Science.gov

Sample records for reclaimed asphalt pavement

  1. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  2. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  3. Production variability analysis of hot-mixed asphalt concrete containing reclaimed asphalt pavement. Final research report

    SciTech Connect

    Solaimanian, M.; Kennedy, T.W.

    1995-02-01

    A research project was undertaken to evaluate the production and construction variability of Hot Mix Asphalt Concrete (HMAC) containing high quantities of reclaimed asphalt pavement (RAP) material. Four construction projects were selected for this purpose. Two of the projects used 35 percent RAP material (both type-C mixes), while the other two used 40 percent (a type-B mix) and 50 percent (a type-D mix) of the RAP material, respectively. The projects differed in sizes, with total construction tonnage ranging from 10.9 million kg to 27.2 million kg (12,000 to 30,000 tons). In all cases, dedicated stockpiles of RAP material were used. Analysis was performed on the results obtained from the tests. The gradation and asphalt content deviations, air voids, penetration and viscosities, and stabilities, were included in the analysis. Pay adjustment factors were determined for gradation and asphalt content deviation, as well as for air voids (based on TxDOT Specification 3007). In general, these high-percent RAP projects indicated a variability higher than that of a typical HMAC without RAP. The pay adjustment factors for gradation and asphalt content deviation were lower than typical values. The construction gradations were finer than the job-mix formula target gradations, possibly a result of aggregate crushing during the milling operation.

  4. Leaching of heavy metals and polycyclic aromatic hydrocarbons from reclaimed asphalt pavement.

    PubMed

    Legret, M; Odie, L; Demare, D; Jullien, A

    2005-09-01

    The work presented herein displays the results of a study addressing environmental concerns related to the possible leaching of pollutants from reclaimed asphalt pavement. Samples from an experimental site were tested in both static batch tests and column leaching tests. Selected heavy metals and polycyclic aromatic hydrocarbons (PAHs) were analysed in leachates. The results have allowed us to consider the leaching of pollutants to be rather weak for most of the parameters studied. Concentrations in solutions from batch leaching tests were generally below the EC limit values for drinking water. Pollutant concentrations from column experiments were higher in solutions as of the initial leaching stages, but then decreased rapidly and wound up at values below the detection limits. The factors influencing results proved to be the material grain size and the percolation water flow rate. Results from leaching experiments performed on core samples taken on two rebuilt road section pavements, containing 10% and 20% of reclaimed asphalt pavement, respectively, confirmed the results obtained from the batch and column experiments.

  5. Effect of asphalt rejuvenating agent on aged reclaimed asphalt pavement and binder properties

    NASA Astrophysics Data System (ADS)

    Sabahfar, Nassim

    Hot in-place recycling (HIR) preserves distressed asphalt pavements while minimizing use of virgin binder and aggregates. The final quality of an HIR mixture depends on characteristics of the original binder, aging of the pavement surface during service, and whether or not new binder or rejuvenator was added to the mixture. An HIR mixture should maintain desired properties for additional service periods, making asphalt binder modification inevitable. Asphalt binder modifications in HIR are commonly done by adding an asphalt rejuvenating agent (ARA). However, ARA may adversely affect the qualities of new HIR and potentially fail to improve the quality of the final surface. The objective of this research was to investigate the effects of rejuvenation on HIR performance characteristics by assessing critical performance indicators such as stiffness, permanent deformation, moisture susceptibility, and cracking resistance. A two-step experimental program was designed that included mechanical property measurements of the HIR mixture and rheological properties of the extracted binder. The level of mixing occurring between new and aged binder with ARA was also investigated. HIR Samples were obtained from three Kansas Department of Transportation projects, and Hamburg wheel-tracking device, dynamic modulus, flow number, Texas overlay, thermal stress restrained specimen, and moisture susceptibility tests were conducted on mixtures with and without ARA. Rheological studies on the extracted binder included dynamic shear rheometer and bending beam rheometer tests. The miscibility of new and aged binder was investigated using scanning electron microscope (SEM) images, energy dispersive X-ray spectroscopy (EDXS), and the exudation droplet test (EDT). Study results showed significant variability in the mechanical performance of HIR mixtures, which was attributed to the variability of binders as observed in EDT, SEM and EDXS studies. Life cycle cost analysis (LCCA) showed that HIR

  6. Recommendations and strategies for using reclaimed asphalt pavement in the Flemish Region based on a first life cycle assessment research

    NASA Astrophysics Data System (ADS)

    Van den bergh, Wim; Kara, Patricia; Anthonissen, Joke; Margaritis, Alexandros; Jacobs, Geert; Couscheir, Karolien

    2017-09-01

    In Flanders, using Reclaimed Asphalt Pavement (RAP) is allowed in asphalt mixes for base layers. Primary economic and secondary laboratory-measured mechanical properties are given as justification for higher amounts in specific mixes. However, one should evaluate the performance of these mixes on long-term by environmental impact of the production until end-of-life. In this paper recommendations and strategies for using RA, based on current research, are discussed in a broader perspective such as using a carbon-footprint tool and warm-mix asphalt production in the Flemish Region. The paper aims to a wide discussion by reporting several outcomes of laboratory research, statistics and practical application in order to set a general strategy for the road engineering sector in the Flemish Region.

  7. Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement

    NASA Astrophysics Data System (ADS)

    Van Winkle, Clinton Isaac

    Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.

  8. Asphalt in Pavement Maintenance.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    Maintenance methods that can be used equally well in all regions of the country have been developed for the use of asphalt in pavement maintenance. Specific information covering methods, equipment and terminology that applies to the use of asphalt in the maintenance of all types of pavement structures, including shoulders, is provided. In many…

  9. Reclaimed manufacturer asphalt roofing shingles in asphalt mixtures. Final research report

    SciTech Connect

    Reed, A.B.

    1999-04-23

    The purpose of this project was to pave a test section using hot mix asphalt with roofing shingle pieces in the wearing and binder courses and to evaluate. The test project near Allentown, PA plus two other test projects in 1998 provide evidence of very good pavement performance. The bituminous concrete mix was modified with shredded shingles with a maximum size of 1/2 inch which added 1% of the asphalt content. The Department issued a statewide Provisional Specification titled Reclaimed Manufacturer Asphalt Roofing Shingles in Plant-Mixed Bituminous Concrete Courses'' on March 15, 1999. New manufacturer asphalt roofing shingle scrap including tab punch-outs can be successfully incorporated in bituminous concrete pavements if the shingles are shredded to 100% passing the 3/4 inch sieve. To take full advantage of the potential to replace a portion of the asphalt and therefore, reduce mix costs, shingles should be shredded to 100% passing minus 1/2 inch sieve.

  10. Asphalt pavement surfaces and asphalt mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    The papers in this volume, which deal with asphalt pavement surfaces and asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. The papers in Part 1 include discussions of pavement smoothness specifications and skidding characteristics. The first four papers in Part 2 were submitted in response to a call for papers for a session at the 75th Annual Meeting of the Transportation Research Board on low-temperature properties of hot-mix asphalt. The next eight are on the influence of volumetric and strength properties on the performance of hot-mix asphalt. In the following three papers, the topics covered are the complex modulus of asphalt concrete, cold in-place asphalt recycling, and polymer modification of asphalt pavements in Ontario. The last two papers were presented in a session on relationship of materials characterization to accelerated pavement performance testing.

  11. Investigation of factors affecting asphalt pavement recycling and asphalt compatibility

    SciTech Connect

    Venable, R.L.; Petersen, J.C.; Robertson, R.E.; Plancher, H.

    1983-03-01

    Both economic and environmental factors dictate that asphalt pavement be recycled. Many recycling projects have been completed using a variety of recycling additives, but little work has been done on the physiochemical aspects of pavement recycling. The present exploratory study was undertaken to better define the physiochemical variables of recycling. Objectives of the present study include: (1) to determine if molecular structuring in the asphalt binder could be observed in oxidized (air-aged) asphalt-aggregate briquets, and if so, how was structuring affected during briquits, and if so, how was structuring affected during briquet recycling and (2) to determine if recycling agents penetrate the strongly adsorbed asphalt layer on the aggregate surface. Differences were seen in asphalt component compatibility as judged by the state of peptization parameters. In extreme cases the values of the parameters correlated with properties of asphalts of known compatibility; however, a relationship between the parameters determined on a series of asphalts in pavements was not established. The parameters might be useful in evaluating additives for pavement recycling; however, more systems need to be studied to fully assess their potential usefulness. Finally, the parameters need to be correlated with performance-related measurements such as asphalt rheological and mix properties. Examination of the parameters and their changes on asphalt oxidative aging may also be informative with regard to asphalt durability inasmuch as oxidation-induced changes are a major cause of asphalt pavement failure.

  12. Diagnosis of moisture damage in asphalt pavements

    NASA Astrophysics Data System (ADS)

    Canning, Jacqueline S.; Niezrecki, Christopher; Birgisson, Bjorn

    2004-07-01

    One of the most common modes of premature failure of asphalt pavements is water damage. Moisture damage in hot-mix asphalt (HMA) pavements occurs when water infiltrates the pavement system, causing premature failure of hot-mix asphalt pavements, primarily through loss of adhesion between the asphalt binder and the aggregates. Loss of adhesion can lead to stripping of the asphalt film from the aggregate and raveling, where aggregates are dislodged from the pavement. The laboratory testing procedures currently available for testing HMA moisture susceptibility were primarily developed to determine the degree of resistance to moisture damage by a particular combination of asphalt and aggregate as well as compare mixes composed of different types and quantities of aggregate. These methods are all based on destructive testing. There is currently a need for innovative nondestructive testing technologies that can be used to identify and isolate the effects of water damage in mixtures. As a first step in the development of a non-destructive method to test HMA pavements, modal hammer tests were conducted on several test specimens of fine and coarse grained granite-based mixes commonly used by the Florida Department of Transportation (FDOT). The results of the testing indicate that there is a large frequency shift in the transfer function measurements for the damaged samples compared to the undamaged samples. The results imply that modal hammer testing may be used as a method to characterize the health of HMA pavements.

  13. Latex improvement of recycled asphalt pavement

    NASA Astrophysics Data System (ADS)

    Drennon, C.

    1982-08-01

    The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.

  14. Softening agents for recycling asphalt pavement

    SciTech Connect

    Sawatzky, H.; Clelland, F.I.; Farnand, B.A.; Houde, J. Jr.

    1993-08-10

    An asphaltic composition is described consisting essentially of: comminuted aged asphaltic pavement material; an effective amount, from about 2% to about 15 % by weight of a blend of an agent selected from the group consisting of a soft asphalt cement, a conventional asphalt cement, and a cutback asphalt, with a nitrogen-containing, adhesion-improving, anti-stripping agent comprising a sewage sludge-derived oil, or a fraction thereof, said sewage sludge-derived oil comprising a mixture of saturated aliphatic hydrocarbons, monoaromatic hydrocarbons, diaromatic hydrocarbons, polyaromatic hydrocarbons, polar compounds and basic, pyridene-soluble compounds, having the following elemental chemical composition: nitrogen, about 3.4% to about 5% by weight; oxygen, about 5.8% to about 6.9% by weight; sulfur, about 0.3% to about 0.8% by weight; hydrogen, about 9.7% to about 10.4%, and carbon, about 76.9% to about 79.8%.

  15. Full-Depth Asphalt Pavements for Parking Lots and Driveways.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The latest information for designing full-depth asphalt pavements for parking lots and driveways is covered in relationship to the continued increase in vehicle registration. It is based on The Asphalt Institute's Thickness Design Manual, Series No. 1 (MS-1), Seventh Edition, which covers all aspects of asphalt pavement thickness design in detail,…

  16. Pavement recycling. Executive summary and report

    SciTech Connect

    1995-10-01

    The Federal Highway Administration (FHWA) initiated Demonstration Project 39 (DP 39) Recycling Asphalt Pavements in June 1976. The project showed that asphalt pavement recycling was a technically viable rehabitation technique, and it was estimated that the use of reclaimed asphalt pavement (RAP) would amount to approximately 15 percent of the total hot-mix asphalt (HMA) production by the mid-1980s. It was expected that most of the asphalt pavement removed would be reused in new pavement construction or overlays.

  17. Rheo-mechanical model for self-healing asphalt pavement

    NASA Astrophysics Data System (ADS)

    Gömze, A. L.; Gömze, L. N.

    2017-01-01

    Examining the rheological properties of different asphalt mixtures at different temperatures, pressures and deformation conditions on the combined rheo-tribometers the authors have found that the generally used Burgers-model doesn’t explain the deformation properties of asphalt mixtures and pavements under loading forces and loading pressures. To understand better the rheological and deformation properties of such complex materials like asphalt mixtures and pavements the authors used Malvern Mastersizer X laser granulometer, Bruker D8 Advance X-ray diffractometer, Hitachi TM 1000 Scanning Elektronmicroscope, Tristar 3000 specific surface tester and the combined rheo-tribometer developed and patented by the authors. After the complex investigation of different asphalt mixtures the authors have found a new, more complex rheological model for the asphalts including self-healing asphalt pavements.

  18. Construction of an experimental sulfur-extended-asphalt pavement

    NASA Astrophysics Data System (ADS)

    Dodge, K. S.

    1982-07-01

    The design, placement and collection of initial data from a sulfur extended asphalt (SEA) pavement and a conventional pavement used as a control is documented. The SEA pavement used 30 percent sulfur by total weight of the binder. Mix temperatures, hot bin gradations, and toxic emissions were monitored at the plant and the site throughout placement. Aggregates were collected from the hot bin during production of the control and SEA mixes for use in a Marshall mix design. Cores were extracted from both SEA and control pavements 1 month after placement for laboratory testing. Pavement surface properties were also examined after 1 month of service.

  19. Use of scrap rubber in asphalt pavement surfaces. Special report

    SciTech Connect

    Eaton, R.A.; Roberts, R.J.; Blackburn, R.R.

    1991-12-01

    Scrap tire rubber was mixed into an asphalt concrete wearing course to study the effect of ice disbonding from the pavement surface under traffic. Rubber contents of 0, 3, 6, and 12% by weight were studied. Initial laboratory ice disbonding test results led to the development of a new paving material, Chunk Rubber Asphalt Concrete (CRAC), that uses larger pieces of rubber in a much denser asphalt concrete mix. Strength values doubled and ice disbonding performance was enhanced.

  20. Experimental Study on Color Durability of Color Asphalt Pavement

    NASA Astrophysics Data System (ADS)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  1. Detection of asphalt pavement cracks using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  2. Performance of recycled asphalt concrete airport pavement surfaces

    NASA Astrophysics Data System (ADS)

    Cline, G. D.; Hironaka, M. C.

    1986-10-01

    The objective of this research was to make an assessment of the relative performance of recycled versus new asphalt concrete pavement surfaces constructed for airport facilities. To make this assessment, pavement condition index (PCI) surveys and tests on core samples from the hot-mix recycled pavements located on the airports at Needles, California, and Valley City, North Dakota were conducted. Both pavements have a condition rating of very good. The survey and test data were compared with those for recycled highway and virgin material Navy airfield pavements. The recycle pavement at Needles is performing as good as those Navy pavements constructed with virgin material. The recycled pavement at Valley City has a higher deterioration rate than the Navy pavements but this could be attributed to the harsh climate found in North Dakota. The results of this study show that hot-mix recycling was successful at these airports but additional studies are required to determine the applicability of Asphalt Concrete (AC) recycling for reconstruction at all airports.

  3. An Approach for Nonlinear Fatigue Damage Evaluation in Asphalt Pavements

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Pabitra; Thongram, Sonika

    2016-09-01

    Fatigue due to vehicular loads is one of the primary distress mechanisms in asphalt pavements. It happens primarily due to deterioration in asphalt material with load repetitions. Degradation of asphalt material may be evaluated using different parameters. In view of degradation, the incremental damage in a given pavement section would be different for different repetitions, even with same loadings. Therefore, the damage progression becomes nonlinear with repetitions. Accounting such nonlinearity in damage accumulation, and based on different damage evaluation parameters, this paper presents an equivalent approach for fatigue damage evaluation in asphalt pavements. Traditional fatigue equation adopted in mechanistic-empirical pavement design has been used in the present work. Four different criteria, namely number of load repetitions, asphalt stiffness reduction, strain enhancement and fatigue life reduction with repetitions are considered for damage estimation. The proposed approach could estimate same value of nonlinear damage, irrespective of the criteria used. The simplest form of criterion i.e. the number of load repetitions can be used for fatigue performance evaluation. Probabilistically, the damage propagation is also correlated and assessed with the failure probability.

  4. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.

  5. Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions

    PubMed Central

    Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  6. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    NASA Astrophysics Data System (ADS)

    Fullová, Daša; Đurčanská, Daniela

    2016-12-01

    The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  7. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains a minimum of 160 citations and includes a subject term index and title list.)

  8. Research on the characteristics of temperature field of asphalt pavement in seasonal frozen region

    NASA Astrophysics Data System (ADS)

    Qiao, Jiangang; Liu, Weizheng

    2014-08-01

    The characteristics of climate in seasonal frozen area are low temperature and a large range of temperature variation between day and night in winter. These characteristics often lead to problems of asphalt pavement, especially transverse cracks. To reduce the problems of asphalt pavement, it is necessary to examine the distribution of the temperature range of asphalt pavement. A three-dimensional finite element model was used, taking the SMA asphalt pavement as an example with solid70 and plane55 unit features of ANSYS software. It can obtain the relationship between temperature gradient and time and the relationship between temperature gradient and depth. In addition, a function relation model of stress and time was also established. It can provide a theoretical basis for the prevention and treatment of problems of asphalt pavement in seasonal frozen area. Moreover, it has an important significance for improving asphalt pavement design.

  9. Asphaltic concrete overlays of rigid and flexible pavements

    NASA Astrophysics Data System (ADS)

    Kinchen, R. W.; Temple, W. H.

    1980-10-01

    The development of a mechanistic approach to overlay thickness selection is described. The procedure utilizes a deflection analysis to determine pavement rehabilitation needs. Design guides for selecting the overlay thickness are presented. Tolerable deflection-traffic load relationships and the deflection attenuation properties of asphaltic concrete were developed, representing the subgrade support conditions and properties of materials used in Louisiana. All deflection measurements on asphaltic concrete were corrected for the effect of temperature. Deflection measurements taken before and after overlay were also adjusted to minimize the effects of seasonal subgrade moisture variation.

  10. User's guide: Hot-mix recycling of asphalt concrete pavements

    NASA Astrophysics Data System (ADS)

    Shoenberger, James E.

    1993-05-01

    This guide provides the technical information required to implement the application of hot-mix recycling of asphalt concrete pavements. Included are details on application, benefits/advantages, limitations/disadvantages, and costs associated with this technology. Information is provided on three demonstration sites at Fort Gillem, Georgia; Fort Leavenworth, Kansas; and Fort Benjamin Harrison, Indiana. Also provided is information concerning funding, procurement, maintenance, and performance monitoring. A fact sheet on recycling, contract specification example, and references are provided in the appendices.

  11. Graded Viscoelastic Approach for Modeling Asphalt Concrete Pavements

    NASA Astrophysics Data System (ADS)

    Dave, Eshan V.; Buttlar, William G.; Paulino, Glaucio H.; Hilton, Harry H.

    2008-02-01

    Asphalt concrete pavements exhibit severely graded properties through their thickness due to oxidative aging effects, which are most pronounced at the surface of the pavement and decrease rapidly with depth from the surface. Most of the literature to date has focused on use of layered-elastic models for the consideration of age stiffening. In the current work, a graded viscoelastic model has been implemented within a numerical framework for the simulation of asphalt pavement responses under thermal and mechanical loading. The graded viscoelastic work is extension of the previous work by Paulino and Jin [1], Mukherjee and Paulino [2], and Buttlar et al. [3]. A functionally graded generalized Maxwell model has been used in the development of a constitutive model for asphalt concrete considering aging and temperature gradients. The aging gradient data from laboratory test results reported by Apeagyei [4] is used for obtaining material properties for the graded viscoelastic model. Finite element implementation of the constitutive model incorporates the generalized iso-parametric formulation (GIF) proposed by Kim and Paulino [5], which leads to the graded viscoelastic elements used in this work.

  12. Analysis of Load Stress for Asphalt Pavement of Lean Concrete Base

    NASA Astrophysics Data System (ADS)

    Lijun, Suo; Xinwu, Wang

    The study revealed that whether it is early distresses in asphalt pavement or not depends largely on working performance of base. In the field of asphalt pavement, it is widely accepted that lean concrete base, compared with the general semi-rigid base, has better working performance, such as high strength and good eroding resistance. Problem of early distresses in asphalt pavement, which caused by more traffic loadings, can be settled effectively when lean concrete is used in asphalt pavement. Traffic loading is important parameter used in the analysis of the new pavement design. However, few studies have done extensive and intensive research on the load stress for asphalt pavement of lean concrete base. Because of that, it is necessary to study the load stress for the asphalt pavement. In the paper, first of all, three-dimension finite element model of the asphalt pavement is created for the aim of doing mechanical analysis for the asphalt pavement. And then, the two main objectives of this study are investigated. One is analysis for load stress of lean concrete base, and the other is analysis for load stress of asphalt surface. The results show that load stress of lean concrete base decreases, decrease and increase with increase of base's thickness, surface's thickness and ratio of base's modulus to foundation's modulus respectively. So far as the asphalt surface is concerned, maximum shearing stress, which is caused by load, is evident in asphalt surface which is located in transverse contraction joint of lean concrete base of asphalt pavement. Maximum shearing stress decrease, decrease, decrease and increase respectively with increase of the surface's modulus, the surface's thickness, base's thickness and ratio of base's modulus to foundation's modulus.

  13. User's guide: Cold-mix recycling of asphalt concrete pavements. Final report

    SciTech Connect

    Shoenberger, J.E.

    1992-09-01

    This guide provides the technical information required to implement the application of cold-mix recycling of asphalt concrete pavements. Included are details on areas on application, benefits/advantages, limitations/disadvantages, and costs associated with this technology. Information is provided on two demonstration sites at Fort Gillem, Georgia, and Fort Leavenworth, Kansas. Also provided is information concerning funding, procurement, maintenance, and performance monitoring. A fact sheet on recycling, contract specification example, and references are provided in the appendixes.... Asphalt pavement recycling, Emulsified asphalt cement, Cold milling, In-place cold-mix asphalt recycling, Cold-mix asphalt recycling, Recycling of asphalt.

  14. Assessment of low temperature cracking in asphalt pavement mixes and rheological performance of asphalt binders

    NASA Astrophysics Data System (ADS)

    Sowah-Kuma, David

    Government spends a lot of money on the reconstruction and rehabilitation of road pavements in any given year due to various distresses and eventual failure. Low temperature (thermal) cracking, one of the main types of pavement distress, contributes partly to this economic loss, and comes about as a result of accumulated tensile strains exceeding the threshold tensile strain capacity of the pavement. This pavement distress leads to a drastic reduction of the pavement's service life and performance. In this study, the severity of low temperature (thermal) cracking on road pavements selected across the Province of Ontario and its predicted time to failure was assessed using the AASTHO Mechanistic-Empirical Pavement Design Guide (MEPDG) and AASHTOWARE(TM) software, with inputs such as creep compliance and tensile strength from laboratory test. Highway 400, K1, K2, Y1, Sasobit, Rediset LQ, and Rediset WMX were predicted to have a pavement in-service life above 15 years. Additionally, the rheological performance of the recovered asphalt binders was assessed using Superpave(TM) tests such as the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). Further tests using modified standard protocols such as the extended bending beam rheometer (eBBR) (LS-308) test method and double-edge notched tension (DENT) test (LS-299) were employed to evaluate the failure properties associated with in service performance. The various rheological tests showed K1 to be the least susceptible to low temperature cracking compared to the remaining samples whiles Highway 24 will be highly susceptible to low temperature cracking. X-ray fluorescence (XRF) analysis was performed on the recovered asphalt binders to determine the presence of metals such as zinc (Zn) and molybdenum (Mo) believed to originate from waste engine oil, which is often added to asphalt binders. Finally, the severity of oxidative aging (hardening) of the recovered asphalt binders was also evaluated using the

  15. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-03-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials for road construction. Citations discuss asphalt concrete mixtures and recycling, recycled materials testing and evaluation, and pavement bases. Engineering and environmental aspects of recycled materials are examined. (Contains a minimum of 78 citations and includes a subject term index and title list.)

  16. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    ERIC Educational Resources Information Center

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  17. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    ERIC Educational Resources Information Center

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  18. Recycling of plastic and rubber tire waste in asphalt pavements

    SciTech Connect

    Morrison, G.R.; Lee, N.K.; Hesp, S.A.M.

    1994-12-31

    This paper discusses some important issues related to the use of recycled thermoplastics and rubber tire waste in asphalt binders for hot-mix pavements. Both high temperature rheological and low temperature fracture studies are presented on recycled polyethylene, devulcanized and crumb rubber-modified asphalt binders. The results are compared to unmodified and commercially available modified binders. This research is especially timely in light of the US Intermodal Surface Transportation Efficiency Act of 1991, Section 1038 which, starting in 1995, will force state and local governments to use significant amounts of recycled rubber tire or plastic waste in federally funded highway projects. High temperature rheological measurements of the loss modulus, loss tangent and complex modulus show a significant improvement when only small quantities of crumb rubber, devulcanized crumb rubber or waste polyethylene are added to the asphalt binders. The low temperature fracture performance of the modified asphalts is greatly influenced by the interfacial strength between the dispersed and continuous phase. The fracture toughness increases dramatically, only when low molecular weight polymers are grafted in-situ onto the rubber and polymer dispersed phases in order to strength the interface. This points to a crack-pinning mechanism as being responsible for the dramatic increase in fracture toughness that is observed in this work. Single phase, devulcanized crumb rubber-asphalt systems perform quite poorly at low temperatures.

  19. Full-Scale Accelerated Pavement Testing of Warm-Mix Asphalt (WMA) for Airfield Pavements

    DTIC Science & Technology

    2014-01-01

    software and Pavement Engineering Utility (PSEVEN) were used 50 ft 65 ft 130 ft 24 ft Item 3 Sasobit ® Item 4 Evotherm 3G Item 1 HMA... Evotherm 3G Air Top Mid-depth Bottom Target temperature = 109 ºF ERDC/GSL TR-14-3 25 The target pavement temperature for this study was 109 ºF, and it is...the locations of the I-buttons and their layout in relation to the vents. 90 95 100 105 110 115 120 HMA Foamed Asphalt Sasobit Evotherm 3G Av er ag e

  20. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  1. Rutting Performance of Cold-Applied Asphalt Repair Materials for Airfield Pavements

    DTIC Science & Technology

    2017-06-23

    ER D C/ G SL T R- 17 -1 0 Rutting Performance of Cold-Applied Asphalt Repair Materials for Airfield Pavements G eo te ch ni ca l a nd S...of Cold-Applied Asphalt Repair Materials for Airfield Pavements Ben C. Cox, John F. Rushing, and Web Floyd Geotechnical and Structures Laboratory...at ambient tempera- tures. This study primarily evaluated the rutting performance of nine commercial cold mix asphalt repair materials . Both

  2. Assessment of porous asphalt pavement performance: hydraulics and water quality

    NASA Astrophysics Data System (ADS)

    Briggs, J. F.; Ballestero, T. P.; Roseen, R. M.; Houle, J. J.

    2005-05-01

    The objective of this study is to focus on the water quality treatment and hydraulic performance of a porous asphalt pavement parking lot in Durham, New Hampshire. The site was constructed in October 2004 to assess the suitability of porous asphalt pavement for stormwater management in cold climates. The facility consists of a 4-inch asphalt open-graded friction course layer overlying a high porosity sand and gravel base. This base serves as a storage reservoir in-between storms that can slowly infiltrate groundwater. Details on the design, construction, and cost of the facility will be presented. The porous asphalt pavements is qualitatively monitored for signs of distress, especially those due to cold climate stresses like plowing, sanding, salting, and freeze-thaw cycles. Life cycle predictions are discussed. Surface infiltration rates are measured with a constant head device built specifically to test high infiltration capacity pavements. The test measures infiltration rates in a single 4-inch diameter column temporarily sealed to the pavement at its base. A surface inundation test, as described by Bean, is also conducted as a basis for comparison of results (Bean, 2004). These tests assess infiltration rates soon after installation, throughout the winter, during snowmelt, after a winter of salting, sanding, and plowing, and after vacuuming in the spring. Frost penetration into the subsurface reservoir is monitored with a frost gauge. Hydrologic effects of the system are evaluated. Water levels are monitored in the facility and in surrounding wells with continuously logging pressure transducers. The 6-inch underdrain pipe that conveys excess water in the subsurface reservoir to a riprap pad is also continuously monitored for flow. Since porous asphalt pavement systems infiltrate surface water into the subsurface, it is important to assess whether water quality treatment performance in the subsurface reservoir is adequate. The assumed influent water quality is

  3. Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review

    NASA Astrophysics Data System (ADS)

    Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.

    2017-05-01

    The quantity of plastics used throughout the world is increasing every year. Municipal solid wastes (MSW), manufacturing processes and service industries produce a lot of waste plastic materials. The increasing awareness among consumers about the environment has contributed to the concerns over disposal of generated wastes. The growing number of plastic materials every year and limited landfill conditions causes many alternatives exist for the disposal of plastic waste. This paper provides a summary of the study on the utilization of polyethylene terephthalate (PET) in road construction. Data from researcher show that PET can improve some properties of modified asphalt mixture. Having considered the economic and environmental prudent angles, utilization of PET as an additive to asphalt mixture is suitable to be used for road pavement.

  4. Reinforcement of asphalt concrete pavement by segments of exhausted fiber used for sorption of oil spill

    NASA Astrophysics Data System (ADS)

    Lukashevich, V. N.; Efanov, I. N.

    2015-01-01

    The paper is aimed at construction of the experimental road pavement made of dispersed reinforced asphalt concrete. Electronic paramagnetic resonance, infrared spectroscopy and fluorescent bitumen studies were used to prove that disperse reinforcement of asphalt concrete mixtures with fibers of exhausted sorbents reduce the selective filtration of low polymeric fractions of petroleum bitumen and improve its properties in the adsorption layer. Sesquioxides are neutralized as catalysts aging asphalt binder. This leads to improvement in the elasticity of bitumen films at low temperatures and provide better crack resistance of coatings to reduce the intensity of the aging of asphalt binder, and, therefore, to increase the durability of road pavements. The experimental road pavement made of dispersed reinforced asphalt concrete operated during 4 years and demonstrated better transport- performance properties in comparison with the analogue pavements.

  5. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-01-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  6. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  7. GPR in Nondestructive Quality Assurance of New Asphalt Pavements

    NASA Astrophysics Data System (ADS)

    Poikajärvi, J.; Peisa, K.; Narbro, A.

    2012-04-01

    Mara Nord is an international cooperation project financed by Interreg IVA Nord funding program with partners from Finland, Sweden and Norway. One of the objectives in Mara Nord project has been to research the quality assurance of new asphalt pavement. Ground penetrating radar (GPR) survey is used as an alternative method for coring in quality assurance. There exist numerous advantages for the use of GPR. For example, the fluent measuring arrangements without closing the traffic on the road and the extensive continuous profile that can be constructed from the measuring data. Within the framework of Mara Nord Project field tests were organized in Seinäjoki region in Finland on August 2011. The tests were done by four consulting companies from Finland and Rovaniemi University of Applied Sciences. The aim of these tests was to compare the measured dielectric value profiles and the calculated void content profiles of the equipment. The tested equipment was GSSI manufactured SIR-20 and 1 GHz horn antennas. Void content values were calculated using the model presented by Mr. Roimela (1997). All core samples were taken from the right wheel path. The same reference core samples were used when analyzing the data of each GPR equipment. Some samples were taken right after the pavement work was completed with the rest three weeks after during the test measurements. The tests indicated that GPRs have very good repeatability in measuring dielectric changes on top surface layers of asphalt pavements. Furthermore, different GPRs locate the same detectable longitudinal dielectric changes with high accuracy. Some differences were found in the dielectric value levels, yet reproducibility of the calculated void content values was quite good. The test data was also used to evaluate the reliability of the regression model between the dielectric values measured through GPR and the void content of the pavement determined from reference cores. Test data indicated that accurate regression

  8. Recycled materials in asphalt pavements, January 1980-June 1991 (citations from the NTIS database). Rept. for Jan 80-Jun 91

    SciTech Connect

    Not Available

    1991-06-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (The bibliography contains 75 citations.) (Also includes title list and subject index.)

  9. Contributions of performance-graded asphalt to low temperature cracking resistance of pavements. Final report

    SciTech Connect

    Loh, S.W.; Olek, J.

    1999-05-01

    The purpose of this research was to study and evaluate the role that asphalt cracking. As part of the Strategic Highway Research Program (SHRP) new specifications for asphalt binders were developed that are based on the performance of the material. The asphalt binder graded and specified according to these new performance-based specifications is called PG binder. These new specifications are commonly referred to as Superpave (Superior Performing Asphalt Pavement) binder specifications. A section of Interstate 64 in southern Indiana was experiencing severe low temperature cracking before it was reconstructed over the summers of 1995 and 1996. The binder used in the new pavement mixes was PG material. Dynamic Shear Rheometer (DSR) tests, Bending Beam Rheometer (BBR) tests, and viscosity tests were performed on this binder. Comparisons were made between test results obtained from the binders in the old pavement and the new pavement. All tests and comparisons were based on the Superpave binder specifications.

  10. Laboratory Performance Testing of Warm-Mix Asphalt Technologies for Airfield Pavements

    DTIC Science & Technology

    2013-12-01

    2.4.3  Hamburg Loaded Wheel Tracker (HLWT) ................................................................ 11  2.4.4  Asphalt Pavement Analyzer ( APA ...21  3.5  APA wheel tracking...34  4.5  APA wheel tracking

  11. Study of Asphaltic Concrete Produced in Dryer Drum Mixers for Airport Pavements.

    DTIC Science & Technology

    1976-10-01

    STWDARDS-163- w S 4 -- , ,a, i I Report No-c FAA-RD-76-165 STUDY OF ASPHALTIC CONCRETE PRODUCED IN DRYER DRUM MIXERS FOR AIRPORT PAVEMENTS 0 E. T...PREFACE This study was supported by the Systems Research and Development Service of the Federal Aviation Administration. This is a final report presenting...the asphaltic concrete . In September, 1976 the Alaskan Region of FAA reported that the runway pavement had transverse thermal cracks approximately 200

  12. Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, China

    NASA Astrophysics Data System (ADS)

    Pan, Yifan; Zhang, Xianfeng; Tian, Jie; Jin, Xu; Luo, Lun; Yang, Ke

    2017-01-01

    Asphalt road reflectance spectra change as pavement ages. This provides the possibility for remote sensing to be used to monitor a change in asphalt pavement conditions. However, the relatively narrow geometry of roads and the relatively coarse spatial resolution of remotely sensed imagery result in mixtures between pavement and adjacent landcovers (e.g., vegetation, buildings, and soil), increasing uncertainties in spectral analysis. To overcome this problem, multiple endmember spectral mixture analysis (MESMA) was used to map the asphalt pavement condition using Worldview-2 satellite imagery in this study. Based on extensive field investigation and in situ measurements, aged asphalt pavements were categorized into four stages-preliminarily aged, moderately aged, heavily aged, and distressed. The spectral characteristics in the first three stages were further analyzed, and a MESMA unmixing analysis was conducted to map these three kinds of pavement conditions from the Worldview-2 image. The results showed that the road pavement conditions could be detected well and mapped with an overall accuracy of 81.71% and Kappa coefficient of 0.77. Finally, a quantitative assessment of the pavement conditions for each road segment in this study area was conducted to inform road maintenance management.

  13. Evaluation of Warm Mix Asphalt Technologies and Recycled Asphalt Pavements in Truckee Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Diaz Montecino, Cristian

    This study evaluated the properties and laboratory-performance of Hot Mix Asphalt (HMA) and Warm Mix Asphalt (WMA) mixtures with different levels of Recycled Asphalt Pavements (RAP) content: none for control mixtures, around 15% by dry weight of aggregates, and more than 30% by dry weight of aggregates. The rheological properties were evaluated for virgin and recovered RAP asphalt binders. The target amount of RAP in the mixtures was determined by using Blending Charts and Mortar Experiments. The mixtures are design through the guidelines established in Marshall Mix Design Method considering additional modifications for RAP and WMA from Superpave Mix Design. The mixtures are evaluated for their resistance to moisture damage by means of measuring the Dynamic Modulus |E*| after three freeze/thaw cycles and the indirect tensile strength after one and three freeze/thaw cycles. The resistance of the mixtures to permanent deformation was also evaluated by using the Asphalt Mixture Performance Tester (AMPT) to measure the flow number (FN). For this study, it was determined that the resistance to moisture damage decreases as the number of freeze/thaw cycles increases for most of the evaluated mixtures. Mixtures exhibited an increase in dynamic modulus as the RAP percentage increased. A decrease in the resistance to moisture damage was detected with the increase in RAP content for most of the mixtures. HMA mixtures exhibited a better performance in rutting than the WMA mixtures. An increase in rutting resistance was observed with the increase in RAP percentage for HMA mixtures whereas an inconsistent trend was observed for WMA mixtures. Further study is needed to validate the use of the high percentage of RAP in Washoe County.

  14. Criteria for Asphalt-Rubber Concrete in Civil Airport Pavements. Volume 2. Evaluation of Asphalt-Rubber Concrete.

    DTIC Science & Technology

    1987-03-01

    194 ix LIST OF TABLES Table Page 1 1977 FAA Aggregate Grading Band for Bituminous Surface Course with 1/2" (12.5m) Maximum Particle Size* ...... 6 2...Asphalt Concrete and Asphalt-Rubber Concrete. . . . . . . . . . . . . . . . . . . . . . . . . 106 xi LIST OF FthJiJRf1 Figure Page 1 1977 FAA...were blended to meet the 1977 FAA aggregate grading specification for pavements with a bituminous surface course and designed to accommodate aircraft

  15. Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway

    PubMed Central

    Pascucci, Simone; Bassani, Cristiana; Palombo, Angelo; Poscolieri, Maurizio; Cavalli, Rosa

    2008-01-01

    This paper describes a fast procedure for evaluating asphalt pavement surface defects using airborne emissivity data. To develop this procedure, we used airborne multispectral emissivity data covering an urban test area close to Venice (Italy).For this study, we first identify and select the roads' asphalt pavements on Multispectral Infrared Visible Imaging Spectrometer (MIVIS) imagery using a segmentation procedure. Next, since in asphalt pavements the surface defects are strictly related to the decrease of oily components that cause an increase of the abundance of surfacing limestone, the diagnostic absorption emissivity peak at 11.2μm of the limestone was used for retrieving from MIVIS emissivity data the areas exhibiting defects on asphalt pavements surface.The results showed that MIVIS emissivity allows establishing a threshold that points out those asphalt road sites on which a check for a maintenance intervention is required. Therefore, this technique can supply local government authorities an efficient, rapid and repeatable road mapping procedure providing the location of the asphalt pavements to be checked. PMID:27879765

  16. Early-life study of the FA409 full-depth asphalt-concrete pavement sections

    SciTech Connect

    Hill, H.J.

    1988-01-01

    The Illinois Department of Transportation (IDOT) is currently implementing a mechanistic thickness-design procedure for full-depth asphalt-concrete pavements. This thesis is an early design-life investigation of full-depth asphalt-concrete pavements, constructed on FA409 near Carlyle, Illinois in 1986. Included in the study are: sampling and testing of paving and subgrade materials; extensive non-destructive testing (NDT) using the Falling Weight Deflectometer (FWD); development of techniques for interpreting NDT data; determination of as-built structural characteristics of the various pavement sections; evaluation of subsurface drainage and lime-treated soil behavior; and examination of the validity of the ILLI-PAVE computer model. The simplicity of a full-depth asphalt-concrete pavement allows useful information regarding pavement structure to be determined from FWD surface-deflection data. The ILLI-PAVE model was used in conjunction with statistical methods to quantify, in the form of regression equations or algorithms, the relationship between pavement structure (Tac, Eac, and Eri) and pavement response to FWD loading. Testing of pavement and subgrade material samples as used to validate these algorithms.

  17. Effect of interlayer bonding quality of asphalt layers on pavement performance

    NASA Astrophysics Data System (ADS)

    Jaskula, Piotr; Rys, Dawid

    2017-09-01

    The quality of interlayer bonding at the interfaces between the asphalt layers in flexible pavements affects the overall pavement performance. Lack or partial lack of interlayer bonding between asphalt layers can cause pavement’s premature failures such as rutting, slippage of the wearing course, cracking or simply a reduction in the calculated fatigue life of the pavement structure. This paper shows the case studies of investigation of actual or potential premature failure of newly reconstructed and constructed pavements where low quality of interlayer bonding has a dominant meaning. In situ and laboratory tests were performed and followed by analytical calculation of pavement structure where thicknesses of layers and maximum shear strengths obtained from the tests were used. During the investigation it was found out that a low quality of tack coat as well as the same aggregate gradation in the bonded asphalt mixtures were the main reasons behind the weak quality of interlayer bonding. Partial interlayer bonding has a strong influence on reduction of calculated fatigue life of pavement. The summary of the paper includes recommendations on how to avoid the low quality of interlayer bonding of asphalt layers.

  18. Evaluation of western and eastern shale oil residua as asphalt pavement recycling agents

    SciTech Connect

    Harnsberger, P.M.; Robertson, R.E.

    1990-03-01

    The objective of this investigation was to perform a preliminary evaluation of the utility of residual materials prepared from Green River Formation (western) and New Albany Shale (eastern) shale oils as recycling agents for aged asphalt pavement. Four petroleum asphalts were first aged by a thin-film accelerated-aging test, which simulates long service life of asphalt in pavement. The aged asphalts were mixed (recycled) with Green River Formation shale oil distillation residua to restore the original viscosities. Separately, for comparison, a commercial recycling agent was used to recycle the aged asphalts under the same circumstances. The recycled asphalts were reaged and the properties of both binder and asphalt-aggregate mixtures studied. Originally, the same study was intended for an eastern shale residua. However, the eastern shale oil distillation residua with the required flash point specification also had the properties of a viscosity builder; therefore, it was studied as such with asphalts that do not achieve sufficient viscosity during processing to serve as usable binders. Results show that Green River Formation shale oil residuum can be used to restore the original asphalt properties with favorable rheological properties, the shale oil residuum has a beneficial effect on resistance to moisture damage, the low-temperature properties of the shale oil residuum recycled asphalts are not adversely affected, and the low-temperature properties of the shale oil residuum recycled asphalts are dependent upon the chemistry of the mixture. The eastern shale oil residua was blended with soft petroleum asphalts. Results show the products have higher viscosities than the starting materials, the rheological properties of the soft asphalt-eastern shale oil residue blends are acceptable, and the eastern shale oil residue has dispersant properties despite its high viscosity. 11 refs., 3 figs., 9 tabs.

  19. Field Performance of Asphalt Pavements with New Technologies in Northern Nevada

    NASA Astrophysics Data System (ADS)

    Faeth, Benjamin Michael

    The Regional Transportation Commission (RTC) of the Washoe Valley Area has been tasked to determine if three advanced asphalt pavement technologies and one modified aggregate gradation are suitable for implementation within Reno, Stead, and Sparks Nevada. This was accomplished through research and test roads and Intersections to determine if Recycled Asphalt Pavement (RAP), Warm Mix Asphalt (WMA), Polymer-Modified Asphalt Binder, and the Type 2-R aggregate gradation were succeeding in their design plans. Over the course of several years the streets being used by RTC to test the technologies are succeeding within their design lifespans, and the Intersections being used to test the Type 2-R aggregate gradation are showing significant resistance to rutting. Due to the roads and Intersections not being more than 10 years old, these conclusions are subject to change over time.

  20. A review on using crumb rubber in reinforcement of asphalt pavement.

    PubMed

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.

  1. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    PubMed Central

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction. PMID:24688369

  2. Heat island mitigation using water retentive pavement sprinkled with reclaimed wastewater.

    PubMed

    Yamagata, H; Nasu, M; Yoshizawa, M; Miyamoto, A; Minamiyama, M

    2008-01-01

    In Japan, reclaimed wastewater has been recycled widely for non-potable urban applications and it is to be used for sprinkling roads to mitigate heat island in urban areas. To assess the heat island mitigation effects of the sprinkling reclaimed wastewater on water retentive pavement, we carried out a survey at Shiodome-District, Tokyo. The temperatures of air and roads, humidity, and WBGT (Wet-bulb globe temperature) were measured and heat flux was estimated to compare the condition of the areas with/without sprinkling. The following results were obtained. 1) Sprinkling reclaimed wastewater decreased the road surface temperature by 8 degrees during the daytime and by 3 degrees at night: temperatures equal to those on planting zones. Nevertheless sprinkling was done only in the daytime, the temperature decrease effect was not only obtained during the daytime: it continued through the night, due to the water retentive pavement. 2) Sprinkling reclaimed wastewater reduced the amount of sensible heat flux and increased that of latent heat flux. These results suggest that sprinkling reclaimed wastewater on water retentive pavement can effectively mitigate the heat island phenomenon.

  3. Feasibility of using 100% Recycled Asphalt Pavement mixtures for road construction

    NASA Astrophysics Data System (ADS)

    Carlson, Russell Edgar, IV

    Recycled Asphalt Pavement (RAP) is the largest recycled good in the United States and 80 million tons are recycled yearly, saving taxpayers about $1.5 billion dollars. This paper explores the possibility of utilizing 100% RAP materials in asphalt pavement. Asphalt mixtures are produced at 135°C in a typical asphalt plant. However, at 135°C, not all binder from RAP materials may not become effective for coating aggregates. The main objective of the study is to determine the amount of effective binder available from RAP in the asphalt plant. The 100% RAP mixes have aged binder that can alter mix designs and interaction with virgin binder. In this study, to determine low temperature cracking resistance and fatigue performance, samples were prepared using a 100% RAP mix with no virgin binder and a 100% RAP mix with virgin asphalt binder to achieve the optimum binder content of the mix. Second, to determine the effectiveness of binder from RAP materials, compaction tests were performed by heating RAP materials at various temperatures. It was found that 100% RAP mixes cannot be feasible for field use if additional virgin binder is added to reach the optimum asphalt content. Based on limited test results, the low temperature grade was not within proper limits but the beam fatigue testing results were acceptable. Based on compaction test results, additional heating is needed to increase the effectiveness of asphalt binder from RAP materials.

  4. Feasibility of crumb rubber use for asphalt pavement construction in Rhode Island. Final research report

    SciTech Connect

    Lee, K.W.; Kovacs, W.D.; Marcus, A.S.; Madapati, R.R.

    1995-12-15

    This is the final report of the research project, entitled `Viable Use of Crumb Rubber for Highway Construction in Rhode Island.` This study dealt with the investigation of the means by which the State of Rhode Island can effectively comply with the mandate of the Section 1038 of the 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) to use recycled rubber in asphalt pavements. More specifically, this laboratory investigation characterized Hot Mix Asphalt (HMA) with Crumb Rubber Modifiers (CRM).

  5. Hot in-place recycling of asphalt pavements. Final report, 1988-1989

    SciTech Connect

    Shoenberger, J.E.; Vollor, T.W.

    1990-09-01

    This report contains the results of a literature search concerning hot in-place asphalt pavement recycling. Current methods and procedures for hot in-place recycling were reviewed and the advantages and disadvantages of each presented. Four construction sites were visited. Each site used a different procedure to recycle the pavement. These procedures along with the equipment used are discussed in regard to selecting a recycling method, material controls, and available cost data.

  6. Minimum Thickness Requirements for Asphalt Surface Course and Base Layer in Airfield Pavements

    DTIC Science & Technology

    2011-08-01

    shear stress, and therefore, to rutting, some minimum thickness of hot- mix asphalt (HMA) is needed to protect this strong base course from the...pavements with different thicknesses of bituminous materials, and base and subbase quality materials. The analysis indicated that at elevated...temperatures, the bituminous bound pavement layers were not superior in load distributing capability to excellent quality (100 CBR) base materials. A 100-CBR

  7. Thermal Behavior of an Asphalt Pavement in the Laboratory and in the Parking Lot

    PubMed Central

    Martinkauppi, J. B.; Mäkiranta, A.; Kiijärvi, J.; Hiltunen, E.

    2015-01-01

    The urban, constructed areas are full of buildings and different kinds of pavements and have a noticeable lack of trees and flora. These areas are accumulating the heat from the Sun, people, vehicles, and constructions. One interesting heat collector is the asphalt pavement. How does the heat transfer to different layers under the pavement or does it? What are the temperatures under the pavement in Finland where the winter can be pretty hard? How can those temperatures be measured accurately? These are the main questions this paper gives the preliminary answers to. First the thermal behavior of asphalt and the layers beneath are researched in the laboratory and then the measurement field is bored and dug in the parking in the Western coast of Finland, 63°5′45′′ N. Distributed temperature sensing method was found to be a good choice for temperature measurements. Thermal behavior of pavement has been monitored in different layers and the preliminary results have been published here. The goal of this research is to assess the applicability of asphalt pavements for heat energy collection. PMID:25861679

  8. Thermal behavior of an asphalt pavement in the laboratory and in the parking lot.

    PubMed

    Martinkauppi, J B; Mäkiranta, A; Kiijärvi, J; Hiltunen, E

    2015-01-01

    The urban, constructed areas are full of buildings and different kinds of pavements and have a noticeable lack of trees and flora. These areas are accumulating the heat from the Sun, people, vehicles, and constructions. One interesting heat collector is the asphalt pavement. How does the heat transfer to different layers under the pavement or does it? What are the temperatures under the pavement in Finland where the winter can be pretty hard? How can those temperatures be measured accurately? These are the main questions this paper gives the preliminary answers to. First the thermal behavior of asphalt and the layers beneath are researched in the laboratory and then the measurement field is bored and dug in the parking in the Western coast of Finland, 63°5'45'' N. Distributed temperature sensing method was found to be a good choice for temperature measurements. Thermal behavior of pavement has been monitored in different layers and the preliminary results have been published here. The goal of this research is to assess the applicability of asphalt pavements for heat energy collection.

  9. Effect of new type of synthetic waxes on reduced production and compaction temperature of asphalt mixture with reclaimed asphalt

    NASA Astrophysics Data System (ADS)

    Valentová, Tereza; Benešová, Lucie; Mastný, Jan; Valentin, Jan

    2017-09-01

    Lower mixing and paving temperatures of asphalt mixtures, which are an important issue in recent years, with respect to increased energy demand of civil engineering structures during their processing, allow reduction of this demand and result in minimized greenhouse gas production. In present time, there are many possibilities how to achieve reduction of production temperature during the mixing and paving of an asphalt mixture. The existing solutions distinguish in target operating temperature behaviour which has to be achieved in terms of good workability. This paper is focused on technical solutions based on use of new types of selected synthetic and bio-based waxes. In case of bio-based additive sugar cane wax was used, which is free of paraffins and is reclaimed as waste product during processing of sugar cane. The used waxes are added to bituminous binder in form of free-flowing granules or fine-grained powder. Synthetic waxes are represented by new series of Fischer-Tropsch wax in form of fine granules as well as by polyethylene waxes in form of fine-grained powder or granules. Those waxes were used to modify a standard paving grade bitumen dosed into asphalt mixture of ACsurf type containing up to 30 % of reclaimed asphalt (RA).

  10. Stormwater quality of spring-summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement.

    PubMed

    Drake, Jennifer; Bradford, Andrea; Van Seters, Tim

    2014-06-15

    This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study.

  11. Qualitative analysis of SBS modifier in asphalt pavements using field samples

    NASA Astrophysics Data System (ADS)

    Chi, Fengxia; Liu, Zhifei

    2017-06-01

    Series of tests are implemented to analysis the related characteristics of common asphalt and unknown asphalt mainly using Fourier Transform Infrared (FTIR) and Dynamic Shear Rheometer (DSR) for chemical compositions and rheological properties of asphalt, respectively. In addition, a series of mechanical properties were performed on asphalt mixtures, including indirect tensile strength test and three point bending test at low temperature. Experimental results indicated that compared with common asphalt, the characteristic absorption peak of the unknown asphalt are appeared at 966cm-1and 699cm-1, which are accordant with the SBS modifier. The results of DSR indicated that the unknown asphalt’s complex modulus is higher and the phase angle is lower. The mechanical tests indicated that some properties of the unknown mixture samples are increased by 24.7%∼41.8% compared with common pavement sample, like the indirect tensile strength, the bending test at low temperature and indirect tensile resilient modulus. Comprehensive analysis indicates that SBS modifier is existed in the unknown asphalt pavement.

  12. Thickness and air voids measurement on asphalt concrete pavements using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Dhakal, Sharad Raj

    Layer thickness and air voids are important parameters in quality assurance of newly paved hot mix asphalt (HMA) pavements. A non-destructive testing (NDT) technique was used to collect layer thickness information. The thicknesses estimated by the technique were compared with core thicknesses. Ground penetrating radar (GPR) system with air coupled antennas was used for on-site pavement data collection. Two application softwares - RADAN and ROAD DOCTOR - were used to process the field data for estimating layer thicknesses and air voids along the scanned pavements. 150 mm diameter cores taken from random locations on the pavements were tested in the laboratory to determine layer thickness and air voids. Statistical analyses were conducted to compare thicknesses and generate a regression equation relating air voids and dielectric constant of the pavement material. No significant differences were found between thickness estimates from RADAN and ROAD DOCTOR softwares when compared to the core measurements. However, RADAN and ROAD DOCTOR results are marginally significantly different from each other. ROAD DOCTOR software was used to generate air voids for the pavements scanned. Laboratory results from cores were utilized to determine calibration factors for the air voids -- dielectric equation. A relationship between air voids and dielectric constant is presented. It is concluded that GPR system with air coupled antennas used alongside a reduced core testing has a potential for quality control of newly paved hot mixed asphalt pavements.

  13. Asphalt additives in thick hot mixed asphalt-concrete pavements. Research report (Interim), Sep 86-Oct 90

    SciTech Connect

    Button, J.W.; Prapnnachari, S.

    1991-01-01

    Asphalt concrete field test pavements were placed in District 19 north of Texarkana on US-59/71 in 1987 and 1988 to evaluate the ability of certain asphalt additives to enhance resistance to cracking and rutting. Two 10-inch thick and 0.9 mile (approx.) long test pavements and a similar untreated control section were constructed in the northbound and southbound lanes for a total of 6 field trials. Asphalt additives were incorporated in both the 8-inch base and the overlying 2-inch surface layers. The additives evaluated included Goodyear LPF 5812, Chemkrete-CTI 102, Exxon Polybilt 102, and Styrelf 13. Samples of paving materials including aggregates, asphalts, compacted mixes, and pavement cores were collected, conveyed to the laboratory, and tested to provide detailed documentation of their properties. Tests included rheological properties of the binders before and after artificial aging, characterization of aggregate, Hveem and Marshall stability, stiffness as a function of temperature, tensile properties before and after moisture conditioning and artificial aging, air void content, creep, and permanent deformation. Field tests and visual evaluations have been conducted to objectively evaluate field performance. Results of these tests are reported herein. Within 6 months after construction of the base layers and prior to placement of the surface course, the Chemkrete modified base became severely cracked. As a result, the surface mix placed on this base section was treated with Goodyear latex rather than Chemkrete. All other modified pavements and the control section have performed well and exhibited essentially equivalent performance after 2 1/2 years in service.

  14. Recycling asphalt pavements. January 1975-January 1990 (a Bibliography from the COMPENDEX data base). Report for January 1975-January 1990

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning the recycling of asphalt-containing pavement materials. Articles include examples of recycling asphalt pavements; performance testing of recycled paving; methods including cold in-place, cold off-site, and hot-mix recycling; additives in recycled pavement for better performance; use of scrap roofing asphalt in conjunction with recycled paving; economics of recycling; process design; and process variables. Recycling of other materials is considered in related bibliographies. (Contains 130 citations fully indexed and including a title list.)

  15. An assessment of SBS modified asphalt concrete pavements performance features performing numerical analysis

    NASA Astrophysics Data System (ADS)

    Karakas, Ahmet Sertac; Bozkurt, Tarik Serhat; Sayin, Baris; Ortes, Faruk

    2017-07-01

    In passenger and freight traffic on the roads, which has the largest share of the hot mix asphalt (HMA) prepared asphalt concrete pavement is one of the most preferred type of flexible superstructure. During the service life of the road, they must provide the performance which is expected to show. HMA must be high performance mix design, comfortable, safe and resistance to degradation. In addition, it becomes a critical need to use various additives materials for roads to be able to serve long-term against environmental conditions such as traffic and climate due to the fact that the way of raw materials is limited. Styrene Butadiene Styrene (SBS) polymers are widely used among additives. In this study, the numerical analysis of SBS modified HMA designed asphalt concrete coatings prepared with different thicknesses with SBS modified HMA is performed. After that, stress and deformation values of the three pavement models are compared and evaluated.

  16. Current Practices on Nighttime Pavement Construction Asphaltic Concrete.

    DTIC Science & Technology

    1982-07-01

    foot width. This production amounted to approximately 1520 tons per night. 9. Equipment: a. Asphalt Spreader. The Contractor utilized one Blaw Knox ...Diego, CA. to monitor the testing of the Port Authority requirements. 11. Grade Control Requirements. a. Ski. The Blaw Knox paving machine was specified...q 16. Crack Reflection Membrane: None. 17. Hot Mix Asphaltic Concrete Overlay Placing: a. Asphalt Spreaders Operating in Echelon. Only one Blaw - Knox

  17. Recycled materials in asphalt pavements. October 1973-November 1989 (Citations from the NTIS data base). Report for October 1973-November 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning the recycling of asphalt-pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains 110 citations fully indexed and including a title list.)

  18. Using ground-penetrating radar for assessing the structural needs of asphalt pavements

    NASA Astrophysics Data System (ADS)

    Plati, C.; Loizos, A.

    2012-09-01

    Ground-penetrating radar (GPR) is a nondestructive testing (NDT) approach for pavement investigation that has been developed and improved upon over the past 30 years. This paper aimed to document how the GPR technique could be incorporated successfully into the process of assessing the structural needs of asphalt pavements. Background information is provided regarding the usage of GPR for the evaluation of asphalt road pavements. After outlining the GPR usage, a framework is developed, which is associated primarily with the efficient use of GPR for pavement inspection along a highway and secondarily with the supply of computational tools for GPR data to execute the complex processes to define the structural needs of the pavement. The effectiveness of the suggested framework for pavement preservation is demonstrated through a case study to estimate the required overlay thickness along a highway, which is part of a public private partnership project. The related results produce evidence in support of the statement that through GPR implementation, the intervention works can be optimised to benefit both the road users and the road operators.

  19. Numerical modeling of inelastic structures at loading of steady state rolling. Thermo-mechanical asphalt pavement computation

    NASA Astrophysics Data System (ADS)

    Wollny, Ines; Hartung, Felix; Kaliske, Michael

    2016-05-01

    In order to gain a deeper knowledge of the interactions in the coupled tire-pavement-system, e.g. for the future design of durable pavement structures, the paper presents recent results of research in the field of theoretical-numerical asphalt pavement modeling at material and structural level, whereby the focus is on a realistic and numerically efficient computation of pavements under rolling tire load by using the finite element method based on an Arbitrary Lagrangian Eulerian (ALE) formulation. Inelastic material descriptions are included into the ALE frame efficiently by a recently developed unsplit history update procedure. New is also the implementation of a viscoelastic cohesive zone model into the ALE pavement formulation to describe the interaction of the single pavement layers. The viscoelastic cohesive zone model is further extended to account for the normal pressure dependent shear behavior of the bonding layer. Another novelty is that thermo-mechanical effects are taken into account by a coupling of the mechanical ALE pavement computation to a transient thermal computation of the pavement cross-section to obtain the varying temperature distributions of the pavement due to climatic impact. Then, each ALE pavement simulation considers the temperature dependent asphalt material model that includes elastic, viscous and plastic behavior at finite strains and the temperature dependent viscoelastic cohesive zone formulation. The temperature dependent material parameters of the asphalt layers and the interfacial layers are fitted to experimental data. Results of coupled tire-pavement computations are presented to demonstrate potential fields of application.

  20. Alternate/Modified Binders for Asphalt Airfield Pavements

    DTIC Science & Technology

    1990-11-01

    ing volume of aircraft traffic, higher tire pressures, heavier load capaci- ties, and substandard construction materials. These problems are...ing asphalt cements to increase resistance to rutting from high pressure tires , (3) improving the rheological properties of the asphalt, and (4...and rehabilitation have become increasingly difficult from a materials design standpoint. Air- craft design changes such as increasing tire pressures

  1. Effects of street tree shade on asphalt concrete pavement performance

    Treesearch

    E.G. McPherson; J. Muchnick

    2005-01-01

    Forty-eight street segments were paired into 24 high-and low-shade pairs in Modesto, California, U.S. Field data were collected to calculate a Pavement Condition Index (PCI) and Tree Shade Index (TSI) for each segment. Statistical analyses found that greater PCI was associated with greater TSI, indicating that tree shade was partially responsible for reduced pavement...

  2. Predicting the behavior of asphalt concrete pavements in seasonal frost areas using nondestructive techniques

    NASA Astrophysics Data System (ADS)

    Janoo, Vincent C.; Berg, Richard L.

    1990-11-01

    Four different pavement test sections were subjected to freeze-thaw cycling in the Frost Effects Research Facility (FERF). The test sections, each 610 cm in length, consisted of 15.2 cm of asphalt concrete pavement over a clay subgrade; 15.2 cm of asphalt concrete over 10.2 cm of crushed gravel over a clay subgrade; 5.1 cm of asphalt over 17.8 cm of crushed gravel over 20.3 cm of clean sand over a clay subgrade; and 5.1 cm of asphalt concrete over 25.4 cm of crushed gravel over 12.7 cm of clean sand over clay subgrade. Thermocouples were imbedded throughout the pavement structure and subgrade. During the thawing periods, deflection measurements were made at four locations in each test section using a Dynatest Falling Weight Deflectometer (FWD). The results of the deflection measurement are presented here. An analysis was done to qualify the subgrade strength based solely on FDW measurements. It was also shown that a relationship existed between thaw depth and FWD measurement in the subgrade.

  3. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements.

    PubMed

    Franesqui, Miguel A; Yepes, Jorge; García-González, Cándida

    2017-08-01

    This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].

  4. Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil

    NASA Astrophysics Data System (ADS)

    Nascimento, Luis Alberto Herrmann do

    This dissertation presents the implementation and validation of the viscoelastic continuum damage (VECD) model for asphalt mixture and pavement analysis in Brazil. It proposes a simulated damage-to-fatigue cracked area transfer function for the layered viscoelastic continuum damage (LVECD) program framework and defines the model framework's fatigue cracking prediction error for asphalt pavement reliability-based design solutions in Brazil. The research is divided into three main steps: (i) implementation of the simplified viscoelastic continuum damage (S-VECD) model in Brazil (Petrobras) for asphalt mixture characterization, (ii) validation of the LVECD model approach for pavement analysis based on field performance observations, and defining a local simulated damage-to-cracked area transfer function for the Fundao Project's pavement test sections in Rio de Janeiro, RJ, and (iii) validation of the Fundao project local transfer function to be used throughout Brazil for asphalt pavement fatigue cracking predictions, based on field performance observations of the National MEPDG Project's pavement test sections, thereby validating the proposed framework's prediction capability. For the first step, the S-VECD test protocol, which uses controlled-on-specimen strain mode-of-loading, was successfully implemented at the Petrobras and used to characterize Brazilian asphalt mixtures that are composed of a wide range of asphalt binders. This research verified that the S-VECD model coupled with the GR failure criterion is accurate for fatigue life predictions of Brazilian asphalt mixtures, even when very different asphalt binders are used. Also, the applicability of the load amplitude sweep (LAS) test for the fatigue characterization of the asphalt binders was checked, and the effects of different asphalt binders on the fatigue damage properties of the asphalt mixtures was investigated. The LAS test results, modeled according to VECD theory, presented a strong correlation with

  5. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  6. Guidelines and specifications for the use of reclaimed aggregates in pavement. Final report

    SciTech Connect

    Chini, S.A.; Kuo, S.S.; Duxbury, J.P.; Monteiro, F.M.B.R.; Mbwambo, W.J.

    1998-08-01

    The project focused on evaluating the performance of recycled concrete for use as a base material under hot mix asphalt pavements and as an aggregate in Portland cement concrete pavements. In order to meet this objective, several goals were established. First, published literature on RCA was reviewed and a survey of State Highway Agencies (SHA) was performed to determine the extent of use of RCA in highway projects. Second, the RCA was tested at the FDOT Material Lab in Gainesville, Florida, to determine the material properties. Third, by using the output from the falling weight deflectometer test along with the KENSLABS and KENLAYER computer programs (Huang, 1993), a theoretical analysis was performed to predict the number of repetitions before the pavements failed in both the fatigue and permanent deformation criteria. Lastly, nine design sections involving HMA and PCC pavements were constructed at the University of Central Florida`s Circular Accelerated Test Track (UCF-CATT) to evaluate the response of the pavement sections made with RCA under actual dual-wheel loading.

  7. Investigation of Primary Causes of Load-Related Cracking in Asphalt Concrete Pavement in North Carolina

    NASA Astrophysics Data System (ADS)

    Park, Hong Joon

    This dissertation presents causes of cracking in asphalt concrete pavement in North Carolina through field investigation and laboratory experiments with field extracted material. North Carolina is experiencing higher than anticipated rates of fatigue cracking compared to other state. These higher than expected rates could be reflective of the national trends in mix design practice or could be caused by structural pavement failures. The problems associated with premature cracking in North Carolina pavements point to the need to evaluate the North Carolina Department of Transportation (NCDOT) mixes, processes, and measures to ensure that these factors properly balance the goals of preventing cracking and minimizing permanent deformation. Without solid data from in-service pavements, any conclusions regarding the causes of these failures might be pure conjecture. Accordingly, this research examines material properties through laboratory experiments using field-extracted materials and investigates in situ pavements and pavement structure. In order to assess condition of existing pavement, alligator cracking index (ACI) was developed. The asphalt content in the top layer that exhibits top-down cracking or bottom-up cracking has a proportional relationship to ACI values. The air void content in a bottom layer that exhibits top-down cracking or bottom-up cracking shows an inverse proportional relationship to ACI values. These observations reflect reasonable results. A comparison between ACI and asphalt film thickness values does not produce noteworthy findings, but somewhat reasonable results are evident once the range of comparison is narrowed down. Thicker film thicknesses show higher ACI values. From field core visual observations, road widening is identified as a major cause of longitudinal cracking. Regions with observed layer interface separation tend to have low ACI values. Through tensile strain simulation based on actual field conditions, it is observed that

  8. Noise characteristics of hot mix asphalt and Portland cement concrete pavements in United States

    NASA Astrophysics Data System (ADS)

    Hanson, Douglas I.

    2005-09-01

    In today's society, traffic noise is a serious problem that generally is considered an environmental pollution because it lowers the standard of living. Research in Europe and in the United States has indicated that it is possible to build pavement surfaces that will reduce the level of noise generated on roadways. In January of 2002 the National Center for Asphalt Technology initiated a research study with the objective to develop safe, quiet and durable asphalt pavement surfaces. As a part of that study over 300 pavement surfaces [both Portland Cement Concrete (PCCP) and Hot Mix Asphalt (HMA)] throughout the United States have been tested using a close-proximity noise trailer. The study has shown that in general PCCP surfaces have a higher noise level than HMA surfaces. But, it has also shown that by properly choosing the surface texture of the PCCP surface significant reductions in the noise level of a PCCP surface can be achieved. The study has shown that it is possible to construct low-noise HMA mixes and that in general the smaller the nominal maximum size for those mixes (regards whether they are dense graded, SMA or OFGC mixes) the lower the noise level.

  9. Application of pyrolized carbon black from scrap tires in asphalt pavement design and construction

    SciTech Connect

    Park, T.; Coree, B.J.; Lovell, C.W.

    1995-12-31

    According to EPA reports (1991) of the over 242 million waste generated each year in the United State, 5% are exported, 6% recycled, 11% incinerated, and 78% are landfilled, stockpiled, or illegally dumped. A variety of uses for these tires are being studied. Among these is pyrolysis which produces 5 5% of oil, 25% of carbon black, 9% of steel, 5% of fiber and 6% of gas. Pyrolized carbon black contains 9 % of ash, 4% of sulfur, 12% of butadine copolymer and 75% of carbon black. The objective of this research is to investigate the viability of using PCB as an additive in hot mix asphalt. The use of PCB in asphalt pavement is expected not only to improve the performance of conventional asphalt, but also to provide a means for the mass disposal of waste fires.

  10. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  11. Runoff initiation from falling raindrops - comparison of smooth impervious surface and asphalt pavements. Effects of surface inclination and texture.

    NASA Astrophysics Data System (ADS)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal; Levenberg, Eyal

    2017-04-01

    The processes of runoff initiation on smooth impervious surfaces and various asphalt pavements are investigated in laboratory rain simulator experiments and outdoor sprinkling tests. Visual and FLIR observations indicate that runoff initiation is associated with coalescence of drop clusters on the surface and complex changes in micro-connectivity. Depending on surface inclination, several morphological regimes of flow initiation have been observed. In the case of very small inclination the runoff initiation is governed by critical merging of drop clusters on the surface and develops in broad flows (very abrupt, but delayed). For larger inclinations, the runoff occurs in rivulets or strongly directed flow threads. On asphalt pavements the runoff initiation is also strongly affected by pavement SVF (Surface Void Fraction), texture and even by the asphalt hydrophobicity. A simplified bi-level model of the pavement surface may explain principal differences in the runoff initiation on asphalts with small, intermediate and large SVF values. For small SVF (standard fresh asphalts) the runoff develops on the upper surface level, and filling of the surface voids is not always required (especially for the large inclinations). For intermediate SVF (considerably deteriorated asphalts) the runoff develops as well on the upper surface level, but only after considerable filling of the surface voids. Finally, on severely deteriorated asphalts (very large SVFs) the runoff develops on the "bottom" level of asphalt surface, after only partial filling of the surface voids. Other factors, such as drops splash and splitting, also affect the process of runoff initiation and explain rather considerable differences (sometimes of 2-3 mm rain depth) in the runoff thresholds on various non-porous asphalt pavements. Similar phenomena can be probably observed on certain types of rock outcrops.

  12. Capacitance sounding: a new geophysical method for asphalt pavement quality evaluation

    NASA Astrophysics Data System (ADS)

    Dashevsky, Yu. A.; Dashevsky, O. Yu.; Filkovsky, M. I.; Synakh, V. S.

    2005-02-01

    A capacitance sounding method has been proposed and developed for evaluation of the actual thickness and dielectric permittivity of asphalt pavement. The method is based on the continuous measurements of the electrical capacitance between two electrodes in real time. One of them is grounded within the soil immediately adjacent to the side of the road. Another one (sensing electrode) is mounted on a motor-driven positioner to obtain the capacitance measurements at multiple locations along the direction perpendicular to asphalt surface. The principle of the method is to vary the clearance of the sensing electrode to sound the 1D structure of the pavement beneath that electrode. A distinguished feature of the proposed technology is that the measured signal depends only on the thickness and the permittivity of the asphalt layer. All underlying layers do not affect the capacitance readings. A set of capacitance values versus sensing electrode positions is considered as a sounding curve. Software tools were created for solving forward and inverse problems of the capacitance sounding. An unknown thickness and permittivity are derived from a real-time inversion of the data obtained. Upon completing the inversion, an operator can move the assembling with the second electrode across the asphalt surface to the next sounding site. The capacitance sounding method proved to have a good lateral resolution: the dielectric permittivity values and the asphalt layer thickness are accurately detected over distances of 40 cm from a measuring point. An extensive feasibility study of capacitance sounding using both mathematical modeling and field measurements has been carried out. As a result, portable, low-frequency equipment has been designed and created. Asphalt layer thickness and the dielectric permittivity measurements were carried out on a high-traffic highway. The comparison of field trial results with core sampling analysis demonstrated the efficiency of the proposed method.

  13. Investigation of antenna frequency impact on assessing voids of asphalt pavements using GPR

    NASA Astrophysics Data System (ADS)

    Plati, C.; Georgouli, K.; Loizos, A.

    2012-04-01

    Ground Penetrating Radar (GPR) is a Non Destructive Testing (NDT) technique that has been developed and improved upon over the past 30 years. The technique is frequently utilized in order to evaluate and assess pavement structures. GPR, for pavement evaluation purposes, can be described as a remote sensing system that emits a short pulse, of electromagnetic energy, into the pavement, with a central frequency varying from 10 MHz up to 2.5GHz. The two most commonly utilized setups are air-coupled and ground-coupled antenna systems. For air-coupled systems, the antennas are suspended above the pavement surface and can operate at normal traffic speeds (up to ~ 80 Km/h). The major drawback of the air-coupled antenna is that penetration depth is limited. On the other hand, for ground-coupled systems the antennas are in direct contact with the pavement surface, providing for better signal penetration into the pavement structure; however ground coupled systems can achieve only limited operational speeds. As a generalized rule, increasing the GPR central operating frequency, increases the investigation resolution, while decreasing the overall depth of investigation In the light of the above, air-coupled systems have become increasingly popular for the evaluation of the part of the pavement structure, especially for the asphalt layers, while ground-coupled systems are utilized mostly in order to gather information from the entire pavement structure (up to ~ 3 m depth). The majority of GPR pavement studies are carried out with air-coupled horn antennas, as they can be implemented at driving speeds without need for road closures. For instance, the 1 GHz air-coupled horn antenna is commonly used for the estimation of pavement layer thickness. However signals generated by horn antenna systems must have sufficient quality to allow the performance of automated signal processing and qualitative data analysis, especially when pavement data more sensitive to the analysis parameters

  14. About the sizes of elastomer particles in the asphalt concrete binder providing the maximum service life of pavements

    NASA Astrophysics Data System (ADS)

    Kaplan, A. M.; Chekunaev, N. I.

    2014-05-01

    It is noted that the durability of asphalt concrete pavements is determined by the time of the trunk cracks formation in the polymer-containing composites - in the modified by elastomers (e.g., by rubber) bitumenous binder of asphalt. Developed by the authors previously the theory of the cracks propagation in heterosystems [1] has allowed to investigate the problem of the cracks propagation in the rubber-bitumen composite. This investigations show that most effectively to prevente the trunk cracks formation in asphalt concrete can ultrafine rubber particles (150-750 nm) in a bitumenos binder of asphalt.

  15. Using traffic speed deflectometer to measure deflections and evaluate bearing capacity of asphalt road pavements at network level

    NASA Astrophysics Data System (ADS)

    Březina, Ilja; Stryk, Josef; Grošek, Jiří

    2017-09-01

    The paper deals with diagnostics of bearing capacity of asphalt pavements by a Traffic Speed Deflectometer (TSD device), which allows to measure pavement deflections continually at the traffic speed on the basis of dynamic loading induced by moving wheel of a reference axle at the speed of up to 80 km/h. The paper aims to inform of a new method to measure road pavement deflections, describes the principles of measuring pavement deflections by TSD device, and presents results of comparative measurements between FWD (Falling Weight Deflectometer) and TSD devices organized by CDV in Italy and Slovakia. Particular attention was paid to the difference between deflections measured by FWD and TSD devices.

  16. Use of Scrap Rubber in Asphalt Pavement Surfaces

    DTIC Science & Technology

    1991-12-01

    DEVELOPMENT OF method is conducted by applying compressive loads RUBBER -AGGREGATE with a prescribed sinusoidal waveform and can be used ASPHALT CONCRETE...evaluation program of rubber -aggregate as- 104 phalt surfaces with rubber contents from I to 3% rubber by weight is currently being conducted by the California...Transportation reports using as- men. However, no relationship between the modulus of phalt containing up to 25% crumb rubber (Civil Engi- resiliency and the

  17. Assessment of Asphalt Concrete Reinforcement Grid in Flexible Pavements

    DTIC Science & Technology

    2016-05-01

    Flexible Pavements Lynette A. Barna, Charles E. Smith Jr., and Andrew Bernier U.S. Army Engineer Research and Development Center (ERDC) Cold Regions...Development Center (ERDC) Cold Regions Re- search and Engineering Laboratory (CRREL), and Aaron Smart and Ann Scholz, NHDOT Bureau of Materials and...Association of State Highway and Transportation Officials CBR California Bearing Ratio CRREL Cold Regions Research and Engineering Laboratory CRADA

  18. Respirable crystalline silica exposures during asphalt pavement milling at eleven highway construction sites.

    PubMed

    Hammond, Duane R; Shulman, Stanley A; Echt, Alan S

    2016-07-01

    Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This article describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for 11 days at 4 highway construction sites in Wisconsin, and Manufacturer B completed milling for 10 days at 7 highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at 11 different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m(3) for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m(3) for the operator and 6.1 µg/m(3) for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m(3) for the operator and 9.0 µg/m(3) for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m(3) for both studies. The silica content in the bulk asphalt material being milled ranged from 7-23% silica for roads milled by Manufacturer A and from 5-12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are

  19. Respirable Crystalline Silica Exposures During Asphalt Pavement Milling at Eleven Highway Construction Sites

    PubMed Central

    Hammond, Duane R.; Shulman, Stanley A.; Echt, Alan S.

    2016-01-01

    Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This paper describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for eleven days at four highway construction sites in Wisconsin, while Manufacturer B completed milling for ten days at seven highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at eleven different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m3 for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m3 for the operator and 6.1 µg/m3 for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m3 for the operator and 9.0 µg/m3 for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m3 for both studies. The silica content in the bulk asphalt material being milled ranged from 7% to 23% silica for roads milled by Manufacturer A and from 5% to 12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are

  20. Assessment of the aging level of rejuvenated hot mixed asphalt concrete pavements

    NASA Astrophysics Data System (ADS)

    McGovern, Megan; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The efficacy of asphalt rejuvenator on restoring the properties of oxidatively aged asphalt was tested via a non-collinear ultrasonic subsurface wave mixing technique modified for field use. Longitudinal transducers were mounted on angle wedges to generate subsurface dilatational waves to allow for pavement evaluation when there is only access to one side. Because in the field the asphalt concrete (AC) pavement properties (i.e., ultrasonic velocities and attenuations) are unknown, a pre-determined fixed incident angle (based on the AC mixture type) was used, which allows for practical implementation in the field. Oxidative aged AC specimens were coated with rejuvenator (10% by weight of the binder) and left to dwell for varying amounts of time. Once the dwell time reached the desired amount, the specimen was immediately ultrasonically tested. The frequency ratio, f2/f1, at which the interaction took place and the normalized nonlinear wave generation parameter, β/β0, were recorded and compared against a reference plot. It was observed that the rejuvenator had the effect of restoring the nonlinear properties to those corresponding to a virgin sample after a sufficient amount of dwell time. The ability of the rejuvenator to fully penetrate and act on the binder was observed to be dependent on the porosity and aggregate structure, and thus varied for each specimen. As a result, some portions of the binder were restored to a greater extent than others. This non-uniform nature was captured via the nonlinear ultrasonic technique.

  1. Methane and carbon monoxide emissions from asphalt pavement: Measurements and estimates of their important to global budgets

    SciTech Connect

    Tyler, S.C.; Dlugokencky, E.; Zimmerman, P.R.; Cicerone, R.J. ); Lowe, D.C. )

    1990-08-20

    The authors measured emissions of methane from asphalt surfaces used in pavement for roadways. Maximum emissions were 22 mg/m{sup 2}/hr for 1- to 4-week-old pavement during maximum sunlight intensity. Emissions were much smaller at low sunlight intensity and dropped off to negligible amounts at night. Smaller emissions were observed for asphalt pavement of 2.5 to 3 years approximate age under similar conditions. Comparison measurements of carbon monoxide emissions resulted in maximum emissions of about 2.6 mg/m{sup 2}hr for 1-week-old pavement. These findings indicate that emissions of CH{sub 4} and CO are a function of both sunlight and temperature. Based on these results, methane emissions from asphalt pavement cannot be a significant source of atmospheric methane as compared to other identified methane sources. Therefore, although asphalt methane emissions are a form of fossil fuel methane, they cannot explain the relatively high fraction of {sup 14}C-depleted methane in the atmosphere.

  2. Construction and testing of crumb rubber modified hot mix asphalt pavement. Interim report

    SciTech Connect

    Albritton, G.E.; Gatlin, G.R.

    1996-08-01

    This study was structured towards addressing that portion of ISTEA which directs the individual states to conduct studies on the recyclability of crumb rubber modified hot mix asphalt (CRMHMA), and the technical performance of CRMHMA pavement by monitoring the construction and evaluating the performance of highway test sections in which CRMHA is removed by cold milling and recycled into new HMA through a hot mix asphalt plant. This project is to be constructed in two phases, the CRMHMA will be built in the first phase and approximately one year later it will be recycled. This report deals with the first phase in which the objective was to further document the construction, engineering characteristics, and performace of CRMHMA.

  3. Recycling crumb rubber modified asphalt pavements (revised). Final research report, September 1992-August 1994

    SciTech Connect

    Crockford, W.W.; Makunike, D.; Davison, R.R.; Scullion, T.; Billiter, T.C.

    1995-07-01

    There has been concern that the legislative mandate to use waste rubber in paving applications will result in a severe environmental problem when it becomes necessary to recycle these pavements. If successful recycling is possible, the long term performance of these pavements becomes a concern. The results of this study indicate that it is possible to recycle this material. However, some techniques for conventional asphalt mixture design, material processing, and construction must be modified to ensure this success, and some techniques may not be appropriate when waste rubber is present in the mixture to be recycled. Many of the results presented in this study are based on experiences in Tyler and San Antonio, Texas, where two of the earliest crumb rubber recycling operations in the United States have transpired.

  4. Recycled asphalt pavement as a base and sub-base material

    SciTech Connect

    Maher, M.H.; Gucunski, N.; Papp, W.J. Jr.

    1997-12-31

    Laboratory and field investigations were conducted to evaluate the use of recycled asphalt pavement (RAP) in roadway base and sub-base applications. The laboratory resilient modulus test results showed RAP has comparable strength with dense graded aggregate base and sub-base material used in the state of New Jersey. Using the spectral-analysis-of-the-surface-waves method (SASW), the field testing program evaluated the elastic modulus of the RAP base in the field and verified the laboratory results. The field test results showed higher modulus and stiffness for RAP than the dense graded aggregate base normally used in state of New Jersey.

  5. Study on infrared differential thermal non-destructive testing technology of the permeability of hot mix asphalt pavements

    NASA Astrophysics Data System (ADS)

    Wang, Duanyi; Shi, Jicun

    2017-06-01

    In order to non-destructive test (NDT) the permeability coefficient of hot mix asphalt (HMA) pavements fast, A methodology for assessing the permeability coefficient was proposed by infrared differential thermal testing of pavement after rain. The relationship between permeability coefficient and air voids of HMA specimen deter-mined. Finite element method (FEM) models were built to calculate the surface temperature difference with different exposure time after precipitation. Simulated solar radiation source and fully saturated plate specimens were set in laboratory, tests verify that the different exposure time the specimen surface temperature difference. Infrared differential thermal detection permeable pavement hardware and corresponding software developed. Based on many test results, the evaluation index and criteria of permeability coefficient of HMA pavements tested by infrared differential thermal were developed. The results showed that: There is correlation between air voids and permeability coefficient of HMA specimen. Permeability coefficient of HMA pavements can be determined by different surface temperature at different exposure time. 9:00 am - 14:00 pm is the best time to detect permeability coefficient by infrared differential thermal NDT. Permeable asphalt pavement permeability can be achieved by infrared detector quickly and continuously, a lane testing; Per the permeable assessment criteria, in-place pavements permeability coefficients can be accurately evaluated.

  6. The use of a non-nuclear density gauge for monitoring the compaction process of asphalt pavement

    NASA Astrophysics Data System (ADS)

    Van den bergh, Wim; Vuye, Cedric; Kara, Patricia; Couscheir, Karolien; Blom, Johan; Van Bouwel, Philippe

    2017-09-01

    The mechanical performance of an asphalt pavement affects its durability – thus carbon footprint. Many parameters contribute to the success of a durable asphalt mix, e.g. material selection, an accurate mix and even the road design in which the asphalt mix quality is quantified. The quality of the asphalt mix, by its mechanical properties, is also related to the compaction degree. However, and specifically for high volume rates, the laying process at the construction site needs an effective method to monitor and adjust immediately the compaction quality before cooling and without damaging the layer, which is now absent. In this paper the use of a non-nuclear density gauge (PQI – Pavement Quality Indicator) is evaluated, based on a site at Brussels Airport. Considering the outcome of the present research, this PQI is advised as a unique tool for continuous density measurements and allow immediate adjustments during compaction, and decreases the number of core drilling for quality control, and as a posteriori asphalt pavement density test where cores are prohibited. The use of PQI could be recommended to be a part of the standard quality control process in the Flemish region.

  7. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.

    PubMed

    Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather

    2014-01-01

    In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.

  8. Evaluation of reclaimed rubber in bituminous pavements. Final report, July 1993-April 1995

    SciTech Connect

    Trepanier, J.

    1995-06-01

    Section 1038 of the 1991 Intermodel Surface Transportation efficiency Act (ISTEA) mandated use of crumb rubber from scrap tires in asphalt pavement starting in FY 94. To gain some experience, the Illinois Department of Transportation (IDOT) constructed five demonstration projects in 1993 and one in 1994. All used the `dry process` to introduce crumb rubber into the mix. With the dry process, crumb rubber is added to the heated aggregate prior to addition of asphalt cement (AC). Three projects used very low addition rates. Each was divided into five equal segments. One segment, the control, used no crumb rubber. The other segments used 1/2, 1, 1 1/2 and 2 pounds of crumb rubber per ton of hot mix. The other three projects each used 20 pounds of crumb rubber per ton of hot mix. Both batch plants and drier-drum plants were used, and the crumb rubber was supplied in pre-measured batch-size packets, 50-pound paper bags and 2000-pound super sacks.

  9. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    NASA Astrophysics Data System (ADS)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a

  10. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam

  11. Thermal-moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau

    SciTech Connect

    Wen, Zhi; Zhang, Mingli; Ma, Wei; Wu, Qingbai; Niu, Fujun; Yu, Qihao; Fan, Zhaosheng; Sun, Zhizhong

    2015-04-21

    Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layer is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.

  12. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    SciTech Connect

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer; O'Donnell, Jonathan; Danda, Swapna

    2011-02-05

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empirical pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.

  13. Recycled asphalt pavement - fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations.

    PubMed

    Hoy, Menglim; Horpibulsuk, Suksun; Rachan, Runglawan; Chinkulkijniwat, Avirut; Arulrajah, Arul

    2016-12-15

    In this research, a low-carbon stabilization method was studied using Recycled Asphalt Pavement (RAP) and Fly Ash (FA) geopolymers as a sustainable pavement material. The liquid alkaline activator (L) is a mixture of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), and high calcium FA is used as a precursor to synthesize the FA-RAP geopolymers. Unconfined Compressive Strength (UCS) of RAP-FA blend and RAP-FA geopolymer are investigated and compared with the requirement of the national road authorities of Thailand. The leachability of the heavy metals is measured by Toxicity Characteristic Leaching Procedure (TCLP) and compared with international standards. The Scanning Electron Microscopy (SEM) analysis of RAP-FA blend indicates the Calcium Aluminate (Silicate) Hydrate (C-A-S-H) formation, which is due to a reaction between the high calcium in RAP and high silica and alumina in FA. The low geopolymerization products (N-A-S-H) of RAP-FA geopolymer at NaOH/Na2SiO3=100:0 are detected at the early 7days of curing, hence its UCS is lower than that of RAP-FA blend. The 28-day UCS of RAP-FA geopolymers at various NaOH/Na2SiO3 ratios are significantly higher than that of the RAP-FA blend, which can be attributed to the development of geopolymerization reactions. With the input of Na2SiO3, the highly soluble silica from Na2SiO3 reacted with leached silica and alumina from FA and RAP and with free calcium from FA and RAP; hence the coexistence of N-A-S-H gel and C-A-S-H products. Therefore, the 7-day UCS values of RAP-FA geopolymers increase with decreasing NaOH/Na2SiO3 ratio. TCLP results demonstrated that there is no environmental risk for both RAP-FA blends and RAP-FA geopolymers in road construction. The geopolymer binder reduces the leaching of heavy metal in RAP-FA mixture. The outcomes from this research will promote the move toward increased applications of recycled materials in a sustainable manner in road construction. Copyright © 2016 Elsevier B.V. All

  14. Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies.

    PubMed

    Agzenai, Yahya; Pozuelo, Javier; Sanz, Javier; Perez, Ignacio; Baselga, Juan

    2015-01-01

    In an effort to give a global view of this field of research, in this mini-review we highlight the most recent publications and patents focusing on modified asphalt pavements that contain certain reinforcing nanoparticles which impart desirable thermal, electrical and mechanical properties. In response to the increasing cost of asphalt binder and road maintenance, there is a need to look for alternative technologies and new asphalt composites, able to self-repair, for preserving and renewing the existing pavements. First, we will focus on the self-healing property of asphalt, the evidences that support that healing takes place immediately after the contact between the faces of a crack, and how the amount of healing can be measured in both the laboratory and the field. Next we review the hypothetical mechanisms of healing to understand the material behaviour and establish models to quantify the damage-healing process. Thereafter, we outline different technologies, nanotechnologies and methodologies used for self-healing paying particular attention to embedded micro-capsules, new nano-materials like carbon nanotubes and nano-fibres, ionomers, and microwave and induction heating processes.

  15. Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method

    PubMed Central

    Zakaria, Nur Mustakiza; Yusoff, Nur Izzi Md.; Hardwiyono, Sentot; Mohd Nayan, Khairul Anuar

    2014-01-01

    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard. PMID:25276854

  16. Evaluation of western shale-oil residue as an additive to petroleum asphalt for use as a pavement crack and joint sealant material

    SciTech Connect

    Harnsberger, P.M.; Wolf, J.M.; Robertson, R.E.

    1992-11-01

    The objective of this study was to perform a preliminary evaluation of using a distillation residue from Green River Formation (western) shale oil as an additive to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. A commercially available rubberized asphalt crack and joint filler material was also tested for comparison. ASTM specification tests for sealant materials used in concrete and asphalt pavements were performed on the sealant materials. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation experiment to evaluate the relaxation and recovery properties of the sealant materials. The results show that the shale-oil modified petroleum asphalts and the neat petroleum asphalt do not pass the extension portion of the ASTM test; however, there is indication of improvement in the adhesive properties of the shale-oil modified asphalts. There is also evidence that the addition of shale-oil residue to the petroleum asphalt, especially at the 20% level, improves the relaxation and recovery properties compared with the petroleum asphalt.

  17. A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement

    NASA Astrophysics Data System (ADS)

    Drysdale, Graeme Robert

    A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and

  18. A method based on machine learning using hand-crafted features for crack detection from asphalt pavement surface images

    NASA Astrophysics Data System (ADS)

    Fujita, Yusuke; Shimada, Koji; Ichihara, Manabu; Hamamoto, Yoshihiko

    2017-03-01

    Application of machine vision is expected for efficiency and objectivity of inspection in various fields. Automation of visual inspection for asphalt pavement surface images is also expected, but it is difficult because of unexpected objects, non-uniform illumination and irregularities in the pavement surface. Many of conventional approaches are based on state-of-the-arts. However, there is a problem that the application conditions of these is limited. In this article, we proposed a new method based on state-of-the-art and machine learning for crack detection from asphalt pavement surface images. The classifier of the proposed method is the linear support vector machine, and it uses features proposed in the conventional study that is one of the state-of-the-art approaches. The proposed system need not a large number of training data, unlike deep learning architectures. It is easy to train the classifier to detect cracks using a GUI tool developed by authors. Quantitative evaluation using 100 road surface images obtained by mobile mapping system was performed to compare with our conventional method as one of state-of-the-art approaches. Experiments show that our proposed method clearly outperforms the state-of-the-art approach.

  19. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and azaarenes in runoff from coal-tar- and asphalt-sealcoated pavement

    USGS Publications Warehouse

    Mahler, Barbara J.; Van Metre, Peter C.; Foreman, William T.

    2014-01-01

    Coal-tar-based sealcoat, used extensively on parking lots and driveways in North America, is a potent source of PAHs. We investigated how concentrations and assemblages of PAHs and azaarenes in runoff from pavement newly sealed with coal-tar-based (CT) or asphalt-based (AS) sealcoat changed over time. Samples of simulated runoff were collected from pavement 5 h to 111 d following application of AS or CT sealcoat. Concentrations of the sum of 16 PAHs (median concentrations of 328 and 35 μg/L for CT and AS runoff, respectively) in runoff varied relatively little, but rapid decreases in concentrations of azaarenes and low molecular weight PAHs were offset by increases in high molecular weight PAHs. The results demonstrate that runoff from CT-sealcoated pavement, in particular, continues to contain elevated concentrations of PAHs long after a 24-h curing time, with implications for the fate, transport, and ecotoxicological effects of contaminants in runoff from CT-sealcoated pavement.

  20. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and azaarenes in runoff from coal-tar- and asphalt-sealcoated pavement.

    PubMed

    Mahler, Barbara J; Van Metre, Peter C; Foreman, William T

    2014-05-01

    Coal-tar-based sealcoat, used extensively on parking lots and driveways in North America, is a potent source of PAHs. We investigated how concentrations and assemblages of PAHs and azaarenes in runoff from pavement newly sealed with coal-tar-based (CT) or asphalt-based (AS) sealcoat changed over time. Samples of simulated runoff were collected from pavement 5 h to 111 d following application of AS or CT sealcoat. Concentrations of the sum of 16 PAHs (median concentrations of 328 and 35 μg/L for CT and AS runoff, respectively) in runoff varied relatively little, but rapid decreases in concentrations of azaarenes and low molecular weight PAHs were offset by increases in high molecular weight PAHs. The results demonstrate that runoff from CT-sealcoated pavement, in particular, continues to contain elevated concentrations of PAHs long after a 24-h curing time, with implications for the fate, transport, and ecotoxicological effects of contaminants in runoff from CT-sealcoated pavement.

  1. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System

    PubMed Central

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-01-01

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods. PMID:27929409

  2. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System.

    PubMed

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-12-06

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.

  3. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    SciTech Connect

    Anthonissen, Joke; Van den bergh, Wim; Braet, Johan

    2016-09-15

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.

  4. Microstructural Analysis and Rheological Modeling of Asphalt Mixtures Containing Recycled Asphalt Materials

    PubMed Central

    Cannone Falchetto, Augusto; Moon, Ki Hoon; Wistuba, Michael P.

    2014-01-01

    The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP), and, more recently, Recycled Asphalt Shingles (RAS) on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP) and modeling of rheological data obtained with the Bending Beam Rheometer (BBR). Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL) of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder. PMID:28788190

  5. Microstructural Analysis and Rheological Modeling of Asphalt Mixtures Containing Recycled Asphalt Materials.

    PubMed

    Falchetto, Augusto Cannone; Moon, Ki Hoon; Wistuba, Michael P

    2014-09-02

    The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP), and, more recently, Recycled Asphalt Shingles (RAS) on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP) and modeling of rheological data obtained with the Bending Beam Rheometer (BBR). Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL) of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder.

  6. Criteria for Asphalt-Rubber Concrete in Civil Airport Pavements: Mixture Design.

    DTIC Science & Technology

    1986-07-01

    8217s. These early experiments included the introduction of various forms of rubber (including latex, devulcanized or reclaimed rubber, raw and ground...addition to rubber morphology, the size of the rubber particles and whether the rubber has been processed after grinding, i.e., devulcanized , both...Method B. Method A uses ground reclaimed " devulcanized " rubber and an extender oil whereas Method B uses ground reclaimed vulcanized rubber and a kerosene

  7. Asphalt and asphalt additives. Transportation research record

    SciTech Connect

    Not Available

    1992-01-01

    Contents: use of asphalt emulsions for in-place recycling: oregon experience; gap-graded cold asphalt concrete: benefits of polymer-modified asphalt cement and fibers; cold in-place recycling for rehabilitation and widening of low-volume flexible pavements in indiana; in situ cold recycling of bituminous pavements with polymer-modified high float emulsions; evaluation of new generation of antistripping additives; correlation between performance-related characteristics of asphalt cement and its physicochemical parameters using corbett's fractions and hpgc; reaction rates and hardening susceptibilities as determined from pressure oxygen vessel aging of asphalts; evaluation of aging characteristics of asphalts by using tfot and rtfot at different temperature levels; summary of asphalt additive performance at selected sites; relating asphalt absorption to properties of asphalt cement and aggregate; study of the effectiveness of styrene-butadiene rubber latex in hot mix asphalt mixes; stability of straight and polymer-modified asphalts.

  8. BEHAVIOR OF MODEL ASPHALT PAVEMENT CONTAINING A HYDRAULIC, GRADED IRON AND STEEL SLAG BASE-COURSE UNDER REPEATED PLATE-LOADING

    NASA Astrophysics Data System (ADS)

    Yoshida, Nobuyuki; Sugisako, Yasunari

    In this paper, the dynamic response of asphalt pave ment containing a hydraulic, graded iron and steel slag (hereafter called HMS) base-course under repeated plate-loading was investigated using a model asphalt pavement and the influence of hydraulicity on th e pavement behavior was discussed. The model pavement constructed was a 4-layer system consis ting of a dense-graded asphalt mix surface layer, a dense-graded asphalt mix binder-course, a HMS base-course and a Masado (heavily-weathered granitic sand) subgrade. A repeated plate-loading test was carri ed out so as to achieve a resilient state. It is shown that surface resilient deflection decreases as curing progresses and after 90 days, the deflection becomes almost half of the initial. Large horizontal tensile strains develop at the bottoms of binder- and base-course, which decrease significantly with curing. It is indicative that HMS base-course behaves like a stiffer plate resulting in a hard-to-deflect state due to the development of hydraulicity.

  9. Moisture Content Numerical Simulation on Structural Damage of Hot Mix Asphaltic Pavement

    NASA Astrophysics Data System (ADS)

    Abejide, O. S.; Mostafa, M. M. H.

    2017-06-01

    Considering the merits of road transportation in the economy and communication activities of the modern societies, it is imperative to design a safe, stable, efficient and cost effective road that will lead to increased economic development and growth of the South African nation. Although, the overarching effect of failed roads has in many ways led to increased travel time, loss of life and property; leading to reduced driver control on failed road sections (riding quality). Thus, time rate delamination of flexible pavement is a major focus of this study. Since structural collapse in a flexible pavement structure is caused by the evolution of different types of damage mechanisms; fatigue cracking, advanced crushing, temperature variation, and delamination. The effect of moisture content on HMA was analysed. The analysis from the multi-layered elastic model indicates that increase in moisture content in the underlying layer of HMA pavement results to increase in the strain of the individual layers and culminates to a decrease in the structural carrying capacity of the pavement with respect to number of load cycles that can be carried on the HMA pavement. This study shows a clear relationship between the moisture/saturation coefficient and the Elastic Modulus of the underlying geometric material layer properties of the pavement during the service life of the pavement.

  10. Evaluation of properties of recycled asphalt concrete hot mix

    SciTech Connect

    Brown, E.R.

    1983-01-01

    This study was undertaken to evaluate the laboratory performance of recycled asphalt concrete mixtures and to compare these results to those measured for conventional asphalt concrete mixtures. To make these comparisons, samples of aged asphalt concrete were obtained from three locations where recycling was planned. These samples were blended with new aggregate and new asphalt materials to produce six different recycled mixtures. Two aggregate types, a crushed gravel and a crushed limestone, were used to produce two conventional mixtures and to blend with the reclaimed asphalt pavement to produce the six recycled mixtures. Three asphalt materials which were obtained to produce the various mixtures being evaluated consisted of AC-20 for preparing the conventional mixtures and AC-5 and a recycling agent for preparing the recycled mixtures. The Shell BISAR computer program was used to predict the stesses and strains for two typical pavement sections under a given loading conditions. The computed stresses and strains were then analyzed along with the laboratory fatigue tests to predict the fatigue performance of the various mixtures. The results of this study indicated a satisfactory comparison between laboratory performance of recycled mixtures and conventional mixtures. Fatigue analysis indicated that the conventional mixtures would provide the greatest fatigue resistance in thick asphalt concrete layers at lower temperatures while the recycled mixtures would provide the greatest fatigue resistance in thin asphalt layers at higher temperatures.

  11. Evaluation of oil shale bitumen as a pavement asphalt additive to reduce moisture damage susceptibility

    SciTech Connect

    Robertson, R.E.; Harnsberger, P.M.; Wolf, J.M.

    1991-01-01

    An unrefined shale bitumen was evaluated as an agent to reduce moisture damage susceptibility of asphalt aggregate mixtures. Some activity was observed but less than might have been expected based on the molecular weight and nitrogen content of the bitumen. The counter effects of free carboxylic acids, which are known to be variable in asphalt and which are also present in the unrefined bitumen, appear to diminish the activity of the bitumen to inhibit moisture damage. 5 refs., 1 tab.

  12. Investigation of the Inter-Relationship between Base Pavement Stiffness and Asphalt Overlay Compaction.

    DTIC Science & Technology

    1988-03-01

    Airport Engineering , Environmental Protection Requirements and Aircraft Disaster Conference, Hershey, Pennsylvania, 1982. 49 APPENDIX A NDT RESULTS c r...FILE CUP)Ci DOT/ FM/ ES-881 Investigation of the Inter-relationship Systems Engineering Between Base Pavement Stiffness Washington, D.C. 20591 and...collected on three paving projects in FAA’s Eastern Region. Nondestructive testing ( NDT ) was used to quantify the stiffness of base pavements prior to

  13. A laboratory investigation on the use of framed asphalt for recycled bituminous pavements

    NASA Astrophysics Data System (ADS)

    Brennan, M.

    1981-03-01

    The foaming characteristics of a selection of asphalts commonly used in construction in Indiana were recorded in terms of expansion ratio and half life. The performance of three of these asphalts as binders for a recycled bituminous paving mixture was evaluated using: (1) the Gyratory and the Marshall Compactive methods; (2) the Marshall stability testing procedure; and (3) the Hveem stability testing procedure. The effect of curing time and moisture on the stability of a recycled mix was also determined. A foaming temperature of 160 C (325 F) and an added water content of 2% were selected as the best conditions for optimum foam volume and half life. Excellent Marshall stability values were obtained with 0.5% and 1.0% foamed asphalt added to the recycled mixtures. Curing time had a marked effect on the lower additions of foamed asphalt. The effect of water decreases with increased amounts of foamed asphalt. Comparison of the Marshall Stability values and the Hveem Stability values indicates that the same optimum percent of foamed asphalt was obtained.

  14. Comparative Evaluation of Pavement Crack Detection Using Kernel-Based Techniques in Asphalt Road Surfaces

    NASA Astrophysics Data System (ADS)

    Miraliakbari, A.; Sok, S.; Ouma, Y. O.; Hahn, M.

    2016-06-01

    With the increasing demand for the digital survey and acquisition of road pavement conditions, there is also the parallel growing need for the development of automated techniques for the analysis and evaluation of the actual road conditions. This is due in part to the resulting large volumes of road pavement data captured through digital surveys, and also to the requirements for rapid data processing and evaluations. In this study, the Canon 5D Mark II RGB camera with a resolution of 21 megapixels is used for the road pavement condition mapping. Even though many imaging and mapping sensors are available, the development of automated pavement distress detection, recognition and extraction systems for pavement condition is still a challenge. In order to detect and extract pavement cracks, a comparative evaluation of kernel-based segmentation methods comprising line filtering (LF), local binary pattern (LBP) and high-pass filtering (HPF) is carried out. While the LF and LBP methods are based on the principle of rotation-invariance for pattern matching, the HPF applies the same principle for filtering, but with a rotational invariant matrix. With respect to the processing speeds, HPF is fastest due to the fact that it is based on a single kernel, as compared to LF and LBP which are based on several kernels. Experiments with 20 sample images which contain linear, block and alligator cracks are carried out. On an average a completeness of distress extraction with values of 81.2%, 76.2% and 81.1% have been found for LF, HPF and LBP respectively.

  15. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  16. Certification Tests on Cold Patch Asphalt Repair Materials for Use in Airfield Pavements

    DTIC Science & Technology

    2010-06-01

    the amount of bituminous material. The maximum specific gravity is used in calculating the percentage of air voids in compacted samples, in... gravity was calculated. Compaction For this work, a Pine Instruments Company model AFGC125X gyratory compactor with a 4-in.-diam mold was used to...produce cylindrical asphalt concrete specimens. Compaction was performed using a ram pressure of 87 psi and an internal angle of gyration of 1.16 deg

  17. Recycled tire rubber and other waste materials in asphalt mixtures. Transportation research record

    SciTech Connect

    1995-12-31

    The papers in this volume, dealing with various facets of recycled tire rubber and other waste materials in asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. In the first papers, Rebala and Estakhri, Malpass and Khosla, and Baker and Connolly describe research related to crumb rubber modified mixtures that was done for the Texas, North Carolina, and New Jersey State Departments of Transportation. Ali et al. report on their research in Canada to determine the feasibility of sing reclaimed roofing materials in hot mix asphalt pavement. Emery discusses the evaluation of 11 Ontario rubber modified demonstration projects in terms of pavement performance, environmental impacts, and recyclability. In the last paper, Fwa and Aziz report on their work in Singapore related to the use of incinerator residue in asphalt mixtures.

  18. Use of recycled chunk rubber asphalt concrete (CRAC) on low volume roads and use of recycled crumb rubber modifier in asphalt pavements. Final report, June 1993-June 1995

    SciTech Connect

    Hossain, M.; Funk, L.P.; Sadeq, M.A.; Marucci, G.

    1995-06-01

    The major objective of this project was to formulate a Chunk Rubber Asphalt Concrete (CRAC) mix for use on low volume roads. CRAC is a rubber modified asphalt concrete product produced by the `dry process` where rubber chunks of 1/2 inch size are used as aggregate in a cold mix with a type C fly ash. The second objective of this project was to develop guidelines concerning the use of rubber modified asphalt concrete hot mix to include: (1) Design methods for use of asphalt-rubber mix for new construction and overlay, (2) Mix design method for asphalt-rubber, and (3) Test method for determining the amount of rubber in an asphalt-rubber concrete for quality control purposes.

  19. Crumb rubber modifier (CRM) in asphalt pavement: Summary of practices in Arizona, California, and Florida. Interim report, 1 February-30 June 1995

    SciTech Connect

    Hicks, R.G.; Lundy, J.R.; Leahy, R.B.; Hanson, D.; Epps, J.

    1995-09-01

    Highway agencies have been evaluating crumb rubber modifier (CRM) in hot mix asphalt (HMA) since the 1970`s. Three agencies, Arizona, California, and Florida, currently use CRM in HMA at levels that would approach or exceed the mandate in Section 1038 of the Intermodal Surface Transportation Efficiency Act of 1991. This report documents the use of CRM in HMA in these three States. In particular, it addresses issues including thickness design, materials and mix design, construction procedure, including control, and pavement performance. The report also addresses the following questions: (1) What processes are used, (2) Why are they used, (3) How are they performing.

  20. The Fate of Pollutants in Porous Asphalt Pavements, Laboratory Experiments to Investigate Their Potential to Impact Environmental Health

    PubMed Central

    Charlesworth, Susanne M.; Beddow, Jamie; Nnadi, Ernest O.

    2017-01-01

    Pervious Paving Systems (PPS) are part of a sustainable approach to drainage in which excess surface water is encouraged to infiltrate through their structure, during which potentially toxic elements, such as metals and hydrocarbons are treated by biodegradation and physical entrapment and storage. However, it is not known where in the PPS structure these contaminants accumulate, which has implications for environmental health, particularly during maintenance, as well as consequences for the recycling of material from the PPS at the end-of-life. A 1 m3 porous asphalt (PA) PPS test rig was monitored for 38 months after monthly additions of road sediment (RS) (367.5 g in total) and unused oil (430 mL in total), characteristic of urban loadings, were applied. Using a rainfall simulator, a typical UK rainfall rate of 15 mm/h was used to investigate its efficiency in dealing with contamination. Water quality of the effluent discharged from the rig was found to be suitable for discharge to most environments. On completion of the monitoring, a core was taken down through its surface, and samples of sediment and aggregate were taken. Analysis showed that most of the sediment remained in the surface course, with metal levels lower than the original RS, but higher than clean, unused aggregate or PA. However, even extrapolating these concentrations to 20 years’ worth of in-service use (the projected life of PPS) did not suggest their accumulation would present an environmental pollution risk when carrying out maintenance of the pavement and also indicates that the material could be recycled at end-of-life. PMID:28635641

  1. The Fate of Pollutants in Porous Asphalt Pavements, Laboratory Experiments to Investigate Their Potential to Impact Environmental Health.

    PubMed

    Charlesworth, Susanne M; Beddow, Jamie; Nnadi, Ernest O

    2017-06-21

    Pervious Paving Systems (PPS) are part of a sustainable approach to drainage in which excess surface water is encouraged to infiltrate through their structure, during which potentially toxic elements, such as metals and hydrocarbons are treated by biodegradation and physical entrapment and storage. However, it is not known where in the PPS structure these contaminants accumulate, which has implications for environmental health, particularly during maintenance, as well as consequences for the recycling of material from the PPS at the end-of-life. A 1 m³ porous asphalt (PA) PPS test rig was monitored for 38 months after monthly additions of road sediment (RS) (367.5 g in total) and unused oil (430 mL in total), characteristic of urban loadings, were applied. Using a rainfall simulator, a typical UK rainfall rate of 15 mm/h was used to investigate its efficiency in dealing with contamination. Water quality of the effluent discharged from the rig was found to be suitable for discharge to most environments. On completion of the monitoring, a core was taken down through its surface, and samples of sediment and aggregate were taken. Analysis showed that most of the sediment remained in the surface course, with metal levels lower than the original RS, but higher than clean, unused aggregate or PA. However, even extrapolating these concentrations to 20 years' worth of in-service use (the projected life of PPS) did not suggest their accumulation would present an environmental pollution risk when carrying out maintenance of the pavement and also indicates that the material could be recycled at end-of-life.

  2. a Feasibility Study on Use of Generic Mobile Laser Scanning System for Detecting Asphalt Pavement Cracks

    NASA Astrophysics Data System (ADS)

    Chen, Xinqu; Li, Jonathan

    2016-06-01

    This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS) system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM) of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm) within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.

  3. Predicting rheological parameters of reclaimed asphalt cement with wave propagation techniques. Research report, 1 September 1993-31 August 1995

    SciTech Connect

    Nazarian, S.; Pezo, R.; Nori, S.R.G.; Picornell, M.

    1996-07-01

    A methodology to predict the rheological of asphalt cement from elastic modulus or from the indirect tensile (IDT) strength of the mix is presented. Wave propagation techniques were used to determine the modulus of the mix. Numerous specimens, prepared from four different mixtures with different asphalt contents and voids in the total mixes (VTM`s), were-oven aged for different periods. The elastic modulus and IDT strength of each specimen were determined, and its asphalt cement was recovered to evalutate its rheological properties. The effects of different parameters, such as asphalt content and VTM, on relationships between elastic modulus or IDT strength with rheological properties were determined.

  4. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    PubMed

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  5. Utilization of Recycled Asphalt Concrete with Warm Mix Asphalt and Cost-Benefit Analysis

    PubMed Central

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures. PMID:25574851

  6. Pavement evaluation and rehabilitation

    SciTech Connect

    Ali, N.A.; Khosla, N.P.; Johnson, E.G.; Hicks, R.G.; Uzan, J.

    1987-01-01

    The 20 papers in this report deal with the following areas: determination of layer moduli using a falling weight deflectometer; evaluation of effect of uncrushed base layers on pavement performance; the effect of contact area shape and pressure distribution on multilayer systems response; sensitivity analysis of selected backcalculation procedures; performance of a full-scale pavement design experiment in Jamaica; subsealing and load-transfer restoration; development of a demonstration prototype expert system for concrete pavement evaluation; numerical assessment of pavement test sections; development of a distress index and rehabilitation criteria for continuously reinforced concrete pavements using discriminant analysis; a mechanistic model for thermally induced reflection cracking of portland cement concrete pavement with reinforced asphalt concrete overlay; New Mexico study of interlayers used in reflective crack control; status of the South Dakota profilometer; incorporating the effects of tread pattern in a dynamic tire excitation mechanism; external methods for evaluating shock absorbers for road-roughness measurements; factor analysis of pavement distresses for surface condition predictions; development of a utility evaluation for nondestructive-testing equipment used on asphalt-concrete pavements; estimating the life of asphalt overlays using long-term pavement performance data; present serviceability-roughness correlations using rating panel data; video image distress analysis technique for Idaho transportation department pavement-management system; acceptability of shock absorbers for road roughness-measuring trailers.

  7. Using pyrolized carbon black from waste tires in asphalt pavement. Part 1. Limestone aggregate. Final report, September 1993-May 1995

    SciTech Connect

    Park, T.; Lovell, C.W.

    1996-02-20

    The study presents the viability of using pyrolyzed carbon black (PCB) as an additive in hot mix asphalt concrete. Different ratios of PCB (5%, 10%, 15%, 20% by weight of asphalt) were blended with two grades of asphalt (AC-10 and AC-20). The complete behaviors of the PCB modified asphalt concrete were investigated by comprehensive laboratory testing and evaluation. The Marshall method was used to determine the optimum binder content, and the mechanical properties and void relationships were investigated by this method. The Gyratory Testing Machine was used to define the stress-strain relationships of the PCB mixtures. The rutting potential of PCB mixtures was investigated using the Dynamic Creep Testing. The performance of the PCB mixtures at low temperature (5 degrees C) was determined by the Indirect Tensile Testing. The strength performance of the PCB mixtures at intermediate temperatures (5 degrees C and 25 degrees C) was examined by the Resilient Modulus Test. The Hamburg Wheel Tracking Device was employed to ascertain the stripping potential of the PCB mixtures. The findings of the study show beneficial effects of added PCB for asphalt mixture. Specifically, test results show that PCB contents of 10% to 15% by weigh of asphalt produce a number of significant 0mprovements. The rutting potential, the temperature susceptibility and the stripping potential can be reduced by the inclusion of PCB in the asphalt mixture. Added material costs of about 6% may well be justified by expected improvements in performance.

  8. Strength and deformation characteristics of pavements

    NASA Astrophysics Data System (ADS)

    Shook, J. F.; Kallas, B. F.; McCullough, B. F.; Taute, A.; Rada, G.; Witczak, M. W.; Heisey, J. S.; Stokoe, K. H.; Meyer, A. H.; Huffman, M. S.

    The Colorado experimental base project was a full-scale field experment constructed with various thicknesses of two full depth hot mix sand asphalt beans, one full depth asphalt concrete base, and one thickness of a standard design with untreated base and subbase layers. Relative thicknesses of one asphalt concrete base, two hot mix sand asphalt bases, and one standard design with untreated base and subbase required to give an equal level of pavement performance were determined. Certain measured properties of the pavement and the pavement components were related to observed levels of performance by using both empirical and theoretical models for pavement behavior.

  9. Pavement recycling catching on

    SciTech Connect

    Dallaire, G.

    1980-11-01

    The soaring costs of asphalt, aggregates, energy, and labor have revived interest in the recycling of old pavements and road bases. Two types of techniqueshot mix recycling and cold mix recycling are described and compared. The experiences of Wisconsin and Texas with pavement recycling are reviewed. Wisconsin uses the hot mix recycling, while Texas refurbishes its roads with the cold mix recycling. One contractor's doubts about surface recycling of pavements are outlined. (13 photos)

  10. Field performance of maintenance treatments constructed with reclaimed asphalt pavement (RAP). Final research report, September 1992-August 1994

    SciTech Connect

    Estakhri, C.K.

    1994-11-01

    In the study, RAP was blended with recycling emulsions and conventional maintenance mixtures in attempts to improve its field performance as a maintenance mixture. RAP was also mixed with stabilizers and used as a base material in maintenance projects. Several field experiments were constructed throughout the state, and the report documents their performance.

  11. Active infrared thermography applied to defect detection and characterization on asphalt pavement samples: comparison between experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.; Ibos, L.; Ibarra-Castanedo, C.; Mazioud, A.; Marchetti, M.; Maldague, X.; Bendada, A.

    2010-10-01

    This work is devoted to the application of active infrared thermography to defect detection in pavement structures. The challenge is to localize and to determine some properties of defects (e.g. shape and depth) into a highly heterogeneous material. Experimental work was carried out in laboratory conditions using a pavement sample containing two defects (wood and air). Pulsed thermography results were compared with FLUENT numerical simulations. Different preliminary approaches were investigated to analyze data: singular value decomposition of infrared image sequences, contrast image methods and computation of thermal effusivity considering a heat transfer model in a semi-infinite material. This last method is more sensitive to experimental conditions such as the presence of natural convection at a sample surface. However, all methods allow detection of one defect into the pavement sample.

  12. Characterization of asphalt additive produced from hydroretorted Alabama shale

    SciTech Connect

    Rue, D.M.; Roberts, M.J.

    1992-12-31

    Shale oil, produced from beneficiated Alabama shale by pressurized fluidized-bed hydroretorting, was fractionated to produce shale oil asphalt additives (SOA). Three shale oil fractions boiling above 305{degrees}C were added to standard AC-20 asphalt to improve pavement properties. The physical properties and aging characteristics of AC-20 asphalt binder (cement) containing SOA are similar to those of unmodified AC-20 asphalt binder. Asphalt pavement briquettes made with AC-20 asphalt binder containing 5 to 10 percent SOA have superior resistance to freeze-thaw cracking and a greater retention of tensile strength when wet compared to pavement briquettes containing AC-20 binder alone.

  13. International State-of-the-Art Colloquium on Low-Temperature Asphalt Pavement Cracking Held in Hanover, New Hampshire on 6-8 May 1987

    DTIC Science & Technology

    1991-02-01

    tem- perature susceptibility of the asphalt cement appear to General discussion be worse than it actually is. Further, air- blown asphalt The first...the fracture temperature was calculc’, ,where point for waxy and air- blown asphalt cements, and the the stress in the mix exceeded the strength of...of sured using a two-point bending apparatus and trapezoi- air- blown asphalts to reduce thermal cracking of asphalt dal-shaped spc.,inens. Twelve

  14. Hei-way general purpose recycled asphalt material (RHM). Final report

    SciTech Connect

    Dash, U.

    1993-02-01

    Utilization of Reclaimed Asphalt Pavement (RAP) in paving projects is a popular concept. It conserves material and can often provide an economical alternative to using virgin materials. The research summarizes the utilization of about 8000 tons of RAP in a project in Armstrong County (SR 3011 and SR 3013) using a proprietary process by Heilman Pavement Specialities. The mix is called Recycled Heilman Mix (RHM), which is prepared using a proprietary blend of asphalt cement (AC-5) and a rejuvenator mixed with equal weights of RAP and virgin aggregates in a batch-type pugmill. A control mix was produced by using 9.6 gallons per ton of E-5 emulsion and a blend of equal weights of RAP and coarse aggregates. The construction of the two sites were completed in September 1988 without any significant problems. A three-wheeled roller, ballasted rubber-tired roller and a second 1-ton tandem roller was used for compaction. There were no significant construction problems. RHM performed well on this project. The method of recycling asphalt pavements appears to be viable. RHM is stockpileable. Although RHM was 40 to 50 percent more expensive on the project, the life cycle costs on larger projects can be more competitive, especially when the cost of a seal coat is either avoided or delayed on RHM jobs when compared to E-5 mixes as control.

  15. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  16. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  17. Concrete Block Pavements

    DTIC Science & Technology

    1983-03-01

    Calif. 42 1 •1 90 NEW LEGEND 80 A VIBORG, DENMARK, BLOCKS A VIBORG, DENMARK, ASPHALTIC CONCRETE AFTER 00 MELBOURNE, AUSTRALIA, BLOCKS VIBRATION MEAN ...the load-distributing characteristics of the Mlock pavements. *. 45 -, , - t 171 LEGENDT 0 CONCRETE BASE, MEAN OF 8 TESTS,9 KNAPTON (1978) I RANGE OF...45 to 60 min. 90. Table 11 summarizes the results of these tests. The mean penetration of water through the block pavements with a slope of I per

  18. Hot in-place recycling of asphalt concrete. Final report

    SciTech Connect

    Button, J.W.; Little, D.N.; Estakhri, C.K.; Mason, L.S.

    1994-01-01

    ;Contents: Hot in place recycling processes and equipment; HIPR as a tool for asphalt pavement rehabilitation; Mixture design for HIPR processes; Relative performance of HIPR pavements; Guidelines for effective use of HIPR; and Conclusions and recommendations.

  19. Modified Asphalt Binder with Natural Zeolite for Warm Mix Asphalt

    NASA Astrophysics Data System (ADS)

    Dubravský, Marián; Mandula, Ján

    2015-11-01

    In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic - mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.

  20. Oxidation and photooxidation of asphalts

    SciTech Connect

    Mill, T.; Tse, D. )

    1990-07-01

    Oxidation of asphalt is a major cause of pavement failure owing to hardening of the asphalt binder with accompanying changes in viscosity, separation of components, embrittlement and loss of cohesion and adhesion of the asphalt in the mix. However oxidation of asphalt-aggregate mixes at high temperature is deliberately done to partly harden the mix prior to laydown; hardening then continues during cooling. Excessive hardening at this point is undesirable because of embrittlement and cracking. Slow oxidation of asphalt continues during the service life of the roadbed at a rate that appears to be partly determined by the void volume of the roadbed, as well as the properties of the asphalt and (possibly) the properties of the aggregate. The authors focused their efforts on understanding the mechanistic basis for slow oxidation of asphalt under service conditions in order to predict how rapidly an asphalt will oxidize, based on its composition, and to find better ways to inhibit the process under service conditions.

  1. State-of-the-art and prospect for self-healing asphalt concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Dong

    2017-08-01

    In order to solve the problem of asphalt concrete pavement cracks, this paper summarizes the principle of self-healing asphalt concrete, and describes asphalt concrete self-healing technology in various countries. This paper also analyses the factors of influencing the self-healing ability of asphalt concrete and the evaluation index, and describes the prospect of asphalt concrete self-healing technology.

  2. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  3. A feasibility study to use coal tar contaminated soil in asphalt cement mixture production

    SciTech Connect

    Dulam, C.S.; Hoag, G.E.; Dahmani, A.; Nadim, F.

    1996-11-01

    Coal tars are the residues produced during the gasification of coal. Traditionally, coal tars were buried onsite at the power plants or left as residuals in the bottom of gas holders. Currently, there are more than 1,500 such historic sites which will undergo site assessment in the near future. The use of coal tar residuals in asphalt-based products could result in greatly reduced disposal costs, in comparison to current methods of disposal. Present disposal practice of coal tar contaminated residuals includes disposal in hazardous waste landfills or incineration. Treatment and disposal costs are reported to be as much as $1,000/ton for current coal tar contaminated residuals disposal options. This feasibility study was performed to determine the use of coal tar contaminated soil (CTCS) in bituminous materials to produce hot asphalt mix. Mixtures of varying composition of CTCS and bituminous material were produced to perform TCLP. The air emissions during the mixing process were captured and analyzed. In this study, a bench scale investigation was performed to identify and quantify the emissions from heating the CTCS at the mixer temperature. The pilot scale investigations were performed by replacing reclaimable asphalt pavement (RAP) with CTCS during the hot asphalt mix production. The investigations were performed on two types of mixtures; using CTCS as the direct additive in the first type, and using SS-1 (slow setting asphalt emulsion) stabilized CTCS as an additive in the second type.

  4. Slow mechanical relaxation in asphalt

    SciTech Connect

    Stastna, J.; Zanzotto, L.

    1996-12-31

    Asphalt (or bitumen) is one of the earliest construction materials used by mankind. However, despite the long history of its use and the important role it plays at the present time, in the construction of pavements, the composition and especially the structure of asphalt is still not fully understood. It is generally believed that asphalt is a multiphase system in which the large and polar molecules called asphaltenes, or their agglomerates are dispersed in the medium consisting of the smaller molecules with low or no polarity. Opinions on how the asphalt structure is arranged vary. The study of asphalt structure is made extremely difficult by the nature of this material. Non-invasive methods such as dynamic mechanical or electric testing, which investigate the asphalt in its original state may greatly contribute to our knowledge of the asphalt internal structure.

  5. Permeable pavement study (Edison)

    EPA Pesticide Factsheets

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m2, lined sections that direct all infiltrate into 5.7-m3 tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry de

  6. Recycling asphalt proves economical for paving contractors

    SciTech Connect

    Not Available

    1982-09-01

    Methods of recyclig asphalt to repair roads are described and evaluated. Need for recycling is caused by the escalating price of asphalt (an oil product). The economics and efficiency of the various processes used are evaluated. Methods described are: (1) cold-mix recycling in which the road is crushed, mixed with a new asphalt emulsion and reapplied; (2) hot mix, which involves ripping up pavement, trucking it to an asphalt plant, and mixing the old pavement material with virgin paving materials; and (3) cold planing (when only the top few inches of the road are deteriorated). Mining of asphalt roads, by removing top layers from old roads which are thick from many repair jobs, is described as well as mining of old airstrips. Value of asphalt available has been estimated as high as $50 billion. Recycling processes for asphalt are described briefly. (MJJ)

  7. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  8. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  9. Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995

    SciTech Connect

    Bullin, J.A.; Davison, R.R.; Glover, C.J.

    1996-06-01

    About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

  10. Porous pavement. Phase 1: Design and operational criteria

    NASA Astrophysics Data System (ADS)

    Diniz, E. V.

    1980-08-01

    Utilization concepts, benefits and disadvantages, as well as other characteristics of porous pavements are presented with emphasis on porous asphalt pavements, but the criteria and design approach are applicable to all other porous pavement types. Design considerations include siting problems, load bearing design and hydrologic design. The history of porous pavement development and previous experience with porous pavement by several designers, contractors and operators are described. A computer model for hydrologic performance evaluation of existing or proposed porous pavement systems is also examined. Load bearing design criteria are based on previous work conducted for porous asphalt pavements. Appendices include a sample set of specifications for porous asphalt construction and a list of soils and their permeability classes as prepared by the U.S. Soil Conservation Service.

  11. Improving Rutting Resistance of Pavement Structures Using Geosynthetics: An Overview

    PubMed Central

    Karim, Mohamed Rehan; Khodaii, Ali; Almasi, Mohammad Hadi

    2014-01-01

    A pavement structure consists of several layers for the primary purpose of transmitting and distributing traffic loads to the subgrade. Rutting is one form of pavement distresses that may influence the performance of road pavements. Geosynthetics is one type of synthetic materials utilized for improving the performance of pavements against rutting. Various studies have been conducted on using different geosynthetic materials in pavement structures by different researchers. One of the practices is a reinforcing material in asphalt pavements. This paper intends to present and discuss the discoveries from some of the studies on utilizing geosynthetics in flexible pavements as reinforcement against permanent deformation (rutting). PMID:24526919

  12. Improving rutting resistance of pavement structures using geosynthetics: an overview.

    PubMed

    Mirzapour Mounes, Sina; Karim, Mohamed Rehan; Khodaii, Ali; Almasi, Mohammad Hadi

    2014-01-01

    A pavement structure consists of several layers for the primary purpose of transmitting and distributing traffic loads to the subgrade. Rutting is one form of pavement distresses that may influence the performance of road pavements. Geosynthetics is one type of synthetic materials utilized for improving the performance of pavements against rutting. Various studies have been conducted on using different geosynthetic materials in pavement structures by different researchers. One of the practices is a reinforcing material in asphalt pavements. This paper intends to present and discuss the discoveries from some of the studies on utilizing geosynthetics in flexible pavements as reinforcement against permanent deformation (rutting).

  13. Experimental pavement delineation treatments

    NASA Astrophysics Data System (ADS)

    Bryden, J. E.; Lorini, R. A.

    1981-06-01

    Visibility and durability of materials used to delineate shoulders and medians adjacent to asphalt pavements were evaluated. Materials evaluated were polysulfide and coal tar epoxies, one and two component polyesters, portland cement, acrylic paints, modified-alkyd traffic paint, preformed plastic tape, and thermoplastic markings. Neat applications, sand mortars, and surface treatments were installed in several geometric patterns including cross hatches, solid median treatments, and various widths of edge lines. Thermoplastic pavement markings generally performed very well, providing good visibility under adverse viewing conditions for at least 4 years. Thermoplastic 4 in. wide edge lines appear to provide adequate visibility for most conditions.

  14. Optimizing the durability of the coarse fraction of porous asphalt RAP for effective recycling

    NASA Astrophysics Data System (ADS)

    Holleran, Irina; Wilson, Douglas J.; Black, Philippa; Holleran, Glynn; Walubita, Lubinda F.

    2017-09-01

    Porous asphalt (PA) durability depends not only on the binder used to manufacture the mix, but also on the aggregates chosen, particularly the coarse fraction component. Aggregates for PA should be of the highest quality and highly durable to withstand the effects of weather and traffic. To recycle PA into a new PA mix, without compromising the long-term performance, the durability of the recovered aggregates from PA-derived reclaimed asphalt pavement (RAP) should be assessed alongside the aged binder properties. In this study, the Micro-Deval (MD) Abrasion test, combined with water absorption, was found to be a good predictor of asphalt mix performance for PA. Minerology of the aggregates is an important factor when setting limits for MD loss. New Zealand (NZ) aggregates are significantly younger in geological terms, and chemically and physically less stable compared to the aggregates used in many other countries. This is especially true for greywacke, the most used aggregate in NZ for road construction. If the MD limits reported in some literature are applied to NZ PA-derived RAP aggregates, poor performing material can be erroneously incorporated in asphalt mixes. Findings from this study contributes in understanding how PA-derived RAP can be recycled into new value PA mixes.

  15. Experimental testing of hot mix asphalt mixture made of recycled aggregates.

    PubMed

    Rafi, Muhammad Masood; Qadir, Adnan; Siddiqui, Salman Hameed

    2011-12-01

    The migration of population towards big cities generates rapid construction activities. These activities not only put pressure on natural resources but also produce construction, renovation and demolition waste. There is an urgent need to find out ways to handle this waste owing to growing environmental concerns. This can reduce pressure on natural resources as well. This paper presents the results of experimental studies which were carried out on hot mix asphalt mixture samples. These samples were manufactured by adding recycled aggregates (RA) with natural crushed stone aggregates (CSA). Three levels of addition of RA were considered in the presented studies. RA were obtained from both the concrete waste of construction, renovation and demolition activities and reclaimed asphalt pavement. Separate samples were manufactured with the coarse and fine aggregate fractions of both types of RA. Samples made with CSA were used as control specimens. The samples were prepared and tested using the Marshall method. The performance of the samples was investigated in terms of density-void and stability/flow analysis and was compared with the performance criteria as given by National Highway Authority for wearing course material in Pakistan. Based on this data optimum asphalt contents were determined. All the samples made by adding up to 50% RA conform to the specification requirements of wearing course material as given by National Highway Authority in terms of optimum asphalt contents, voids in mineral aggregates and stability/flow. A statistical analysis of variation of these samples confirmed that addition is also possible statistically.

  16. Maintenance methods for continuously reinforced concrete pavements

    NASA Astrophysics Data System (ADS)

    Yoder, E. J.

    1980-05-01

    Test sections were constructed on a section of 1-65 south of Indianapolis, Indiana to evaluate various maintenance techniques that might be adopted for this type of pavement. The road was stratified into similar sections using deflection, cracking and breakup as selection criteria. Maintenance methods used included concrete shoulders, undersealing, asphalt concrete overlay, subdrains at the pavement edge and various combinations of these methods. In every case the pavement was patched prior to installation of the maintenance.

  17. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  18. Mechanical analysis of asphalt stabilized permeable base to inhibit reflective cracking

    NASA Astrophysics Data System (ADS)

    Luo, Min

    2017-09-01

    Asphalt stabilized drainage base has good drainage performance, can effectively rule out the water in pavement structure, reduce the occurrence of water damage, and maintain good pavement performance. Based on the mechanical analysis of the affect of asphalt stabilized permeable base on the inhibition of reflection crack, using the finite element software to simulate the stress characteristics of the asphalt and to do the mechanical analysis of asphalt pavement cracks at the grass-roots level to the pavement after stretching process, by comparing the pavement crack tip stress intensity factor of original pavement structure and set up the ATPB layer, respectively, to study the effect of asphalt stabilized permeable base on inhibition of reflection cracking.

  19. Evaluation of bituminous materials used in pavement-recycling projects at Tyndall, Macdill, and Hurlburt Air Force Bases. Final report, February 1985-December 1986

    SciTech Connect

    Kiggundu, B.; Martinez, R.; Humphrey, B.; Shuler, T.

    1987-07-01

    This report presents results of a study involving bituminous materials from Tyndall and MacDill Air Force Bases and Hurlburt Field. These materials included Reclaimed Asphalt Pavement (RAP), modifiers, virgin asphalts, and new aggregates. A tentative modifier-selection criterion was used to judge the quality of materials used in the recycling efforts at the respective sites. The results showed that independent adequacy of physical properties from chemical properties in selection of modifiers could not be established. However, some of the results showed that physical were more-sensitive indicators of changes in binders due to aging. In addition, this report includes the tentative modifier selection criteria and results of an interlaboratory study from which variability limits to parameters determined using modified Clay-Gel and Heithaus procedures are established. The modified Clay-Gel and Heithaus procedures are included.

  20. High altitude premium pavements

    NASA Astrophysics Data System (ADS)

    Abel, F.; Proctor, J.

    1980-02-01

    The effect on performance that various additives and, or compaction had on the performance of pavements was evaluated. The following additives were evaluated: Anti-stripping additives, ground scrap rubber and carbon black. Samples were also evaluated at approximately 0, 3, 10 and 15% voids to determine the effect compaction had on the performance of the pavement. The resilient modulus, effect of water on cohesion of compacted bituminous mixtures and an accelerated moisture damage test was performed on each design mix. Most of the additives did not show significant, if any, improvement in the laboratory test results. The best improvement in laboratory test results came from the anti-stripping asphalt additives, which is one of the least costly and simplest to include in the pavement mixture.

  1. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  2. Pavement noise measurements in Poland

    NASA Astrophysics Data System (ADS)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  3. Rheological properties of asphalts with particulate additives

    SciTech Connect

    Shashidhar, N.; Chollar, B.H.

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  4. Assessment of asphalt mixtures characteristics through GPR testing

    NASA Astrophysics Data System (ADS)

    Pais, Jorge; Fernandes, Francisco

    2014-05-01

    Road pavements are composed by granular and asphalt layers, placed over the pavement subgrade, which are designed to resist to traffic and climatic effects. Pavement distresses include permanent deformation mainly due to the contribution of the subgrade and fatigue cracking in the asphalt layers. Fatigue cracking is the main pavement distress and is responsible for the main rehabilitations carried out in road pavements which leads, in most cases, to the pavement reconstruction due to the severity of the cracking observed in many roads. For a given aggregate gradation, the fatigue cracking resistance is related to the proportions of the components in the asphalt mixtures, namely the void content and the binder content. Also the presence of water, or moisture, has an important influence in the fatigue resistance, and its effect is characterized by a reduction in the fatigue cracking resistance. The characteristics of the asphalt mixtures applied in road pavements can be assessed in laboratory through the testing of cores extracted from the pavement. These cores are extracted some representative section of the pavement, usually equally spaced in the road. Due to the construction process, the representative sections of the pavement don't allow to identify the quality of the whole pavement. Thus, the use of continuous measurement is essential to ensure the perfect assessment of the pavement quality and the use of the GPR assumes a paramount importance. Thus, this communication presents several GPR tests carried out on pavement slabs produced in laboratory with different void content, binder content and moisture content in order to establish different classifiers that will allow the identification of this condition during regular inspections. Furthermore, tests carried on specimens before and after fatigue tests will allow to calculate similar parameters to estimate the state of conservation of pavements in terms of stiffness and the presence of cracks. This work is a

  5. Pavement management

    SciTech Connect

    Ross, F.R.; Connor, B.; Lytton, R.L.; Darter, M.I.; Shahin, M.Y.

    1982-01-01

    The 11 papers in this report deal with the following areas: effect of pavement roughness on vehicle fuel consumption; rational seasonal load restrictions and overload permits; state-level pavement monitoring program; data requirements for long-term monitoring of pavements as a basis for development of multiple regression relations; simplified pavement management at the network level; combined priority programming of maintenance and rehabilitation for pavement networks; Arizona pavement management system: Phase 2-verification of performance prediction models and development of data base; overview of paver pavement management system; economic analysis of field implementation of paver pavement management system; development of a statewide pavement maintenance management system; and, prediction of pavement maintenance expenditure by using a statistical cost function.

  6. Pavement recycling guidelines for state and local governments: Participant`s reference book. Final report, September 1995--December 1997

    SciTech Connect

    Kandhal, P.S.; Mallick, R.B.

    1997-12-01

    Recycling or reuse of existing asphalt pavement materials to produce new pavement materials has the following advantages: (1) reduced costs of construction, (2) conservation of aggregate and binder, (3) preservation of the existing pavement geometrics, (4) preservation of the environment, and (5) conservation of energy. This document was prepared to provide the following information on recycling of asphalt pavements: (1) performance data, (2) legislation/specification limits, (3) selection of pavement for recycling and recycling strategies, (4) economics of recycling, and (5) structural design of recycled pavements. The following recycling methods have been included: hot-mix asphalt recycling (both batch and drum plants), asphalt surface recycling, hot-in-place recycling, cold-mix asphalt recycling, and full depth reclamation. Materials and mix design, construction methods and equipment, case histories and quality control/quality assurance have been discussed for all recycling methods.

  7. Cooler reflective pavements give benefits beyond energy savings: durability and illumination

    SciTech Connect

    Pomerantz, Melvin; Akbari, Hashem; Harvey, John T.

    2000-06-01

    City streets are usually paved with asphalt concrete because this material gives good service and is relatively inexpensive to construct and maintain. We show that making asphalt pavements cooler, by increasing their reflection of sunlight, may lead to longer lifetime of the pavement, lower initial costs of the asphalt binder, and savings on street lighting and signs. Excessive glare due to the whiter surface is not likely to be a problem.

  8. Rehabilitating asphalt highways

    SciTech Connect

    Butalia, T.S.

    2007-07-01

    Coal fly ash has been used on two Ohio full-depth reclamation projects in Delaware and Warren. The object of the project carried out with the Department of Civil and Environmental Engineering and Geodetic Science at Ohio State University is to demonstrate the effective use of Class fly ash in combination with lime or lime kiln dust in the full depth reclamation of asphalt pavements. The article describes the mixes used for the highway reconstruction of part of Section Line Road Delaware County and of a road in Warren County. During construction the pavement sections were instrumented with several structural and environmental monitoring devices and data is being collected on a quarterly basis. Falling Weight Deflectometer (FWD) tests to measure load defection behaviour, resilient of pavement layers and soil and base structural layer coefficient are being carried out twice a year. It was shown that use of fly ash increased the elastic modulus of base layers. This article first appeared in the Feb/May 2007 issue of Asphalt Contractor. 4 photos.

  9. Variability of pavement noise benefit by vehicle type

    NASA Astrophysics Data System (ADS)

    Rochat, Judith L.; Read, David R.

    2005-09-01

    The Volpe Center Acoustics Facility, in support of the California Department of Transportation (Caltrans), is participating in a long-term study to assess several types of pavement for the purpose of noise abatement. On a four-mile stretch of a two-lane highway in Southern California, several asphalt pavement overlays are being examined. Acoustical, meteorological, and traffic data are collected in each pavement overlay section, where microphones are deployed at multiple distances and heights. Single vehicle pass-by events are recorded primarily for three vehicle types: automobiles, medium trucks, and heavy trucks. Data are analyzed to determine the noise benefit of each pavement as compared to the reference dense-graded asphaltic concrete (DGAC); this includes a modified Statistical Pass-By Index as well as average Lmax values for each vehicle type. In addition, 1/3-octave band data are examined. Automobiles and heavy trucks are the focus of this paper, where benefits due to pavement will be presented for three pavement types: open-graded asphaltic concrete (OGAC) of 75 mm thickness, open-graded asphaltic concrete (OGAC) of 30 mm thickness, and rubberized asphaltic concrete, Type O (open) (RAC) of 30 mm thickness. Average Lmax values and spectral data show that noise benefits due to pavement can vary by vehicle type.

  10. Design, Construction and Performance of Resin Modified Pavement at Fort Campbell Army Airfield, Kentucky

    DTIC Science & Technology

    1994-03-01

    similar to a PCC pavement that had been treated with muriatic acid . The shot blasting took approximately 3 days and cost $16,000. The unit cost was $2.75...October 1992. 14. SUBJECT TERMS 15. NUMBER OF PAGES Airfield pavement Open-graded asphalt 66 Cement grout Resin-modified pavement 16. PRICE CODE Fuel

  11. Development of ground-penetrating radar equipment for detecting pavement condition for preventive maintenance

    NASA Astrophysics Data System (ADS)

    Smith, S. S.; Scuillion, T.

    1993-10-01

    The report documents the development of a ground penetrating radar (GPR) system for locating potential maintenance problems in highway pavements. The report illustrates how GPR has the potential to detect four defects in pavements: stripping in an asphalt layer; moisture in base layer; voids or loss of support under rigid pavements; and overlay delamination.

  12. On the representative volume element of asphalt concrete at low temperature

    NASA Astrophysics Data System (ADS)

    Marasteanu, Mihai; Cannone Falchetto, Augusto; Velasquez, Raul; Le, Jia-Liang

    2016-08-01

    The feasibility of characterizing asphalt mixtures' rheological and failure properties at low temperatures by means of the Bending Beam Rheometer (BBR) is investigated in this paper. The main issue is the use of thin beams of asphalt mixture in experimental procedures that may not capture the true behavior of the material used to construct an asphalt pavement.

  13. Long-term Metal Performance of Three Permeable Pavements

    EPA Science Inventory

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  14. Expedient Repair Materials for Roadway Pavements

    DTIC Science & Technology

    2005-03-01

    cores used for the adhesion test was thin-cut with a concrete saw to expose an aggregate face on which the oven-aged mixture was compacted (Figure 4...asphalt cement with various antistrip and high- adhesion additives. An open-graded, high-quality, locally available aggregate is required for blending...www.qprcoldpatch.com 3. Description: QPR is a cold-mix patch material for asphalt and concrete pavements. The binder is a proprietary modified bitumen . The aggregate

  15. Recycled Materials - Applications to Air Force Pavements.

    DTIC Science & Technology

    1980-09-01

    an unlimited supply of natural materials. Since the embargo, the law of supply and demand had pushed the price of asphalt to $180 per ton* by early...are a number of reasons for planing the pae,.-%nt surface ( Lawing , 1976). The pavement surface over a bridge can be re- moved by planing before...Donald :. 979. "Recyc.in, Aschalt Pavements," Federal Highway Admistration Demonstration roject N-. 39, Sherburne, Vt., 38 pp. Ga-nnon, Charles R., et

  16. In-situ infiltration performance of different permeable pavements in a employee used parking lot--A four-year study.

    PubMed

    Kumar, Kuldip; Kozak, Joseph; Hundal, Lakhwinder; Cox, Albert; Zhang, Heng; Granato, Thomas

    2016-02-01

    Permeable pavements are being adopted as a green solution in many parts of the world to manage urban stormwater quantity and quality. This paper reports on the measured in-situ infiltration performance over a four-year period since construction and use of three permeable parking sections (permeable pavers, permeable concrete and permeable asphalt) of an employee car parking lot. There was only a marginal decline in infiltration rates of all three pavements after one year of use. However, between years two to four, the infiltration rates declined significantly due to clogging of pores either by dry deposition of particles and/or shear stress of vehicles driving and degrading the permeable surfaces; during the last two years, a greater decline was also observed in driving areas of the parking lots compared to parking slots, where minimal wear and tear are expected. Maintenance strategies were employed to reclaim some of the lost infiltration rate of the permeable pavements to limited success. Despite this decline, the infiltration rates were still four to five times higher than average rainstorm intensity in the region. Thus, these permeable pavement parking lots may have significant ecological importance due to their ability to infiltrate rainwater quickly, reduce the runoff in the catchment area, and also dampen runoff peak flows that could otherwise enter the collection system for treatment in a combined sewer area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Application of Common Mid-Point Method to Estimate Asphalt

    NASA Astrophysics Data System (ADS)

    Zhao, Shan; Al-Aadi, Imad

    2015-04-01

    3-D radar is a multi-array stepped-frequency ground penetration radar (GPR) that can measure at a very close sampling interval in both in-line and cross-line directions. Constructing asphalt layers in accordance with specified thicknesses is crucial for pavement structure capacity and pavement performance. Common mid-point method (CMP) is a multi-offset measurement method that can improve the accuracy of the asphalt layer thickness estimation. In this study, the viability of using 3-D radar to predict asphalt concrete pavement thickness with an extended CMP method was investigated. GPR signals were collected on asphalt pavements with various thicknesses. Time domain resolution of the 3-D radar was improved by applying zero-padding technique in the frequency domain. The performance of the 3-D radar was then compared to that of the air-coupled horn antenna. The study concluded that 3-D radar can be used to predict asphalt layer thickness using CMP method accurately when the layer thickness is larger than 0.13m. The lack of time domain resolution of 3-D radar can be solved by frequency zero-padding. Keywords: asphalt pavement thickness, 3-D Radar, stepped-frequency, common mid-point method, zero padding.

  18. Evaluation of Asphalt Binder Modifiers

    DTIC Science & Technology

    1990-01-01

    or SBS rubber described as an oil-extended polymer produced in pellet form. This type of rubber is available in other solid forms such as crumb or...is done to improve the performance characteristics of future pavements. Many research programs have been conducted on asphalt modifiers. Most of...tests were conducted during the second year of the study and resultant data were used to choose five materials to meet the test objectives of this

  19. Long-term stormwater quantity and quality performance of permeable pavement systems.

    PubMed

    Brattebo, Benjamin O; Booth, Derek B

    2003-11-01

    This study examined the long-term effectiveness of permeable pavement as an alternative to traditional impervious asphalt pavement in a parking area. Four commercially available permeable pavement systems were evaluated after 6 years of daily parking usage for structural durability, ability to infiltrate precipitation, and impacts on infiltrate water quality. All four permeable pavement systems showed no major signs of wear. Virtually all rainwater infiltrated through the permeable pavements, with almost no surface runoff. The infiltrated water had significantly lower levels of copper and zinc than the direct surface runoff from the asphalt area. Motor oil was detected in 89% of samples from the asphalt runoff but not in any water sample infiltrated through the permeable pavement. Neither lead nor diesel fuel were detected in any sample. Infiltrate measured 5 years earlier displayed significantly higher concentrations of zinc and significantly lower concentrations of copper and lead.

  20. Generation mechanisms of tire-pavement noise

    NASA Astrophysics Data System (ADS)

    Dare, Tyler P.

    Tire-pavement noise is the dominant source of traffic noise at highway speeds. It is the result of a combination of several noise generation mechanisms, including tire carcass vibration and tread block vibration. Because multiple mechanisms are involved, it is difficult to predict the effects of changes in pavement parameters on tire-pavement noise. In this research, a set of experimental techniques were developed to decompose a measured tire-pavement noise spectrum into a set of constituent spectra relating to each generation mechanism. Three principal mechanisms were identified: treadband vibration, sidewall vibration, and tangential tread block vibration. By combining the constituent spectra associated with these mechanisms, it was possible to accurately predict the total tire-pavement noise spectrum. The constituent spectra were fit to tire-pavement noise data measured on asphalt and concrete pavements at highway speeds. It was found that the constituent spectra fit the measured data well, and a two-parameter model was developed to predict tire-pavement noise levels from pavement texture data.

  1. Effect of Cement on Emulsified Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Oruc, Seref; Celik, Fazil; Akpinar, M. Vefa

    2007-10-01

    Emulsified asphalt mixtures have environmental, economical, and logistical advantages over hot mixtures. However, they have attracted little attention as structural layers due to their inadequate performance and susceptibility to early life damage by rainfall. The objective of this article is to provide an improved insight into how the mechanical properties of emulsion mixtures may be improved and to determine the influence of cement on emulsified asphalt mixtures. Laboratory tests on strength, temperature susceptibility, water damage, creep and permanent deformation were implemented to evaluate the mechanical properties of emulsified asphalt mixtures. The test results showed that mechanical properties of emulsified asphalt mixtures have significantly improved with Portland cement addition. This experimental study suggested that cement modified asphalt emulsion mixtures might be an alternate way of a structural layer material in pavement.

  2. Compatibilizer for crumb rubber modified asphalt

    SciTech Connect

    Labib, M.E.; Memon, G.M.; Chollar, B.H.

    1996-12-31

    The United States of America discards more than 300 million tires each year, and out of that a large fraction of the tires is dumped into stock piles. This large quantity of tires creates an environmental problem. The use of scrap tires is limited. There is a usage potential in such fields as fuel for combustion and Crumb Rubber-Modified Asphalt binder (CRMA). The use of crumb rubber in modifying asphalt is not a new technique; it is been used since early 1960 by pavement engineers. Crumb rubber is a composite of different blends of natural and synthetic rubber (natural rubber, processing oils, polybutadiene, polystyrene butadiene, and filler). Prior research had concluded that the performance of crumb rubber modified asphalt is asphalt dependent. In some cases it improves the Theological properties and in some cases it degrades the properties of modified asphalt.

  3. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  4. Microorganism Removal in Permeable Pavement Parking Lots ...

    EPA Pesticide Factsheets

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  5. Durable high strength cement concrete topping for asphalt roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  6. Practical experiences with new types of highly modified asphalt binders

    NASA Astrophysics Data System (ADS)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  7. Assessment of highway pavements using GPR

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Loizos, Andreas

    2015-04-01

    Highway infrastructure is a prerequisite for a functioning economy and social life. Highways, often prone to congestion and disruption, are one of the aspects of a modern transport network that require maximum efficiency if an integrated transport network, and sustainable mobility, is to be achieved. Assessing the condition of highway structures, to plan subsequent maintenance, is essential to allow the long-term functioning of a road network. Optimizing the methods used for such assessment will lead to better information being obtained about the road and underlying ground conditions. The condition of highway structures will be affected by a number of factors, including the properties of the highway pavement, the supporting sub-base and the subgrade (natural ground), and the ability to obtain good information about the entire road structure, from pavement to subgrade, allows appropriate maintenance programs to be planned. The maintenance of highway pavements causes considerable cost and in many cases obstruction to traffic flow. In this situation, methods that provide information on the present condition of pavement structure non-destructively and economically are of great interest. It has been shown that Ground-Penetrating-Radar (GPR), which is a Non Destructive Technique (NDT), can deliver information that is useful for the planning of pavement maintenance activities. More specifically GPR is used by pavement engineers in order to determine physical properties and characteristics of the pavement structure, information that is valuable for the assessment of pavement condition. This work gives an overview on the practical application of GPR using examples from highway asphalt pavements monitoring. The presented individual applications of GPR pavement diagnostics concern structure homogeneity, thickness of pavement layers, dielectric properties of asphalt materials etc. It is worthwhile mentioning that a number of applications are standard procedures, either

  8. ReClaim finds success in recycling roofs

    SciTech Connect

    Rabasca, L.

    1994-05-01

    Without the support of the New Jersey state legislature, ReClaim, Inc. (Tampa, Fla.), would not be successful, says James Hagen, the company's president and CEO. ReClaim recycles asphalt-based roofing scrap into a cold-mix patching material-known as RePave[trademark] -- which is used to repair potholes. The company has found that the key to its success is working closely with state legislators to develop state regulations. ReClaim uses a proprietary, mechanical process to recycle roofing material into RePave[trademark] and ReActs HMA, a multi-functional, hot-mixed asphalt modifier. Through a series of reduction machines, the roofing material is reduced in size to anywhere from [1/4]-inch to talcum-powder-sized material. There is no waste and no byproduct, and asphalt-based roofing material is 99.9% recyclable.

  9. ACAA pavement manual. Recommended practice: Coal fly ash in pozzolanic stabilized mixtures for flexible pavement systems

    SciTech Connect

    Not Available

    1991-01-01

    The purpose of this manual is to guide pavement design engineers, materials engineers, and construction managers in the design and construction of flexible pavement systems in which low- to high-strength Pozzolanic Stabilized Mixtures' ( PSMs') serve as base layers. A PSM incorporates coal fly ash in combination with activators, aggregates and water. Each of three design methods is useful for determining the thickness of a PSM base layer for a flexible pavement system: Method A - American Association of State Highway and Transportation Officials (AASHTO) flexible pavement design procedures, using structural layer coefficients; Method B - Mechanistic pavement design procedures, using resilient modulus values for the pavement layers; and Method C - A combination of Method A and Method B, using mechanistic design concepts for determining pavement layer coefficients. PSMs offer several advantages: PSMs are strong, durable mixtures using locally available materials; PSMs are economically competitive with properly engineered full-depth asphalt or crushed stone base courses; PSMs are suited to stabilizing recycled base mixtures; and PSMs are placed and compacted with conventional construction equipment. To provide the needed guidance for capturing the long-term service and cost-saving features of a PSM design, this manual details the following: a procedure for proportioning PSMs; thickness design procedures which include base layer and asphalt wearing course; and proven techniques for PSM mixing and base layer construction.

  10. Furfural modified asphalt obtained by using a Lewis acid as a catalyst

    SciTech Connect

    Memon, G.M.

    1996-12-31

    Asphalt is solid or semi-solid at room temperature, becomes soft and starts flowing upon heating, and becomes hard and brittle at very low temperatures. States have been facing problems such as cracking, rutting, and asphalt adhesion to aggregates in their asphaltic pavements for years. Many polymer additives have been used in asphalt to reduce these problems, but little work has been done using chemically modified products of asphalt to attempt to solve these serious problems of asphalt pavements. The above mentioned problems decrease the life of the pavements, resulting in an increase of maintenance and/or replacement costs. There are two types of cracking which can occur in asphalt pavement; one related to load, and the other related to thermal stress. The load-related cracking is known as fatigue cracking and is defined as fracture under repeated or cyclic stress having a maximum value of less than the tensile strength of the material. The thermal cracking occurs due to pavement shrinkage at low temperature causing the shrinkage stresses to exceed the tensile strength. FHWA researchers have found furfural to be a suitable candidate for functional group modification of asphalt. The modified product shows improved performance as well as improved rheological properties.

  11. Application of asphalt rubber technology to recreational trails

    NASA Astrophysics Data System (ADS)

    Ni, Haifeng

    Crumb rubber aggregate was employed instead of stone/sand aggregate in asphalt pavement that was modified by fine rubber particles. Crumb rubber aggregate forms an elastic network in the asphalt, which improves the pavement's susceptibility to low-temperature cracking, and absorb more stress at the crack tips than the conventional asphalt pavement. Laboratory tests were conducted to evaluate the tension/compression performance of a blend of asphalt rubber with rubber aggregate (ARRA). An optimum design methodology was introduced by examining the effect of asphalt source, curing temperature, curing time, rubber content, aggregate size, compaction pressure, and the effect of certain additives. At ambient temperature, the ARRA with equal amount of binder and aggregate exhibits good mechanical properties. Vestenamer helps improve the pavement's strength, stiffness, and fracture resistance to low temperature cracking. It was demonstrated that such pavement meets the mechanical requirements for recreational trails, such as bicycle, or pedestrian trails. ARRA is a viscoelastic material which exhibits time-dependent and loading rate-dependent behavior. Temperature is a key issue to its response to an external load. Both temperature and rate dependences were investigated. A series of uniaxial compression relaxation tests on ARRA or Vestenamer modified ARRA were conducted at room temperature to study the time-dependent performance of ARRA. Schapery's theory was applied to characterize the nonlinear viscoelastic behavior of ARRA.

  12. Bacteria and asphalt stripping. Final report, December 1983-August 1987

    SciTech Connect

    Ramamurti, K.; Jayaprakash, G.P.

    1987-08-01

    Major types of bituminous pavement distress were rutting, cracking (longitudinal, transverse, and alligator) and stripping. The rubble and loosely bound material contained bacteria. The deterioration lessened upward from the pavement-soil interface. The soil appears to be the prime source of the bacteria. Most of the bacterial cells were sausage shaped with polar flagellation. They appeared to belong to the genus Pseudomonas, which is a known user of asphaltic hydrocarbons. Cocci-type bacteria and a virus were also noted. Increasing the density of some asphaltic concrete and strengthening the bond between aggregate and asphalt are considered as the preferred alternatives to using chemical biocides. Anything to reduce pavement cracking would help. Adding lime to asphalt mixes may be one effective means of improving aggregate-asphalt bond and controlling biodeterioration. Lime stabilization of soils under asphalt pavements may provide an added protection against bacterial attack by rendering the soil more hostile to bacterial habitat. Full-depth hot-mix recycling would be more effective than partial-depth recycling in retarding bacterial decay at cracks.

  13. Sea pavement using sulfur obtained from coal gasification. Research report for dec 80-jul 81

    SciTech Connect

    Kasinskas, M.M.; LaChance, H.C.; Nashold, F.G.

    1981-10-01

    A sulfur-extended asphalt (SEA) pavement using sulfur obtained from a coal gasification process was placed in a commuter parking lot. This report covers the design, mixing and placement of the SEA material and associated problems.

  14. Microorganism Removal in Permeable Pavement Parking Lots in Edison Environmental Center, New Jersey

    EPA Science Inventory

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed tha...

  15. An Evaluation of the Pavement Condition Index Prediction Model for Rigid Airfield Pavements

    DTIC Science & Technology

    1982-09-01

    AC Thickness) -- Inches B THICK (Base Thickness) -- Inches SB THICK (Subbase Thickness) -- Inches B CBR (Base CBR) -- Percent SB CBR (Subbase CBR...vertical stress on the base course, surface deflection and vertical strain on top of •he subgrade was computed for asphalt pavements, using the Bitumen

  16. HPLC and NMR spectroscopy to characterize asphaltic materials

    SciTech Connect

    Jennings, P.W.; Pribanic, J.A.S.; Dawson, K.R.; Bricca, C.E.

    1981-09-01

    High performance liquid chromatography (HPLC) using gel permeation columns seems to offer a practical alternative for asphalt characterization because analyses can be performed quickly. The technique shows a unique molecular size distribution for each asphalt and this profile have been correlated with results of performance of pavement from which asphalt was extracted. Conclusions have shown that a larger quantity of larger molecular size materials are present in asphalts from roadways which exhibit cracking than in those from old, uncracked pavements. The effects on asphalt of a variety of treatments have been initiated. One method includes heating asphalt for 1 h at 163/sup 0/C in the presence of oxygen or nitrogen. The asphalt is mixed with lime and various aggregates and/or fly ash, as well. The mixture is then cooled and extracted with benzene. Once the solvent has been removed, the sample is redissolved in tetrahydrofuran and analyzed by HPLC. Results show that heating this particular asphalt with an aggregate with or without lime results in a 20% increase of large-sized molecules. Use of both fly ash and aggregate increases the total effect to 34%. The HPLC method can be used to substantiate new asphalt blends. 5 figures, 1 table.

  17. Experimental pavement using household waste slag

    SciTech Connect

    Kouda, Masahiro

    1996-12-31

    Municipal wastes used to be simply landfilled, but because of increasing difficulty in finding disposal sites, it became common practice to incinerate wastes and landfill the ash. In view of rapidly dwindling landfill sites, the author thought that the landfill site problem might be solved by finding a way to utilize slag made from incinerator ash. In this paper, a method for utilizing water-granulated slag as an asphalt pavement material is discussed. On the basis of laboratory test results, trial paving using base course materials consisting of crushed stone and 25 or 50% slag was carried out, paying attention primarily to bearing capacity. Marshall tests and fatigue resistance tests were conducted to determine the optimum content of water-granulated slag, and it was concluded that quality comparable to that of conventional asphalt concrete was attained at the slag content of 25% or less and that no problem would arise if the slag content was kept at 60% or less of the fine aggregate content. The mix proportions thus determined were also tested through experimental paving. A follow-up study to evaluate the durability of the experimental pavements confirmed that the experimental pavements were comparable in performance with conventional asphalt concrete pavements. This paper also reports on some problems encountered that need to be solved before utilizing water-granulated slag.

  18. Crumb rubber modified asphalt concrete in Oregon. Summary report. Report for 1985-94

    SciTech Connect

    Hunt, E.; Peters, W.

    1995-07-01

    Over the last nine years, the Oregon Department of Transportation (ODOT) has constructed 13 projects using crumb rubber modifiers (CRM) in asphalt concrete pavements using both the wet and dry process. State and federal legislation may require the use of recycled rubber in asphalt concrete, therefore, the Oregon Department of Transportation is interested in determining the most cost -effective crumb rubber modified asphalt concrete. The report includes a literature review on the use of crumb rubber modifiers in asphalt concrete pavement; a review on non-ODOT CRM paving projects constructed by Oregon counties and cities; and the Washington Department of Transportation. In additon, the report summarizes the data collected on all CRM hot mix asphalt concrete pavement projects constructed by ODOT. The ODOT information includes background constitution, cost, and performance data for each of the test and control sections. Finally, the future activities of the project are reviewed.

  19. Thermal cracking of rubber modified pavements, May 1995. Final report

    SciTech Connect

    Raad, L.; Yuan, X.; Saboundjian, S.

    1995-05-01

    In accordance with the original ISTEA mandate (1991) to use crumb tire rubber in pavements, Alaska would be required to use about 250 tons of used tire rubber starting in 1994 and increasing to about 1,000 tons of rubber in 1997 and each year thereafter. A number of pavements using crumb rubber modifiers have been built in the state and have been in service for periods of 8 to 15 years. Knowledge of the behavior of these rubber-modified pavements under extreme climate conditions, particularly in relation to their low temperature cracking resistance, is necessary for future design and construction of rubberized pavements in Alaska. This report presents results of a study to determine the low temperature cracking resistance of rubber modified pavements in Alaska in comparison with conventional asphalt concrete pavements.

  20. Recycling of excavated asphalt from gas-pipeline installations to Gas Research Institute. Final report - Phase 1

    SciTech Connect

    Lucido, J.; Tobin, A.

    1988-12-01

    Recent estimates indicate that over 11,500 miles of gas distribution piping is installed under existing asphalt pavement annually. This estimate includes 25% of all new installations and 60% of all replacement work. As gas distribution systems grow to meet demands, more projects will involve restoration of asphalt pavements. Because gas distribution piping installed and/or replaced under asphalt pavement can be significantly more expensive than an installation in unpaved soil--it is cause for major concern to the gas industry. The Phase I study addressed the concept of on-site recycling of excavated asphalt for gas utility trenching applications. Commercialization of this concept will eliminate the need for disposal of existing asphalt concrete and the importing of new asphalt concrete, creating potentially significant advantages to the industry.

  1. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    PubMed

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. Manufacture of road paving asphalt using coal tar

    SciTech Connect

    Yan, T.Y.

    1986-09-01

    Coal tar is a ready source of asphaltenes needed in asphalt production. Coal tar pitch itself, however, is unsuitable for making road-paving asphalt, since the resulting material has low ductility, high temperature sensitivity, and low resistance to wear. For this reason, in England, where replacing imported petroleum with local products was important 10 to 20 years ago, it was required that no more than 10 to 20 percent coal tar pitch be incorporated in road pavement. At higher concentrations, the pitch separates from the petroleum-derived asphalt, causing brittleness and cracking. To make a good asphalt from coal tar pitch, chemical modification or blending with additives appears necessary. In this study, the potentials are for producing road-paving asphalt from coal tar and available inexpensive petroleum fractions are explored. The objective of the study is to develop new uses of coal tar for asphalt production and to free the petroleum residue for upgrading to gasoline and diesel fuels.

  3. Research on Surfactant Warm Mix Asphalt Construction Technology

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Sun, Jingxin; Guo, Xiufeng

    Discharging temperature of hot asphalt mixture is about 150°C-185°C, volatilization of asphalt fume harms people's health and fuel cost is high. Jinan Urban Construction Group applies PTL/01 asphalt warm mix agent to produce warm mix asphalt to construction of urban roads' asphalt bituminous pavement. After comparing it with performance of traditional hot asphalt mixture, mixing temperature may be reduced by 30°C-60°C, emission of poisonous gas is reduced, energy conservation and environmental protection are satisfied, construction quality reaches requirements of construction specifications and economic, social and environmental benefits are significant. Thus, it can be used for reference for green construction of urban roads.

  4. Study of asphalt performance impact with ultraviolet aging

    NASA Astrophysics Data System (ADS)

    Luo, Min

    2017-09-01

    To solve the problem of strong ultraviolet radiation on the road asphalt aging, ultraviolet aging environment box analog wild aging condition to be used to experiment, Through dynamic shear rheometer respectively to study the effect of SBS modified asphalt and asphalt matrix high temperature, low temperature and fatigue performance with the aging time to change. The results show that SBS modified asphalt can produce serious aging under strong ultraviolet light, the Main aspects is fatigue performance and low temperature performance greatly reduced, high temperature performance is further improved, They have a closer relationship with aging time; At the same time, along with the test temperature, aging time on the influence of G*/sinδ, G*sinδ of amplitude decreases. That ultraviolet on SBS modified asphalt aging has temperature sensitivity. The research conclusion can choose the light aging resistance of airport pavement asphalt to provide good technical support.

  5. Quantifying Evaporation in a Permeable Pavement System ...

    EPA Pesticide Factsheets

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e

  6. Effect of moisture on the aging behavior of asphalt binder

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Huang, Xiao-Ming; Mahmoud, Enad; Garibaldy, Emil

    2011-08-01

    The moisture aging effect and mechanism of asphalt binder during the in-service life of pavement were investigated by laboratory simulating tests. Pressure aging vessel (PAV) test simulating the long-term aging of binder during the in-service life of pavement was modified to capture the long-term moisture aging effect of binder. Penetration grade tests including penetration test, soften point test, and ductility test as well as Superpave™ performance grade tests including viscosity test, dynamic shear rheometer test, and bending beam rheometer test were conducted to fully evaluate the moisture aging effect of binder. Fourier transform infrared spectroscopy test and Gel-permeation chromatography test were applied to provide a fundamental understanding of the moisture aging mechanism of binder. The results indicate that moisture condition can accelerate the aging of asphalt binder and shorten the service life of asphalt binder. The modified PAV test with moisture condition can well characterize the moisture aging properties of asphalt binder.

  7. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable pavement in the parking lanes which were designed to receive run-on from the impervious hot-mix asphalt driving lanes. Twelve lined permeable pavement sec...

  8. Unified Methodology for Airport Pavement Analysis and Design. Volume 1. State of the Art

    DTIC Science & Technology

    1991-06-01

    pavements with saturated bases and subgrades to well- drained pavements. The damage factors ranged from 10 to 70,000. Cedergren also demonstrated that...34Modulus of Asphalt Mixtures - An Unresolved Dilemma," Transportation Research Board, Research Record 1171, p. 193, Washington, DC 13. Cedergren , H.R

  9. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable pavement in the parking lanes which were designed to receive run-on from the impervious hot-mix asphalt driving lanes. Twelve lined permeable pavement sec...

  10. Understanding the Effects of Climate on Airfield Pavement Deterioration Rates

    DTIC Science & Technology

    2013-03-01

    Objectives The objective of this research was to answer the question: How can climate regions, within the United States, be used to understand and...of pavement deterioration. In flexible pavements, high and low temperatures can affect the stiffness properties of the bituminous layers. For...example, at low or freezing temperatures, asphalt becomes hard and brittle, which can cause thermal cracking (Hironaka, Cline, & Schiavino, 2004). In

  11. Evaluation of Asphalt Rubber Binders in Porous Friction Courses

    DTIC Science & Technology

    1992-05-01

    5RE, AC-5R, and AC-20R for all tests in this study. The crumb rubber used in each asphalt rubber blend was made of 100 percent reclaimed waste tires ...binder’s tendency to age harden at the asphalt plant . The exception to this statement may be when an extender oil is added with the crumb rubber such as...equipment ......................... 40 21 Crumb rubber after milling .......................................... 43 22 Absolute viscosity test results

  12. Long-Term Performance Evaluation of Asphalt Surface Treatments: Product Placement

    DTIC Science & Technology

    2010-02-01

    Polymer Modified MasterSeal (PMM). .................................... 27 Figure 24. Application of Pass QB...yards 0.8361274 square meters yards 0.9144 meters ERDC/GSL SR-10-1 1 1 Introduction Background Environmental degradation of asphalt concrete ...significant damage. Techniques for maintaining asphalt concrete airfield pavements are typi- cally performed in response to the formation of environmental

  13. City finds new efficiencies in hot in-place asphalt recycling

    SciTech Connect

    Not Available

    1993-07-01

    This article reviews the experience of Boulder, Colorado, in recycling asphalt pavement in place during repair of a major city artery. The method used was able to recover, level and compact one inch of the existing roadway while filling potholes, cracks and other surface defects with asphaltic patching material. There was considerable savings in materials, cost and down-time for the roadway section.

  14. STUDY ON FLOOD CONTROL PROPERTIES OF PERMEABLE PAVEMENT USING SATURATED-UNSATURATED SEEPAGE ANALYSIS

    NASA Astrophysics Data System (ADS)

    Yano, Takao; Nishiyama, Satoshi; Ohnishi, Yuzo; Nakashima, Shinichiro; Moriishi, Kazushi; Wada, Minoru

    The rainfall storage and infiltration facility of permeable pavement have been attracted attention as a control measure of flood and an environmental improvement measure in urban areas. However, rainfall infiltration of permeable pavement is unsteady flow and strongly dependent on the behavior of unsaturated zones in the pavement. Moreover, the wet condition of subbase course also has a great influence on the rainfall infiltration of the pavement. That's why previous studies have not made clear the precise the facility of permeable pavement as a flood control. In this paper, experimental studies and simulated analyses were performed to measure the overflow from the pavement under various conditions of rainfall intensities and estimate the rainfall infiltration of the pavement using the measurement data and unsaturated infiltration characteristics of porous asphalt materials. It is clear that this study shows the methods to have a quantitative estimation of the rainfall storage and infiltration facility of permeable pavement.

  15. Long-term Metal Performance of Three Permeable Pavements ...

    EPA Pesticide Factsheets

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected for six years beginning in January 2010 and analyzed for twenty-two metals. Although the infiltrate metals concentrations varied by surface, metal concentrations in more than 99% of the permeable pavement infiltrate samples met both the groundwater effluent limitations and maximum contaminant levels in national primary drinking water regulations for barium, chromium, copper, manganese, nickel and zinc. Arsenic, cadmium, lead and antimony met those standards in 60% to 98% of the samples with no measurable difference found among pavements. Aluminum and iron in pervious concrete and porous asphalt infiltrates met standards at more than 90%, however permeable interlocking concrete paver infiltrates have 50% and 93% samples exceeds standards, respectively. Concentrations of arsenic, iron, potassium, lithium, magnesium, antimony, tin, manganese, and zinc in all permeable pavement infiltrates decreased with time, whereas, aluminum, barium, calcium, chromium and strontium in porous asphalt infiltrates increased. Most metal concentrations in permeable pavement infiltrates either exhibited no significant difference between snow/no-snow seasons or showed statistically larger concentrations

  16. The influence of nanoclay on the durability properties of asphalt mixtures for top and base layers

    NASA Astrophysics Data System (ADS)

    Blom, Johan; De Kinder, Bram; Meeusen, Jannes; Van den bergh, Wim

    2017-09-01

    To avoid traffic congestion, due to road works, a continuous research into asphalt pavement and especially its durability is of great importance. This research focuses on improving the mechanical performance and the durability of asphalt mixtures by nanoclay modified bitumen. This promising technique of introducing nanoclays or nano particles into bitumen could offer an significant improvement on the fatigue properties and rutting performance and thus the durability of the asphalt top layer.

  17. Effects of two warm-mix additives on aging, rheological and failure properties of asphalt cements

    NASA Astrophysics Data System (ADS)

    Omari, Isaac Obeng

    Sustainable road construction and maintenance could be supported when excellent warm-mix additives are employed in the modification of asphalt. These warm-mix additives provide remedies for today's requirements such as fatigue cracking resistance, durability, thermal cracking resistance, rutting resistance and resistance to moisture damage. Warm-mix additives are based on waxes and surfactants which reduce energy consumption and carbon dioxide emissions significantly during the construction phase of the pavement. In this study, the effects of two warm mix additives, siloxane and oxidised polyethylene wax, on roofing asphalt flux (RAF) and asphalt modified with waste engine oil (655-7) were investigated to evaluate the rheological, aging and failure properties of the asphalt binders. In terms of the properties of these two different asphalts, RAF has proved to be superior quality asphalt whereas 655-7 is poor quality asphalt. The properties of the modified asphalt samples were measured by Superpave(TM) tests such as Dynamic Shear Rheometer (DSR) test and Bending Beam Rheometer (BBR) test as well as modified protocols such as the extended BBR (eBBR) test (LS-308) and the Double- Edge-Notched Tension (DENT) test (LS-299) after laboratory aging. In addition, the Avrami theory was used to gain an insight on the crystallization of asphalt or the waxes within the asphalt binder. This study has however shown that the eBBR and DENT tests are better tools for providing accurate specification tests to curb thermal and fatigue cracking in contemporary asphalt pavements.

  18. Morphological Algorithms For The Analysis Of Pavement Structure

    NASA Astrophysics Data System (ADS)

    Grivas, Dimitri A.; Skolnick, Michael M.

    1989-11-01

    The applicability of morphological image processing techniques for the description of condition and analysis of pavement surfaces is examined. Morphological techniques can be used in the measurement of pavement media consisting of grain (aggregates) and binding substances (bituminous or Portland cement mixtures). Measurements of size and size distributions on surface features related to texture and distresses can be obtained via morphological opening and closing transformations and distributions. When correlated with actual physical measurements of such quantities, the presented morphological measures of size and size distributions may prove to be useful in characterizing the surface condition of both asphalt and concrete pavement structures.

  19. Damage and healing evaluation of Mn/Road pavements using stress wave testing

    NASA Astrophysics Data System (ADS)

    Katzke, Evan; Kim, Y. R.

    1998-03-01

    In order to accurately assess the fatigue life of asphalt concrete pavements, an in-situ field evaluation method must be used so that factors which cannot be accounted for in the lab are considered. Surface wave testing is employed in this research to nondestructively monitor sensitive structural changes in the asphalt surface layer of pavements in the field. Microcrack damage growth and healing are investigated on pavement test sections at the Minnesota Road Research Facility (Mn/Road) by way of surface wave testing. One of the mechanisms which cannot be simulated accurately in the lab is healing of asphalt concrete during rest periods. Healing of the asphalt pavement test sections at Mn/Road following a 24 hour rest period was quantified using wavespeed measurements. These measurements show that a significant amount of healing is occurring and can be detected using stress wave testing. Several signal processing methods are used to evaluate the microcrack damage growth and healing in the asphalt pavement sections. The 'apparent' modulus is computed from the velocity of wave propagation and used to quantify damage in the pavements. Attenuation of the stress waves is also calculated for damage assessment. It is discovered that attenuation parameters in the frequency domain are more sensitive than wavespeed calculations in the time domain, but contain significantly more variability.

  20. A test of porous pavement effectiveness on clay soils during natural storm events.

    PubMed

    Dreelin, Erin A; Fowler, Laurie; Ronald Carroll, C

    2006-02-01

    Porous pavements allow precipitation to infiltrate through the pavement to the soil, reducing the volume of stormwater runoff produced at a site. However, porous pavements are not widely used on fine-grained soils due to concerns about their performance. Our objective was to investigate the efficacy of porous pavements in controlling stormwater runoff on clay soils. We compared the performance of an asphalt parking lot and a porous pavement parking lot of grass pavers in Athens, Georgia, USA, over relatively small and low-intensity rain events. The porous lot produced 93% less runoff than the asphalt lot. The total volume of runoff at the porous lot was significantly less than the asphalt lot (t = 2.96, p = 0.009). Turbidity was significantly greater at the asphalt lot (t = 6.18, p < 0.001) whereas conductivity was significantly higher at the porous lot (t = 2.31, p = 0.03). Metal and nutrient concentrations were below detection limits at both lots during seven of nine small storm events. During events in which we could detect pollutants, calcium, zinc, silica, and total phosphorus concentrations were higher at the asphalt lot whereas total nitrogen concentrations were greater at the porous lot. Our results suggest porous pavements are a viable option for reducing stormwater runoff and some pollutants from small storms or the first flush from large storms on clay soils.

  1. Life cycle assessment of representative swiss road pavements for national roads with an accompanying life cycle cost analysis.

    PubMed

    Gschösser, Florian; Wallbaum, Holger

    2013-08-06

    The subject of this paper is an environmental life cycle assessment (LCA) and life cycle cost analysis (LCCA) of processes needed to construct and maintain representative Swiss asphalt, concrete, and composite pavements (including subbase layers) applicable for the Swiss national road network over a period of 75 years. The environmental indicators analyzed are the global warming potential indicator, the nonrenewable cumulative energy demand, and the Swiss ecological scarcity indicator. Processes of the use phase of the road (fuel consumption, noise, etc.) have been evaluated qualitatively based on intensive research. The study shows that the global warming potential of concrete and asphalt pavements equilibrates over the analysis period and that concrete pavements compared to asphalt and composite pavements offer advantages in regards to the nonrenewable cumulative energy demand, the ecological scarcity indicator, and life cycle costs. The qualitative evaluation of the processes of the use phase shows for example the positive qualities of concrete pavements regarding fuel consumption and permanent noise properties.

  2. Performance of Granite Asphalt Mixture Modified by Silane Coupling Agent

    NASA Astrophysics Data System (ADS)

    Liu, Zhihang; Li, Xia; Wang, Li; Kang, Rongling

    2017-06-01

    In order to improve pavement performance of granite asphalt mixture, the surface of granite mineral powder was organic modified by silane coupling agent. The water stability and high temperature stability of the asphalt mixture were analyzed by Marshall tests, immersion Marshall test, freeze-thaw splitting test and rutting test. The results show that the mixing amount of silane coupling agent in the range from 0.5% to 2.5% can significantly improve the high temperature stability and water stability of the asphalt mixture. Taking into account the performance and economic factors, 2.0% silane coupling agent on the surface of granite filler was recommended.

  3. Reducing traffic noise with quieter pavements

    NASA Astrophysics Data System (ADS)

    Donavan, Paul

    2005-09-01

    In recent years, interest has increased in the use of pavement type to reduce traffic noise. This has been driven by public concern over noise from freeways and state transportation agencies' interest in using pavement instead of sound walls to mitigate traffic noise. Beginnings of the recent interest go back to 1998 with the formation of the Institute for Safe, Quiet & Durable Highways at Purdue University and the initiation long-term research by the California Department of Transportation (Caltrans) on the effectiveness of quieter pavements. In 2002, the State of Arizona announced plans to overlay 115 miles of concrete freeway in the greater Phoenix area with a quieter asphalt rubber surface. This turned into the first Quiet Pavement Pilot Program in partnership between Federal Highway Administration (FHWA) and the Arizona Department of Transportation. Since that time, the FHWA in cooperation with the American Association of State Highway Transportation Agencies conducted a fact finding ``Scan'' tour in Europe to evaluate their quiet pavement technology and policy. This was followed by the first comparative tire/pavement noise testing in the US and Europe using the same procedures and test tires. The results, issues, and future directions surrounding these activities will be discussed.

  4. A Durability Analysis of Super-Quiet Pavement Structures

    NASA Astrophysics Data System (ADS)

    Srirangam, Santosh Kumar; Anupam, Kumar; Scarpas, Tom; Kasbergen, Cor; The, Peter

    Poro Elastic Road Surfacings (PERS) as a substitute for conventional noise barriers or other traditional pavement surfacings like open graded mixes are currently attracting significant attention. Ascertaining the durability of PERS material itself and its bonding with the underlying pavement layer against high traffic and high load intensities is of primary importance. In this contribution, results are presented of nonlinear finite element simulations of a high volume pavement profile comprised of a PERS top layer bonded to a conventional open asphalt top layer. Traffic loading was applied by means of a simulated truck tire moving load for various operating conditions. The paper focuses on investigation of the influence on the structural pavement response of various loading conditions and material properties of PERS and adhesive layer. The study concludes with guidelines for the optimum combination of design parameters that lead to increased durability of pavements constructed with a PERS top layer.

  5. Nitrogen Transformations in Three Types of Permeable Pavement

    EPA Science Inventory

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  6. Nitrogen Transformations in Three Types of Permeable Pavement

    EPA Science Inventory

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  7. Study on Flexible Pavement Failures in Soft Soil Tropical Regions

    NASA Astrophysics Data System (ADS)

    Jayakumar, M.; Chee Soon, Lee

    2015-04-01

    Road network system experienced rapid upgrowth since ages ago and it started developing in Malaysia during the colonization of British due to its significant impacts in transportation field. Flexible pavement, the major road network in Malaysia, has been deteriorating by various types of distresses which cause descending serviceability of the pavement structure. This paper discusses the pavement condition assessment carried out in Sarawak and Sabah, Malaysia to have design solutions for flexible pavement failures. Field tests were conducted to examine the subgrade strength of existing roads in Sarawak at various failure locations, to assess the impact of subgrade strength on pavement failures. Research outcomes from field condition assessment and subgrade testing showed that the critical causes of pavement failures are inadequate design and maintenance of drainage system and shoulder cross fall, along with inadequate pavement thickness provided by may be assuming the conservative value of soil strength at optimum moisture content, whereas the exiting and expected subgrade strengths at equilibrium moisture content are far below. Our further research shows that stabilized existing recycled asphalt and base materials to use as a sub-base along with bitumen stabilized open graded base in the pavement composition may be a viable solution for pavement failures.

  8. Hybrid green permeable pave with hexagonal modular pavement systems

    NASA Astrophysics Data System (ADS)

    Rashid, M. A.; Abustan, I.; Hamzah, M. O.

    2013-06-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  9. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  10. The Asphalt Handbook.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The new and completely revised edition of the Asphalt Handbook, a standard reference work in the field of asphalt technology and construction, summarizes with reference the information contained in other Asphalt Institute technical manuals. Major areas discussed include the following--(1) uses of asphalt, (2) terms relating to asphalt and its…

  11. The Asphalt Handbook.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The new and completely revised edition of the Asphalt Handbook, a standard reference work in the field of asphalt technology and construction, summarizes with reference the information contained in other Asphalt Institute technical manuals. Major areas discussed include the following--(1) uses of asphalt, (2) terms relating to asphalt and its…

  12. Asphalt cement poisoning

    MedlinePlus

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  13. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    SciTech Connect

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-15

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  14. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    NASA Astrophysics Data System (ADS)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-01

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127×12.7×6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  15. Impact of the variation in dynamic vehicle load on flexible pavement responses

    NASA Astrophysics Data System (ADS)

    Ahsanuzzaman, Md

    The purpose of this research was to evaluate the dynamic variation in asphalt pavement critical responses due to dynamic tire load variations. An attempt was also made to develop generalized regression equations to predict the dynamic response variation in flexible pavement under various dynamic load conditions. The study used an extensive database of computed pavement response histories for five different types of sites (smooth, rough, medium rough, very rough and severely rough), two different asphalt pavement structures (thin and thick) at two temperatures (70 °F and 104 °F), subjected to a tandem axle dual tire at three speeds 25, 37 and 50 mph (40, 60 and 80 km/h). All pavement responses were determined using the 3D-Move Analysis program (Version 1.2) developed by University of Nevada, Reno. A new term called Dynamic Response Coefficient (DRC) was introduced in this study to address the variation in critical pavement responses due to dynamic loads as traditionally measured by the Dynamic Load Coefficient (DLC). While DLC represents the additional varying component of the tire load, DRC represents the additional varying component of the response value (standard deviation divided by mean response). In this study, DRC was compared with DLC for five different sites based on the roughness condition of the sites. Previous studies showed that DLC varies with vehicle speed and suspension types, and assumes a constant value for the whole pavement structure (lateral and vertical directions). On the other hand, in this study, DRC was found to be significantly varied with the asphalt pavement and function of pavement structure, road roughness conditions, temperatures, vehicle speeds, suspension types, and locations of the point of interest in the pavement. A major contribution of the study is that the variation of pavement responses due to dynamic load in a flexible pavement system can be predicted with generalized regression equations. Fitting parameters (R2) in the

  16. Pavement Sealcoat, PAHs, and the Environment

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.; Mahler, B. J.

    2011-12-01

    Recent research by the USGS has identified coal-tar-based pavement sealants as a major source of polycyclic aromatic hydrocarbons (PAHs) to the environment. Coal-tar-based sealcoat is commonly used to coat parking lots and driveways and is typically is 20-35 percent coal tar pitch, a known human carcinogen. Several PAHs are suspected mutagens, carcinogens, and (or) teratogens. In the central and eastern U.S. where the coal-tar-based sealants dominate use, sum-PAH concentration in dust particles from sealcoated pavement is about 1,000 times higher than in the western U.S. where the asphalt-based formulation is prevalent. Source apportionment modeling indicates that particles from sealcoated pavement are contributing the majority of the PAHs to recent lake sediment in 35 U.S. urban lakes and are the primary cause of upward trends in PAHs in many of these lakes. Mobile particles from parking lots with coal-tar-based sealcoat are tracked indoors, resulting in elevated PAH concentrations in house dust. In a recently completed study, volatilization fluxes of PAHs from sealcoated pavement were estimated to be about 60 times fluxes from unsealed pavement. Using a wide variety of methods, the author and colleagues have shown that coal-tar-based sealcoat is a major source of PAHs to the urban environment and might pose risks to aquatic life and human health.

  17. Overview of the Arizona Quiet Pavement Program

    NASA Astrophysics Data System (ADS)

    Donavan, Paul; Scofield, Larry

    2005-09-01

    The Arizona Quiet Pavement Pilot Program (QP3) was initially implemented to reduce highway related traffic noise by overlaying most of the Phoenix metropolitan area Portland cement concrete pavement with a one inch thick asphalt rubber friction coarse. With FHWA support, this program represents the first time that pavement surface type has been allowed as a noise mitigation strategy on federally funded projects. As a condition of using pavement type as a noise mitigation strategy, ADOT developed a ten-year, $3.8 million research program to evaluate the noise reduction performance over time. Historically, pavement surface type was not considered a permanent solution. As a result, the research program was designed to specifically address this issue. Noise performance is being evaluated through three means: (1) conventional roadside testing within the roadway corridor (e.g., far field measurements within the right-of-way) (2) the use of near field measurements, both close proximity (CPX) and sound intensity (SI); and (3) far field measurements obtained beyond the noise barriers within the surrounding neighborhoods. This paper provides an overview of the program development, presents the research conducted to support the decision to overlay the urban freeway, and the status of current research.

  18. Research on fracture performance of epoxy asphalt concrete based on double-K fracture criterion

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Qian, Z. D.; Xue, Y. C.

    2017-01-01

    After cracks appear on steel bridge deck epoxy asphalt concrete pavement, cracks propagate fast under vehicle load. This paper studied the fracture performance of epoxy asphalt concrete, utilized single edge notched beam (SEB) three-point bending test, measured the load (P) exerted on epoxy asphalt SEB; utilized digital camera to record the fracture process of epoxy asphalt SEB, extracted the images according to the required sampling frequency and utilized Image-Pro Plus to measure the crack mouth opening displacement (CMOD) of epoxy asphalt SEB on the extracted images; calculated the double-K fracture parameters according to the P-CMOD curve. Results indicate that of epoxy asphalt concrete is 1.11 MPa and of epoxy asphalt concrete is 2.31 MPa at -15°C of epoxy asphalt concrete is 1.02 MPa and of epoxy asphalt concrete is 1.83 MPa at -5°C of epoxy asphalt concrete is 0.77 MPa and of epoxy asphalt concrete is 1.82 MPa at 5°C. The double-K fracture parameters of epoxy asphalt concrete increase slightly when the temperature decreases at the scope of -15°C to 5°C. The relation of and is .

  19. Development of a Portable Pavement Thickness/Density Meter (PTDM)

    NASA Astrophysics Data System (ADS)

    Maser, K. R.

    2002-08-01

    The Pavement Thickness/Density Meter (PTDM) concept developed in this research represents a new and innovative method for automatically determining pavement thickness and density. Pavement thickness and pavement density are two key variables that determine the future life and performance of asphalt pavement. In many cases, due to variations in placement conditions, the actual in-place thickness and density can vary considerably from specifications. Current testing methods based on coring are time consuming and do not provide adequate coverage. The PTDM system provides a means for quickly obtaining complete thickness/density coverage assessment of the pavement. The device is transportable and easily operated with limited training. It provides continuous data, in the form of profiles of the pavement thickness and density as a function of distance along the pavement. The method is safe, since it is based on low-powered pulsed electromagnetic waves. The key technological innovations required for the development of the PTDM are (1) the implementation of small and more portable components, particularly the transmitting antenna; (2) the implementation of software which automatically produces the readings that will be directly displayed for the operator; and (3) the packaging of all of these components in a small portable device that can be easily used and handled as a routine piece of field test equipment. The work carried out under this program has successfully achieved objectives (1) and (2).

  20. Leachability of dissolved chromium in asphalt and concrete surfacing materials.

    PubMed

    Kayhanian, Masoud; Vichare, Akshay; Green, Peter G; Harvey, John

    2009-08-01

    Leachate metal pollutant concentrations produced from different asphalt and concrete pavement surfacing materials were measured under controlled laboratory conditions. The results showed that, in general, the concentrations of most metal pollutants were below the reporting limits. However, dissolved chromium was detected in leachate from concrete (but not asphalt) specimens and more strongly in the early-time leachate samples. As the leaching continued, the concentration of Cr decreased to below or close to the reporting limit. The source of the chromium in concrete pavement was found to be cement. The concentration of total Cr produced from leachate of different cement coming from different sources that was purchased from retail distributors ranged from 124 to 641mug/L. This result indicates that the potential leachability of dissolved Cr from concrete pavement materials can be reduced through source control. The results also showed that the leachability of dissolved Cr in hardened pavement materials was substantially reduced. For example, the concentration of dissolved Cr measured in actual highway runoff was found to be much lower than the Cr concentration produced from leachate of both open and dense graded concrete pavement specimens under controlled laboratory study. It was concluded that pavement materials are not the source of pollutants of concern in roadway runoff; rather most pollutants in roadway surface runoff are generated from other road-use or land-use sources, or from (wet or dry) atmospheric deposition.

  1. Epoxy asphalt concrete is a perspective material for the construction of roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Kopynets, Ivan; Kischynskyi, Sergii; Bidnenko, Nataliia

    2017-09-01

    An effective way to increase the durability of asphalt concrete pavements that are subject to high traffic loads and adverse weather and climatic factors is the use of polymer additives which drastically improve the rheological and physical-mechanical properties of bitumen. The use of thermosetting polymers including epoxy resins for asphalt and bitumen modification is seen as a perspective solution for this issue. Conducted at DerzhdorNDI SE studies have proved high riding qualities of asphalt pavements that contain epoxy resins. When replacing 20-35% of bitumen with epoxy component, a significant improvement in strength characteristics of asphalt pavement is noted, especially at elevated temperatures. Specific feature of epoxy asphalt concrete is its ability to gain strength over a long-term operation. Thus, despite the increased cost of epoxy asphalt concrete, long service life of pavements on its basis (up to 30 years as predicted) ensures a high profitability of using this material, especially on the roads with heavy traffic and severe traffic conditions.

  2. Back-calculation of temperature parameters for determination of asphalt layer modulus

    NASA Astrophysics Data System (ADS)

    Dong, Qinxi; Matsui, Kunihito; Yamamoto, Kazuya; Higashi, Shigeo

    2000-05-01

    The pavement elastic modulus of each layer was usually assumed not to be dependent on the environmental factors when the backcalculation of asphalt pavement was conducted from the measured surface deflections of FWD. However, it is well known that the elastic modulus of asphalt layer changes with the variation of temperature. Considering the influence of atmospheric temperature and radiant heat, the temperature distribution is nonlinear along the asphalt layer thickness, and has always been changed. Therefore, the distribution of elastic modulus in the asphalt layer has been considered to change as well. In this paper, we assume the elastic modulus distribution of the asphalt layer to vary with its temperature in terms of the exponential form. Based on the finite element method forward analysis, we propose a method to estimate a standard elastic modulus and temperature coefficient at 20 degrees Celsius for the asphalt layer from the backcalculation analysis. The corresponding FEM backcalculation program using Gauss-Newton method was developed to determine the pavement layer moduli and temperature dependent coefficient, in which the singular value decomposition (SVD) was used for the inverse analysis with scaling of unknown parameters. This method results in a smaller condition number that contributes to improvement of numerical stability. Both numerical simulation and measured data from FWD testing are used to demonstrate the potential applications of this method. As a result, the backcalculation procedure is less dependent on the user's initial values, fast in convergence rate and effective in the pavement engineering.

  3. Evaluation of Warm Mix Asphalt Additives for Use in Modified Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Chamoun, Zahi

    The objective of this research effort is to evaluate the use of warm-mix additives with polymer modified and terminal blend tire rubber asphalt mixtures from Nevada and California. The research completed over two stages: first stage evaluated two different WMA technologies; Sasobit and Advera, and second stage evaluated one additional WMA technology; Evotherm. The experimental program covered the evaluation of resistance of the mixtures to moisture damage, the performance characteristics of the mixtures, and mechanistic analysis of mixtures in simulated pavements. In the both stages, the mixture resistance to moisture damage was evaluated using the indirect tensile test and the dynamic modulus at multiple freeze-thaw cycles, and the resistance of the various asphalt mixtures to permanent deformation using the Asphalt Mixture Performance Tester (AMPT). Resistance of the untreated mixes to fatigue cracking using the flexural beam fatigue was only completed for the first stage. One source of aggregates was sampled in, two different batches, three warm mix asphalt technologies (Advera, Sasobit and Evotherm) and three asphalt binder types (neat, polymer-modified, and terminal blend tire rubber modified asphalt binders) typically used in Nevada and California were evaluated in this study. This thesis presents the resistance of the first stage mixtures to permanent deformation and fatigue cracking using two warm-mix additives; Advera and Sasobit, and the resistance to moisture damage and permanent deformation of the second stage mixtures with only one warm-mix additive; Evotherm.

  4. Current practices for modification of paving asphalts

    SciTech Connect

    Bahia, H.U.; Perdomo, D.

    1996-12-31

    The Superpave binder specification, AASHTO MP1, has introduced new concepts for selecting paving asphalt binders. The specification, in addition to using rheological and failure measurements that are more related to performance, is based on the idea that the criteria to maintain a satisfactory contribution of asphalt binders to the resistance of pavement failures remains the same but have to be satisfied at critical application temperatures. The test procedures require that the material be characterized within certain ranges of strains or stresses to ensure that material and geometric non-linearities are not confounded in the measurements. These new specification concepts have resulted in re-evaluation of asphalt modification by the majority of modified asphalt suppliers. The philosophy of asphalt modification is expected to change, following these new concepts, from a general improvement of quality to more focus on using modifiers based on the most critical need as defined by two factors: (1) The application temperature domain and (2) the type of distress to be remedied. The new specification requirements should result in a more effective use of modifiers as the amount and type of modifier will be directly related to the application environment and the engineering requirements.

  5. Characterization of asphalt and asphalt recyclability

    SciTech Connect

    Painter, P.C.

    1993-10-01

    The goal of the research program was to construct a simple model and computer programs that will allow at least a qualitative understand of the phase behavior of asphalt (i.e., how asphalt components mix with one another), mixtures of different types of asphalt (i.e., in recycling) and mixtures of asphalt with other materials, such as synthetic polymers. The authors have constructed such a model and computer programs (for Macintosh computers) that allow such calculations to be performed easily.

  6. Road pavement condition mapping and assessment using remote sensing data based on MESMA

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Zhang, X.; Jin, X.; Yu, H.; Rao, J.; Tian, S.; Luo, L.; Li, C.

    2016-04-01

    Remote sensing can be used to monitor changes of asphalt pavement condition because of the spectral change of aged asphalt material. However, owing to coarse spatial resolution of images and the limited width of roads ambient land cover types (e.g. vegetation, buildings, and soil) affect the spectral signal and add significant variability and uncertainty to analysis of road conditions. To overcome this problem, Multiple Endmember Spectral Mixture Analysis (MESMA) was tested to map asphalt pavement condition using WorldView-2 satellite imagery with eight bands spanning from visible to near infrared. Results indicated that MESMA run in a three-endmember model models mixed-pavement pixels well with a low average RMSE (0.01).

  7. Pavement management and rehabilitation of portland cement concrete pavements

    NASA Astrophysics Data System (ADS)

    Zegeer, C. V.; Agent, K. R.; Rizenbergs, R. L.; Curtayne, P. C.; Scullion, T.; Pedigo, R. D.; Hudson, W. R.; Roberts, F. L.; Karan, M. A.; Haas, R.

    Pavement management and rehabilitation projects and techniques are discussed. The following topics are discussed: economic analyses and dynamic programming in resurfacing project selection; implementation of an urban pavement management system; pavement performance modeling for pavement management; illustration of pavement management: from data inventory to priority analysis; rehabilitation of concrete pavements by using portland cement concrete overlays; pavement management study: Illinois tollway pavement overlays; resurfacing of plain jointed-concrete pavements; design procedure for premium composite pavement; model study of anchored pavement; prestressed concrete overlay at O'Hare International Airport: in-service evaluation; and, bonded portland cement concrete resurfacing.

  8. Vibration of vehicle-pavement coupled system based on a Timoshenko beam on a nonlinear foundation

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Yang, Yan; Chen, Li-Qun; Yang, Shao-Pu

    2014-12-01

    This paper focuses on the coupled nonlinear vibration of vehicle-pavement system. The pavement is modeled as a Timoshenko beam resting on a six-parameter foundation. The vehicle is simplified as a spring-mass-damper oscillator. For the first time, the dynamic response of vehicle-pavement coupled system is studied by modeling the pavement as a Timoshenko beam resting on a nonlinear foundation. Consequently, the shear effects and the rotational inertia of the pavement are included in the modeling process. The pavement model is assumed to be a linear-plus-cubic Pasternak-type foundation. Furthermore, the convergent Galerkin truncation is used to obtain approximate solutions to the coupled vibratory response of the vehicle-pavement coupled system. The dynamic responses of the vehicle-pavement system with the asphalt pavement on soft soil foundation are investigated via the numerical examples. The numerical results show that the calculation for the coupled vibratory response needs high-order modes. Moreover, the coupling effects between the pavement and the vehicle are numerically examined by using the convergent modal truncation. The physical parameters of the vehicle-pavement system such as the shear modulus are compared for determining their influences on the coupled vibratory response.

  9. APPLICATION OF LOW TEMPERATU RE PROPERTIES IMPROVEMENT ASPHALT TO REPAIRE WORK OF RO CK FILL DAM WITH ASPHALT FACING

    NASA Astrophysics Data System (ADS)

    Shimazaki, Masaru; Tsunoo, Takashi; Kasahara, Atsushi

    The low temperature properties improvement asphalt that is no decreasing the transformation follow and the stress relaxation properties at the low temperature was developed. It aimed at properties of PG64-28 (lowest temperature 28 degree C and maximum temperature 64 degree C that was able to be used) from PG (Performance Grade) of mix design method SUPERPAVE (Superior Performance Pavement) of new road-building plan SHRP (Strategic Highway Research Program) in the United States when developing. When the repair work of the rock fill dam with asphalt facing located in Kyogoku-cho Abuta-gun Hokkaido was planned, the applicability of the developed asphalt was verified. As for the verification outcome and the developed asphalt, it was proven that it was applied to the repair construction, and there was no problem in manufacturing and construction.

  10. Impacts of pavement types on in-vehicle noise and human health.

    PubMed

    Li, Qing; Qiao, Fengxiang; Yu, Lei

    2016-01-01

    Noise is a major source of pollution that can affect the human physiology and living environment. According to the World Health Organization (WHO), an exposure for longer than 24 hours to noise levels above 70 dB(A) may damage human hearing sensitivity, induce adverse health effects, and cause anxiety to residents nearby roadways. Pavement type with different roughness is one of the associated sources that may contribute to in-vehicle noise. Most previous studies have focused on the impact of pavement type on the surrounding acoustic environment of roadways, and given little attention to in-vehicle noise levels. This paper explores the impacts of different pavement types on in-vehicle noise levels and the associated adverse health effects. An old concrete pavement and a pavement with a thin asphalt overlay were chosen as the test beds. The in-vehicle noise caused by the asphalt and concrete pavements were measured, as well as the drivers' corresponding heart rates and reported riding comfort. Results show that the overall in-vehicle sound levels are higher than 70 dB(A) even at midnight. The newly overlaid asphalt pavement reduced in-vehicle noise at a driving speed of 96.5 km/hr by approximately 6 dB(A). Further, on the concrete pavement with higher roughness, driver heart rates were significantly higher than on the asphalt pavement. Drivers reported feeling more comfortable when driving on asphalt than on concrete pavement. Further tests on more drivers with different demographic characteristics, along highways with complicated configurations, and an examination of more factors contributing to in-vehicle noise are recommended, in addition to measuring additional physical symptoms of both drivers and passengers. While there have been many previous noise-related studies, few have addressed in-vehicle noise. Most studies have focused on the noise that residents have complained about, such as neighborhood traffic noise. As yet, there have been no complaints by

  11. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    PubMed

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  12. The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres

    NASA Astrophysics Data System (ADS)

    Tabaković, A.; Post, W.; Cantero, D.; Copuroglu, O.; Garcia, S. J.; Schlangen, E.

    2016-08-01

    This paper explores the potential use of compartmented alginate fibres as a new method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are employed to locally distribute the rejuvenator and to overcome the problems associated with spherical capsules and hollow fibres. The work presents proof of concept of the encapsulation process which involved embedding the fibres into the asphalt mastic mixture and the survival rate of fibres in the asphalt mixture. To prove the effectiveness of the alginate as a rejuvenator encapsulating material and to demonstrate its ability survive asphalt production process, the fibres containing the rejuvenator were prepared and subjected to thermogravimetric analysis and uniaxial tensile test. The test results demonstrated that fibres have suitable thermal and mechanical strength to survive the asphalt mixing and compaction process. The CT scan of an asphalt mortar mix containing fibres demonstrated that fibres are present in the mix in their full length, undamaged, providing confirmation that the fibres survived the asphalt production process. In order to investigate the fibres physiological properties and ability to release the rejuvenator into cracks in the asphalt mastic, the environmental scanning electron microscope and optical microscope analysis were employed. To prove its success as an asphalt healing system, compartmented alginate fibres containing rejuvenator were embedded in asphalt mastic mix. The three point bend tests were performed on the asphalt mastic test samples and the degree to which the samples began to self-heal in response was measured and quantified. The research findings indicate that alginate fibres present a promising new approach for the development of self-healing asphalt pavement systems.

  13. Research on tensile strength characteristics of bridge deck pavement bonding layers

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Han, Jun

    2009-12-01

    As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

  14. Research on tensile strength characteristics of bridge deck pavement bonding layers

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Han, Jun

    2010-03-01

    As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

  15. The impact of material characteristics on tire pavement interaction noise for flexible pavements

    NASA Astrophysics Data System (ADS)

    Kocak, Salih

    Noise pollution has recently been one of the growing problems all over the world. While there are many sources of the noise, traffic noise is the main contributor to the total environmental noise. Although there are different sources for traffic noise, the tire pavement interaction noise is the most dominant component within most city and highway limits. One of the ways to reduce the tire pavement noise is to improve the material characteristics of the pavements such that they produce less noise. In this study, the relationship between basic material characteristics (e.g., Hot Mix Asphalt (HMA) volumetrics) and sound generation and absorption characteristics of flexible pavements was investigated. In addition, the effect of linear visco-elastic properties (e.g., dynamic modulus (|E*|) and phase angle (delta)) on sound absorption was studied. In order to focus only on impact of material characteristics and overshadow the effect of surface texture, a novel laboratory tire pavement noise measurement simulator (TIPANOS) was developed. The statistical analysis results showed that although the individual material characteristics do not have appreciable influence on sound absorption, there is a significant correlation between sound pressure levels (SPL) and combination of several material and linear visco-elastic parameters.

  16. Paint Pavement Marking Performance Prediction Model That Includes the Impacts of Snow Removal Operations

    DTIC Science & Technology

    2011-03-01

    Hypothesized that snow plows wear down mountain road pavement markings. 2007 Craig et al. -Edge lines degrade slower than center/skip lines 2007...retroreflectivity to create the models. They discovered that paint pavement markings last 80% longer on Portland Cement Concrete than Asphalt Concrete at low AADT...retroreflectivity, while yellow markings lost 21%. Lu and Barter attributed the sizable degradation to snow removal, sand application, and studded

  17. User’s Guide: Cracking and Seating of Portland Cement Concrete Pavements

    DTIC Science & Technology

    1992-08-01

    Concrete Pavements 6. AUTHOR(S) Randy C. Ahlrich 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER USAE...OF PAGES Asphalt concrete Maintenance 29 Concrete Repair 16. PRICE CODE Cracking Seating OF REPORT OF THIS PAGE d OF ABSTRACT Unclassified Unclassified...Seated Concrete ," Transportation Research Record 1215, Washington, DC. Ahlrich, R. C. and Godwin, L. N. 1991. "Cracking and Seating of PCC Pavements

  18. A pavement Moisture Accelerated Distress (MAD) identification system, volume 2

    NASA Astrophysics Data System (ADS)

    Carpenter, S. H.; Darter, M. I.; Dempsey, B. J.

    1981-09-01

    A users manual is designed which provides the engineer with a rational method of examining a pavement and determining rehabilitation needs that are related to the causes of the existing distress, particularly moisture related distress. The key elements in this procedure are the MAD Index developed in Volume 1, the Pavement Condition Index (PCI) and the Moisture Distress Index (MDI). Step by step procedures are presented for calculating each parameter. Complete distress identification manuals are included for asphalt surfaced highways and jointed reinforced concrete highways with pictures and descriptions of all major distress types. Descriptions of the role moisture plays in the development of each distress type are included.

  19. Voids characteristics of asphaltic concrete containing coconut shell

    NASA Astrophysics Data System (ADS)

    Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed

    2017-07-01

    Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.

  20. Recycling of bituminous shoulders: Mixture and asphalt evaluation

    NASA Astrophysics Data System (ADS)

    Carpenter, S. H.

    1982-06-01

    Recycled bituminous materials have proven economical when compared to the costs involved in constructing a pavement from all new materials. Long term performance comparisons have not been developed to illustrate the long term maintenance requirements. This report is the first of two reports detailing the examination of recycled mixes to predict long term performance. Two reclaimed pavements and two additional aged materials were selected. Procedures are developed for selecting the type and amount of recycling agent to minimize compatibility problems and not necessitate special handling problems.

  1. A multiscale model for predicting the viscoelastic properties of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Garcia Cucalon, Lorena; Rahmani, Eisa; Little, Dallas N.; Allen, David H.

    2016-08-01

    It is well known that the accurate prediction of long term performance of asphalt concrete pavement requires modeling to account for viscoelasticity within the mastic. However, accounting for viscoelasticity can be costly when the material properties are measured at the scale of asphalt concrete. This is due to the fact that the material testing protocols must be performed recursively for each mixture considered for use in the final design.

  2. Black curves and creep behaviour of crumb rubber modified binders containing warm mix asphalt additives

    NASA Astrophysics Data System (ADS)

    Gallego, Juan; Rodríguez-Alloza, Ana María; Giuliani, Felice

    2016-08-01

    Warm mix asphalt (WMA) is a new research topic in the field of road pavement materials. This technology allows lower energy consumption and greenhouse gas (GHG) emissions by reducing compaction and placement temperatures of the asphalt mixtures. However, this technology is still under study, and the influence of the WMA additives has yet to be investigated thoroughly and clearly identified, especially in the case of crumb rubber modified (CRM) binders.

  3. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of

  4. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  6. Evaluation of energies of interaction correlated with observed stabilities and rheological properties of asphalt-aggregate mixtures of western shale-oil residue as a modifier to petroleum asphalt

    SciTech Connect

    Tauer, J.E.; Ensley, E.K.; Harnsberger, P.M.; Robertson, R.E.

    1993-02-01

    The objective of this study was to perform a preliminary evaluation of improving bonding and aging characteristics using a distillation residue from the Green River Formation (western) shale oil as a modifier to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. This study was to examine the differences in moisture damage resistance and adhesion properties, as measured by bonding energy, of shale-oil modified asphalts compared with non-modified asphalts. The shale-oil modified asphalts mechanical properties were not expected to match those of the rubberized asphalt. A commercially available rubberized asphalt crack and joint filler material was also tested only for comparison of mechanical properties. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation type of experiment to evaluate the relaxation and recovery properties of the sealant materials. Energy of interaction (bonding energy) measurements were performed on asphalt materials with portland cement concrete, two silicate aggregates, and a limestone aggregate to evaluate the compatibility of the asphalt materials with various aggregates. The results show that the shale-oil modified petroleum asphalt improved the relaxation time, percent recovery, and bonding energy compared with the petroleum asphalt.

  7. Characterization of cold recycled asphalt mixtures

    SciTech Connect

    Tia, M.

    1982-01-01

    In this study, the long-term behavior of the cold-recycled asphalt mixtures was investigated through nine experimental designs. The scope of the study covered two types of pavement material, three levels of oxydized condition of the old binder and one type of virgin aggregate. The added softening agents included a high-float asphalt emulsion AE-150, a foamed asphalt, and the rejuvenating agents, Reclamite, Mobilsol and DUTREX 739. The Water Sensitivity Test was used to evaluate the resistance of the recycled mixes to water. The results of the study indicated that most of the rejuvenating action of the added binder on the old binder took place during the compaction process. The binders of the recycled mixes which underwent the initial softening during the compaction process generally increased in stiffness with increasing curing time. The results indicated that the gyratory stability index and the gyratory elasto-plastic index could be used to determine the optimum binder content of a recycled mix. However, they could not be used to estimate the resilient modulus or the Marshall stability of the mix.A higher compactive effort generally produced a higher resilient modulus and Marshall stability of the recycled mix. When the binder content is too high, a higher compactive effort generally produces a lower Hveem R-value.The structural performance of these recycled mixes was compared to that of an asphalt concrete using a linear elastic multilayer analysis.

  8. Preparation of capsules containing rejuvenators for their use in asphalt concrete.

    PubMed

    García, Alvaro; Schlangen, Erik; van de Ven, Martin; Sierra-Beltrán, Guadalupe

    2010-12-15

    Every year, there is a demand of more than 110 million metric tons of asphalt all around the world. This represents a huge amount of money and energy, from which a good part is for the preservation and renovation of the existing pavements. The problem of asphalt is that it oxidizes with time and therefore its beneficial properties disappear. Traditionally, rejuvenators spread in the road surface, are used to restore the original properties of the pavement. The problem is that, for a rejuvenator to be successful, it must penetrate the pavement surface. Furthermore, application of a rejuvenator will reduce the skid resistance of the pavement and, besides, rejuvenators have many aromatic compounds that can be harmful for the environment. To solve these problems this paper introduces a new concept in road construction: encapsulated rejuvenators. The basic principle is that when the stress in capsules embedded in the asphalt reaches a certain threshold value, the capsules break and some rejuvenator is released, restoring the original properties of the pavement. This paper will show how to prepare such capsules and how to determine their characteristics. This is one of the first steps towards intelligent pavements.

  9. A comprehensive approach for the assessment of in-situ pavement density using GPR technique

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2013-04-01

    Proper construction of the asphalt pavement is a prerequisite to developing a long lasting roadway that does not require extensive future maintenance. This goal is achieved by verifying that design specifications are met through the use of quality assurance (QA) practices. The in-situ density is regarded as one of the most important controls used to ensure that a pavement being placed is of high quality because it is a good indicator of future performance. In-situ density is frequently assessed utilizing one or more of the following three methods: cores, nuclear density gauge measurements or non-nuclear density gauge measurements. Each of the above mentioned methods, however, have their distinct disadvantages. Cores, for example, are generally considered to be the most accurate means of measuring in-situ density, however, they are a time consuming and destructive test that introduces a defect into asphalt pavements. Because of the destructive nature associated with coring, contractors and agencies have alternatively used non-destructive nuclear and non-nuclear density gauges for quality control purposes. These instruments allow for a more rapid assessment of the in-situ density, allowing measurements to be taken even during the pavement's construction. The disadvantage of these gauges are that they provide density readings only at discrete locations of the asphalt pavement mat, while no consensus exists among pavement researchers on the proper correlation between the gauges and core density. In recent years, numerous alternative methods have been introduced for the assessment of in-situ density, both during asphalt pavement construction and afterwards. These methods include, amongst others, intelligent compaction, thermal imaging and ground penetrating radar (GPR). Among these methods, GPR has been defined as both a technically feasible and promising method for the nondestructive, rapid, and continuous evaluation of in-situ asphalt pavement density based on

  10. Design and Properties of Asphalt Concrete Mixtures Using Renewable Bioasphalt Binder

    NASA Astrophysics Data System (ADS)

    Setyawan, A.; Djumari; Irfansyah, P. A.; Shidiq, A. M.; Wibisono, I. S.; Fauzy, M. N.; Hadi, F. N.

    2017-02-01

    The needs of petroleum asphalt as materials for pavement is very large, while the petroleum classified as natural resources that cannot be renewable. As a result of petroleum dwindling and prices tend to be more expensive. So that requiring other alternative materials as a substitute for conventional asphalt derived from biomass or often called bioasphalt. This study aims to know the volumetric and Marshall characteristics on Asphalt Cement ( AC ) using the Damar asphalt modification to substitute 60/70 penetration asphalt as a binder. The volumetric and Marshall characteristic are porosity, density, flow, stability, and Marshall quotient. The characteristic of asphalt concrete at optimum bitumen content are compared to the conditions from highway agency 1987 and the general specification of asphalt concrete Bina Marga 2010 the third revision. The research uses experimental method in the laboratory with the samples made using the dasphalt modification as binder and incorporating the aggregate gradation no. VII SNI 03-1737-1989. The research is using 15 samples divided into 5 contents of damar asphalt, they are 5%, 5,5%, 6%, 6,5%, dan 7%. Tests carried out using Marshall test equipment to get the value of flow and stability and then be searched the value of optimum damar asphalt content. The result of asphalt concrete analysis using dasphalt modification as binder gives the value of optimum dasphalt content at 5,242%. The most characteristics already met the requirements and specifications.

  11. Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix

    NASA Astrophysics Data System (ADS)

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed

    2017-09-01

    The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.

  12. A review of changes in composition of hot mix asphalt in the United States.

    PubMed

    Mundt, Diane J; Marano, Kristin M; Nunes, Anthony P; Adams, Robert C

    2009-11-01

    This review researched the materials, methods, and practices in the hot mix asphalt industry that might impact future exposure assessments and epidemiologic research on road paving workers. Since World War II, the U.S. interstate highway system, increased traffic volume, transportation speeds, and vehicle axle loads have necessitated an increase in demand for hot mix asphalt for road construction and maintenance, while requiring a consistent road paving product that meets state-specific physical performance specifications. We reviewed typical practices in hot mix asphalt paving in the United States to understand the extent to which materials are and have been added to hot mix asphalt to meet specifications and how changes in practices and technology could affect evaluation of worker exposures for future research. Historical documents were reviewed, and industry experts from 16 states were interviewed to obtain relevant information on industry practices. Participants from all states reported additive use, with most being less than 2% by weight. Crumb rubber and recycled asphalt pavement were added in concentrations approximately 10% per unit weight of the mix. The most frequently added materials included polymers and anti-stripping agents. Crumb rubber, sulfur, asbestos, roofing shingles, slag, or fly ash have been used in limited amounts for short periods of time or in limited geographic areas. No state reported using coal tar as an additive to hot mix asphalt or as a binder alternative in hot mix pavements for high-volume road construction. Coal tar may be present in recycled asphalt pavement from historical use, which would need to be considered in future exposure assessments of pavers. Changes in hot mix asphalt production and laydown emission control equipment have been universally implemented over time as the technology has become available to reduce potential worker exposures. This work is a companion review to a study undertaken in the petroleum refining

  13. Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique

    NASA Astrophysics Data System (ADS)

    Nciri, Nader; Cho, Namjun

    2017-04-01

    The recent increased importance of natural asphalt as an alternative binder for sustainable road pavement has dictated that more knowledge should be acquired about its structure and properties. Earlier, Carbon-13 NMR spectroscopy has been applied to very few natural bituminous materials. In this work, two types of raw binders namely Gilsonite and Trinidad Lake asphalt (TLA) have been subjected to an extensive investigation by using 13C-NMR technique. Results have shown that valuable chemical data can be readily withdrawn on aromatic ring structures and ring substituents in natural asphalts derived from different sources. The chemical significance of these findings will be discussed.

  14. Influence of mixture composition on the noise and frictional characteristics of flexible pavements

    NASA Astrophysics Data System (ADS)

    Kowalski, Karol J.

    Both traffic noise and wet pavement-tire friction are mainly affected by the tire/pavement interaction. Existing laboratory test methods allow for evaluation of polishing resistance of the aggregates only. Currently, there is no generally accepted standardized laboratory test method to address noise related issues and the overall frictional properties of pavements (including macrotexture). In this research, which included both laboratory and field components, friction and noise properties of the flexible (asphalt) pavements were investigated. As a part of this study, a laboratory device to polish asphalt specimens was developed and the procedure to evaluate mixture frictional properties was proposed. Following this procedure, forty-six different Superpave mixtures (each utilizing a different aggregate blends), one stone matrix asphalt (SMA) mixture and one porous friction course (PFC) mixture were tested. Six of the above mixes (four Superpave mixtures, SMA mixture and PFC mixture) were selected for laboratory noise testing. This testing was performed using a one-of-a-kind tester called the Tire/Pavement Test Apparatus (TPTA). In addition, the field sections constructed using Superpave, SMA and PFC mixtures were also periodically tested for friction and noise. Field measurements included testing of total of 23 different asphalt and two concrete pavements. The field friction testing was performed using both portable CTM and DFT devices and the (ASTM E 274) locked wheel friction trailer. The laboratory friction testing was performed using CTM and DFT devices only. The results of both field and laboratory friction measurements were used to develop an International Friction Index (IFI)-based frictional requirement for laboratory friction measurements. The results collected in the course of the study indicate that the IFI-based flag values could be successfully used in place of SN-based flag values to characterize frictional characteristics of pavements.

  15. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    PubMed

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    NASA Astrophysics Data System (ADS)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  17. Ice melting properties of steel slag asphalt concrete with microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bin; Sun, Yihan; Liu, Quantao; Fang, Hao; Wu, Shaopeng; Tang, Jin; Ye, Qunshan

    2017-03-01

    The ice on the surface of asphalt pavement in winter significantly influences the road transportation safety. This paper aims at the improvement of the ice melting efficiency on the surface of asphalt pavement. The steel slag asphalt concrete was prepared and the high ice melting efficiency was achieved with the microwave heating. A series of experiments were conducted to evaluate the ice melting performance of steel slag asphalt concrete, including the heating test, ice melting test, thermal conductivity test and so on. The results indicated that the microwave heating of steel slag concrete can improve the efficiency of deicing, mainly because the heating rates of steel slag asphalt mixture are much better than traditional limestone asphalt mixture. According to different thickness lever of ice, the final temperatures of each sample were very close to each other at the end of melting test. It is believed the thickness of the ice has a limited impact on the ice melting efficiency. According to the heating tests results, the bonding of ice and asphalt concrete is defined failure at the moment when the surface temperature of the ice reached 3 °C.

  18. Change in consistency and composition of trichloroethylene- and trichloroethane-treated asphalts.

    PubMed

    Abu-Elgheit, M A; Ijam, M J

    1982-12-01

    Solvent extraction of asphalt from pavement mixtures is a technique used to study the change in asphalt during service. Rheological measurements indicate that asphalts recovered from trichloroethylene or trichloroethane are markedly hardened. Compositional studies on asphaltic fractions reveal a notable decrease in saturates, naphthenes, H, N, Ni and V, and increase in polar aromatics and asphaltenes along with incorporation of Cl in all fractions. These structural changes are responsible for the hardening of the asphalt and are interpreted in terms of cyclization of saturates, aromatization of naphthenes, coupling of free radicals with neutral species to give a high content of asphaltenes, and in terms of loss of the relatively volatile Ni and V porphyrins during the extraction-recovery process.

  19. Update to permeable pavement research at the Edison ...

    EPA Pesticide Factsheets

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers; porous concrete; and permeable asphalt. The parking lot is instrumented with water content reflectometers and thermistors for continuous monitoring and has four lined sections for each surface to capture permeable pavement infiltrate for water quality analyses.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, and infiltration and evaporation rates. Thispresentation summarizes past findings and addresses current water quality efforts. This presentation summarizes past findings and addresses current water quality efforts.

  20. Monitoring pavement response and performance using in-situ instrumentation

    SciTech Connect

    Chen, D.H.; Bilyeu, J.; Hugo, F.

    1999-07-01

    The purpose of this paper is to present the effectiveness of in-situ instrumentation on diagnosing the pavement layer conditions under full-scale accelerated traffic loading. The test section is an in-service pavement (US281) in Jacksboro, Texas. Multi-Depth Deflectometers (MDDs) are used to measure both permanent deformations and transient deflections, caused by accelerated traffic loading and Falling Weight Deflectometers (MDDs) are used to measure both permanent deformations and transient deflections, caused by accelerated traffic loading and Falling Weight Deflectometer (FWD) tests. Four different FWD loads of 25, 40, 52, and 67 kN were applied in close proximity to the MDDs at various traffic loading intervals to determine pavement conditions. It was found that the majority of rutting occurred in the newly recycled asphalt mix. The aged ({gt}40 years) underlying base and subgrade layers contributed less than 30% to overall rutting. Only the top recycled Asphalt layer underwent notable deterioration due to traffic loading. Up to 1.5 million axle repetitions, the test pad responded to FWD load almost linearly, not only over the whole pavement system but also within individual layers. However, under higher FWD loads, the percentage of total deflection contributed by the subgrade increased.

  1. Recycling seal-coat pavements with self-cementing fly ash. Phase 2, progress report No. 1

    SciTech Connect

    Ferguson, E.G.

    1987-04-01

    The purpose of the proposed research is to evaluate the feasibility of recycling existing seal-coat pavements through stabilization with self-cementing fly ash. It is proposed that existing pavements can be pulverized in-place, sufficient quantities of Class C fly ash and water added, and the resulting mixture be compacted. The stabilized section could then be utilized as a base course section having greater support capacity than the original pavement section. The recycling process is intended primarily for existing pavements having up to 4 inches of asphaltic bound material underlain by a granular-base section of variable composition. The intent of the Phase II research is to establish more definitive criteria relevant to mix design and pavement thickness design for the proposed recycling process. The criteria is to be formulated through both laboratory and field tests on recycled pavements in a multistate area.

  2. An Innovative Concept for Testing Rutting Susceptibility of Asphalt Mixture

    NASA Astrophysics Data System (ADS)

    Mohseni, Alaeddin; Azari, Haleh

    Currently, flow number (FN) is being used for measuring permanent deformation resistance of asphalt mixtures. The provisional AASHTO TP 79-10 test method specifies the requirements of the FN test; however, there are undefined levels of test variables, such as temperature, axial stress, and confinement. Therefore, agreeable FN criteria that can reliably discriminate between various mixtures have not been established yet. As the asphalt industry continues to develop more sophisticated mixtures (Warm Mix, RAP and RAS), the FN value has failed to capture the true complexity of the asphalt mixtures. These shortcomings and the unpredictable testing time of the FN test have affected its usefulness for evaluating high temperature performance of asphalt mixtures. A new test procedure for evaluation of rutting susceptibility of asphalt mixtures is being proposed. The new procedure is conducted at one temperature and multiple stresses on the same replicate in three increments of 500 cycles, which only takes 33 minutes to complete. The property of the test is the permanent strain due to the last cycle of each test increment (Minimum Strain Rate, or MSR). A master curve is developed by plotting the MSR values versus parameter TP, which is a product of Temperature and Pressure. The MSR master curve represents the unit rutting damage (rut per axle) of asphalt mixtures at any stress and temperature and can be used in laboratory for material characterization, mix design verification, ranking of the mixtures, or for pavement design applications to predict rut depth for project climate and design traffic.

  3. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  4. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  5. Alternative modifications of bituminous binders for mastic asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Šedina, Jakub; Valentin, Jan; Benešová, Lucie

    2017-09-01

    This paper focuses on potential benefits of alternative bituminous binders for mastic asphalt mixtures, which were modified by new type of low viscosity additives or activated rubber powder. Paper presents results of laboratory investigation on mixtures with standard bituminous paving grade bitumen 20/30 and mixtures with modified bituminous binders. The reference bitumen 20/30 was modified by micromilled activated rubber powder, by a new generation of synthetic waxes (WE-CM20, WE-BM), or by the combination of synthetic wax and micromilled rubber powder. Comparison of different mastic asphalt mixtures was based on laboratory testing (indentation test, compressive strength test, bending (tensile) strength test, stiffness modulus test and cyclic compression test). Possible uses of these applications is for example in pavement structures for bridge decks, or for effective sealing of expansion joints on bridges. Mastic asphalt characteristics are compared with selected characteristics of used bituminous binders (complex shear modulus, rotational viscosity, etc.).

  6. Deformation Parameters and Fatigue of the Recycled Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Šrámek, Juraj

    2015-12-01

    The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E*) measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ɛ6). The test equipment and software is used to evaluate fatigue and deformation characteristics.

  7. Layer coefficients for NHDOT pavement materials

    NASA Astrophysics Data System (ADS)

    Janoo, Vincent C.

    1994-09-01

    In 1992, the New Hampshire Department of Transportation (NHDOT) experimented with the use of reclaimed asphalt concrete as a base course material, identified by NHDOT as reclaimed stabilized base (RSB). The RSB and a control test section were placed on Interstate 93 between exits 18 and 19. The RSB test section was designed to the same structural number (SN) as the control. To evaluate the structural capacity of these test sections, the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted deflection tests using a Dynatest 8000 falling weight deflectometer (FWD). Preliminary analysis of the results by NHDOT personnel showed higher deflection in the reclaimed asphalt concrete test sections. The explanation was that the layer coefficient used for the RSB layer in the design was probably incorrect. A total of 10 test sections constituting the base course materials used by NHDOT were built near Bow, New Hampshire. CRREL evaluated and estimated the layer coefficients of the base course materials. The test program was developed to characterize the material in more than one way. Tests were conducted with the heavy weight deflectometer (HWD), dynamic cone penetrometer (DCP) and the Clegg hammer. In situ California bearing ratio (CBR) tests were also conducted. The deflection from the HWD were used with the WESDEF back calculation program to determine the layer moduli. The moduli were than used with the AASHTO Design Guide to calculate the layer coefficients. The layer coefficients were also determined with the method proposed by Rohde. The CBR values from the Clegg hammer, in situ CBR and DCP tests were also used in the relationships in the HDM model to determine the layer coefficients.

  8. Pavement condition data analysis

    SciTech Connect

    Zaniewski, J.P.; Hudson, S.W.; Hudson, W.R.

    1987-07-01

    This paper describes a computer methodology for analyzing pavement condition data to define inputs for pavement management systems. This system of programs was developed during a Federal Highway Administration research project. In the project, eight state highway departments were studied to determine the types of pavement condition data collected, procedures used for collecting data, the inputs to the states' pavement management systems, and computer programs used by the states to analyze raw pavement condition data. Several of the programs were assembled into the Method for Analyzing Pavement Condition, MAPCON, during a project performed at Pennsylvania State University. These and other existing or new programs (a total of 18) were identified, tested, modified, and incorporated onto a MS/DOS microcomputer system. MAPCON guides the user through selection of analysis method, raw data entry, and data analysis.

  9. Elimination chemistry in asphalt

    SciTech Connect

    Boucher, J.L.; Ihsiung Wang; Martinez, D.F. )

    1990-07-01

    Elimination chemistry provides important information, not only about the chemical properties of asphalt, but also the chemical modification method of asphalt. The chemical reactions which use the natural abundance of radicals are important for free-radical halogenation reaction. Spectral data demonstrates the formation of halogenated asphalt. The utility of dehydrohalogenation modified asphalt is limited. However, the resulting dehydrohalogenation modified asphalt does produce a significant unsaturated intermediate, which can incorporate elastomeric polymers (and monomers) via condensation or addition process. The second chemical modification method is the Hofmann elimination reaction, which was performed by reaction of methyl iodide with asphalt, followed by treatment of base. Spectroscopic data shows that a methyl group attached to nitrogen or sulfur in asphalt after Hofmann elimination reaction. Physical data shows that the Hofmann elimination modification improved the quality of asphalt, such as low temperature susceptibility measured by PVN. The modified asphalt also studied by HP-GPC in order to correlate their physical properties. The result shows that the molecular size distribution has changed and reduced the amount of LMS. The amount of decreasing LMS is also dependent on the content of nitrogen and sulfur in asphalts.

  10. Asphalt coking method

    SciTech Connect

    Bonilla, J.A.; Elliott, J.D.

    1987-08-11

    A process is described for treating a heavy hydrocarbon fluid containing asphaltenes comprising: contacting the heavy hydrocarbon fluid with a solvent, wherein the solvent is light naphtha, C/sub 4/ hydrocarbons, C/sub 5/ hydrocarbons, C/sub 6/ hydrocarbons, or a mixture of any of light naphtha and C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons, to obtain an asphalt mix, containing asphalt and the solvent, and deasphalted oil mix, containing deasphalted oil and the solvent; feeding the asphalt mix to a delayed coking process to form coke, wherein the asphalt mix is heated by passing the asphalt mix through conduit means in a heater in the delayed coking process. The flow of the asphalt mix through the conduit means is assisted by vaporization in the heater of the solvent in the asphalt mix, and the asphalt mix includes sufficient solvent to provide a residence time of the asphalt mix in the heater adequate for heating the asphalt mix for coking while reducing the formation of coke in the heater; separating the solvent in the deasphalted oil mix from the deasphalted oil mix to yield deasphalted oil; and recovering the deasphalted oil, bypassing the delayed coking process.

  11. Pavement base drain evaluation

    NASA Astrophysics Data System (ADS)

    Hoffman, G. L.

    1981-06-01

    Portions of a highway drainage system design was revised. Essentially, the longitudinal drainage trench was moved closer to the pavement/shoulder joint, and the fine concrete sand layer was eliminated as a trench backfill material. The specified backfill material is a coarser crushed aggregate (pea gravel). An evaluation of the effects of these changes on pavement performance is given and the new pavement base drain system is compared to the older pipe foundation underdrain system at the same site.

  12. Field investigation of low-temperature cracking and stiffness moduli on selected roads with conventional and high modulus asphalt concrete

    NASA Astrophysics Data System (ADS)

    Judycki, Józef; Jaczewski, Mariusz; Ryś, Dawid; Pszczoła, Marek; Jaskuła, Piotr; Glinicki, Adam

    2017-09-01

    High Modulus Asphalt Concrete (HMAC) was introduced in Poland as a one of the solutions to the problem of rutting, type of deterioration common in the 1990s. After first encouraging trials in 2002 HMAC was widely used for heavily loaded national roads and motorways. However some concerns were raised about low-temperature cracking of HMAC. This was the main reason of the studies presented in this article were started. The article presents the comparison of performance of pavements constructed in typical contract conditions with the road bases made of HMAC and conventional asphalt concrete (AC). The field investigation was focused on the number of low-temperature cracks, bearing capacity (based on FWD test) of road sections localized in coldest region of Poland. Also load transfer efficiency of selected low-temperature cracks was assessed. FWD test confirmed lower deflections of pavements with HMAC and two times higher stiffness modulus of asphalt courses in comparison to pavements constructed with conventional AC mixtures. Relation of stiffness of asphalt layers and amount of low-temperature cracks showed that the higher stiffness modulus of asphalt layers could lead to increase of the number of low-temperature cracks. FWD test results showed that the load transfer efficiency of low-temperature cracks on pavements with HMAC presents very low values, very close to lack of load transfer. It was surprising as section with HMAC road base were aged from 2 to 5 years and presented very good bearing capacity.

  13. The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete

    USGS Publications Warehouse

    Langer, W.H.

    2011-01-01

    An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.

  14. Research on the Technology Applying Anti-Rutting Additive to Asphalt Mixture

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Huang, Liming; Li, Chun

    High-temperature problems like rutting, displacement and upheaval are the most serious ones for bituminous pavement of urban roads. Especially, such problems at crossroads and fixed places where buses stop, for instance, BRT, affect service ability and life of roads largely. Application of anti-rutting asphalt mixture mainly aims at reducing strain and deformation generated by bituminous concrete under effect of vehicle load, decreasing remainders that cannot be recovered in deformation, improving the ability of bituminous pavement to resist deformation under high temperature and delaying generation of rutting. Anti-rutting asphalt mixture in this thesis refers to the asphalt mixture where anti-rutting additive is added by dry method and high-temperature stability is improved.

  15. Evaluation and improvement of micro-surfacing mix design method and modelling of asphalt emulsion mastic in terms of filler-emulsion interaction

    NASA Astrophysics Data System (ADS)

    Robati, Masoud

    This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS

  16. An In-Depth Investigation into the Physicochemical, Thermal, Microstructural, and Rheological Properties of Petroleum and Natural Asphalts

    PubMed Central

    Nciri, Nader; Kim, Jeonghyun; Kim, Namho; Cho, Namjun

    2016-01-01

    Over the last decade, unexpected and sudden pavement failures have occurred in several provinces in South Korea. Some of these failures remain unexplained, further illustrating the gaps in our knowledge about binder chemistry. To prevent premature pavement distress and enhance road performance, it is imperative to provide an adequate characterization of asphalt. For this purpose, the current research aims at inspecting the chemistry, microstructure, thermal, and physico-rheological properties of two types of asphalt, namely petroleum asphalt (PA) and natural asphalt (NA). The binders were extensively investigated by using elemental analysis, thin-layer chromatography with flame ionization detection (TLC-FID), matrix-assisted laser desorption ionization time-of-fight mass spectroscopy (MALDI-TOF-MS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), Nuclear magnetic resonance spectroscopy (1H-NMR), ultraviolet and visible spectroscopy (UV-VIS), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), penetration, softening point, ductility, and viscosity tests. The findings of this research have revealed the distinct variations between the chemical compositions, microstructures, and thermo-rheological properties of the two asphalts and provided valuable knowledge into the characteristics of the binders. Such insight has been effective in predicting the performance or distress of road pavement. This paper will, therefore, be of immediate interest to materials engineers in state highway agencies and asphalt industries. PMID:28773979

  17. Update to Permeable Pavement Research at the Edison ...

    EPA Pesticide Factsheets

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  18. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    PubMed

    Al-Mansob, Ramez A; Ismail, Amiruddin; Yusoff, Nur Izzi Md; Rahmat, Riza Atiq O K; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  19. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt

    PubMed Central

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Yusoff, Nur Izzi Md.; Rahmat, Riza Atiq O. K.; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR–asphalt mixes prepared using the wet process. Mechanical testing on the ENR–asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR–asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR–asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress. PMID:28182724

  20. Evaluation of asphalt-rubber interlayers. (Revised). Final research report, September 1986-September 1992

    SciTech Connect

    Estakhri, C.K.; Pendleton, O.; Lytton, R.L.

    1994-02-01

    The report presents the field performance results of three asphalt-rubber interlayer test roads in terms of the effectiveness of the interlayer at reducing the rate of reflection cracking. Several variables were included in the field experiments: concentration of rubber, binder application rate, type or source of rubber, and digestion (or mixing) time of asphalt and rubber. Control sections were made up of no interlayer and interlayer binders of polymer-modified asphalt and conventional asphalt cement. Results of the statistical analyses of the data indicated that, in general, asphalt-rubber interlayers are more effective at reducing reflection cracking than no interlayer at all. Asphalt-rubber also peerformed better than control sections composed of asphalt cement interlayers and polymer-modified interlayers except in one case where the interlyaer was composed of a double application of asphalt cement/aggregate. The data also indicated that higher binder application rates lead to imnproved cracking resistance; however, on many test sections, excessively high binder application rates caused flushing at the pavement surface.

  1. Chemical aspects of incorporating contaminated soil into cold-mix asphalt

    SciTech Connect

    Testa, S.M.

    1994-12-31

    The chemical aspects associated with the incorporation of petroleum hydrocarbons- and metals-affected soil has been extensively studied in regards to pavement properties, leaching behavior, sensitivities to moisture-damage and function group analysis. These studies provide information that can be used to evaluate the stability of these constituents in soil that have been incorporated as an ingredient in asphalt. These studies also indicate that cold-mix asphalt incorporating contaminated soil will be highly stable and perform adequately as an end product. Maximum chemical performance is achieved when the asphalt is comprised of high contents of pyridinic, phenolic and ketone groups, which can be achieved by selectively choosing the source material. If the situation requires special stability or redundancy, small amounts of shale oil and lime can be used as additives. Situations and conditions which favor the presence of inorganic sulfur, monovalent salts and high strength solutions in the asphalt should be avoided since these conditions decrease the chemical stability of the asphalt cement by disruption of the functional group-aggregate bonds and by increasing the overall permeability. However, these conditions are not typically expected in the anticipated uses of asphalt cement to stabilize contaminants in soil using Environmentally Processed Asphalt{trademark} (EPA{trademark}) or Asphaltic Metals Stabilization{trademark} (AMS{trademark}) remedial technologies.

  2. Spills on Flat Inclined Pavements

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.; Hylden, Jeff L.

    2004-03-01

    This report describes the general spill phenomenology for liquid spills occurring on relatively impermeable surfaces such as concrete or asphalt pavement and the development and application of a model to describe the time evolution of such spills. The discussion assumes evaporation and degradation are negligible and a homogeneous surface. In such an instance, the inherent interfacial properties determine the spatial extent of liquid spreading with the initial flow being controlled by the release rate of the spill and by the liquids resistance to flow as characterized by its viscosity. A variety of spill scenarios were simulated and successful implementation of the model was achieved. A linear relationship between spill area and spill volume was confirmed. The simulations showed spill rate had little effect on the final spill area. Slope had an insignificant effect on the final spill area, but did modify spill shape considerably. However, a fluid sink on the edge of the simulation domain, representing a storm drain, resulted in a substantial decrease in spill area. A bona fide effort to determine the accuracy of the model and its calculations remain, but comparison against observations from a simple experiment showed the model to correctly determine the spill area and general shape under the conditions considered. Further model verification in the form of comparison against small scale spill experiments are needed to confirm the models validity.

  3. Assessing The Durability of Polymer Modified Asphalt Emulsions Slurry Seal

    NASA Astrophysics Data System (ADS)

    Singgih, C.; Handayani, D.; Setyawan, A.

    2017-02-01

    Slurry Seal is an application of road preservation in the form of impermeable nonstructural thin layer with maximum thickness of 10 mm, which consisting of a cold laid mixture of asphalt emulsion with continuous graded fine aggregate, mineral filler, water and other added ingredients. Road preservation use slurry seal only functioning as a surface layer on the existing pavement structure. This preliminary research was conducted to determine the value of consistency, setting time, and indirect tensile strength of polymer modified slurry seal. The laboratory tests were conducted to determine the optimum residual asphalt content. The results show that the value of the optimum water content by pre-wetting 5% is getting smaller with increasing levels of residual asphalt emulsion. The addition of water 0 - 2.5% with 5% water for pre-wetting, the mixture provides a sufficient consistency in accordance with the specifications. The increasing levels of residual asphalt emulsion obtained the longer setting time at all slurry seal mixtures, but all of the mixtures still meet the specifications. The use of polymer modified asphalt emulsion on slurry seal was improved durability significantly, based on the value of indirect tensile strength.

  4. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.

    PubMed

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-07

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.

  5. Predicting physical clogging of porous and permeable pavements

    NASA Astrophysics Data System (ADS)

    Yong, C. F.; McCarthy, D. T.; Deletic, A.

    2013-02-01

    SummaryPorous pavements are easily retrofitted, and effective in improving water quality and hydrology, but prone to clogging. Despite being a major determinant in the lifespan of porous pavements, there is limited information on the physical clogging processes through these systems. The aim of this study was to understand the main physical processes that govern physical clogging and develop a simple black-box model that predicts physical clogging. The key variables that were hypothesised to influence clogging were pavement design and climate characteristics. Two compressed time scale laboratory experiments were conducted over 3 years on three common porous pavement types; monolithic porous asphalt, modular Hydrapave and monolithic Permapave. Pavement design was found to be an important role in clogging. Permapave did not clog even after 26 years of operation in simulated sub-tropical Brisbane (Australia) climate while porous asphalt and Hydrapave clogged after just 12 years, from surface clogging and geotextile clogging, respectively. Each system was tested using two different dosing patterns: (1) continual wetting with no dry periods and (2) variable inflow rates with drying periods (i.e. representing more natural conditions). The latter dosing method approximately doubled the lifespan of all systems suggesting the influence of climate conditions on clogging. Clogging was found to be highly correlated with cumulative volume and flow rate. A simple black-box regression model that predicts physical clogging was developed as a function of cumulative volume and Brisbane climatic conditions. However it is very likely that the shape of this regression is general, and that it could be calibrated for different climates in the future.

  6. Pavement management practices. Final report

    SciTech Connect

    Peterson, D.E.

    1987-11-01

    This synthesis will be of interest to pavement designers, maintenance engineers, and others responsible for the management of highway pavements. Information is presented on pavement management systems - the established, documented procedures used to treat all activities involved in providing and sustaining pavements in an acceptable condition. As highway agencies focus more attention on maintenance and rehabilitation of highway networks, the use of some form of a pavement management system becomes increasingly important. This report of the Transportation Research Board describes the features, applicability, and used of a pavement management system and recommends five general steps for implementing a new pavement management system or improving an existing system.

  7. Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR

    NASA Astrophysics Data System (ADS)

    Hu, Jinhui; Vennapusa, Pavana K. R.; White, David J.; Beresnev, Igor

    2016-07-01

    Experimental results from field and laboratory investigations using a ground-coupled ground penetrating radar (GPR), dielectric measurement, magnetic imaging tomography (MIT) and dynamic cone penetrometer (DCP) tests are presented. Dielectric properties of asphalt pavement and stabilised and unstabilised pavement foundation materials were evaluated in the laboratory in frozen and unfrozen conditions. Laboratory test results showed that dielectric properties of materials back-calculated from GPR in comparison to dielectric gauge measurements are strongly correlated and repeatable. For chemically stabilised materials, curing time affected the dielectric properties of the materials. Field tests were conducted on asphalt pavement test sections with different foundation materials (stabilised and unstabilised layers), drainage conditions and layer thicknesses. GPR and MIT results were used to determine asphalt layer thicknesses and were compared with measured core thicknesses, while GPR and DCP were used to assess foundation layer profiles. Asphalt thicknesses estimated from GPR showed an average error of about 11% using the dielectric gauge values as input. The average error reduced to about 4% when calibrated with cores thicknesses. MIT results showed thicknesses that are about 9% higher than estimated using GPR. Foundation layer thicknesses could not be measured using GPR due to variations in moisture conditions between the test sections, which is partly attributed to variations in gradation and drainage characteristics of the subbase layer.

  8. Review of crumb-rubber modified asphalt concrete technology. Final research report

    SciTech Connect

    Papagiannakis, A.T.; Lougheed, T.J.

    1995-11-01

    This study presents an analysis of the characteristics of crumb-rubber modified (CRM) asphalt pavements. It is comprised of a state-of-the-art literature review and laboratory testing conducted with a Brookfield viscometer. The reaction that occurs between the rubber and asphalt is not a chemical reaction, but rather a diffusion process that includes the physical absorption of aromatic oils from the asphalt into the polymer chain of the rubber. The presence of CRM in asphalt produces a thicker binder, which increases aging and oxidation resistance. The presence of carbon black in CRM improves binder durability. The temperature susceptibility of the mix is reduced, causing more uniform fatigue characteristics. CRM applications have been met with various degrees of success because existing quality control and quality assurance methods have not been developed enough to ensure desired binder properties in the field.

  9. Relation Between PAHs and Coal-Tar-Based Pavement Sealant in Urban Environments (Invited)

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; van Metre, P. C.

    2010-12-01

    Since 2003, coal-tar-based sealant products have come under increased scrutiny as a source of PAHs in urban environments. Sealant (or sealcoat) is the black, shiny substance often applied to asphalt pavement, in particular parking lots and driveways, for esthetic and maintenance purposes. Coal-tar-based sealant, one of the two primary pavement sealant types on the market, typically is 20-35 percent coal-tar pitch, a known carcinogen that is more than 50 percent polycyclic aromatic hydrocarbons (PAHs). The PAH content of the coal-tar-based sealant product is about 1,000 times that of a similar, asphalt-based product, on average. This difference is reflected in regional differences in sealant use and PAH concentrations in pavement dust. In the central and eastern U.S., where the coal-tar-based formulation is prevalent, ΣPAH in mobile particles from sealed pavement have been shown to be about 1,000 times higher than in the western U.S., where the asphalt-based formulation is prevalent (the median ΣPAH concentrations are 2,200 mg/kg in the central and eastern U.S. and 2.1 mg/kg in the western U.S.). Source apportionment modeling indicates that, in the central and eastern U.S., particles from sealed pavement are contributing the majority of the PAHs in recently deposited (post-1990) lake sediment, with implications for ecological health, and that coal-tar-based sealant is the primary cause of upward trends in PAHs in U.S. urban lakes. From the standpoint of human health, research indicates that mobile particles from parking lots with coal-tar-based sealant are tracked indoors, resulting in elevated PAH concentrations in house dust. Coal-tar-based sealcoat being applied to an asphalt parking lot at the University of Texas Pickle Research Center.

  10. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals associated with Deicing Chemicals from Edison Parking Lot, NJ - abstract

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  11. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals Associated with Deicing Chemicals from Edison Parking Lot, NJ

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  12. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals Associated with Deicing Chemicals from Edison Parking Lot, NJ

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  13. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals associated with Deicing Chemicals from Edison Parking Lot, NJ - abstract

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  14. Preliminary evaluation of the lifecycle costs and market barriers of reflective pavements

    SciTech Connect

    Ting, M.; Koomey, J.G.; Pomerantz, M.

    2001-11-21

    The objective of this study is to evaluate the life cycle costs and market barriers associated with using reflective paving materials in streets and parking lots as a way to reduce the urban heat island effect. We calculated and compared the life cycle costs of conventional asphalt concrete (AC) pavements to those of other existing pavement technologies with higher reflectivity-portland cement concrete (PCC), porous pavements, resin pavements, AC pavements using light-colored chip seals, and AC pavements using light-colored asphalt emulsion additives. We found that for streets and parking lots, PCC can provide a cost-effective alternative to conventional AC when severely damaged pavements must be completely reconstructed. We also found that rehabilitating damaged AC streets and intersections with thin overlays of PCC (ultra-thin white topping) can often provide a cost-effective alternative to standard rehabilitation techniques using conventional AC. Chip sealing is a common maintenance treatment for low-volume streets which, when applied using light-colored chips, could provide a reflective pavement surface. If the incremental cost of using light-colored chips is low, this chip sealing method could also be cost-effective, but the incremental costs of light-colored chips are as of yet uncertain and expected to vary. Porous pavements were found to have higher life cycle costs than conventional AC in parking lots, but several cost-saving features of porous pavements fell outside the boundaries of this study. Resin pavements were found to be only slightly more expensive than conventional AC, but the uncertainties in the cost and performance data were large. The use of light-colored additives in asphalt emulsion seal coats for parking lot pavements was found to be significantly more expensive than conventional AC, reflecting its current niche market of decorative applications. We also proposed two additional approaches to increasing the reflectivity of conventional AC

  15. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    SciTech Connect

    Santero, Nicholas; Masanet, Eric; Horvath, Arpad

    2010-04-20

    This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

  16. Research on construction technology for orthotropic steel deck pavement of Haihe River Chunyi Bridge

    NASA Astrophysics Data System (ADS)

    Xue, Y. C.; Qian, Z. D.; Zhang, M.

    2017-01-01

    In order to ensure the good service quality of orthotropic steel deck pavement of Haihe River Chunyi Bridge in Tianjin, and to reduce the occurrence of pavement diseases like lateral and longitudinal cracks, the key working procedures such as steel deck cleaning, anticorrosive coating, bonding layer spraying, seam cutting, epoxy asphalt concrete’s mixing, transportation, paving and compaction were studied. The study was based on the main features of epoxy asphalt concrete which is the pavement materials of Haihe River Chunyi Bridge, and combined with the basic characteristics and construction conditions of Haihe River Chunyi Bridge. Furthermore, some processing measures like controlling time and temperature, continuous paving with two pavers, lateral feeding, and improving the compaction method were proposed. The project example shows that the processing measures can effectively solve the technical difficulties in the construction of orthotropic steel deck pavement of Haihe River Chunyi Bridge, can greatly improve the construction speed and quality, and can provide reference for the same kinds of orthotropic steel deck pavement construction.

  17. Pervious Pavement System Evaluation

    EPA Science Inventory

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, grade...

  18. Pervious Pavement System Evaluation

    EPA Science Inventory

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, grade...

  19. Nutrient infiltrate concentrations from three permeable pavement types.

    PubMed

    Brown, Robert A; Borst, Michael

    2015-12-01

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m(2), lined sections that direct all infiltrate into 5.7-m(3) tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry deposition. Similar to other permeable pavement studies, nitrate was the dominant nitrogen species in the infiltrate. The PA infiltrate had significantly larger nitrite and ammonia concentrations than PICP and PC, and this was presumably linked to unexpectedly high pH in the PA infiltrate that greatly exceeded the optimal pH range for nitrifying bacteria. Contrary to the nitrogen results, the PA infiltrate had significantly smaller orthophosphate concentrations than in rainwater, runoff, and infiltrate from PICP

  20. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    NASA Astrophysics Data System (ADS)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  1. Investigation of mineral filler effects on the aging process of asphalt mastics

    NASA Astrophysics Data System (ADS)

    Moraes, Raquel

    Aging of asphalt binders is induced by chemical and/or physicochemical changes during production of pavement and throughout its service life. Although binder aging in pavement always occurs while binder is in contact with aggregates and mineral filler, in most laboratory aging studies, and in current specifications, asphalt binders are individually aged without accounting for aggregate induced interactions. Past research has had conflicting findings, attributing both mitigating and/or catalytic effects to the presence of mineral filler in asphalt binder with regards to oxidative aging. Thus, in the present study it was hypothesized that evaluation of asphalt oxidative aging without regard to interactive effect of the presence of mineral filler is inadequate as a specification tool. Effects of mineral fillers on oxidative aging of asphalt is investigated by means of accelerated aging of mastics (asphalt and fillers) in Pressure Aging Vessel (PAV). Testing matrix included aging evaluation of mastics containing different fillers content, mineralogy, and surface area. Results showed that low-temperature behavior of aged mastic can be modified by controlling filler concentration and type. Fillers acts as an agent adsorbing heavy fractions of asphalt binder, therefore reducing stiffness and changing glass-transition temperature. Also, during oxidative aging of asphalt binders and mastics, both diffusion and adsorption mechanisms play a role in the rate of aging of asphaltic material. A method to characterize the behavior of mastics with aging was also developed by monitoring the mastics |G*| aging index (ratio of complex modulus before and after aging). Gel Permeation Chromatography (GPC) testing results supported mentioned findings regarding |G*| changes, as the presence of mineral filler appears to decelerate the rate of production of larger molecular size oxidation products in the binder phase of mastics. Implication of the findings is that change in molecular size

  2. Thermal conductance of and heat generation in tire-pavement interface and effect on aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.

    1976-01-01

    A finite-difference analysis was performed on temperature records obtained from a free rolling automotive tire and from pavement surface. A high thermal contact conductance between tire and asphalt was found on a statistical basis. Average slip due to squirming between tire and asphalt was about 1.5 mm. Consequent friction heat was estimated as 64 percent of total power absorbed by bias-ply, belted tire. Extrapolation of results to aircraft tire indicates potential braking improvement by even moderate increase of heat absorbing capacity of runway surface.

  3. Evaluation of mix ingredients on the performance of rubber-modified asphalt mixtures

    SciTech Connect

    Takallou, H.B.

    1987-01-01

    In rubber-modified asphalt pavements ground recycled tire particles are added to a gap-graded aggregate and then mixed with hot asphalt cement. In view of the significant reductions in wintertime stopping distances under icy or frosty road surface conditions, the use of coarse rubber in asphalt pavements should be seriously considered. This research project consisted of a laboratory study of mix properties as a function of variables such as rubber gradation and content, void content, aggregate graduation, mix process, temperature, and asphalt content. Twenty different mix combinations were evaluated for diametral modulus and fatigue at two different temperatures. Also, five different mix combinations were evaluated for static creep and permanent deformation. The findings of the laboratory study indicate that the rubber gradation and content, aggregate gradation, and use of surcharge during sample preparation have considerable effect on modulus and fatigue life of the mix. The results of static creep and permanent deformation tests indicate that the rubber asphalt mixes had low stability and high elasticity. Also, due to greater allowable tensile strain in rubber-modified mixtures, the thickness of the modified mixture can be reduced, using a layer equivalency of 1.4 to 1.0

  4. Evaluation of flexible pavement crack sealing methods used in Utah

    NASA Astrophysics Data System (ADS)

    Belangie, M. C.; Anderson, D. I.

    1981-01-01

    Criteria to improve the effectiveness of Utah's flexible pavements crack sealing practice were studied. Field measurements, in-depth interviews questionaires were used. Findings indicate that flexible pavement cracking is a significant problem in the Far West, Rocky Mountains, Great Lakes and New England. Choice of materials is effected by storage requirements and equipment available. Prepackaging of materials designed for crack sealing has resulted in improvements in control of mix and material properties. Low temperature and freeze thaw cycles significantly effect the amount of thermal cracking and the performance of crack sealant. Ductile sealants, such as Crumb rubber/asphalt cement mixes, in combination with routing appear to offer substantial gains in sealant life and performance.

  5. Evaluation of an eastern shale oil residue as an asphalt additive

    SciTech Connect

    Thomas, K.P.; Harnsberger, P.M.

    1995-09-01

    An evaluation of eastern shale oil (ESO) residue as an asphalt additive to reduce oxidative age hardening and moisture susceptibility was conducted by Western Research Institute (WRI). The ESO residue, have a viscosity of 23.9 Pa{lg_bullet}s at 60{degree}C (140{degree}F), was blended with three different petroleum-derived asphalts, ASD-1, AAK-1, and AAM-1, which are known to be very susceptible to oxidative aging. Rheological and infrared analyses of the unaged and aged asphalts and the blends were then conducted to evaluate oxidative age hardening. In addition, the petroleum-derived asphalts and the blends were coated onto three different aggregates, Lithonia granite (RA), a low-absorption limestone (RD), and a siliceous Gulf Coast gravel (RL), and compacted into briquettes. Successive freeze-thaw cycling was then conducted to evaluate the moisture susceptibility of the prepared briquettes. The rheological analyses of the unaged petroleum-derived asphalts and their respective blends indicate that the samples satisfy the rutting requirement. However, the aging indexes for the rolling thin film oven (RTFO)-aged and RTFO/pressure aging vessel (PAV)-aged samples indicate that the blends are stiffer than the petroleum-derived asphalts. This means that when in service the blends will be more prone to pavement embrittlement and fatigue cracking than the petroleum-derived asphalts. Infrared analyses were also conducted on the three petroleum-derived asphalts and the blends before and after RTFO/PAV aging. In general, upon RTFO/PAV aging, the amounts of carbonyls and sulfoxides in the samples increase, indicating that the addition of the ESO residue does not mitigate the chemical aging (oxidation) of the petroleum-derived asphalts. This information correlates with the rheological data and the aging indexes that were calculated for the petroleum-derived asphalts and the blends.

  6. Profiles of Reclaiming Schools.

    ERIC Educational Resources Information Center

    Van Bockern, Steve

    1993-01-01

    Describes reclaiming school as one that empowers each student to experience belonging, mastery, independence, and generosity and that challenges any practice that leads to alienation, futility, impotence, or purposelessness among youth. Spotlights innovative programs of empowering education that redefine the standards for excellence in the…

  7. Profiles of Reclaiming Schools.

    ERIC Educational Resources Information Center

    Van Bockern, Steve

    1993-01-01

    Describes reclaiming school as one that empowers each student to experience belonging, mastery, independence, and generosity and that challenges any practice that leads to alienation, futility, impotence, or purposelessness among youth. Spotlights innovative programs of empowering education that redefine the standards for excellence in the…

  8. New Tools Reclaiming Intervention

    ERIC Educational Resources Information Center

    Beck, Mitch

    2009-01-01

    This article presents a story of James, an elementary student who was recently mainstreamed into a regular education classroom for science and now struggles to succeed in his new environment. It also describes how the New Tools reclaiming intervention puts him on the right track to making new friends. James is a ten-year-old African American…

  9. Assessment of in-situ compaction degree of HMA pavement surface layers using GPR and novel dielectric properties-based algorithms

    NASA Astrophysics Data System (ADS)

    Georgiou, Panos; Loizos, Fokion

    2015-04-01

    Field compaction of asphalt pavements is ultimately conducted to achieve layer(s) with suitable mechanical stability. However, the achieved degree of compaction has a significant influence on the performance of asphalt pavements. Providing all desirable mixture design characteristics without adequate compaction could lead to premature permanent deformation, excessive aging, and moisture damage; these distresses reduce the useful life of asphalt pavements. Hence, proper construction of an asphalt pavement is necessary to develop a long lasting roadway that will help minimize future maintenance. This goal is achieved by verifying and confirming that design specifications, in this case density specifications are met through the use of Quality Assurance (QA) practices. With respect to in-situ compaction degree of hot mix asphalt (HMA) pavement surface layers, nearly all agencies specify either cored samples or nuclear/ non nuclear density gauges to provide density measurement of the constructed pavement. Typically, a small number of spot tests (with either cores or nuclear gauges) are run and a judgment about the density level of the entire roadway is made based on the results of this spot testing. Unfortunately, density measurement from a small number of spots may not be representative of the density of the pavement mat. Hence, full coverage evaluation of compaction quality of the pavement mat is needed. The Ground Penetrating Radar (GPR), as a Non Destructive Testing (NDT) technique, is an example of a non-intrusive technique that favors over the methods mentioned above for assessing compaction quality of asphalt pavements, since it allows measurement of all mat areas. Further, research studies in recent years have shown promising results with respect to its capability, coupled with the use of novel algorithms based on the dielectric properties of HMA, to predict the in-situ field density. In view of the above, field experimental surveys were conducted to assess the

  10. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  11. Viscoelastic behaviour of cold recycled asphalt mixes

    NASA Astrophysics Data System (ADS)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  12. High temperature performance of scrap tire rubber modified asphalt concrete

    SciTech Connect

    Coomarasamy, A.; Manolis, S.; Hesp, S.

    1996-12-31

    Wheel track rutting tests on mixes modified with 30 mesh, 80 mesh, and very fine colloidal crumb rubber particles show that a very significant improvement in performance occurs with a reduction in the rubber particle size. The SHRP binder test for rutting, which was originally developed for homogeneous systems only, does not predict the performance improvement for smaller rubber particles. If these new scrap rubber binder systems are to be used in pavements then rutting tests on the asphalt-aggregate mixture should be conducted in order to accurately predict high temperature performance.

  13. Hot in-Place Recycling of Asphalt Pavements.

    DTIC Science & Technology

    1987-08-04

    64 4. Road Sampling ................................... 65 5. Records ......................................... 66 6. Field Testing ...67 C. Mix Design 1. General ......................................... 67 2. Laboratory Testing ...81 E. Mix i ng .......................................... 82 F. Relaying and Compacting.84 G. Testing

  14. National Asphalt Pavement Association Questions and Answers on PSD

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  15. Asphalt Rubber Concrete Pavement. User’s Guide

    DTIC Science & Technology

    1994-09-01

    Wor6’ ’ Alexandria, VA 22310-3860 ’%cooir 1 ... for she An Mah~~ n , W &piný Aetmf Aumy &AM Destroy this report when no longer needed. Do not return it...IIOUI𔄀IM5Mo M NCY AMu(S) AID AIS(S) N P/•ONITORINGAGIN"Y REPORIT NUMBRI| U.S. Amy Cm " for Public Works FE.AP.UG-9412 7701 Telhiqi Road AlexAria VA...CODE " CAM• CLASRCI I _10SC]’- CLASFiCATIN t. SECURITY €IA$SIICATI) N 20. LIMITATION OF ABSTRACT OF oM TiF s PA41 OF ABSTRACT UicA1111_"-1- Uwcl

  16. Supercritical refining of asphalt to produce asphalt recycling agents

    SciTech Connect

    Chaffin, J.M.; Davison, R.R.; Glover, C.J.; Bullin, J.A.

    1995-12-31

    Several asphalts were fractionated using supercritical pentane. These fractions were analyzed and Gel Permeation Chromatography and High Performance Liquid Chromatography and their viscosities were measured. The properties of these fractions vary not only among the fractions of a given asphalt, but also for the same fraction produced from different asphalts. These widely varied fractions previously have been shown to have potential for reblending to produce superior asphalts. This study investigates the potential for using some of the fractions as asphalt recycling agents. A modified SHRP PAV test was conducted on nine recycled asphalts. The aging indices of eight of the recycled asphalts are superior to the aging index of the original asphalt. In addition, two of the blends using industrial supercritical fractions and the three blends using laboratory supercritical fractions have lower aging indices than blends using commercial recycling agents.

  17. Performance Prediction of the NCAT Test Track Pavements Using Mechanistic Models

    NASA Astrophysics Data System (ADS)

    LaCroix, Andrew Thomas

    In the pavement industry in the United States of America, there is an increasing desire to improve the pavement construction quality and life for new and rehabilitated pavements. In order to improve the quality of the pavements, the Federal Highway Administration (FHWA) has pursued a performance-related specification (PRS) for over 20 years. The goal of PRS is to provide material and construction (M/C) properties that correlate well with pavement performance. In order to improve upon the PRS projects developed in WesTrack (NCHRP 9-20) and the MEPDG-based PRS (NCHRP 9-22), a set of PRS tests and models are proposed to provide a critical link between pavement performance and M/C properties. The PRS testing is done using the asphalt mixture performance tester (AMPT). The proposed PRS focuses on rutting and fatigue cracking of asphalt mixtures. The mixtures are characterized for their stiffness, fatigue behavior, and rutting resistance using a dynamic modulus (|E*|) test, a fatigue test, and a triaxial stress sweep (TSS) test, respectively. Information from the fatigue test characterizes the simplified viscoelastic continuum damage (S-VECD) model. Once the stiffness is reduced to a certain level, the material develops macro-cracks and fails. The TSS test is used to characterize a viscoplastic (VP) model. The VP model allows the prediction of the rut depth beneath the center of the wheel. The VECD and VP models are used within a layered viscoelastic (LVE) pavement model to predict fatigue and rutting performance of pavements. The PRS is evaluated by comparing the predictions to the field performance at the NCAT pavement test track in Opelika, Alabama. The test track sections evaluated are part of the 2009 test cycle group experiment, which focused on WMA, high RAP (50%), and a combination of both. The fatigue evaluation shows that all sections would last at least 18 years at the same traffic rate. The sections do not show any cracking, suggesting the sections are well

  18. Coal-based synthetic asphalts

    SciTech Connect

    Kang, J.H.

    1986-01-01

    The study investigated the technical and economic feasibility of producing a specification-grade, local-based asphalt from a raw coal available in the United States. Bench-scale hydrogenation experiments were performed in a one-gallon autoclave to produce asphalts from Illinois No. 6 bituminous coal and Clovis Point subbituminous coal. Samples from the process streams of a continuous coal liquefaction pilot plant at Wilsonville, AL were also evaluated to determine the potential for making a paving asphalt. The results showed that coal-based asphalts have a higher age-hardening rate than petroleum asphalts; also, they have a higher viscosity-temperature susceptibility (VTS) number. The high age-hardening rate of coal-based asphalts could be offset satisfactorily via catalytic hydrogenation. The VTS of these asphalts could be markedly reduced by adding a certain amount of styrene/butadiene copolymer. As a result, a specification grade, coal-based asphalt was successfully made via catalytic hydrogenation of coal combined with the incorporation of ca. 3 wt% styrene/butadiene copolymer into the coal-based asphalt. Marshall stability testing showed that coal based asphalt/aggregate compacted mixes had excellent resistance to plastic flow. Immersion compression testing revealed that the compacted mixes had a high initial compression strength and retained strength. A two-stage coal-based asphalt process was designed for producing 1000 tons/day. Economic analyses showed that the coal-based asphalt would be more expensive than currently used petroleum asphalt.

  19. Thermal behavior of crumb-rubber modified asphalt concrete mixtures

    NASA Astrophysics Data System (ADS)

    Epps, Amy Louise

    Thermal cracking is one of the primary forms of distress in asphalt concrete pavements, resulting from either a single drop in temperature to an extreme low or from multiple temperature cycles above the fracture temperature of the asphalt-aggregate mixture. The first mode described is low temperature cracking; the second is thermal fatigue. The addition of crumb-rubber, manufactured from scrap tires, to the binder in asphalt concrete pavements has been suggested to minimize both types of thermal cracking. Four experiments were designed and completed to evaluate the thermal behavior of crumb-rubber modified (CRM) asphalt-aggregate mixtures. Modified and unmodified mixture response to thermal stresses was measured in four laboratory tests. The Thermal Stress Restrained Specimen Test (TSRST) and the Indirect Tensile Test (IDT) were used to compare mixture resistance to low temperature cracking. Modified mixtures showed improved performance, and cooling rate did not affect mixture resistance according to the statistical analysis. Therefore results from tests with faster rates can predict performance under slower field rates. In comparison, predicted fracture temperatures and stresses (IDT) were generally higher than measured values (TSRST). In addition, predicted fracture temperatures from binder test results demonstrated that binder testing alone is not sufficient to evaluate CRM mixtures. Thermal fatigue was explored in the third experiment using conventional load-induced fatigue tests with conditions selected to simulate daily temperature fluctuations. Test results indicated that thermal fatigue may contribute to transverse cracking in asphalt pavements. Both unmodified and modified mixtures had a finite capacity to withstand daily temperature fluctuations coupled with cold temperatures. Modified mixtures again exhibited improved performance. The fourth experiment examined fracture properties of modified and unmodified mixtures using a common fracture toughness test

  20. Mechanics based model for predicting structure-induced rolling resistance (SRR) of the tire-pavement system

    NASA Astrophysics Data System (ADS)

    Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.

    2016-11-01

    The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.

  1. A Comparative Field Study of Permastripe(Trademark) Polymer Concrete and Waterborne Airfield Pavement Markings

    DTIC Science & Technology

    2007-06-01

    readily removable from asphalt pavement using water-blasting, and some test lines suffered from soiling by algal/ mildew growth. The data clearly show...of cement. Under these conditions, consistent viscosity cannot be achieved. Viscosity control is absolutely essential to controlling spray...investigations revealed that mildew or algae were the likely source. Apparently, the porous nature of Permastripe™ allows for moisture to be trapped

  2. Reclaim spent catalysts properly

    SciTech Connect

    Lassner, J.A.; Lasher, L.B.; Koppel, R.L.; Hamilton, J.N.

    1994-08-01

    Treatment of spent catalysts and metallic by products has become increasingly more complex over the last couple of years, due to tightening environmental concerns. Three options are available: (1) Reclaiming the metals and either reusing them to make new catalyst or recycling them for other uses. This is now the preferred option. A reclaiming firm is generally employed to handle the task. (2) Regeneration and reuse. While this generally is the preferred option, few commercial catalysts can be regenerated effectively and economically. (3) Landfilling. This has been the traditional route. However, stricter environmental regulations have made landfilling unattractive. To maximize the reclamation both economically and environmentally, five factors should be addressed: (1) proper planning and physical handling; (2) transportation of materials; (3) environmental concerns; (4) end uses of the catalyst; and (5) choosing the proper reclamation partner. These factors are discussed.

  3. Development of indirect ring tension test for fracture characterization of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Zeinali Siavashani, Alireza

    Low temperature cracking is a major distress in asphalt pavements. Several test configurations have been introduced to characterize the fracture properties of hot mix (HMA); however, most are considered to be research tools due to the complexity of the test methods or equipment. This dissertation describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be deployed at the Department of Transportation level. The primary advantages of this innovative and yet practical test include: relatively large fracture surface test zone, simplicity of the specimen geometry, widespread availability of the required test equipment, and ability to test laboratory compacted specimens as well as field cores. Numerical modeling was utilized to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. To develop the test procedure, a laboratory study was conducted to determine the optimal test parameters for HMA material. An experimental plan was then developed to evaluate the capability of the test in capturing the variations in the mix properties, asphalt pavement density, asphalt material aging, and test temperature. Five plant-produced HMA mixtures were used in this extensive study, and the results revealed that the IRT fracture test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Furthermore, an analytical model was developed based on the viscoelastic properties of HMA to estimate the maximum allowable crack size for the pavements in the experimental study. This analysis indicated that the low-temperature cracking potential of the asphalt mixtures is highly sensitive to the fracture toughness and brittleness of the HMA material. Additionally, the IRT fracture test data seemed to correlate well with the data from

  4. Microbial Degradation of Asphalt1

    PubMed Central

    Phillips, U. A.; Traxler, R. W.

    1963-01-01

    Organisms of the genera Pseudomonas, Chromobacterium, and Bacillus capable of degrading asphalt were isolated by enrichment cultures. The asphalt degradation by these organisms varied from 3 to 25% after incubation for 1 week. The effects of temperature, pH, and atmosphere of incubation on asphalt degradation were investigated and were shown to vary with different organisms on the same substrate. PMID:16349633

  5. Implications of Use of Coal-Tar-Based Pavement Sealcoat on Urban Water Quality

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.

    2015-12-01

    Coal-tar-based (CT) sealcoat is used to protect and improve the appearance of asphalt pavement of driveways and parking lots primarily in the central and eastern U.S. and in Canada. CT sealcoat typically is 20 to 35% crude coal tar or coal-tar pitch and contains from 50,000 to 100,000 mg/kg polycyclic aromatic hydrocarbons (PAH), about 1,000 times more than asphalt-based (AS) sealcoat or asphalt itself. Tires and snowplows abrade the friable sealcoat surface into fine particles—median total PAH concentrations in dust from CT-sealcoated pavement are 2,200 mg/kg compared to a median concentration of 11 mg/kg for dust from unsealed pavement. Use of CT sealcoat has several implications for urban streams and lakes. Source apportionment modeling has indicated that, in regions where CT sealcoat is prevalent, particles from sealcoated pavement are contributing the majority of the PAHs to recently deposited lake sediment, often resulting in sediment concentrations above toxicity thresholds based on effects-based sediment quality guidelines. Acute 2-day laboratory toxicity testing of simulated runoff from CT-sealcoated pavement to a cladoceran (Ceriodaphnia dubia) and fathead minnows (Pimephales promelas) demonstrated that toxicity continues for samples collected for weeks or months following sealcoat application and that toxicity is enhanced by exposure to UV light. Using the fish-liver cell line RTL-W1, runoff collected as much as 36 days following CT-sealcoat application has been demonstrated to cause DNA damage and impair DNA repair capacity. These results demonstrate that CT runoff is a potential hazard to aquatic ecosystems and that exposure to sunlight can enhance toxicity and genetic damage. Recent research has provided direct evidence that restricting use of CT sealcoat in a watershed can lead to a substantial reduction in PAH concentrations in receiving water bodies.

  6. Pavement Sealcoat, PAHs, and Water Quality of Urban Water Bodies: An Overview

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Van Metre, P. C.; Ingersoll, C.; Kunz, J. L.; Kienzler, A.; Devaux, A.; Bony, S.

    2014-12-01

    Coal-tar-based (CT) sealcoat is used to protect and beautify the asphalt pavement of driveways and parking lots primarily in the central, southern, and northeastern U.S. and in Canada. CT sealcoat typically is 20 to 35 percent crude coal tar or coal-tar pitch and contains from 50,000 to 100,000 mg/kg PAHs, about 1,000 times more than asphalt-based (AS) sealcoat or asphalt itself. Tires and snowplows abrade the friable sealcoat surface into fine particles—PAH concentrations in fine particles (dust) from CT-sealcoated pavement are about 1,000 times higher than in dust from AS-sealcoated pavement (median total PAH concentrations 2,200 and 2.1 mg/kg, respectively). Use of CT sealcoat has several implications for urban streams and lakes. Source apportionment modeling has indicated that, in regions where CT sealcoat is prevalent, particles from sealcoated pavement are contributing the majority of the PAHs to recently deposited lake sediment, with implications for ecological health. Acute 2-d toxicity of runoff from CT-sealcoated pavement to stream biota, demonstrated for a cladoceran (Ceriodaphnia dubia) and fathead minnows (Pimephales promelas), continues for samples collected as long as weeks or months following sealcoat application. Using the fish-liver cell line RGL-W1, runoff collected as much as 36 days following CT-sealcoat application has been demonstrated to cause DNA damage and impair DNA repair capacity. These results demonstrate that CT runoff is a potential hazard to aquatic ecosystems for at least several weeks after sealant application, and that exposure to sunlight can enhance toxicity and genetic damage. Recent research has provided direct evidence that restricting use of CT sealcoat in a watershed can lead to a substantial reduction in PAH concentrations in receiving water bodies.

  7. Performance testing of asphalt concrete containing crumb rubber modifier and warm mix additives

    NASA Astrophysics Data System (ADS)

    Ikpugha, Omo John

    American Association of State Highway and Transportation Official's Mechanistic-Empirical Pavement Design Guide (AASHTO MEPDG) software was used to predict long term low temperature performance of the mixtures in various areas of Ontario. Sasobit, Rediset LQ and Rediset WMX gave good 15 years prediction with stone mastic asphalt mixtures but the performance of dense graded mixtures was less satisfactory.

  8. Evaluation of the effects of crumb rubber and SBR on rutting resistance of asphalt concrete

    SciTech Connect

    Shih, Chuang-Tsair; Tia, Mang; Ruth, B.E.

    1996-12-31

    This paper presents the results of a study to evaluate the effects of addition of crumb rubber (CR) and styrene-butadiene rubber (SBR) on the rutting resistance of asphalt concrete. These two additives were blended with an AC-20 and an AC-30 grade asphalt cements at different levels of concentrations. These modified and unmodified asphalt blends were tested at intermediate and high temperatures to evaluate their rutting resistance characteristics. They were also used to make Florida type S-I structural surface mixtures. These mixtures were made into Marshall-size specimens by using Gyratory Testing Machine (GTM) equipped with air-roller to compact and density to three compaction levels which simulate three different conditions in the pavement. The FDOT`s (Florida Department of Transportation) Loaded Wheel Tester was also used to evaluate the rutting resistance of these asphalt mixtures. The test results indicate that the modified asphalt mixtures show relatively better rutting resistance and shear resistance as compared with the unmodified asphalt mixtures.

  9. High temperature impact on fatigue life of asphalt mixture in Slovakia

    NASA Astrophysics Data System (ADS)

    Mandula, Ján; Olexa, Tomáš

    2017-09-01

    Temperature dependence of materials bonded with bitumen is a well-known fact. The impact of temperature changes the behaviour of asphalt mixtures from elastic to viscous state, and it also influences the complex modulus, phase angle and other properties of asphalt mixtures. This study observed the summer temperature influence on fatigue behaviour of an asphalt mixture for the surface course of roads in conditions of Slovakia. Measurements were made using the four-point bending method on the asphalt mixture with maximum grain size of 11 mm bonded with polymer modified bitumen. Summer conditions were represented by environmental temperature of 27 °C according to the Slovakian pavement design method. Ordinary temperatures for fatigue measurements are 10 °C, 15 °C and 20 °C according to European standards for asphalt mixture testing. Structural changes in the material were observed by dissipation energy calculations for each loading cycle. The aim of the study was to find out if the influence of high environmental temperature is positive or negative for the lifespan of asphalt mixtures.

  10. Recycling seal-coat pavements with self-cementing fly ash. Phase 2, final report

    SciTech Connect

    Ferguson, E.G.

    1989-09-05

    The study evaluated the feasibility of recycling existing chip-seal pavements through stabilization with self-cementing fly ash. It was proposed that an existing pavement could be pulverized in place, sufficient quantities of Class C fly ash added, and the resulting mixture be compacted, providing a stabilized base having greater support capacity than the original pavement section. The Phase II program expanded the Phase I laboratory evaluation of stabilized, recycled material, with the focus of the testing being directed at three field projects. The field test sections were selected in regions having different sources of Class C fly ash; the three sources selected were conventional fossil fuel plants using subbituminous, low sulfur coal. The amount of gravel and asphaltic bound particles in the recycled material influenced the degree of stabilization achieved but to a lesser degree than the condition and amount of fines.

  11. In-depth study of cold in-place recycled-pavement performance. Volume 1. Final report. Rept. for Dec 88-Oct 90

    SciTech Connect

    Scholz, T.V.; Hicks, R.G.; Rogge, D.F.

    1990-12-01

    Oregon has developed a mix design procedure for cold in-place recycled (CIR) asphalt concrete pavements. The procedure involves estimation of an initial emulsion content based on gradation of recycled asphalt pavement (RAP), asphalt content of RAP, and penetration and viscosity of recovered asphalt. When an estimated emulsion content is determined, Marshall-sized specimens are prepared for a range of emulsion contents with the range centered on the estimated emulsion content. Hveem and Marshall stability, resilient modulus, and index of retained modulus (IRM) tests are performed on the specimens and a design emulsion content is selected based upon these results. Because of variations in RAP properties, continual need for field adjustments, and the difficulty of interpreting mix property test results, only the estimation part of the procedure is currently implemented. The paper describes the mix design procedure and presents lab results demonstrating the difficulty of choosing emulsion content based on Hveem and Marshall stability, resilient modulus and IRM. Data comparing design emulsion content with actual emulsion contents used in the field are presented. Selection of water content is discussed. Test results of mix properties monitored over time are presented, demonstrating the curing of the emulsion. Performance data for CIR pavements constructed from 1984 through 1988 are presented as well as initial results of an attempt to use lime during recycling to correct a stripped pavement. A construction and inspection manual is presented as a separate document.

  12. Analysis of Instrumentation Selection and Placement to Monitor the Hydrologic Performance of Permeable Pavement Systems and Bioinfiltration Areas at the Edison Environmental Center in New Jersey

    EPA Science Inventory

    In 2009, the U.S. Environmental Protection Agency constructed a 0.4-ha (1-ac) parking lot surfaced with three different permeable pavement types (interlocking concrete pavers, porous concrete, and porous asphalt) and six bioinfiltration areas with three different drainage area to...

  13. Analysis of Instrumentation Selection and Placement to Monitor the Hydrologic Performance of Permeable Pavement Systems and Bioinfiltration Areas at the Edison Environmental Center in New Jersey

    EPA Science Inventory

    In 2009, the U.S. Environmental Protection Agency constructed a 0.4-ha (1-ac) parking lot surfaced with three different permeable pavement types (interlocking concrete pavers, porous concrete, and porous asphalt) and six bioinfiltration areas with three different drainage area to...

  14. Pervious Pavement System Evaluation

    EPA Science Inventory

    Pervious pavement is a low impact development stormwater control. The Urban Watershed Management Branch of the U.S. Environmental Protection Agency in Edison, NJ, is evaluating concrete pavers as a popular implementation. The pollutant removal of a bench-scale permeable interlo...

  15. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments

    USGS Publications Warehouse

    Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.

    2010-01-01

    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.

  16. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments

    NASA Astrophysics Data System (ADS)

    Yang, Yaning; Mahler, Barbara J.; Van Metre, Peter C.; Ligouis, Bertrand; Werth, Charles J.

    2010-12-01

    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr 2O 7) oxidation and chemo-thermal oxidation at 375 °C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr 2O 7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr 2O 7 oxidation and CTO-375. The reference asphalt is resistant to Cr 2O 7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr 2O 7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr 2O 7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods.

  17. Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures

    PubMed Central

    Moon, Ki Hoon; Wang, Di; Riccardi, Chiara; Wistuba, Michael P.

    2017-01-01

    In this paper, the possibility of improving the global response of asphalt materials for pavement applications through the use of hydrated lime and Electric Arc-Furnace Steel Slag (EAFSS) was investigated. For this purpose, a set of asphalt mortars was prepared by mixing two different asphalt binders with fine granite aggregate together with hydrated lime or EAFSS at three different percentages. Bending Beam Rheometer (BBR) creep tests and Dynamic Shear Rheometer (DSR) complex modulus tests were performed to evaluate the material response both at low and high temperature. Then, the rheological Huet model was fitted to the BBR creep results for estimating the impact of filler content on the model parameters. It was found that an addition of hydrated lime and EAFSS up to 10% and 5%, respectively, results in satisfactory low-temperature performance with a substantial improvement of the high-temperature behavior. PMID:28773100

  18. Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures.

    PubMed

    Moon, Ki Hoon; Falchetto, Augusto Cannone; Wang, Di; Riccardi, Chiara; Wistuba, Michael P

    2017-07-03

    In this paper, the possibility of improving the global response of asphalt materials for pavement applications through the use of hydrated lime and Electric Arc-Furnace Steel Slag (EAFSS) was investigated. For this purpose, a set of asphalt mortars was prepared by mixing two different asphalt binders with fine granite aggregate together with hydrated lime or EAFSS at three different percentages. Bending Beam Rheometer (BBR) creep tests and Dynamic Shear Rheometer (DSR) complex modulus tests were performed to evaluate the material response both at low and high temperature. Then, the rheological Huet model was fitted to the BBR creep results for estimating the impact of filler content on the model parameters. It was found that an addition of hydrated lime and EAFSS up to 10% and 5%, respectively, results in satisfactory low-temperature performance with a substantial improvement of the high-temperature behavior.

  19. Design and Properties of Thin Surfacing Hot Mix Asphalt Containing Crumb Rubber as Partial Aggregate Replacement

    NASA Astrophysics Data System (ADS)

    Setyawan, Ary; Febrianto, Nugroho; Sarwono, Djoko

    2017-07-01

    Road damage caused as a result of the traffic load and environment. One method to improve the road condition is from an overlay. But the new layer on the top of the pavement structure is thick enough and elevate the surface of the pavement, so it will cause some impact on the user safety and engineering. The use of a thin layer of hot mix asphalt is an alternative to anticipate the thickness problem. Crumb rubber is a waste material that has a flexible nature, these materials are used as an aggregate replacement in the hot mix asphalt thin layer. The research was conducted to find the optimum bitumen content and optimum crumb rubber content on asphalt mixtures by the Marshall procedure. Finally, it was concluded that the addition of crumb rubber in a thin layer of hot mix asphalt indicates the better the interlocking between aggregates so that gave the better Marshall stability, the higher the flow rate, the lower the marshall quotient, reduce the void ratio. The results show that the addition of crumb rubber content as an aggregate replacement leads to the use of less optimum bitumen content.

  20. Compact refrigerant reclaim apparatus

    SciTech Connect

    Van Steenburgh, L.R. Jr.

    1991-09-24

    This patent describes an apparatus for reclaiming refrigerant. It comprises in combination, means for removing gaseous or liquid refrigerant from a container, vaporizing means for vaporizing all of the liquid refrigerant, an oil separator chamber for separating oil from the gaseous refrigerant, a compressor for receiving and compressing the gaseous refrigerant from the oil separator chamber, oil accumulator means for receiving and removing oil mist from the gaseous refrigerant before it enters the compressor, and condensor means for receiving and condensing the gaseous refrigerant from the container, wherein the oil accumulator means is located within the oil separator chamber.

  1. A Multiscale Virtual Fabrication and Lattice Modeling Approach for the Fatigue Performance Prediction of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Dehghan Banadaki, Arash

    Predicting the ultimate performance of asphalt concrete under realistic loading conditions is the main key to developing better-performing materials, designing long-lasting pavements, and performing reliable lifecycle analysis for pavements. The fatigue performance of asphalt concrete depends on the mechanical properties of the constituent materials, namely asphalt binder and aggregate. This dependent link between performance and mechanical properties is extremely complex, and experimental techniques often are used to try to characterize the performance of hot mix asphalt. However, given the seemingly uncountable number of mixture designs and loading conditions, it is simply not economical to try to understand and characterize the material behavior solely by experimentation. It is well known that analytical and computational modeling methods can be combined with experimental techniques to reduce the costs associated with understanding and characterizing the mechanical behavior of the constituent materials. This study aims to develop a multiscale micromechanical lattice-based model to predict cracking in asphalt concrete using component material properties. The proposed algorithm, while capturing different phenomena for different scales, also minimizes the need for laboratory experiments. The developed methodology builds on a previously developed lattice model and the viscoelastic continuum damage model to link the component material properties to the mixture fatigue performance. The resulting lattice model is applied to predict the dynamic modulus mastercurves for different scales. A framework for capturing the so-called structuralization effects is introduced that significantly improves the accuracy of the modulus prediction. Furthermore, air voids are added to the model to help capture this important micromechanical feature that affects the fatigue performance of asphalt concrete as well as the modulus value. The effects of rate dependency are captured by

  2. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management

    NASA Astrophysics Data System (ADS)

    Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.

    2013-03-01

    To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.

  3. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    NASA Astrophysics Data System (ADS)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  4. Indirect diagnosis of pavement structural damages using surface GPR reflection techniques

    NASA Astrophysics Data System (ADS)

    Benedetto, A.; Pensa, S.

    2007-06-01

    The safety and operability of road networks is, in part, dependent on the quality of the pavement. It is known that pavements suffer from many different structural problems which can lead to damage to the pavement surface. To minimize the effect of these problems programmed policies for pavement management are required. Additionally a given local anomaly on the road surface can affect the safety of the road to various degrees according to the category of the road, so it is possible to set up different programmes of repair according to the different standards of road. Programmed policies for pavement management are required because of the wide structural damage which occurs to pavements during their normal operating life. This has consequences for the safety and operability of road networks. During the last decade, road networks suffered from great structural damage. The damage occurs for different reasons, such as the increasing traffic or the lack of means for routine maintenance. Many forms of damage, originating in the bottom layers are invisible until the pavement cracks. They depend on the infiltration of water and the presence of cohesive soil greatly reduces the bearing capacity of the sub-asphalt layers and underlying soils. On the basis of an in-depth literature review, an experimental survey with Ground Penetrating Radar (GPR) was carried out to calibrate the geophysical parameters and to validate the reliability of an indirect diagnostic method of pavement damage. The experiments were set on a pavement under which water was injected over a period of several hours. GPR travel time data were used to estimate the dielectric constant and the water content in the unbound aggregate layer, the variations in water content with time and particular areas where rate of infiltration decreases. A new methodology has been proposed to extract the hydraulic permittivity fields in sub-asphalt structural layers and soils from the moisture maps observed with GPR. It is

  5. Contributions crumb rubber in hot mix asphalt to the resilient modulus

    NASA Astrophysics Data System (ADS)

    Ariyapijati, Raden Hendra; Hadiwardoyo, Sigit Pranowo; Sumabrata, R. Jachrizal

    2017-06-01

    Pavement on the structure of the surface layer receives direct load from the vehicles. Road surfaces are designed to withstand the wear from vehicle loads. Therefore, we need a way to improve the durability of the pavement. Road damage may reduce the life of roads and increase the maintenance costs. The retention rate of road surface material is affected by the environmental conditions, one of them is temperature. To overcome the issues related to temperature, material additives are added to the asphalt mixture. These additive materials would change the binding properties of bitumen and the characteristics of strain and stress before the damage due to repeated traffic loading. Crumb rubber (CR) is a type of polymer additives and thermoplastic elastomers are obtained from scrap tires and rubber waste that is utilized in order to preserve the environment. This study investigated the contribution of the crumb rubber in terms of the value of resilient modulus and resistance to deformation. Hot mix asphalt used was asphalt Pen 60/70, coarse aggregate, fine aggregate and filler. Crumb rubber was made from scrap tire rubber, in the form of fine powder with sieve no. 30 (0.6 mm). CR additive was added to the base asphalt at several rates of 5%, 10%, 15%, and 20% at a temperature of 177° C. The test data used the indirect tensile test with a tool UMATTA at temperatures of 25°, 35°, and 45° C. The test results showed that the levels of crumb rubber on the asphalt decreased the penetration rate, increased the bitumen softening point, and improved the resistance to permanent deformation. The addition of additive materials was evidenced to improve the penetration index, reduce the temperature sensitivity, and increase the viscosity. Subsequently, it can extend the temperature range of viscoelasticity. The contributions of crumb rubber in hot mix asphalt included the increase of the recoverable deformation and the decrease of the value of resilient modulus. This study

  6. Laboratory evaluation of selected tar sand asphalts

    SciTech Connect

    Button, J.W.; Epps, J.A.; Gallaway, B.M.

    1980-12-01

    Three tar sand asphalts of similar grades prepared from one syncrude by three different refining methods were characterized by tests commonly used to specify paving asphalts together with certain special tests. Asphalt-aggregate mixtures were prepared using these asphalts and tested in the laboratory to determine strength stiffness stability, tensile properties, temperature effects and water susceptibility. Comparison of the tar sand asphalt properties to conventional petroleum asphalt properties reveal no striking differences.

  7. Microstructural and rheological analysis of fillers and asphalt mastics

    NASA Astrophysics Data System (ADS)

    Geber, R.; Simon, A.; Kocserha, I.; Buzimov, A.

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics.

  8. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng

    Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance

  9. Precast Concrete Pavements

    DTIC Science & Technology

    1981-11-01

    quirements. The concrete used low-weight sintered shale aggregate and high early-strength portland cement that obtained a 28-day compressive strength of...in- place concrete. Typical reasons suggested for precasting have included aggregate shortage, future pas.oment settlement or heaving, critical speed...pavements. Various devices such as dowel bars, tie bar, keyways, or aggregate interlock from sawn construction joints transfer a portion of the load

  10. General outlook of pavement and vehicle dynamics

    SciTech Connect

    Mamlouk, M.S.

    1997-11-01

    The interaction between vehicle and pavement is complex since pavement roughness excites the dynamic forces generated by vehicles, while these dynamic forces simultaneously increase the pavement roughness. The objective of this paper is to provide an overview of the results of recent research related to pavement and vehicle dynamics and their interaction and to evaluate their potential use in the design and management of pavements. Pavement dynamic models are capable of determining stresses, strains, and deflections in various directions when harmonic, pulse, or transient loads are applied. Vehicle dynamic models simulate the effect of pavement roughness on the inertia of various vehicle components. These models can predict the dynamic forces produced by different axles and wheels of traveling vehicles at different locations along the pavement. Pavement response computed using dynamic models matches field measurements closer than those computed using static models. The concept of vehicle-pavement interaction can be applied to weigh-in-motion, pavement design and performance, and vehicle regulations.

  11. The effect of different surface materials on runoff quality in permeable pavement systems.

    PubMed

    Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang

    2017-07-20

    To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO3-N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH4-N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.

  12. Acoustic Properties of Absorbent Asphalts

    NASA Astrophysics Data System (ADS)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  13. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.

    PubMed

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim

    2014-08-30

    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. PAHs underfoot: Contaminated dust from coal-tar sealcoated pavement is widespread in the United States

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.

    2009-01-01

    We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U. S. cities that show nationwide patterns in concentrations of PAHs associated with sealcoat Dust was swept from parking lots in six cities in the central and eastern U. S., where coal-tar-based sealcoat dominates use, and three cities in the western U. S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2. 1 and 0. 8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo[a]pyrene in dust from coal-tar sealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted.

  15. PAHs underfoot: contaminated dust from coal-tar sealcoated pavement is widespread in the United States

    SciTech Connect

    Peter C. Van Metre; Barbara J. Mahler; Jennifer T. Wilson

    2009-01-15

    We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U.S. cities that show nationwide patterns in concentrations of {Sigma}PAHs associated with sealcoat. Dust was swept from parking lots in six cities in the central and eastern U.S., where coal-tar-based sealcoat dominates use, and three cities in the western U.S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median SPAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median SPAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2.1 and 0.8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo(a)pyrene in dust from coal-tar sealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted. 30 refs., 4 figs., 2 tabs.

  16. PAHs underfoot: contaminated dust from coal-tar sealcoated pavement is widespread in the United States.

    PubMed

    Van Metre, Peter C; Mahler, Barbara J; Wilson, Jennifer T

    2009-01-01

    We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U.S. cities that show nationwide patterns in concentrations of PAHs associated with sealcoat. Dust was swept from parking lots in six cities in the central and eastern U.S., where coal-tar-based sealcoat dominates use, and three cities in the western U.S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median SigmaPAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median SigmaPAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2.1 and 0.8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo[a]pyrene in dustfrom coal-tarsealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted.

  17. State-of-the-art review of the applications of nanotechnology in pavement materials

    NASA Astrophysics Data System (ADS)

    Castillo, Luis, Jr.

    The use of nanotechnology in pavement materials is one main area that shows great promise and has the potential to change commonly used materials. This will develop more effective solutions to achieve the desired performance. The overall objective of this work is to present a state-of-the-art literature review of nano-science-based principles to improve the performance and, ultimately, the life cycle of transportation construction materials. This work will be organized into two different parts. The first part will consist of six sections: applications of nanotechnology in concrete pavements, applications of nanotechnology in asphalt pavement, application of nanotechnology in general soils, cost-benefit analysis, challenges, and trends to the future. In addition, a current practice review was performed from a literature review that included a questionnaire of the knowledge and opinion about nanotechnology, which included students, general contractors, teachers, engineers, and architects. The second part will deal with the advancement of the application of nanotechnology in pavement materials for different developed countries. Because nanotechnology is relatively a young field in pavement materials, limited research has been conducted in North America, Europe, and Asia. A comparison of the advancement of nano-science-based principles, as applied to the performance and life cycle of transportation materials, for the three continents will be carried out in a summarized manner.

  18. Reclaiming the island reefs.

    PubMed

    Bolido, L; White, A

    1997-01-01

    This article reports on the crisis facing the Philippine¿s coral reefs and their effort to reclaim its previous grandeur on a local and regional level. Faced with growing destruction of the coral reefs, the Philippine government agencies and nongovernmental organizations have taken steps to solve the problem. But even more significant is the growing trend among local communities in taking the initiative to restore and conserve their natural resources. This local effort all started from a much-admired initiative of the Silliman University, which is based in Negros Oriental's capital city of Dumaguete, in getting people to recognize and act on the need to protect and preserve their coral reefs and marine resources. The major achievement made by the University was the formation of the community-based Marine Conservation and Development Program in 1985, which sparked a series of initiatives among local communities in protecting the Philippine coastlines.

  19. Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements.

    PubMed

    Fini, A; Frangi, P; Mori, J; Donzelli, D; Ferrini, F

    2017-07-01

    Soil sealing is one of the most pervasive forms of soil degradation that follows urbanization and, despite innovative pavements (i.e. pervious) are being installed in urban areas to mitigate it, there is little research on the effects of pervious pavements on soil water and carbon cycle and on the physiology of urban trees. The aim of this 4-year experiment was to assess the effects of three pavements, differing in permeability to water and gases, on some soil physical parameters, and on growth and physiology of newly planted Celtis australis and Fraxinus ornus. Treatments were: 1) impermeable pavement (asphalt on concrete sub-base); 2) permeable pavement (pavers on crushed rock sub-base); 3) porous design (porous pavement on crushed rock sub-base); 4) control (unpaved soil, kept free of weed by chemical control). Soil (temperature, moisture, oxygen content and CO2 efflux) and plant (above- and below-ground growth, leaf gas exchange, chlorophyll fluorescence, water relations) parameters were measured. All types of pavements altered the water cycle compared to unpaved soil plots, but this disturbance was less intense in porous pavements than in other soil cover types. Porous pavements allowed both higher infiltration and evaporation of water than both pavers and asphalt. Reduction of evaporative cooling from soil paved with permeable and impermeable pavements contributed to significant soil warming: at 20cm depth, soils under concrete pavers and asphalt were 4 and 5°C warmer than soil covered by porous pavements and unpaved soils, respectively. Thus, enhancing evaporation from paved soil by the use of porous pavements may contribute to mitigating urban heat islands. CO2 greatly accumulated under impermeable and permeable pavements, but not under porous pavements, which showed CO2 efflux rates similar to control. Soil oxygen slightly decreased only beneath asphalt. Growth of newly planted C. australis and F. ornus was little affected by pavement type. Tree

  20. Effect of Warm Asphalt Additive on the Creep and Recovery Behaviour of Aged Binder Containing Waste Engine Oil

    NASA Astrophysics Data System (ADS)

    Hassan, Norhidayah Abdul; Kamaruddin, Nurul Hidayah Mohd; Rosli Hainin, Mohd; Ezree Abdullah, Mohd

    2017-08-01

    The use of waste engine oil as an additive in asphalt mixture has been reported to be able to offset the stiffening effect caused by the recycled asphalt mixture. Additionally, the fumes and odor of the waste engine oil has caused an uncomfortable condition for the workers during road construction particularly at higher production temperature. Therefore, this problem was addressed by integrating chemical warm asphalt additive into the mixture which functions to reduce the mixing and compaction temperature. This study was initiated by blending the additive in the asphalt binder of bitumen penetration grade 80/100 prior to the addition of pavement mixture. The effect of chemical warm asphalt additive, Rediset WMX was investigated by modifying the aged binder containing waste engine oil with 0%, 1%, 2% and 3% by weight of the binder. The samples were then tested for determining the rutting behaviour under different loading stress levels of 3Pa (low), 10Pa (medium) and 50Pa (high) using Dynamic Shear Rheometer (DSR). A reference temperature of 60 °C was fixed to reflect the maximum temperature of the pavement. The results found that the addition of Rediset did not affect the creep and recovery behavior of the modified binder under different loading. On the other hand, 2% Rediset resulted a slight decrease in its rutting resistance as shown by the reduction of non-recoverable compliance under high load stress. However, overall, the inclusion of chemical warm asphalt additive to the modified binder did not adversely affect the rutting resistance which could be beneficial in lowering the temperature of asphalt production and simultaneously not compromising the binder properties.

  1. Development of an Image-based Multi-Scale Finite Element Approach to Predict Fatigue Damage in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Arshadi, Amir

    Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were

  2. Geotextiles in Flexible Pavement Construction

    ERIC Educational Resources Information Center

    Alungbe, Gabriel D.

    2004-01-01

    People everywhere in the developed world regularly drive on paved roads. Learning about the construction techniques and materials used in paving benefits technology and construction students. This article discusses the use of geosynthetic textiles in pavement construction. It presents background on pavements and describes geotextiles and drainage…

  3. Geotextiles in Flexible Pavement Construction

    ERIC Educational Resources Information Center

    Alungbe, Gabriel D.

    2004-01-01

    People everywhere in the developed world regularly drive on paved roads. Learning about the construction techniques and materials used in paving benefits technology and construction students. This article discusses the use of geosynthetic textiles in pavement construction. It presents background on pavements and describes geotextiles and drainage…

  4. Characteristics of dynamic triaxial testing of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Ulloa Calderon, Alvaro

    Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear

  5. Enhancing Asphalt Binder's Rheological Behavior and Aging Susceptibility Using Nano-Particles

    NASA Astrophysics Data System (ADS)

    Walters, Renaldo C.

    The life expectancy of Asphalt Binder (AB) has been negatively impacted by the harsh bombardment of UV rays. UV rays cause asphalt to oxidize faster which results in deterioration of asphalt rheological characteristics that can lead to pavement distresses. This study investigates the impact that nano-particles and bio modification have on the aging susceptibility of asphalt binder. As such, the following hypothesis was investigated: Introduction of nano particles to asphalt binder will reduce asphalt oxidation aging by increasing the inter layer spacing of the nano particles. Two nano scale materials were used for this study, nano-clay and bio-char as well as one micro scale material, silica fume. Nano-clay (Cloisite 30B) is a naturally occurring inorganic mineral. Bio-char is the waste product from bio-binder production. Bio-binder is produced from swine manure using a thermochemical conversion process. This process is then followed by a filtration procedure where the bio-char is produced. Chemical and physical properties of bio-char showed a significant presence of carbon which could in turn reduce the rate of asphalt oxidation. Silica Fume is an ultra-fine powder collected as a by-product of silicon and ferrosilicon alloy production and consists of spherical particles. In this study several mixtures are designed and evaluated using RV testing (Rotational Viscometer), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Nano-clay is blended at 2% and 4% by weight of dry mass, with and without bio-binder (5% by weight of dry mass). Bio-char is grinded to nano scale and added to the virgin asphalt binder (PG 64-22) at 2%, 5% and 10% by weight of dry mass. Silica Fume is added to virgin asphalt binder (PG 64-22) at 2%, 4% and 8% by weight of dry mass. The optimum percent of nano scale material that is added to virgin asphalt binder is expected to reduce aging susceptibility of asphalt binder, extending its service life.

  6. The effects of salt on rheological properties of asphalt after long-term aging.

    PubMed

    Yu, Xin; Wang, Ying; Luo, Yilin; Yin, Long

    2013-01-01

    Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies.

  7. The Effects of Salt on Rheological Properties of Asphalt after Long-Term Aging

    PubMed Central

    Yu, Xin; Luo, Yilin; Yin, Long

    2013-01-01

    Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies. PMID:24459450

  8. Volatilization of polycyclic aromatic hydrocarbons from coal-tar-sealed pavement

    USGS Publications Warehouse

    Van Metre, Peter C.; Majewski, Michael S.; Mahler, Barbara J.; Foreman, William T.; Braun, Christopher L.; Wilson, Jennifer T.; Burbank, Teresa L.

    2012-01-01

    Coal-tar-based pavement sealants, a major source of PAHs to urban water bodies, are a potential source of volatile PAHs to the atmosphere. An initial assessment of volatilization of PAHs from coal-tar-sealed pavement is presented here in which we measured summertime gas-phase PAH concentrations 0.03 m and 1.28 m above the pavement surface of seven sealed (six with coal-tar-based sealant and one with asphalt-based sealant) and three unsealed (two asphalt and one concrete) parking lots in central Texas. PAHs also were measured in parking lot dust. The geometric mean concentration of the sum of eight frequently detected PAHs (ΣPAH8) in the 0.03-m samples above sealed lots (1320 ng m-3) during the hottest part of the day was 20 times greater than that above unsealed lots (66.5 ng m-3). The geometric mean concentration in the 1.28-m samples above sealed lots (138 ng m-3) was five times greater than above unsealed lots (26.0 ng m-3). Estimated PAH flux from the sealed lots was 60 times greater than that from unsealed lots (geometric means of 88 and 1.4 μg m-2 h-1, respectively). Although the data set presented here is small, the much higher estimated fluxes from sealed pavement than from unsealed pavement indicate that coal-tar-based sealants are emitting PAHs to urban air at high rates compared to other paved surfaces.

  9. Hydrocarbon-Based Communities in the Ultra-Deep Gulf of Mexico: Protecting the Asphalt Ecosystem

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Sahling, H.

    2016-02-01

    The term `asphalt volcanism' was coined to describe marine sites where extrusions of highly degraded oil form large expanses of hard substratum, which is then colonized by chemosynthetic fauna and sessile invertebrates. A site named `Chapopote', a knoll at 3200m in the southern Gulf of Mexico, was described as the type specimen of asphalt volcanism in 2003. A joint German-Mexican-U.S. expedition on the German ship F/S METEOR returned to the region in February and March, 2015 to quantify the extent and characteristics of Chapopote and other asphalt-hosting knolls using the SEAL AUV, QUEST ROV, shipborne acoustics, and autonomous instrument landers. Preliminary findings have greatly expanded the number of confirmed asphalt volcanoes, as well as sites where seepage was detected as gas flares in the water column. The morphology of asphalt flows, which was investigated using large-scale photo-mosaicking techniques, indicated that they form with a complex interplay of gravity flows, buoyant uplift, and chemical weathering. An unexpected finding was the occurrence of gas hydrate mounds, some exceeding 1000 m2 in area and 10 m in relief. Gas hydrate forms almost instantly at ambient depths and temperatures and there was evidence that large plugs of hydrate that can rapidly breach the seafloor. Older mounds are colonized by massive tubeworm aggregations that may serve to stabilize the hydrate. Mexico recently announced the first energy production lease sales in their `ultra-deep' offshore. In contrast to the U.S. Gulf, where extensive safeguards for chemosynthetic communities have been in place for over 25 years, few existing protocols protect the Mexican deep-sea asphalt ecosystem. The combination of extensive asphalt pavements and exposed gas hydrate also pose unusual hazards for exploration piston coring or drilling operations. The time is ripe to consider what conservation model would best serve the region.

  10. Effect of Crumb Rubber and Warm Mix Additives on Asphalt Aging, Rheological, and Failure Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, Prashant

    Asphalt-rubber mixtures have been shown to have useful properties with respect to distresses observed in asphalt concrete pavements. The most notable change in properties is a large increase in viscosity and improved low-temperature cracking resistance. Warm mix additives can lower production and compaction temperatures. Lower temperatures reduce harmful emissions and lower energy consumption, and thus provide environmental benefits and cut costs. In this study, the effects of crumb rubber modification on various asphalts such as California Valley, Boscan, Alaska North Slope, Laguna and Cold Lake were also studied. The materials used for warm mix modification were obtained from various commercial sources. The RAF binder was produced by Imperial Oil in their Nanticoke, Ontario, refinery on Lake Erie. A second commercial PG 52-34 (hereafter denoted as NER) was obtained/sampled during the construction of a northern Ontario MTO contract. Some regular tests such as Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR) and some modified new protocols such as the extended BBR test (LS-308) and the Double-Edge Notched Tension (DENT) test (LS-299) are used to study, the effect of warm mix and a host of other additives on rheological, aging and failure properties. A comparison in the properties of RAF and NER asphalts has also been made as RAF is good quality asphalt and NER is bad quality asphalt. From the studies the effect of additives on chemical and physical hardening tendencies was found to be significant. The asphalt samples tested in this study showed a range of tendencies for chemical and physical hardening.

  11. Rheology of crumb-rubber modified asphalt binders and mixes

    NASA Astrophysics Data System (ADS)

    Sheth, Vikas Rameshchandra

    Laboratory test procedures are presented to determine the rheological properties of crumb rubber modified asphalt (CRMA) binders and mixes. These tests provide simple, fast, and cost-effective alternatives to evaluate the performance (rutting and cracking potential) of binders and mixes used for pavement construction. Viscoelastic properties of CRMA binders are measured using dynamic shear analysis. Master curves were generated using the principle of time-temperature superposition to evaluate the effects of aging, rubber concentration, and curing conditions on the rheology of the modified binder. Results indicate that the rheology of CRMA binders can be divided into three regions of viscoelasticity: glassy region at high frequencies, transition/viscoelastic region at intermediate frequencies, and viscous region at low frequencies. Modification of the asphalt by addition of rubber leads to an improvement in both the high and low temperature properties, as reflected by changes in Gsp' and Gsp{''}, which causes the binder to have a greater resistance to specific pavement failure mechanisms. Both transient and dynamic properties of CRMA mixes were measured in the laboratory using the creep and recovery, direct tension, and frequency sweep tests. Rheological properties of the mix generated from the test data were compared to those of the binder to evaluate the effect of aging, rubber concentration, and curing conditions on mix performance. Several rheological parameters have been identified to characterize the rutting and cracking potential of mixes. A power law equation was found to give good correlations between several mix rheological parameters. Analysis of binder and mix failure energies show that work of cohesion of the binder is negligible compared to the failure energies. A unique relationship between Paris law material parameters has been confirmed. It is also shown that mix failure properties bear a one-to-one correlation with binder failure properties. Based

  12. Performance-based and condition-based NDT for predicting maintenance needs of concrete highways and airport pavements

    NASA Astrophysics Data System (ADS)

    Hertlein, Bernhard H.; Davis, Allen G.

    1996-11-01

    The state-of-the-art for nondestructive testing (NDT) of highway and airport pavements was evaluated in the late 1980's as part of the Strategic Highway Rehabilitation Program (SHRP). This program included many research projects in pavement construction, testing, maintenance, and rehabilitation. The limitations, as well was the capabilities of the various NDT methods then extant were examined by joint teams of federal, state, academic, and private sector engineers and researchers. The SHRP program, and the allied long-term pavement performance program clearly demonstrated that certain NDT methods performed well on asphalt pavement but performed unsatisfactorily on concrete pavements, and vice-versa. Despite this, some methods are still being used inappropriately, while other promising techniques are virtually being ignored. This paper examines some of the reasons for this, and summarizes the research and current state-of-the-art for NDT of concrete airport and highway pavements. Promising avenues for further development of test equipment, applications, data analysis, and interpretation are also discussed.

  13. Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2006-01-01

    The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.

  14. Reduction of traffic and tire/pavement noise: 1st year results of the Arizona Quiet Pavement Program-Site III

    NASA Astrophysics Data System (ADS)

    Reyff, James A.; Donavan, Paul

    2005-09-01

    The Arizona Quiet Pavement Pilot Program overlaid major freeway segments in the Phoenix area with an Asphalt Rubber Friction Course (ARFC). The overlay was placed on various Portland Cement Concrete Pavement (PCCP) textures. Traffic noise reductions were evaluated by performing wayside traffic noise measurements and tire/pavement source level measurements. First year results for three different study sites are presented in this paper. Depending on the texture of the initial PCCP and microphone locations, reductions of up to 12 dBA in wayside traffic noise levels were measured. Similar reductions of tire/pavement source levels were measured. Results of the two methods are compared. Traffic conditions monitored during the measurements were modeled using the Federal Highway Administration's Traffic Noise Model (TNM 2.5) to compare modeled levels to those measured for PCCP and AFRC overlay conditions. The model under predicted levels for PCCP conditions and over predicted levels for AFRC conditions. The magnitude of under or over prediction varied with distance. The effect of propagation was examined and was aided by simultaneous measurements of wind conditions made by Arizona State University. TNM 2.5 was used to identify sound wall heights that were equivalent to the traffic noise reductions provided by the AFRC overlay.

  15. Polyurethane synthesis reactions in asphalts

    SciTech Connect

    Bukowski, A.; Gretkiewicz, J.

    1982-04-01

    A series of asphalt-polyurethane composites was prepared by means of polyurethane synthesis in asphalt and carried out in melt. The applied materials were asphalts of differentiated group components content, polyester polyols of chain structure from linear to strongly branched, 2,4-tolylene diisocyanate, 4,4-methylenebis(phenyl isocyanate), and tinorganic catalyst. The asphalt components react with isocyanates to a minimal degree. The influence of the applied substrates, temperature, and polyurethane content in the system on the basic kinetic relations characterizing the process is presented. Polyurethane synthesis in asphalts does not differ in a fundamental way from the obtaining of polyurethanes, especially when their content in the composition is significant, 20 wt% and more.

  16. 40 CFR 82.164 - Reclaimer certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling and Emissions Reduction § 82.164 Reclaimer... Recycling Program Manager—Reclaimer Certification. (f) Certificates are not transferable. In the event of a...

  17. 40 CFR 82.164 - Reclaimer certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling and Emissions Reduction § 82.164 Reclaimer... Recycling Program Manager—Reclaimer Certification. (f) Certificates are not transferable. In the event of a...

  18. 40 CFR 82.164 - Reclaimer certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling and Emissions Reduction § 82.164 Reclaimer... Recycling Program Manager—Reclaimer Certification. (f) Certificates are not transferable. In the event of a...

  19. 40 CFR 82.164 - Reclaimer certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling and Emissions Reduction § 82.164 Reclaimer... Recycling Program Manager—Reclaimer Certification. (f) Certificates are not transferable. In the event of a...

  20. 40 CFR 82.164 - Reclaimer certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling and Emissions Reduction § 82.164 Reclaimer... Recycling Program Manager—Reclaimer Certification. (f) Certificates are not transferable. In the event of a...

  1. 7 CFR 160.4 - Reclaimed rosin.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) NAVAL STORES REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.4 Reclaimed rosin. Reclaimed rosin is rosin that has been...

  2. 7 CFR 160.4 - Reclaimed rosin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) NAVAL STORES REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.4 Reclaimed rosin. Reclaimed rosin is rosin that has been...

  3. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    PubMed

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material.

  4. Computed tomography: an evaluation of the effect of adding polymer SBS to asphaltic mixtures used in paving

    PubMed

    Braz; Lopes; da Motta LM

    2000-10-01

    This work applies the Computed Tomography (CT) technique to the study of asphaltic mixtures to which polymer has been added. An evaluation has been made of the effect of adding Brazilian produced polymer SBS (styrene-butadiene-styrene), to the asphaltic mixtures used in paving. Laboratory mechanical tests and non-destructive testing (NDT) of cylindrical specimens have been made. Three mixtures were prepared for the purpose of this study, all containing 5.4% of asphalt RASF (propane deashalting). One of the mixtures contained no polymer, while the other two were made with 7 and 5% of the SBS polymer. Investigations of Brazilian pavements have shown that cracking is the most important defect due to fatigue in the asphaltic contained overlay. Preliminary results of mechanical tests show that the polymer additive favorably enhances performance of the mixtures. It may be noted that adding polymer SBS to the asphaltic mixture used in paving increases the percentage void. Crack growth in specimens of asphaltic mixtures to which polymer has been added displays the same behaviors as that in specimens in which polymer has not been added.

  5. Prediction of frequency for simulation of asphalt mix fatigue tests using MARS and ANN.

    PubMed

    Ghanizadeh, Ali Reza; Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  6. Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN

    PubMed Central

    Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation. PMID:24688400

  7. A Rayleigh-Wave Attenuation Method for Crack Depth Determination in Asphalt Beams

    NASA Astrophysics Data System (ADS)

    Gibson, Alex; Gallo, Gonzalo E.

    2004-02-01

    It has been established through research on concrete structures that the attenuation of surface waves is sensitive to the presence of a surface-breaking obstructing its path. This is the basis for a non-destructive crack depth measurement technique to quantitatively establish the extent of damage on a pavement subject to of top-down cracking. A previously developed self-compensating technique was applied to asphalt concrete beams constructed with a variety of crack and notch configurations. In the study different notch geometries and the effect of crack width, by comparing results from saw-cut notches to those of narrow cracks, were examined. Two types of impact sources were used and the results obtained were compared to each other. The frequency-dependent signal transmission coefficient was measured at 30 and 50 mm spacing for both undamaged and cracked beams. A single relationship between signal attenuation and crack depth can be attained by normalizing the crack depth with respect to the wavelength. Although the frequency response of a beam is different to that of a slab, the viability of Rayleigh wave attenuation measurements in asphalt pavement surfaces was proved if certain corrections are considered. The method may provide a non-destructive means to determine the depth of cracks in asphalt, such as it does in concrete, with the future understanding of certain phenomena encountered in this work.

  8. MaNIAC-UAV - a methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Henrique Castelo Branco, Luiz; César Lima Segantine, Paulo

    2015-09-01

    Intelligent Transportation Systems - ITS is a set of integrated technologies (Remote Sensing, Image Processing, Communications Systems and others) that aim to offer services and advanced traffic management for the several transportation modes (road, air and rail). Collect data on the characteristics and conditions of the road surface and keep them update is an important and difficult task that needs to be currently managed in order to reduce accidents and vehicle maintenance costs. Nowadays several roads and highways are paved, but usually there is insufficient updated data about current condition and status. There are different types of pavement defects on the roads and to keep them in good condition they should be constantly monitored and maintained according to pavement management strategy. This paper presents a methodology to obtain, automatically, information about the conditions of the highway asphalt pavement. Data collection was done through remote sensing using an UAV (Unmanned Aerial Vehicle) and the image processing and pattern recognition techniques through Geographic Information System.

  9. Permanent Deformation of Flexible Pavements

    DTIC Science & Technology

    1977-03-01

    bitumen macadam 4.2.2 Keuper marl 4.2.3 Lean concrete 4.3 Instrumentation Layout (i) 24 25 25 26 27 27 ■’Wr-frvi-’"’-^^**tniMa "iiii ..ir...Stress Invariants 6.4 Linear or Non-linear Analysis CHAPTER SEVEN: MATERIALS CHARACTERISATION TESTS 7.1 Introduction 7.2 Dense Bitumen Macadam (ii...pavements have been tested in a newly developed pavement test facility. These pavements consisted of dense bitumen macadam placed directly over a silty

  10. Example of using small falling weight deflectomer (FWD) for Earth structures and low cost road pavement in Japan

    NASA Astrophysics Data System (ADS)

    Shibata, Hideaki; Tanaka, Yasutomo; Ono, Isamu; Okano, Tsuyoshi

    2007-01-01

    The FWD (Falling Weight Deflectometer) is an instrument which makes the weight fall freely on its loading plate to apply impact load and measures the displacement caused by the fall at the center of impact load and also at the points in radial direction from the center of impact load. A kind of instrument which is mounted on or drawn by a vehicle used for construction of concrete pavement or asphalt pavement of a runway is usually called FWD. The impact load of FWD is 49KN to 196kN and it can obtain the modulus of elasticity of each pavement layer by back analysis based on the theory of multi-layer elasticity using 6 to 8 of extemal displacement sensors. On the other hand, the small FWD is an FWD which is constructed small and easy and is applicable for hand carry. It makes the weight fall freely on the loading plate to apply impact load and measures the load and displacement caused by the fall. It was developed for mainly assessing the rigidity and bearing capacity of the subgrade easily and promptly. It can measure many points in short term and obtain coefficient of subgrade reaction and modulus of subgrade elasticity without using reaction facilities like as plate bearing test or CBR test. It has also been tried to apply the small FWD to low cost asphalt road pavement (later called as low cost road pavement). Application examples of small FWD test for earth structure and low cost load pavement in Japan are shown and the methods and test results are stated in this report.

  11. Interaction nonlinearity in asphalt binders

    NASA Astrophysics Data System (ADS)

    Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.

    2012-05-01

    Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Characterization and a thorough understanding of the binder behavior is the first and crucial step towards developing an accurate constitutive model for the composite. Accurate constitutive models for the constituent materials are critical to ensure accurate performance predictions at a material and structural level using micromechanics. This paper presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to different types of loading using the Dynamic Shear Rheometer (DSR). Laboratory test data show that a compressive normal force is generated in an axially constrained specimen subjected to torsional shear. This paper investigates the source of this normal force and demonstrates that the asphalt binder can dilate when subjected to shear loads. This paper also presents the findings from a study conducted to investigate the source of the nonlinearity in the asphalt binder. Test results demonstrate that the application of cyclic shear loads results in the development of a normal force and a concomitant reduction in the dynamic shear modulus. This form of nonlinear response is referred to as an "interaction nonlinearity". A combination of experimental and analytical tools is used to demonstrate and verify the presence of this interaction nonlinearity in asphalt binders. The findings from this study highlight the importance of modeling the mechanical behavior of asphalt binders based on the overall stress state of the material.

  12. Analysis, testing and verification of the behavior of composite pavements under Florida conditions using a heavy vehicle simulator

    NASA Astrophysics Data System (ADS)

    Tapia Gutierrez, Patricio Enrique

    Whitetopping (WT) is a rehabilitation method to resurface deteriorated asphalt pavements. While some of these composite pavements have performed very well carrying heavy load, other have shown poor performance with early cracking. With the objective of analyzing the applicability of WT pavements under Florida conditions, a total of nine full-scale WT test sections were constructed and tested using a Heavy Vehicle Simulator (HVS) in the APT facility at the FDOT Material Research Park. The test sections were instrumented to monitor both strain and temperature. A 3-D finite element model was developed to analyze the WT test sections. The model was calibrated and verified using measured FWD deflections and HVS load-induced strains from the test sections. The model was then used to evaluate the potential performance of these test sections under critical temperature-load condition in Florida. Six of the WT pavement test sections had a bonded concrete-asphalt interface by milling, cleaning and spraying with water the asphalt surface. This method produced excellent bonding at the interface, with shear strength of 195 to 220 psi. Three of the test sections were intended to have an unbonded concrete-asphalt interface by applying a debonding agent in the asphalt surface. However, shear strengths between 119 and 135 psi and a careful analysis of the strain and the temperature data indicated a partial bond condition. The computer model was able to satisfactorily model the behavior of the composite pavement by mainly considering material properties from standard laboratory tests and calibrating the spring elements used to model the interface. Reasonable matches between the measured and the calculated strains were achieved when a temperature-dependent AC elastic modulus was included in the analytical model. The expected numbers of repetitions of the 24-kip single axle loads at critical thermal condition were computed for the nine test sections based on maximum tensile stresses

  13. Pervious Pavement System Evaluation- Abstract

    EPA Science Inventory

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, gra...

  14. Pervious Pavement System Evaluation- Abstract

    EPA Science Inventory

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, gra...

  15. Permanent deformation of flexible pavements

    NASA Astrophysics Data System (ADS)

    Brown, S. F.; Broderick, B. V.; Pappin, J. W.

    1980-06-01

    Seven pairs of pavements with granular bases were tested under controlled conditions. One pavement in each pair contained fabric inclusions. An improved testing facility was developed, including: (1) servo-hydraulic system for the loading carriage; (2) amplification and read-out system for pressure cells; (3) linearizing unit for strain coils; (4) transducers for measuring vertical and resilient deflection; (5) techniques for measuring in situ strain on fabric inclusions; (6) extensive use of nuclear density meter to monitor pavement and foundation materials. The following conclusions are drawn: (1) No improvement in performance resulted from fabric inclusions. (2) No consistent reduction in in-situ stresses, resilient strains, or permanent strains was observed as a result of fabric inclusion. (3) No consistent improvement in densities resulted from fabric inclusions. (4) Some slip apparently occurred between fabric and soil on those pavements which involved large deformations. The slip occurred between fabric and crushed limestone base rather than between fabric and silty-clay subgrade.

  16. 75 FR 12988 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... Sources: Asphalt Processing and Asphalt Roofing Manufacturing; Technical Correction AGENCY: Environmental... the asphalt processing and asphalt roofing manufacturing area source category (74 FR 63236). Following... the asphalt processing and asphalt roofing manufacturing area source category on December 2, 2009 (40...

  17. Fate of the chemical warfare agent VX in asphalt: a novel approach for the quantitation of VX in organic surfaces.

    PubMed

    Gura, S; Tzanani, N; Hershkovitz, M; Barak, R; Dagan, S

    2006-07-01

    VX is one of the most toxic chemical warfare agents. Its low volatility and its persistence in the environment raise the issue of long-term exposure risks, either by inhalation or by transdermal penetration. Therefore, a topic of acute interest is the fate of VX in preservative environmental surfaces. In this work, the fate of VX in asphalt pavement, a suspected preservative matrix, was explored, by applying a novel quantitative method for the extraction of trapped VX from "digested" asphalt. It is based on dissolution of asphalt in toluene, precipitation of the heavy components by basic methanol followed by GC-NPD analysis. This method is complementary to methanol extraction of VX from the outer surface of asphalt, and enabled us to explore the total amount of viable VX both on and inside the matrix. Using this method, bis-diisopropylaminoethyl-disulfide [(DES)2], a degradation product of VX, was also assayed. Small chunks of Asphalt were spiked with VX, sealed and analyzed after various aging periods up to 425 days. The level of VX on the outer surface of the asphalt was found to be diminishing with time following a single-exponential decay. The level inside the asphalt increases during the first day, decays steeply to a level of about 5% during the following two weeks, and declines moderately during all the period up to 425 days following a bi-exponential decay. The total recovery of VX from the asphalt declined from almost 100% after 30 minutes to about 2% after 425 days, with a half-life of about 14 days.

  18. Assessing the durability of North Buton Asphalt seal with Polymer Modified and Rejuvenation in warm mixture design

    NASA Astrophysics Data System (ADS)

    Zalman; Yulianto, B.; Setyawan, A.

    2017-02-01

    Utilization of Buton Asphalt has been expanded with various optimizations through modification of the base material so that it can be used either as an additive in granular form or as modified asphalt. While in North Buton using Asphalt Buton that uses a special material specification Buton Asphalt cold mixture of Butur Seal, a thin layer of Buton Asphalt B 50/30 above the base course or existing asphalt pavement layer, which has been prepared in accordance with the General Specifications. Technically utilization of Butur Seal is still very sensitive to human resource capacity in understanding the physical condition of Asbuton, and severely affects construction to failure. Buton asphalt cold mix in the field also showed some kind of damage caused by difficulties or not fitting rejuvenation materials used. Making the challenge to do research on the characteristic properties of Asphalt Buton B50 / 30 with modifications, to get Asbuton that has higher durability in use in the field. Quality performance of the Asbuton cold mixtures is observed through a series of tests in the laboratory. This test includes testing the stability and the compressive test. Tests conducted in the laboratory are expected to be directly applicable as it is done in the field. This research aimed to investigate the characteristics of Butur Seal in warm mixture that can be used in the construction and maintenance of roads in North Burton and to investigate the characteristics of Butur Seal with the addition of elastomeric polymers and rejuvenation materials in warm mixing temperature of 30, 40, 60 and 80° C.

  19. Research on a Novel Low Modulus OFBG Strain Sensor for Pavement Monitoring

    PubMed Central

    Wang, Chuan; Hu, Qingli; Lu, Qiyu

    2012-01-01

    Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures. PMID:23112584

  20. Research on a novel low modulus OFBG strain sensor for pavement monitoring.

    PubMed

    Wang, Chuan; Hu, Qingli; Lu, Qiyu

    2012-01-01

    Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

  1. Effect of Warm Mix Asphalt on Aging of Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Abbas, Ala R.; Nazzal, Munir; Kaya, Savas; Akinbowale, Sunday; Subedi, Bijay; Qtaish, Lana Abu

    This paper evaluated the rheological and chemical properties of asphalt binders recovered from short-term and long-term aged foamed warm mix asphalt (WMA) and traditional hot mix asphalt (HMA). AASHTO R 30 was utilized to simulate the short-term and long-term aging of the laboratory-prepared asphalt mixtures. The dynamic shear rheometer (DSR) was used to characterize the rheological properties of the unaged and aged asphalt binders. Fourier-transform infrared (FTIR) spectroscopy was used to identify and quantify the amount of functional groups present in these binders. Gel permeation chromatography (GPC) was utilized to determine the molecular size distribution within these binders. The asphalt binders recovered from short-term and long-term oven aged HMA mixtures exhibited slightly higher G*/sinδ and G*sinδ values than those recovered from foamed WMA mixtures. The FTIR and GPC test results agreed with those obtained in the DSR. This indicates that foamed WMA mixtures undergo less aging than traditional HMA mixtures.

  2. Evaluation of bridge decks and pavements at highway speed using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Maser, Kenneth R.

    1995-05-01

    Ground penetrating radar has been developed as an economical alternative for evaluating pavement layer properties and estimating quantities of deterioration in bridge decks. These highway applications are based on the use of vehicle-mounted radar systems traveling at normal driving speed. Surveys are conducted without lane closures, and extensive coverage can be obtained in a short survey period. Customized software has been specifically developed to handle and interpret the large quantities of data collected by this system. Two integrated software systems have been developed and extensively tested for pavement layer thickness and bridge deck condition evaluation. PAVLAYER, for pavements, has demonstrated an accuracy of +/- 7% for asphalt layer thickness evaluation based on tests on 150 pavement sections and correlation with over 700 cores. DECAR, for evaluating quantities of deteriorated concrete in bridge decks, has demonstrated an accuracy of +/- 4.4% of the total deck area based on ground truth evaluation of 64 bridge decks. The paper describes the details of the hardware and software components and the analytic methods used in these two systems. Also presented are descriptions of three field evaluation programs, in which the PAVLAYER and DECAR results are correlated with ground truth. Typical output and ground truth correlations are presented.

  3. Comparative study of nondestructive pavement testing, WES (Waterways Experiment Station) NDT (nondestructive tests) methodologies

    NASA Astrophysics Data System (ADS)

    Hall, J. W.; Alelxander, D. R.

    1985-09-01

    A demonstration of nondestructive airfield pavement evaluation procedures conducted by the US Army Engineer Waterways Experiment Station (WES) using both the WES 16-kip vibrator and a Dynatest falling weight deflectometer (FWD) is described. The nondestructive tests (NDT) were conducted at MacDill Air Force Base on five pavement test areas consisting of asphaltic concrete, portland cement concrete, and composite pavements. Two methods of data analysis were used. The dynamic stiffness modulus (DMS) method used dynamic deflection data from the WES 16-kip vibrator with a correlation analysis developed a number of years ago by WES. This method uses a correlation between the DSM (a load-deflection ratio) and the allowable load on a single wheel as derived from traditional test pit methods. The second analysis scheme used measured deflection basins at the pavement surface and layered elastic theory. Elastic moduli are computed by matching measured deflection basins with computed basins. Limiting stress/strain is then used to compute allowable aircraft loadings. This method was used with data from both the WES 16-kip vibrator and the FWD. Also demonstrated was a method of determining joint load transfer and of making appropriate adjustments to the allowable load to account for lack of load transfer.

  4. A Physically-based Model for Surface and Subsurface Drainage from Porous Pavement Overlays

    NASA Astrophysics Data System (ADS)

    Eck, B. J.; Barrett, M.; Charbeneau, R. J.

    2010-12-01

    A thin layer of porous asphalt is commonly overlain on regular impermeable pavement to reduce splash and spray and improve visibility in wet weather. The porous layer often has a large hydraulic conductivity (>1cm/s) to encourage infiltration and drainage and therefore contains runoff when the rainfall intensity is low. However, under high rainfall intensity, the layer’s capacity is exceeded and drainage occurs both within and on top of the porous pavement. The problem is analogous to hill-slope hydrology of a thin aquifer where infiltration occurs rapidly and sheet flow is generated only when the aquifer is full. Common roadway features such as slope transitions and curvature make the drainage two-dimensional. A computer model was developed to study this coupled, unsteady process. The porous layer is modeled using the Boussinesq equation. The diffusion wave model is used for sheet flow over the pavement surface. This presentation summarizes the model’s development, shows that model results compare favorably to field measurements, and gives a case study in which the porous layer reduces the maximum sheet flow depth by 25% compared to conventional pavement.

  5. Bettis Asphalt and Construction, Inc.

    EPA Pesticide Factsheets

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Bettis Asphalt and Construction, Inc. for alleged violations at its facility located at 2350 Northwest Water Works Drive, Topeka, Kansas 66606.

  6. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.

    PubMed

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-05-24

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.

  7. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis

    PubMed Central

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-01-01

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4–8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling. PMID:28772935

  8. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  9. Science Discovers the Reclaiming Approach

    ERIC Educational Resources Information Center

    Brown, Darren

    2008-01-01

    Pioneers in reclaiming youth sought to build relationships and environments that responded to the needs of "wayward youth." Now, neuroscience and trauma research show the primacy of human connections in assessment, treatment, and youth development. Interventions with challenging children and youth are now being evaluated against principles…

  10. Defining reclaimed water potability requirements

    NASA Technical Reports Server (NTRS)

    Janik, D. S.

    1986-01-01

    Water used during previous space missions has been either carried or made aloft. Future human space endeavors will probably have to utilize some form of water reclamation and recycling. There is little applied experience in either the US or foreign space programs with this technology. Water reclamation and recycling constitutes an engineering challenge of the broadest nature and will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed US spacestation. In order for this to happen, reclaimed/recycled water specification will need to be devised to guide engineering development. Perhaps the most strigent specifications will involve water to be consumed. NASA's present Potable Water Specifications are not applicable to reclaimed or recycled potable water. No specifications for reclaimed or recycled potable water presently exist either inside or outside NASA. NASA's past experience with potable water systems is reviewed, limitations of the present Potable Water Specifications are examined, present world expertise with potable water reclamation/recycling systems and system analogs is reviewed, and an approach to developing pertinent Reclaimed/Recycled Potable Water Specifications for spacecraft is presented.

  11. Reclaiming Indigenous Representations and Knowledges

    ERIC Educational Resources Information Center

    Iseke-Barnes, Judy; Danard, Deborah

    2007-01-01

    This article explores contemporary Indigenous artists', activists', and scholars' use of the Internet to reclaim Indigenous knowledge, culture, art, history, and worldview; critique the political realities of dominant discourse; and address the genocidal history and ongoing repression of Indigenous peoples. Indigenous Internet examples include…

  12. Reclaiming Indigenous Representations and Knowledges

    ERIC Educational Resources Information Center

    Iseke-Barnes, Judy; Danard, Deborah

    2007-01-01

    This article explores contemporary Indigenous artists', activists', and scholars' use of the Internet to reclaim Indigenous knowledge, culture, art, history, and worldview; critique the political realities of dominant discourse; and address the genocidal history and ongoing repression of Indigenous peoples. Indigenous Internet examples include…

  13. Performance properties of asphalt mixes for rich bottom layers (RBL)

    NASA Astrophysics Data System (ADS)

    Bureš, Petr; Fiedler, Jiří; Kašpar, Jiří; Sýkora, Michal; Hýzl, Petr

    2017-09-01

    The binder content of asphalt mixes has an important influence on the performance properties. Higher binder content improves fatigue resistance. That is why the concept of RBL was developed in USA and applied for “perpetual pavements”. However excessive binder content could lead to the decrease of the mix stiffness and to permanent deformations of asphalt pavement during hot summer. The advantages and limitations of RBL concept have been studied in research project CESTI. Fatigue tests of mixes with road bitumen and polymer modified bitumen and RBL were realised. Deformation behaviour of these mixes was also evaluated. The experience from the test section with RBL laid in 2015 will be presented. The results corresponded to expectations. However, low void content was obtained on one subsection. In spite of it, there were no permanent deformations during summer 2016. The analysis of methods for the prediction of the permanent deformation was also undertaken in research project CESTI. Some information about the results of these analysis related to the use of RBL will be also briefly mentioned.

  14. Size exclusion chromatography of aged and crumb rubber modified asphalts

    SciTech Connect

    Duvall, J.J.

    1996-12-31

    Preparative size exclusion chromatography (SEC) has been used for several years in our laboratory to provide samples for further analysis and for use in other testing procedures. Asphalts have been separated into a first fraction (F-I) that contains nonfluorescing (at 350 nm) materials, and the rest of the asphalt, which is collected in one or more fractions (F-II or F-IIa, F-IIb, etc). The nonfluorescing materials have been shown to contain strongly associating molecules, while the fluorescing materials consist of weakly associating individual and smaller molecules. The fractionation data from these analyses have been related to the theological property tan delta, and thereby, to rutting and premature pavement cracking. We have developed a high performance liquid chromatography (HPLC) technique that yields these analytical data more rapidly and efficiently than preparative SEC and yet gives chromatograms similar to those derived from preparative SEC. The HPLC procedure described here uses toluene as the carrier as does the preparative procedure.

  15. Function investigation of stone mastic asphalt (SMA) mixture partly containing basic oxygen furnace (BOF) slag.

    PubMed

    Chen, Zongwu; Wu, Shaopeng; Pang, Ling; Xie, Jun

    2016-07-04

    In this paper, the effect of the size gradations of basic oxygen furnace (BOF) slag on the functional performances of stone mastic asphalt (SMA) mixture including skid and deformation resistances was investigated. The industrially produced BOF slag coarse aggregates (BSCA) with size gradations of 4.75-9.5 mm and 9.5-16 mm were used. SMA mixtures were designed according to Marshall procedure. British pendulum number (BPN), indicating the skid resistance of asphalt mixture, was measured by a British pendulum skid resistance device. Flow number (FN) and Marshall quotient (MQ), reflecting the deformation resistance of asphalt mixture, were determined, respectively, based on the results of dynamic creep test and Marshall test (stability and flow value). Showed that BSCA with a size gradation of 9.5-16 mm performed better in improving the skid and deformation resistance of SMA mixture than BSCA with a size gradation of 4.75-9.5 mm. Furthermore, BSCA with combined size gradations, namely, 4.75-16 mm, worked the best. These conclusions would benefit the future extensive utilization of BSCA in asphalt pavement.

  16. Toxicity of coal-tar and asphalt sealants to eastern newts, Notophthalmus viridescens.

    PubMed

    Bommarito, Thomas; Sparling, Donald W; Halbrook, Richard S

    2010-09-01

    Between 1970 and 2000 the concentration of total polycyclic aromatic hydrocarbons (TPAH) in several lakes across the country increased whereas those of other persistent organic pollutants (POPs) tended to remain stable or declined. Urbanized watersheds experienced greater rises in TPAH concentration compared to non-urban lakes. Sources for urban PAHs include industrial wastes, vehicular exhausts and oil leaks and sealants from pavement surfaces. Both coal-tar and asphalt sealants are used to protect surfaces but runoff from surfaces coated with coal-tar can have mean concentrations of 3500 mg TPAHs kg(-1), much higher than runoff from asphalt-sealed or cement surfaces. Unaltered parent compounds of PAHs can have many lethal and sublethal toxic effects, but oxidation and UV radiation can alter the toxicity of these compounds, sometimes creating degradates that are many times more toxic than parent compounds. The purposes of this study were to determine if coal-tar sealants can be toxic to adult eastern newts (Notophthalmus viridescens) and to compare the toxicity of coal-tar sealant to that of asphalt sealant. Newts were exposed to sediments containing dried sealants ranging from 0 mg kg(-1) to 1500 mg kg(-1) under simultaneous exposure to UV radiation and visible light to determine concentration/response relationships. No significant mortality occurred with any treatment. Significant effects due to sealants included decreased righting ability and diminished liver enzyme activities. Coal-tar sealant was more effective in inducing these changes than was asphalt sealant.

  17. Computational microstructure modeling of asphalt mixtures subjected to rate-dependent fracture

    NASA Astrophysics Data System (ADS)

    Aragao, Francisco Thiago Sacramento

    2011-12-01

    Computational microstructure models have been actively pursued by the pavement mechanics community as a promising and advantageous alternative to limited analytical and semi-empirical modeling approaches. The primary goal of this research is to develop a computational microstructure modeling framework that will eventually allow researchers and practitioners of the pavement mechanics community to evaluate the effects of constituents and mix design characteristics (some of the key factors directly affecting the quality of the pavement structures) on the mechanical responses of asphalt mixtures. To that end, the mixtures are modeled as heterogeneous materials with inelastic mechanical behavior. To account for the complex geometric characteristics of the heterogeneous mixtures, an image treatment process is used to generate finite element meshes that closely reproduce the geometric characteristics of aggregate particles (size, shape, and volume fraction) that are distributed within a fine aggregate asphaltic matrix (FAM). These two mixture components, i.e., aggregate particles and FAM, are modeled, respectively, as isotropic linear elastic and isotropic linear viscoelastic materials and the material properties required as inputs for the computational model are obtained from simple and expedited laboratory tests. In addition to the consideration of the complex geometric characteristics and inelastic behavior of the mixtures, this study uses the cohesive zone model to simulate fracture as a gradual and rate-dependent phenomenon in which the initiation and propagation of discrete cracks take place in different locations of the mixture microstructure. Rate-dependent cohesive zone fracture properties are obtained using a procedure that combines laboratory tests of semi-circular bending specimens of the FAM and their numerical simulations. To address the rate-dependent fracture characteristics of the FAM phase, a rate-dependent cohesive zone model is developed and

  18. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  19. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  20. Pervious Pavement System Evaluation-Poster

    EPA Science Inventory

    Pervious pavement is a low impact development stormwater control. The Environmental Protection Agency's Urban Watershed Management Branch is evaluating interlocking concrete pavingstone pervious pavement systems. The pavingstones themselves are impermeable, but the spaces between...

  1. Metagenomic analysis of viruses in reclaimed water.

    PubMed

    Rosario, Karyna; Nilsson, Christina; Lim, Yan Wei; Ruan, Yijun; Breitbart, Mya

    2009-11-01

    Reclaimed water use is an important component of sustainable water resource management. However, there are concerns regarding pathogen transport through this alternative water supply. This study characterized the viral community found in reclaimed water and compared it with viruses in potable water. Reclaimed water contained 1000-fold more virus-like particles than potable water, having approximately 10(8) VLPs per millilitre. Metagenomic analyses revealed that most of the viruses in both reclaimed and potable water were novel. Bacteriophages dominated the DNA viral community in both reclaimed and potable water, but reclaimed water had a distinct phage community based on phage family distributions and host representation within each family. Eukaryotic viruses similar to plant pathogens and invertebrate picornaviruses dominated RNA metagenomic libraries. Established human pathogens were not detected in reclaimed water viral metagenomes, which contained a wealth of novel single-stranded DNA and RNA viruses related to plant, animal and insect viruses. Therefore, reclaimed water may play a role in the dissemination of highly stable viruses. Information regarding viruses present in reclaimed water but not in potable water can be used to identify new bioindicators of water quality. Future studies will need to investigate the infectivity and host range of these viruses to evaluate the impacts of reclaimed water use on human and ecosystem health.

  2. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems.

    PubMed

    Burnos, Piotr; Rys, Dawid

    2017-09-07

    Weigh-in-Motion systems are tools to prevent road pavements from the adverse phenomena of vehicle overloading. However, the effectiveness of these systems can be significantly increased by improving weighing accuracy, which is now insufficient for direct enforcement of overloaded vehicles. Field tests show that the accuracy of Weigh-in-Motion axle load sensors installed in the flexible (asphalt) pavements depends on pavement temperature and vehicle speeds. Although this is a known phenomenon, it has not been explained yet. The aim of our study is to fill this gap in the knowledge. The explanation of this phenomena which is presented in the paper is based on pavement/sensors mechanics and the application of the multilayer elastic half-space theory. We show that differences in the distribution of vertical and horizontal stresses in the pavement structure are the cause of vehicle weight measurement errors. These studies are important in terms of Weigh-in-Motion systems for direct enforcement and will help to improve the weighing results accuracy.

  3. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems

    PubMed Central

    Rys, Dawid

    2017-01-01

    Weigh-in-Motion systems are tools to prevent road pavements from the adverse phenomena of vehicle overloading. However, the effectiveness of these systems can be significantly increased by improving weighing accuracy, which is now insufficient for direct enforcement of overloaded vehicles. Field tests show that the accuracy of Weigh-in-Motion axle load sensors installed in the flexible (asphalt) pavements depends on pavement temperature and vehicle speeds. Although this is a known phenomenon, it has not been explained yet. The aim of our study is to fill this gap in the knowledge. The explanation of this phenomena which is presented in the paper is based on pavement/sensors mechanics and the application of the multilayer elastic half-space theory. We show that differences in the distribution of vertical and horizontal stresses in the pavement structure are the cause of vehicle weight measurement errors. These studies are important in terms of Weigh-in-Motion systems for direct enforcement and will help to improve the weighing results accuracy. PMID:28880215

  4. Degradation Modeling of Polyurea Pavement Markings

    DTIC Science & Technology

    2011-03-01

    DEGRADATION MODELING OF POLYUREA PAVEMENT MARKINGS THESIS Jonathan D. Needham, Captain, USAF AFIT/GEM/ENV/11-M05 DEPARTMENT OF THE...DEGRADATION MODELING OF POLYUREA PAVEMENT MARKINGS THESIS Presented to the Faculty Department of Engineering Management Graduates School of...DEGRADATION MODELING OF POLYUREA PAVEMENT MARKINGS Jonathan D. Needham, BS Captain, USAF Approved

  5. Impact of pavement conditions on crash severity.

    PubMed

    Li, Yingfeng; Liu, Chunxiao; Ding, Liang

    2013-10-01

    Pavement condition has been known as a key factor related to ride quality, but it is less clear how exactly pavement conditions are related to traffic crashes. The researchers used Geographic Information System (GIS) to link Texas Department of Transportation (TxDOT) Crash Record Information System (CRIS) data and Pavement Management Information System (PMIS) data, which provided an opportunity to examine the impact of pavement conditions on traffic crashes in depth. The study analyzed the correlation between several key pavement condition ratings or scores and crash severity based on a large number of crashes in Texas between 2008 and 2009. The results in general suggested that poor pavement condition scores and ratings were associated with proportionally more severe crashes, but very poor pavement conditions were actually associated with less severe crashes. Very good pavement conditions might induce speeding behaviors and therefore could have caused more severe crashes, especially on non-freeway arterials and during favorable driving conditions. In addition, the results showed that the effects of pavement conditions on crash severity were more evident for passenger vehicles than for commercial vehicles. These results provide insights on how pavement conditions may have contributed to crashes, which may be valuable for safety improvement during pavement design and maintenance. Readers should notice that, although the study found statistically significant effects of pavement variables on crash severity, the effects were rather minor in reality as suggested by frequency analyses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Viscosity function in polymer-modified asphalts.

    PubMed

    Stastna, J; Zanzotto, L; Vacin, O J

    2003-03-01

    Asphalt is a multidisperse micellar system with rheological behavior resembling that of a low-molecular-weight polymer. Nowadays, asphalt is frequently modified by blending it with various polymers. Such modified asphalt has rheological properties that differ from the properties of the base asphalt. It is quite common to study asphalt in dynamic experiments. Such studies, however useful, cannot reveal all characteristic features of polymer-modified asphalts. Asphalt modification by polymers is strongly manifested in the region of transitions from a viscoelastic fluid to the Newtonian fluid. The viscosity study in this region can reveal behavior characteristic of the used polymer modifier, thus complementing the dynamic studies of these materials. The viscosity of base asphalt modified by styrene-butadiene-styrene and by ethylene-vinyl acetate polymers (in several concentrations) is studied and discussed in this note.

  7. 7 CFR 3201.77 - Asphalt restorers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Asphalt restorers. 3201.77 Section 3201.77... Designated Items § 3201.77 Asphalt restorers. (a) Definition. Products designed to seal, protect, or restore poured asphalt and concrete surfaces. (b) Minimum biobased content. The Federal preferred procurement...

  8. 7 CFR 3201.77 - Asphalt restorers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Asphalt restorers. 3201.77 Section 3201.77... Designated Items § 3201.77 Asphalt restorers. (a) Definition. Products designed to seal, protect, or restore poured asphalt and concrete surfaces. (b) Minimum biobased content. The Federal preferred procurement...

  9. Deflection Control in Rigid Pavements

    NASA Astrophysics Data System (ADS)

    Varunkrishna, Nulu; Jayasankar, R.

    2017-07-01

    The need for modern transportation systems together with the high demand for perpetual pavements under the drastically increasing applied loads has led to a great deal of research on concrete as a pavement material worldwide. This research indeed instigated many modifications in concrete aiming for improving the concrete properties. Pavement Quality Concrete requires higher flexural strength and fewer deflections in hardened state. Fiber reinforcement and latex modification are two reliable approaches serving the required purposes. The concrete made with these two modifications is called Polymer-modified Fiber-reinforced concrete. The present study deals with the usage of polypropylene as fiber and SBR (Styrene Butadiene Rubber) Latex as polymer. M30 grade concrete was modified by replacing cement with two different percentages of fiber (0.5%, 1.0% of weight of cement) and with three different percentages of SBR latex (10%, 15% & 20% of weight of cement).

  10. [PAH exposure in asphalt workers].

    PubMed

    Garattini, Siria; Sarnico, Michela; Benvenuti, Alessandra; Barbieri, P G

    2010-01-01

    There has been interest in evaluating the potential carcinogenicity of bitumen fumes in asphalt workers since the 1960's. The IARC classified air-refined bitumens as possible human carcinogens, while coal-tar fumes were classified as known carcinogens. Occupational/environmental PAH exposure can be measured by several urinary markers. Urinary 1-OHP has become the most commonly used biological marker of PAH exposure in asphalt workers. The aim of this study was to assess asphalt workers' exposure levels by monitoring 1-OHP urinary excretion and compare this data with those of non-occupationally exposed subjects. We investigated three groups of asphalt workers: 100 in summer 2007, 29 in winter 2007, and 148 during summer 2008 and compared 1-OHP urinary concentrations using Kruskall-Wallis test. Median 1-OHP urinary concentrations during the three biomonitoring sampling periods were 0.65, 0.17 and 0.53 microg/g creatinine respectively. There was a significant difference in 1-OHP values between the three groups (p < 0.001). our study showed that PAH exposure of asphalt workers' is higher than that observed in the general population and in workers in urban areas. Our results suggest that PAH exposure in the three groups studied is not sufficiently kept under control by the use of personal protective equipment and that biomonitoring is useful in evaluating PAH exposure and for risk assessment. Regulations need to be enforced for workers exposed to cancer risk, such as the register of workers exposed to carcinogens.

  11. Pavement thickness evaluation using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Harris, Dwayne Arthur

    Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement management and design. Much of the time this information is missing, out of date, or unknown for highway sections. Current technologies for determining pavement thickness are core drilling, falling weight deflectometer (FWD), and ground penetrating radar (GPR). Core drilling provides very accurate pin point pavement thickness information; however, it is also time consuming, labor intensive, intrusive to traffic, destructive, and limited in coverage. FWD provides nondestructive estimates of both a surface thickness and total pavement structure thickness, including pavement, base and sub-base. On the other hand, FWD is intrusive to traffic and affected by the limitations and assumptions the method used to estimate thickness. GPR provides pavement surface course thickness estimates with excellent data coverage at highway speed. Yet, disadvantages include the pavement thickness estimation being affected by the electrical properties of the pavement, limitations of the system utilized, and heavy post processing of the data. Nevertheless, GPR has been successfully utilized by a number of departments of transportation (DOTs) for pavement thickness evaluation. This research presents the GPR thickness evaluation methods, develops GPRPAVZ the software used to implement the methodologies, and addresses the quality of GPR pavement thickness evaluation.

  12. Mechanistic interpretation of nondestructive pavement testing deflections

    NASA Astrophysics Data System (ADS)

    Hoffman, M. S.

    1980-06-01

    A method is proposed for the backcalculation of material properties in flexible pavements based on the interpretation of surface deflection measurements. ILLI-PAVE, a stress dependent finite element pavement model, was used to generate data for developing algorithms and nomographs for deflection basin interpretation. Over 11,000 deflection measurements for 24 different flexible pavement sections were collected and analyzed. Deflections were measured using the Benkelman Beam, the IDOT Road Rater, the Falling Weight Deflectometer, and an accelerometer to measure deflections under moving trucks. Loading mode effects on pavement response were investigated using dynamic and viscous pavement models. The factors controlling the pavement response to different loading modes were explained and identified. Correlations between different devices were developed. The proposed evaluation procedure is illustrated for three different flexible pavements using deflection data collected on several testing dates.

  13. Teaching Methodology of Flexible Pavement Materials and Pavement Systems

    ERIC Educational Resources Information Center

    Mehta, Yusuf; Najafi, Fazil

    2004-01-01

    Flexible pavement materials exhibit complex mechanical behavior, in the sense, that they not only show stress and temperature dependency but also are sensitive to moisture conditions. This complex behavior presents a great challenge to the faculty in bringing across the level of complexity and providing the concepts needed to understand them. The…

  14. Hydraulic and treatment performance of pervious pavements under variable drying and wetting regimes.

    PubMed

    Yong, C F; Deletic, A; Fletcher, T D; Grace, M R

    2011-01-01

    Pervious pavements are an effective stormwater treatment technology. However, their performance under variable drying and wetting conditions have yet to be tested, particularly under a continuous time scale. This paper reports on the clogging behaviour and pollutant removal efficiency of three pervious pavement types over 26 accelerated years. These pavements were monolithic porous asphalt (PA), Permapave (PP) and modular Hydrapave (HP). Over a cycle of 13 days, the period of which was equivalent to the average annual Brisbane, Australia rainfall (1,200 mm), the pavements were randomly dosed with four different flows. Drying events of 3 h duration were simulated during each flow. Inflow and outflow samples were collected and analysed for Total Suspended Solids (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). To evaluate the rate of clogging, a 1 in 5 year Brisbane storm event was simulated in the 6th, 8th, 12th, 16th, 20th and 24th week. Under normal dosing conditions, none of the pavements showed signs of clogging even after 15 years. However, under storm conditions, both PA and HP started to clog after 12 years, while PP showed no signs of clogging after 26 years. The drying and various flow events showed no effects in TSS removal, with all systems achieving a removal of approximately 100%. The average TP removal was 20% for all flows except for low flow, which had a significant amount of leaching over time. Leaching from TN was also observed during all flows except high flow. The TSS, TP and TN results observed during storm events were similar to that of high flow.

  15. Electrical resistance tomography for monitoring the infiltration of water into a pavement section

    SciTech Connect

    Buettner, M.; Daily, B.; Ramirez, A.

    1997-07-03

    Electrical resistance tomography (ERT) was used to follow the infiltration of water into pavement section at the UC Berkeley Richmond Field Station. A volume of pavement 1m square and 1.29 m deep was sampled by an ERT array consisting of electrodes in 9 drilled holes plus 8 surface electrodes. The data were collected using a computer controlled data acquisition system capable of collecting a full data set in under 1 hour, allowing for nearly real time sampling of the infiltration. The infiltration was conducted in two phases. During the first phase, water was introduced into the asphalt-concrete (AC) layers at a slow rate of about 8 ml per hour for a period of about 6 days. In the second phase, water was introduced into the asphalt-treated-permeable base (ATPB) layer at a more rapid rate of about 100 ml/h for about 2 days. The ERT images show that water introduced into the upper AC layers shows up as a decrease in resistivity which grows with time. The images also appear to show that when water moves into the layers below the ATPB, the resistivity increases; an unexpected result. There are some indications that the water moved laterally as well as down into the deeper ATPB and the aggregate base. The images also show that when water is introduced directly into the ATPB and aggregate layer, the water moves into the the underlying materials much more quickly.

  16. Acute toxicity of runoff from sealcoated pavement to Ceriodaphnia dubia and Pimephales promelas.

    PubMed

    Mahler, Barbara J; Ingersoll, Christopher G; Van Metre, Peter C; Kunz, James L; Little, Edward E

    2015-04-21

    Runoff from coal-tar-based (CT) sealcoated pavement is a source of polycyclic aromatic hydrocarbons (PAHs) and N-heterocycles to surface waters. We investigated acute toxicity of simulated runoff collected from 5 h to 111 days after application of CT sealcoat and from 4 h to 36 days after application of asphalt-based sealcoat containing about 7% CT sealcoat (AS/CT-blend). Ceriodaphnia dubia (cladocerans) and Pimephales promelas (fathead minnows) were exposed in the laboratory to undiluted and 1:10 diluted runoff for 48 h, then transferred to control water and exposed to 4 h of ultraviolet radiation (UVR). Mortality following exposure to undiluted runoff from unsealed asphalt pavement and UVR was ≤10% in all treatments. Test organisms exposed to undiluted CT runoff samples collected during the 3 days (C. dubia) or 36 days (P. promelas) following sealcoat application experienced 100% mortality prior to UVR exposure; with UVR exposure, mortality was 100% for runoff collected across the entire sampling period. Phototoxic-equivalent PAH concentrations and mortality demonstrated an exposure-response relation. The results indicate that runoff remains acutely toxic for weeks to months after CT sealcoat application.

  17. Acute toxicity of runoff from sealcoated pavement to Ceriodaphnia dubia and Pimephales promelas

    USGS Publications Warehouse

    Mahler, Barbara J.; Ingersoll, Christopher G.; Van Metre, Peter C.; Kunz, James L.; Little, Edward E.

    2015-01-01

    Runoff from coal-tar-based (CT) sealcoated pavement is a source of polycyclic aromatic hydrocarbons (PAHs) and N-heterocycles to surface waters. We investigated acute toxicity of simulated runoff collected from 5 h to 111 days after application of CT sealcoat and from 4 h to 36 days after application of asphalt-based sealcoat containing about 7% CT sealcoat (AS/CT-blend). Ceriodaphnia dubia (cladocerans) and Pimephales promelas (fathead minnows) were exposed in the laboratory to undiluted and 1:10 diluted runoff for 48 h, then transferred to control water and exposed to 4 h of ultraviolet radiation (UVR). Mortality following exposure to undiluted runoff from unsealed asphalt pavement and UVR was ≤10% in all treatments. Test organisms exposed to undiluted CT runoff samples collected during the 3 days (C. dubia) or 36 days (P. promelas) following sealcoat application experienced 100% mortality prior to UVR exposure; with UVR exposure, mortality was 100% for runoff collected across the entire sampling period. Phototoxic-equivalent PAH concentrations and mortality demonstrated an exposure-response relation. The results indicate that runoff remains acutely toxic for weeks to months after CT sealcoat application.

  18. Silica Fume Functionalized With Amine-Based Additives as a Modifier to Enhance Asphalt Resistance to Oxidation

    NASA Astrophysics Data System (ADS)

    Abutalib, Nader Turki

    This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with

  19. The Effect of Dustler on Reducing Stripping Failure in Hot Mix Asphalt Mixture

    NASA Astrophysics Data System (ADS)

    Baizura Hamid, Nor; Ezree Abdullah, Mohd; Erwan Sanik, Mohd; Mokhtar, Mardiha; Kaamin, Masiri; Syazwani Saari, Nur

    2017-08-01

    Hot mix asphalt (HMA) is one type of premix widely used in road construction worldwide. Aggregates for HMA are usually classified by size as coarse aggregates, fine aggregates, or mineral fillers. Moisture damage or stripping is one of the major concerns in HMA industry. The existence of water in asphalt pavement is often one of the major factors affecting the durability of HMA. The water- induced damage in HMA layers may be associated with two mechanisms a loss of adhesion and loss of cohesion. The main focus of this study based on these two objectives which is to develop HMA that involves used of dustler in asphalt mixture and to investigate the performance of dustler against stripping failure. The asphalt mixture of combination virgin aggregate and this waste material was studied. The percentages of dustler used in this study were 0.5%, 1.0% and 2.0% respectively. The method used in this study was Superpave mix design method. From the laboratory test, the indirect tensile strength (ITS) test was conducted to show the stripping performance. The result from that test showed that the value of ITS for dry sample is higher compared to wet sample for all percentages. The moisture sensitivity was determined through tensile strength ratio (TSR) test. From the results, it showed that the percentages of dustler were fulfilled the minimum requirement of AASHTO T283 which is 80% minimum requirement of moisture susceptibility. The highest value of TSR is 0.5% of dustler sample which is 98.55% compared to 1.0% of dustler sample, control sample and 2.0% of dustler sample. So, it can be concluded that dustler inhibits great potential on reducing stripping failure in hot mix asphalt.

  20. Essential work of fracture approach to fatigue grading of asphalt binders

    NASA Astrophysics Data System (ADS)

    Andriescu, Adrian

    The main objective of this thesis was to apply failure mechanics principles to the characterization of fatigue cracking of asphalt pavements and to identify the correlations between the pavement performance and the composition of binders. The essential work of fracture (EWF) method developed herein is an energy-based testing approach used for the fracture characterization of ductile materials. Developed for both binders and asphalt mixtures, the method provides fundamental parameters, such as specific essential work of fracture and critical tip opening displacement, as potential candidates for a better fatigue specification. It was shown that binders from different sources and with the same performance grade can have very different levels of fatigue susceptibility depending on their manufacturing method and hence failure properties. Also, the currently used binder loss modulus as developed by the Strategic Highway Research Program does not correlate with the newly proposed fracture mechanics based parameters. An extensive theological and ductile failure investigation on a large interval of testing conditions was performed for a group of binders that are used in the recently built test sections of Highway 655 in northern Ontario. It was found that the shift factors used in the construction of the master curves of the ductile fracture parameters differ from the shift factors of the rheological master curves. The difference was attributed to the response of the internal structure of the binder at the high strain levels that precede the failure phenomenon.

  1. Chlorinolysis reclaims rubber of waste tires

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.; Tervet, J. H.; Hull, G. G.

    1981-01-01

    Process reclaims rubber and reduces sulfur content by using chlorine gas to oxidize sulfur bonds in preference to other bonds. Rubber does not have poor hysteresis and abrasion resistance like conventionally reclaimed rubber and is suitable for premium radial tires. Chlorinated rubber is less susceptible to swelling by oils and may be used as paint ingredient.

  2. Chlorinolysis reclaims rubber of waste tires

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.; Tervet, J. H.; Hull, G. G.

    1981-01-01

    Process reclaims rubber and reduces sulfur content by using chlorine gas to oxidize sulfur bonds in preference to other bonds. Rubber does not have poor hysteresis and abrasion resistance like conventionally reclaimed rubber and is suitable for premium radial tires. Chlorinated rubber is less susceptible to swelling by oils and may be used as paint ingredient.

  3. Assessments of low emission asphalt mixtures produced using combinations of foaming agents

    NASA Astrophysics Data System (ADS)

    Mohd Hasan, Mohd Rosli

    workability, and having a higher expulsion rate from the foamed binder compared to water as a foaming agent. The addition of foaming agents to the asphalt binder has also lowered the activation energy of the asphalt binder, which has high potential in lowering the energy demand during production processes. The foamed WMA mixture prepared at 100°C was found to have behavior comparable with the control Hot Mix Asphalt (HMA) prepared at 155°C in terms of coatability, workability and compactability. Based on the mixture performance tests, the foamed WMA has a comparable or better performance than the HMA in terms of resistance to moisture damage, permanent deformation, fracture cracking and thermal cracking. The application of nano-hydrated lime is efficient in enhancing the aggregate coatability and improving the bearing capacity of asphalt pavement to lower the rutting potential and moisture susceptibility of foamed WMA mixtures. Limitations for each of the related parameters are also reported in this dissertation for the lab production of foamed WMA mixtures using ethanol and NaHCO 3 as foaming agents. The specified values were made based on the binder test, service characteristics and performance of foamed WMA mixtures in order to yield a comparable or better performance than the control HMA. Field validations should be carried out to understand the overall performance and durability of the proposed foaming WMA.

  4. Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages.

    PubMed

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2006-04-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. Lately, wear particles generated from traffic have been recognized to be a major contributing source to the overall particle load, especially in the Nordic countries were studded tires are used. In this work, we investigated the inflammatory effect of PM10 generated from the wear of studded tires on two different types of pavement. As comparison, we also investigated PM10 from a traffic-intensive street, a subway station, and diesel exhaust particles (DEP). Human monocyte-derived macrophages, nasal epithelial cells (RPMI 2650), and bronchial epithelial cells (BEAS-2B) were exposed to the different types of particles, and the secretion of IL-6, IL-8, IL-10, and TNF-alpha into the culture medium was measured. The results show a significant release of cytokines from macrophages after exposure for all types of particles. When particles generated from asphalt/granite pavement were compared to asphalt/quartzite pavement, the granite pavement had a significantly higher capacity to induce the release of cytokines. The granite pavement particles induced cytokine release at the same magnitude as the street particles did, which was higher than what particles from both a subway station and DEP did. Exposure of epithelial cells to PM10 resulted in a significant increase of TNF-alpha secreted from BEAS-2B cells for all types of particles used (DEP was not tested), and the highest levels were induced by subway particles. None of the particle types were able to evoke detectable cytokine release from RPMI 2650 cells. The results indicate that PM10 generated by the wear of studded tires on the street surface is a large contributor to the cytokine-releasing ability of particles in traffic-intensive areas and that the type of pavement used is important for the level of this contribution

  5. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  6. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture

    PubMed Central

    Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio

    2012-01-01

    The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the “texture” appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey. PMID:23012535

  7. Temporal evolution modeling of hydraulic and water quality performance of permeable pavements

    NASA Astrophysics Data System (ADS)

    Huang, Jian; He, Jianxun; Valeo, Caterina; Chu, Angus

    2016-02-01

    A mathematical model for predicting hydraulic and water quality performance in both the short- and long-term is proposed based on field measurements for three types of permeable pavements: porous asphalt (PA), porous concrete (PC), and permeable inter-locking concrete pavers (PICP). The model was applied to three field-scale test sites in Calgary, Alberta, Canada. The model performance was assessed in terms of hydraulic parameters including time to peak, peak flow and water balance and a water quality variable (the removal rate of total suspended solids). A total of 20 simulated storm events were used for model calibration and verification processes. The proposed model can simulate the outflow hydrographs with a coefficient of determination (R2) ranging from 0.762 to 0.907, and normalized root-mean-square deviation (NRMSD) ranging from 13.78% to 17.83%. Comparison of the time to peak flow, peak flow, runoff volume and TSS removal rates between the measured and modeled values in model verification phase had a maximum difference of 11%. The results demonstrate that the proposed model is capable of capturing the temporal dynamics of the pavement performance. Therefore, the model has great potential as a practical modeling tool for permeable pavement design and performance assessment.

  8. Laser scanning on road pavements: a new approach for characterizing surface texture.

    PubMed

    Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio

    2012-01-01

    The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the "texture" appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey.

  9. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  10. Improving the distribution and reducing the magnitude of pavement damage

    NASA Astrophysics Data System (ADS)

    Barker, W. R.; Chou, U. T.

    1980-08-01

    In the analysis of flexible pavement, the layered elastic theory was used to compute the pavement response. For the rigid pavement, finite difference, layered elastic theory, and Westergard procedures were used to compute tensile stresses in concrete that formed the basis for predicting allowable stress repetitions. For flexible pavement, the only effective means to reduce pavement damage was to modify the wheel assembly to reduce stress or strain at the critical locations in the pavement systems. The most effective modification would be to increase the spacing between duals. For rigid pavements, the edge effect was critical, thus suggesting that modifications to shift the loading away from the pavement edge would be effective.

  11. Maintenance Operations Degradation of Airfield Pavement Markings

    DTIC Science & Technology

    2012-03-01

    the amount of light, which after emitted from a headlight is reflected from the pavement marker back to the driver (ASTM, 2005). Pavement markings...The geometry is based on the driver sitting 1.3 meters above the ground seeing the pavement marking 30 meters in front of the headlight . Figure 1...is the measure of how much light from a headlight reflects off of the marking and is directed back to the driver’s eye (ASTM 2005). Roadway

  12. Dielectric characterization of hot-mix asphalt at the smart road using GPR

    NASA Astrophysics Data System (ADS)

    Al-Qadi, Imad L.; Loulizi, A.; Lahouar, S.

    2000-04-01

    To better interpret collected ground penetrating radar (GPR) data, a project is currently underway at the Virginia Smart Road. Twelve different flexible pavement sections and a continuously reinforced concrete rigid pavement section are incorporated in the road design. Thirty-five copper plates were placed at different layer interfaces throughout the pavement sections. The copper plates serve as a reflecting material and thus allow the determination of layers' dielectric constant over the GPR frequency range. An initial development of a method to calculate the complex dielectric constant of hot-mix asphalt over the frequency range of 750 to 1750 MHz using an air-coupled GPR system is presented. Utilizing GPR data, this method will be used to predict changes of the dielectric properties of the different SuperPaveTM mixes used at the Smart Road over time. The method is based on equating the overall reflection coefficient as obtained from the radar measurements with the calculated reflection coefficient using electromagnetic theory. The measured overall reflection coefficient is obtained by dividing the reflected frequency spectrum over the incident one. The theoretical overall reflection coefficient is obtained using the multiple reflection model. A Gauss-Newton method is then used to solve for the complex dielectric constant.

  13. Forchheimer flow in gently sloping layers: Application to drainage of porous asphalt

    NASA Astrophysics Data System (ADS)

    Eck, B. J.; Barrett, M. E.; Charbeneau, R. J.

    2012-01-01

    This paper presents analytical solutions for the problem of steady one-dimensional Forchheimer flow in an unconfined layer. The study's motivation is the drainage behavior of a highway pavement called permeable friction course. Permeable friction course is a layer of porous asphalt placed on top of impermeable pavement. Porous overlays are growing in popularity because they reduce noise, mitigate the hazards of wet weather driving, and produce cleaner runoff. Several of these benefits occur because water drains within the pavement rather than on the road surface. Drainage from the friction course is essentially that of an unconfined aquifer and has been successfully modeled using Darcy's law and the Dupuit-Forchheimer assumptions. Under certain cases, drainage may occur outside of the range where Darcy's law applies. The purpose of this paper is to identify cases where the assumption of Darcy flow is violated, develop analytical solutions based on Forchheimer's equation, and compare the solutions with those obtained for the Darcy case. The principle assumptions used in this analysis are that the relationship between hydraulic gradient and specific discharge is quadratic in nature (Forchheimer's equation) and that the Dupuit-Forchheimer assumptions apply. Comparing the Darcy and Forchheimer solutions leads to a new criterion for assessing the applicability of Darcy's law termed the discharge ratio.

  14. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    PubMed

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction.

  15. Characterization and design of asphalt mixtures with asphaltites from Boyacá for use in low traffic volume roads

    NASA Astrophysics Data System (ADS)

    Manrique-Espindola, R.

    2013-11-01

    The high availability of asphaltites in Boyacá and their low cost make this material a viable alternative for low traffic road paving; nevertheless, the traditional way in which this material is used generates, in cases, pavements with deficient behavior. This investigation, presents the results of the mixture design using asphaltites from the municipality of Pesca-Boyacá as well as coarse and fine aggregates produced in the region, 70-80 asphalt cement and slow-break asphalt emulsion. Working formulas for dense mixing in hot and cold and particularly MDF-2 and MDC-2 are presented from the characterization information; as benchmarks to define technical viability for use in low- traffic volume roads, according to NT1 regulation from INVIAS. The mixture design was performed according to the procedures defined in the RAMCODES and MARSHALL methodologies.

  16. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  17. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  18. Time domain backcalculation of pavement

    NASA Astrophysics Data System (ADS)

    Matsui, Kunihito; Nishizawa, Tatsuo; Kikuta, Yukio

    1998-03-01

    Falling weight deflectometor (FWD) has been frequently used to evaluate structural integrity of pavement. The device applies an impulsive force on the surface of pavement and measure surface deflections at several locations including the place of loading. Although the test is dynamic, the data is regarded as pseudo-static data. According to common practice, using the peak load and the corresponding peak deflections, layer moduli are estimated in a static domain such that the measured peak deflections coincide with the corresponding calculated deflections based on the assumption of the theory of linear elasticity. This paper presents a method to back calculate layer moduli in dynamic domain such that the histories of both measured and calculated responses corresponding to the impulsive force coincide. Pavement is modeled by an axisymmetric linear elastic system. FEM is utilized coupled with Ritz vector to reduce a matrix and thus to improve computational efficiency. The backcalculation algorithm used is the Gauss-Newton method coupled with a truncated singular value decomposition.

  19. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    EPA Pesticide Factsheets

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  20. Method and apparatus for fragmenting asphalt

    SciTech Connect

    Eftefield, L. G.; Simmons, G. P.; Stone, G. L.

    1985-12-24

    A method and apparatus for laterally severing an asphalt layer to form a ribbon, separating the asphalt ribbon from an underlying base, elevating the separated asphalt ribbon, and fracturing the elevated asphalt ribbon by bending same. A cutting member having a leading edge which is insertable between the asphalt ribbon and base provides separation thereof along a lateral line. A ramp and elevating structure elevatingly guide the separated asphalt ribbon into a pair of breaker drums which are rotatable in opposite circumferential directions. Each breaker drum has protruding teeth which are arranged in laterally separated circumferential rows with the teeth in adjacent circumferential rows being preferably arcuately offset. Corresponding circumferential rows on the opposed breaker drums are laterally aligned and the teeth in those rows engage opposite surfaces of the asphalt ribbon during rotation of the breaker drums. The teeth in corresponding rows on the respective breaker drums alternately engage opposite surfaces of the asphalt ribbon at longitudinally spaced locations to bend and fracture the asphalt ribbon by displacing it in generally opposite transverse directions at the engaged locations.