Science.gov

Sample records for recirculating linac-based facility

  1. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    SciTech Connect

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-12-21

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length ({approx}60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied.

  2. LUX - a recirculating linac-based facility for ultrafast X-ray science

    SciTech Connect

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Penn, G.; Ratti, A.; Reinsch, M.; Schoenlein, R.; Staples, J.; Stover, G.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Wurtele, J.; Zholents, A.

    2004-06-29

    We present recent developments in design concepts for LUX - a source of ultra-short synchrotron radiation pulses based on a recirculating superconducting linac. The source produces high-flux x-ray pulses with duration of 100 fs or less at a 10 kHz repetition rate, optimized for the study of ultra-fast dynamics across many fields of science [1]. Cascaded harmonic generation in free-electron lasers (FEL's) produces coherent radiation in the VUV-soft x-ray regime, and a specialized technique is used to compress spontaneous emission for ultra-short-pulse photon production in the 1-10 keV range. High-brightness electron bunches of 2-3 mm-mrad emittance at 1 nC charge in 30 ps duration are produced in an rf photocathode gun and compressed to 3 ps duration following an injector linac, and recirculated three times through a 1 GeV main linac. In each return path, independently tunable harmonic cascades are inserted to produce seeded FEL radiation in selected photon energy ranges from approximately 20 eV with a single stage of harmonic generation, to 1 keV with a four-stage cascade. The lattice is designed to minimize emittance growth from effects such as coherent synchrotron radiation (CSR), and resistive wall wakefields. Timing jitter between pump lasers and x-ray pulses is minimized by use of a stable optical master oscillator, distributing timing signals over actively stabilized fiber-optic, phase-locking all lasers to the master oscillator, and generating all rf signals from the master oscillator. We describe technical developments including techniques for minimizing power dissipation in a high repetition rate rf photocathode gun, beam dynamics in two injector configurations, independently tunable beamlines for VUV and soft x-ray production by cascaded harmonic generation, a fast kicker design, timing systems for providing synchronization between experimental pump lasers and the x-ray pulse, and beamline design for maintaining nm-scale density modulation.

  3. LUX - A recirculating linac-based ultrafast X-ray source

    SciTech Connect

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2003-08-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme.

  4. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation.

  5. Recirculating Linear Accelerators for Future Muon Facilities

    SciTech Connect

    S.A. Bogacz, K.B.Beard, R.P. Johnson

    2010-05-01

    Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness.

  6. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  7. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

  8. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  9. A Single-Shot Method for Measuring Femtosecond Bunch Length in Linac-Based Free-Electron Lasers

    SciTech Connect

    Huang, Z.; Bane, K.; Ding, Y.; Emma, P.; /SLAC

    2010-08-26

    There is growing interest in the generation and characterization of femtosecond and subfemtosecond pulses from linac-based free-electron lasers (FELs). In this report, following the method of Ricci and Smith [Phys. Rev. ST Accel. Beams 3, 032801 (2000)], we investigate the measurement of the longitudinal bunch profile of an ultrashort electron bunch produced by these FELs. We show that this method can be applied in a straightforward manner at x-ray FEL facilities such as the Linac Coherent Light Source by slightly adjusting the second bunch compressor followed by running the bunch on an rf zero-crossing phase of the final linac. We find that the linac wakefield strongly perturbs the measurement, and through analysis show that it can be compensated in a simple way. We demonstrate the effectiveness of this method and wakefield compensation through numerical simulations, including effects of coherent synchrotron radiation and longitudinal space charge. When used in conjunction with a high-resolution electron spectrometer, this method potentially reveals the temporal profile of the electron beam down to the femtosecond and subfemotsecond scale.

  10. Induction-linac based free-electron laser amplifiers for plasma heating

    NASA Astrophysics Data System (ADS)

    Jong, R. A.

    1988-08-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging from 280 to 560 GHz.

  11. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  12. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  13. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  14. Dosimetric comparison of helical tomothearpy and linac-based IMRT in whole abdomen radiotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kim, Dae-Hyun; Jang, Hong Seok; Song, Jin Ho; Choi, Byung Ock; Cho, Seok Goo; Jung, Ji-Young; Kay, Chul Seung

    2012-10-01

    Recent advances in radiotherapy techniques have allowed a significant improvement in the therapeutic ratio of whole abdominal irradiation (WAI) through linear-accelerator (Linac) based intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT). IMRT has been shown to reduce the dose to organs at risk (OAR) while adequately treating the tumor volume. HT operates by adjusting 51 beam directions, couch speed, pitch and shapes of a binary multileaf collimator (MLC), with the purpose of clinically increasing the befit to the patient. We incorporated helical tomotherapy as a new modality for WAI for the treatment of non-Hodgkin's lymphoma patients whose disease involved the intestine and the mesenteric lymph nodes. Excellent tumor coverage with effective sparing of normal organ sparings, and homogeneous dose distribution could be achieved. This study dosimetrically compared HT and linac-based IMRT by using several indices, including the conformity index (CI) and the homogeneity index (HI) for the planning target volume (PTV), as well as the, max dose and the mean dose and the quality index (QI) for five organs at risk (OARs). The HI and the CI were used to compare the quality of target coverage while the QI was used compare the dosimetric performans for OAR systems. The target coverages between the two systems were similar, but the most QIs were lower than 1, what means that HT is batter at sparing OARs than IMRT. Tomotherapy enabled excellent target coverage, effective sparing of normal tissues, and homogeneous dose distribution without severe acute toxicity.

  15. Optimizing LINAC-based stereotactic radiotherapy of uveal melanomas: 7 years' clinical experience

    SciTech Connect

    Dieckmann, Karin . E-mail: Karin.Dieckmann@akhwien.at; Georg, Dietmar; Bogner, Joachim; Zehetmayer, Martin; Petersch, Bernhard; Chorvat, Martin; Weitmann, Hajo; Poetter, Richard

    2006-11-15

    Purpose: To report on the clinical outcome of LINAC-based stereotactic radiotherapy (SRT) of uveal melanomas. Additionally, a new prototype (hardware and software) for automated eye monitoring and gated SRT using a noninvasive eye fixation technique is described. Patients and Methods: Between June 1997 and March 2004, 158 patients suffering from uveal melanoma were treated at a LINAC with 6 MV (5 x 14 Gy; 5 x 12 Gy prescribed to 80% isodose) photon beams. To guarantee identical patient setup during treatment planning (CT and MRI) and treatment delivery, patients were immobilized with a BrainLAB thermoplastic mask. Eye immobilization was achieved by instructing the patient to fixate on a light source integrated into the mask system. A mini-video camera was used to provide on-line information about the eye and pupil position, respectively. A new CT and magnetic resonance (MR) compatible prototype, based on head-and-neck fixation and the infrared tracking system ExacTrac, has been developed and evaluated since 2002. This system records maximum temporal and angular deviations during treatment and, based on tolerance limits, a feedback signal to the LINAC enables gated SRT. Results: After a median follow-up of 33.4 months (range, 3-85 months), local control was achieved in 98%. Fifteen patients (9.0%) developed metastases. Secondary enucleation was performed in 23 patients (13.8%). Long-term side effects were retinopathy (n = 70; 44%), cataract (n = 30; 23%), optic neuropathy (n = 65; 41%), and secondary neovascular glaucoma (n = 23; 13.8%). Typical situations when preset deviation criteria were exceeded were slow drifts (fatigue), large sudden eye movements (irritation), or eye closing (fatigue). In these cases, radiation was reliably interrupted by the gating system. In our clinical setup, the novel system for computer-controlled gated SRT of uveal melanoma was well tolerated by about 30 of the patients treated with this system so far. Conclusion: LINAC-based SRT of

  16. High Repetition Rate, LINAC-Based Nuclear Resonance Fluorescence FY 2008 Final Report

    SciTech Connect

    Scott M Watson; Mathew T Kinlaw; James L Jones; Alan W. Hunt; Glen A. Warren

    2008-12-01

    This summarizes the first year of a multi-laboratory/university, multi-year effort focusing on high repetition rate, pulsed LINAC-based nuclear resonance fluorescence (NRF) measurements. Specifically, this FY2008 effort centered on experimentally assessing NRF measurements using pulsed linear electron accelerators, operated at various repetition rates, and identifying specific detection requirements to optimize such measurements. Traditionally, interest in NRF as a detection technology, which continues to receive funding from DHS and DOE/NA-22, has been driven by continuous-wave (CW), Van de Graff-based bremsstrahlung sources. However, in addition to the relatively sparse present-day use of Van de Graff sources, only limited NRF data from special nuclear materials has been presented; there is even less data available regarding shielding effects and photon source optimization for NRF measurements on selected nuclear materials.

  17. Linac-based stereotactic radiotherapy and radiosurgery in patients with meningioma

    PubMed Central

    2014-01-01

    Background It was our purpose to analyze long-term clinical outcome and to identify prognostic factors after Linac-based fractionated stereotactic radiotherapy (Linac-based FSRT) and stereotactic radiosurgery (SRS) in patients with intracranial meningiomas. Materials and methods Between 10/1995 and 03/2009, 297 patients with a median age of 59 years were treated with FSRT for intracranial meningioma. 50 patients had a Grade I meningioma, 20 patients had a Grade II meningioma, 12 patients suffered from a Grade III tumor, and in 215 cases no histology was obtained (Grade 0). Of the 297 patients, 144 underwent FSRT as their primary treatment and 158 underwent postoperative FSRT. 179 patients received normofractionated radiotherapy (nFSRT), 92 patients received hypofractionated FSRT (hFSRT) and 26 patients underwent SRS. Patients with nFSRT received a mean total dose of 57.31 ± 5.82 Gy, patients with hFSRT received a mean total dose of 37.6 ± 4.4 Gy and patients who underwent SRS received a mean total dose of 17.31 ± 2.58 Gy. Results Median follow-up was 35 months. Overall progression free survival (PFS) was 92.3% at 3 years, 87% at 5 years and 84.1% at 10 years. Patients with adjuvant radiotherapy showed significantly better PFS-rates than patients who had been treated with primary radiotherapy. There was no significant difference between PFS-rates of nFSRT, hFSRT and SRS patients. PFS-rates were independent of tumor size. Patients who had received nFSRT showed less acute toxicity than those who had received hFSRT. In the Grade 0/I group the rate of radiologic focal reactions was significantly lower than in the atypical/malignant histology group. Conclusion This large study showed that FSRT is an effective and safe treatment modality with high PFS-rates for intracranial meningioma. We identified “pathological grading” and and “prior surgery” as significant prognostic factors. PMID:24650090

  18. Dosimetry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors.

    PubMed

    Somigliana, A; Cattaneo, G M; Fiorino, C; Borelli, S; del Vecchio, A; Zonca, G; Pignoli, E; Loi, G; Calandrino, R; Marchesini, R

    1999-04-01

    In stereotactic radiosurgery the choice of appropriate detectors, whether for absolute or relative dosimetry, is very important due to the steep dose gradient and the incomplete lateral electronic equilibrium. For both linac-based and Leksell Gamma Knife radiosurgery units, we tested the use of calibrated radiochromic film to measure absolute doses and relative dose distributions. In addition a small diode was used to estimate the relative output factors. The data obtained using radiochromic and diode detectors were compared with measurements performed with other conventional methods of dosimetry, with calculated values by treatment planning systems and with data prestored in the treatment planning system supplied by the Leksell Gamma Knife (LGK) vendor. Two stereotactic radiosurgery techniques were considered: Leksell Gamma Knife (using gamma-rays from 60Co) and linac-based radiosurgery (LR) (6 MV x-rays). Different detectors were used for both relative and absolute dosimetry: relative output factors (OFs) were estimated by using radiochromic and radiographic films and a small diode; relative dose distributions in the axial and coronal planes of a spherical polystyrene phantom were measured using radiochromic film and calculated by two different treatment planning systems (TPSs). The absolute dose at the sphere centre was measured by radiochromic film and a small ionization chamber. An accurate selection of radiochromic film was made: samples of unexposed film showing a percentage standard deviation of less than 3% were used for relative dose profiles, and for absolute dose and OF evaluations this value was reduced to 1.5%. Moreover a proper calibration curve was made for each set of measurements. With regard to absolute doses, the results obtained with the ionization chamber are in good correlation with radiochromic film-generated data, for both LGK and LR, showing a dose difference of less than 1%. The output factor evaluations, performed using different methods

  19. Planning and delivery comparison of six linac-based stereotactic radiosurgery techniques

    NASA Astrophysics Data System (ADS)

    Thakur, Varun Singh

    This work presents planning and delivery comparison of linac-based SRS treatment techniques currently available for single lesion cranial SRS. In total, two dedicated SRS systems (Novalis Tx, Cyberknife) and a HI-ART TomoTherapy system with six different delivery techniques are evaluated. Four delivery techniques are evaluated on a Novalis Tx system: circular cones, dynamic conformal arcs (DCA), static non-coplanar intensity modulated radiotherapy (NCP-IMRT), and volumetric modulated arc therapy (RapidArc) techniques are compared with intensity modulation based helical Tomotherapy on the HI-ART Tomotherapy system and with non-isocentric, multiple overlapping based robotic radiosurgery using the CyberKnife system. Thirteen patients are retrospectively selected for the study. The target volumes of each patient are transferred to a CT scan of a Lucy phantom (Standard Imaging Inc., Middleton, WI, USA) designed for end-to-end SRS QA. In order to evaluate the plans, several indices scoring the conformality, homogeneity and gradients in the plan are calculated and compared for each of the plans. Finally, to check the clinical deliverability of the plans and the delivery accuracy of different systems, a few targets are delivered on each system. A comparison between planned dose on treatment planning system and dose delivered on Gafchromic EBT film (ISP, Wayne, New Jersey, USA) is carried out by comparing dose beam profiles, isodose lines and by calculating gamma index.

  20. Analytical bunch compression studies for a linac-based electron accelerator

    NASA Astrophysics Data System (ADS)

    Schreck, M.; Wesolowski, P.

    2015-10-01

    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  1. Modeling Of Induction-Linac Based Free-Electron Laser Amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, Raynard A.; Fawley, William M.; Scharlemann, Ernst T.

    1989-05-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multi-megawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  2. Modeling of induction-linac based free-electron laser amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, R. A.; Fawley, W. M.; Scharlemann, E. T.

    1988-12-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for Free-Electron Laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  3. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    SciTech Connect

    Schmerge, J.; Adolphsen, C.; Corbett, J.; Dolgashev, V.; Durr, H.; Fazio, M.; Fisher, A.; Frisch, J.; Gaffney, K.; Guehr, M.; Hastings, J.; Hettel, B.; Hoffmann, M.; Hogan, M.; Holtkamp, N.; Huang, X.; Huang, Z.; Kirchmann, P.; LaRue, J.; Limborg, C.; Lindenberg, A.; Loos, H.; Maxwell, T.; Nilsson, A.; Raubenheimer, T.; Reis, D.; Ross, M.; Shen, Z. -X.; Stupakov, G.; Tantawi, S.; Tian, K.; Wu, Z.; Xiang, D.; Yakimenko, V.

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  4. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  5. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, John F.

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  6. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  7. Pediatric cerebral arteriovenous malformations: The role of stereotactic linac-based radiosurgery

    SciTech Connect

    Zabel-du Bois, Angelika . E-mail: A.Zabel@dkfz-heidelberg.de; Milker-Zabel, Stefanie; Huber, Peter; Schlegel, Wolfgang; Debus, Juergen

    2006-07-15

    Purpose: To evaluate retrospectively clinical outcome and obliteration rates after linac-based radiosurgery (RS) in children with cerebral arteriovenous malformations (AVM). Methods and Materials: Between 1996 and 2002, 22 children with cerebral AVM were treated at our institution. Mean age at treatment was 11.8 years (range, 4.4-16.4 years). Classification according to Spetzler-Martin was 1 child grade I (4%), 7 grade II (32%), 12 grade III (56%), 1 grade IV (4%), and 1 grade V (4%). Median single dose was 18 Gy/80%-isodose. Median AVM volume was 4.2 mL (range, 0.4-26.5 mL). Median RS-based AVM-score was 1.07 (range, 0.61-3.55). Fifty-nine percent of children experienced intracranial hemorrhage before RS. Median follow-up was 3.1 years (range, 1.7-7.3 years). Results: Actuarial complete obliteration rate (CO) was 54% after 3 years and 65% after 4 years, respectively. Median time interval to CO was 27.1 months. Intracranial hemorrhage after RS was seen in five children after median 13.9 months. Annual bleeding risk was 9.1% after 1 year and 13.6% after 2 years. Maximum diameter {>=}3 cm and AVM-volume {>=}6 mL were significant predictors for intracranial hemorrhage. Neurologic deficits were improved/completely dissolved in 58% of children and remained stable in 42%. No new onset of neurologic dysfunction was seen after RS. Conclusions: RS is safe and effective in pediatric cerebral AVM with high obliteration rates. Size and volume of AVM are significant predictors for intracranial bleeding. The same treatment guidelines as in adults should be applied. Careful long-term follow-up observation is required after RS from long life expectation.

  8. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  9. Preoperational test report, recirculation ventilation systems

    SciTech Connect

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  10. Conditions for coherent-synchrotron-radiation-induced microbunching suppression in multibend beam transport or recirculation arcs

    NASA Astrophysics Data System (ADS)

    Tsai, C.-Y.; Di Mitri, S.; Douglas, D.; Li, R.; Tennant, C.

    2017-02-01

    The coherent synchrotron radiation (CSR) of a high-brightness electron beam traversing a series of dipoles, such as transport or recirculation arcs, may result in beam phase space degradation. On one hand, CSR can perturb electron transverse motion in dispersive regions along the beam line and possibly cause emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching instability. For transport arcs, several schemes have been proposed to suppress the CSR-induced emittance growth. Correspondingly, a few scenarios have been introduced to suppress CSR-induced microbunching instability, which however mostly aim for linac-based machines. In this paper we provide sufficient conditions for suppression of CSR-induced microbunching instability along transport or recirculation arcs. Examples are presented with the relevant microbunching analyses carried out by our developed semianalytical Vlasov solver [C.-Y. Tsai, D. Douglas, R. Li, and C. Tennant, Linear microbunching analysis for recirculation machines, Phys. Rev. ST Accel. Beams 19, 114401 (2016), 10.1103/PhysRevAccelBeams.19.114401]. The example lattices include low-energy (˜100 MeV ) and high-energy (˜1 GeV ) recirculation arcs, and medium-energy compressor arcs. Our studies show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. Beam current dependences of maximal CSR microbunching gains are also demonstrated, which should help outline a beam line design for different scales of nominal currents. We expect this analysis can shed light on the lattice design approach that aims to control the CSR-induced microbunching.

  11. Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience

    SciTech Connect

    Collen, Christine; Ampe, Ben; Gevaert, Thierry; Moens, Maarten; Linthout, Nadine; De Ridder, Mark; Verellen, Dirk; D'Haens, Jean; Storme, Guy

    2011-11-15

    Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessions of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.

  12. Physical parameters of very small diameter 10 MV X-ray beams for linac-based stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Sham, Edwin

    Physical aspects of very small diameter X-ray beams used for a linac-based stereotactic radiosurgery are presented in this thesis. A 10 MV linac was used as the radiation source. Very small 10 MV photon fields with diameters of 1.5 mm, 3 mm, and 5 mm are produced by special collimators attached to the treatment head of the linac. The radiation beam data were measured with a small field diode detector as well as radiographic and radiochromic films. Measured beam parameters were compared with the same parameters calculated with Monte Carlo (MC) simulations. For very small photon fields with diameters on the order of the focal spot size, MC calculations show that both the percentage depth dose (PDD) distributions and dose profiles are sensitive to the focal spot size. A simple sliding slit technique was developed to measure the focal spot size and shape for accurate MC simulations of very small diameter beams. The measured focal spot of the 10 MV linac is elliptical in shape and fitted by a Gaussian distribution with full-widths-at-half-maximum (FWHMs) of 2.05 mm and 1.34 mm in the principal axes of the ellipse. A Gaussian circle equivalent in area to the experimentally determined focal spot ellipse was used in MC simulations. The resulting PDD and beam profile calculations are in good agreement with the measurements. Dynamic radiosurgery with very small diameter photon beams was carried out using the 10 MV linac. Radiosurgical isodose distributions were measured with radiographic films in a spherical head phantom and calculated with the MC technique. A good agreement between the measured and MC-calculated isodose distributions for very small diameter fields is achieved. The displacement of the center of the measured isodose distributions relative to the laser-defined isocenter was on the order of 0.7 mm. All these results show the potential of linac-based radiosurgery with very small diameter photon beams for clinical use.

  13. Design of a 10 MeV normal conducting CW proton linac based on equidistant multi-gap CH cavities

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui

    2015-09-01

    Continuous wave (CW) high current proton linacs have wide applications as the front end of high power proton machines. The low energy part of such a linac is the most difficult and there is currently no widely accepted solution. Based on the analysis of the focusing properties of the CW low energy proton linac, a 10 MeV low energy normal conducting proton linac based on equidistant seven-gap Cross-bar H-type (CH) cavities is proposed. The linac is composed of ten 7-gap CH cavities and the transverse focusing is maintained by quadrupole doublets located between the cavities. The total length of the linac is less than 6 meters and the average acceleration gradient is about 1.2 MeV/m. The electromagnetic properties of the cavities are investigated by Microwave Studio. At the nominal acceleration gradient the maximum surface electric field in the cavities is less than 1.3 times the Kilpatrick limit, and the Ohmic loss of each cavity is less than 35 kW. Multi-particle beam dynamics simulations are performed with Tracewin code, and the results show that the beam dynamics of the linac are quite stable, the linac has the capability to accelerate up to 30 mA beam with acceptable dynamics behavior. Supported by National Natural Science Foundation of China (11375122, 91126003)

  14. Na+ recirculation and isosmotic transport.

    PubMed

    Larsen, E H; Møbjerg, N

    2006-01-01

    The Na(+) recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na(+) serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (-/-) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na(+) in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na(+) reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6-7 mOsm in small intestine and < or = 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na(+) recirculation of 50-70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na(+) uptake, which is not included in the mathematical treatment.

  15. Recirculation in multiple wave conversions

    SciTech Connect

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  16. Gas recirculator for acyclic machines

    NASA Astrophysics Data System (ADS)

    Balsa, T. F.

    1985-05-01

    The present invention relates to acyclic machines of the type using liquid metal collectors, and more particularly to an improvement for retaining the liquid metal in such machines. Radial type acyclic motors and generators generally include a metallic disk rotor rotating on a shaft between electromagnetic stator poles excited by field coils wound concentric with the shaft. Instead of solid brush, current collectors at the rotor periphery, liquid metal collectors are sometimes used to close the electrical current loop between the shaft and the rotor, and an inert pressurized cover gas fills the gaps between the rotating components and the stationary housing. A cover has recirculator in an acyclic generator having liquid metal collectors for reducing entrainment of the liquid metal in the gas. Radial passages in the stator housing provide natural recirculating paths for the cover gas to flow radially outward along the sides of the rotor and return inwardly through the passages. Scoops or lips located inward of the liquid metal collector divert the outward gas flow into the passages to minimize contact of the gas with the liquid metal.

  17. Recirculation in venovenous extracorporeal membrane oxygenation.

    PubMed

    Xie, Ashleigh; Yan, Tristan D; Forrest, Paul

    2016-12-01

    Despite the increasing use of venovenous extracorporeal membrane oxygenation (ECMO) to treat severe respiratory failure, recirculation remains a common complication that may result in severe hypoxemia and end-organ damage. The present review, therefore, examines updated evidence for the causes, measurement, and management of recirculation. Six electronic databases were searched from their dates of inception to January 2016, and 38 relevant studies were selected for analysis. This review revealed that, currently, recirculation is typically calculated from measurement of blood oxygen saturations, although limited evidence suggests that oxygen content may provide a more accurate measure. Dilutional ultrasound may play an additional role in dynamic quantitative monitoring of recirculation, but further human studies are required to validate its clinical use. Although cannula configuration appears to be a key contributor to recirculation in addition to factors such as ECMO flow rate, there are insufficient comparative clinical studies to recommend an optimal cannulation technique for minimizing recirculation. Existing evidence suggests that the dual-lumen cannula may have a low recirculation fraction, but only if correctly positioned. This review underscores the need for more robust clinical and laboratory studies to effectively evaluate and address the persistent problem of recirculation.

  18. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  19. Lattice Design for the LHEC Recirculating Linac

    SciTech Connect

    Sun, Yipeng; Eide, Anders; Zimmermann, Frank; Adolphsen, Chris; /SLAC

    2011-05-20

    In this paper, we present a lattice design for the Large Hadron Electron Collider (LHeC) recirculating linac. The recirculating linac consists of one roughly 3-km long linac hosting superconducting RF (SRF) accelerating cavities, two arcs and one transfer line for the recirculation. In two passes through a pulsed SRF linac the electron beam can get a maximum energy of 140 GeV. Alternatively, in the Energy Recovery Linac (ERL) option the beam passes through a CW linac four times (two passes for acceleration and two for deceleration) for a maximum energy of 60 GeV.

  20. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect

    Lee, S.

    2014-06-25

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  1. Recirculating cross-correlation detector

    DOEpatents

    Andrews, W.H. Jr.; Roberts, M.J.

    1985-01-18

    A digital cross-correlation detector is provided in which two time-varying signals are correlated by repetitively comparing data samples stored in digital form to detect correlation between the two signals. The signals are sampled at a selected rate converted to digital form, and stored in separate locations in separate memories. When the memories are filled, the data samples from each memory are first fed word-by-word through a multiplier and summing circuit and each result is compared to the last in a peak memory circuit and if larger than the last is retained in the peak memory. Then the address line to leading signal memory is offset by one byte to affect one sample period delay of a known amount in that memory and the data in the two memories are then multiplied word-by-word once again and summed. If a new result is larger than a former sum, it is saved in the peak memory together with the time delay. The recirculating process continues with the address of the one memory being offset one additional byte each cycle until the address is shifted through the length of the memory. The correlation between the two signals is indicated by the peak signal stored in the peak memory together with the delay time at which the peak occurred. The circuit is faster and considerably less expensive than comparable accuracy correlation detectors.

  2. Assessing peracetic acid as a means to control post-vaccination Saprolegniasis in Atlantic salmon Salmo salar parr in recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-based closed containment facilities, utilizing recirculation aquaculture system (RAS) technologies, can reduce or eliminate the introduction of obligate fish pathogens. Regardless, the presence of opportunistic pathogens must be assumed, and these agents can cause disease during unfavorable con...

  3. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  4. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  5. Flume simulation of sedimentation in recirculating flow

    SciTech Connect

    Schmidt, J.C. ); Rubin, D.M. ); Ikeda, H. )

    1990-05-01

    A 4-m-wide flume at the University of Tsukuba Environmental Research Center was used to simulate flow conditions near debris fans in bedrock gorges. Flow was constricted to 2 m by a semicircular obstruction. During the authors experiments (discharge = 600 L/sec; Froude number of constricted flow = 1) a zone of recirculating current extended 25-30 m downstream from the separation point at the constriction. The pattern and velocity of surface flow was determined using time-lapse photography; subsurface velocity was measured with a two-dimensional electromagnetic current meter. During 32-hr of run time, a fine, very coarse sand mixture was fed into the flow at a rate between 0.5-1 kg/sec. Oscillation ripples developed beneath the separation surface that bounds the recirculation zone, and upstream-migrating dunes and ripples developed within the recirculation zone upstream from the reattachment point. A mid-channel expansion bar was deposited downstream from the reattachment point. Sedimentation within the recirculation zone continued by vertical aggradation and by upstream migration of dunes and ripples. Sediments within the recirculation zone were areally sorted with the finest sediment deposited near the separation point. These patterns are consistent with field observations of bars along the Colorado River in the Grand Canyon.

  6. Results for local control and functional outcome after linac-based image-guided stereotactic radiosurgery in 190 patients with vestibular schwannoma

    PubMed Central

    Badakhshi, Harun; Graf, Reinhold; Böhmer, Dirk; Synowitz, Michael; Wiener, Edzard; Budach, Volker

    2014-01-01

    Background We assessed local control (LC) and functional outcome after linac-based stereotactic radiosurgery (SRS) for vestibular schwannoma (VS). Methods Between 1998 and 2008, 190 patients with VS were treated with SRS. All patients had tumors <2 cm diameter. Patients received 13.5 Gy prescribed to the 80th isodose at the tumor margin. The primary endpoint was LC. Secondary endpoints were symptomatic control and morbidity. Results Median follow-up was 40 months. LC was achieved in 88% of patients. There were no acute reactions exceeding Grade I. Trigeminal nerve dysfunction was present in 21.6% (n = 41) prior to SRS. After treatment, 85% (n = 155) had no change, 4.4,% (n = 8) had a relief of symptoms, 10.4% (n = 19) had new symptoms. Facial nerve dysfunction was present in some patients prior to treatment, e.g. paresis (12.6%; n = 24) and dysgeusia (0.5%; n = 1). After treatment 1.1% (n = 2) reported improvement and 6.1% (n = 11) experienced new symptoms. Hearing problems before SRS were present in 69.5% of patients (n = 132). After treatment, 62.6% (n = 144) had no change, 10.4% (n = 19) experienced improvement and 26.9% (n = 49) became hearing impaired. Conclusion This series of SRS for small VS provided similar LC rates to microsurgery; thus, it is effective as a non-invasive, image-guided procedure. The functional outcomes observed indicate the safety and effectiveness of linac-based SRS. Patients may now be informed of the clinical equivalence of SRS to microsurgery. PMID:23979079

  7. Peach bottom recirculation piping replacement ALARA program

    SciTech Connect

    Englesson, G.A.; Hilsmeier, A.E.; Mann, B.J.

    1986-01-01

    In late 1983, Philadelphia Electric Company (PECo) began detailed planning to replace the recirculation, residual heat removal, and part of the reactor water cleanup piping of the Peach Bottom Unit 2 reactor. Included in this work was an estimate of the collective exposure expected during piping replacement. That initial estimate, 1945 man-rem, is compared with the actual collective dose incurred during the piping replacement program. Also included are the exposures incurred during two additional tasks (safe end replacement and recirculation pump disassembly and decontamination) not considered in the initial estimate.

  8. Production of cobia in recirculating systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only limited information exists with respect to rearing juvenile cobia Rachycentron canadum to stocker and marketable sizes using recirculating aquaculture systems (RAS). To investigate this topic, two rearing trials were conducted using commercial scale RAS. In Trial 1, juvenile cobia (29 g) we...

  9. Recirculating sprayer for fiber-filled paints

    NASA Technical Reports Server (NTRS)

    Major, R. K.

    1980-01-01

    Recirculating paint sprayer applies spray of coarse filler in highly volatile solvent. Sprayer was developed for applying insulation material containing epxoy resin, glass fibers, and inert fillers suspended in chlorinated solvents. Sprayer resists abrasive action of fiberglass filler and chemical activity of solvent. Pump and position ensure more uniform pressure at spray gun without backpressure regulator, which tended to clog in old sprayer.

  10. Nitrogen removal in recirculated duckweed ponds system.

    PubMed

    Benjawan, L; Koottatep, T

    2007-01-01

    Duckweed-based ponds (DWBPs) have the potential for nitrogen (N) removal from wastewater; however, operational problems such as duckweed die-off regularly occur. In this study, effluent recirculation was applied to the DWBPs to solve the above problem as well as to investigate N removal mechanisms. Two pilot scale recirculated DWBPs were employed to treat municipal wastewater. The average removal efficiencies for TN, TKN and NH4-N were 75%, 89% and 92%, respectively at TN loading of 1.3 g/m2.d and were 73%, 74% and 76%, respectively at TN loading of 3.3 g/m2.d. The effluent of the system under both operational conditions had stable quality and met the effluent standard. Duckweed die-off was not observed during the study, which proves the system stability and effluent recirculation which is thought to be a reason. N-mass balance revealed that nitrification-denitrification and duckweed uptake play major roles in these recirculated DWBPs. The rates of nitrification-denitrification were increased as TN loading was higher, which might be an influence from an abundance of N and a suitable condition. The rates of N uptake by duckweed were found similar and did not depend on the higher TN loading applied, as the duckweed has limited capacity to assimilate it.

  11. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical recirculating air cleaner. 880.5045... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating air cleaner is a device used to remove particles from the air for medical purposes. The device...

  12. An Injector Test Facility for the LCLS

    SciTech Connect

    Colby, E.,; /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  13. Pulsed-focusing recirculating linacs for muon acceleration

    SciTech Connect

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  14. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  15. Numerical computations of swirling recirculating flow

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Mongia, H. C.

    1980-01-01

    Swirling, recirculating, nonreacting flows were computed using a 2D elliptic program consisting of three tasks. The computations in Task 1 and 2 were made using an independent analysis for the two coaxial swirling flows. The Task 2 computations were made using the measured profiles of the mixing region. In Task 3, a modified 2D elliptic program was employed to include the effects of interaction between the inner and outer streams.

  16. [Resistance analyses for recirculated membrane bioreactor].

    PubMed

    Yang, Qi; Huang, Xia; Shang, Hai-Tao; Wen, Xiang-Hua; Qian, Yi

    2006-11-01

    The resistance analyses for recirculated membrane bioreactor by the resistance-in-series model and the modified gel-polarization model respectively were extended to the turbulent ultrafiltration system. The experiments are carried out by dye wastewater in a tubular membrane module, it is found that the permeate fluxes are predicted very well by these models for turbinate systems. And the resistance caused by the concentration polarization is studied; the gel layer resistance is the most important of all the resistances.

  17. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  18. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  19. Recirculating gas separator for electric submersible

    SciTech Connect

    Powers, M.L.

    1991-01-01

    This patent describes a gas separator apparatus for a submersible well pump. It comprises: a rotary gas separator means; and recirculating means for recirculating a portion of the liquid discharged from the discharge outlet back to the separating chamber so that a gas-to-liquid ratio in the separator means is substantially lower than a gas-to-liquid ratio of well fluid entering the well fluid inlet wherein the recirculating means. This patent also describes a method of pumping liquid from a well producing well fluids having a relatively high gas-to-liquid ratio. It comprises: centrifugally separating the well fluid into a liquid and a gas with a separator located downhole in the well; directing the separated liquid toward an inlet of a submersible well pump; recycling a portion of the separated liquid to the separator; and providing an effective gas-to-liquid ratio in the separator substantially lower than a gas-to-liquid ratio of the well fluid prior to separation.

  20. Linear microbunching analysis for recirculation machines

    NASA Astrophysics Data System (ADS)

    Tsai, C.-Y.; Douglas, D.; Li, R.; Tennant, C.

    2016-11-01

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor for an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. The underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.

  1. A new scheme to accumulate positrons in a Penning-Malmberg trap with a linac-based positron pulsed source

    NASA Astrophysics Data System (ADS)

    Dupré, P.

    2013-03-01

    The Gravitational Behaviour of Antimatter at Rest experiment (GBAR) is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration of anti-hydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium (Ps) cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. The Ps target will be produced by a pulse of few 1010 positrons injected onto a positron-positronium converter. For this purpose, a slow positron source using an electron Linac has been constructed at Saclay. The present flux is comparable with that of 22Na-based sources using solid neon moderator. A new positron accumulation scheme with a Penning-Malmberg trap has been proposed taking advantage of the pulsed time structure of the beam. In the trap, the positrons are cooled by interaction with a dense electron plasma. The overall trapping efficiency has been estimated to be ˜70% by numerical simulations.

  2. Linac-based positron source and generation of a high density positronium cloud for the GBAR experiment

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Dupré, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Ruiz, N.; Sacquin, Y.

    2013-06-01

    The aim of the recently approved GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment is to measure the acceleration of neutral antihydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. We introduce briefly the experimental scheme and present the ongoing efforts at IRFU CEA Saclay to develop the positron source and the positron-positronium converter, which are key parts of the experiment. We have constructed a slow positron source in Saclay, based on a low energy (4.3 MeV) linear electron accelerator (linac). By using an electron target made of tungsten and a stack of thin W meshes as positron moderator, we reached a slow positron intensity that is comparable with that of 22Na-based sources using a solid neon moderator. The source feeds positrons into a high field (5 T) Penning-Malmberg trap. Intense positron pulses from the trap will be converted to slow ortho-positronium (o-Ps) by a converter structure. Mesoporous silica films appear to date to be the best candidates as converter material. We discuss our studies to find the optimal pore configuration for the positron-positronium converter.

  3. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  4. Passive recirculation in the National Launch System's fuel feedlines

    NASA Technical Reports Server (NTRS)

    Wilson, W. R.; Holt, K. A.

    1993-01-01

    This report contains the passive recirculation tests on the fuel feedline of the National Launch System (NLS). The majority of testing was performed in February 1992, at the National Institute of Standards and Technology in Boulder, CO. The primary objective was to characterize passive recirculation in the NLS fuel feedline. The objective was met by observing the passive recirculation in a one-fifth scale model of the feedline with clear glass sections. The testing was recorded on video tape and with photographs. A description of the testing apparatus and support equipment is included. The experiment indicates that passive recirculation was occurring; higher angles from the horizontal transfer more heat.

  5. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  6. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  7. SU-E-T-355: A Comparative Study of Robotic and Linac-Based Stereotactitc Body Radiation Therapy for Lumbar Spinal Tumors

    SciTech Connect

    Bossart, E; Monterroso, M; Couto, M; Ly, B; Mihaylov, I

    2014-06-01

    Purpose: Dosimetrically compare CyberKnife (CK) and linac-based (LB) stereotactic body radiotherapy (SBRT) plans for lumbar spine. Methods: Ten patient plans with lumbar spine tumors treated with CK were selected and retrospectively optimized using three techniques: CK, volumetric modulated arc (VMAT, three arcs), and 9-field-intensity modulated radiotherapy (IMRT). For the LB plans, the target volume was expanded by 1mm to accommodate additional uncertainty in patient positioning. All plans were optimized to a prescription dose of 27Gy in 3 fractions covering 90% of the PTV. If the dose constraints to the cauda equina (cauda) were not met, the prescription dose was lowered to 24Gy. Parameters evaluated included Paddick Conformity-Index (CI) and Gradient-Index (GI). A two-tailed paired t-test was used to establish statistically significant differences in cauda doses. Results: Target volumes for LB plans were on average 38% larger. In terms of the indices, the closer the index values to unity the steeper the dose falloff and the higher the dose conformity to the target. The results showed that LB plans were in general statistically superior to CK plans. The IMRT plan showed the best average gradient index of 2.995, with VMAT and CK GI values of 3.699 and 5.476, respectively. Similarly, the same trend occurs with the average CI results: 0.821, 0.814, and 0.758, corresponding to IMRT, VMAT, and CK. Notably, in one CK plan the target dose was reduced to 24Gy to meet cauda constraints. Additionally, there was a statistically significant dose difference for the cauda between the CK and LB plans. Conclusion: This study demonstrates that LB plans for lumbar spine SBRT can be as effective or even better than CK plans. Despite the expansion of the target volume, the LB plans did not demonstrate dosimetric inferiority. The LB plans Resultin 2-to-3 fold decrease of treatment time.

  8. High speed exhaust gas recirculation valve

    SciTech Connect

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  9. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  10. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  11. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  12. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  13. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  14. Energy conservation by partial recirculation of peanut drying air

    SciTech Connect

    Young, J.H.

    1983-06-01

    Conventional, recirculating, and intermittent type peanut dryers were compared in a three-year study. Comparisons indicate that partial recirculation of peanut drying air may reduce energy consumption per unit of water removed by approximately 25% while also reducing required drying time and maintaining high quality.

  15. Energy savings from air recirculation in peanut curing

    SciTech Connect

    Cook, D.F.; Cundiff, J.S.; Vaughan, D.H.

    1982-12-01

    A thin-layer peanut drying simulation model was adapted to incorporate air recirculation. Laboratory crop dryers were designed and constructed to conduct experiments to verify the model. Five batches of peanuts were dried using different recirculation strategies. The model successfully predicted the results.

  16. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical recirculating air cleaner. 880.5045... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical...

  17. NGL recovery being hiked by natural-gasoline recirculation

    SciTech Connect

    Rivas M, M.; Bracho, J.L.; Murray, J.E.

    1997-07-07

    Construction will be completed later this year at two compression plants operated by Lagoven, S.A., to install natural-gasoline recirculation to improve NGL recovery. The project is the result of a study of condensate-stream recirculation and absorber operations at the compression plants Tia Juana 2 (PCTJ-2) and Tia Juana 3 (PCTJ-3), offshore Lake Maracaibo in western Venezuela. The PCTJ-2 and PCTJ-3 gas compression plants have two systems: gas compression and NGL extraction. Previous analysis of the NGL extraction and fractionation processes of Lagoven determined that there are two practical and attractive alternatives for the recirculation of the condensate streams in PCTJ-2 and 3: recirculation of natural gasoline from the Ule LPG plant; recirculation of a conditioned condensate from the de-ethanizer tower of each plant. Both alternatives are discussed. Also described are fractionation capacity, and modifications for adding absorption and fractionation.

  18. Effects of spent liquor recirculation in hydrothermal carbonization.

    PubMed

    Kabadayi Catalkopru, Arzu; Kantarli, Ismail Cem; Yanik, Jale

    2017-02-01

    In this study, the effect of the recirculation of spent liquor from hydrothermal carbonization was investigated depending on the biomass type (grape pomace, orange pomace and poultry litter). The yield and fuel properties of hydrochars and spent liquor characteristics were determined for each recirculation step. By recirculation, mass and energy yields of the hydrochar increased, but their combustion characteristics changed: the ignition temperature and combustion reactivity decreased. The organic and inorganic load of liquor was increased with recirculation number, but not as much as would be expected after the first recycle. It was concluded that the load of organic and inorganic species in spent liquor decreased the leaching of some inorganics and diffusion of the degraded soluble fragments from biomass in the subsequent hydrothermal carbonization. Overall, this study showed that spent liquor recirculation makes the overall hydrothermal carbonization process environmentally friendly.

  19. AP1000 Features Prevent Potential Containment Recirculation Screen Plugging

    SciTech Connect

    Andreychek, Timothy; Anderson, Richard; Schulz, Terry

    2004-07-01

    This paper presents the results of plant design development and evaluations that demonstrate that the AP1000 plant is not subject to potential containment recirculation screen plugging following a loss-of-coolant-accident (LOCA). Following a LOCA in a pressurized water reactor, it is necessary to recirculate water from the containment back into the reactor to maintain long term core cooling. The AP1000 utilizes passive safety systems to provide containment recirculation for long term core cooling following a LOCA. The AP1000 also has non-safety pumps which provide a backup means of providing recirculation. Screens are provided around the recirculation pipes to prevent debris from blocking recirculation flow and core cooling passages. Debris may be generated by the LOCA blowdown from insulation and coatings used inside containment. Even with effective cleanliness programs, there may be some resident debris such as dust and dirt. The potential for plugging the recirculation screens is a current PWR licensing issue. The AP1000 design provides inherent advantages with respect to the potential plugging of containment recirculation screens. These characteristics include prevention of fibrous debris generation, improved debris settling and improved recirculation screen design. Debris settling analysis demonstrates that failure of coatings does not result in debris being transported to the screens before it settles to the floor. Additional analysis also shows that the plant can tolerate conservative amounts of resident debris being transported to the screens. The AP1000 significantly reduces the probability of plugging the containment recirculation screens and significantly reduces inspection and maintenance of coatings used inside containment. (authors)

  20. Design of a High-Reynolds Number Recirculating Water Tunnel

    NASA Astrophysics Data System (ADS)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  1. Dosimetric comparison of Linac-based (BrainLAB®) and robotic radiosurgery (CyberKnife ®) stereotactic system plans for acoustic schwannoma.

    PubMed

    Dutta, Debnarayan; Balaji Subramanian, S; Murli, V; Sudahar, H; Gopalakrishna Kurup, P G; Potharaju, Mahadev

    2012-02-01

    A dosimetric comparison of linear accelerator (LA)-based (BrainLAB) and robotic radiosurgery (RS) (CyberKnife) systems for acoustic schwannoma (Acoustic neuroma, AN) was carried out. Seven patients with radiologically confirmed unilateral AN were planned with both an LA-based (BrainLAB) and robotic RS (CyberKnife) system using the same computed tomography (CT) dataset and contours. Gross tumour volume (GTV) was contoured on post-contrast magnetic resonance imaging (MRI) scan [planning target volume (PTV) margin 2 mm]. Planning and calculation were done with appropriate calculation algorithms. The prescribed isodose in both systems was considered adequate to cover at least 95% of the contoured target. Plan evaluations were done by examining the target coverage by the prescribed isodose line, and high- and low-dose volumes. Isodose plans and dose volume histograms generated by the two systems were compared. There was no statistically significant difference between the contoured volumes between the systems. Tumour volumes ranged from 380 to 3,100 mm(3). Dose prescription was 13-15 Gy in single fraction (median prescribed isodose 85%). There were no significant differences in conformity index (CI) (0.53 versus 0.58; P = 0.225), maximum brainstem dose (4.9 versus 4.7 Gy; P = 0.935), 2.5-Gy volume (39.9 versus 52.3 cc; P = 0.238) or 5-Gy volume (11.8 versus 16.8 cc; P = 0.129) between BrainLAB and CyberKnife system plans. There were statistically significant differences in organs at risk (OAR) doses, such as mean cochlear dose (6.9 versus 5.4 Gy; P = 0.001), mean mesial temporal dose (2.6 versus 1.7 Gy; P = 0.07) and high-dose (10 Gy) volume (3.2 versus 5.2 cc; P = 0.017). AN patients planned with the CyberKnife system had superior OAR (cochlea and mesial temporal lobe) sparing compared with those planned with the Linac-based system. Further evaluation of these findings in prospective studies with clinical correlation will provide actual clinical benefit from the

  2. Industrial Energy Conservation, Forced Internal Recirculation Burner

    SciTech Connect

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  3. Recirculation bubbler for glass melter apparatus

    DOEpatents

    Guerrero, Hector; Bickford, Dennis

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  4. Recirculating Molten Metal Supply System And Method

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-07-01

    The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

  5. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  6. Recirculating planar magnetrons: simulations and experiment

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; French, David; Lau, Y.Y.; Simon, David; Hoff, Brad; Luginsland, John W.

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventional magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.

  7. Progress toward a prototype recirculating ion induction accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1996-06-01

    The U.S. Inertial Fusion Energy (IFE) Program is developing the physics and technology of ion induction accelerators, with the goal of electric power production by means of heavy ion beam-driven inertial fusion (commonly called heavy ion fusion, or HIF). Such accelerators are the principal candidates for inertial fusion power production applications, because they are expected to enjoy high efficiency, inherently high pulse repetition frequency (power plants are expected to inject and burn several fusion targets per second), and high reliability. In addition (and in contrast with laser beams, which are focused with optical lenses) heavy-ion beams will be focused onto the target by magnetic fields, which cannot be damaged by target explosions. Laser beams are used in present-day and planned near-term facilities (such as LLNUs Nova and the National Ignition Facility, which is being designed) because they can focus beams onto very small, intensely illuminated spots for scaled experiments and because the laser technology is already available. An induction accelerator works by passing the beam through a series of accelerating modules, each of which applies an electromotive force to the beam as it goes by; effectively, the beam acts as the secondary winding of a series of efficient one-turn transformers. The authors present plans for and progress toward the development of a small (4.5-m-diam) prototype recirculator, which will accelerate singly charged potassium ions through 15 laps, increasing the ion energy from 80 to 320 keV and the beam current from 2 to 8 mA. Beam confinement and bending are effected with permanent-magnet quadrupoles and electric dipoles, respectively. The design is based on scaling laws and on extensive particle and fluid simulations of the behavior of the space charge-dominated beam.

  8. Study of atmospheric stagnation, recirculation and ventilation potential at Narora Atomic Power Station NPP site.

    PubMed

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Kumar, Jaivender; Ravi, P M

    2013-04-01

    The atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. The estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This paper describes the meteorological characteristics of Narora Atomic Power Station (NAPS) Nuclear Power Project site by using the integral parameters developed by Allwine and Whiteman (Atmospheric Environment 28(4):713-721, 1994). Meteorological data measured during the period 2006-2010 were analysed. The integral quantities related to the occurrence of stagnation, recirculation and ventilation characteristics were studied for the NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation and ventilation characteristics during 2006-2010 at the NAPS site is observed to be 33.8, 19.5 and 34.7 % of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1 and 44.3 %) and recirculation (32.6 % of the summer season). The presence of more dispersed light winds during pre-winter season with predominant wind directions W and WNW results in more stagnation (59.7 % of the pre-winter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent release from any nuclear industry during the pre-operational as well as operational phase.

  9. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  10. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  11. Production of market-size North American strain Atlantic salmon Salmo salar in a land-based recirculation aquaculture system using freshwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is interest in culturing Atlantic salmon Salmo salar to market-size in land-based, closed containment systems that use recirculation aquaculture systems (RAS), as this technology often enables facilities to locate near major markets, obtain permits, exclude obligate pathogens, and/or reduce en...

  12. Eddy-driven recirculation of Atlantic Water in Fram Strait

    NASA Astrophysics Data System (ADS)

    Hattermann, Tore; Isachsen, Pâl. Erik; Appen, Wilken-Jon; Albretsen, Jon; Sundfjord, Arild

    2016-04-01

    Eddy-resolving regional ocean model results in conjunction with synthetic float trajectories and observations provide new insights into the recirculation of the Atlantic Water (AW) in Fram Strait that significantly impacts the redistribution of oceanic heat between the Nordic Seas and the Arctic Ocean. The simulations confirm the existence of a cyclonic gyre around the Molloy Hole near 80°N, suggesting that most of the AW within the West Spitsbergen Current recirculates there, while colder AW recirculates in a westward mean flow south of 79°N that primarily relates to the eastern rim of the Greenland Sea Gyre. The fraction of waters recirculating in the northern branch roughly doubles during winter, coinciding with a seasonal increase of eddy activity along the Yermak Plateau slope that also facilitates subduction of AW beneath the ice edge in this area.

  13. Engine with pulse-suppressed dedicated exhaust gas recirculation

    SciTech Connect

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  14. Pulsed Magnet Arc Designs for Recirculating Linac Muon Accelerators

    SciTech Connect

    K.B. Beard, R.P. Johnson, S.A. Bogacz, G.M. Wang

    2009-05-01

    Recirculating linear accelerators (RLAs) using both pulsed quadrupoles and pulsed dipoles can be used to quickly accelerate muons in the 3 – 2000 GeV range. Estimates on the requirements for the pulsed quadrupoles and dipoles are presented.

  15. Future of recirculating systems in the US aquaculture industry

    SciTech Connect

    Malone, R.F.

    1994-08-01

    Recirculating systems consist of a culture unit, a recirculating pump, and a treatment block which facilitate extended re-use of water in the rearing of aquatic animals. As water re-use is extended from a few hours to months or even years, the complexity of the treatment block increases. Classified as either `open` with greater than 10 percent water replacement per day or `closed` with less than 10 percent daily replacement, most recirculating systems include aerators, clarifiers, and biofilters as key core elements. The aquaculture industry is increasingly facing a variety of socio-economic issues which will dramatically influence its future development. These problems range from increased competition for water rights through price depression and foreign imports to predation by protected migratory birds. As water-use, environmental, and conservation conflicts grow, the cost differences between the flow-through and closed production technologies will narrow, increasing the industry`s use of recirculating systems.

  16. A closed recirculated sea-water system

    USGS Publications Warehouse

    1967-01-01

    Study of a virus disease in the chinook salmon (Oncorhynchus tshawytscha) necessitated the use of a marine environment to study the long range effects of the disease and to complete the life cycle of its etiologic agent. A closed recirculated sea-water system was designed for use under experimental laboratory conditions so that controlled studies of the disease could be made. As others may wish to do marine environment studies in the laboratory, the design and operation of our system are presented. Other systems currently in use have been described by Chin (1959), DeWitt and Salo (1960), McCrimmon and Berst (1966), and the authors of collected papers edited by Clark and Clark (1964). Preparatory to the design and construction of the system in use in this laboratory, visits were made to marine systems in use at the University of Washington's College of Fisheries, Seattle, -washington, and Friday Harbor Laboratory, San Juan Island, Washington; the Washington State Department of Fisheries' Point whitney Shellfish Laboratory, Brinnon, Washington; Humboldt State College, Arcata, California; and the Steinhart Aquarium of the California Academy of Science, San Francisco, California.

  17. Demonstration of Spray Booth Recirculation and Partitioning - Phase II

    DTIC Science & Technology

    1996-01-01

    electrostatic paint spray enclosures, such as the high volume, low pressure ( HVLP ) systems employed at Barstow MCLB, a minimum linear velocity of 100 fpm must be...SUBTITLE 5. FUNDING NUMBERS Demonstration of Spray Booth Recirculation and Partitioning - Phase II N/A 6. AUTHOR(S) D. Proffitt, R.K. Clayton, & J...ANSI Std. Z39-18 298-102 * , 85-1996 Demonstration of Spray Booth Recirculation and Partitioning - Phase II David Proffitt and Russell K. Clayton

  18. LONGITUDINAL REFERENCE PARTICLE MOTION IN NEARLY ISOCHRONOUS FFAG RECIRCULATING ACCELERATORS.

    SciTech Connect

    BERG,J.S.

    2001-07-01

    A Fixed Field Alternating Gradient (FFAG) arc can be used to reduce the cost of a recirculating accelerator. Path length variation with energy in such an arc can limit its usefulness, however, due to phase offset at the linac. This paper examines the dynamics of the reference particle in an FFAG recirculating accelerator, and describes the limitations on the design because of path length variation with energy.

  19. The Pebble Recirculation Experiment (PREX) for the AHTR

    SciTech Connect

    Bardet, P.; An, J.Y.; Franklin, J.T.; Huang, D.; Lee, K.; Mai, A.; Toulouse, M.; Peterson, P.F.

    2007-07-01

    Conceptual design studies for the liquid-salt cooled Advanced High Temperature Reactor (AHTR) have identified three candidate TRISO fuel geometries: prismatic, pebble, and stringer fuels. This paper presents experimental results from the integral Pebble Recirculation Experiment (PREX) that verifies the viability of pebble recirculation in a Pebble Bed AHTR (PB-AHTR). The experiments conducted include injection and extraction of buoyant pebbles, measurements of packing density and pressure losses, and observations of pebble landing dynamics and bed formation. (authors)

  20. Antral recirculation in the stomach during gastric mixing.

    PubMed

    Imai, Yohsuke; Kobayashi, Ikuma; Ishida, Shunichi; Ishikawa, Takuji; Buist, Martin; Yamaguchi, Takami

    2013-03-01

    We investigate flow in the stomach during gastric mixing using a numerical simulation with an anatomically realistic geometry and free-surface flow modeling. Because of momentum differences between greater and lesser curvatures during peristaltic contractions, time-averaged recirculation is generated in the antrum, with retropulsive flow away from the pylorus and compensation flow along the greater curvature toward the pylorus. Gastric content in the distal stomach is continuously transported to the distal antrum by the forward flow of antral recirculation, and it is then mixed by the backward retropulsive flow. Hence, the content inside the antral recirculation is well mixed independently of initial location, whereas the content outside the recirculation is poorly mixed. Free-surface modeling enables us to analyze the effects of posture on gastric mixing. In the upright, prone, and right lateral positions, most of the antrum is filled with content, and the content is well mixed by antral recirculation. In contrast, in the supine and left lateral positions, most of the content is located outside antral recirculation, which results in poor mixing. The curved, twisted shape of the stomach substantially supports gastric mixing in fluid mechanical terms.

  1. Case study of controlled recirculation at a Wyoming trona mine

    PubMed Central

    Pritchard, C.; Scott, D.; Frey, G.

    2015-01-01

    Controlled recirculation has been used in the metal/nonmetal mining industry for energy savings when heating and cooling air, in undersea mining and for increasing airflow to mining areas. For safe and effective use of controlled district recirculation, adequate airflow to dilute contaminants must exist prior to implementation, ventilation circuit parameters must be accurately quantified, ventilation network modeling must be up to date, emergency planning scenarios must be performed and effective monitoring and control systems must be installed and used. Safety and health issues that must be considered and may be improved through the use of controlled district recirculation include blasting fumes, dust, diesel emissions, radon and contaminants from mine fires. Controlled recirculation methods are expected to become more widely used as mines reach greater working depths, requiring that these health and safety issues be well understood. The U.S. National Institute for Occupational Safety and Health (NIOSH) conducted two controlled recirculation tests over three days at a Wyoming trona mine, utilizing an inline booster fan to improve airflow to a remote and difficult-to-ventilate development section. Test results were used to determine the effect that recirculation had on air qualities and quantities measured in that section and in other adjacent areas. Pre-test conditions, including ventilation quantities and pressures, were modeled using VnetPC. During each test, ventilation quantities and pressures were measured, as well as levels of total dust. Sulfur hexafluoride (SF6) tracer gas was used to simulate a mine contaminant to monitor recirculation wave cycles. Results showed good correlation between the model results and measured values for airflows, pressure differentials, tracer gas arrival times, mine gasses and dust levels. PMID:26251567

  2. Cannula Design and Recirculation During Venovenous Extracorporeal Membrane Oxygenation

    PubMed Central

    Palmér, Oscar; Palmér, Kenneth; Hultman, Jan

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is used as a lifesaving rescue treatment in refractory respiratory or cardiac failure. During venovenous (VV) ECMO, the presence of recirculation is known, but quantification and actions to minimize recirculation after measurement are to date not routinely practiced. In the current study, we investigated the effect of draining cannula design on recirculation fraction (Rf) during VV ECMO; conventional mesh cannula was compared with a multistage cannula. The effect of adjusting cannula position was also studied. Recirculation was measured with ultrasound dilution technique at different ECMO flows and after cannula repositioning. All patients who were admitted to our unit between October 2014 and July 2015 catheterized by the atrio-femoral single lumen method were included. A total of 108 measurements were conducted in 14 patients. The multistage cannula showed significantly less recirculation (19.0 ± 12.2%) compared with the conventional design (38.0 ± 13.7). Pooled data in cases improved from adjustment showing reduced Rf by 7%. In conclusion, the choice of cannula matters, as does adjustment of the draining cannula position during atrio-femoral VV ECMO. By utilizing the ultrasound dilution technique to measure Rf before and after repositioning, effective ECMO flow can be improved for a more effective ECMO treatment. PMID:27660904

  3. Acceleration schedules for a recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  4. Hydrothermal carbonization: process water characterization and effects of water recirculation.

    PubMed

    Stemann, Jan; Putschew, Anke; Ziegler, Felix

    2013-09-01

    Poplar wood chips were treated hydrothermally and the increase of process efficiency by water recirculation was examined. About 15% of the carbon in the biomass was dissolved in the liquid phase when biomass was treated in de-ionized water at 220 °C for 4 h. The dissolved organic matter contained oxygen and was partly aerobically biodegradable. About 30-50% of the total organic carbon originated from organic acids. A polar and aromatic fraction was extracted and a major portion of the organic load was of higher molecular weight. By process water recirculation organic acids in the liquid phase concentrated and catalyzed dehydration reactions. As a consequence, functional groups in hydrothermally synthesized coal declined and dewaterability was enhanced. Recirculated reactive substances polymerized and formed additional solid substance. As a result, carbon and energetic yields of the produced coal rose to 84% and 82%, respectively.

  5. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  6. Envelope model of a heavy-ion recirculator

    SciTech Connect

    Sharp, W.M.; Barnard, J.J.; Yu, S.S.

    1990-12-01

    A simple transport code has been developed to model the beam in a heavy-ion recirculating accelerator. The novel feature of the model is the treatment of the beam charge density as a Lagrangian fluid in the axial direction. In addition, the envelope and centroid equations include terms that account for the transverse self-force, image forces, and bend fields in the paraxial limit. The use of compressible'' beam slices makes the code suitable for designing the acceleration and compression schedules. The code has been used primarily to design the lattice of the LLNL recirculator, and preliminary magnet configurations for that machine are presented here. 3 refs., 2 figs.

  7. A recirculating cooling system for improved topical cardiac hypothermia.

    PubMed

    Rosenfeldt, F L; Fambiatos, A; Pastoriza-Pinol, J; Stirling, G R

    1981-10-01

    A simple system is described that recirculates cooling fluid for topical cardiac hypothermia. This disposable system can produce a flow of 1,500 ml/min at 2 degrees to 4 degrees C. The recirculating cooler produced significantly lower myocardial temperatures than a conventional fluid-discard system in 22 patients having coronary operation. This system has been used as part of the technique of hypothermic cardioplegia in more than 600 patients. During various cardiac procedures, septal temperatures were maintained well below 20 degrees C for 60 minutes or more without the need to reinfuse the cardioplegic solution.

  8. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko -Jen

    2015-09-15

    According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.

  9. In-tank aeration, a necessary compliment of loaded systems in an airlift recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment components in recirculating aquaculture systems in generally address solids removal, nitrification, circulation, aeration, and degasification. Airlift pumps in a recirculating aquaculture system can address water circulation, aeration, and degasification. Recent data indicates oxygen...

  10. Towards Non-thrombogenic Performance of Blood Recirculating Devices

    PubMed Central

    Bluestein, D.; Chandran, K. B.; Manning, K. B.

    2010-01-01

    Implantable blood recirculating devices have provided life saving solutions to patients with severe cardiovascular diseases. However, common problems of hemolysis and thromboembolism remain an impediment to these devices. In this article, we present a brief review of the work by several groups in the field that has led to the development of new methodologies that may facilitate achieving the daunting goal of optimizing the thrombogenic performance of blood recirculating devices. The aim is to describe work which pertains to the interaction between flow-induced stresses and the blood constituents, and that supports the hypothesis that thromboembolism in prosthetic blood recirculating devices is initiated and maintained primarily by the non-physiological flow patterns and stresses that activate and enhance the aggregation of blood platelets, increasing the risk of thromboembolism and cardioembolic stroke. Such work includes state-of-the-art numerical and experimental tools used to elucidate flow-induced mechanisms leading to thromboembolism in prosthetic devices. Following the review, the paper describes several efforts conducted by some of the groups active in the field, and points to several directions that should be pursued in the future in order to achieve the goal for blood recirculating prosthetic devices becoming more effective as destination therapy in the future. PMID:20131098

  11. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety coliform count: Recirculating devices. 159.127 Section 159.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing §...

  12. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety coliform count: Recirculating devices. 159.127 Section 159.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing §...

  13. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety coliform count: Recirculating devices. 159.127 Section 159.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing §...

  14. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety coliform count: Recirculating devices. 159.127 Section 159.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing §...

  15. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety coliform count: Recirculating devices. 159.127 Section 159.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing §...

  16. Recirculation and growth of raindrops in simulated shallow cumulus

    NASA Astrophysics Data System (ADS)

    Naumann, A. K.; Seifert, A.

    2016-06-01

    This study investigates growth processes of raindrops and the role of recirculation of raindrops for the formation of precipitation in shallow cumulus. Two related cases of fields of lightly precipitating shallow cumulus are simulated using Large-Eddy Simulation combined with a Lagrangian drop model for raindrop growth and a cloud tracking algorithm. Statistics from the Lagrangian drop model yield that most raindrops leave the cloud laterally and then evaporate in the subsaturated cloud environmental air. Only 1%-3% of the raindrops contribute to surface precipitation. Among this subsample of raindrops that contribute to surface precipitation, two growth regimes are identified: those raindrops that are dominated by accretional growth from cloud water, and those raindrops that are dominated by selfcollection among raindrops. The mean cloud properties alone are not decisive for the growth of an individual raindrop but the in-cloud variability is crucial. Recirculation of raindrops is found to be common in shallow cumulus, especially for those raindrops that contribute to surface precipitation. The fraction of surface precipitation that is attributed to recirculating raindrops differs from cloud to cloud but can be larger than 50%. This implies that simple conceptual models of raindrop growth that neglect the effect of recirculation disregard a substantial portion of raindrop growth in shallow cumulus.

  17. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  18. In Situ Biotreatment of TBA with Recirculation/Oxygenation

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537

  19. Use of low temperature blowers for recirculation of hot gases

    DOEpatents

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  20. The effect of flow recirculation on abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar

    2012-06-01

    The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.

  1. High-Power Picosecond Pulse Recirculation for Inverse Compton Scattering

    NASA Astrophysics Data System (ADS)

    Jovanovic, Igor; Shverdin, Miro; Gibson, David; Brown, Curtis; Gronberg, Jeff

    2008-11-01

    In the next generation of linear colliders, inverse Compton scattering (ICS) of intense laser pulses on relativistic electron bunches will enable a mode of operation based on energetic γe and γγ collisions, with a significant complementary scientific potential. The efficiency of γ-ray generation via ICS is constrained by the Thomson scattering cross section, resulting in typical laser photon-to- γ efficiencies of <10 -9. Furthermore, repetition rates of the state-of-art high-energy short-pulse lasers are poorly matched with those available from electron accelerators. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. We propose and experimentally demonstrate an alternative, non-interferometric method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J [ I. Jovanovic, M. Shverdin, D. Gibson, and C. Brown, Nucl. Instrum. Methods A 578 160 (2007)]. ICS of recirculated Joule-level laser pulses is compatible with the proposed pulse structure for ILC and has a potential to produce unprecedented peak and average γ-ray brightness in the next generation of sources.

  2. An Inexpensive Recirculating Aquaculture System with Multiple Use Capabilities.

    ERIC Educational Resources Information Center

    Scurlock, Gerald Don, Jr.; Cook, S. Bradford; Scurlock, Carrie Ann

    1999-01-01

    Describes the construction of an inexpensive recirculating aquaculture system that can hold up to 46 pounds of fish, invertebrates, and mussels for classroom use. The system is versatile, requires little maintenance, and can be used for both teaching and research purposes. (WRM)

  3. Ozone degradation of alkylbenzene sulfonate in aqueous solutions using a stirred tank reactor with recirculation.

    PubMed

    Jurado-Alameda, Encarnación; Vicaria, José M; Altmajer-Vaz, Deisi; Luzón, Germán; Jiménez-Pérez, José L; Moya-Ramírez, Ignacio

    2012-01-01

    The degradation of linear alkylbenzene sulfonates (LAS) in aqueous solutions by ozone has been investigated. The ozonation process was performed in a stirred tank reactor with recirculation which simulates the clean-in-place process used in many industrial facilities. The gas-liquid mass transfer of ozone in a buffer solution at different temperatures (25-55°C) was also studied in the same device, revealing that ozone decomposition can be considered negligible under the experimental conditions assayed. The effect of the initial LAS concentration, temperature, and ozone concentration on the concentration of homologues and total LAS were analysed as a function of time. Both concentrations diminished with time, this effect being more significant when higher temperatures were assayed. The relative proportion of homologues shows that the homologues of higher chain length are degraded in a greater proportion than are the homologues with shorter chain lengths.

  4. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    SciTech Connect

    Burjorjee, D. ); Gan, B. )

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops.

  5. Research on leachate recirculation from different types of landfills

    SciTech Connect

    Wang Qi . E-mail: wangqi@craes.org.cn; Matsufuji, Yasushi; Dong Lu; Huang Qifei; Hirano, Fumiaki; Tanaka, Ayako

    2006-07-01

    Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD{sub Cr} and BOD{sub 5} up to 80,000 and 50,000 mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD{sub Cr} over 95%; and, using a semi-aerobic process, NH{sub 3}-N concentration of treated leachate could be under 10 mg/L. In addition, the organic concentration in MSW decreased greatly.

  6. Control of synchrotron radiation effects during recirculation with bunch compression

    SciTech Connect

    Douglas, David; Benson, Stephen; Li, Rui; Roblin, Yves; Tennant, Christopher; Krafft, Geoffrey; Terzic, Balsa; Tsai, Cheng

    2015-05-01

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  7. Steering algorithms for a small recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.; Hemandez, G.W.

    1997-11-07

    Beam-steering algorithms are proposed for a small recirculating induction accelerator being built at the Lawrence Livermore National Laboratory. The principal problem is that the transverse position and velocity of the beam must be inferred from capacitive position monitors, and this determination is complicated by the limited probe resolution and by the lattice errors within steering modules. The fluid/envelope code CIRCE is used to evaluate these algorithms.

  8. Post-stenotic Recirculating Flow May Cause Hemodynamic Perforator Infarction

    PubMed Central

    Kim, Bum Joon; Ha, Hojin; Huh, Hyung Kyu; Kim, Guk Bae; Kim, Jong S.; Kim, Namkug; Lee, Sang-Joon; Kang, Dong-Wha; Kwon, Sun U.

    2016-01-01

    Background and Purpose The primary mechanism underlying paramedian pontine infarction (PPI) is atheroma obliterating the perforators. Here, we encountered a patient with PPI in the post-stenotic area of basilar artery (BA) without a plaque, shown by high-resolution magnetic resonance imaging (HR-MRI). We performed an experiment using a 3D-printed BA model and a particle image velocimetry (PIV) to explore the hemodynamic property of the post-stenotic area and the mechanism of PPI. Methods 3D-model of a BA stenosis was reconstructed with silicone compound using a 3D-printer based on the source image of HR-MRI. Working fluid seeded with fluorescence particles was used and the velocity of those particles was measured horizontally and vertically. Furthermore, microtubules were inserted into the posterior aspect of the model to measure the flow rates of perforators (pre-and post-stenotic areas). The flow rates were compared between the microtubules. Results A recirculating flow was observed from the post-stenotic area in both directions forming a spiral shape. The velocity of the flow in these regions of recirculation was about one-tenth that of the flow in other regions. The location of recirculating flow well corresponded with the area with low-signal intensity at the time-of-flight magnetic resonance angiography and the location of PPI. Finally, the flow rate through the microtubule inserted into the post-stenotic area was significantly decreased comparing to others (P<0.001). Conclusions Perforator infarction may be caused by a hemodynamic mechanism altered by stenosis that induces a recirculation flow. 3D-printed modeling and PIV are helpful understanding the hemodynamics of intracranial stenosis. PMID:26687122

  9. Tracking studies in eRHIC energy-recovery recirculator

    SciTech Connect

    Meot, F.; Brooks, S.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  10. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.

    1985-01-01

    The hybrid-upwind finite difference schemes employed in generally available combustor codes possess excessive numerical diffusion errors which preclude accurate quantative calculations. The present study has as its primary objective the identification and assessment of an improved solution algorithm as well as discretization schemes applicable to analysis of turbulent viscous recirculating flows. The assessment is carried out primarily in two dimensional/axisymetric geometries with a view to identifying an appropriate technique to be incorporated in a three-dimensional code.

  11. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Vandoormaal, J. P.; Turan, A.; Raithby, G. D.

    1986-01-01

    The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.

  12. LONGITUDINAL DYNAMICS IN HIGH FREQUENCY FFAG RECIRCULATING ACCELERATORS.

    SciTech Connect

    BERG,J.S.

    2002-04-08

    A recirculating accelerator accelerates the beam by passing through accelerating cavities multiple times. An FFAG recirculating accelerator uses a single arc to connect the linacs together, as opposed to multiple arcs for the different energies. For most scenarios using high-frequency RF, it is impractical to change the phase of the RF on each pass, at least for lower energy accelerators. Ideally, therefore, the WAG arc will be isochronous, so that the particles come back to the same phase (on-crest) on each linac pass. However, it is not possible to make the FFAG arcs isochronous (compared to the RF period) over a large energy range. This paper demonstrates that one can nonetheless make an WAG recirculating accelerator work. Given the arc's path length as a function of energy and the number of turns to accelerate for, one can find the minimum voltage (and corresponding initial conditions) required to accelerate a reference particle to the desired energy. I also briefly examine how the longitudinal acceptance varies with the number of turns that one accelerates.

  13. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  14. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  15. Pulsed power requirements for the Sandia recirculating electron beam linac

    SciTech Connect

    Tucker, W.K.; Shope, S.L.; Hasti, D.E.

    1987-01-01

    Compact, high gradient, linear induction accelerators may be achieved by recirculating the electron beam in phase with a repeating accelerating voltage. A two-cavity recirculating accelerator has been designed and operated in a single-pass mode. The prototype accelerator uses a 2.5-MV, 20-kA, 25-ns duration injector and an accelerating cavity that will produce a total accelerating voltage of 5.3 MV for four passes. The design of this machine involved key areas of development in pulsed power, specifically, low-jitter spark gaps and vacuum-liquid interfaces for bipolar electric fields. The extension of this technology to multiple-pulse machines will require advances in liquid dielectric breakdown strength and switch surface flashover, as well as additional improvements in lower inductance switching and vacuum-liquid interface flashover. This paper will discuss the recirculation concept, pulsed-power design parameters, machine scaling relationships that are valid for state-of-the-art and near-term pulsed-power parameters, and summarize the pulsed-power and beam transport experiments.

  16. Modeling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Zhang, Xu; Xie, Hai-Jian

    2015-06-01

    Leachate recirculation (LR) in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. The subsurface application method of vertical wells is one of the most common LR techniques. The objective of this study was to develop a novel two-dimensional model of leachate recirculation using vertical wells. This novel method can describe leachate flow considering the effects of MSW settlement while also accounting separately for leachate flow in saturated and unsaturated zones. In this paper, a settlement model for MSW when considering the effects of compression and biodegradation on the MSW porosity was adopted. A numerical model was proposed using new governing equations for the saturated and unsaturated zones of a landfill. The following design parameters were evaluated by simulating the recirculated leachate volume and the influence zones of waste under steady-state flow conditions: (1) the effect of MSW settlement, (2) the effect of the initial void ratio, (3) the effect of the injected head, (4) the effect of the unit weight, (5) the effect of the biodegradation rate, and (6) the effect of the compression coefficient. The influence zones of LR when considering the effect of MSW settlement are smaller than those when neglecting the effect. The influence zones and LR volume increased with an increase in the injection pressure head and initial void ratio of MSW. The proposed method and the calculation results can provide important insight into the hydrological behavior of bioreactor landfills.

  17. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present

  18. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  19. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.

  20. Recirculation-aeration: Bibliography for aquaculture. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Perschbacher, P.W.; Powell, R.V.; Freeman, D.W.; Lorio, W.J.; Hanfman, D.T.

    1993-08-01

    The bibliography includes literature citations through 1992 related to water recirculation and aeration in aquaculture. The focus is on filtration, aeration, and circulation techniques in various aquaculture situations.

  1. Recirculating sand filters for treatment of synthetic dairy parlor washings.

    PubMed

    Healy, M G; Rodgers, M; Mulqueen, J

    2004-01-01

    Land-spreading and spray irrigation are the most widely used practices for the disposal of dairy wastewaters in Ireland but in some cases there can be problems due to contamination of surface and ground water. The use of intermittent sand filtration has been suggested as an alternative treatment process. However, a single pass through a sand filter limits denitrification because of the absence of reducing conditions following nitrification and the lack of an available carbon source. This leads to poor total nitrogen (TN) reduction and an effluent that is high in nitrate nitrogen (NO3-N). This paper follows a previous paper in which two instrumented stratified sand filter columns (0.9 and 0.425 m deep, and both 0.3 m in diameter) were intermittently loaded with synthetic dairy parlor washings at a number of hydraulic loading rates, leading to a TN reduction of 27 to 41%. In the present study, under a chemical oxygen demand (COD) of 23.4 g m(-2) d(-1), the TN was reduced by 83.2% when three-quarters of the sand filter effluent was recirculated through an anoxic zone. This produced an effluent NO3-N concentration of 60 mg L(-1). With recirculation, the improvement in the removal of organic matter and ammonia N (NH4-N) is minimal. Recirculating sand filters appear to offer a mechanically simple and effective method for the removal of nitrogen from dairy parlor effluents and are a significant improvement over a single-pass sand filter.

  2. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  3. Gun and optics calculations for the Fermilab recirculation experiment

    SciTech Connect

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes.

  4. Bio-inspired robotic legs drive viscous recirculating flows

    NASA Astrophysics Data System (ADS)

    Takagi, Daisuke; Hayashi, Rintaro

    2015-11-01

    Crustaceans actuate multiple legs in a well-coordinated sequence to generate suitable flow for feeding and swimming. Inspired by tiny crustacean larvae operating at low Reynolds number, we study a scaled-up model in which slender rods oscillate independently in a bath of glycerol. Experiments reveal qualitatively different flow patterns depending on the phase and orientation of actuated rods. The observations are analyzed in the framework of slender-body theory for Stokes flow. This study shows that simple oscillatory motion of multiple legs can produce complex recirculating flows, with potential applications for mixing and pumping.

  5. Lymphopoiesis and lymphocyte recirculation in the sheep fetus

    PubMed Central

    1976-01-01

    The production and the circulation of lymphocytes has been examined in the sheep fetus where neither foreign antigen nor immunoglobulins occur. It was found that as the lymphoid organs increased in size during fetal life, the numbers and the output of lymphocytes in the thoracic duct lymph increased. The recirculating pool of lymphocytes was estimated to be 5.5 +/- 1.5 X 10(8) cells in fetal lambs 95-100 days of age, 5.7 +/- 1.2 X 10(9) cells in fetuses 130-135 days of age, and 1.2 +/0 9.3 X 10(10) cells in fetuses near to term. The rate of addition of lymphocytes to the recirculating pool was 3.2 +/- 1.9 X 10(6) cells/h in fetuses of 100 days and 3.4 +/- 0.9 X 10(7) cells/h in fetuses of 130 days of age. Lymphocytes recirculated from blood to lymph in fetuses; labeled cells injected into the blood stream reappeared in the thoracic duct lymph promptly and reached maximum levels around 12-18 h after they were injected. Labeled lymphocytes were detected subsequently in greatest numbers in the lymph nodes, particularly in the mesenteric lymph nodes and in the interfollicular areas of the Peyer's patches. Chronic drainage of thoracic duct lymph from fetuses in utero for periods of up to 36 days had no obvious effects on the growth or development of the fetus and only minimal effects on the content of lymphocytes in the various lymphoid tissues even though the number of cells in the blood and lymph were reduced to between 20-30% of normal levels. Thymectomy done in fetuses about 2 mo befor cannulation of the thoracic duct reduced the output of cells in the thoracic duct to about 25% of normal levels and caused a significant reduction in the content of lymphocytes in the various lymphoid tissues. Thymectomized fetal lambs subjected to thoracic duct drainage for periods up to 2 wk in utero had a similar complement of lymphocytes in their lymphoid tissues to intact thymectomized fetal lambs. Lymphocytes obtained from the thoracic duct lymph of lambs thymectomized 2 mo

  6. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  7. On the future of BNL user facilities

    SciTech Connect

    Ben-Zvi, I.

    2010-08-01

    The purpose of this document is to portray the emerging technology of high-power high-brightness electron beams. This new technology will impact several fields of science and it is essential that BNL stay abreast of the development. BNL has a relative advantage and vital interest in pursuing this technology that will impact its two major facilities, the NSLS and RHIC. We have a sensible development path towards this critical future technology, in which BNL will gradually acquire a strong basis of Superconducting Radio Frequency (SRF) technology while executing useful projects. The technology of high-power AND high-brightness (HPHB) electron beams is based of the convergence of two extant, but relatively recent technologies: Photoinjectors and superconducting energy-recovering linacs. The HPHB technology presents special opportunities for the development of future BNL user facilities for High-Energy and Nuclear Science (HE-NP) and Basic Energy Science (BES). In HE-NP this technology makes it possible to build high-energy electron cooling for RHIC in the short range and a unique linac-based electron-ion collider (eRHIC). In BES, we can build short pulse, coherent FIR sources and high flux femtosecond hard x-ray sources based on Compton scattering in the short range and, in the longer range, femtosecond, ultra-high brightness synchrotron light sources and, ultimately, an X-ray Free-Electron Laser (FEL).

  8. Interactive method for computation of viscous flow with recirculation

    NASA Technical Reports Server (NTRS)

    Brandeis, J.; Rom, J.

    1981-01-01

    An interactive method is proposed for the solution of two-dimensional, laminar flow fields with identifiable regions of recirculation, such as the shear-layer-driven cavity flow. The method treats the flow field as composed of two regions, with an appropriate mathematical model adopted for each region. The shear layer is computed by the compressible boundary layer equations, and the slowly recirculating flow by the incompressible Navier-Stokes equations. The flow field is solved iteratively by matching the local solutions in the two regions. For this purpose a new matching method utilizing an overlap between the two computational regions is developed, and shown to be most satisfactory. Matching of the two velocity components, as well as the change in velocity with respect to depth is amply accomplished using the present approach, and the stagnation points corresponding to separation and reattachment of the dividing streamline are computed as part of the interactive solution. The interactive method is applied to the test problem of a shear layer driven cavity. The computational results are used to show the validity and applicability of the present approach.

  9. Passive mode control in the recirculating planar magnetron

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; Lau, Y. Y.; Greening, Geoff; Zhang, Peng; Hoff, Brad

    2013-03-15

    Preliminary experiments of the recirculating planar magnetron microwave source have demonstrated that the device oscillates but is susceptible to intense mode competition due, in part, to poor coupling of RF fields between the two planar oscillators. A novel method of improving the cross-oscillator coupling has been simulated in the periodically slotted mode control cathode (MCC). The MCC, as opposed to a solid conductor, is designed to electromagnetically couple both planar oscillators by allowing for the propagation of RF fields and electrons through resonantly tuned gaps in the cathode. Using the MCC, a 12-cavity anode block with a simulated 1 GHz and 0.26 c phase velocity (where c is the speed of light) was able to achieve in-phase oscillations between the two sides of the device in as little as 30 ns. An analytic study of the modified resonant structure predicts the MCC's ability to direct the RF fields to provide tunable mode separation in the recirculating planar magnetron. The self-consistent solution is presented for both the degenerate even (in phase) and odd (180 Degree-Sign out of phase) modes that exist due to the twofold symmetry of the planar magnetrons.

  10. Continuous hydroponic wheat production using a recirculating system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  11. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2002-01-01

    A state-of-the-art CFD code (APNASA) was employed in a computationally based investigation of the impact of casing bleed and injection on the stability and performance of a moderate speed fan rotor wherein the stalling mass flow is controlled by tip flow field breakdown. The investigation was guided by observed trends in endwall flow characteristics (e.g., increasing endwall aerodynamic blockage) as stall is approached and based on the hypothesis that application of bleed or injection can mitigate these trends. The "best" bleed and injection configurations were then combined to yield a self-recirculating casing treatment concept. The results of this investigation yielded: 1) identification of the fluid mechanisms which precipitate stall of tip critical blade rows, and 2) an approach to recirculated casing treatment which results in increased compressor stall range with minimal or no loss in efficiency. Subsequent application of this approach to a high speed transonic rotor successfully yielded significant improvements in stall range with no loss in compressor efficiency.

  12. Vortical Structures in Wall-Bounded Turbulent Flow with Recirculation

    NASA Astrophysics Data System (ADS)

    Imran Shah, Syed

    2011-12-01

    Hairpin or horse-shoe vortices are a widely-accepted feature of the wall-bounded flows. These vortical structures have mostly been studied in canonical flows. Relatively few studies have been conducted on the characteristics of the vortical structures in wall-bounded flows with adverse pressure gradient and still fewer on the detached flows with recirculation. In the present contribution, vortices have been educed using a DNS database of incompressible flow over a 2-dimensional surface bump in a converging-diverging channel at a Reynolds number Reτ of 617, based on the friction velocity at inlet. Vortices have been educed from the instantaneous velocity field in streamwise/wall-normal and spanwise/wall-normal planes using the signed swirling strength criterion. Vortex validation is done through a fit of the vortex velocity field to the Oseen vortex model. The effects of a strong adverse pressure gradient and flow reciruclation on the population density and sizes of the streamwise and spanwise-oriented vortices have been studied. It has been found that a strong adverse pressure gradient and flow recirculation leads to the generation of a new near-wall peak of small spanwise prograde vortex population. Furthermore, this peak of vortex density has been found to coincide and hence relate to the outward movement of the peak of streamwise rms velocity fluctuations typical of adverse pressure gradient wall-bounded turbulent flows.

  13. In situ treatment of VOCs by recirculation technologies

    SciTech Connect

    Webb, O.F.; Siegrist, R.L.; Ally, M.R.; Sanford, W.E.; Kearl, P.M.; Zutman, J.L.

    1994-06-01

    Confronted with contaminated land from the world wars and the postwar industrialization period, German researchers and practicing professionals have worked to develop processes for effective environmental restoration. This presentation documents efforts by Oak Ridge National Laboratory (ORNL) researchers to (1) identify collaborators and German technologies exhibiting near-term potential for clean-up of volatile organic contaminated soil and groundwater at Department of Energy sites, (2) critically assess performance, and (3) inform interested agencies. The project was limited to identification and preliminary evaluation and included engineering computations, groundwater flow modeling, and treatment process modeling. Two processes were identified: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well (PP/HW). Both technologies induce a recirculation flow field in the aquifer and enable simultaneous down hole treatment of the aquifer and vadose zone. University of Karlsruhe researchers have demonstrated the UVB/GZB technology in shallow aquifers with moderately high saturated thickness and hydraulic conductivities. The PP/HW technology offers potential for VOC treatment in sites with thin aquifers or heterogeneities. This paper describes identified German technologies and includes critical evaluations of well performance, associated treatment processes, operating variables, and aquifer-well interactions.

  14. Design validation and performance of closed loop gas recirculation system

    NASA Astrophysics Data System (ADS)

    Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.

    2016-11-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  15. Designing and Testing of Self-Cleaning Recirculating Zebrafish Tanks.

    PubMed

    Nema, Shubham; Bhargava, Yogesh

    2016-08-01

    Maintenance of large number of zebrafish in captive conditions is a daunting task. This can be eased by the use of recirculating racks with self-cleaning zebrafish tanks. Commercially available systems are costly, and compatibility of intercompany products has never been investigated. Although various cost-effective designs and methods of construction of custom-made recirculating zebrafish racks are available in literature, the design of self-cleaning zebrafish tanks is still not available. In this study, we report the design and method of construction of the self-cleaning unit, which can be fitted in any zebrafish tank. We validated the design by investigating sediment cleaning process in rectangular and cylindrical tank geometries using time lapse imaging. Our results suggest that for both tank geometries, the tanks fitted with self-cleaning unit provided superior sediment cleaning than the tanks fitted with overflow-drain unit. Although the self-cleaning unit could clean the sediment completely from both geometries over prolonged period, the cleaning of sediments was faster in the cylindrical tank than the rectangular tank. In conclusion, cost and efforts of zebrafish maintenance could be significantly reduced through the installation of our self-cleaning unit in any custom-made zebrafish tank.

  16. Design and installation of a high Reynolds number recirculating water tunnel

    NASA Astrophysics Data System (ADS)

    Daniel, Libin

    The High-Reynolds Number Fluid Mechanics Laboratory has recently been established at Oklahoma State University (OSU). The three primary components of the laboratory are 1) a recirculating water tunnel, 2) a multiphase pipe flow facility, and 3) a multi-scale flow visualization system. This thesis focuses on the design and fabrication of the water tunnel, which will be used for high-Reynolds number turbulent boundary layer research. Two main design criteria for the water tunnel were to achieve a momentum thickness based Reynolds number in excess of 104 and to have high optical access to the flow surfaces in the test section. This is being achieved with a 1 m. long test section and a maximum flow speed of 10 m/s. This Reynolds number was targeted to bridge the gap between typical university water tunnels (103) and the world's largest water tunnel facilities (105). The water tunnel is powered by a 150 hp motor and a 4500 gpm capacity centrifugal pump. The water tunnel is designed for a maximum operating pressure of 40 psi. This will make the facility a low cost option to perform high-Reynolds number aerodynamic and hydrodynamic tests. Improved flow imaging capability is a major advantage to liquid based fluid facilities because of the increased density for seeding and reduced field-of-view for equivalent Reynolds number. The laboratory's state-of-the-art flow visualization system can be used for time-resolved and phase averaged stereo- particle-image-velocimetry (sPIV), laser-induced-fluorescence, and high-speed imaging. Design provisions are also made to allow a multi-phase loop to share the pump and motor configuration of this water tunnel facility. The major design decisions that went into the design of the water tunnel facility are discussed. The design considerations that were taken into account for the test section, flow conditioning sections and the entire flow loop are discussed in greater detail. The final configuration and the technical drawings of the water

  17. Unit process engineering for water quality control and biosecurity in marine water recirculating systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-intensity systems that treat and recirculate water must maintain a culture environment that can sustain near optimum fish health and growth at the design carrying capacity. Water recirculating systems that use centralized treatment systems can benefit from the economies of scale to decrease th...

  18. Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to determine the ultraviolet (UV) irradiation dosages required to inactivate bacteria in a commercial-scale recirculating salmonid culture system. Research was conducted in the commercial-scale recirculating system used for Arctic char growout at the Conservation ...

  19. [Linac based radiosurgery; a technical report].

    PubMed

    Hayashi, H; Asaga, A; Sakudoh, M; Hoshino, S; Katsuta, S; Akine, Y

    1992-07-01

    A method for highly dose-localized irradiation using a linear accelerator (linac) for a brain tumor has been developed. The method requires a linac, a computed tomography (CT) system, a CT simulator, and a treatment planning system for radiotherapy, with which most major radiotherapy centers are equipped. To immobilize a patient during irradiation, a custom-made device made of synthetic material which became flexible with heating was used. With the CT system and the CT simulator the target was identified and geometrical data for positioning the tumor at a point to which x-ray beams were directed (an isocenter of the linac) were obtained. By rotating a treatment couch it was made possible for the x-ray source to rotate around the isocenter on multiple planes. Dose distribution obtained with this method was compared to that of the gamma unit and found comparable. Since the method requires no invasive procedure, it appears suitable for treatment, with fractionated irradiation, of malignant tumors.

  20. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  1. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    SciTech Connect

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-02-06

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.

  2. Performance model of a recirculating stack nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1994-01-01

    A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for

  3. Use of fluorescence spectroscopy to control ozone dosage in recirculating aquaculture systems.

    PubMed

    Spiliotopoulou, Aikaterini; Martin, Richard; Pedersen, Lars-Flemming; Andersen, Henrik R

    2017-03-15

    The aim of this study was to investigate the potential of fluorescence spectroscopy to be used as an ozone dosage determination tool in recirculating aquaculture systems (RASs), by studying the relationship between fluorescence intensities and dissolved organic matter (DOM) degradation by ozone, in order to optimise ozonation treatment. Water samples from six different Danish facilities (two rearing units from a commercial trout RAS, a commercial eel RAS, a pilot RAS and two marine water aquariums) were treated with different O3 dosages (1.0-20.0 mg/L ozone) in bench-scale experiments, following which fluorescence intensity degradation was eventually determined. Ozonation kinetic experiments showed that RAS water contains fluorescent organic matter, which is easily oxidised upon ozonation in relatively low concentrations (0-5 mg O3/L). Fluorescence spectroscopy has a high level of sensitivity and selectivity in relation to associated fluorophores, and it is able to determine accurately the ozone demand of each system. The findings can potentially be used to design offline or online sensors based on the reduction by ozone of natural fluorescent-dissolved organic matter in RAS. The suggested indirect determination of ozone delivered into water can potentially contribute to a safer and more adequate ozone-based treatment to improve water quality.

  4. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    SciTech Connect

    Bohn, C.L.

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  5. TRACG Simulation of Drywell Gas Recirculation System in ESBWR

    SciTech Connect

    Cheung, Yee K.; Rao, Atambir S.

    2002-07-01

    This paper presents the results of a parametric study on the mitigating effects of the Drywell Gas Recirculation System (DGRS) in ESBWR during postulated LOCA and severe accidents. The post-accident containment pressure depends on the sum of the partial pressure from non-condensable gases and partial steam pressure inside the wet-well airspace. Results of parametric studies show that, with the activation of DGRS: (1) The containment pressure continues to reduce due to the redistribution of non-condensable gases from the wet-well back to the drywell; (2) The DGRS can be designed in a 'portable' fashion; (3) The Current ESBWR meets the design requirement with significant margin using only passive safety systems, and the margin increases considerably with the activation of DGRS. (authors)

  6. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  7. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  8. Successful water reuse in open recirculating cooling systems

    SciTech Connect

    Vaska, M.; Lee, B.

    1994-12-31

    Water reuse in open recirculating cooling water systems is becoming increasingly prevalent in industry. Reuse can incorporate a number of varied approaches with the primary goal being water conservation. Market forces driving this trend include scarcity of fresh water makeup sources and higher costs associated with pretreatment of natural waters. Utilization of reuse water for cooling tower makeup has especially detrimental effects on corrosion and deposit rates. Additionally, once the reuse water is cycled and treated with inhibitors, dispersants and microbiocides, acceptability for discharge to a public waterway can be a concern. The task for water treatment suppliers is to guide industry in the feasibility and procedures for successfully achieving these goals. This paper focuses particularly on reuse of municipal wastewater for cooling tower makeup and explores techniques which have been found especially effective. Case histories are described where these concepts have been successfully applied in practice.

  9. Experiments With Recirculating Target for F-18 Production

    NASA Astrophysics Data System (ADS)

    Kiselev, M. Y.

    2003-08-01

    Approximately 10 ml of O-18 water was loaded in an apparatus containing a 5 ml storage vessel, pump, silver target attached to a cyclotron, filter, backpressure regulator, conductivity meter, several valves and ion exchange cartridges. The water was continuously pumped through the target during proton bombardment at a rate 5 ml/min. Continuous irradiation with beam current ranging from 10 to 50 uA was conducted while pressure, temperature and conductivity were continuously monitored. The results indicate that recirculating of the target water can increase production of F-18 in relation to consumed O-18 water material. It can also increase productivity by eliminating idle periods for re-filling the target. A backpressure regulator can precisely control target pressure. This method also allows for continuous monitoring of the target material temperature, pressure, conductivity and accumulated radioactivity. Results of these observations provide important information about target performance and physical processes taking place inside the target.

  10. Capture of CO2 From Recirculating Flue Gas Boilers

    SciTech Connect

    Ochs, Thomas L.

    2003-01-01

    The possible need for an economical method for the separation of CO2 from flue gas adds a new set of challenges to power plant design, construction, operation, and maintenance. Many of the new requirements of CO2 separation are similar in nature to those addressed by the mature chemical engineering processes used in petroleum refining and industrial chemical production. Chemical engineering processes are regularly used to separate heterogeneous vapors in processes such as the fractionation of hydrocarbons or the separation of the components of air. This paper addresses the application of chemical engineering processes to the mixtures of gases and vapors found in the flue gas of recirculating boilers. Adaptation of these techniques can lead to a reduction in the energy required to capture CO2.

  11. Computation of recirculating compressible flow in axisymmetric geometries

    SciTech Connect

    Isaac, K.M.; Nejad, A.S.

    1985-01-01

    A computational study of compressible, turbulent, recirculating flow in axisymmetric geometries is reported in this paper. The SIMPLE algorithm was used in the differencing scheme and the k-epsilon model for turbulence was used for turbulence closure. Special attention was given to the specification of the boundary conditions. The study revealed the significant influence of the boundary conditions on the solution. The eddy length scale at the inlet to the solution domain was the most uncertain parameter in the specification of the boundary conditions. The predictions were compared with the recent data based on laser velocimetry. The two are seen to be in good agreement. The present study underscores the need to have a more reliable means of specifying the inlet boundary conditions for the k-epsilon turbulence model.

  12. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.

    1994-11-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  13. Microbial diversity of biological filters in recirculating aquaculture systems.

    PubMed

    Schreier, Harold J; Mirzoyan, Natella; Saito, Keiko

    2010-06-01

    Development of environmentally sustainable farming of marine and freshwater species using recirculating aquaculture systems (RASs) requires a complete understanding of the biological component involved in wastewater treatment. This component integrates biofilters composed of microbial communities whose structure, dynamics, and activities are responsible for system success. Engineering highly efficient, environmentally sound, disease-free, and economically viable systems necessitates a thorough knowledge of microbial processes involved in all facets of RAS biofilters and has only recently been the focus of comprehensive studies. These studies have included the application of molecular tools to characterize community diversity and have identified key processes useful for improving system performance. In this paper we summarize the current understanding of the microbial diversity and physiology of RAS biofilters and discuss directions for future studies.

  14. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  15. Fixed Field Alternating Gradient recirculator for heavy ion fusion

    SciTech Connect

    Paul, A.C.; Neil, V.K.

    1991-03-01

    A heavy ion fusion driver is considered in which a beam is passed repeatedly through a LIA (linear induction accelerator) by recirculating with two spiral sector FFAG (Fixed Field Alternating Gradient) 180 degree bends. The driver consists of three such rings: a 10--100 MeV low energy ring (LER), a 100--1000 MeV medium energy ring (MER), and a 1--10 GeV high energy ring (HER). Using a scaling field of 14 kG and taking the length of the straight sections to equal the path length in the bends, the circumference of the three rings would be 187, 590, and 1890 meters. Four matching sections in each of the three rings provide the interface between the two straight sections accommodating the LIA and the FFAG bends. These matching sections consist of dipoles which provide a dispersion free match between the linear induction accelerator and the energy dependent equilibrium orbits of the FFAG ring. The advantage in the use of the spiral sector FFAG over other recirculator concepts is that the fields are time invariant. This removes the problems associated with time dependent field penetration into the vacuum chamber and the large amount of energy which must be expended to change the magnetic field on the small time scale associated with the required pulse repetition frequency. The disadvantage, as we show in this work is the relatively weak alternating gradient focusing. The FFAG will not accommodate the level of beam current possible in a separate function lattice of bending magnets and quadrupoles.

  16. Traffic and proliferative responses of recirculating lymphocytes in fetal calves.

    PubMed Central

    Hein, W R; Shelton, J N; Simpson-Morgan, M W; Morris, B

    1988-01-01

    The thoracic duct or efferent prescapular duct was cannulated in four fetal calves aged 121-259 days post-conception. The duration of lymph flow ranged from 2 to 20 days and the mean flow rates sustained over these collection periods varied from 5.4 to 48.8 ml/hr. Lymphocyte output ranged from 4.4 x 10(6) cells/hr in thoracic duct lymph from a 121-day fetus to 3.9 x 10(8) cells/hr in efferent prescapular lymph from a 259-day fetus. The circulating lymphocyte pool in fetal calves of about 120 and 190 days gestational age was calculated to contain, respectively, 4 x 10(8) cells and 2 x 10(10) cells. The proportion of lymphocytes bearing surface immunoglobulin detected in fetal lymph ranged from 2.1% to 8.7%. Recirculating lymphocytes from fetal calves produced strong proliferative responses when stimulated by T-cell mitogens but responded poorly to B-cell mitogens. Fetal lymphocytes also responded to stimulation by allogeneic cells and stimulated other cells to proliferate during mixed lymphocyte culture. When stimulated with Con A, fetal lymphocytes secreted IL-2 to a degree that was indistinguishable from the secretory behaviour of lymphocytes from adult animals. The results presented in this paper show that chronic lymphatic fistulae can be established successfully in fetal calves to give access to recirculating lymphocytes. This provides a new experimental approach for studying the development of the bovine immune system. PMID:2971606

  17. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  18. Vortex dynamics and scalar transport in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2012-09-01

    The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.

  19. Investigation of groundwater recirculation for the removal of RDX from the Pantex Plant perched aquifer

    SciTech Connect

    Woods, A.L.; Barnes, D.L.; Boles, K.M.; Charbeneau, R.J.; Black, S.; Rainwater, K.

    1998-07-01

    The Pantex Plant near Amarillo, Texas, is a US Department of Energy (DOE) facility that has been in operation since 1942. Past and present operations at Pantex include the creation of chemical high explosives components for nuclear weapons and assembly and disassembly of nuclear weapons. The Pantex Plant is underlain by the Ogallala aquifer, which in this area, consists of the main water-bearing unit and a perched water zone. These are separated by a fine-grained zone of low permeability. Multiple contaminant plumes containing high explosive (HE) compounds have been detected in the perched aquifer beneath the plant. The occurrence of these contaminants is the result of past waste disposal practices at the facility. RDX is an HE compound, which has been detected in the groundwater of the perched aquifer at significant concentrations. A pilot-scale, dual-phase extraction treatment system has been installed at one location at the plant, east of Zone 12, to test the effectiveness of such a system on the removal of these contaminants from the subsurface. A tracer test using a conservative tracer, bromide (Br), was conducted at the treatment site in 1996. In addition to the bromide, RDX and water elevations in the aquifer were monitored. Using data from the tracer test and other relevant data from the investigations at Pantex, flow and contaminant transport in the perched aquifer were simulated with groundwater models. The flow was modeled using MODFLOW and the transport of contaminants in the aqueous phase was modeled using MT3D. Modeling the perched aquifer had been conducted to characterize the flow in the perched aquifer; estimate RDX retardation in the perched aquifer; and evaluate the use of groundwater re-circulation to enhance the extraction of RDX from the perched aquifer.

  20. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    PubMed

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion.

  1. Effects of effluent recirculation in vertical-flow constructed wetland on treatment efficiency of livestock wastewater.

    PubMed

    Lian-sheng, He; Hong-liang, Liu; Bei-dou, Xi; Ying-bo, Zhu

    2006-01-01

    Enhancing the treatment efficiency of livestock wastewater by effluent recirculation is investigated in a pilot-scale vertical-flow constructed wetland. The wetland system is composed of downflow and upflow stages, on which narrow-leaf Phragmites communis and common reed Phragmites typhia are planted, respectively; each stage has a dimension of 4 m(2) (2 m x 2 m). Wastewater from the facultative pond is fed into the system intermittently at a flow rate of 0.4 m(3)/d. Recirculation rates of 0, 25%, 50%0, 100% and 150% are adopted to evaluate the effect of the recirculation rate on pollutants removal. This shows that with effluent recirculation the average removal efficiencies of NH4-N, BOD5 and SS obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%o, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, DO and oxidation-reduction potential (ORP) of inflow and outflow reveal that the adoption of effluent recirculation is beneficial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R(2) > 0.93) are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by the gradually enhanced nitrification process. When recirculation rate is kept constant at 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.

  2. High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

    SciTech Connect

    Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

    2007-04-17

    Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

  3. Efficiency of an AMTEC recirculating test cell, experiments and projections

    SciTech Connect

    Underwood, M.L.; O`Connor, D.; Williams, R.M.; Jeffries-Nakamura, B.; Ryan, M.A.

    1992-05-01

    The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15% to 35% thermal to electric conversion efficiencies, and one experiment has demonstrated 19% efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2% early in cell life and 9.7% after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10%. Second, the cell thermal performance could be improved. Efficiencies greater than 14% could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies can be accomplished through the development and use of an advanced condenser with improved reflectivity, close to that of a smooth sodium film, and the series connecting of individual cells to further reduce thermal losses.

  4. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    PubMed Central

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  5. AMTEC recirculating test cell component testing and operation

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Sievers, R. K.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Bankston, C. P.

    1989-01-01

    Alkali metal thermoelectric converter operation in a recirculating test cell (RTC), which requires a small electromagnetic pump (EM) and a high-temperature beta-double-prime alumina-solid-electrolyte (BASE)-to-metal seal, is discussed. The design of a pump and an active metal braze seal and the initial operation of a cell using these components are described. The pump delivered 0.25 cu cm/min against a 28-psia head. A braze seal system was selected after shear strength tests of Ta or Nb brazed to BASE by a variety of fillers including TiCuNi, TiNi, and TiNiCr. The TiCuNi filler was chosen for environment cell testing and showed no failure or observable degradation after short-term tests up to 1055 K. The pump and the Nb/TiCuNi/BASE seal were used in a test that demonstrated all the operational functions of the RTC for the first time. An increase in the radiation reduction factor at constant input power was observed, indicating that the condenser was being wet by sodium resulting in an increased reflectivity.

  6. In situ treatment of VOCs by recirculation technologies

    SciTech Connect

    Siegrist, R.L.; Webb, O.F.; Ally, M.R.; Sanford, W.E.; Kearl, P.M.; Zutman, J.L.

    1993-06-01

    The project described herein was conducted by Oak Ridge National Laboratory (ORNL) to identify processes and technologies developed in Germany that appeared to have near-term potential for enhancing the cleanup of volatile organic compound (VOC) contaminated soil and groundwater at DOE sites. Members of the ORNL research team identified and evaluated selected German technologies developed at or in association with the University of Karlsruhe (UoK) for in situ treatment of VOC contaminated soils and groundwater. Project activities included contacts with researchers within three departments of the UoK (i.e., Applied Geology, Hydromechanics, and Soil and Foundation Engineering) during fall 1991 and subsequent visits to UoK and private industry collaborators during February 1992. Subsequent analyses consisted of engineering computations, groundwater flow modeling, and treatment process modeling. As a result of these project efforts, two processes were identified as having near-term potential for DOE: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well. This document was prepared to summarize the methods and results of the assessment activities completed during the initial year of the project. The project is still ongoing, so not all facets of the effort are completely described in this document. Recommendations for laboratory and field experiments are provided.

  7. Subsets of blood, spleen and recirculating lymphocytes in man.

    PubMed Central

    Reinecke, G; Pabst, R

    1983-01-01

    Lymphocyte subpopulations were characterized in human blood and spleens. In addition the spleens were perfused by a closed extracorporeal perfusion system under almost physiological conditions. Lymphocytes released from the spleen during perfusion were taken to be representative of recirculating lymphocytes. B lymphocytes were classified by their surface immunoglobulin, T lymphocytes and T lymphocyte subsets by cytochemistry, sheep red blood cell rosette formation and in some experiments by monoclonal antibodies. In the blood 71 +/- 4.3% of the lymphocytes were rosette forming cells and 23.3 +/- 3.8% B lymphocytes. In the spleen 49.8 +/- 3.6% were T and 53.3 +/- 2.1% were B lymphocytes. In three spleens the mean number of OKT3+ lymphocytes were 27.6 +/- 7.0% OKT4+ 8.6 +/- 1.4% and OKT8+ 13.7 +/- 2.2%. The ratio of T helper to T suppressor lymphocytes was 0.67 for the spleen and 1.7 for the blood. The lymphocytes released from the perfused spleen showed a similar distribution pattern of surface markers to that of the splenic subpopulations. Images Fig. 1 PMID:6225579

  8. Efficiency of an AMTEC recirculating test cell, experiments and projections

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.

    1992-01-01

    The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15 to 35 percent thermal to electric conversion efficiencies, and one experiment has demonstrated 19 percent efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2 percent early in cell life and 9.7 percent after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10 percent. Second, the cell thermal performance could be improved. Efficiencies greater than 14 percent could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies can be accomplished through the development and use of an advanced condenser with improved reflectivity, close to that of a smooth sodium film, and the series connecting of individual cells to further reduce thermal losses.

  9. Design of a computerized, temperature-controlled, recirculating aquaria system

    USGS Publications Warehouse

    Widmer, A.M.; Carveth, C.J.; Keffler, J.W.; Bonar, Scott A.

    2006-01-01

    We built a recirculating aquaria system with computerized temperature control to maintain static temperatures, increase temperatures 1 ??C/day, and maintain diel temperature fluctuations up to 10 ??C. A LabVIEW program compared the temperature recorded by thermocouples in fish tanks to a desired set temperature and then calculated the amount of hot or cold water to add to tanks to reach or maintain the desired temperature. Intellifaucet?? three-way mixing valves controlled temperature of the input water and ensured that all fish tanks had the same turnover rate. The system was analyzed over a period of 50 days and was fully functional for 96% of that time. Six different temperature treatments were run simultaneously in 18, 72 L fish tanks and temperatures stayed within 0.5 ??C of set temperature. We used the system to determine the upper temperature tolerance of fishes, but it could be used in aquaculture, ecological studies, or other aquatic work where temperature control is required. ?? 2005 Elsevier B.V. All rights reserved.

  10. Recirculating 1-K-Pot for Pulse-Tube Cryostats

    NASA Technical Reports Server (NTRS)

    Paine, Christopher T.; Naylor, Bret J.; Prouve, Thomas

    2013-01-01

    A paper describes a 1-K-pot that works with a commercial pulse tube cooler for astrophysics instrumentation testbeds that require temperatures <1.7 K. Pumped liquid helium-4 cryostats were commonly used to achieve this temperature. However, liquid helium-4 cryostats are being replaced with cryostats using pulse tube coolers. The closed-cycle 1K-pot system for the pulse tube cooler requires a heat exchanger on the pulse tube, a flow restriction, pump-out line, and pump system that recirculates helium-4. The heat exchanger precools and liquefies helium- 4 gas at the 2.5 to 3.5 K pulse tube cold head. This closed-cycle 1-K-pot system was designed to work with commercially available laboratory pulse tube coolers. It was built using common laboratory equipment such as stainless steel tubing and a mechanical pump. The system is self-contained and requires only common wall power to operate. The lift of 15 mW at 1.1 K and base temperature of 0.97 K are provided continuously. The system can be scaled to higher heat lifts of .30 to 50 mW if desired. Ground-based telescopes could use this innovation to improve the efficiency of existing cryo

  11. Effects of Test Cell Recirculation on High-Bypass Turbofan Engines during Simulated Altitude Tests

    DTIC Science & Technology

    1986-08-01

    methods used to describe and correct for test cell recirculation have led to this investigation, which is in line with the objectives previously stated...between pressure profiles on the cell wall and those on the model surfaces, which is in line with previous observations. Removal of the diffuser...AEDC-TR-85-55 , , . ’ . . . .L Effects of Test Cell Recirculation on High-Bypass Turbofan Engines During Simulated Altitude Tests OCT 0 9

  12. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min.

  13. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.

    PubMed

    Park, Min; Shim, Sung Hoon; Jeong, Sang Hyun; Oh, Kwang-Joong; Lee, Sang-Sup

    2017-04-01

    The nitrogen oxides (NOx) reduction technology by combustion modification which has economic benefits as a method of controlling NOx emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NOx reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NOx in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N2), carbon dioxide (CO2) and steam (H2O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NOx concentration greatly.

  14. Atmospheric stagnation, recirculation and ventilation potential of several sites in Argentina

    NASA Astrophysics Data System (ADS)

    Venegas, L. E.; Mazzeo, N. A.

    Conditions for stagnation, recirculation and ventilation potential of the atmosphere were studied in five argentine cities: Resistencia, Córdoba, Buenos Aires, Mar del Plata and Comodoro Rivadavia, located in different regions of the country. Wind run and recirculation factors were calculated for a 24-h transport time using 2 years of hourly surface measurements of wind speed and direction. The largest stagnation frequency (45% of the time) was observed in Resistencia, located in the northeastern part of the country, in an area where winds are weak. The least frequency of stagnations (2%) was observed in Comodoro Rivadavia, in the southern region of the country, a region dominated by strong westerly winds. Comodoro Rivadavia and Córdoba registered the largest frequency of recirculations. Comodoro Rivadavia exposed to sea-land breezes and Córdoba, located on a complex terrain area and exposed to local circulations, experienced recirculation events during 10% of the time. Good atmospheric ventilation occurs when a high value of wind run and a low value of the recirculation factor are observed and it can be associated with the atmosphere's capacity to replace polluted air with clean air. Ventilation events occurred 58% of the time at Comodoro Rivadavia, 52% at Mar del Plata, 40% at Buenos Aires, 35% at Córdoba and 18% at Resistencia. In general, stagnation was more frequently observed during autumn and winter, recirculation during spring and summer and good ventilation conditions occurred during spring.

  15. Development and design of a fluidized bed/upflow sand filter configuration for use in recirculating aquaculture systems

    SciTech Connect

    Burden, D.G.

    1988-01-01

    A fluidized bed/upflow sand filter configuration, was developed and designed for utilization in recirculating aquaculture system, specifically the soft-shell crab and soft-shell crawfish industries. These filters were selected and designed because of their ability to withstand clogging and still maintain high levels of water quality for aquaculture production. The effectiveness of sand grain size was used to evaluate fluidized bed filter performance with filter loadings ranging from 16 to 1285 pounds of crawfish per cubic foot of filter sand. A coarse sand grain size was recommended as a filter media because of it's ability to shear excessive biofilm growth from the and, thus prohibiting clogging from occurring within the filter bed. The fluidized bed/upflow sand filter combination was evaluated in terms of nitrification and oxygen consumption when used with a recirculating crab shedding system. The filter combination's carrying capacity (700 crabs per cubic foot of sand media) exceeded that observed with the submerged rock filter by more than 20 times and was largely explained by the filter's solids removal ability which significantly reduced the filter's oxygen loading rate (OLR). Nitrification rates with the filter combination were extremely high as total ammonia and nitrite levels remained below 1.0 mg-N/l. Verification of a volumetric loading criteria (150 pounds per cubic foot) for this filter combination was further established with performance data obtained from a commercial soft-shell crawfish facility. Water quality monitoring results indicated that the filters maintained total ammonia and nitrite levels below 1.0 mg-N/l under typical operating conditions. Shock loading, pH control, and over-feeding, rather than filter capacity, dominated water quality fluctuations, thereby indicating that the loading criteria was sufficient for commercial operation.

  16. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  17. Closed recirculating system for shrimp-mollusk polyculture

    NASA Astrophysics Data System (ADS)

    Wu, Xiongfei; Zhao, Zhidong; Li, Deshang; Chang, Kangmei; Tong, Zhuanshang; Si, Liegang; Xu, Kaichong; Ge, Bailin

    2005-12-01

    This paper deals with a new system of aquaculture, i.e., a closed recirculating system for shrimp-mollusk polyculture. The culture system consisted of several shrimp ponds, a mollusk water-purifying pond and a reservoir. During the production cycle, water circulated between the shrimp and mollusk ponds, and the reservoir compensated for water loss from seepage and evaporation. Constricted tagelus, Sinonovacula constricta, was selected as the cultured mollusk, and Pacific white shrimp, Litopenaeus vannamei, as the cultured shrimp. The main managing measures during the production cycle were: setting and using the aerators; introducting the probiotic products timely into the shrimp ponds; adopting a “pen-closing” method for controlling shrimp viral epidemics; setting the flow diversion barriers in the mollusk pond to keep the circulating water flowing through the pond along a sine-like curve and serve as substrate for biofilm; no direct feeding was necessary for the cultured mollusk until the co-cultured shrimp was harvested; natural foods in the water from the shrimp ponds was used for their foods. Two sets of the system were used in the experiment in 2002 and satisfactory results were achieved. The average yield of the shrimp was 11 943.5 kg/hm2, and that of the mollusk was 16 965 kg/hm2. After converting the mollusk yield into shrimp yield at their market price ratio, the food coefficient of the entire system averaged at as low as 0.81. The water quality in the ponds was maintained at a desirable level and no viral epidemics were discovered during the production cycle.

  18. Photobacterium aquae sp. nov., isolated from a recirculating mariculture system.

    PubMed

    Liu, Ying; Liu, Liang-Zi; Song, Lei; Zhou, Yu-Guang; Qi, Fang-Jun; Liu, Zhi-Pei

    2014-02-01

    A Gram-staining-negative, heterotrophic, facultatively anaerobic bacterium, designated AE6(T), was isolated from a grouper (Epinephelus malabaricas) culture tank in a recirculating mariculture system located in Tianjin, China. Strain AE6(T) was able to grow at 15-40 °C (optimum, 30-35 °C), at pH 5.5-10.0 (optimum, pH 7.0-7.5) and in the presence of 0.5-7% (w/v) NaCl (optimum, 2-3%). It contained Q-8 as the predominant respiratory quinone, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as the major polar lipids and C(16 : 1)ω7c/C(16 : 1)ω6c (40.4%), C(18 : 1)ω7c (15.5%) and C(16 : 0) (13.5%) as the predominant cellular fatty acids. The genomic DNA G+C content was 47.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AE6(T) belonged to the genus Photobacterium (94.2-96.8% of 16S rRNA gene sequence similarity) and formed a distinct phylogenetic lineage within the genus and exhibited the highest sequence similarity to Photobacterium aphoticum CECT 7614(T) (96.8%). Multilocus sequence analysis (MLSA) using four loci (gyrB, rpoA, pyrH and recA) also revealed that strain AE6(T) was phylogenetically related to the genus Photobacterium. Based on the phylogenetic, chemotaxonomic and phenotypic evidence, strain AE6(T) is considered to represent a novel species of the genus Photobacterium, for which the name Photobacterium aquae sp. nov. is proposed. The type strain is AE6(T) ( = CGMCC 1.12159(T) = JCM 18480(T)).

  19. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    PubMed

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  20. Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade

    SciTech Connect

    Ren, Weiju; Battiste, Rick

    2006-10-01

    Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

  1. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  2. Anaerobic degradation of dairy wastewater in intermittent UASB reactors: influence of effluent recirculation.

    PubMed

    Couras, C S; Louros, V L; Gameiro, T; Alves, N; Silva, A; Capela, M I; Arroja, L M; Nadais, H

    2015-01-01

    This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads.

  3. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  4. PAINT SPRAY BOOTH DESIGN USING RECIRCULATION/PARTITIONING VENTILATION

    EPA Science Inventory

    Many spray painting facility operators have been attempting to reduce the discharge of volatile organic compounds (VOCs) from paint spray booths to the atmosphere. Some have been able to convert to lower VOC containing paints and coatings such as powder coating, waterborne coatin...

  5. Noscapine recirculates enterohepatically and induces self-clearance.

    PubMed

    Mukkavilli, Rao; Gundala, Sushma R; Yang, Chunhua; Jadhav, Gajanan R; Vangala, Subrahmanyam; Reid, Michelle D; Aneja, Ritu

    2015-09-18

    Noscapine (Nos), an antitussive benzylisoquinoline opium alkaloid, is a non-toxic tubulin-binding agent currently in Phase II clinical trials for cancer chemotherapy. While preclinical studies have established its tumor-inhibitory properties in various cancers, poor absorptivity and rapid first-pass metabolism producing several uncharacterized metabolites for efficacy, present an impediment in translating its efficacy in humans. Here we report novel formulations of Nos in combination with dietary agents like capsaicin (Cap), piperine (Pip), eugenol (Eu) and curcumin (Cur) known for modulating Phase I and II drug metabolizing enzymes. In vivo pharmacokinetic (PK), organ toxicity evaluation of combinations, microsomal stability and in vitro cytochrome P450 (CYP) inhibition effects of Nos, Cap and Pip using human liver microsomes were performed. Single-dose PK screening of combinations revealed that the relative exposure of Nos (2 μg h/mL) was enhanced by 2-fold (4 μg h/mL) by Cap and Pip and their plasma concentration-time profiles showed multiple peaking phenomena for Nos indicating enterohepatic recirculation or differential absorption from intestine. CYP inhibition studies confirmed that Nos, Cap and Pip are not potent CYP inhibitors (IC50>1 μM). Repeated oral dosing of Nos, Nos+Cap and Nos+Pip showed lower exposure (Cmax and AUClast) of Nos on day 7 compared to day 1. Nos Cmax decreased from 3087 ng/mL to 684 ng/mL and AUClast from 1024 ng h/mL to 508 ng h/mL. In presence of Cap and Pip, the decrease in Cmax and AUClast of Nos was similar. This may be due to potential enzyme induction leading to rapid clearance of Nos as the trend was observed in Nos alone group also. The lack of effect on intrinsic clearance of Nos suggests that the potential drug biotransformation modulators employed in this study did not contribute toward increased exposure of Nos on repeated dosing. We envision that Nos-induced enzyme induction could alter the therapeutic efficacy of co

  6. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  7. The QUASAR facility

    NASA Astrophysics Data System (ADS)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  8. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect

    Anuar, S.H.; Keener, H.M.

    1995-12-31

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  9. Investigation of hydrocarbon oil transformation by gliding arc discharge: comparison of batch and recirculated configurations

    NASA Astrophysics Data System (ADS)

    Whitehead, J. Christopher; Prantsidou, Maria

    2016-04-01

    The degradation of liquid dodecane was studied in a gliding arc discharge (GAD) of humid argon or nitrogen. A batch or recirculating configuration was used. The products in the gaseous and liquid phase were analysed by infrared and chromatography and optical emission spectroscopy was used to identify the excited species in the discharge. The best degradation performance comes from the use of humid N2 but a GAD of humid argon produces fewer gas-phase products but more liquid-phase end-products. A wide range of products such as heavier saturated or unsaturated hydrocarbons both aliphatic and aromatic, and oxidation products mainly alcohols, but also aldehydes, ketones and esters are produced in the liquid-phase. The recirculating treatment mode is more effective than the batch mode increasing the reactivity and changing the product selectivities. Overall, the study shows promising results for the organic liquid waste treatment, especially in the recirculating mode.

  10. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    PubMed

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates.

  11. Recurrent amoebic gill infestation in rainbow trout cultured in a semiclosed water recirculation system

    USGS Publications Warehouse

    Noble, A.C.; Herman, R.L.; Noga, E.J.; Bullock, G.L.

    1997-01-01

    Five lots of commercially purchased juvenile rainbow trout Oncorhynchus mykiss (17-44 g) stocked in a continuous-production water recirculation system became infested with gilt amoebae. The amoebae were introduced into the recirculation system, as evidenced by their presence on gills of fish held in quarantine tanks. Based on their morphology, as seen in histological sections and by electron microscopy, the amoebae appeared to be more closely related to the family Cochliopodiidae than to other taxa of free living amoebae. Attempts to culture the amoebae in different media, at different temperatures of incubation, and in fish cell culture were not successful. Initial treatment of the recirculation system with formalin at 167 parts per million (ppm) for 1 h eliminated amoebae from the gills. Subsequent treatments of the entire system with formalin at 50-167 ppm reduced the intensity of further infestations.

  12. Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.

    2008-01-01

    This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.

  13. Physics issues in the design of a recirculating induction accelerator for heavy ion fusion

    SciTech Connect

    Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Yu, S.S.

    1991-04-15

    A substantial savings in size and cost over a linear machine may be achieved in an induction accelerator in which a heavy ion beam makes many (< {approximately} 50) passes through one or more circular induction accelerators. We examine how the requirement of high beam quality and the requirement of pulse simultaneity at the target constrain the design of such an accelerator. Some of the issues that we have considered include beam interactions with residual gas, beam-beam charge exchange, emittance growth around bends, and beam instabilities. We show some of the interplay between maximization of beam quality and recirculator efficiency, and the minimization of recirculator cost, in arriving at a recirculator design. 9 refs., 1 fig.

  14. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    DOEpatents

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  15. The crop growth research chamber: A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1990-01-01

    A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

  16. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations

    PubMed Central

    Martorell, Jordi; Santomá, Pablo; Kolandaivelu, Kumaran; Kolachalama, Vijaya B.; Melgar-Lesmes, Pedro; Molins, José J.; Garcia, Lawrence; Edelman, Elazer R.; Balcells, Mercedes

    2014-01-01

    Aims Atherogenesis, evolution of plaque, and outcomes following endovascular intervention depend heavily on the unique vascular architecture of each individual. Patient-specific, multiscale models able to correlate changes in microscopic cellular responses with relevant macroscopic flow, and structural conditions may help understand the progression of occlusive arterial disease, providing insights into how to mitigate adverse responses in specific settings and individuals. Methods and results Vascular architectures mimicking coronary and carotid bifurcations were derived from clinical imaging and used to generate conjoint computational meshes for in silico analysis and biocompatible scaffolds for in vitro models. In parallel with three-dimensional flow simulations, geometrically realistic scaffolds were seeded with human smooth muscle cells (SMC) or endothelial cells and exposed to relevant, physiological flows. In vitro surrogates of endothelial health, atherosclerotic progression, and thrombosis were locally quantified and correlated best with an quantified extent of flow recirculation occurring within the bifurcation models. Oxidized low-density lipoprotein uptake, monocyte adhesion, and tissue factor expression locally rose up to three-fold, and phosphorylated endothelial nitric oxide synthase and Krüppel-like factor 2 decreased up to two-fold in recirculation areas. Isolated testing in straight-tube idealized constructs subject to static, oscillatory, and pulsatile conditions, indicative of different recirculant conditions corroborated these flow-mediated dependencies. Conclusions Flow drives variations in vascular reactivity and vascular beds. Endothelial health was preserved by arterial flow but jeopardized in regions of flow recirculation in a quasi-linear manner. Similarly, SMC exposed to flow were more thrombogenic in large recirculating regions. Health, thrombosis, and atherosclerosis biomarkers correlate with the extent of recirculation in vascular

  17. Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    CH 4 emissions and leachate disposal are recognized as the two major concerns in municipal solid waste (MSW) landfills. Recently, leachate recirculation was attempted to accelerate land-filled waste biodegradation and thus enhanced landfill gas generation. Leachate irrigation was also conducted for volume reduction effectively. Nevertheless, the impacts of leachate recirculation and irrigation on landfill CH 4 emissions have not been previously reported. A field investigation of landfill CH 4 emissions was conducted on selected sandy soil cover with leachate recirculation and subsurface irrigation based on whole year around measurement. The average CH 4 fluxes were 311±903, 207±516, and 565±1460 CH 4 m -2 h -1 from site A without leachate recirculation and subsurface irrigation, lift B2 with leachate subsurface irrigation, and lift B1 with both leachate recirculation and subsurface irrigation, respectively. Both gas recovery and cover soil oxidation minimized CH 4 emissions efficiently, while the later might be more pronounced when the location was more than 5 m away from gas recovery well. After covered by additional clay soil layer, CH 4 fluxes dropped by approximately 35 times in the following three seasons compared to the previous three seasons in lift B2. The diurnal peaks of CH 4 fluxes occurred mostly followed with air or soil temperature in the daytimes. The measured CH 4 fluxes were much lower than those of documented data from the landfills, indicating that the influences of leachate recirculation and subsurface irrigation on landfill CH 4 emissions might be minimized with the help of a well-designed sandy soil cover. Landfill cover composed of two soil layers (clay soil underneath and sandy soil above) is suggested as a low-cost and effective alternative to minimize CH 4 emissions.

  18. Component technologies for a recirculating linac free-electron laser

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Madey, John M. J.; Vinokurov, Nikolai A.

    1994-05-01

    The key component technologies required for a high average power free-electron laser (FEL) are described. Some basic aspects of approaches for high average power (scalable to megawatt level) accelerators and FELs are presented. A short description of the Novosibirsk 100 kW average power near infrared (IR) FEL driven by a race-track microtron-recuperator is given. The current status and plans for this facility are provided by Institute of Nuclear Physics (Novosibirsk).

  19. Heat and mass transfer in turbulent flows with several recirculated flow eddies

    NASA Astrophysics Data System (ADS)

    Baake, E.; Nacke, B.; Jakovics, A.; Umbrashko, A.

    2001-06-01

    Numerical modeling of the concentration and temperature distribution in axial symmetrical systems with several recirculated flow eddies, which is based on various 2D stationary k-ɛ models and commercial codes, e.g. ANSYS and FLUENT, leads to results, which are significantly different from experimental data. Therefore additional user-defined subroutines were included in the commercial program code to improve the turbulent heat and mass transfer in the zone between the recirculated flow eddies. In addition transient 3D calculations were performed to investigate scientifically the flow dynamics. Figs 9, Refs 8.

  20. Non-premixed conditions in the flameholding recirculation region behind a step in supersonic flow

    NASA Astrophysics Data System (ADS)

    Thakur, Amit

    Flameholding in supersonic flow depends on local conditions in the recirculation region, and on mass transfer into and out of this region. Large gradients in local gas composition and temperature exist in the recirculation region. Hence, stability parameter correlations developed for premixed flames cannot be used to determine blowout stability limits for non-premixed flames encountered in practical devices. In the present study, mixture samples were extracted at different locations in the recirculation region and the shear layer formed behind a rearward-facing step in supersonic flow, and analyzed by mass spectrometry to determine the species concentration distribution in the region. The point-wise mass spectrometer measurements were complemented by acetone planar laser-induced fluorescence (PLIF) measurements to get a planar distribution of fuel mole fraction in the recirculation region. Non-reacting flow tests and combustion experiments were performed by varying various fuel related parameters such as injection location, injection pressure and fuel type. Fuel injection upstream of the step was not effective in supplying enough fuel to the recirculation region and did not sustain the flame in combustion experiments. Fuel injection at the step base was effective in sustaining the flame. For base injection, the local fuel mole fraction in the recirculation region determined from experiments was an order of magnitude higher than the global fuel mole fraction based on total moles of air flowing through the test section and total fuel injected in the test section. This suggests substantial difference in flame stability curve for non-premixed conditions in the scramjet engine compared to premixed flow. For base injection, fuel remained in the recirculation region even at higher injection pressure. Due to slower diffusion rate, the heavier fuel had higher local mole fraction in the recirculation region compared to lighter fuel for a unit global fuel mole fraction

  1. A computer model of the energy-current loss instabilities in a recirculating accelerator system

    NASA Astrophysics Data System (ADS)

    Edighoffer, J. A.; Kim, K.-J.

    1995-04-01

    The computer program called ESRA (energy stability in a recirculating accelerator FELs) has been written to model bunches of particles in longitudinal phase space traversing a recirculating accelerator and the associated rf changes and aperture current losses. This code addresses stability issues and determines the transport, noise, feedback and other parameters for which these FEL systems are stable or unstable. A representative system is modeled, the Novosibirisk high power FEL race-track microtron for photochemical research. The system is stable with prudent choice of parameters.

  2. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

  3. Performance of the prototype gas recirculation system with built-in RGA for INO RPC system

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Joshi, A.; Kalmani, S. D.; Mondal, N. K.; Rahman, M. A.; Satyanarayana, B.; Verma, P.

    2012-01-01

    An open loop gas recovery and recirculation system has been developed for the INO RPC system. The gas mixture coming from RPC exhaust is first desiccated by passing through molecular sieve (3 Å+4 Å). Subsequent scrubbing over basic active alumina removes toxic and acidic contaminants. The Isobutane and Freon are then separated by diffusion and liquefied by fractional condensation by cooling up to -26C. A Residual Gas Analyser (RGA) is being used in the loop to study the performance of the recirculation system. The results of the RGA analysis will be discussed.

  4. An evaluation of a micro programmable logic controller for oxygen monitoring and control in tanks of a recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of dissolved gases, especially oxygen is an essential component of recirculating aquaculture systems. The use of pure oxygen in a recirculating aquaculture system creates supersaturated concentrations of dissolved oxygen and can reduce fish production costs by supporting greater fish and fee...

  5. Use of a micro programmable logic controller for oxygen monitoring and control in multiple tanks of a recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In intensive recirculating aquaculture systems the use of supplemental oxygen, specifically pure liquid oxygen, increases the mass of fish that can be supported and eliminates oxygen as a major limiting factor to a system’s carrying capacity. The use of pure oxygen in a recirculating aquaculture sys...

  6. Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: effect of different leachate recirculation practices.

    PubMed

    Xu, Su Yun; Karthikeyan, Obuli P; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    This study aimed at understanding the relationship between microbial community and extracellular enzyme activities of leach bed reactor (LBR) treating food waste under different leachate recirculation practices (once per day and continuous) and liquid to solid (L/S) ratios (1:1 and 0.5:1). Microbial community analysis using PCR-DGGE revealed that Lactobacillus sp., Bifidobacter sp., and Proteobacteria were the most abundant species. Number of phylotypes was higher in LBRs with intermittent recirculation; whereas, lower number of phylotypes dominated by the key players of degradation was observed with continuous recirculation. The L/S ratio of 1:1 significantly enhanced the volatile solids removal compared with 0.5:1; however, this effect was insignificant under once a day leachate recirculation. Continuous leachate recirculation with 1:1 L/S ratio significantly improved the organic leaching (240 g COD/kgvolatile solid) and showed distinct extracellular enzyme activities suitable for food waste acidogenesis.

  7. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    SciTech Connect

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-06-02

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.

  8. Back to the Roots: The Integration of a Constructed Wetland into a Recirculating Hatchery - A Case Study

    PubMed Central

    Buřič, Miloš; Bláhovec, Josef; Kouřil, Jan

    2015-01-01

    Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50% of the world's food fish. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a nutritious food. The integration of a constructed wetland (CW) into a recirculating hatchery (RHS) was evaluated with respect to its economic feasibility and environmental impact. The outcome of eight production cycles showed the potential of CW integration for expanded production without increased operation costs or environmental load. Concretely, the use of constructed wetland allows the rearing about 40% more fish biomass, resulting in higher production and profitability. The low requirements for space, fresh water, and energy enable the establishment of such systems almost anywhere. Constructed wetlands could enhance the productivity of existing small scale facilities, as well as larger systems, to address economic and environmental issues in aquaculture. Such systems have potential to be sustainable in the context of possible future climate change and resource limitations. PMID:25853416

  9. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  10. Low-dose hydrogen peroxide application in closed recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present work was to simulate water treatment practice with hydrogen peroxide (HP) in recirculating aquaculture systems (RAS). Six identical 1700 L pilot scale RAS were divided into two experimental groups based on daily feed allocation and were operated under constant conditions durin...

  11. Evaluation of commercial marine fish feeds for production of juvenile cobia in recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of feeding three commercially available diets manufactured by three U.S. feed companies on production characteristics and body composition of juvenile cobia Rachycentron canadum reared in recirculating aquaculture systems (RAS) was evaluated in a 57 d growth trial. Juvenile cobia (26.7 +...

  12. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    EPA Science Inventory

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  13. Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver

    DOEpatents

    Kolb, Gregory J [Albuquerque, NM

    2012-02-07

    A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

  14. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  15. Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Tun, Min Thaw; Sakaguchi, Daisaku

    2016-06-01

    High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.

  16. Pilot-scale study of powdered activated carbon recirculation for micropollutant removal.

    PubMed

    Meinel, F; Sperlich, A; Jekel, M

    Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe(3+) was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L(-1) and 2.8 g TSS L(-1) in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.

  17. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop practical methods to reduce nitrate -nitrogen loads from recirculating aqua-culture systems to facilitate increased food protein production simultaneously with attainment of water quality goals. The most common wastewater denitrification treatment systems utilize methanol-...

  18. Performance of two-stage vegetable waste anaerobic digestion depending on varying recirculation rates.

    PubMed

    Zuo, Zhuang; Wu, Shubiao; Zhang, Wanqin; Dong, Renjie

    2014-06-01

    Vegetable waste, which characterized by high moisture content, was evaluated as a substrate for biogas production. The effects of recirculation rate (RR) on the performance of two-stage anaerobic digestion were investigated. The system was operated at an organic loading rate of 1.7 g VS/L/d with varying RRs (0, 0.6, 1, and 1.4). Results demonstrated that volumetric biogas production rates in acidogenic reactor increased from approximately 0.2 7 L/L/d to 0.97 L/L/d, when pH is increased from approximately 5.1 to 6.7. These indicate that recirculation of alkaline effluent from the methanogenic reactor helps create a favorable condition for biogas production in the acidogenic reactor. The decrease in chemical oxygen demand (COD) concentrations from approximately 21,000 mg/L to 6800 mg/L was also observed in the acidogenic reactor. This condition may be attributed to dilution under recirculation. The dynamics between hydrolysis and methanogenesis under recirculation indicated that mass transfer capacity between two-stage reactors improved.

  19. Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Lilley, D. G.

    1985-01-01

    The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.

  20. Geosmin causes off-flavour in arctic charr in recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The “earthy” and “muddy” off-flavors in pond-reared fish are due to the presence of geosmin or 2-methylisoborneol (MIB) in the flesh of the fish. Similar off-flavors have been reported in fish raised in recirculating aquaculture systems (RAS); however, little information is available regarding the ...

  1. Improvement of anaerobic digester performance by wastewater recirculation through an aerated membrane.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine wastewater from an anaerobic digester was recirculated through a silicone hose located in an external aeration chamber to determine its effect on wastewater malodorants and biogas composition. The silicone hose acted as a semipermeable membrane for the passage of small molecules. In the first...

  2. Researchers evaluate low-energy recirculating system for inland production of marine finfish juveniles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low-energy recirculating aquaculture system consists of nine separate modules which utilize the double drain fish culture tank paired to a moving bed biofilter. The nine fiberglass tanks are five feet in diameter and normal water depth is about three feet for a total tank volume of approximately...

  3. Solids removal from a coldwater recirculating system - comparison of swirl separator and radial-flow settlers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solids removal across two settling devices, i.e., a swirl separator and a radial-flow settler, and across a microscreen drum filter was evaluated in a fully recirculating system containing a single 150 m3 'Cornell-type' dual-drain tank during the production of food-size Arctic char and rainbow trout...

  4. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  5. Building America Case Study: Control Retrofits for Multifamily Domestic Hot Water Recirculation Systems, Brooklyn, New York

    SciTech Connect

    2016-12-01

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  6. CCR7 Controls Thymus Recirculation, but Not Production and Emigration, of Foxp3(+) T Cells.

    PubMed

    Cowan, Jennifer E; McCarthy, Nicholas I; Anderson, Graham

    2016-02-09

    Current models of Foxp3(+) regulatory T cell (Treg) development involve CCR7-mediated migration of thymocytes into the thymus medulla to enable essential interactions with medullary epithelium. However, increased Foxp3(+) thymic Treg numbers in Ccr7(-/-) mice challenge this view, and the role of CCR7 in Treg development, emigration, and/or recirculation is unknown. Here, we have examined CCR7 and Rag2pGFP levels during Treg development and generated Rag2pGFPCcr7(-/-) mice to study its impact on the intrathymic Treg pool. We reveal surprising developmental heterogeneity in thymocytes described as Treg precursors, showing that they contain recirculating CCR6(+)CCR7(-)Rag2pGFP(-) T cells. Although CCR7 defines bona fide Rag2GFP(+) Treg precursors, it is not required for Treg production and emigration. Rather, we show that lack of CCR7 renders the thymus more receptive to Treg thymus homing. Our study reveals a role for CCR7 in limiting Treg recirculation back to the thymus and enables separation of the mechanisms controlling Treg production and thymic recirculation.

  7. The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment.

    PubMed

    Meinel, F; Zietzschmann, F; Ruhl, A S; Sperlich, A; Jekel, M

    2016-03-15

    PAC adsorption is a widespread option for the removal of organic micropollutants (OMP) from secondary effluent. For an optimal exploitation of the adsorption capacity, PAC recirculation is nowadays a common practice, although the mechanistic interrelations of the complex recirculation process are not fully resolved. In this work, extensive multi-stage batch adsorption testing with repeated PAC and coagulant dosage was performed to evaluate the continuous-flow recirculation system. Partly loaded PAC showed a distinct amount of remaining capacity, as OMP and DOC removals considerably increased with each additional adsorption stage. At a low PAC dose of 10 mg PAC L(-1), removals of benzotriazole and carbamazepine were shown to rise from <40% in the first stage up to >80% in the 11th stage at 30 min adsorption time per stage. At a high PAC dose of 30 mg PAC L(-1), OMP and DOC removals were significantly higher and reached 98% (for benzotriazole and carbamazepine) after 11 stages. Coagulant dosage showed no influence on OMP removal, whereas a major part of DOC removal can be attributed to coagulation. Multi-stage adsorption is particularly beneficial for small PAC doses and significant PAC savings are feasible. A new model approach for predicting multi-stage OMP adsorption on the basis of a single-stage adsorption experiment was developed. It proved to predict OMP removals and PAC loadings accurately and thus contributes towards understanding the PAC recirculation process.

  8. Low-head recirculating aquaculture system for juvenile red drum production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service and the Center for Aquaculture and Stock Enhancement at Harbor Branch Oceanographic Institute-FAU (HBOI-FAU) are collaborating to evaluate low-head recirculating aquaculture system designs to intensively produce red drum juveniles as part of the Florida Fish an...

  9. Disinfection of water in recirculating aquaculture systems with peracetic acid (PAA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfection behaviour of peracetic acid (PAA) in recirculating aquaculture systems (RAS) was investigated. Peracetic acid is a strong oxidizing agent found in various concentrations in different products. Three Wofasteril PAA products (E400 (c), Lspecical; AC 150) were tested in vitro for the...

  10. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  11. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  12. Full-scale leachate-recirculating MSW landfill bioreactor assessments

    SciTech Connect

    Carson, D.A.

    1995-10-01

    The integrated waste management hierarchy philosophy continues to develop as a useful tool to solve solid waste issues in an environmentally responsible manner. Recent statistics indicate that approximately two thirds of municipal solid waste in the United States is disposed in landfills. Current landfill operational technique involves the preparation of a waste containment facility, the filling of the waste unit, installation of the final cover, and the maintenance of the unit. This method of operation has proven to be reasonably effective in waste disposal, effectively minimizing risk by collecting the liquid that percolates through the waste, called leachates, at the bottom of the landfill, and controlling landfill gas with collection systems. Concerns over the longevity of containment systems components present questions that cannot be answered without substantial performance data. Landfills, as currently operated, serve to entomb dry waste. Therefore, the facility must be maintained in perpetuity, consuming funds and ultimately driving up waste collection costs. This presentation will describe a new form of solid waste landfill operation, it is a technique that involves controlled natural processes to break down landfilled waste, and further minimize risk to human health and the environment. A landfill operated in an active manner will encourage and control natural decomposition of landfilled waste. This can be accomplished by collecting leachate, and reinjecting it into the landfilled waste mass. Keeping the waste mass moist will lead to a largely anaerobic system with the capacity to rapidly stabilize the landfilled waste mass via physical, chemical and biological methods. The system has proven the ability to breakdown portions of the waste mass, and to degrade toxic materials at the laboratory scale.

  13. Effect of self recirculation casing treatment on the performance of a turbocharger centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Gancedo, Matthieu

    Increase in emission regulations in the transport industry brings the need to have more efficient engines. A path followed by the automobile industry is to downsize the size of the internal combustion engine and increase the air density at the intake to keep the engine power when needed. Typically a centrifugal compressor is used to force the air into the engine, it can be powered from the engine shaft (superchargers) or extracting energy contained into the hot exhaust gases with a turbine (turbochargers). The flow range of the compressor needs to match the one of the engine. However compressors mass flow operating range is limited by choke on the high end and surge on the low end. In order to extend the operation at low mass flow rates, the use of passive devices for turbocharger centrifugal compressors was explored since the late 80's. Hence, casing treatments including flow recirculation from the inducer part of the compressor have been shown to move the surge limit to lower flows. Yet, the working mechanisms are still not well understood and thus, to optimize the design of this by-pass system, it is necessary to determine the nature of the changes induced by the device both on the dynamic stability of the pressure delivery and on the flow at the inlet. The compressor studied here features a self-recirculating casing treatment at the inlet. The recirculation passage could be blocked to carry a direct comparison between the cases with and without the flow feature. To grasp the effect on compressor stability, pressure measurements were taken in the different constituting elements of the compressor. The study of the mean pressure variations across the operating map showed that the tongue region is a limiting element. Dynamic pressure measurements revealed that the instabilities generated near the inducer when the recirculation is blocked increase the overall instability levels at the compressor outlet and propagating pressure waves starting at the tongue occurred

  14. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell

    SciTech Connect

    Tallec, G.; Bureau, C.; Peu, P.; Benoist, J.C.; Lemunier, M.; Budka, A.; Presse, D.; Bouchez, T.

    2009-07-15

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.

  15. Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility

    SciTech Connect

    Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

    2009-04-01

    Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

  16. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  17. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  18. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors.

    PubMed

    Thiault, Nicolas; Darrigues, Julie; Adoue, Véronique; Gros, Marine; Binet, Bénédicte; Perals, Corine; Leobon, Bertrand; Fazilleau, Nicolas; Joffre, Olivier P; Robey, Ellen A; van Meerwijk, Joost P M; Romagnoli, Paola

    2015-06-01

    Most T lymphocytes, including regulatory T cells (Treg cells), differentiate in the thymus. The age-dependent involution of this organ leads to decreasing production of T cells. Here we found that the output of new Treg cells from the thymus decreased substantially more than that of conventional T cells. Peripheral mouse and human Treg cells recirculated back to the thymus, where they constituted a large proportion of the pool of Treg cells and displayed an activated and differentiated phenotype. In the thymus, the recirculating cells exerted their regulatory function by inhibiting interleukin 2 (IL-2)-dependent de novo differentiation of Treg cells. Thus, Treg cell development is controlled by a negative feedback loop in which mature progeny cells return to the thymus and restrain development of precursors of Treg cells.

  19. Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation

    PubMed Central

    Boujo, E.; Gallaire, F.

    2014-01-01

    A variational technique is used to derive analytical expressions for the sensitivity of several geometric indicators of flow separation to steady actuation. Considering the boundary layer flow above a wall-mounted bump, the six following representative quantities are considered: the locations of the separation point and reattachment point connected by the separatrix, the separation angles at these stagnation points, the backflow area and the recirculation area. For each geometric quantity, linear sensitivity analysis allows us to identify regions which are the most sensitive to volume forcing and wall blowing/suction. Validations against full nonlinear Navier−Stokes calculations show excellent agreement for small-amplitude control for all considered indicators. With very resemblant sensitivity maps, the reattachment point, the backflow and recirculation areas are seen to be easily manipulated. By contrast, the upstream separation point and the separatrix angles are seen to remain extremely robust with respect to external steady actuation. PMID:25294968

  20. Removal of sodium chloride from human urine via batch recirculation electrodialysis at constant applied voltage

    NASA Technical Reports Server (NTRS)

    Gordils-Striker, Nilda E.; Colon, Guillermo

    2003-01-01

    The removal of sodium chloride (NaCl) from human urine using a six-compartment electrodialysis cell with batch recirculation mode of operation for use in advanced life support systems (ALSS) was studied. From the results obtained, batch recirculation at constant applied voltage yields high values (approximately 94% of NaCl removal. Based on the results, the initial rate of NaCl removal was correlated to a power function of the applied voltage: -r=2.0 x 10(-4)E(3.8). With impedance spectroscopy methods, it was also found that the anion membranes were more affected by fouling with an increase of the ohmic resistance of almost 11% compared with 7.4% for the cationic ones.

  1. Computational fluid dynamics analysis of external recirculation flow at updraft gasifier using ejector

    NASA Astrophysics Data System (ADS)

    Vidiana, Fajri; Surjosatyo, Adi; Nugroho, Yulianto Sulistyo

    2012-06-01

    Gasification process at updraft gasifier produces the amount of more tar than the other gasifier type. To reduce tar at updraft gasifier, it is carried out recirculation of pirolysis gas into combustion zone. Ejector is an equipment used to entrain the secondary fluid flow by moving momentum and energy from high velocity of primary flow (jet). Research carries out the simulation of isothermal 3D using Computational Fluid Dynamics (CFD) to obtain the maximum of recirculation flow at updraft gasifier using ejector. The result of simulation shows that change of nozzle diameter gives great influence at change of total flow for resirculation compared with the change of diameter and length of mixing area and nozzle exit position (NXP). The maximum of resirculation flow 81 lpm at nozzle diameter 0.75 cm.

  2. CFB combustor with internal solids recirculation -- Pilot testing and design applications

    SciTech Connect

    Belin, F.; Maryamchik, M.; Fuller, T.A.; Perna, M.A.

    1995-12-31

    The new generation of B and W`s CFB boilers with entirely internal recirculation of solids collected by the primary impact separator is uniquely compact and features a simple, low-maintenance solids collection system. Thorough testing of the new concept at the Cold CFB Model and the 2.5 MWth Pilot CFB combustor confirmed its effective performance equal to that of a CFB unit with external solids recirculation from the primary separator. While providing overall advantages of compactness and simplicity, the new design is especially valuable for repowering of the existing power plants where B and W`s CFB boiler fits into the plan area of PC-fired boilers.

  3. Thermal characterization of an AMTEC recirculating test cell. [Alkali Metal ThermoElectric Converter

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Bankston, C. P.

    1990-01-01

    An alkali metal thermoelectric converter (AMTEC) recirculating test cell has been operated in order to determine the magnitudes of the primary heat losses of the cell and the value of the emissivity of the condenser surface. The energy balance included radiation losses, conductive losses, and losses due to the flow of sodium into the cell. The radiative heat flux dominated the heat loss mechanism of the cell at open circuit, and the condenser emissivity was calculated to be about 0.1. It is shown that, if this emissivity can be reduced to 0.02, then parasitic losses in an AMTEC recirculating test cell operating near peak power would be less than 40 percent of the heat required by the cell. The condenser emissivity decreases with elapsed time, resulting in improved thermal performance of the cell.

  4. Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation.

    PubMed

    Boujo, E; Gallaire, F

    2014-10-08

    A variational technique is used to derive analytical expressions for the sensitivity of several geometric indicators of flow separation to steady actuation. Considering the boundary layer flow above a wall-mounted bump, the six following representative quantities are considered: the locations of the separation point and reattachment point connected by the separatrix, the separation angles at these stagnation points, the backflow area and the recirculation area. For each geometric quantity, linear sensitivity analysis allows us to identify regions which are the most sensitive to volume forcing and wall blowing/suction. Validations against full nonlinear Navier-Stokes calculations show excellent agreement for small-amplitude control for all considered indicators. With very resemblant sensitivity maps, the reattachment point, the backflow and recirculation areas are seen to be easily manipulated. By contrast, the upstream separation point and the separatrix angles are seen to remain extremely robust with respect to external steady actuation.

  5. Hexachlorobenzene uptake by fathead minnows and macroinvertebrates in recirculating sediment/water systems

    SciTech Connect

    Schuytema, G.S.; Krawczyk, D.F.; Griffis, W.L.; Nebeker, A.V.; Robideaux, M.L.

    1990-01-01

    Fathead minnow (Pimephales promelas), the worm, Lumbriculus variegatus, and the amphipods Hyalella azteca and Gammarus lacustris were exposed to hexachlorobenzene (HCB) in water with and without a bed of HCB-spiked sediment. Water HCB concentrations were maintained by recirculation through HCB-packed columns. Recirculating HCB-bound particulates and possibly eroded HCB particulates were an added source of HCB in addition to the sediment bed. Significant bioaccumulation of HCB in animal tissues was observed in water-only and water-sediment exposures. The presence of the HCB-spiked sediment did not result in a significant increase in the uptake of HCB by the organisms, but there was a substantial increase in sediment HCB levels over time. Higher tissue HCB levels in aquaria without sediment suggest that the sediment was a more efficient sink for HCB than the organisms.

  6. Effect of enhanced leachate recirculated (ELR) landfill operation and gas extraction on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Samir, Sonia

    The bioreactor/ enhanced leachate recirculated (ELR) landfill operation with the addition of moisture/ leachate to the landfill, accelerate the process of landfill waste decomposition; and increase the generation of LFG over a shorter period of time. Since emissions from the landfills are directly related to the gas generation, the increase in gas generation might also increase the emission from the landfill. On the contrary, the presence of gas extraction is suggested to mitigate the fugitive emissions from the landfills. Therefore, the motivation of the current study was to evaluate the effect of ELR operation as well as the gas extraction on the greenhouse gas emissions from the landfill. The current study was conducted in the City of Denton Landfill, Texas. Methane emission was investigated using a portable FID and static flux chamber technique from the landfill surface. Emission was measured from an ELR operated cell (cell 2) as well as a conventional cell (cell 0) in the City of Denton Landfill. Methane emission for cell 2 varied from 9544.3 ppm to 0 ppm while for cell 0, it varied from 0 ppm to 47 ppm. High spatial variations were observed during monitoring from both cells 0 and cell 2 which could be recognized as the variation of gas generation below the cover soil. The comparison between emissions from the slope and surface of the landfill showed that more methane emission occurred from the slopes than the top surface. In addition, the average landfill emission showed an increasing trend with increase in temperature and decreasing trend with increasing precipitation. The effect of ELR operation near the recirculation pipes showed a lag period between the recirculation and the maximum emission near the pipe. The emission near the pipe decreased after 1 day of recirculation and after the initial decrease, the emission started to increase and continued to increase up to 7 days after the recirculation. However, approximately after 10 days of recirculation, the

  7. Design and performance characteristics of a low-head recirculating aquaculture tank system for low salinity finfish production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment components of a recirculating aquaculture system (RAS) consist mainly of: solid removal devices, biofiltration, aeration, degassing units, and water distribution. For each component, multiple options are available and the selection is based on system volume, system hydrodynamics, fis...

  8. Evaluation of leachate recirculation on nitrous oxide production in the Likang Landfill, China.

    PubMed

    Lee, Chun Man; Lin, Xue Rui; Lan, Chong Yu; Lo, Samuel Chun Lap; Chan, Gilbert Yuk Sing

    2002-01-01

    Landfill leachate recirculation is efficient in reducing the leachate quantity handled by a leachate treatment plant. However, after land application of leachate, nitrification and denitrification of the ammoniacal N becomes possible and the greenhouse gas nitrous oxide (N2O) is produced. Lack of information on the effects of leachate recirculation on N2O production led to a field study being conducted in the Likang Landfill (Guangzhou, China) where leachate recirculation had been practiced for 8 yr. Monthly productions and fluxes of N2O from leachate and soil were studied from June to November 2000. Environmental and chemical factors regulating N2O production were also accessed. An impermeable top liner was not used at this site; municipal solid waste was simply covered by inert soil and compacted by bulldozers. A high N2O emission rate (113 mg m-2 h-1) was detected from a leachate pond purposely formed on topsoil within the landfill boundary after leachate irrigation. A high N2O level (1.09 micrograms L-1) was detected in a gas sample emitted from topsoil 1 m from the leachate pond. Nitrous oxide production from denitrification in leachate-contaminated soil was at least 20 times higher than that from nitrification based on laboratory incubation studies. The N2O levels emitted from leachate ponds were compared with figures reported for different ecosystems and showed that the results of the present study were 68.7 to 88.6 times higher. Leachate recirculation can be a cost-effective operation in reducing the volume of leachate to be treated in landfill. However, to reduce N2O flux, leachate should be applied to underground soil rather than being irrigated and allowed to flow on topsoil.

  9. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production.

    PubMed

    Frank, R R; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-09-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). Cumulative biogas production of the batch tests indicated that there was little difference between the leachate and control test conditions, producing on average 0.043m(3)biogaskg(-1) waste. However the addition of cellulase at 15×10(6)Utonne(-1) waste doubled the biogas production (0.074m(3)biogaskg(-1) waste). Similar trend was observed with the bioreactors. Cellulase addition also resulted in the highest COD reduction in both the waste and the leachate samples (47% and 42% COD reduction, respectively). In both cases, the quantity of biogas produced was closer to the lower value of theoretical and data-based biogas prediction indicators (0.05-0.4m(3)biogaskg(-1) waste). This was likely due to a high concentration of heavy metals present in the leachate, in particular Cr and Mn, which are known to be toxic to methanogens. The cost-benefit analysis (CBA) based on the settings of the study (cellulase concentration of 15×10(6)Utonne(-1) waste) showed that leachate bioaugmentation using cellulase is economically viable, with a net benefit of approximately €12.1million on a 5Mt mixed waste landfill.

  10. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    DOEpatents

    Eissenberg, David M.; Liu, Yin-An

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  11. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  12. Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging.

    PubMed

    Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik

    2016-09-01

    Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non

  13. Generation of Flat Optical Frequency Comb based on Mach-Zehnder Modulator and Recirculating Frequency Shifter Loop

    NASA Astrophysics Data System (ADS)

    Wu, Shibao; Li, Yulong; Fei, Yue; Hu, Faze

    2014-06-01

    We propose a novel scheme to generate optical frequency comb by using Mach-Zehnder modulator and recirculating frequency shifter loop based on IQ modulator driven by radio frequency clock signals. A system of 4 flat and stable comb lines generation based on Mach-Zehnder modulator is set as the seed light source of the recirculating loop. Through theorical analysis and simulation it is shown that the proposed theoretical model is proved in good agreement with simulation results.

  14. Bacterial community structure in cooling water and biofilm in an industrial recirculating cooling water system.

    PubMed

    Wang, Jinmei; Liu, Min; Xiao, Huijie; Wu, Wei; Xie, Meijuan; Sun, Mengjia; Zhu, Chenglin; Li, Pengfu

    2013-01-01

    Microbial fouling is a serious problem in open recirculating cooling water systems. The bacterial communities that cause it have not been fully understood. In this study, we analyzed the community structure of free-living bacteria and particle-attached bacteria in cooling water, and bacteria in biofilm collected from the wall of the water reservoir in an industrial recirculating cooling water system by construction of a 16S rRNA gene clone library. Based on amplified ribosomal DNA restriction analysis, clones of all three libraries were clustered into 45 operational taxonomic units (OTUs). Thirteen OTUs displaying 91-96% sequence similarity to a type strain might be novel bacterial species. Noted differences in community structure were observed among the three libraries. The relative species richness of the free-living bacteria in cooling water was much lower than that of particle-attached bacteria and bacteria in biofilm. The majority of the free-living bacterial community (99.0%) was Betaproteobacteria. The predominant bacteria in the particle-attached bacterial community were Alphaproteobacteria (20.5%), Betaproteobacteria (27.8%) and Planctomycetes (42.0%), while those in the biofilm bacterial community were Alphaproteobacteria (47.9%), Betaproteobacteria (11.7%), Acidobacteria (13.1%) and Gemmatimonadetes (11.3%). To control microbial fouling in industrial recirculating cooling water systems, additional physiological and ecological studies of these species will be essential.

  15. Bio-desulfurization of biogas using acidic biotrickling filter with dissolved oxygen in step feed recirculation.

    PubMed

    Chaiprapat, Sumate; Charnnok, Boonya; Kantachote, Duangporn; Sung, Shihwu

    2015-03-01

    Triple stage and single stage biotrickling filters (T-BTF and S-BTF) were operated with oxygenated liquid recirculation to enhance bio-desulfurization of biogas. Empty bed retention time (EBRT 100-180 s) and liquid recirculation velocity (q 2.4-7.1 m/h) were applied. H2S removal and sulfuric acid recovery increased with higher EBRT and q. But the highest q at 7.1 m/h induced large amount of liquid through the media, causing a reduction in bed porosity in S-BTF and H2S removal. Equivalent performance of S-BTF and T-BTF was obtained under the lowest loading of 165 gH2S/m(3)/h. In the subsequent continuous operation test, it was found that T-BTF could maintain higher H2S elimination capacity and removal efficiency at 175.6±41.6 gH2S/m(3)/h and 89.0±6.8% versus S-BTF at 159.9±42.8 gH2S/m(3)/h and 80.1±10.2%, respectively. Finally, the relationship between outlet concentration and bed height was modeled. Step feeding of oxygenated liquid recirculation in multiple stages clearly demonstrated an advantage for sulfide oxidation.

  16. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  17. Upwelling-triggered near-geostrophic recirculation in an equatorward facing embayment

    NASA Astrophysics Data System (ADS)

    Moraga-Opazo, Julio; Valle-Levinson, Arnoldo; Ramos, Marcel; Pizarro-Koch, Matías

    2011-12-01

    Underway current velocity profiles were combined with hydrographic profiles at the entrance to Tongoy Bay, an equatorward facing bay in north-central Chile, with the objective of determining its exchange hydrodynamics. To the west, Tongoy Bay is bounded by Lengua de Vaca Point, a ˜6 km-long northward protruding peninsula. Observations were obtained during three surveys (April 2005, December 2005, May 2009) along cross-bay transects for at least one full day. During the surveys, winds were upwelling-favorable and displayed diurnal variations. Non-tidal (tidally averaged) flows showed a consistent clockwise or southern hemisphere cyclonic, recirculation during the three surveys. This recirculation was likely part of a cyclonic gyre (10-20 km in diameter), not entirely resolved by the surveys, and formed by flow separation off Lengua de Vaca Point. Estimates of the baroclinic pressure gradient, combined with analytical solutions of density-driven and wind-driven flows, indicated that the recirculation in Tongoy Bay was nearly in geostrophic balance. An ageostrophic contribution to the dynamics was related to frictional effects derived from local upwelling-favorable winds. A linear superposition of the analytically derived density-driven and wind-driven exchange resulted in a flow pattern that resembled the observed net exchange flows at the bay mouth.

  18. The recirculation of the intermediate western boundary current at the Tubarão Bight - Brazil

    NASA Astrophysics Data System (ADS)

    Costa, Vladimir S.; Mill, Guilherme N.; Gabioux, Mariela; Grossmann-Matheson, Guisela S.; Paiva, Afonso M.

    2017-02-01

    Lagrangian floats and current meter measurements from two moored arrays are analyzed, in combination with altimetry data, in order to investigate the recirculation of Antarctic Intermediate Waters (AAIW), and of the Intermediate Western Boundary Current (IWBC) at the Tubarão Bight, in the vicinity of the Vitória-Trindade Ridge (VTR), Brazil. Results from a high-resolution numerical simulation provide a complementary view of the flow at intermediate and surface levels. The data depict a topographically-induced cyclonic recirculation at intermediate levels, and five Argo floats are successively trapped inside the bight for two-and-a-half years, performing a total of 10 closed clockwise gyres during this period of time. In situ measurements at the western side of the bight show an intense alongshore flow at intermediate levels, with averaged velocities at 800 m of 30 cm/s, and peak velocities exceeding 50 cm/s, magnitudes comparable to the Brazil Current (BC) flow at surface levels. The recirculation extends from at least 1000 m deep up to 370 m, reaching sometimes depths as shallow as 150 m, but is mostly uncoupled from the surface flow during the one-and-a-half year long current meter record. Three different flow patterns are observed, and simulated, at surface levels inside the bight during the time the recirculation is well established at intermediate levels: a shallow cyclonic circulation, somewhat akin to the Vitória Eddy; a recurrent anticyclonic flow that encompasses the entire bight; and a southwestward-oriented circulation, associated with the BC being reorganized in a coherent flow after negotiating its way through the VTR channels. A significant portion (about 50% according to the model) of the inflow of intermediate waters recirculates, enhancing the flow of the IWBC within the bight, and increasing the age of AAIW that will eventually cross the VTR on its way to lower latitudes. Although the data are not conclusive about a preferential pathway of the

  19. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find…

  20. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  1. The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C.

    PubMed

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Li, Weiguang; Buisman, Cees J N

    2012-01-01

    The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH₄-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system.

  2. XLR 500i: recirculating ring ArF light source for immersion lithography

    NASA Astrophysics Data System (ADS)

    Brown, D. J. W.; O'Keeffe, P.; Fleurov, V. B.; Rokitski, R.; Bergstedt, R.; Fomenkov, I. V.; O'Brien, K.; Farrar, N. R.; Partlo, W. N.

    2007-03-01

    As Argon Fluoride (ArF) lithography moves into high volume production, ArF light sources need to meet performance requirements beyond the traditional drivers of power and bandwidth. The first key requirement is a continuous decrease in Cost of Ownership (CoO) where the industry requirement is for reduction in ArF CoO in line with the historical cost reduction demonstrated for Krypton Fluoride (KrF) light sources. A second requirement is improved light source performance stability. As CD control requirements shrink, following the ITRS roadmap, all process parameters which affect CD variation need tighter control. In the case of the light source, these include improved control of bandwidth, pulse energy stability and wavelength. In particular, CD sensitivity to exposure dose has become a serious challenge for device processing and improvements to laser pulse energy stability can contribute to significantly better dose control. To meet these performance challenges Cymer has designed a new dual chamber laser architecture. The Recirculating Ring design requires 10X less energy from the Master Oscillator (MO). This new configuration enables the MO chamber lifetime to reach that of the power amplifier chamber at around 30Bp. In addition, other optical modules in the system such as the line narrowing module experience lower light intensity, ensuring even longer optics lifetime. Furthermore, the Recirculating Ring configuration operates in much stronger saturation. MO energy instabilities are reduced by a factor of 9X when passed through the Ring. The output energy stability exhibits the characteristics of a fully saturated amplifier and pulse energy stability improvement of 1.5X is realized. This performance enables higher throughput scanner operation with enhanced dose control. The Recirculating Ring technology will be introduced on the XLR 500i, Cymer's fifth-generation dual chamber-based light source built on the production-proven XLA platform. This paper will describe

  3. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan

    2003-01-01

    A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD5, 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO2-N, 90%) and nitrate nitrogen (NO3-N, 68%). Phosphate (PO4-P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO3-N in the culture tank water in RAS were significantly (Precirculating system.

  4. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah A.; Cook, Peter G.; Dogramaci, Shawan; Kipfer, Rolf

    2015-06-01

    Groundwater recirculation occurs when groundwater is pumped from an aquifer onto the land surface, and a portion of that water subsequently infiltrates back to the aquifer. In environments where groundwater is recirculated, differentiation between various sources of recharge (e.g. natural rainfall recharge vs. recirculated water) can be difficult. Groundwater age indicators, in particular transient trace gases, are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this setting. This is because, unlike stable isotopes or chloride, they undergo a process of equilibration with the atmosphere, and historical atmospheric concentrations are known. In this paper, groundwater age indicators (14C and CFC-12) were used as tracers of recharge by surplus mine water that is discharged to streams. Ternary mixing ratios were calculated based on 14C and CFC-12 concentrations measured along three transects of piezometers and monitoring wells perpendicular to the creeks, and from dewatering wells. Uncertainty in calculated mixing ratios was estimated using a Monte Carlo approach. Ternary mixing ratios in dewatering wells suggest that recharge by mine water accounted for between 10% and 87% of water currently abstracted by dewatering wells. The calculated mixing ratios suggest that recharge by mine water extends to a distance of more than 550 m from the creeks. These results are supported by seepage flux estimates based on the water and chloride balance along the creeks, which suggest that 85-90% of mine water discharged to the creeks recharges the aquifer and recharge by mine water extends between 110 and 730 m from the creeks. Mixing calculations based on gaseous groundwater age indicators could also be used to partition recharge associated with agricultural irrigation or artificial wetland supplementation.

  5. Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Gratier, P.; Bordé, P.; Selsis, F.

    2016-03-01

    Context. Basic atmospheric properties, such as albedo and heat redistribution between day- and nightsides, have been inferred for a number of planets using observations of secondary eclipses and thermal phase curves. Optical phase curves have not yet been used to constrain these atmospheric properties consistently. Aims: We model previously published phase curves of CoRoT-1b, TrES-2b, and HAT-P-7b, and infer albedos and recirculation efficiencies. These are then compared to previous estimates based on secondary eclipse data. Methods: We use a physically consistent model to construct optical phase curves. This model takes Lambertian reflection, thermal emission, ellipsoidal variations, and Doppler boosting, into account. Results: CoRoT-1b shows a non-negligible scattering albedo (0.11 < AS < 0.3 at 95% confidence) as well as small day-night temperature contrasts, which are indicative of moderate to high re-distribution of energy between dayside and nightside. These values are contrary to previous secondary eclipse and phase curve analyses. In the case of HAT-P-7b, model results suggest a relatively high scattering albedo (AS ≈ 0.3). This confirms previous phase curve analysis; however, it is in slight contradiction to values inferred from secondary eclipse data. For TrES-2b, both approaches yield very similar estimates of albedo and heat recirculation. Discrepancies between recirculation and albedo values as inferred from secondary eclipse and optical phase curve analyses might be interpreted as a hint that optical and IR observations probe different atmospheric layers, hence temperatures.

  6. An Rf-gun-driven recirculated linac as injector and FEL driver.

    SciTech Connect

    Andersson, A.; Biedron, S.; Eriksson, M.; Freund, H.; Werin, S.

    1999-08-23

    A new pre-injector for the MAX-Laboratory is under design and construction. A thermionic rf gun, designed to operate at medium currents with low back bombardment power, is under construction. The gun will, via a magnetic compressor and energy filter, feed a recirculated linac consisting of two SLED-equipped structures giving 125 MeV each. The first will be delivered in 1999. The system is aimed as a pre-injector for the existing storage rings at MAX-Lab, but will also open up possibilities for a SASE FEL in the UV reaching above 100 MW below 100 run.

  7. Involvement of Sialic Acid on Endothelial Cells in Organ-Specific Lymphocyte Recirculation

    NASA Astrophysics Data System (ADS)

    Rosen, Steven D.; Singer, Mark S.; Yednock, Ted A.; Stoolman, Lloyd M.

    1985-05-01

    Mouse lymphocytes incubated on cryostat-cut sections of lymphoid organs (lymph nodes and Peyer's patches) specifically adhere to the endothelium of high endothelial venules (HEV), the specialized blood vessels to which recirculating lymphocytes attach as they migrate from the blood into the parenchyma of the lymphoid organs. Treatment of sections with sialidase eliminated the binding of lymphocytes to peripheral lymph node HEV, had no effect on binding to Peyer's patch HEV, and had an intermediate effect on mesenteric lymph node HEV. These results suggest that sialic acid on endothelial cells may be an organ-specific recognition determinant for lymphocyte attachment.

  8. STS-35 Columbia, OV-102, aft fuselage LRU hydrogen recirculation pump

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Closeup view shows the aft fuselage line replaceable unit (LRU) hydrogen recirculation pump from Columbia, Orbiter Vehicle (OV) 102. The pump is being tested at JSC's Thermochemical Test Area (TTA) Support Laboratory Bldg 350. JSC technicians ran the pump package through the battery of leak tests. Preliminary indications showed only minor, acceptable leakage from the package and Kennedy Space Center (KSC) technicians have replaced a crushed seal on the prevalve of the main propulsion system they believe may have caused the STS-35 hydrogen leak.

  9. Three-dimensional predictions of reactive turbulent recirculating flow of a cylindrical MHD type combustor

    NASA Astrophysics Data System (ADS)

    Lee, J. J.

    1990-01-01

    A computational procedure is employed to predict the axisymmetric reactive turbulent recirculating flow-field within a cylindrical MHD combustor. The procedure used in the analysis is an extended version of the three-dimensional Combustor Performance Program developed at the Garrett Turbine Engine Company. The separated flow created by four liquid fuel nozzles and 148 oxidizer holes passing through an injector plate is examined. Numerical results for flow, heat/mass transfer and combustion are presented to describe these complex three-dimensional interactions. The detailed analysis achieved by the numerical model is useful for evaluating combustor performance and in the interpretation of laboratory test data.

  10. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors.

    PubMed

    Morello, Luca; Cossu, Raffaello; Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina

    2016-10-01

    Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste

  11. Flowing recirculated-water system for inducing laboratory spawning of sea lampreys

    USGS Publications Warehouse

    Fredricks, Kim T.; Seelye, James G.

    1995-01-01

    We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 +/- 2 degrees C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3-6 cm in diameter) to build nests, and a water velocity of 0.2-0.3 m/s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.

  12. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.

  13. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation

    NASA Astrophysics Data System (ADS)

    Peters, Roland; Deja, Robert; Engelbracht, Maximilian; Frank, Matthias; Nguyen, Van Nhu; Blum, Ludger; Stolten, Detlef

    2016-10-01

    This study analyzes different hydrogen-fueled solid oxide fuel cell (SOFC) system layouts. It begins with a simple system layout without any anode off-gas recirculation, continues with a configuration equipped with off-gas recirculation, including steam condensation and then considers a layout with a dead-end anode off-gas loop. Operational parameters such as stack fuel utilization, as well as the recirculation rate, are modified, with the aim of achieving the highest efficiency values. Drawing on experiments and the accumulated experience of the SOFC group at the Forschungszentrum Jülich, a set of operational parameters were defined and applied to the simulations. It was found that anode off-gas recirculation, including steam condensation, improves electrical efficiency by up to 11.9 percentage-points compared to a layout without recirculation of the same stack fuel utilization. A system layout with a dead-end anode off-gas loop was also found to be capable of reaching electrical efficiencies of more than 61%.

  14. Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) treating hypersaline composite chemical wastewater.

    PubMed

    Mohan, S Venkata; Lalit Babu, V; Vijaya Bhaskar, Y; Sarma, P N

    2007-05-01

    Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) was studied in the process of treating hypersaline (total dissolved inorganic solids (TDIS) approximately 26 g/l) and low biodegradable (BOD/COD approximately 0.3) composite chemical wastewater. Significant enhancement in the substrate removal efficiency and biogas yield was observed after introducing the recirculation to the system. Maximum efficiency (COD removal efficiency - 51%; SDR - 3.14 kg COD/cum-day) was observed at recirculation to feed (R/F) ratio of 2 (OLR - 6.15 kg C OD/cum-day; HLR - 2.30 cum (liquid)/cum day; UFV(A) - 0.023 m/h). Subsequent increase of R/F to 3 (OLR - 6.15 kg COD/cum-day; HLR - 3.07cum (liquid)/cum-day; UFV(A) - 0.035 m/h) resulted in reduction in COD removal efficiency (32%; SDR - 1.97 kg COD/cum-day). The enhanced performance of the system due to the introduction of recirculation was attributed to the improvement in the mass transfer between the substrate present in the bulk liquid and the attached biofilm. The hydrodynamic behavior due to recirculation mode of operation reduced the concentration gradient (substrate inhibition) of substrate and reaction by-products (VFA) resulting in mixed flow conditions.

  15. Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Tian, Bao-Hu; Su, Yao; Lu, Yu-Lan

    2015-12-01

    With comparison of a traditional landfill, a joint recirculation of concentrated leachate and leachate to landfills with or without a microaerobic reactor for leachate treatment was investigated in this study. The results showed that the joint recirculation of concentrated leachate and leachate with a microaerobic reactor for leachate treatment could not only utilize the microaerobic reactor to buffer the fluctuation of quality and quantity of leachate during landfill stabilization, but also reduce the inhibitory effect of acidic pH and high concentrations of ammonium in recycled liquid on microorganisms and accelerate the degradation of landfilled waste. After 390 days of operation, the discharge of COD and total nitrogen (TN) from the landfill with leachate pretreatment by a microaerobic reactor was 7.4 and 0.9 g, respectively, which accounted for 0.7% and 2.6% of COD, 1.9% and 7.5% of the TN discharge from the landfills without recirculation and directly recirculated with leachate and concentrated leachate, respectively. The degradation of the organic matter and biodegradable matter (BDM) in the landfill reactors could fit well with the first-order kinetics. The highest degradation of the organic matter and BDM was observed in the joint recirculation system with a microaerobic reactor for leachate treatment with the degradation constant of the first-order kinetics of 0.001 and 0.002.

  16. A Sketch of the Taiwan Zebrafish Core Facility.

    PubMed

    You, May-Su; Jiang, Yun-Jin; Yuh, Chiou-Hwa; Wang, Chien-Ming; Tang, Chih-Hao; Chuang, Yung-Jen; Lin, Bo-Hung; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2016-07-01

    In the past three decades, the number of zebrafish laboratories has significantly increased in Taiwan. The Taiwan Zebrafish Core Facility (TZCF), a government-funded core facility, was launched to serve this growing community. The Core Facility was built on two sites, one located at the National Health Research Institutes (NHRI, called Taiwan Zebrafish Core Facility at NHRI or TZeNH) and the other is located at the Academia Sinica (Taiwan Zebrafish Core Facility at AS a.k.a. TZCAS). The total surface area of the TZCF is about 180 m(2) encompassing 2880 fish tanks. Each site has a separate quarantine room and centralized water recirculating systems, monitoring key water parameters. To prevent diseases, three main strategies have been implemented: (1) imported fish must be quarantined; (2) only bleached embryos are introduced into the main facilities; and (3) working practices were implemented to minimize pathogen transfer between stocks and facilities. Currently, there is no health program in place; however, a fourth measure for the health program, specific regular pathogen tests, is being planned. In March 2015, the TZCF at NHRI has been AAALAC accredited. It is our goal to ensure that we provide "disease-free" fish and embryos to the Taiwanese research community.

  17. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  18. Anode gas recirculation for improving the performance and cost of a 5-kW solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Torii, Ryohei; Tachikawa, Yuya; Sasaki, Kazunari; Ito, Kohei

    2016-09-01

    Solid oxide fuel cells (SOFCs) have the potential to efficiently convert chemical energy into electricity and heat and are expected to be implemented in stationary combined heat and power (CHP) systems. This paper presents the heat balance analysis for a 5-kW medium-sized integrated SOFC system and the evaluation of the effect of anode gas recirculation on the system performance. The risk of carbon deposition on an SOFC anode due to anode gas recirculation is also assessed using the C-H-O diagram obtained from thermodynamic equilibrium calculations. These results suggest that a higher recirculation ratio increases net fuel utilization and improves the electrical efficiency of the SOFC system. Furthermore, cost simulation of the SOFC system and comparison with the cost of electricity supply by a power grid indicates that the capital cost is sufficiently low to popularize the SOFC system in terms of the total cost over one decade.

  19. Volatile organic compound and particulate emission studies of AF (Air Force) paint-booth facilities. Phase 1. Final report, February-December 1987

    SciTech Connect

    Ayer, J.; Wolbach, D.

    1988-07-01

    This study presents the results of volatile organic compound (VOC) and particulate emission surveys performed at three Air Force painting facilities. The three facilities -- one in McClellan AFB buildings 655 and two at Travis AFB in buildings 550 and 1014 -- did not meet local VOC emission standards. The possibility of reducing these emissions with recirculation modifications and various VOC reduction and control strategies is discussed. Although VOC emissions from paint spray booths can be controlled by add-on control systems, control is expensive for present air flow rates. The use of air recirculation within the spray booth can reduce the cost of VOC emission controls by reducing the quantity of air that requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the systems, various criteria such as paint booth VOC concentrations and health and safety standards were considered. Add-on VOC emission-control systems that can be used in conjunction with the recirculation system are evaluated. The devices of interest are a solvent incineration system and an activated-carbon adsorption bed. The VOC removal efficiency, initial capital investment and operating costs for both of these technologies are discussed.

  20. Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang

    2017-01-01

    The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.

  1. Tritium Superpermeability: Experimental Investigation and Simulation of Tritium Recirculation in 'Prometheus' Setup

    SciTech Connect

    Musyaev, R.K.; Lebedev, B.S.; Grishechkin, S.K.; Yukhimchuk, A.A.; Busnyuk, A.A; Notkin, M.E.; Samartsev, A.A.; Livshits, A.I.

    2005-07-15

    The superpermeability phenomenon was suggested to use in fusion machines to separate the fuel mixture from helium ashes, to arrange in-vessel fuel recirculation contours and effective evacuation of fuel mixture out of machine exhaust. To develop this technology and to simulate tritium recirculation in RFNC-VNIIEF at the 'Prometheus' setup the experiments on superpermeation of hydrogen isotopes through metal membrane were realized.The results of experiments on superpermeation of hydrogen isotopes through cylindrical niobium membrane are presented. As the experiment has shown, membrane pumping rate is inversely proportional to square root of isotope mass and amount to 2.5 l/cm{sup 2}s for protium, 1.8 l/cm{sup 2}s for deuterium and 1.5 l/cm{sup 2}s for tritium. The possibility of effective pumping, separation of hydrogen isotopes from helium and residual gas, compression and recuperation of hydrogen isotopes by means of superpermeable membrane was demonstrated. It follows from results that the separation of D/T from He with employment of the techniques of superpermeable membranes might reduce the total amount of tritium in fuel cycle and substantially enhance the resource of cryogenic pumps evacuating helium.

  2. Recirculation zones induce non-Fickian transport in three-dimensional periodic porous media

    NASA Astrophysics Data System (ADS)

    Crevacore, Eleonora; Tosco, Tiziana; Sethi, Rajandrea; Boccardo, Gianluca; Marchisio, Daniele L.

    2016-11-01

    In this work, the influence of pore space geometry on solute transport in porous media is investigated performing computational fluid dynamics pore-scale simulations of fluid flow and solute transport. The three-dimensional periodic domains are obtained from three different pore structure configurations, namely, face-centered-cubic (fcc), body-centered-cubic (bcc), and sphere-in-cube (sic) arrangements of spherical grains. Although transport simulations are performed with media having the same grain size and the same porosity (in fcc and bcc configurations), the resulting breakthrough curves present noteworthy differences, such as enhanced tailing. The cause of such differences is ascribed to the presence of recirculation zones, even at low Reynolds numbers. Various methods to readily identify recirculation zones and quantify their magnitude using pore-scale data are proposed. The information gained from this analysis is then used to define macroscale models able to provide an appropriate description of the observed anomalous transport. A mass transfer model is applied to estimate relevant macroscale parameters (hydrodynamic dispersion above all) and their spatial variation in the medium; a functional relation describing the spatial variation of such macroscale parameters is then proposed.

  3. Nitrification in brackish water recirculating aquaculture system integrated with activated packed bed bioreactor.

    PubMed

    Rejish Kumar, V J; Joseph, Valsamma; Philip, Rosamma; Bright Singh, I S

    2010-01-01

    Recirculation aquaculture systems (RAS) depend on nitrifying biofilters for the maintenance of water quality, increased biosecurity and environmental sustainability. To satisfy these requirements a packed bed bioreactor (PBBR) activated with indigenous nitrifying bacterial consortia has been developed and commercialized for operation under different salinities for instant nitrification in shrimp and prawn hatchery systems. In the present study the nitrification efficiency of the bioreactor was tested in a laboratory level recirculating aquaculture system for the rearing of Penaeus monodon for a period of two months under higher feeding rates and no water exchange. Rapid setting up of nitrification was observed during the operation, as the volumetric total ammonia nitrogen removal rates (VTR) increased with total ammonia nitrogen (TAN) production in the system. The average Volumetric TAN Removal Rates (VTR) at the feeding rate of 160 g/day from 54-60th days of culture was 0.1533+/-0.0045 kg TAN/m(3)/day. The regression between VTR and TAN explained 86% variability in VTR (P<0.001). The laboratory level RAS demonstrated here showed high performance both in terms of shrimp biomass yield and nitrification and environmental quality maintenance. Fluorescent in-situ Hybridization analysis of the reactor biofilm ensured the presence of autotrophic nitrifier groups such as Nitrosococcus mobilis lineage, Nitrobacter spp and phylum Nitrospira, the constituent members present in the original consortia used for activating the reactors. This showed the stability of the consortia on long term operation.

  4. Developments of Optical Resonators and Optical Recirculators for Compton X/γ Ray Machines

    NASA Astrophysics Data System (ADS)

    Martens, A.; , Mightylaser, Thomx Collaboration; Eurogammas Association

    2015-10-01

    Optical resonators and optical recirculators are key elements of Compton X/γ ray machines. With regard to their use in laser physics or in time-frequency metrology, these devices have to obey severe constraints when implemented in the vaccum of an electron accelerator. Our group has developed both types of devices. In this proceedings an original recirculator design, that was developed within the European proposal to the ELI-NP γ ray source call for tender, is described. This is an aberration free device which allows reciculating 32 times a short and high intensity laser pulse. It also allows synchronizing each of the 32 passes with the electron RF cavities within 100 fs. The second topic of these proceedings is a description of our R & D on optical resonators dedicated to laser-electron interactions. We have locked two different picosecond laser oscillators to the highest cavity finesse F=30000 ever reached in pulsed regime. We also designed and build a new kind of non-planar cavity, tetrahedron shape, providing circularly polarized eigen modes. This cavity was installed in the ATF accelerator of KEK and successfully used to produce a high gamma ray flux. Thanks to an original fibre amplifier, we succeed in stacking 100 kW of average power inside the cavity.

  5. Viability of the vascularly perfused, recirculating rat intestine and intestine-liver preparations

    SciTech Connect

    Hirayama, H.; Xu, X.; Pang, K.S. )

    1989-08-01

    Function and stability of vascularly perfused, recirculating in situ rat intestine (I) and intestine-liver (IL) preparations were evaluated in fasted and nonfasted rats because these techniques may be readily applied in drug metabolism studies. The rat intestine was perfused with blood medium (7.5 ml/min) via the superior mesenteric artery, with the venous outflow draining into the portal vein, which, together with hepatic arterial flow (2.5 ml/min), constituted the total blood flow (10 ml/min) to the liver. Maintenance of intestinal membrane integrity was observed. Rapid ({sup 14}C)glucose absorption against a concentration gradient and a lack of ({sup 3}H)-polyethylene glycol 4000 (PEG 4000, less than 4%) and Evans blue absorption by the recirculating I and IL preparations resulted after bolus injections of these markers into the pyloric end of the duodenum. Other indexes that revealed stable intestinal and liver functions were the following: preservation of reservoir perfusate volume, constancy in perfusion pressure, bile flow, and hemoglobin concentrations, evidence of intestinal glucose utilization and liver glucose production, and a lack of significant leakage of serum glutamic oxalic transaminase. The intestine and liver consumed oxygen at relatively constant rates, but the consumption rates for the fasted tissues (I or L) were significantly higher than those for nonfasted tissues. These results indicate that the vascularly perfused I and IL preparations were maintained in a viable and stable state for a 2-h perfusion period.

  6. Convection-Enhanced Biopatterning with Recirculation of Hydrodynamically Confined Nanoliter Volumes of Reagents.

    PubMed

    Autebert, Julien; Cors, Julien F; Taylor, David P; Kaigala, Govind V

    2016-03-15

    We present a new methodology for efficient and high-quality patterning of biological reagents for surface-based biological assays. The method relies on hydrodynamically confined nanoliter volumes of reagents to interact with the substrate at the micrometer-length scale. We study the interplay between diffusion, advection, and surface chemistry and present the design of a noncontact scanning microfluidic device to efficiently present reagents on surfaces. By leveraging convective flows, recirculation, and mixing of a processing liquid, this device overcomes limitations of existing biopatterning approaches, such as passive diffusion of analytes, uncontrolled wetting, and drying artifacts. We demonstrate the deposition of analytes, showing a 2- to 5-fold increase in deposition rate together with a 10-fold reduction in analyte consumption while ensuring less than 6% variation in pattern homogeneity on a standard biological substrate. In addition, we demonstrate the recirculation of a processing liquid using a microfluidic probe (MFP) in the context of a surface assay for (i) probing 12 independent areas with a single microliter of processing liquid and (ii) processing a 2 mm(2) surface to create 170 antibody spots of 50 × 100 μm(2) area using 1.6 μL of liquid. We observe high pattern quality, conservative usage of reagents, micrometer precision of localization and convection-enhanced fast deposition. Such a device and method may facilitate quantitative biological assays and spur the development of the next generation of protein microarrays.

  7. Recirculation zones induce non-Fickian transport in three-dimensional periodic porous media.

    PubMed

    Crevacore, Eleonora; Tosco, Tiziana; Sethi, Rajandrea; Boccardo, Gianluca; Marchisio, Daniele L

    2016-11-01

    In this work, the influence of pore space geometry on solute transport in porous media is investigated performing computational fluid dynamics pore-scale simulations of fluid flow and solute transport. The three-dimensional periodic domains are obtained from three different pore structure configurations, namely, face-centered-cubic (fcc), body-centered-cubic (bcc), and sphere-in-cube (sic) arrangements of spherical grains. Although transport simulations are performed with media having the same grain size and the same porosity (in fcc and bcc configurations), the resulting breakthrough curves present noteworthy differences, such as enhanced tailing. The cause of such differences is ascribed to the presence of recirculation zones, even at low Reynolds numbers. Various methods to readily identify recirculation zones and quantify their magnitude using pore-scale data are proposed. The information gained from this analysis is then used to define macroscale models able to provide an appropriate description of the observed anomalous transport. A mass transfer model is applied to estimate relevant macroscale parameters (hydrodynamic dispersion above all) and their spatial variation in the medium; a functional relation describing the spatial variation of such macroscale parameters is then proposed.

  8. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system.

    PubMed

    Guttman, Lior; van Rijn, Jaap

    2009-02-01

    In a previous study on a recirculating fish culture system, levels of geosmin and 2-methylisoborneol were found to decrease when culture water was recirculated through the anaerobic sludge digestion treatment stage of the system. This finding led us to the present study in which the geosmin and 2-methylisoborneol removal capacity of the sludge derived from this treatment stage was examined in vitro. It was found that reduction of off-flavor compounds by the sludge was mediated by both chemical/physical sorption and biological degradation. At geosmin and 2-methylisoborneol concentrations within the range of those experienced in fish culture systems, chemical/physical sorption by the sludge was found to account for a 93% reduction in geosmin and a 79% reduction in 2-methylisoborneol from the overlying water within 48h of incubation. Combined with the biological degradation taking place in the sludge, a complete removal of these compounds from the water phase occurred within 9 days of incubation. By means of repeated washing of the geosmin and 2-methylisoborneol contaminate sludge with clean water, relatively small amounts of these compounds were released from the sludge, a possible indication for the fact that absorption, rather than adsorption, underlies the chemical/physical removal process.

  9. Design and Simulation of the Recirculating Crossed-Field Planar Amplifier

    NASA Astrophysics Data System (ADS)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Simon, David; Lau, Yue Ying; Gilgenbach, Ronald; Hoff, Brad

    2016-10-01

    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is a high power microwave device adapted from the Recirculating Planar Magnetron1, developed at the University of Michigan. A travelling-wave, rectangular, meander-line design has been developed in simulation that amplifies a 1.3 MW signal at 3 GHz to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulation also shows that the RPCFA is zero-drive stable, e.g., output of any appreciable power is dependent on the presence of an input RF signal. The amplifier was designed to be driven by the Michigan Electron Long Beam Accelerator (MELBA), which is currently configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. Taking these parameters into consideration, a slow wave structure, cathode, and housing were designed using the finite element frequency domain code Ansys HFSS. The cold tube characteristics and RF field structures were then verified using the particle in cell code, MAGIC. Hot tube simulations on MAGIC were also run to calculate the RPCFA's performance, including gain and efficiency. Future work will include building a prototype RPCFA, cold testing, and performing experiments to verify the hot tube simulations. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  10. Convection-Enhanced Biopatterning with Recirculation of Hydrodynamically Confined Nanoliter Volumes of Reagents

    PubMed Central

    2016-01-01

    We present a new methodology for efficient and high-quality patterning of biological reagents for surface-based biological assays. The method relies on hydrodynamically confined nanoliter volumes of reagents to interact with the substrate at the micrometer-length scale. We study the interplay between diffusion, advection, and surface chemistry and present the design of a noncontact scanning microfluidic device to efficiently present reagents on surfaces. By leveraging convective flows, recirculation, and mixing of a processing liquid, this device overcomes limitations of existing biopatterning approaches, such as passive diffusion of analytes, uncontrolled wetting, and drying artifacts. We demonstrate the deposition of analytes, showing a 2- to 5-fold increase in deposition rate together with a 10-fold reduction in analyte consumption while ensuring less than 6% variation in pattern homogeneity on a standard biological substrate. In addition, we demonstrate the recirculation of a processing liquid using a microfluidic probe (MFP) in the context of a surface assay for (i) probing 12 independent areas with a single microliter of processing liquid and (ii) processing a 2 mm2 surface to create 170 antibody spots of 50 × 100 μm2 area using 1.6 μL of liquid. We observe high pattern quality, conservative usage of reagents, micrometer precision of localization and convection-enhanced fast deposition. Such a device and method may facilitate quantitative biological assays and spur the development of the next generation of protein microarrays. PMID:26837532

  11. The impact of compaction and leachate recirculation on waste degradation in simulated landfills.

    PubMed

    Ko, Jae Hac; Yang, Fan; Xu, Qiyong

    2016-07-01

    This study investigated the impact of compaction and leachate recirculation on anaerobic degradation of municipal solid waste (MSW) at different methane formation phases. Two stainless steel lysimeters, C1 and C2, were constructed by equipping a hydraulic cylinder to apply pressure load (42kPs) on the MSW. When MSW started to produce methane, C1 was compacted, but C2 was compacted when the methane production rate declined from the peak generation rate. Methane production of C1was inhibited by the compaction and resulted in producing a total of 106L methane (44L/kgVS). However, the compaction in C2 promoted MSW degradation resulting in producing a total of 298L methane (125L/kgVS). The concentrations of volatile fatty acids and chemical oxygen demand showed temporary increases, when pressure load was applied. It was considered that the increased substrate accessibility within MSW by compaction could cause either the inhibition or the enhancement of methane production, depending the tolerability of methanogens on the acidic inhibition. Leachate recirculation also gave positive effects on methane generation from wet waste in the decelerated methanogenic phase by increasing mass transfer and the concentrations of volatile fatty acids.

  12. Investigation of sludge re-circulating clarifiers design and optimization through numerical simulation.

    PubMed

    Davari, S; Lichayee, M J

    2003-01-01

    In steam thermal power plants (TPP) with open re-circulating wet cooling towers, elimination of water hardness and suspended solids (SS) is performed in clarifiers. Most of these clarifiers are of high efficiency sludge re-circulating type (SRC) with capacity between 500-1,500 m3/hr. Improper design and/or mal-operation of clarifiers in TPPs results in working conditions below design capacity or production of soft water with improper quality (hardness and S.S.). This causes accumulation of deposits in heat exchangers, condenser tubes, cooling and service water pipes and boiler tubes as well as increasing the ionic load of water at the demineralizing system inlet. It also increases the amount of chemical consumptions and produces more liquid and solid waste. In this regard, a software program for optimal design and simulation of SRCs has been developed. Then design parameters of existing SRCs in four TPPs in Iran were used as inputs to developed software program and resulting technical specifications were compared with existing ones. In some cases improper design was the main cause of poor outlet water quality. In order to achieve proper efficiency, further investigations were made to obtain control parameters as well as design parameters for both mal-designed and/or mal-operated SRCs.

  13. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    NASA Astrophysics Data System (ADS)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  14. Characterization of Mycobacterium salmoniphilum as causal agent of mycobacteriosis in Atlantic salmon, Salmo salar L., from a freshwater recirculation system.

    PubMed

    Aro, L; Correa, K; Martínez, A; Ildefonso, R; Yáñez, J M

    2014-04-01

    Thirty Atlantic salmon, Salmo salar L., with low corporal condition relative to other fish present in the culture system, were sampled from a freshwater recirculation pisciculture located in Chile. The most characteristic signs and lesions were cachexia and presence of multiple greyish-white granulomas within internal organs. The external and internal lesions, along with the microscopic, histologic and biochemical findings, were consistent with mycobacteriosis. The identification of Mycobacterium salmoniphilum as the causal agent of the lesions was possible through the use of molecular analyses. This study represents the first report of Mycobacterium salmoniphilum in a freshwater recirculation system and the first case of fish mycobacteriosis described in Chile.

  15. Simulation of air quality and cost to ventilate swine farrowing facilities in winter

    PubMed Central

    Park, Jae Hong; Peters, Thomas M.; Altmaier, Ralph; Sawvel, Russell A.; Anthony, T. Renée

    2016-01-01

    We developed a simulation model to study the effect of ventilation airflow rate with and without filtered recirculation on airborne contaminant concentrations (dust, NH3, CO, and CO2) for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality and operational cost for a variety of ventilation conditions over a 3-month winter period, using time-varied outdoor temperature. The sensitivity of input and output parameters on indoor air quality and operational cost were evaluated. Significant factors affecting model output included mean winter temperature, generation rate of contaminants, pit-air-exchange ratio, and recirculation ratio. As mean outdoor temperature was decreased from −2.5 °C to −12.5 °C, total operational costs were increased from $872 to $1304. Dust generation rate affected dust concentrations linearly. When dust generation rates changed −50% and +100% from baseline, indoor dust concentrations were changed −50% and +100%, respectively. The selection of a pit-air-exchange ratio was found critical to NH3 concentration, but has little impact on other contaminants or cost. As the pit-air-exchange ratio was increased from 0.1 to 0.3, the NH3 concentration was increased by a factor of 1.5. The recirculation ratio affected both IAQ factors and total operational cost. As the recirculation ratio decreased to 0, inhalable and respirable dust concentrations, humidity, NH3 and CO2 concentrations decreased and total operational cost ($2216) was 104% more than with pit-fan-only ventilation ($1088). When the recirculation ratio was 1, the total operational cost was increased by $573 (53%) compared to pit-fan-only. Simulation provides a useful tool for examining the costs and benefits to installing common ventilation technology to CAFO and, ultimately, making sound management decisions. PMID:26937062

  16. Simulation of air quality and cost to ventilate swine farrowing facilities in winter.

    PubMed

    Park, Jae Hong; Peters, Thomas M; Altmaier, Ralph; Sawvel, Russell A; Anthony, T Renée

    2013-10-01

    We developed a simulation model to study the effect of ventilation airflow rate with and without filtered recirculation on airborne contaminant concentrations (dust, NH3, CO, and CO2) for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality and operational cost for a variety of ventilation conditions over a 3-month winter period, using time-varied outdoor temperature. The sensitivity of input and output parameters on indoor air quality and operational cost were evaluated. Significant factors affecting model output included mean winter temperature, generation rate of contaminants, pit-air-exchange ratio, and recirculation ratio. As mean outdoor temperature was decreased from -2.5 °C to -12.5 °C, total operational costs were increased from $872 to $1304. Dust generation rate affected dust concentrations linearly. When dust generation rates changed -50% and +100% from baseline, indoor dust concentrations were changed -50% and +100%, respectively. The selection of a pit-air-exchange ratio was found critical to NH3 concentration, but has little impact on other contaminants or cost. As the pit-air-exchange ratio was increased from 0.1 to 0.3, the NH3 concentration was increased by a factor of 1.5. The recirculation ratio affected both IAQ factors and total operational cost. As the recirculation ratio decreased to 0, inhalable and respirable dust concentrations, humidity, NH3 and CO2 concentrations decreased and total operational cost ($2216) was 104% more than with pit-fan-only ventilation ($1088). When the recirculation ratio was 1, the total operational cost was increased by $573 (53%) compared to pit-fan-only. Simulation provides a useful tool for examining the costs and benefits to installing common ventilation technology to CAFO and, ultimately, making sound management decisions.

  17. FLUTE: a versatile linac-based THz source.

    PubMed

    Nasse, M J; Schuh, M; Naknaimueang, S; Schwarz, M; Plech, A; Mathis, Y-L; Rossmanith, R; Wesolowski, P; Huttel, E; Schmelling, M; Müller, A-S

    2013-02-01

    A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short (~1 ps) THz pulses (up to ~4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range (~100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments.

  18. FLUTE: A versatile linac-based THz source

    SciTech Connect

    Nasse, M. J.; Schuh, M.; Schwarz, M.; Naknaimueang, S.; Mathis, Y.-L.; Rossmanith, R.; Wesolowski, P.; Huttel, E.; Plech, A.; Schmelling, M.; Mueller, A.-S.

    2013-02-15

    A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short ({approx}1 ps) THz pulses (up to {approx}4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range ({approx}100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments.

  19. Linac-Based Photonuclear Applications at the Idaho Accelerator Center

    NASA Astrophysics Data System (ADS)

    Mamtimin, Mayir; Starovoitova, Valeriia N.; Harmon, Frank

    2014-02-01

    In this paper, current Idaho Accelerator Center (IAC) activities based on the exploitation of high energy bremsstrahlung photons generated by linear electron accelerators will be reviewed. These beams are used to induce photonuclear interactions for a wide variety of applications in materials science, activation analysis, medical research, and nuclear technology. Most of the exploited phenomena are governed by the familiar giant dipole resonance cross section in nuclei. By proper target and converter design, optimization of photon and photoneutron production can be achieved, allowing radiation fields produced with both photons and neutrons to be used for medical isotope production and for fission product transmutation. The latter provides a specific application example that supports long-term fission product waste management. Using high-energy, highpower electron accelerators, we can demonstrate transmutation of radio-toxic, long-lived fission products (LLFP) such as 99Tc and 129I into short lived species. The latest experimental and simulation results will be presented.

  20. Downgrading Nuclear Facilities to Radiological Facilities

    SciTech Connect

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  1. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System.

    PubMed

    Peters, Thomas M; Sawvel, Russell A; Park, Jae Hong; Anthony, T Renée

    2015-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a

  2. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System

    PubMed Central

    Sawvel, Russell A.; Park, Jae Hong; Anthony, T. Renée

    2016-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a companion

  3. Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow

    NASA Astrophysics Data System (ADS)

    Santhosh, R.; Miglani, Ankur; Basu, Saptarshi

    2013-08-01

    This paper reports the first observations of transition from a pre-vortex breakdown (Pre-VB) flow reversal to a fully developed central toroidal recirculation zone in a non-reacting, double-concentric swirling jet configuration and its response to longitudinal acoustic excitation. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure as the centre jet penetration is suppressed by the growing outer roll-up eddy; resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Rom) which appears to describe the spreading of the zone of swirl influence in different flow regimes. Further, the time-mean global acoustic response of pre-VB and VBB is measured as a function of pulsing frequency using the relative aerodynamic blockage factor (i.e., maximum radial width of the inner recirculation zone). It is observed that all flow modes except VBB are structurally unstable as they exhibit severe transverse radial shrinkage (˜20%) at the burner Helmholtz resonant modes (100-110 Hz). In contrast, all flow regimes show positional instability as seen by the large-scale, asymmetric spatial shifting of the vortex core centres. Finally, the mixing transfer function M (f) and magnitude squared coherence λ2(f) analysis is presented to determine the natural coupling modes of the system dynamic parameters (u', p'), i.e., local acoustic response. It is seen that the pre-VB flow mode exhibits a narrow-band, low pass filter behavior with a linear response window of 100-105 Hz. However, in the VBB structure, presence of critical regions such as the opposed flow stagnation region

  4. Beam dynamics activities at the Thomas Jefferson National Accelerator Facility (Jefferson Lab)

    SciTech Connect

    Douglas, D.R.

    1997-12-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) has been funded by the US Navy to build an infra-red FEL driven by an energy-recovering compact SRF-based linear accelerator. The machine is to produce a 1 kW IR photon beam. The Jefferson Lab Accelerator Division is presently engaged in detailed design and beam dynamics studies for the driver accelerator. Principle beam dynamics and beam transport considerations include: (1) generation and transport of a high-quality, high-current, space-charge dominated beam; (2) the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; (3) low-loss transport of a large momentum spread, high-current beam; (4) beam break up (BBU) instabilities in the recirculating accelerator; (5) impedance policing of transport system components; and (6) RF drive system control during energy recovery and FEL operation.

  5. End-to-end 9-D polarized bunch transport in eRHIC energy-recovery recirculator, some aspects

    SciTech Connect

    Meot, F.; Meot, F.; Brooks, S.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2015-05-03

    This paper is a brief overview of some of the numerous beam and spin dynamics investigations undertaken in the framework of the design of the FFAG based electron energy recovery re-circulator ring of the eRHIC electron-ion collider project

  6. Stocking density effects on production characteristics and body composition of market size cobia, Rachycentron canadum, reared in recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production density in excess of a critical threshold can result in a negative relationship between stocking density and fish production. This study was conducted to evaluate production characteristics of juvenile cobia Rachycentron canadum, reared to market size in production-scale recirculating aq...

  7. Production characteristics and body composition of juvenile cobia fed three different commercial diets in recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of feeding three commercial diets on production characteristics and body composition of juvenile cobia Rachycentron canadum reared using recirculating aquaculture systems (RAS) was evaluated in a 56 d growth trial. Juvenile cobia (29.2 +/= 0.7 g, mean weight +/= SE) were stocked into thr...

  8. Evaluation of a low-head recirculating aquaculture system used for rearing Florida pompano to market size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low-head recirculating aquaculture system (RAS) was evaluated for the production Florida pompano Trachinotus carolinus from juvenile to market size. The RAS consisted of three dual-drain, 3-m diameter culture tanks of 7.8 m3 volume each, two 0.7-m3 moving bed bioreactors filled 67% with K1 kaldnes...

  9. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste.

    PubMed

    Zuo, Zhuang; Wu, Shubiao; Zhang, Wanqin; Dong, Renjie

    2013-10-01

    The effects of organic loading rates (OLR) and effluent recirculation on dynamics of acidogenic and methanogenic processes in two-stage anaerobic digestion of vegetable waste were investigated. Two systems were performed at OLRs of 1.3, 1.7, 2.1 and 2.6 g VS/L/d. One system recirculated the effluent from the methanogenic reactor to acidogenic reactor. With increasing OLRs, total volatile fatty acid (VFA) concentration increased to approximately 8500 mg/L in acidogenic digester, where pH decreased from 6.4 to 5.2. Daily biogas production and methane content in methanogenic reactor increased from 1.2 to 4.4 L/d and from 27.4% to 60.5%, respectively. However, inhibition of hydrolysis in acidogenic reactor was demonstrated under the OLR of 2.6 g VS/L/d without recirculation, thus indicating system overloading. Effluent recirculation shown a considerable positive effect on alleviating VFA inhibition and improving biogas production in acidogenic reactor because of the effect of dilution and pH adjustment, particularly at high OLRs.

  10. A study of NO{sub x} reduction by fuel injection recirculation. Topical report, June--December, 1995

    SciTech Connect

    Turns, S.R.; Feese, J.J.

    1996-01-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. The objective of this research is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR. This knowledge will aid in the rational application and optimization of FIR in a wide variety of industrial applications. A combined modeling and experimental program is in progress to achieve the research objectives. This report discusses, first, computer modeling studies of counterflow diffusion flames employing detailed chemical kinetics for methane combustion and NO{sub x} formation, and, second, experimental studies of laminar, CH{sub 4}-air, jet flames.

  11. Production characteristics of Florida pompano reared to market size at two different densities in low salinity recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida pompano Trachinotus carolinus, a high-value carangid, is widely recognized as an excellent candidate for commercial mariculture. While results of a recent study indicated that pompano can be successfully reared to market size in small scale recirculating aquaculture systems (RAS) at low...

  12. The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish mortality in recirculating aquaculture systems (RAS) has been observed by the authors to increase when RAS are managed at low makeup water exchange rates with relatively high feed loading. The precise etiology of this elevated mortality was unknown, all typical water quality parameters were wit...

  13. Preparatory work required for a long-term district recirculation test in a gassy underground metal-non metal mine

    SciTech Connect

    Pritchard, C.J.

    1995-12-31

    Federal mine safety regulations prohibit the recirculation of face air In a gassy Class III metal-non metal mine. Tg Soda Ash, Inc, operates a 2.0M ton/yr (2.2 million st/yr) underground gassy Class III trona mine in southwest Wyoming, currently liberating approximately 5,700 m{sup 3}/day (200,000 ft{sup 3}/day) of methane. Because of the low methane emissions and the incombustibility of trona, it was decided that Tg would be an excellent environment to test recirculation at a U.S. gassy mine, for possible future use by industry. A research program was begun with the cooperation of MSHA, the U.S. Bureau of Mines, the University of Utah, and Tg. Initial testing centered around re-using shop air underground. Next, conduct a continuous miner section recirculation test to see how the face contamination was affected by 305m (1,000 ft) and 610m (2,000 ft) recirculation distances. A district test followed to examine the effects of the critical parameter - respirable dust. Finally, a long-term program to study respirable trona dust transportation and deposition In mine airways to plan for district fan siting and effects on face air dust levels.

  14. The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic exposure to elevated levels of dissolved carbon dioxide (CO2) has been linked to reduced growth, physiological disturbances and negative health outcomes in intensively reared fish. Although pumping to a degassing tower can lower concentrations of dissolved CO2 in water recirculation aquacult...

  15. The effect of aeration and recirculation on a sand-based hybrid constructed wetland treating low-strength domestic wastewater.

    PubMed

    Zapater-Pereyra, M; Kyomukama, E; Namakula, V; van Bruggen, J J A; Lens, P N L

    2016-08-01

    The Duplex-constructed wetland (CW) is a hybrid system composed of a vertical flow (VF) CW on top of a horizontal flow filter (HFF). Each compartment is designed to play a different role: aerobic treatment in the VF CW due to intermittent feeding and anoxic treatment in the HFF due to saturated conditions. Three Duplex-CWs were used in this study: Control, Aerated and Recirculating. The role of each compartment was tested for pollutant removal and micro-invertebrate abundance. In all systems, the VF CW removed mainly organic matter, solids and NH4(+)-N. Pathogens were removed in both compartments. Likewise, total nitrogen removal occurred in both compartments, only the Recirculating HFF was not able to denitrify the nitrogen due to the slightly more oxic conditions as compared to the other systems. All systems met discharge guidelines for organic matter, but only the Control and Aerated systems met those for total nitrogen. At the applied loading rates, the pollutant removal was not significantly enhanced by the use of aeration and recirculation. Therefore, operation as in the Control system, without aeration or recirculation, is recommended for the tested Duplex-CWs. If artificial aeration will be used in CWs, the support material should be carefully selected to allow a proper air distribution.

  16. Preliminary studies on the depuration of common off-flavors from fish raised in recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Off-flavor” problems can adversely impact the growth of the aquaculture industry. Fish raised in recirculating systems have the potential to develop the common off-flavors “earthy” and “musty” due to accumulation of the microbial metabolites geosmin and 2-methylisoborneol (MIB) in the fish flesh. ...

  17. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  18. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  19. Systemic granuloma observed in Atlantic salmon Salmo salar raised to market size in a freshwater recirculation aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic granuloma was observed in sampled adult Atlantic salmon Salmo salar raised to harvest size in a freshwater recirculation aquaculture system. The prevalence of this condition was estimated at 10-20% of the population, with affected individuals grossly demonstrating pathology in varying degre...

  20. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: a field-scale study.

    PubMed

    Chung, Jinwook; Kim, Seungjin; Baek, Seungcheon; Lee, Nam-Hoon; Park, Seongjun; Lee, Junghun; Lee, Heechang; Bae, Wookeun

    2015-03-21

    Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  1. Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two studies were conducted to determine if accumulating water quality parameters would negatively impact rainbow trout Oncorhynchus mykiss health and welfare within water recirculation aquaculture systems (WRAS) that were operated at low and near-zero water exchange, with and without ozonation, and ...

  2. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  3. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  4. Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Tacina, R. R.

    1976-01-01

    The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.

  5. Development of a personal bioaerosol sampler based on a conical cyclone with recirculating liquid film.

    PubMed

    Tolchinsky, Alexander D; Sigaev, Vladimir I; Sigaev, Genneday I; Varfolomeev, Alexander N; Zvyagina, Ekaterina V; Brasel, Trevor; Cheng, Yung Sung

    2010-03-01

    This article describes the development of a novel, high-performance personal aerosol sampler intended to monitor occupational air pollution, specifically, microbial constituents. This prototype sampler has a horizontally positioned conical cyclone with recirculating liquid film and an ejection supply of adsorptive liquid into the inlet nozzle. Airborne pollutants were collected in the adsorptive liquid, thus improving the survivability of microbiological aerosol samples. Experimental modules of different dimensions were first evaluated. Based on the test results, a prototype sampler was fabricated and tested. Evaluation of the collection efficiency of the prototype unit indicated a higher than 90% collection efficiency for particles > 1.0 microm. The 50% cutoff diameter was between 0.70-0.75 microm. For assessment of the sampling process effect on the collected microorganisms, Bacillus thuringiensis was tested at a concentration of about 1.0 x 10(6) cells per cm(3). The viability in the prototype sampler decreased to 78% after 60 min of operation.

  6. Improving hollow fiber dialyzer efficiency with a recirculating dialysate system. I: Theory and applicability.

    PubMed

    Prado, Manuel; Roa, Laura M; Palma, Alfonso; Milán, José A

    2005-05-01

    The mathematical theory that underlies a novel non-regenerated recirculating dialysate system (RDS) for improving diffusive clearance in hemodialyzers is presented. The theory states the conditions that hemodialyzers must meet to be suitable in RDS optimization. We have verified the applicability of the RDS for several Cuprophan and polysulfone (PS) commercial dialyzers, showing that PS (synthetic) membranes achieve the highest increments of diffusive clearance. A numerical simulation analysis over more general conditions defined by the dimensionless groups of the system demonstrated that the highest diffusive clearance improvements are achieved in dialyzers operating with a low value of the diffusive mass-transfer area/blood flow rate ratio. This study has provided the base for the assessment of the performance of the RDS as compared to several high-efficiency systems, presented in Part II of this work [M. Prado, L. M. Roa, A. Palma, and J. A. Milan, Ann. Biomed. Eng. (2004) submitted].

  7. Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Shao, Yufeng; Chi, Nan

    2012-09-24

    We propose and experimentally demonstrate a novel scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a recirculating frequency shifter (RFS) loop based on multi-wavelength frequency shifting single side band (MWFS-SSB) modulation. In this scheme, optical subcarriers with multiple wavelengths can be generated each round. Furthermore, the generated MCMC are frequency- and phase-locked within each channel, and therefore can be effectively used for WDM superchannel. Dual-wavelength frequency shifting SSB modulation is carried out with dual-wavelength optical seed source in our experimental demonstration. Using this scheme, we successfully generate dual-channel multi-carriers, and one channel has 28 subcarriers while the other has 29 ones with 25-GHz subcarrier spacing. We also experimentally demonstrate that this kind of source can be used to carry 50-Gb/s optical polarization-division-multiplexing quadrature phase shift keying (PDM-QPSK) signal.

  8. Technicians test OV-102's aft fuselage LRU hydrogen recirculation pump

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Donald C. Buckner, a Lockheed mechanical lead technician, installs an aft fuselage line replaceable unit (LRU) liquid hydrogen recirculation pump from Columbia, Orbiter Vehicle (OV) 102 into JSC's Thermochemical Test Area (TTA) Support Laboratory Bldg 350 test stand. Technicians ran the pump package through the battery of leak tests. Preliminary indications showed only minor, acceptable leakage from the package and Kennedy Space Center (KSC) technicians have replaced a crushed seal on the prevalve of the main propulsion system they believe may have caused the STS-35 hydrogen leak. In addition to Buckner, (left to right) Larry Kilbourn, a Rockwell Service Center lead mechanical technician from Cape Canaveral, and John Dickerson, a quality inspector with EBASCO Services, also monitored the test at JSC. Photo taken by JSC photographer Benny Benavides.

  9. Novel concept development of an internal recirculation catalyst for mild gasification

    SciTech Connect

    Knight, R.A.; Babu, S.P.

    1988-09-01

    The objective of this program is to provide an overall evaluation of a novel process concept for mild gasification by completing work in three major tasks: (1) Laboratory-Scale Experiments, (2) Bench-Scale Tests, and (3) Proof-of-Concept Tests and Evaluation (optional). During this quarter, experimental work involving zinc chloride as a potential recirculating catalyst for coal, initiated in the previous quarter, was continued. The design of an all-quartz laboratory-scale isothermal free-fall reactor was completed, and construction was begun. One free-fall experiment was performed in an existing stainless-steel free-fall reactor with methanol-treated Illinois No. 6 high-volatile bituminous coal. 1 ref., 2 figs., 2 tabs.

  10. A feasibility study of a NBI photoneutralizer based on nonlinear gating laser recirculation

    SciTech Connect

    Fassina, A. Barbisan, M.; Pasqualotto, R.; Pretato, F.; Giudicotti, L.

    2016-02-15

    The neutralization efficiency of negative ion neutral beam injectors is a major issue for future fusion reactors. Photon neutralization might be a valid alternative to present gas neutralizers, but still with several challenges for a valid implementation. Some concepts have been presented so far but none has been validated yet. A novel photoneutralization concept is discussed here, based on an annular cavity and a duplicated frequency laser beam (recirculation injection by nonlinear gating). The choice of lithium triborate as the material for the second harmonic extractor is discussed and a possible cooling method via crystal slicing is presented; laser intensity enhancement within the cavity is evaluated in order to quantify the achievable neutralization rate. Mockups of the critical components are proposed as intermediate steps toward system realization.

  11. A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Rhode, D. L.

    1982-01-01

    A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.

  12. Impact of Aleutian Low activity on the STMW formation in the Kuroshio recirculation gyre region

    NASA Astrophysics Data System (ADS)

    Sugimoto, Shusaku; Hanawa, Kimio

    2010-02-01

    To understand the formation of North Pacific subtropical mode water (STMW) in the Kuroshio recirculation gyre region, the cause of STMW thickness variation is investigated using temperature profiles in a historically archived data set. The thickness variation is predominantly controlled by the main thermocline depth (MTD). When the main thermocline deepens (shoals), the wintertime mixed layer depth can develop (not develop), and consequently, thicker (thinner) STMW is observed in summer. The large-scale atmospheric forcing controlling the MTD is explored using a wind-driven hindcast ocean model. The MTD variation stems primarily from a baroclinic response in the ocean to the Aleutian Low (AL) activity; especially, the meridional movement of the AL exerts a remarkable influence.

  13. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  14. A new reactor for denitrification and micro-particle removal in recirculated aquaculture systems.

    PubMed

    Boley, A; Korshun, G; Boley, S; Jung-Schroers, V; Adamek, M; Steinhagen, D; Richter, S

    2017-03-01

    A 'membrane-denitrification' reactor (MDR) was developed and tested in a semi-technical recirculation aquaculture system in comparison to a double - without MDR - as reference system. The MDR consisted of a reactor with an ultrafiltration membrane unit for removal of micro-particles (e.g. sludge flocs, bacteria and parasites). Specific carrier material provided surfaces for biofilm growth in a fluidized bed reactor with ethanol as carbon source for denitrification. The continuous motion of these carriers cleaned the membrane surface. With online and laboratory measurements of water parameters and operational data the feasibility of the concept was verified. An advantage is that no chemicals are needed to clean the membranes. Examinations of the fish and water analyses proved an MDR can positively influence cortisol, as a stress marker, and the microflora of the aquatic system.

  15. Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot

    SciTech Connect

    Al-Qurashi, Khalid; Boehman, Andre L.

    2008-12-15

    This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

  16. Documentation of the Recirculation in a Closed-Chamber Rotor Hover Test

    NASA Technical Reports Server (NTRS)

    McCoy, Miranda; Wadcock, Alan J.; Young, Larry A.

    2016-01-01

    A rotor hover test was performed inside the JPL 25-foot-diameter Space Simulator. The 40-inch-diameter rotor was tested at two locations in the chamber-on the chamber centerline and 2m off-axis. The rotor was tested in both upright and inverted configurations for 500 < RPM < 2000. Fluorescent tufts were used to identify regions of recirculation. Velocities on the entrainment side of the rotor were measured. Tabulated values for the mean entrainment velocity components and the corresponding root mean square velocity fluctuations are provided. Unsteady velocity measurements provide a description of the turbulence ingested into the rotor plane and quantify the unsteady velocity field that the Mars Scout Helicopter can expect to encounter during free flight inside the Space Simulator.

  17. On part load recirculation of pumps and fans-a generic study

    NASA Astrophysics Data System (ADS)

    Stapp, D.; Pelz, P. F.; Loens, J. M.

    2013-12-01

    At part load in turbo machinery, there is a boundary layer separation resulting in a large vortex structure called part load recirculation. Up to now the influence of Reynolds number, relative roughness and degree of turbulence on this important stability limit of machines is not sufficiently understood. To shed some light onto these phenomena, in this work the simplest "machine" is considered by numerical and experimental studies. The apparatus we examine is a circular pipe at rest followed by a rotating co-axial pipe segment. By doing so, we have a generic test case which serves to study the critical flow number, defined by the onset of the separation and formation of a ring vortex.

  18. CSR induced microbunching gain estimation including transient effects in transport and recirculation arcs

    SciTech Connect

    Tsai, Cheng; Douglas, David R.; Li, Rui

    2015-09-01

    The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport or recirculation arcs, may result in the microbunching instability (μBI). To accurately quantify the direct consequence of this effect, we further extend our previously developed semi-analytical Vlasov solver to include more relevant coherent radiation models than the steady-state free-space CSR impedance, such as the entrance and exit transient effects derived from upstream beam entering to and exiting from individual dipoles. The resultant microbunching gain functions and spectra for our example lattices are presented and compared with particle tracking simulation. Some underlying physics with inclusion of these effects are also discussed.

  19. Study of continuously mixed crosslinked fracturing fluids with a recirculating flow-loop viscometer

    SciTech Connect

    Harris, P.C.; Harms, W.M.; Norman, L.R. )

    1989-11-01

    Continuously mixed gel fracturing fluids were successfully prepared with polymer slurries of guar, derivatized guar, and derivatized cellulose. The authors describe the rheological behavior of the continuously mixed fluids measured on a recirculating flow-loop viscometer over a temperature range of 80 to 300{sup 0}F (27 to 149{sup 0}C). Rapid and complete base-gel hydration required proper pH control and high mixing energy. Oil-based polymer slurries allowed rapid hydration rates sufficient to achieve performance from a crosslinked fluid prepared during a completely continuous operation. Water-based polymer slurries required a short holding period for complete hydration. Delayed-crosslink-gel viscosity was influenced by shear rate and the degree of base-gel hydration. Chemical factors influencing viscosity development included base-gel concentration, crosslinking-agent concentration, fluid pH, and ionic strength. Hydration time and pH requirements may differ for specific polymer/crosslinker pairs.

  20. Numerical prediction of a turbulent evaporating fuel spray in a recirculating flow

    NASA Astrophysics Data System (ADS)

    Chen, Xi-Qing; Pereira, Fernandes

    1994-03-01

    A comprehensive spray evaporation model, based on a Eulerian model of the gas field and a Lagrangian model of the droplet field in conjunction with the stochastic description of gas turbulence effect on the droplet motion, is applied to a turbulent evaporating spray in a recirculating flow and validated by comparison between predictions and measurements. Unlike many previous numerical predictions this note has been able to avoid the usual problem of a lack of detailed initial droplet-size and velocity-distribution conditions, and incorporated the turbulent temporal and directional correlation. We have adopted Zhou and Leschziner's methodology to include turbulent temporal and directional correlations in the numerical modeling, which has proved to be an improvement over the conventional particle-eddy modeling in simple flows.

  1. A feasibility study of a NBI photoneutralizer based on nonlinear gating laser recirculation

    NASA Astrophysics Data System (ADS)

    Fassina, A.; Pretato, F.; Barbisan, M.; Giudicotti, L.; Pasqualotto, R.

    2016-02-01

    The neutralization efficiency of negative ion neutral beam injectors is a major issue for future fusion reactors. Photon neutralization might be a valid alternative to present gas neutralizers, but still with several challenges for a valid implementation. Some concepts have been presented so far but none has been validated yet. A novel photoneutralization concept is discussed here, based on an annular cavity and a duplicated frequency laser beam (recirculation injection by nonlinear gating). The choice of lithium triborate as the material for the second harmonic extractor is discussed and a possible cooling method via crystal slicing is presented; laser intensity enhancement within the cavity is evaluated in order to quantify the achievable neutralization rate. Mockups of the critical components are proposed as intermediate steps toward system realization.

  2. Equibrium and Stability of the Brillouin Flow in Recirculating Planar Magnetron

    NASA Astrophysics Data System (ADS)

    Simon, D. H.; Lau, Y. Y.; Franzi, M.; Greening, G.; Gilgenbach, R. M.; Luginsland, J. W.

    2011-10-01

    Simulation of the novel recirculating planar magnetron, RPM, has shown rapid formation of electron bunches in the inverted magnetron configuration. This bunching mechanism was recently simulated in a thin electron layer model, which exhibited negative, positive, and infinite mass behavior, depending on the magnitude and sign of the radial electric field. We analyze these properties for the relativistic, cylindrical Brillouin flow, to evaluate RPM startup. We make use of our recent discovery that the electrostatic potential and the vector potential satisfy a Buneman-Hartree like relation, and a Hull-cutoff like relation EVERYWHERE within the equilibrium Brillouin flow. This work was supported by AFOSR, L-3 Communications Electron Devices, and Northrop Grumman Corporation.

  3. Flowing-recirculated water system for inducing spawning phase sea lampreys to spawn in the laboratory

    USGS Publications Warehouse

    Fredricks, Kim T.; Seelye, James G.

    1995-01-01

    We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 ± 2°C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3–6 cm in diameter) to build nests, and a water velocity of 0.2–0.3 m!s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.

  4. Association of mycobacteria in recirculating aquaculture systems and mycobacterial disease in fish.

    PubMed

    Yanong, Roy P E; Pouder, Deborah B; Falkinham, Joseph O

    2010-12-01

    Mycobacterium marinum isolates cultivated from tissue containing granulomatous lesions in Florida pompano Trachinotus carolinus and from biofilm samples collected from their tank and water recirculating system had identical (L1 of 11 bands) repetitive-sequence-based polymerase chain reaction (rep-PCR) DNA fingerprints. A second M. marinum clone sharing 4 of 11 rep-PCR bands with the first clone was isolated from some fish tissues but not from system samples. Water samples yielded low numbers of colonies of mycobacteria (0.08-1.3/mL), but high numbers were recovered from biofilms (260-12,000/swab) and filters (63-21,000/ filter). Mycobacterium hemophilum, M. chelonae, M. trivale, M. gastri, and M. gordonae were isolated from system samples alone.

  5. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    PubMed

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  6. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system

    NASA Astrophysics Data System (ADS)

    Gandhi, Rahul K.; Hopkins, Gary D.; Goltz, Mark N.; Gorelick, Steven M.; McCarty, Perry L.

    2002-04-01

    Recirculating well systems provide an engine for the in situ treatment of subsurface contaminants. Although numerous recirculating wells have been installed in the field, for such systems, there is a paucity of comprehensive monitoring data and models constrained to data appearing in the research literature. Here we present an extensive data set combined with detailed inverse and simulation analyses for a two-well groundwater recirculation system used for in situ bioremediation at Edwards Air Force Base in southern California. The ``conveyor belt'' flow system, which was established for in situ treatment of trichloroethylene (TCE) in two bioactive zones, was created by pumping water upward in one well and downward in another well, each well being screened in both the upper and lower aquifers. A bromide tracer test was conducted and extensively monitored for 60 days. Combined inverse analysis was conducted on hydraulic heads from 38 monitoring wells, 32 bromide concentration histories, and a constraint on the degree of recirculation that was based on TCE concentration data. Four different formulations involving alternative weighting schemes used in a nonlinear weighted least squares simulation-regression analysis were explored. The best formulation provided parameter estimates with tight bounds on estimated covariances, suggesting that the model provides a reasonable description of the hydrogeologic system. Our investigation indicates the geometry of the recirculation zone and the degree of recirculation under two different sets of operating conditions. Surprisingly, our analysis suggests that the effects of aquifer heterogeneity are not significant at this site under the conditions of forced recirculation. Furthermore, anomalous flow through an open monitoring well created significant vertical short-circuiting between the generally insulated aquifers. Flow through this small open conduit was equivalent to as much as 33% of the flow through the pumping wells. Using

  7. Directional Migration of Recirculating Lymphocytes through Lymph Nodes via Random Walks

    PubMed Central

    Thomas, Niclas; Matejovicova, Lenka; Srikusalanukul, Wichat; Shawe-Taylor, John; Chain, Benny

    2012-01-01

    Naive T lymphocytes exhibit extensive antigen-independent recirculation between blood and lymph nodes, where they may encounter dendritic cells carrying cognate antigen. We examine how long different T cells may spend in an individual lymph node by examining data from long term cannulation of blood and efferent lymphatics of a single lymph node in the sheep. We determine empirically the distribution of transit times of migrating T cells by applying the Least Absolute Shrinkage & Selection Operator () or regularised to fit experimental data describing the proportion of labelled infused cells in blood and efferent lymphatics over time. The optimal inferred solution reveals a distribution with high variance and strong skew. The mode transit time is typically between 10 and 20 hours, but a significant number of cells spend more than 70 hours before exiting. We complement the empirical machine learning based approach by modelling lymphocyte passage through the lymph node . On the basis of previous two photon analysis of lymphocyte movement, we optimised distributions which describe the transit times (first passage times) of discrete one dimensional and continuous (Brownian) three dimensional random walks with drift. The optimal fit is obtained when drift is small, i.e. the ratio of probabilities of migrating forward and backward within the node is close to one. These distributions are qualitatively similar to the inferred empirical distribution, with high variance and strong skew. In contrast, an optimised normal distribution of transit times (symmetrical around mean) fitted the data poorly. The results demonstrate that the rapid recirculation of lymphocytes observed at a macro level is compatible with predominantly randomised movement within lymph nodes, and significant probabilities of long transit times. We discuss how this pattern of migration may contribute to facilitating interactions between low frequency T cells and antigen presenting cells carrying cognate

  8. Breadboard Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service

  9. Facility Focus: Sports and Recreation Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2000

    2000-01-01

    Examines projects that demonstrate three different commitments administrators make to their athletic facilities: convenience; excellence; and comfort. Projects discussed involve a fitness center, a football stadium, and a multi-sport indoor practice facility. (GR)

  10. A Unique Facility For Metabolic and Thermoregulatory Studies

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca C.; Webbon, Bruce W.

    1995-01-01

    A unique exercise facility has been developed and used to perform tipper body ergometry tests for space applications. Originally designed to simulate the muscular, cardiovascular and thermoregulatory responses to working in zero gravity, this facility may be used to conduct basic thermoregulatory investigations applicable to multiple sclerosis patients. An environmental chamber houses the tipper body ergometer and permits control of temperature, air now and humidify. The chamber is a closed system and recirculate-s air after conditioning if. A Cybex Lipper body ergometer has been mounted horizontally on the wall of the environmental chamber. In this configuration, the subject lies underneath the arm crank on a supine seat in order to turn the crank. The supine seat can be removed in order to introduce other equipment into the chamber such as a stool to allow upright arm cranking, or a treadmill to allow walk-run experiments. Physiological and environmental signals are fed into a Strawberry Tree data acquisition system while being monitored and logged using the Workbench software program. Physiological monitoring capabilities include 3-lead EKG using an H-P patient monitor, 5 site skin temperature and core temperature using YSI thermistors, and O2 consumption and CO2 production using AMFTFK Applied Electrochemistry analyzers and sensors. This comprehensive data acquisition set tip allows for calculation of various thermoregulatory indices including heat storage, evaporative heat loss, latent heat loss, and metabolic rate. The current system is capable of adding more data acquisition channels if needed. Some potential studies that could be carried out using the facility include: 1) An investigation into the efficiency of cooling various segments of the body to lower Tc 1-2 F. 2) A series of heat and mass balance studies comparing various LCG configurations.

  11. Guide to research facilities

    SciTech Connect

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  12. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp growout systems.

    PubMed

    Shi, Yonghai; Zhang, Genyu; Liu, Jianzhong; Zhu, Yazhu; Xu, Jiabo

    2011-10-01

    A recirculating aquaculture system was developed for treating Pacific white shrimp (Litopenaeus vannamei) production wastewater using an integrated vertical-flow (IVF) and five connected integrated horizontal flow (IHF) constructed wetlands as water treatment filters for mesohaline conditions (8.25‰-8.26‰ salinity). The constructed wetlands demonstrated the ability to reduce total nitrogen, total ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total phosphorous, chemical oxygen demand, and total suspended solids to levels significantly lower than those in effluents from culture tanks. Various water quality parameters in the culture tanks were deemed suitable for shrimp culture. The actual ratio of wetland area (A(w)) to culture tank area (A(t)) was 1.1439, and the estimated optimal ratio A(w)/A(t) was approximately 1. The IVF-IHF wetlands showed flexibility and reliability in consistently removing the main pollutants from commercial recirculating and super-intensive shrimp growout systems throughout the culture period.

  13. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  14. A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combining soft lithography and traditional machining.

    PubMed

    Sin, Aaron; Reardon, Christopher F; Shuler, Michael L

    2004-02-05

    Fluid transport is crucial in the development of microanalytical devices. While there are many micropump designs available, most are incapable of sustaining recirculation of fluid at microL/min to mL/min levels. We have designed and fabricated a positive displacement micropump by combining soft lithography with traditional bulk machining. The micropump is actuated through pneumatic pressure. The pump is self-priming and is suitable for recirculating fluid through a microfluidic device containing mammalian cell culture. By custom designing the volume of the pumping chamber, tight control of the output flow rate can be obtained by changing the actuation frequency. It can also be fabricated easily on plastic substrates without access to expensive microfabrication equipment.

  15. Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: A lab-scale model study.

    PubMed

    Ogata, Yuka; Ishigaki, Tomonori; Nakagawa, Mikako; Yamada, Masato

    2016-06-01

    The effects of salinity on anaerobic waste degradation and microbial communities were investigated, in order to propose an appropriate leachate recirculation process in a waste landfill in a tropical region. A salt concentration of 21 mS cm(-1) of electrical conductivity (EC) did not affect waste degradation, but a salt concentration of 35 mS cm(-1) of EC inhibited CH4 generation. A higher salt concentration of 80 mS cm(-1) of EC inhibited not only CH4 and CO2 generation, but also degradation of organic compounds. The bacterial and archaeal community compositions were affected by high salinity. High salinity can exert selective pressure on bacterial communities, resulting in a change in bacterial community structure. Ammonium caused strong, dominant inhibition of biogas production in the salt concentration range of this study. Quality control, especially of ammonium levels, will be essential for the promotion of waste biodegradation in landfills with leachate recirculation.

  16. Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation.

    PubMed

    Nair, Arjun; Sartaj, Majid; Kennedy, Kevin; Coelho, Nuno M G

    2014-10-01

    Leachate recirculation has a profound advantage on biodegradation of the organic fraction of municipal solid waste in landfills. Mature leachate from older sections of landfills (>10 years) and young leachate were blended and added to organic fraction of municipal solid waste in a series of biomethane potential assay experiments with different mixing ratios of mature and young leachate and their effect on biogas production was monitored. The improvement in biogas production was in the range of 19%-41% depending on the ratio of mixing old and new leachate. The results are conclusive that the biogas generation could be improved by blending the old and new leachate in a bioreactor landfill system as compared with a conventional system employed in bioreactor landfills today for recirculating the same age leachate.

  17. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  18. Sports Facility Management.

    ERIC Educational Resources Information Center

    Walker, Marcia L., Ed.; Stotlar, David K., Ed.

    The numbers of both sports facility management college courses and sport and exercise facilities are increasing, along with the need for an understanding of the trends and management concepts of these facilities. This book focuses exclusively on managing facilities where sporting events occur and includes examples in physical education, athletics,…

  19. A study of NO{sub x} reduction by fuel injection recirculation. Topical report, January 1995--May 1995

    SciTech Connect

    Turns, S.R.; Feese, J.J.; Frenklach, M.Y.

    1995-07-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments by Carnot (Tustin, CA) have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. One speculation is that introducing the diluent gases on the fuel side of the flame affects the prompt-NO mechanism causing the greater effectiveness. The objective of our research is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR. This knowledge will aid in the rational application and optimization of FIR in a wide variety of industrial applications. A combined modeling and experimental program is in progress to achieve the research objectives. This report discusses computer modeling studies of counterflow diffusion flames employing detailed chemical kinetics for fuel (hydrogen or methane) combustion and NO{sub x} formation. These simulations allow the calculation of NO{sub x} emission indices for a wide range of conditions. Parametric studies were conducted in which the diluent was added either on the fuel or air side of the flame for a wide range of flow conditions. Preliminary results from these simulation studies indicate that a major factor in FIR effectiveness is the differential effect on flame zone residence times associated with fuel-side versus air-side dilution.

  20. A study of NO{sub x} reduction by fuel injection recirculation. Final report, January 1995--June 1996

    SciTech Connect

    Feese, J.J.; Turns, S.R.

    1996-08-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments in natural-gas fired boilers have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. The objective of the present investigation is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR by studying laminar diffusion flames. The purpose of studying laminar flames is to isolate chemical effects from the effects of turbulent mixing and heat transfer, which are inherent in practical boilers. The results of both the numerical simulations and the experiments suggest that, although molecular transport and chemical kinetic phenomena are affected by the location of diluent addition depending on flow conditions, the greater effectiveness of FIR over FGR in practical applications may result from differences in turbulent mixing and heat transfer. Further research is required to understand how differences in diluent-addition location affect NO{sub x} production in turbulent flames. The present study, however, provides an underlying basis for understanding how flow conditions can affect flame chemistry. 51 figs., 7 tabs.

  1. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids.

  2. State-of-the-art ventilation engineering principles - Of laminar flow and recirculation in the battery industry

    SciTech Connect

    Minor, C.L. )

    1989-04-01

    The battery industry, with its complexity of operations and processes, uses a number of toxic chemical compounds and substances. The use of these materials results in the dissemination of fumes and dusts into the plant air. Effective and well designed ventilation offers a solution where protection to the workers is needed under such environmental exposure. The author describes laminar flow-plenums and recirculation systems and reviews applications of these technologies.

  3. Experiments upon the control of Trichodiniasis of salmonid fishes by the prolonged recirculation of formalin solutions

    USGS Publications Warehouse

    1940-01-01

    In a search for more effective disinfectants to combat parasitic diseases of hatchery fish, the authors report results from a series of experiments designed to determine the toxicity of varying exposures to concentrations of formalin, sodium p-phenolsulphonate, ammonium sulphate, and sodium benzoate. Non-toxic concentrations of these disinfectants were tested, in addition to the usual hatchery methods of salt treatment and hand dipping in copper sulphate and acetic acid solutions, on No. 1 brook trout fingerlings which had been experimentally infected with the protozoan parasite Trichodina sp. (previously known as Cyclochaeta sp.).Of the disinfectants tested, only formalin completely removed all parasites. Salt treatment in a 5 per cent solution, by weight, as well as hand dipping in 1:500 acetic acid, failed to eradicate all parasites present, although a marked reduction in their numbers did occur. The hand dipping in a 1:2,000 copper sulphate solution was found to be without practical value for the removal of parasites.The authors recommend a prolonged treatment for sixty minutes by recirculating a 1:4,000 solution of formalin, or, where circumstances permit, a 120- to 150-minute exposure to a 1:6,000 concentration of formalin, as the most effective, most economical, and least toxic treatments for combating infections of Trichodina sp., and presumably those of other external parasites as well, among hatchery fish.

  4. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    PubMed

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate.

  5. Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system.

    PubMed

    Beardsley, Christine; Moss, Shaun; Malfatti, Francesca; Azam, Farooq

    2011-07-01

    Microorganisms play integral roles in the cycling of carbon (C) and nitrogen (N) in recirculating aquaculture systems (RAS) for fish and shellfish production. We quantified the pathways of shrimp fecal bacterial activities and their role in C- and N-flux partitioning relevant to culturing Pacific white shrimp, Penaeus (Litopenaeus) vannamei, in RAS. Freshly produced feces from P. vannamei contained 0.6-7 × 10(10) bacteria g(-1) dry wt belonging to Bacteroidetes (7%), Alphaproteobacteria (4%), and, within the Gammaproteobacteria, almost exclusively to the genus Vibrio (61%). Because of partial disintegration of the feces (up to 27% within 12 h), the experimental seawater became inoculated with fecal bacteria. Bacteria grew rapidly in the feces and in the seawater, and exhibited high levels of aminopeptidase, chitinase, chitobiase, alkaline phosphatase, α- and β-glucosidase, and lipase activities. Moreover, fecal bacteria enriched the protein content of the feces within 12 h, potentially enriching the feces for the coprophagous shrimp. The bacterial turnover time was much faster in feces (1-10 h) than in mature RAS water (350 h). Thus, shrimp fecal bacteria not only inoculate RAS water but also contribute to bacterial abundance and productivity, and regulate system processes important for shrimp health.

  6. Temporal and Spatial Pore Water Pressure Distribution Surrounding a Vertical Landfill Leachate Recirculation Well

    PubMed Central

    Kadambala, Ravi; Townsend, Timothy G.; Jain, Pradeep; Singh, Karamjit

    2011-01-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth. PMID:21655145

  7. Efficient random subcloning of DNA sheared in a recirculating point-sink flow system.

    PubMed Central

    Oefner, P J; Hunicke-Smith, S P; Chiang, L; Dietrich, F; Mulligan, J; Davis, R W

    1996-01-01

    Based on a high-performance liquid chromatographic pump, we have built a device that allows recirculation of DNA through a 63-microm orifice with ensuing fractionation to a minimum fragment size of approximately 300 base pairs. Residence time of the DNA fragments in the converging flow created by a sudden contraction was found to be sufficiently long to allow extension of the DNA molecules into a highly extended conformation and, hence, breakage to occur at midpoint. In most instances, 30 passages sufficed to obtain a narrow size distribution, with >90% of the fragments lying within a 2-fold size distribution. The shear rate required to achieve breakage was found to be inversely proportional to the 1.0 power of the molecular weight. Compared with a restriction digest, up to 40% of all fragments could be cloned directly, with only marginal improvements in cloning efficiency having been observed upon prior end repair with Klenow, T4 polymerase or T4 polynucleotide kinase. Sequencing revealed a fairly random distribution of the fragments. PMID:8918787

  8. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    SciTech Connect

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  9. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect

    Bruno, Mike; Detwiler, Russell L; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  10. Formation of disinfection byproducts in a recirculating mariculture system: emerging concerns.

    PubMed

    Qiang, Zhimin; Zhang, Haiting; Dong, Huiyu; Adams, Craig; Luan, Gang; Wang, Lei

    2015-02-01

    Disinfection is commonly employed in recirculating mariculture systems (RMS) to control animal diseases and improve seawater quality; however, little is known about the occurrence of disinfection byproducts (DBPs) formed in such RMS. Beijing Aquarium is a typical RMS with artificially prepared seawater and mainly adopts a decentralized treatment strategy for different animal tanks, including sand filtration, foam fractionation, and disinfection (O3, UV, and O3/ClO2). This study reveals that the adopted disinfection processes were highly effective in controlling marine heterotrophic bacteria; however, some concerns were raised on the formation of various kinds of DBPs, including secondary oxidants, inorganic oxyanions, and hazardous organic species. Free chlorine and free bromine were generated from ozonation at health-relevant concentrations. High concentrations of BrO3(-) and ClO3(-) were formed in mammal tanks, which exceeded the USEPA-regulated maximum contaminant level (MCL) for drinking water by 19-25 and 52-54 times, respectively. Extremely high concentrations of NO3(-) were detected in mammal tanks, which considerably exceeded the MCL regulated by the Sea Water Quality Standard of China for the mariculture industry (Class II) by about 1100 times. Undoubtedly, the presence of various DBPs poses serious health threats to aquarium animals. To solve these problems, potential control measures for DBPs are proposed.

  11. Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate.

    PubMed

    Nie, Hong; Jacobi, H Fabian; Strach, Katrin; Xu, Chunming; Zhou, Hongjun; Liebetrau, Jan

    2015-02-01

    The effects of ammonia concentration on the performance and stability of mono-fermentation of chicken manure were investigated in a lab-scale continuous stirred tank reactor at 40 °C. Technical stripping was performed to remove ammonia from the liquid fraction of digestate, and the entire product was recycled to the fermenter to control ammonia concentration in the fermenter. Organic loading rate (OLR) of 5.3 gVS/(L d) was achieved with an average free ammonia nitrogen (FAN) concentration of 0.77 g/L and a specific gas yield of 0.39 L/gVS. When OLR was increased to 6.0 gVS/(L d), stable operation could be obtained with an average FAN concentration of 0.86 g/L and a specific gas yield of 0.27 L/gVS. Mono-fermentation of chicken manure was successfully carried out at high ammonia concentrations. Controlled recirculation of treated liquid fraction of digestate could be a solution in large-scale application for both: to avoid ammonia inhibition and minimize digestate.

  12. Biomethanation and microbial community changes in a digester treating sludge from a brackish aquaculture recirculation system.

    PubMed

    Zhang, Xuedong; Tao, Yu; Hu, Jianmei; Liu, Gang; Spanjers, Henri; van Lier, Jules B

    2016-08-01

    Using a high-salinity-adapted inoculum and a moderate stepwise-increased organic loading rate (OLR), a stable digester performance was achieved in treating sludge from a brackish aquaculture recirculation system. The specific methane yield was distinctly enhanced, reaching 0.203LCH4/gCODadded, compared to literature values (0.140-0.154LCH4/gCODadded) from the salty sludges. OLR adjustment and the fecal substrate substantially influenced population changes in the digester. Within the bacterial subpopulations, the relative abundance of Bacillus and Bacteroides declined, accompanied by the increase of Clostridium and Trigonala over time. The results show Trigonala was derived from the substrate and accumulated inside the digester. The most abundant methanogen was Methanosarcina in the inoculum and the digestates. The Methanosarcina proliferation can be ascribed to its metabolic versatility, probably a feature of crucial importance for high-salinity environments. Other frequently observed methanogens were outcompeted. The population similarity at the genus level between inoculum and digestates declined during the initial stage and afterwards increased.

  13. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy.

    PubMed

    Hambly, A C; Arvin, E; Pedersen, L-F; Pedersen, P B; Seredyńska-Sobecka, B; Stedmon, C A

    2015-10-15

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs, stocked with rainbow trout and operated at steady state at four feed loadings, were analysed by dissolved organic carbon (DOC) analysis and fluorescence excitation-emission matrix (EEM) spectroscopy. The fluorescence dataset was then decomposed by PARAFAC analysis using the drEEM toolbox. This revealed that the fluorescence character of the RAS water could be represented by five components, of which four have previously been identified in fresh water, coastal marine water, wetlands and drinking water. The fluorescence components as well as the DOC showed positive correlations with feed loading, however there was considerable variation between the five fluorescence components with respect to the degree of accumulation with feed loading. The five components were found to originate from three sources: the feed; the influent tap water (groundwater); and processes related to the fish and the water treatment system. This paper details the first application of fluorescence EEM spectroscopy to assess DOM in RAS, and highlights the potential applications of this technique within future RAS management strategies.

  14. Frank-Starling mechanism retains recirculation fraction of myocardial Ca(2+) in the beating heart.

    PubMed

    Mizuno, J; Araki, J; Mohri, S; Minami, H; Doi, Y; Fujinaka, W; Miyaji, K; Kiyooka, T; Oshima, Y; Iribe, G; Hirakawa, M; Suga, H

    2001-12-01

    Myocardial Ca(2+) handling in excitation-contraction coupling is the second primary determinant of energy or O(2) demand in a working heart. The intracellular and extracellular routes remove myocardial Ca(2+) that was released into the sarcoplasma with different Ca(2+): ATP stoichiometries. The intracellular route is twice as economical as the extracellular route. Therefore the fraction of total Ca(2+) removed via the sarcoplasmic reticulum, i.e., the recirculation fraction of intracellular Ca(2+) (RF), determines the economy of myocardial Ca(2+) handling. RF has conventionally been estimated as the exponential decay rate of postextrasystolic potentiation (PESP). However, we have found that PESP usually decays in alternans, but not exponentially in the canine left ventricle beating above 100 beats/min. We have succeeded in estimating RF from the exponential decay component of an alternans PESP. We previously found that the Frank-Starling mechanism or varied ventricular preload did not affect the economy of myocardial Ca(2+) handling. Then, to account for this important finding, we hypothesized that the Frank-Starling mechanism would not affect RF at a constant heart rate. We tested this hypothesis and found its supportive evidence in 11 canine left ventricles. We conclude that RF at a constant heart rate would remain constant, independent of the Frank-Starling mechanism.

  15. Commercial production of tiger puffer ( Takifugu rubripes) in winter using a recirculating aquaculture system

    NASA Astrophysics Data System (ADS)

    Lin, Zhongling; Wang, Hua; Yu, Chunyan; Lv, Fenghe; Liu, Hengming; Zhang, Tao

    2017-02-01

    Tiger puffer ( Takifugu rubripes) is a promising species for aquaculture production because of its high value and limited supply. However, in the north of China, using sea cages to culture this species in winter is hampered by the fact that the seawater temperature is extremely low. Here, a large scale commercial production of tiger puffer has been successfully realized using a recirculating aquaculture system (RAS) from 3 October 2012 to 31 May 2013. The RAS was comprised of nine culture tanks (total water volume 200 m3) and stocked with approximately a total of 14400 fish (initial mean weight 160 g). The tiger puffer was hand-fed at a rate of 0.7% of total body weight per day, and the feed conversion rate was (1.21 ± 0.3) kg kg-1. The recycle water in RAS was treated by a sieve bend screen, a foam fractionator, a submerged biofilter, an UV sterilizer and a submersible aerator. During the whole culture period, an excellent water quality control was achieved in RAS. At the end of this experiment, the survival rate of tiger puffer was more than 98%. The final tank densities averaged 31.2 kg m-3, and the final individual mean weight was 440 g.

  16. Development of a recirculation ejector for a cryogenic heat sink for ECLSS

    NASA Astrophysics Data System (ADS)

    Fort, James F.; Heldmann, Michael J.

    1991-07-01

    In the development of advanced thermal control systems for use in hydrogen-powered space vehicles, utilization of the onboard hydrogen fuel as a heat sink for equipment cooling has many advantages. There are, however, significant challenges preventing the cryogenic temperatures of the stored fuel from causing heat transport fluid freezing. A shell and tube heat exchanger was developed to transfer heat from an ECLSS thermal control coolant loop to the cryogenic hydrogen fuel. To mitigate the potential for coolant freezing, it was necessary to recycle hydrogen from the heat exchanger outlet back to the inlet to moderate heat exchanger inlet temperatures. A recycle compressor could have been used with penalties in weight and reliability due to its complexity. A superior solution was to use an ejector which has no moving parts, and uses the pressure head of the incoming hydrogen to develop the necessary pumping head and transport the hydrogen through the heat exchanger. This paper will present the design, development and testing of a recirculating ejector for a cryogenic heat sink for ECLSS.

  17. NO x Reduction in the Iron Ore Sintering Process with Flue Gas Recirculation

    NASA Astrophysics Data System (ADS)

    Yu, Zhiyuan; Fan, Xiaohui; Gan, Min; Chen, Xuling; Lv, Wei

    2017-02-01

    Flue gas recirculation (FGR) has been implemented for exhaust gas emissions reduction in iron ore sintering. However, the mechanism of NO x reduction through FGR is still unclear. In this paper, the laboratory pot-grate sintering test showed a 30% reduction in gas flow and 15.51% reduction in NO x emissions achieved with a 30% FGR ratio, and the sinter indexes almost matched those of the conventional process. In the sinter zone, NO-CO catalytic reduction occurs in the range of 500-900°C. When the sinter temperature is 700°C, the highest nitrogen reduction ratio (NRR) achieved is 8%; however, the NO x reduction is inhibited as the post-combustion of CO starts when the temperature increases beyond 700°C. NO x in the flue gas is mainly a product of the fuel combustion in the combustion zone, as the nitrogen conversion rate reaches 50-60%, because the N-containing intermediates exist during the fuel combustion. The existence of NO in the FGR gas inhibits the NO x generation from the fuel combustion, and the NO elimination—through the NO-carbon reaction—is significant in the combustion zone. The NRR in the combustion zone reaches a range of 18-20%.

  18. [Nitrate removal from recirculating aquaculture system using polyhydroxybutyrate-co-hydroxyvalerate as carbon source ].

    PubMed

    Zhang, Lanhe; Liu, Lili; Qiu, Tianlei; Gao, Min; Han, Meilin; Yuan, Ding; Wang, Xuming

    2014-09-04

    [ OBJECTIVE] Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) was used as solid carbon source and biofilm carrier to remove nitrate from recirculating aquaculture system (RAS). Dynamics of microbial community structure in biofilm coating on carbon source packed into denitrification reactor were investigated. [METHODS] Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial community in biofilm from denitrifiation reactor. Bacteria degrading PHBV were isolated from the reactor using pure culture method. [RESULTS] Nitrate decreased remarkably in the RAS connected with dentrification reactor. In contrast, Nitrate increased continuously in the conventional RAS without dentrification reactor. According to the phylogenetic analysis, the microbes in the biofilm samples from denitrification reactor were divided into Proteobacteria ( p-proteobacteria, γ-proteobacteria and δ- proteobacteria) , Firmicutes and Bacteroidetes. The major advantageous populations were Acidovorax and Bacillus in the 40-day reactor. The advantageous populations in the 150-day reactor were in order of Clostridium, Desulfitobacterium, Dechloromonas, Pseudoxanthomonas and Flavobacterium. Pure cultures of bacteria degrading PHBV isolated from denitrification reactor were classified into Acidovorax, Methylibium, Pseudoxanthomonas and Dechloromonas. [CONCLUSION] Nitrate could be removed effectively from RAS using PHBV as carbon source. Advantageous bacteria and their dynamic changes were ascertained in biofilm from denitrification reactor packed with PHBV.

  19. HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents.

    PubMed

    Schneider, Oliver; Chabrillon-Popelka, Mariana; Smidt, Hauke; Haenen, Olga; Sereti, Vasiliki; Eding, Ep H; Verreth, Johan A J

    2007-05-01

    In a recirculation aquaculture system the drumfilter effluent can be used as substrate for heterotrophic bacterial production, which can be recycled as feed. Because the bacteria might contain pathogens, which could reduce its suitability as feed, it is important to characterize these communities. Bacteria were produced in growth reactors under different conditions: 7 h hydraulic retention time (HRT) vs. 2 h, sodium acetate vs. molasses, and ammonia vs. nitrate. The community of the drumfilter effluent was different from those found in the reactors. However, all major community components were present in the effluent and reactor broths. HRT influenced the bacteria community, resulting in a DGGE profile dominated by a band corresponding to an Acinetobacter sp.-related population at 2 h HRT compared to 7 h HRT, where bands indicative of alpha-proteobacterial populations most closely related to Rhizobium and Shinella spp. were most abundant. Molasses influenced the bacterial community. It was dominated by an Aquaspirillum serpens-related population. Providing total ammonia nitrogen (TAN) in addition to nitrate led to the occurrence of bacteria close to Sphaerotilus spp., Flavobacterium mizutaii and Jonesia spp. It was concluded from these results that a 6-7 h HRT is recommended, and that the type of substrate is less important, and results in communities with a comparably low pathogenic risk.

  20. Integrated process control for recirculating cooling water treatment in the coal chemical industry.

    PubMed

    Pei, Y S; Guo, W; Yang, Z F

    2011-01-01

    This work focused on the integrated process of the recirculating cooling water (RCW) treatment to achieve approximate zero emission in the coal chemical industry. The benefits of fractional and comprehensive RCW treatment were quantified and qualified by using a water and mass balance approach. Limits of cycle of concentrations and some encountered bottlenecks were used to ascertain set target limits for different water sources. Makeup water was mixed with water produced from reverse osmosis (RO) in the proportion of 6:4, which notably reduced salts discharge. Side infiltration, which settled down suspended solids, can reduce energy consumption by over 40%. An automated on-line monitoring organic phosphorus inhibitor feed maintains the RCW system stability in comparison to the manual feed. Two-step electrosorb technology (EST) instead of an acid feed can lead cycle of concentration of water to reach 7.0. The wastewater from RO, EST and filter was transferred into a concentration treatment system where metallic ions were adsorbed by permanent magnetic materials. Separation of water and salts was completed by using a magnetic disc separator. Applying the integrated process in a coal chemical industry, a benefit of 1.60 million Yuan annually in 2 years was gained and approximate zero emission was achieved. Moreover, both technical and economic feasibility were demonstrated in detail.

  1. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  2. The role of molecular adsorbent recirculating system dialysis for extracorporeal liver support in children.

    PubMed

    Schaefer, Betti; Schmitt, Claus Peter

    2013-09-01

    The majority of children with acute, acute-on-chronic, and progressive chronic liver failure require liver transplantation. Since organ availability is limited, extracorporeal liver support systems are increasingly applied to bridge the time until transplantation. At present, four different devices are available: the molecular adsorbent recirculating system (MARS), Prometheus dialysis, plasma exchange combined with hemodialysis (PE/HD), and single-pass albumin dialysis (SPAD). Randomized trials in adults have demonstrated efficient toxin removal, improved portal hypertension, hemodynamic stability, and improved hepatic encephalopathy compared with standard medical therapy. None of the liver support systems has yet been evaluated systematically in children. Knowledge of the specific indications and technical features of the different devices is essential if applied in children. MARS combines albumin dialysis with conventional hemodialysis and allows for efficient removal of water and protein-bound toxins without exogenous protein delivery and the associated infectious and allergic risks. It has successfully been applied in children with otherwise intractable cholestatic pruritus and with liver failure. The benefits, however, need to be balanced against the costs and the risk of volume and nitrogen overload if repeated plasma infusion is required. In cases of active bleeding, plasma exchange in combination with hemodialysis should be preferred.

  3. Fate of mixed pesticides in an integrated recirculating constructed wetland (IRCW).

    PubMed

    Tang, Xiaoyan; Yang, Yang; Tao, Ran; Chen, Peijun; Dai, Yunv; Jin, Congcong; Feng, Xu

    2016-11-15

    In this study, three model integrated recirculating constructed wetlands (IRCWs) planted with and without Cyperus alternifolius were used to investigate their ability to remove four pesticides (chlorpyrifos, endosulfan, fenvalerate, diuron). Iron (Fe)-impregnated biochar produced by Cyperus alternifolius was added as a primary substrate. Results showed that all four pesticides were efficiently removed in the three IRCWs. The highest pesticide removals were achieved when Fe-impregnated biochar was added to the IRCW (99%), followed by the planted (64-99%) and plant-free IRCW (45-99%). The removal of pesticides in IRCWs followed first-order kinetics, with half-lives of 1.5-11.6h. A mass balance study revealed that sorption (32.2-98.6%) and microbial degradation (1.3-52.8%) were the main removal processes in all IRCWs. This study suggests that the IRCW is a promising system to treat pesticide-contaminated water, and plant and Fe-impregnated biochar can enhance pesticide removal.

  4. Effect of molecular adsorbent recirculating system in hepatitis C virus-related intractable pruritus.

    PubMed

    Doria, Cataldo; Mandalá, Lucio; Smith, Jan; Vitale, Claudio H; Lauro, Augusto; Gruttadauria, Salvatore; Marino, Ignazio R; Foglieni, Carlo Scotti; Magnone, Mario; Scott, Victor L

    2003-04-01

    Intractable pruritus is more common in cholestatic liver diseases and may be the presenting symptom and/or major complaint of hepatitis C and/or hepatitic C virus-related cirrhosis. From September 2000 to May 2002, three patients affected by intractable pruritus secondary to hepatitis C cirrhosis that failed medical treatment were treated with a molecular adsorbent recirculating system (MARS). MARS is an artificial liver support system that aims to clear the blood of metabolic waste products normally metabolized by the liver. Each patient underwent seven MARS sessions. Liver function tests, the 36-Item Short Form quality-of-life test, visual analog scale for itching, and bile acid measurement in the serum, albumin circuit and ultrafiltrate were performed before and after each MARS session. Moreover, at hospital admission, each patient underwent a psychological workup and abdominal imaging study. Subjective improvement in pruritus and quality of life, along with a decrease in serum bile acid concentration, was observed in every patient; no patient underwent retreatment and/or liver transplantation up to a 9-month follow-up. One patient died 201 days after MARS treatment. Although we observed a decreased level of serum bile acids, one cannot conclude that this was the mechanism of action for the reduction in pruritus intensity in patients in our series. Different toxins and/or a placebo effect might have had a role in this setting.

  5. Suppression of dioxins in waste incinerator emissions by recirculating SO2.

    PubMed

    Lin, Xiaoqing; Zhan, Mingxiu; Yan, Mi; Dai, Ahui; Wu, Hailong; Li, Xiaodong; Chen, Tong; Lu, Shengyong; Yan, Jianhua

    2015-08-01

    Sulphur is an effective inhibitor of the formation of Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans (PCDD/Fs), as was proven in laboratory and pilot plant studies. In this study, a pilot-scale system with capacity 300 N m(3) h(-1) was situated at the bypass of an actual hazardous waste incinerator (HWI) and tested to reduce the emission of PCDD/Fs. Activated carbon was used as a medium to adsorb SO2 from flue gas and release it again at the higher temperature of filtered ash detoxification to achieve SO2 circulation in the system. Most PCDD/Fs in the filtered ash are decomposed by thermal treatment. Experimental results indicate that the system is capable of stable operation with SO2 accumulation at a high level of concentration and a high reduction efficiency of PCDD/Fs. A reduction of more than 80% was already achieved without addition of other sulphur compounds. When pyrite (FeS2) was added the reduction of PCDD/Fs could reach 94%, with a residual PCDD/Fs concentration in the flue gas as low as 0.13 ng TEQ N m(-3). This SO2 recirculating and suppression technology potentially provides significant progress for dioxin emission control in waste incineration and could be useful for controlling emissions of PCDD/Fs and other chlorinated organic chemicals in China.

  6. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  7. Role of the recirculation region in the transition of a laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Diwan, Sourabh

    2009-11-01

    The role of the recirculating region in the transition of a laminar separation bubble is explored in this work. The primary instability of a separation is convective and this inflexional mode is active along the mean inflection point locus located outside the mean dividing streamline. The region inside the dividing streamline and close to the wall -- called the wall mode- however is seen to display a small region of negative production of turbulent kinetic energy. This has an interesting stabilizing role on the bubble dynamics. The negative production region is seen to increase in extent with increased values of maximum reversed flow velocity of the bubble. This is shown by doing a linear stability analysis of a mean velocity distribution of a model separation bubble. This negative production region is shown to have two important implications for the separation bubble: (a) The upper branch dynamics of the neutral stability curve is significantly affected by the negative production (b) while there is onset of absolute instability in the bubble with increased values of maximum reversed flow, it is seen that relatively higher values of reversed flow required for this onset are necessitated by the presence of the negative production region.

  8. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    SciTech Connect

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  9. Observations on side-swimming rainbow trout in water recirculation aquaculture systems.

    PubMed

    Good, Christopher; Davidson, John; Kinman, Christin; Kenney, P Brett; Bæverfjord, Grete; Summerfelt, Steven

    2014-12-01

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRASs), it was observed that Rainbow Trout Oncorhynchus mykiss in all WRASs exhibited a higher-than-normal prevalence of side swimming (i.e., controlled, forward swimming but with misaligned orientation such that the fish's sagittal axis is approximately parallel to the horizontal plane). To further our understanding of this abnormality, a substudy was conducted wherein side swimmers and normally swimming fish were selectively sampled from each WRAS and growth performance (length, weight), processing attributes (fillet yield, visceral index, ventrum [i.e., thickness of the ventral "belly flap"] index), blood gas and chemistry parameters, and swim bladder morphology and positioning were compared. Side swimmers were found to be significantly smaller in length and weight and had less fillet yield but higher ventrum indices. Whole-blood analyses demonstrated that, among other things, side swimmers had significantly lower whole-blood pH and higher Pco2. Side swimmers typically exhibited swim bladder malformations, although the positive predictive value of this subjective assessment was only 73%. Overall, this study found several anatomical and physiological differences between side-swimming and normally swimming Rainbow Trout. Given the reduced weight and fillet yield of market-age side swimmers, producers would benefit from additional research to reduce side-swimming prevalence in their fish stocks.

  10. Internal leachate quality in a municipal solid waste landfill: vertical, horizontal and temporal variation and impacts of leachate recirculation.

    PubMed

    Sormunen, Kai; Ettala, Matti; Rintala, Jukka

    2008-12-30

    The aim of this study was to monitor and characterise internal leachate quality at a Finnish municipal solid waste landfill (Lahti, Kujala, in operation for approximately 50 years) to provide information about its horizontal and vertical variation as well as effects of leachate recirculation on leachate quality. The study area (approximately 4h) of the landfill had 14 monitoring wells for leachate quality monitoring over a 2-year period. The leachate was monitored for COD, BOD, TKN, NH4-N, Cl, pH and electric conductivity. The results showed high horizontal and vertical variability in leachate quality between monitoring wells, indicating that age and properties of waste, local conditions (e.g., water table) and degradation and dilution processes have a marked effect on local leachate quality. The mean COD values (642-8037mg/l) and mean BOD/COD ratios (0.08-0.17) from the different monitoring wells were typical of landfills in the methanogenic phase of degradation. The leachate in the monitoring wells was notably more concentrated than the leachate effluent used for leachate recirculation. In the landfill as a whole the effects of the leachate recirculation on leachate quality, although difficult to distinguish from those caused by other factors, appeared to be minor during the study period.

  11. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill

    SciTech Connect

    Clement, R.; Oxarango, L.; Descloitres, M.

    2011-03-15

    Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequently applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.

  12. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor

    SciTech Connect

    Scarpa, A.; Pirone, R.; Russo, G.; Vlachos, D.G.

    2009-05-15

    The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

  13. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    PubMed

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE.

  14. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  15. Reliable Facility Location Problem with Facility Protection.

    PubMed

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  16. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  17. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed.

  18. Tests of photocathodes for high repetition rate x-ray FELs at the APEX facility at LBNL

    NASA Astrophysics Data System (ADS)

    Sannibale, Fernando; Filippetto, Daniele; Qian, Houjun; Papadopoulos, Christos F.; Wells, Russell; Kramasz, Toby; Padmore, Howard; Feng, Jun; Nasiatka, James; Huang, Ruixuan; Zolotorev, Max; Staples, John W.

    2015-05-01

    After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.

  19. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  20. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  1. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  2. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus

  3. Leachate recirculation between alternating aged refuse bioreactors and its effect on refuse decomposition.

    PubMed

    Sun, Xiaojie; Sun, Yingjie; Zhao, Youcai; Wang, Ya-Nan

    2014-01-01

    In a sequencing batch bioreactor landfill system which combined a fresh and an aged refuse bioreactor, blockage occurred frequently in the aged refuse bioreactor during the treatment of leachate from the fresh refuse bioreactor. To overcome this problem, another aged refuse bioreactor was added, when blockage occurred, the two aged refuse bioreactor operated alternatively. A fresh refuse bioreactor F combined with two alternating aged refuse bioreactors A1 and A2 was called alternate recirculation process (ARP) in this study. The bioreactor system was operated in three stages, and the three bioreactors were exposed to air to facilitate surface re-aeration. The effect of the ARP on the accelerated degradation of fresh refuse was compared before and after blockage occurs in A1. The results indicated that ARP can improve the leachate production rate. The average daily net production rates of leachate in Stages 2 and 3 were approximately 2.1 and 1.6 mL (kgrefuse d)(-1), respectively, which exceeded that of Stage 1 (1.3 mL (kg refuse d)(-1)). The chemical oxygen demand and NH3-N concentrations of the leachate from Stage 1 are 1000 and 25mgL(-1) after 2.1 and 2.7 y, respectively. For Stages 2 and 3, these concentrations reach approximately after 0.877 and 1.3 y. Faster refuse settlement was observed in Stages 2 and 3, with an average daily settlement of approximately 0.11%, as compared with Stage 1 (approximately 0.099%). ARP can accelerate the biodegradation of the fresh refuse and overcome the problem of the blockage in the aged refuse reactor.

  4. Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements

    PubMed

    Lavender; Davis; Owens

    2000-09-07

    The Labrador Sea is one of the sites where convection exports surface water to the deep ocean in winter as part of the thermohaline circulation. Labrador Sea water is characteristically cold and fresh, and it can be traced at intermediate depths (500-2,000 m) across the North Atlantic Ocean, to the south and to the east of the Labrador Sea. Widespread observations of the ocean currents that lead to this distribution of Labrador Sea water have, however, been difficult and therefore scarce. We have used more than 200 subsurface floats to measure directly basin-wide horizontal velocities at various depths in the Labrador and Irminger seas. We observe unanticipated recirculations of the mid-depth (approximately 700 m) cyclonic boundary currents in both basins, leading to an anticyclonic flow in the interior of the Labrador basin. About 40% of the floats from the region of deep convection left the basin within one year and were rapidly transported in the anticyclonic flow to the Irminger basin, and also eastwards into the subpolar gyre. Surprisingly, the float tracks did not clearly depict the deep western boundary current, which is the expected main pathway of Labrador Sea water in the thermohaline circulation. Rather, the flow along the boundary near Flemish Cap is dominated by eddies that transport water offshore. Our detailed observations of the velocity structure with a high data coverage suggest that we may have to revise our picture of the formation and spreading of Labrador Sea water, and future studies with similar instrumentation will allow new insights on the intermediate depth ocean circulation.

  5. Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands.

    PubMed

    Zhong, Fei; Liang, Wei; Yu, Tao; Cheng, Shui P; He, Feng; Wu, Zhen B

    2011-01-01

    The nitrogen (N) balance for aquaculture is an important aspect, especially in China, and it is attributed to the eutrophication in many freshwater bodies. In recent years, constructed wetlands (CWs) have been widely used in wastewater treatment and ecosystem restoration. A recirculating aquaculture system (RAS) consisting of CWs and 4 fish ponds was set up in Wuhan, China. Channel catfish (Ictalurus punctatus) fingerlings were fed for satiation daily for 168 days with 2 diets containing 5.49 % and 6.53 % nitrogen, respectively. The objectives of this study were to investigate the N budget in the RAS, and try to find out the feasibility of controlling N accumulation in the fish pond. It is expected that the study can provide a mass balance for the fate of N in the eco-friendly treatment system to avoid eutrophication. The results showed that the removal rates of ammonia (NH(+)(4)-N), sum of nitrate & nitrite (NO(-)(X)-N), and total nitrogen (TN) by the CWs were 20-55%, 38-84 % and 39-57 %, respectively. Denitrification in the CWs was the main pathway of nitrogen loss (41.67 %). Nitrogen accumulation in pond water and sediment accounted for 3.39 % and 12.65 % of total nitrogen loss, respectively. The nitrogen removal efficiency and budget showed that the CW could be used to control excessive nitrogen accumulation in fish ponds. From the viewpoint of the nitrogen pollution control, the RAS combined with the constructed wetland can be applied to ensure the sustainable development for aquaculture.

  6. The simulation of air recirculation and fire/explosion phenomena within a semiconductor factory.

    PubMed

    I, Yet-Pole; Chiu, Yi-Long; Wu, Shi-Jen

    2009-04-30

    The semiconductor industry is the collection of capital-intensive firms that employ a variety of hazardous chemicals and engage in the design and fabrication of semiconductor devices. Owing to its processing characteristics, the fully confined structure of the fabrication area (fab) and the vertical airflow ventilation design restrict the applications of traditional consequence analysis techniques that are commonly used in other industries. The adverse situation also limits the advancement of a fire/explosion prevention design for the industry. In this research, a realistic model of a semiconductor factory with a fab, sub-fabrication area, supply air plenum, and return air plenum structures was constructed and the computational fluid dynamics algorithm was employed to simulate the possible fire/explosion range and its severity. The semiconductor factory has fan module units with high efficiency particulate air filters that can keep the airflow uniform within the cleanroom. This condition was modeled by 25 fans, three layers of porous ceiling, and one layer of porous floor. The obtained results predicted very well the real airflow pattern in the semiconductor factory. Different released gases, leak locations, and leak rates were applied to investigate their influence on the hazard range and severity. Common mitigation measures such as a water spray system and a pressure relief panel were also provided to study their potential effectiveness to relieve thermal radiation and overpressure hazards within a fab. The semiconductor industry can use this simulation procedure as a reference on how to implement a consequence analysis for a flammable gas release accident within an air recirculation cleanroom.

  7. An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system).

    PubMed

    Yamazaki, K; Litwak, P; Tagusari, O; Mori, T; Kono, K; Kameneva, M; Watach, M; Gordon, L; Miyagishima, M; Tomioka, J; Umezu, M; Outa, E; Antaki, J F; Kormos, R L; Koyanagi, H; Griffith, B P

    1998-06-01

    A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).

  8. Prometheus versus molecular adsorbents recirculating system: comparison of efficiency in two different liver detoxification devices.

    PubMed

    Evenepoel, Pieter; Laleman, Wim; Wilmer, Alexander; Claes, Kathleen; Kuypers, Dirk; Bammens, Bert; Nevens, Frederik; Vanrenterghem, Yves

    2006-04-01

    Albumin dialysis by the molecular adsorbents recirculating system (MARS) and by fractionated plasma separation, adsorption, and dialysis (Prometheus[PROM]) represent novel nonbiological liver support systems specifically designed to remove albumin-bound substances. Preliminary evidence suggests a favorable impact of MARS on the course and outcome of liver failure. This study aimed at comparing the detoxification capacity of both devices. For this purpose, we performed a retrospective analysis on data prospectively collected in patients with acute-on-chronic liver failure treated with either the MARS (n = 9) or the PROM (n = 9) device on 2-5 consecutive days. Each treatment was performed for at least 5 h at identical blood and dialysate flows. Blood clearances were calculated during the first treatment session for urea nitrogen, creatinine, total bilirubin, and bile acids from paired arterial and venous line samples after 1, 4, and 6 h of treatment. Reduction ratios for all single-treatment sessions, and the overall treatment phase, were calculated from pretreatment and post-treatment values. For all markers but bile acids, the single-treatment as well as the overall treatment phase reduction ratios obtained with PROM were significantly higher compared with those obtained with MARS. PROM led at all time points to higher clearances for all evaluated solutes. Blood clearances of protein-bound substances declined over time with MARS, but not with PROM. In conclusion, a significant decline in the serum level of water-soluble and protein-bound toxins was achieved with both devices. PROM produces higher blood clearances for most toxins, which results in higher delivered treatment doses compared with a matching treatment with MARS.

  9. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2016-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k-ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  10. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  11. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.

  12. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  13. FDA Certified Mammography Facilities

    MedlinePlus

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  14. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  15. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  16. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  17. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  18. Considerations on Facilities Planning

    ERIC Educational Resources Information Center

    Baule, Steven

    2007-01-01

    Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

  19. Indoor Athletic Facilities.

    ERIC Educational Resources Information Center

    Fleming, E. Scott

    2000-01-01

    Examines the concept of shared-use facilities to help financially support and meet the demand for athletic facilities. Shared-use considerations are explored including cost sharing of ongoing operations, aesthetics, locker rooms, support facilities, parking and site access, and building access and security. (GR)

  20. Nonradioactive demonstration of the Alpha D and D Pilot Facility

    SciTech Connect

    Wobser, J.K.

    1983-01-01

    The Alpha-Contained Decontamination and Disassembly (AD and D) pilot facility was designed to demonstrate the process flowsheet under conditions typical to those expected in a production facility. To achieve this, nonradioactive waste items similar to those in retrievable storage at the Savannah River Plant burial ground (e.g. gloveboxes), were chemically sprayed and size reduced. During process runs, parameters such as feed rate, oxide removal, etching rate, and secondary waste generation were determined. The exhaust system was monitored during operation to ensure that exhaust from the facility was sufficiently filtered before release to the atmosphere. The strategy for decontamination techniques required development during the nonradioactive testing period. Under investigation during process runs were both once-through and recirculating washes, and their correlation to oxide removal and etching rates on the stainless steel feed items. Wash products of the decontamination process were analyzed for concentration of Ni, Cr, Fe, Mn, and Si, major components of stainless steel. Size reduction techniques were also developed during the nonradioactive testing period. An array of conventional power and pneumatic tools were tested and evaluated. Plasma arc torch operating parameters; standoff distance, ampere setting, and cutting angle were determined.

  1. Hydraulic retention time impact of treated recirculated leachate on the hydrolytic kinetic rate of coffee pulp in an acidogenic reactor.

    PubMed

    Houbron, E; González-López, G I; Cano-Lozano, V; Rustrían, E

    2008-01-01

    This study attempted to investigate the impact of HRT of treated leachate recirculation on hydrolysis solubilization rate of coffee pulp in an acidogenic reactor. Coffee pulp presents more than 70% of organic matter and around of 30% of lignin and cellulose. Five lab scale reactors of 20 litres were used. Each reactor was fed with 5 kg of fresh coffee pulp and anaerobic sludge was used as inoculate. HRT of 0.5, 1, 3 and 10 days were applied. Each experiment shows that Total, Soluble and VFA COD appear rapidly in the removed leachate. HRT have a great impact on hydrolytic rate with an optimal value of 32,000 mg x L(-1) x d(-1).Low HRT increases hydrolysis rate and in consequence reduces duration of the hydrolytic phase. Also composition and concentration of VFA are influenced by HRT. Low ones favour acetic acid production and high ones permit the production of butyric. Low HRT generates leachate more easily fermentable. Efficiency of solubilization and acidification are independent of the HRT and present average values of 78% and 65% respectively. By batch feeding solid and continuous recirculation of treated leachate, HRT and SRT could be dissociated, where solid had a very high retention without problems of load, mixing and inhibition, and liquid could be recirculated with a very high rate. Under these low HRT condition, the first reactor of a two stage anaerobic system could reduces the hydrolysis duration of organic solid waste like coffee pulp and generate an optimal leachate for the methanization process.

  2. Energy Analysis of n-Dodecane Combustion in a Hetero/Homogeneous Heat-Recirculating Microreactor for Portable Power Applications

    NASA Astrophysics Data System (ADS)

    Waits, C. M.; Tolmachoff, E. D.; Allmon, W. R.; Zecher-Freeman, N. E.

    2016-11-01

    An energy analysis is presented for n-dodecane/air combustion in a heat recirculating Inconel microreactor under vacuum conditions. Microreactor channels are partially coated with platinum enabling operating with coupled heterogeneous and homogeneous reactions. The radiant efficiency, important for thermophotovoltaic energy conversion, was found to decrease from 57% to 52% over 5 different runs covering 377 min of operation. A similar decrease in combustion efficiency was observed with 6%-8% energy lost to incomplete combustion and 5%- 6% lost through sensible heat in the exhaust. The remaining thermal loss is from unusable radiation and conduction through inlet and outlet tubing. Changes in the Inconel microreactor geometry and emissivity properties were observed.

  3. PIV measurements of the flow at the inlet of a turbocharger centrifugal compressor with recirculation casing treatment near the inducer

    NASA Astrophysics Data System (ADS)

    Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann

    2016-02-01

    Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the

  4. C2R2. Compact Compound Recirculator/Recuperator for Renewable Energy and Energy Efficient Thermochemical Processing.

    SciTech Connect

    Ermanoski, Ivan; Orozco, Adrian

    2015-08-01

    In this report we present the development of a packed particle bed recirculator and heat exchanger. The device is intended to create countercurrent flows of packed particle beds and exchange heat between the flows. The project focused on the design, fabrication, demonstration, and modifications of a simple prototype, in order to attain high levels of heat exchange between particle flows while maintaining an effective particle conveying rate in a scalable package. Despite heat losses in a package not optimized for heat retention, 50% heat recovery was achieved, at a particle conveying efficiency of 40%.

  5. Microbial inoculum with leachate recirculated cultivation for the enhancement of OFMSW composting.

    PubMed

    Ming, Li; Xuya, Peng; Youcai, Zhao; Wenchuan, Ding; Huashuai, Cai; Guotao, Liu; Zhengsong, Wu

    2008-05-01

    in the final inoculum had the ability to endure the extreme temperature of 70 degrees C. Hence, it can be concluded that the final inoculum developed with leachate recirculated cultivation can work well, benefited from the indigenous communities present to efficiently accelerate the OFMSW composting process.

  6. Colwellia aquaemaris sp. nov., isolated from the Cynoglossus semilaevis culture tank in a recirculating mariculture system.

    PubMed

    Liu, Ying; Liu, Liang-Zi; Zhong, Zhi-Ping; Zhou, Yu-Guang; Liu, Ying; Liu, Zhi-Pei

    2014-12-01

    A Gram-staining-negative, heterotrophic, facultatively anaerobic bacterium, designated S1(T), was isolated from the Cynoglossus semilaevis culture pond in a recirculating mariculture system in Tianjin, China. The taxonomy of strain S1(T) was studied by using a polyphasic approach. Cells of strain S1(T) were non-spore-forming, curved rods, 0.4-0.6 µm wide and 1.2-2.0 µm long, and motile by means of a single polar flagellum. The strain was positive for oxidase and catalase activities. Strain S1(T) was able to grow at 4-30 °C (optimum, 25 °C), at pH 5.5-10.0 (optimum, pH 6.5-7.5) and in the presence of 1-5 % (w/v) NaCl (optimum, 2 %). Strain S1(T) contained Q-8 as the sole respiratory quinone and C16 : 1ω7c/C16 : 1ω6c and C16 : 0 as the predominant cellular fatty acids. The genomic DNA G+C content was 40.1 mol% (Tm). Phylogenetic analysis based on 16S rRNA gene sequences placed strain S1(T) in the genus Colwellia, and it formed a distinct lineage in the phylogenetic tree together with Colwellia meonggei MA1-3(T), Colwellia aestuarii SMK-10(T), Colwellia polaris 537(T) and Colwellia chukchiensis BCw111(T), with 97.7, 96.1, 95.9 and 95.0 % 16S rRNA gene sequence similarity to these strains, respectively. DNA-DNA relatedness of strain S1(T) to Colwellia meonggei MA1-3(T) was 23.5±3.6 %. On the basis of the phylogenetic and phenotypic evidence, strain S1(T) is considered to represent a novel species of the genus Colwellia, for which the name Colwellia aquaemaris sp. nov. is proposed. The type strain is S1(T) ( = CGMCC 1.12165(T) = JCM 18479(T)).

  7. Stability of therapeutic albumin solutions used for molecular adsorbent recirculating system-based liver dialysis.

    PubMed

    De Bruyn, Tom; Meijers, Björn; Evenepoel, Pieter; Laub, Ruth; Willems, Ludo; Augustijns, Patrick; Annaert, Pieter

    2012-01-01

    Mounting evidence suggests beneficial effects of albumin dialysis-based liver support in patients suffering from acute-on-chronic liver failure. Molecular adsorbent recirculating system (MARS) is a nonbiological liver support device, based on the exchange of albumin-bound toxins between the patient's blood and a 20% human serum albumin solution in a secondary circuit. Bound toxins are continuously removed from the circulating albumin by exposure to activated charcoal and an ion-exchange resin. The aim of the present in vitro study was to determine the impact of exposure to charcoal and resin on the ligand binding properties of albumins, containing various levels of stabilizers and obtained from different suppliers (Baxter, CAF-DCF [Red Cross], and Sigma-Aldrich). Albumin binding properties were assessed by measuring equilibrium binding properties of warfarin, diazepam, and salicylate before and after incubation (for up to 7 h) with adsorbing materials; albumin-associated esterase-like activities were also determined. Notable changes in albumin binding upon incubation with adsorbing materials were only observed when using warfarin as a ligand. Affinity of warfarin for the Baxter and Sigma albumins showed a pronounced decrease (higher K(d) ) after the 1-7-h exposure to charcoal or resin. In the absence of adsorbing materials, similar effects were found, indicating that incubation time per se affects albumin binding properties. Following exposure to resin, Baxter albumin binding capacity (B(max)) increased about twofold. For albumin obtained from CAF-DCF, binding affinity and capacity for warfarin were constant under all conditions tested. Esterase-like activities associated with these albumins were either maintained or enhanced (up to 2.5-fold in case of Sigma albumin) following 7-h incubations with adsorbing materials. Our data suggest limited direct influence of the presence of stabilizers in therapeutic albumin solutions on baseline binding properties of human

  8. Florfenicol residues in Rainbow Trout after oral dosing in recirculating and flow-through culture systems

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Hess, Karina R.; Bernady, Jeffry A.; Gaikowski, M. P.; Whitsel, Melissa; Endris, R. G.

    2014-01-01

    Aquaflor is a feed premix for fish containing the broad spectrum antibacterial agent florfenicol (FFC) incorporated at a ratio of 50% (w/w). To enhance the effectiveness of FFC for salmonids infected with certain isolates of Flavobacterium psychrophilum causing coldwater disease, the FFC dose must be increased from the standard 10 mg·kg−1 body weight (BW)·d−1 for 10 consecutive days. A residue depletion study was conducted to determine whether FFC residues remaining in the fillet tissue after treating fish at an increased dose would be safe for human consumption. Groups of Rainbow Trout Oncorhynchus mykiss (total n = 144; weight range, 126–617 g) were treated with FFC at 20 mg·kg−1 BW·d−1 for 10 d in a flow-through system (FTS) and a recirculating aquaculture system (RAS) each with a water temperature of ∼13°C. The two-tank RAS included a nontreated tank containing 77 fish. Fish were taken from each tank (treated tank, n = 16; nontreated tank, n = 8) at 6, 12, 24, 48, 72, 120, 240, 360, and 480 h posttreatment. Florfenicol amine (FFA) concentrations (the FFC marker residue) in skin-on fillets from treated fish were greatest at 12 h posttreatment (11.58 μg/g) in the RAS and were greatest at 6 h posttreatment (11.09 μg/g) in the FTS. The half-lives for FFA in skin-on fillets from the RAS and FTS were 20.3 and 19.7 h, respectively. Assimilation of FFC residues in the fillets of nontreated fish sharing the RAS with FFC-treated fish was minimal. Florfenicol water concentrations peaked in the RAS-treated tank and nontreated tanks at 10 h (453 μg/L) and 11 h (442 μg/L) posttreatment, respectively. Monitoring of nitrite concentrations throughout the study indicated the nitrogen oxidation efficiency of the RAS biofilter was minimally impacted by the FFC treatment.

  9. Effect of stocking density on performances of juvenile turbot ( Scophthalmus maximus) in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Li, Xian; Liu, Ying; Blancheton, Jean-Paul

    2013-05-01

    Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weight±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m2) for 10 weeks in RAS at 23±1°C. Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m2 (final: 7.25 and 14.16 kg/m2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.

  10. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  11. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-08-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report.

  12. Transport behavior of surrogate biological warfare agents in a simulated landfill: effect of leachate recirculation and water infiltration.

    PubMed

    Saikaly, Pascal E; Hicks, Kristin; Barlaz, Morton A; de Los Reyes, Francis L

    2010-11-15

    An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD.

  13. Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell

    SciTech Connect

    Olivier, Franck . E-mail: franck.olivier@ujf-grenoble.fr; Gourc, Jean-Pierre . E-mail: gourc@ujf-grenoble.fr

    2007-07-01

    The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m{sup 3} instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard to both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.

  14. Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell.

    PubMed

    Olivier, Franck; Gourc, Jean-Pierre

    2007-01-01

    The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m3 instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard to both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.

  15. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation.

    PubMed

    Cavinato, C; Bolzonella, D; Fatone, F; Cecchi, F; Pavan, P

    2011-09-01

    The optimization of a two-phase thermophilic anaerobic process treating biowaste for hydrogen and methane production was carried out at pilot scale using two stirred reactors (CSTRs) and without any physical/chemical pre-treatment of inoculum. During the experiment the hydrogen production at low hydraulic retention time (3d) was tested, both with and without reject water recirculation and at two organic loading rate (16 and 21 kgTVS/m3 d). The better yields were obtained with recirculation where the pH reached an optimal value (5.5) thanks to the buffering capacity of the recycle stream. The specific gas production of the first reactor was 51 l/kgVS(fed) and H2 content in biogas 37%. The mixture of gas obtained from the two reactors met the standards for the biohythane mix only when lower loading rate were applied to the first reactor, with a composition of 6.7% H2, 40.1% CO2 and 52.3% CH4 the overall SGP being 0.78 m3/kgVS(fed).

  16. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system.

    PubMed

    Prehn, Jonas; Waul, Christopher K; Pedersen, Lars-Flemming; Arvin, Erik

    2012-07-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS's. The aim of this study was to determine the impact of hydraulic film diffusion on the nitrification rate in a submerged biofilter. Using an experimental batch reactor setup with recirculation, active nitrifying biofilter units from a RAS were exposed to a range of hydraulic flow velocities. Corresponding nitrification rates were measured following ammonium chloride, NH₄Cl, spikes and the impact of hydraulic film diffusion was quantified. The nitrification performance of the tested biofilter could be significantly increased by increasing the hydraulic flow velocity in the filter. Area based first order nitrification rate constants ranged from 0.065 m d⁻¹ to 0.192 m d⁻¹ for flow velocities between 2.5 m h⁻¹ and 40 m h⁻¹ (18 °C). This study documents that hydraulic film diffusion may have a significant impact on the nitrification rate in fixed film biofilters with geometry and hydraulic flows corresponding to our experimental RAS biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems.

  17. Biogas recirculation for simultaneous calcium removal and biogas purification within an expanded granular sludge bed system treating leachate.

    PubMed

    Luo, Jinghuan; Lu, Xueqin; Liu, Jianyong; Qian, Guangren; Lu, Yongsheng

    2014-12-01

    Biogas, generated from an expanded granular sludge bed (EGSB) reactor treating municipal solid waste (MSW) leachate, was recirculated for calcium removal from the leachate via a carbonation process with simultaneous biogas purification. Batch trials were performed to optimize the solution pH and imported biogas (CO2) for CaCO3 precipitation. With applicable pH of 10-11 obtained, continuous trials achieved final calcium concentrations of 181-375 mg/L (removal efficiencies≈92.8-96.5%) in the leachate and methane contents of 87.1-91.4% (purification efficiencies≈65.4-82.2%) in the biogas. Calcium-balance study indicates that 23-986 mg Ca/d was released from the bio-system under the carbonized condition where CaCO3 precipitating was moved outside the bioreactor, whereas 7918-9517 mg Ca/d was trapped into the system for the controlled one. These findings demonstrate that carbonation removal of calcium by biogas recirculation could be a promising alternative to pretreat calcium-rich MSW leachate and synergistically to improve methane content.

  18. Combined adsorption and degradation of the off-flavor compound 2-methylisoborneol in sludge derived from a recirculating aquaculture system.

    PubMed

    Azaria, Snir; Nir, Shlomo; van Rijn, Jaap

    2017-02-01

    Off-flavor in fish poses a serious threat for the aquaculture industry. In the present study, removal of 2-methylisoborneol (MIB), an off-flavor causing compound, was found to be mediated by adsorption and bacterial degradation in sludge derived from an aquaculture system. A numerical model was developed which augmented Langmuir equations of kinetics of adsorption/desorption of MIB with first order degradation kinetics. When laboratory-scale reactors, containing sludge from the aquaculture system, were operated in a recirculating mode, MIB in solution was depleted to undetectable levels within 6 days in reactors with untreated sludge, while its depletion was incomplete in reactors with sterilized sludge. When operated in an open flow mode, removal of MIB was significantly faster in reactors with untreated sludge. Efficient MIB removal was evident under various conditions, including ambient MIB levels, flow velocities and sludge loads. When operated in an open flow mode, the model successfully predicted steady MIB removal rates with time. During steady state conditions, most of the MIB removal was found to be due to microbial degradation of the adsorbed MIB. Findings obtained in this study can be used in the design of reactors for removal of off-flavor compounds from recirculating aquaculture systems.

  19. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  20. [Optimization of nitrate recirculation flow and external carbon dosage integrated control for A/O biological nitrogen removal process].

    PubMed

    Ma, Yong; Peng, Yong-Zhen; Sun, Hong-Wei

    2008-05-01

    In order to improve A/O process denitrification efficiency, five integrated control strategies of nitrate recirculation flow and external carbon dosage for denitrification were proposed and evaluated using the COST/IWA simulation Benchmark. Results show that control strategy No.1 is the best integrated control strategies from both external carbon consumption, effluent quality, and the stability of controller. It comprises two feedback control loops: one is to determine the flow rate of external carbon source, keeping the nitrate concentration at the end of anoxic zone at a pre-specified level 2 mg/L, and the other is to adjust the flow rates of the nitrate recirculation to keep the nitrate concentration at the end of the aerobic zone at a pre-specified level based on the effluent quality (usually 8-12 mg/L). This strategy can guarantee highly effective use of anoxic denitrification capacity in the low-load condition, and meet effluent discharge standards through carbon dosage in the high-load condition.

  1. Influence of alkalinity and VFAs on the performance of an UASB reactor with recirculation for the treatment of Tequila vinasses.

    PubMed

    López-López, Alberto; León-Becerril, Elizabeth; Rosales-Contreras, María Elena; Villegas-García, Edgardo

    2015-01-01

    The main problem linked to the stability of upflow anaerobic sludge blanket (UASB) reactors during the treatment of Tequila vinasse is the high acidity and the null alkalinity present in this effluent. This research evaluates the effect of alkalinity and volatile fatty acids (VFAs) concentration on the performance of an UASB reactor with recirculation of the effluent for removing organic matter and biogas production from Tequila vinasses. Recirculation of the effluent reduces the impact of VFAs and organic matter concentration present in the influent, inducing the stability of the reactor. The UASB reactor was operated during 235 days at organic loading rates from 2.5 to 20.0 kg m(-3) d(-1), attaining a removal efficiency of COD greater than 75% with a methane yield of 335 ml CH4 g(-1) COD at SPT, maintaining a ratio of VFAs/Alk ≤ 0.5. Therefore, an optimal ratio of VFAs/Alk was established for the system operating in stable conditions for the treatment of Tequila vinasses. Under these conditions, the alkalinity was recuperated by the system itself, without the addition of external alkalinity.

  2. Phosphatase activity and specific methanogenic activity in an anaerobic reactor treating sludge from a brackish recirculation aquaculture system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Spanjers, Henri; van Lier, Jules B

    2013-01-01

    Anaerobic treatment of high salinity sludge from marine/brackish recirculation aquaculture systems is potentially limited by inhibition of enzymatic activities and cell lysis resulting from high osmotic pressures. To further address these limitations the following investigations were conducted: effect of salinity on phosphatase activity (PA), soluble microbial products (SMP) production, and presence of extracellular polymeric substances (EPS); effect of iron (III) chloride (FeCl3) on PA and specific methanogenic activity (SMA); effect of addition of the compatible solute glycine betaine (GB) and potassium on PA, as well as on SMP and EPS production, all under saline conditions. The results show that salinity has different effects on PA of anaerobes under starvation and feeding conditions. FeCl3 increased the SMA of the sludge by 22.5% at 100 mg FeCl3/L compared with a control group (0 mg FeCl3/L). Furthermore, results of analysis of variance tests show that betaine increased the polysaccharide content of EPS and polypeptide content of SMP. However, addition of 1 mM potassium chloride did not show a significant effect on EPS and SMP composition. In conclusion, anaerobic digestion of salty sludges from a brackish aquaculture recirculation system may not be negatively affected by FeCl3 addition to concentrate waste streams, whereas GB boosts the production of SMP and EPS.

  3. Characterizing the structural diversity of a bacterial community associated with filter materials in recirculating aquaculture systems of Scortum barcoo.

    PubMed

    Zhu, Peng; Ye, Yangfang; Pei, Fangfang; Lu, Kaihong

    2012-03-01

    The bacterial community structure associated with filter materials in the recirculating aquaculture system of Scortum barcoo was investigated using the 16S rRNA gene clone library method. Preliminary results showed that the clone library constructed from the initial operation condition was characterized by 31 taxa of bacteria belonging to eight phyla including Proteobacteria, Acidobacteria, Firmicutes, Fusobacteria, Sphingobacteria, Bacteroidetes, Verrucomicrobiae, and Actinobacteria. There were 14 taxa of bacteria belonging to four phyla including Proteobacteria, Acidobacteria, Planctomycetacia, and Nitrospirae from the stable operation condition where the water quality was well maintained. Nitrospirae was only found under the stable operation condition in this study. Our results further indicated that Nitrospira was dominated by members of the Nitrospira sp. lineages, with a minor fraction related to Nitrospira moscoviensis and an unknown Nitrospira cluster. These great differences of both diversity and composition between two operation conditions suggested that the composition of the microbial community varied with the degree of water quality in the recirculating aquaculture system of S. barcoo.

  4. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    PubMed

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems.

  5. Aerobic and anoxic growth and nitrate removal capacity of a marine denitrifying bacterium isolated from a recirculation aquaculture system.

    PubMed

    Borges, Maria-Teresa; Sousa, André; De Marco, Paolo; Matos, Ana; Hönigová, Petra; Castro, Paula M L

    2008-01-01

    Bacterial biofilters used in marine recirculation aquaculture systems need improvements to enhance nitrogen removal efficiency. Relatively little is known about biofilter autochthonous population structure and function. The present study was aimed at isolating and characterizing an autochthonous denitrifying bacterium from a marine biofilter installed at a recirculation aquaculture system. Colonization of four different media in a marine fish farm was followed by isolation of various denitrifying strains and molecular classification of the most promising one, strain T2, as a novel member of the Pseudomonas fluorescens cluster. This strain exhibits high metabolic versatility regarding N and C source utilization and environmental conditions for growth. It removed nitrate through aerobic assimilatory metabolism at a specific rate of 116.2 mg NO(3)-N g dw(-1) h(-1). Dissimilatory NO(3)-N removal was observed under oxic conditions at a limited rate, where transient NO(2)-N formed represented 22% (0.17 mg L(-1)) of the maximum transient NO(2)-N observed under anoxic conditions. Dissimilatory NO(3)-N removal under anoxic conditions occurred at a specific rate of 53.5 mg NO(3)-N g dw(-1) h(-1). The isolated denitrifying strain was able to colonize different materials, such as granular activated carbon (GAC), Filtralite and Bioflow plastic rings, which allow the development of a prototype bioreactor for strain characterization under dynamic conditions and mimicking fish-farm operating conditions.

  6. Developing a facility strategy.

    PubMed

    Capps, D M

    1994-05-01

    Successful planning for capital investment relies upon the ability of the management team to establish a cogent and comprehensive direction for facility development. The selection of an appropriate strategy integrates multiple issues: mission, service needs of the community, the external environment, the organization's ethos, current physical resources, operational systems, and vision. This paper will identify and discuss key components and data integral to formulating a facility strategy that outlines the basic direction for developing a facility master plan. The process itself will be presented as a working methodology that can be applied to the organization's resources and vision to generate a coherent facility strategy.

  7. Relocatale Learning Facilities.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This document supplies guidelines for the future design of structures within one category of relocatable learning facilities--divisible facilities. The current use and average cost of portables; and teacher, student, and community reactions are discussed. Four types of relocatable structures are described: portable, mobile, divisible, and…

  8. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  9. Florida Educational Facilities, 2000.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 2000, including photographs and floor plans. The facilities profiled are:J. R. Arnold High School (Bay County); Falcon Cove Middle School (Broward); Floranada Elementary School (Broward); Lyons Creek Middle School (Broward); Parkside Elementary School…

  10. BIBLIOGRAPHY OF FACILITIES INFORMATION.

    ERIC Educational Resources Information Center

    American Association of Junior Colleges, Washington, DC.

    PERSONNEL OF THE FACILITIES INFORMATION SERVICE OF THE AMERICAN ASSOCIATION OF JUNIOR COLLEGES COMPILED THIS LISTING OF BOOKS, ARTICLES, MONOGRAPHS, AND OTHER PRINTED MATERIALS RELEVANT TO JUNIOR COLLEGE FACILITIES PLANNING, DESIGN, AND CONSTRUCTION. IN ADDITION TO A "GENERAL" CATEGORY, REFERENCES ARE GROUPED UNDER HEADINGS OF AUDITORIUMS, COLLEGE…

  11. Shaping Campus Facilities.

    ERIC Educational Resources Information Center

    Calcara, James R.

    1999-01-01

    Explains how colleges and universities, faced with emerging trends and increased competition, can utilize their facilities as strategic resources. Examines technology changes in the classroom and the effects on user needs, the trend toward real-world learning environments, and facility design planning that responds to social interaction and…

  12. Future User Facilities

    NASA Astrophysics Data System (ADS)

    Riedinger, Lee

    2002-10-01

    The southeastern part of the U.S. is blessed with an array of national user facilities that are accessible to scientists in the region. The Oak Ridge National Laboratory (ORNL) operates 17 officially designated user facilities for the Department of Energy, the Jefferson Lab operates the Continuous Electron Beam Accelerator Facility (CEBAF), and a number of universities have forefront experimental facilities that are widely accessible. The long lead time necessary to originate and construct new user facilities makes it imperative to consider the needs of the physical sciences 10 to 20 years in the future. The construction of the Spallation Neutron Source at ORNL positions the southeast to lead in neutron science. Upgrades are desired for CEBAF and the Holifield Radioactive Ion Beam Facility (ORNL). The more future possibilities are less clear, but are becoming a focus of strategic planning among the national laboratories. Possibilities may arise in the U.S. for next-generation light sources, large computational centers, advanced fusion devices, nanotechnology centers, and perhaps facilities that are not yet contemplated. A regional discussion of the needs for large-scale user facilities in the southeast is important.

  13. Long Range Facilities Planning

    DTIC Science & Technology

    1982-04-01

    Richard Muther range facilities Many alterna- analysis indi- cated that if NASSCO ever expected to surpass its output of the last several years, current...Marine Engineers (SNAME) SP-1 Panel Meeting. The Maritime Administration had Richard Muther (an authority on long range facility planning) address a

  14. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine.

    PubMed

    Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D

    2012-12-01

    Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine

  15. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainbow trout Oncorhynchus mykiss performance and water quality were evaluated and compared within six replicated 9.5 cubic meter water recirculating aquaculture systems (WRAS) operated with and without ozone at various water exchange rates. Three separate studies were conducted: 1) low water exchan...

  16. Production characteristics of body composition of Florida pompano reared to market size at two different densities in low salinity recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of culture density on production characteristics and body composition of Florida pompano Trachinotus carolinus reared to market size using recirculating aquaculture systems (RAS) at a salinity of 5 g/L was evaluated in a 110 day growth trial (water temperature, 27.0-28.5 C). Juvenile pom...

  17. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...

  18. Evaluating standard operating procedures to mitigate off-flavor from Atlantic salmon Salmo salar cultured in a semi-commercial scale recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire “earthy” or “musty” off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  19. Design and performance of recirculating systems for Atlantic salmon (Salmo salar) at the USDA ARS National Cold Water Marine Aquaculture Center (Franklin, Maine)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atlantic salmon cultured in the NCWMAC breeding program have grown well in the fish culture systems during the first 3 years of operation. The systems were operated at approximately 98% reuse (2% makeup water on the basis of flow rate). The water recirculating systems maintained acceptable water qua...

  20. Investigation on the Effect of Nozzle Number on the Recirculation Rate and Mixing Time in the RH Process Using VOF + DPM Model

    NASA Astrophysics Data System (ADS)

    Ling, Haitao; Li, Fei; Zhang, Lifeng; Conejo, Alberto N.

    2016-06-01

    A mathematical model has been developed to explain the effect of the number of nozzles on recirculation flow rate in the RH process. Experimental data from water modeling were employed to validate the mathematical model. The experimental data included the velocity fields measured with a particle image velocimetry technique and mixing time. The multiphase model volume of fluid was employed to allow a more realistic representation of the free surface in the vacuum chamber while injected argon bubbles were treated as discrete phase particles and modeled using the discrete phase model. Interfacial forces between bubbles and liquid phase were considered, including the lift force. The simulations carried out with the mathematical model involved changes in the gas flow rate from 12 to 36 L/min and a number of nozzles from 4 to 8. The results indicated a logarithmic increment in the recirculation rate as the gas flow rate increased and also corresponded with an exponential decrease in mixing time. The plume area and liquid velocities resulting from individual nozzles were computed. A maximum optimum recirculation rate was defined based on a mechanism proposed to explain the effect of gas flow rate and the number of nozzles on the recirculation rate.

  1. Foam fractionation efficiency for particulate matter removal from a low salinity, lowhead recirculating aquaculture system utilized for the culture of red drum, Sciaenops ocellatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recirculating aquaculture systems (RAS), the water which is treated and reused must be of such quality to maintain the culture organism in a healthy and fast growing condition, especially as such systems are intensified. Managing particulate matter and different chemical compounds is a key factor...

  2. Investigating the influence of nitrate nitrogen on post-smolt Atlantic salmon Salmo salar reproductive physiology in water recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An 8-month trial was carried out to assess the effects of NO3-N on a variety of performance and physiological outcomes in post-smolt Atlantic salmon Salmo salar (initial weight 102 plus or minus 1 g) reared in six replicated laboratory-scale water recirculation aquaculture systems (RAS). Three RAS r...

  3. Evaluation of depuration procedures to mitigate off-flavor from harvest size Atlantic Salmon Salmo Salar cultured in a land-based recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish cultured within water recirculating aquaculture systems (RAS) can develop “earthy” or “musty” off-flavors in their flesh due to the bioaccumulation of the compounds geosmin and 2-methylisoborenol (MIB), respectively, that are produced by certain bacteria (e.g., actinomycetes). These bacteria an...

  4. Effects of pH on biomass, geosmin, and 2-methylisoborneol production and cellular activity by Streptomyces luridiscabiei isolated from a rainbow trout recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainbow trout (Oncorhynchus mykiss) grown in recirculating aquaculture systems (RAS) can acquire “earthy” and “musty” taints due to bioaccumulation of geosmin and 2-methyisoborneol (MIB), respectively, in the fish flesh. Certain species of actinomycetes which produce these compounds are attributed a...

  5. Evaluation of ozonation on levels of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout Oncorhynchus mykiss from water recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common “off-flavors” in fish cultured in water recirculation aquaculture systems (WRAS) are “earthy” and “musty” due to the presence of the off-flavor metabolites geosmin and 2-methylisoborneol (MIB), respectively. Previously, ozone addition has been applied to WRAS at relatively low doses to break...

  6. Temperature effects on biomass, geosmin, and 2-methylisoborneol production and cellular activity by Nocardia spp. and Streptomyces spp. isolated from rainbow trout recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isolates of Nocardia cummidelens, Nocardia fluminea, Streptomyces albidoflavus, and Streptomyces luridiscabiei attributing to geosmin-related off-flavor in rainbow trout (Oncorhynchus mykiss) raised in recirculating aquaculture systems (RAS) were evaluated for the effect of temperature (10-30 degree...

  7. Prototype recirculating aquaculture system design for juvenile red drum production as part of the Florida Fish and Wildlife Conservation commission’s Hatchery Network Initative

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype recirculating aquaculture system for the production of red drum (Sciaenops ocellatus) includes four 10-foot diameter by four foot height tanks for a tank volume of approximately 300 ft3 each (2200 gallons). Water flow for the system is provided for by a low head propeller pump which prov...

  8. The impact of water exchange rate and treatment processes on water-borne hormones in recirculation aquaculture systems containing sexually maturing Atlantic salmon Salmo salar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A controlled seven-month study was conducted in six replicated water recirculation aquaculture systems (WRAS) to assess post-smolt Atlantic salmon (Salmo salar) performance in relation to WRAS water exchange rate. Unexpectedly high numbers of precocious sexually mature fish were observed in all WRAS...

  9. A low energy, bio-secure, 'hybrid' recirculation system incorporating air lift pumps for water circulation, aeration, and CO2 degassing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ‘Hybrid’ recirculating aquaculture system design utilizes elements of both a ‘Centralized’ design concept with a single water treatment system for a number of fish tanks and the ‘Modular’ design concept which employs a individual treatment system for each fish culture tank. The ‘Hybrid’ recirculat...

  10. Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research indicates that rainbow trout (Oncorhynchus mykiss) begin to exhibit health and welfare problems when cultured within water recirculating aquaculture systems (WRAS) operated at low exchange (6.7 days hydraulic retention time) and a mean feed loading rate of 4.1 kg feed/m3 daily make...

  11. Albumin dialysis with molecular adsorbent recirculating system (MARS) for the treatment of hepatic encephalopathy in liver failure.

    PubMed

    Kobashi-Margáin, Ramón A; Gavilanes-Espinar, Juan G; Gutiérrez-Grobe, Ylse; Gutiérrez-Jiménez, Angel A; Chávez-Tapia, Norberto; Ponciano-Rodríguez, Guadalupe; Uribe, Misael; Méndez Sánchez, Nahum

    2011-06-01

    Acute, acute-on-chronic and chronic liver diseases are major health issues worldwide, and most cases end with the need for liver transplantation. Up to 90% of the patients die waiting for an organ to be transplanted. Hepatic encephalopathy is a common neuropsychiatric syndrome that usually accompanies liver failure and impacts greatly on the quality of life. The molecular adsorbent recirculating system (MARS) is a recently developed form of artificial liver support that functions on a base of albumin dialysis. It facilitates the dialysis of albumin-bound and water-soluble toxins, allowing the patient to survive and even improving some clinical features of liver failure. The following manuscript reviews the technical features of MARS operation and some of the clinical trials that analyze the efficacy of the system in the therapy of liver diseases.

  12. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  13. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system.

    PubMed

    Doğruöz, Nihal; Göksay, Duygu; Ilhan-Sungur, Esra; Cotuk, Ayşin

    2009-09-01

    Some bacteria have a higher tendency to produce biofilm than others. Especially, Pseudomonas and Aeromonas strains are acknowledged to be pioneer colonizers and are predominant in biofilm formation. We examined biofilm formation and first attachment maintance of biofilms of Pseudomonas spp., Pseudomonas aeruginosa, Aeromonas spp, sulphate reducing bacteria and filamentous fungi. A simulated recirculating cooling-water system was used. Heterotrophic bacteria counts on galvanized steel and glass surfaces rose during the tidy period of 720 hours. In addition, we determined that although Pseudomonas spp., Pseudomonas aeruginosa and Aeromonas spp. were the pioneer colonizers, they surprisingly could not be determined in the biofilms on both types of surface after 456 hours. Sulphate reducing bacteria were observed in biofilms on both surfaces from the outset of the experiments. Filamentous fungi were seen on the galvanized steel and glass surfaces after 0.5 h.

  14. Novel concept development of an internal recirculation catalyst for mild gasification. Progress report, March 1, 1988--May 31, 1988

    SciTech Connect

    Knight, R.A.; Babu, S.P.

    1988-09-01

    The objective of this program is to provide an overall evaluation of a novel process concept for mild gasification by completing work in three major tasks: (1) Laboratory-Scale Experiments, (2) Bench-Scale Tests, and (3) Proof-of-Concept Tests and Evaluation (optional). During this quarter, experimental work involving zinc chloride as a potential recirculating catalyst for coal, initiated in the previous quarter, was continued. The design of an all-quartz laboratory-scale isothermal free-fall reactor was completed, and construction was begun. One free-fall experiment was performed in an existing stainless-steel free-fall reactor with methanol-treated Illinois No. 6 high-volatile bituminous coal. 1 ref., 2 figs., 2 tabs.

  15. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    NASA Astrophysics Data System (ADS)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  16. A recirculating delayed self-heterodyne method using a Mach-Zehnder modulator for kHz-linewidth measurement

    NASA Astrophysics Data System (ADS)

    Deng, Shuo; Li, Min; Gao, Hongyun; Dai, Yawen

    2016-09-01

    A laser linewidth measurement method which uses a Mach-Zehnder electro-optic modulator (MZM) is proposed in a loss-compensated recirculating delayed self-heterodyne interferometer (LC-RDSHI). Compared with the traditional acousto-optic modulator (AOM), the electro-optic modulator has the merits of broader bandwidth, lower insertion loss, higher extinction ratio and thus, a wider application. A theoretical analysis shows that the power spectrum curve of the novel measurement system is a Lorentzian line, which fits well with experiment. The linewidth is measured to be 137 ± 7 kHz at a frequency shift of 4 GHz. Measurement of a distributed feedback Bragg (DFB) laser has manifested that the linewidth broadens from 98.5 kHz to 137.4 kHz as the operating temperature changes by 16 °C. This work will allow investigation of narrow linewidth semiconductor and fiber laser stability.

  17. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Astrophysics Data System (ADS)

    El-Kaddah, N.; Szekely, J.

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  18. Investigation of the Makeup, Source, and Removal Strategies for Total Organic Carbon in the Oxygen Generation System Recirculation Loop

    NASA Technical Reports Server (NTRS)

    Bowman, Elizabeth M.; Carpenter, Joyce; Roy, Robert J.; Van Keuren, Steve; Wilson, Mark E.

    2015-01-01

    Since 2007, the Oxygen Generation System (OGS) on board the International Space Station (ISS) has been producing oxygen for crew respiration via water electrolysis. As water is consumed in the OGS recirculating water loop, make-up water is furnished by the ISS potable water bus. A rise in Total Organic Carbon (TOC) was observed beginning in February, 2011, which continues through the present date. Increasing TOC is of concern because the organic constituents responsible for the TOC were unknown and had not been identified; hence their impacts on the operation of the electrolytic cell stack components and on microorganism growth rates and types are unknown. Identification of the compounds responsible for the TOC increase, their sources, and estimates of their loadings in the OGA as well as possible mitigation strategies are presented.

  19. 17. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Topside facility, interior of facility manager's room, view towards south. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  20. 18. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Topside facility, interior of facility manager's room, view towards west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO