marrow. Intraosseous lesions, such as osteomyelitis and bone cancer, are also known to produce cutaneous hypersensitivity, which might be referred pain from bone. However, little is known about pain perception in bone marrow and referred pain induced by bone disease. Thus, we carried out an in vivo electrophysiological study and behavioral study to determine whether increased intraosseous pressure of the femur induces acute pain and whether increased intraosseous pressure induces referred pain in the corresponding receptive fields of the skin. Results Intraosseous balloon inflation caused spontaneous pain-related behavior and mechanical hyperalgesia and allodynia in the lumbosacral region. Single neuronal activities of spinal dorsal horn neurons were extracellularly isolated, and then evoked responses to non-noxious and noxious cutaneous stimuli and intraosseous balloon inflation were recorded. Ninety-four spinal dorsal horn neurons, which had somatic receptive fields at the lower back and thigh, were obtained. Sixty-two percent of the wide-dynamic-range neurons (24/39) and 86% of the high-threshold neurons (12/14) responded to intraosseous balloon inflation, while none of the low-threshold neurons (0/41) responded to intraosseous balloon inflation. Spinally administered morphine (1 µg) abolished balloon inflation-induced spontaneous pain-related behavior and mechanical hyperalgesia in awake rats and also suppressed evoked activities of wide-dynamic-range neurons to noxious cutaneous stimulation and intraosseous balloon inflation. Conclusions The results suggest that mechanical stimulation to bone marrow produces nociception, concomitantly producing its referred pain

  17. Antinociceptive activity of atranorin in mice orofacial nociception tests.

    PubMed

    Siqueira, Rosana S; Bonjardim, Leonardo R; Araújo, Adriano A S; Araújo, Bruno E S; Melo, Marcélia G D; Oliveira, Marília G B; Gelain, Daniel P; Silva, Francilene A; DeSantana, Josimari M; Albuquerque-Júnior, Ricardo L C; Rocha, Ricardo F; Moreira, José C F; Antoniolli, Angelo R; Quintans-Júnior, Lucindo J

    2010-01-01

    Physicochemical characterization and antinociceptive and anti-inflammatory activities of atranorin (AT) extracted from Cladina kalbii Ahti in formalin- and capsaicin-induced orofacial pain and anti-inflammatory tests in rodents were studied. Physicochemical characterization showed that AT has the general formula C19H18O8. Male Swiss mice were pretreated with AT (100, 200, and 400 mg/kg, i.p.), morphine (3 mg/kg, i.p.), or vehicle (0.9% saline with two drops of 0.2% Tween 80) before formalin (20 microl, 2%) or capsaicin (20 microl, 2.5 microg) were injected into the right vibrissa. Our results showed that i.p. treatment with AT displayed marked inhibitory effects in different orofacial pain tests in mice. AT (400 mg/kg, i.p.) was effective in reducing the nociceptive face-rubbing behavioural response in both phases of the formalin test, which was also naloxone-sensitive. Additionally, AT produced a significant antinociceptive effect at all doses in the capsaicin test. Such results were unlikely to be provoked by motor abnormality, since AT-treated mice exhibited no performance alteration on the rota rod apparatus. AT exhibited significant anti-inflammatory activity in the acute model of inflammation (leukocyte migration to the peritoneal cavity), carrageenan- and arachidonic acid-induced hind paw edema in rats. Additionally, AT exhibited a dose-dependent antioxidant activity in vitro, as assessed by total radical-trapping antioxidant parameter and total antioxidant reactivity assays. All these findings suggest that AT might represent an important tool for the management of orofacial pain and/or inflammatory disorders.

  18. Sensitization of the Nociceptive System in Complex Regional Pain Syndrome

    PubMed Central

    Diedrichs, Carolina; Baron, Ralf; Gierthmühlen, Janne

    2016-01-01

    Background Complex regional pain syndrome type I (CRPS-I) is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion. Objective Aims were to investigate how sensory, autonomic and motor function change in the course of the disease. Methods 19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1–33 months) were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms), motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16–53 months later). Results CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain. Conclusions The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients’ pain and disability. PMID:27149519

  19. Dissociable Effects of the Cannabinoid Receptor Agonists Δ9-Tetrahydrocannabinol and CP55940 on Pain-Stimulated Versus Pain-Depressed Behavior in Rats

    PubMed Central

    Kwilasz, Andrew J.

    2012-01-01

    Cannabinoid receptor agonists produce reliable antinociception in most preclinical pain assays but have inconsistent analgesic efficacy in humans. This disparity suggests that conventional preclinical assays of nociception are not sufficient for the prediction of cannabinoid effects related to clinical analgesia. To extend the range of preclinical cannabinoid assessment, this study compared the effects of the marijuana constituent and low-efficacy cannabinoid agonist Δ9-tetrahydrocannabinol (THC) and the high-efficacy synthetic cannabinoid agonist 3-(2-hydroxy-4-(1,1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol (CP55940) in assays of pain-stimulated and pain-depressed behavior. Intraperitoneal injection of dilute lactic acid (1.8% in 1 ml/kg) stimulated a stretching response or depressed intracranial self-stimulation (ICSS) in separate groups of male Sprague-Dawley rats. THC (0.1–10 mg/kg) and CP55940 (0.0032–0.32 mg/kg) dose-dependently blocked acid- stimulated stretching but only exacerbated acid-induced depression of ICSS at doses that also decreased control ICSS in the absence of a noxious stimulus. Repeated THC produced tolerance to sedative rate-decreasing effects of THC on control ICSS in the absence of the noxious stimulus but failed to unmask antinociception in the presence of the noxious stimulus. THC and CP55940 also failed to block pain-related depression of feeding in rats, although THC did attenuate satiation-related depression of feeding. In contrast to the effects of the cannabinoid agonists, the clinically effective analgesic and nonsteroidal anti-inflammatory drug ketoprofen (1 mg/kg) blocked acid-stimulated stretching and acid-induced depression of both ICSS and feeding. The poor efficacy of THC and CP55940 to block acute pain-related depression of behavior in rats agrees with the poor efficacy of cannabinoids to treat acute pain in humans. PMID:22892341

  20. Influence of early neonatal experience on nociceptive responses and analgesic effects in rats.

    PubMed

    Dickinson, Amy L; Leach, Matthew C; Flecknell, Paul A

    2009-01-01

    Early maternal separation has profound effects on nociception in rats. Cross-fostering is a standard husbandry procedure used by some commercial breeders. This study aimed to determine if cross-fostering altered nociception and the analgesic efficacy of buprenorphine and morphine. At seven and nine weeks of age, an elevated plus maze was used to assess anxiety and Hargreaves apparatus was used to measure thermal nociception at two intensities in cross-fostered and naturally-reared rats. At 10 weeks of age these rats were assigned to one of three treatment groups: saline, buprenorphine or morphine. The Hargreaves apparatus was used to evaluate the effect of analgesics on nociception. Differences were observed in nociception between the cross-fostered and naturally-reared rats at both intensities. At the lower intensity no significant differences were seen between the cross-fostered and naturally-reared rats post-administration of an analgesic. At the higher intensity significant differences were apparent. Morphine was less effective in inducing analgesia to thermal stimuli in cross-fostered rats compared with naturally-reared rats, whereas the opposite was found with buprenorphine which had a more pronounced analgesic effect in the cross-fostered rats. No significant differences in performance on an elevated plus maze were demonstrated between the cross-fostered and naturally-reared rats.

  1. Oral manganese as an MRI contrast agent for the detection of nociceptive activity.

    PubMed

    Jacobs, Kathleen E; Behera, Deepak; Rosenberg, Jarrett; Gold, Garry; Moseley, Michael; Yeomans, David; Biswal, Sandip

    2012-04-01

    The ability of divalent manganese to enter neurons via calcium channels makes manganese an excellent MRI contrast agent for the imaging of nociception, the afferent neuronal encoding of pain perception. There is growing evidence that nociceptive neurons possess increased expression and activity of calcium channels, which would allow for the selective accumulation of manganese at these sites. In this study, we show that oral manganese chloride leads to increased enhancement of peripheral nerves involved in nociception on T(1)-weighted MRI. Oral rather than intravenous administration was chosen for its potentially better safety profile, making it a better candidate for clinical translation with important applications, such as pain diagnosis, therapy and research. The spared nerve injury (SNI) model of neuropathic pain was used for the purposes of this study. SNI rats were given, sequentially, increasing amounts of manganese chloride (lowest, 2.29 mg/100 g weight; highest, 20.6 mg/100 g weight) with alanine and vitamin D(3) by oral gavage. Compared with controls, SNI rats demonstrated increased signal-to-background ratios on T(1)-weighted fast spin echo MRI, which was confirmed by and correlated strongly with spectrometry measurements of nerve manganese concentration. We also found the difference between SNI and control rats to be greater at 48 h than at 24 h after dosing, indicating increased manganese retention in addition to increased manganese uptake in nociceptive nerves. This study demonstrates that oral manganese is a viable method for the imaging of nerves associated with increased nociceptive activity.

  2. Long-term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats.

    PubMed

    Negrigo, Aline; Medeiros, Magda; Guinsburg, Ruth; Covolan, Luciene

    2011-03-03

    The role of sex and gender in accounting for individual pain behaviors is poorly understood. The present study was conducted to determine whether neonatal nociceptive stimuli at postnatal day 1 (PD1) in rats would lead to a differential behavioral impact based on gender. Animals were divided in 4 groups according to treatment (two injections of 4% formalin into the pad of right paws at PD1 or control) and gender. The sensory threshold and cognition tests were performed in adult rats using the hot plate, open field, elevated plus maze and forced swim tests. The number of paw licks was higher in females and in formalin-treated rats (P=0.02), but without interaction between gender and treatment. Exploratory activity was reduced in males (P<0.01), especially in the nociceptive group (P<0.01). Anxiety levels were higher in the female-nociceptive group (P<0.05). Depression-like behavior was more evident among females, independent of treatment. We concluded that a single acute nociceptive stimulation early in development does not affect nociception and depressive behaviors, but is able to alter the exploratory behavior and anxiety levels in adulthood in a gender specific manner.

  3. Sida cordifolia leaf extract reduces the orofacial nociceptive response in mice.

    PubMed

    Bonjardim, L R; Silva, A M; Oliveira, M G B; Guimarães, A G; Antoniolli, A R; Santana, M F; Serafini, M R; Santos, R C; Araújo, A A S; Estevam, C S; Santos, M R V; Lyra, A; Carvalho, R; Quintans-Júnior, L J; Azevedo, E G; Botelho, M A

    2011-08-01

    In this study, we describe the antinociceptive activity of the ethanol extract (EE), chloroform (CF) and methanol (MF) fractions obtained from Sida cordifolia, popularly known in Brazil as "malva branca" or "malva branca sedosa". Leaves of S. cordifolia were used to produce the crude ethanol extract and after CF and MF. Experiments were conducted on Swiss mice using the glutamate and formalin-induced orofacial nociception. In the formalin test, all doses of EE, CF and MF significantly reduced the orofacial nociception in the first (p < 0.001) and second phase (p < 0.001), which was also naloxone-sensitive. In the glutamate-induced nociception test, only CF and MF significantly reduced the orofacial nociceptive behavior with inhibition percentage values of 48.1% (100 mg/kg, CF), 56.1% (200 mg/kg, CF), 66.4% (400 mg/kg, CF), 48.2 (200 mg/kg, MF) and 60.1 (400 mg/kg, MF). Furthermore, treatment of the animals with EE, CF and MF was not able to promote motor activity changes. These data demonstrate that S. cordifolia has a pronounced antinociceptive activity on orofacial nociception. However, pharmacological and chemical studies are necessary in order to characterize the responsible mechanisms for this antinociceptive action and also to identify other bioactive compounds present in S. cordifolia.

  4. Inhibition of fatty acid amide hydrolase (FAAH) reduces spinal nociceptive responses and expression of spinal long-term potentiation (LTP).

    PubMed

    Eriksen, Guro S; Jacobsen, Line Melå; Mahmood, Aqsa; Pedersen, Linda M; Gjerstad, Johannes

    2012-02-10

    Fatty acid amide hydrolase (FAAH) is an enzyme that metabolizes endocannabinoids and fatty acid amides possibly linked to activation of the opioid system. To examine how this enzyme affects spinal signalling, electrophysiological recordings in the dorsal horn and qPCR on dorsal horn tissue following systemic administration of the FAAH inhibitor URB597 (0.3 and 1.0mg/kg i.v.) and spinal administration of the opioid receptor antagonist naloxone (0.1 μg/μl i.th.), were performed. The present data showed that the suppressive effect of the FAAH inhibitor URB597 (1.0mg/kg i.v.) on the spinal nociceptive responses was prevented by spinal administration of the opioid receptor antagonist naloxone (0.1 μg/μl i.th.). Moreover, the present findings demonstrated that the FAAH inhibitor URB597 (1.0mg/kg i.v.) partly reversed expression of spinal long-term potentiation (LTP) and also attenuated the LTP-associated increased Zif expression. We conclude that pharmacological inactivation of FAAH may be a promising strategy to inhibit the development of central hyperalgesia; thereby reinforcing the role of FAAH as a potential therapeutic target.

  5. Anionic linear aliphatic surfactants activate TRPV1: a possible endpoint for estimation of detergent induced eye nociception?

    PubMed

    Lindegren, H; Mogren, H; El Andaloussi-Lilja, J; Lundqvist, J; Forsby, A

    2009-12-01

    The transient receptor potential vanilloid type 1 (TRPV1) has been reported as one of the key components in the pain pathway. Activation of the receptor causes a Ca(2+) influx in sensory C-fibres with secondary effects leading to neurogenic inflammation in the surrounding tissue. We have earlier reported specific activation of TRPV1 by surfactant-containing hygiene products. We have continued this project by investigating activation of the TRPV1 by shampoo and soap ingredients in low concentrations measured as intracellular Ca(2+) influxes in stably TRPV1-expressing neuroblastoma SH-SY5Y cells. As a TRPV1 specific control, the TRPV1 antagonist capsazepine was used. The response was quantified as the product induced Ca(2+) influx during 2 min in relation to the maximum response induced by the TRPV1 agonist capsaicin. The results show that anionic alkyl linear surfactant ingredients such as sodium lauryl sulphate, sodium laureth sulphate, ammonium lauryl sulphate, sodium C12-15 pareth sulphate and N-lauroylsarcosine concentration-dependently induced Ca(2+) influx that could be addressed to TRPV1. The cationic surfactants benzalkonium chloride and cetylpyridinium chloride induced a Ca(2+) influx that was not TRPV1 mediated as well as the zwitterionic surfactant cocamidopropyl betaine, the non-linear anionic surfactant sodium deoxycholate and the non-ionic surfactant Triton-X. These results reveal a new mechanistic pathway for surfactant-induced nociception.

  6. Role of thalamic nuclei in the modulation of Fos expression within the cerebral cortex during hypertonic saline-induced muscle nociception.

    PubMed

    Xiao, Y; Lei, J; Ye, G; Xu, H; You, H-J

    2015-09-24

    It has been proposed that thalamic mediodorsal (MD) and ventromedial (VM) nuclei form thalamic 'nociceptive discriminators' in discrimination of nociceptive afferents, and specifically govern endogenous descending facilitation and inhibition. The present study conducted in rats was to explore the role of thalamic MD and VM nuclei in modulation of cerebral neuronal activities by means of detection of spatiotemporal variations of Fos expression within the cerebral cortex. Following a unilateral intramuscular injection of 5.8% saline into the gastrocnemius muscle, Fos expression within the bilateral, different areas of the cerebral cortex except S2 was significantly increased (P<0.05). Particularly, the increases in Fos expression within the cingulate cortex and the insular cortex occurred at 0.5h, 4h and reached the peak level at 4h, 16h, respectively. Electrolytic lesion of the contralateral thalamic MD and VM nuclei significantly blocked the 5.8% saline intramuscularly induced increases in Fos expression within the bilateral cingulate and insular cortices, respectively. Additionally, the 5.8% saline-induced Fos expression in the cingulate cortex and the insular cortex were dose-dependently attenuated by microinjection of μ-opioid antagonist β-funaltrexamine hydrochloride into the thalamic MD and VM nuclei. It is suggested that (1) the neural circuits of 'thalamic MD nucleus - cingulate cortex' and 'thalamic VM nucleus - insular cortex' form two distinct pathways in the endogenous control of nociception, (2) mirror or contralateral pain is hypothesized to be related to cross-talk of neuronal activities within the bilateral cerebral cortices modulated by μ-opioid receptors within the thalamic MD and VM nuclei.

  7. Electrophysiological Correlates of Stimulus Equivalence Processes

    PubMed Central

    Haimson, Barry; Wilkinson, Krista M; Rosenquist, Celia; Ouimet, Carolyn; McIlvane, William J

    2009-01-01

    Research reported here concerns neural processes relating to stimulus equivalence class formation. In Experiment 1, two types of word pairs were presented successively to normally capable adults. In one type, the words had related usage in English (e.g., uncle, aunt). In the other, the two words were not typically related in their usage (e.g., wrist, corn). For pairs of both types, event-related cortical potentials were recorded during and immediately after the presentation of the second word. The obtained waveforms differentiated these two types of pairs. For the unrelated pairs, the waveforms were significantly more negative about 400 ms after the second word was presented, thus replicating the “N400” phenomenon of the cognitive neuroscience literature. In addition, there was a strong positive-tending wave form difference post-stimulus presentation (peaked at about 500 ms) that also differentiated the unrelated from related stimulus pairs. In Experiment 2, the procedures were extended to study arbitrary stimulus–stimulus relations established via matching-to-sample training. Participants were experimentally naïve adults. Sample stimuli (Set A) were tr