Gao, X; Xie, J K; Wan, Y X; Ushigusa, K; Wan, B N; Zhang, S Y; Li, J; Kuang, G L
2002-01-01
Stationary multifaceted asymmetric radiation from the edge (MARFE) is studied by gas-puffing feedback control according to an empirical MARFE critical density ( approximately 1.8 x 10(13) cm(-3)) in the HT-7 Ohmic discharges (where the plasma current I(p) is about 170 kA, loop voltage V(loop)=2-3 V, toroidal field B(T)=1.9 T, and Z(eff)=3-4). It is observed that an improved confinement mode characterized by D(alpha) line emissions drops and the line-averaged density increase is triggered in the stationary MARFE discharges. The mode is not a symmetric "detachment" state, because the quasi-steady-state poloidally asymmetric radiation (e.g., C III line emissions) still exists. This phenomenon has not been predicted by the current MARFE theory.
Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altanbyek, Volodya; Cha, Sun-Joo; Kang, Ga-Un
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease, characterized by progressive and selective loss of motor neurons in the brain and spinal cord. DNA/RNA-binding proteins such as TDP-43, FUS, and TAF15 have been linked with the sporadic and familial forms of ALS. However, the exact pathogenic mechanism of ALS is still unknown. Recently, we found that ALS-causing genes such as TDP-43, FUS, and TAF15 genetically interact with mitochondrial dynamics regulatory genes. In this study, we show that mitochondrial fission was highly enhanced in muscles and motor neurons of TDP-43, FUS, and TAF15-induced fly models of ALS. Furthermore, themore » mitochondrial fission defects were rescued by co-expression of mitochondrial dynamics regulatory genes such as Marf, Opa1, and the dominant negative mutant form of Drp1. Moreover, we found that the expression level of Marf was decreased in ALS-induced flies. These results indicate that the imbalance of mitochondrial dynamics caused by instability of Marf is linked to the pathogenesis of TDP-43, FUS, and TAF15-associated ALS. - Highlights: • Mitochondrial fission is highly enhanced in TDP-43, FUS, and TAF15-induced fly models of ALS. • Excessive mitochondrial fragmentation in fly models of ALS is restored by mitochondrial dynamics regulatory genes. • Level of Marf protein is decreased in TDP-43, FUS, and TAF15-mediated ALS. • Imbalance of mitochondrial dynamics caused by Marf instability is linked to the pathogenesis of ALS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inman, Jeffrey; Bonnie, David; Broomfield, Matthew
There is a sea (mar is Spanish for sea) of data out there that needs to be handled efficiently. Object Stores are filling the hole of managing large amounts of data efficiently. However, in many cases, and our HPC case in particular, we need a traditional file (POSIX) interface to this data as HPC I/O models have not moved to object interfaces, such as Amazon S3, CDMI, etc.Eventually Object Store providers may deliver file interfaces to their object stores, but at this point those interfaces are not ready to do the job that we need done. MarFS will glue togethermore » two existing scalable components: a file system's scalable metadata component that provides the file interface; and existing scalable object stores (from one or more providers). There will be utilities to do work that is not critical to be done in real-time so that MarFS can manage the space used by objects and allocated to individual users.« less
Reconstruction of maxillary defect with musculo-adipose rectus free flap.
Low, Tsu-Hui Hubert; Lindsay, Andrew; Clark, Jonathan; Chai, Francis; Lewis, Richard
2017-02-01
The rectus myocutaneous free flap (RMFF) is used for medium to large maxillectomy defects. However, in patients with central obesity the inset could be difficult due to the bulk from excessive layer of adipose tissue. We describe a modification of the RMFF for patients with excessive central obesity with a flap consisting of adipose tissue with minimal rectus muscle; the musculo-adipose rectus free flap (MARF). Five cases of MARF reconstruction were performed between 2003 and 2013, with patients' body mass indexes ranging from 29.0 to 41.2 kg/m 2 . All patients had sinonasal tumor, of which three were adenoid cystic carcinoma, one squamous cell carcinoma, and one melanoma. Four patients had Codeiro IIIb defects and one had Codeiro II defect. Using the MARF technique, the maxillectomy defect was obliterated with vascularized adipose tissue overlying the rectus muscle and was trimmed to fit the maxillectomy defect. The adipose tissue was allowed to granulate and mucosalize. The volume of adipose tissue harvested was between 120 and 160 mL. All flaps survived with no requirement for re-exploration. Complete oro-nasal separation was achieved in all patients. The time to commencement of oral intake ranges from 5 to 15 days. One patient developed seroma and one developed wound breakdown on the donor site. The length of stay at the hospital ranges from 9 to 22 days. On follow-up ranging 7.5-32.8 months, two patients died from their malignancies. The other three patients were able to tolerate oral soft diet. The MARF may be considered as an alternative to myocutaneous rectus free flap particularly for the reconstruction of maxillary defects in patients with central obesity. © 2015 Wiley Periodicals, Inc. Microsurgery 37:137-141, 2017. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ricardo Maqueda; Dr. Fred M. Levinton
Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15:more » Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.« less
Revisited comparison of thermal instability theory with MARFE density limit experiment in TEXTOR.
NASA Astrophysics Data System (ADS)
Kelly, Frederick
2006-03-01
Density limit shots in TEXTOR [Tokamak EXperiment for Technology Oriented Research] that ended in MARFE [Multifaceted Asymmetric Radiation From the Edge] are analyzed by several thermal instability theories^1-7 with convective effects included. ^1W. M. Stacey, Phys. Plasmas 3, 2673 (1996); Phys. Plasmas 3, 3032 (1996); Phys. Plasmas 4, 134 (1997); Phys. Plasmas 4, 242 (1997). ^2W. M. Stacey, Plasma Phys. Contr. Fusion 39, 1245 (1997). ^3W. M. Stacey, Fusion Technol. 36, 38 (1999).^ ^4W. M. Stacey, Phys. Plasmas 7, 3464 (2000). ^5F. A. Kelly, W. M. Stacey, J. Rapp and M. Brix, Phys. Plasmas 8, 3382 (2001). ^6M. Z. Tokar and F. A. Kelly, Phys. Plasmas 10, 4378 (2003). ^7M. Z. Tokar, F. A. Kelly and X. Loozen, Phys. Plasmas 12, 052510 (2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeehye; Lee, Gina; Chung, Jongkyeong
The two Parkinson's disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkinmore » mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.« less
MarFS, a Near-POSIX Interface to Cloud Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inman, Jeffrey Thornton; Vining, William Flynn; Ransom, Garrett Wilson
The engineering forces driving development of “cloud” storage have produced resilient, cost-effective storage systems that can scale to 100s of petabytes, with good parallel access and bandwidth. These features would make a good match for the vast storage needs of High-Performance Computing datacenters, but cloud storage gains some of its capability from its use of HTTP-style Representational State Transfer (REST) semantics, whereas most large datacenters have legacy applications that rely on POSIX file-system semantics. MarFS is an open-source project at Los Alamos National Laboratory that allows us to present cloud-style object-storage as a scalable near-POSIX file system. We have alsomore » developed a new storage architecture to improve bandwidth and scalability beyond what’s available in commodity object stores, while retaining their resilience and economy. Additionally, we present a scheme for scaling the POSIX interface to allow billions of files in a single directory and trillions of files in total.« less
MarFS, a Near-POSIX Interface to Cloud Objects
Inman, Jeffrey Thornton; Vining, William Flynn; Ransom, Garrett Wilson; ...
2017-01-01
The engineering forces driving development of “cloud” storage have produced resilient, cost-effective storage systems that can scale to 100s of petabytes, with good parallel access and bandwidth. These features would make a good match for the vast storage needs of High-Performance Computing datacenters, but cloud storage gains some of its capability from its use of HTTP-style Representational State Transfer (REST) semantics, whereas most large datacenters have legacy applications that rely on POSIX file-system semantics. MarFS is an open-source project at Los Alamos National Laboratory that allows us to present cloud-style object-storage as a scalable near-POSIX file system. We have alsomore » developed a new storage architecture to improve bandwidth and scalability beyond what’s available in commodity object stores, while retaining their resilience and economy. Additionally, we present a scheme for scaling the POSIX interface to allow billions of files in a single directory and trillions of files in total.« less
Tool and Technique for Restraining Live-Captured American Martens and Fishers
Linda Ebel Thomasma; Rolf O. Peterson; Rolf O. Peterson
1998-01-01
Restraining live-captured animals poses challenges when working alone, especially in remote field locations. While studying American martens (Marfes americana) and fishers (Martes pennantr) in Michigan, we developed a new tool, trap combs, to restrain a live-captured animal in the trap. The construction and use of trap combs are described.
Plasma density behavior with new graphite limiters in the Hefei Tokamak-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asif, M.; Gao, X.; Li, J.
A new set of actively cooled toroidal double-ring graphite limiters has been developed in the Hefei Tokamak-7 (HT-7) [X. Gao et al., Phys. Plasmas 7, 2933 (2000)] for long pulse operation. The extension of operational region and density behavior with graphite (C) limiters have been studied in this paper. Extended high-density region at the high plasma current low-q{sub a} was obtained. The density profile with the C limiter was studied to compare with the previous molybdenum (Mo) limiter. The critical density of multifaceted asymmetric radiation from the edge (MARFE) onset is observed in the region of Z{sub eff}{sup 1/2}f{sub GW}=0.9{approx}1.2,more » where f{sub GW}=n{sub e}/n{sub GW}. (Here n{sub e} is the maximum line average electron density and n{sub GW} is the Greenwald density.) Under the same injected power, the critical density of MARFE onset with the new C limiter is much higher than the previous Mo limiter.« less
A Layered Solution for Supercomputing Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.
A Layered Solution for Supercomputing Storage
Grider, Gary
2018-06-13
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storageâbased on inexpensive, failure-prone disk drivesâbetween disk drives and tape archives.
Investigation of physical processes limiting plasma density in H-mode on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, R.; Mahdavi, M.A.; Jernigan, T.C.
1996-12-01
A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmasmore » was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.« less
Australian Recognition Framework Arrangements. Australia's National Training Framework.
ERIC Educational Resources Information Center
Australian National Training Authority, Brisbane.
This document explains the objectives, principles, standards, and protocols of the Australian Recognition Framework (ARF), which is a comprehensive approach to national recognition of vocational education and training (VET) that is based on a quality-assured approach to the registration of training organizations seeking to deliver training, assess…
Models of Recognition, Repetition Priming, and Fluency : Exploring a New Framework
ERIC Educational Resources Information Center
Berry, Christopher J.; Shanks, David R.; Speekenbrink, Maarten; Henson, Richard N. A.
2012-01-01
We present a new modeling framework for recognition memory and repetition priming based on signal detection theory. We use this framework to specify and test the predictions of 4 models: (a) a single-system (SS) model, in which one continuous memory signal drives recognition and priming; (b) a multiple-systems-1 (MS1) model, in which completely…
Investigation of Physical Processes Limiting Plasma Density in DIII--D
NASA Astrophysics Data System (ADS)
Maingi, R.
1996-11-01
Understanding the physical processes which limit operating density is crucial in achieving peak performance in confined plasmas. Studies from many of the world's tokamaks have indicated the existence(M. Greenwald, et al., Nucl. Fusion 28) (1988) 2199 of an operational density limit (Greenwald limit, n^GW_max) which is proportional to the plasma current and independent of heating power. Several theories have reproduced the current dependence, but the lack of a heating power dependence in the data has presented an enigma. This limit impacts the International Thermonuclear Experimental Reactor (ITER) because the nominal operating density for ITER is 1.5 × n^GW_max. In DIII-D, experiments are being conducted to understand the physical processes which limit operating density in H-mode discharges; these processes include X-point MARFE formation, high core recycling and neutral pressure, resistive MHD stability, and core radiative collapse. These processes affect plasma properties, i.e. edge/scrape-off layer conduction and radiation, edge pressure gradient and plasma current density profile, and core radiation, which in turn restrict the accessible density regime. With divertor pumping and D2 pellet fueling, core neutral pressure is reduced and X-point MARFE formation is effectively eliminated. Injection of the largest-sized pellets does cause transient formation of divertor MARFEs which occasionally migrate to the X-point, but these are rapidly extinguished in pumped discharges in the time between pellets. In contrast to Greenwald et al., it is found that the density relaxation time after pellets is largely independent of the density relative to the Greenwald limit. Fourier analysis of Mirnov oscillations indicates the de-stabilization and growth of rotating, tearing-type modes (m/n= 2/1) when the injected pellets cause large density perturbations, and these modes often reduce energy confinement back to L-mode levels. We are examining the mechanisms for de-stabilization of the mode, the primary ones being neo-classical pressure gradient drivers. Discharges with a gradual density increase are often free of large amplitude tearing modes, allowing access to the highest density regimes in which off-axis beam deposition can lead to core radiative collapse, i.e. a central power balance limit. The highest achieved barne was 1.5 × n^GW_max with τ_E/τ_E^JET-DIII-D >= 0.9. The highest density obtained in L-mode discharges was 3 × n^GW_max. Implications of these results for ITER will be discussed.
Radiation−condensation instability in tokamaks with mixed impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, D. Kh.; Pshenov, A. A., E-mail: Pshenov.andrey@gmail.com
2015-08-15
Radiation−condensation instability (RCI) is one of the possible mechanisms behind the formation of microfaceted asymmetric radiation from the edge (MARFE) of a tokamak. It has been previously shown by the authors that RCI in carbon-seeded plasma can be stabilized using neon injection. Recently, beryllium- and tungsten-seeded plasmas became a subject of great interest. Therefore, in the present paper, RCI stability analysis of the edge plasma seeded with beryllium, tungsten, nitrogen, and carbon is performed. The influence of neutral hydrogen fluxes from the wall on the marginal stability limit is studied as well.
Human-assisted sound event recognition for home service robots.
Do, Ha Manh; Sheng, Weihua; Liu, Meiqin
This paper proposes and implements an open framework of active auditory learning for a home service robot to serve the elderly living alone at home. The framework was developed to realize the various auditory perception capabilities while enabling a remote human operator to involve in the sound event recognition process for elderly care. The home service robot is able to estimate the sound source position and collaborate with the human operator in sound event recognition while protecting the privacy of the elderly. Our experimental results validated the proposed framework and evaluated auditory perception capabilities and human-robot collaboration in sound event recognition.
Towards Real-Time Speech Emotion Recognition for Affective E-Learning
ERIC Educational Resources Information Center
Bahreini, Kiavash; Nadolski, Rob; Westera, Wim
2016-01-01
This paper presents the voice emotion recognition part of the FILTWAM framework for real-time emotion recognition in affective e-learning settings. FILTWAM (Framework for Improving Learning Through Webcams And Microphones) intends to offer timely and appropriate online feedback based upon learner's vocal intonations and facial expressions in order…
A framework for the recognition of 3D faces and expressions
NASA Astrophysics Data System (ADS)
Li, Chao; Barreto, Armando
2006-04-01
Face recognition technology has been a focus both in academia and industry for the last couple of years because of its wide potential applications and its importance to meet the security needs of today's world. Most of the systems developed are based on 2D face recognition technology, which uses pictures for data processing. With the development of 3D imaging technology, 3D face recognition emerges as an alternative to overcome the difficulties inherent with 2D face recognition, i.e. sensitivity to illumination conditions and orientation positioning of the subject. But 3D face recognition still needs to tackle the problem of deformation of facial geometry that results from the expression changes of a subject. To deal with this issue, a 3D face recognition framework is proposed in this paper. It is composed of three subsystems: an expression recognition system, a system for the identification of faces with expression, and neutral face recognition system. A system for the recognition of faces with one type of expression (happiness) and neutral faces was implemented and tested on a database of 30 subjects. The results proved the feasibility of this framework.
Low-contrast underwater living fish recognition using PCANet
NASA Astrophysics Data System (ADS)
Sun, Xin; Yang, Jianping; Wang, Changgang; Dong, Junyu; Wang, Xinhua
2018-04-01
Quantitative and statistical analysis of ocean creatures is critical to ecological and environmental studies. And living fish recognition is one of the most essential requirements for fishery industry. However, light attenuation and scattering phenomenon are present in the underwater environment, which makes underwater images low-contrast and blurry. This paper tries to design a robust framework for accurate fish recognition. The framework introduces a two stage PCA Network to extract abstract features from fish images. On a real-world fish recognition dataset, we use a linear SVM classifier and set penalty coefficients to conquer data unbalanced issue. Feature visualization results show that our method can avoid the feature distortion in boundary regions of underwater image. Experiments results show that the PCA Network can extract discriminate features and achieve promising recognition accuracy. The framework improves the recognition accuracy of underwater living fishes and can be easily applied to marine fishery industry.
A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors
Han, Manhyung; Bang, Jae Hun; Nugent, Chris; McClean, Sally; Lee, Sungyoung
2014-01-01
Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%. PMID:25184486
A Component-Based Vocabulary-Extensible Sign Language Gesture Recognition Framework.
Wei, Shengjing; Chen, Xiang; Yang, Xidong; Cao, Shuai; Zhang, Xu
2016-04-19
Sign language recognition (SLR) can provide a helpful tool for the communication between the deaf and the external world. This paper proposed a component-based vocabulary extensible SLR framework using data from surface electromyographic (sEMG) sensors, accelerometers (ACC), and gyroscopes (GYRO). In this framework, a sign word was considered to be a combination of five common sign components, including hand shape, axis, orientation, rotation, and trajectory, and sign classification was implemented based on the recognition of five components. Especially, the proposed SLR framework consisted of two major parts. The first part was to obtain the component-based form of sign gestures and establish the code table of target sign gesture set using data from a reference subject. In the second part, which was designed for new users, component classifiers were trained using a training set suggested by the reference subject and the classification of unknown gestures was performed with a code matching method. Five subjects participated in this study and recognition experiments under different size of training sets were implemented on a target gesture set consisting of 110 frequently-used Chinese Sign Language (CSL) sign words. The experimental results demonstrated that the proposed framework can realize large-scale gesture set recognition with a small-scale training set. With the smallest training sets (containing about one-third gestures of the target gesture set) suggested by two reference subjects, (82.6 ± 13.2)% and (79.7 ± 13.4)% average recognition accuracy were obtained for 110 words respectively, and the average recognition accuracy climbed up to (88 ± 13.7)% and (86.3 ± 13.7)% when the training set included 50~60 gestures (about half of the target gesture set). The proposed framework can significantly reduce the user's training burden in large-scale gesture recognition, which will facilitate the implementation of a practical SLR system.
ERIC Educational Resources Information Center
Hawke, Geof; McDonald, Rod
The National Framework for the Recognition of Training (NFROT) is one of the key structures underpinning training reform in Australia. NFROT's basic principles and fundamental purposes are supported by almost everyone involved with the framework, and there is strong evidence that NFROT has provided considerable benefits to providers and learners…
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre
2017-06-01
We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.
NASA Astrophysics Data System (ADS)
Kushwaha, Alok Kumar Singh; Srivastava, Rajeev
2015-09-01
An efficient view invariant framework for the recognition of human activities from an input video sequence is presented. The proposed framework is composed of three consecutive modules: (i) detect and locate people by background subtraction, (ii) view invariant spatiotemporal template creation for different activities, (iii) and finally, template matching is performed for view invariant activity recognition. The foreground objects present in a scene are extracted using change detection and background modeling. The view invariant templates are constructed using the motion history images and object shape information for different human activities in a video sequence. For matching the spatiotemporal templates for various activities, the moment invariants and Mahalanobis distance are used. The proposed approach is tested successfully on our own viewpoint dataset, KTH action recognition dataset, i3DPost multiview dataset, MSR viewpoint action dataset, VideoWeb multiview dataset, and WVU multiview human action recognition dataset. From the experimental results and analysis over the chosen datasets, it is observed that the proposed framework is robust, flexible, and efficient with respect to multiple views activity recognition, scale, and phase variations.
Towards Multimodal Emotion Recognition in E-Learning Environments
ERIC Educational Resources Information Center
Bahreini, Kiavash; Nadolski, Rob; Westera, Wim
2016-01-01
This paper presents a framework (FILTWAM (Framework for Improving Learning Through Webcams And Microphones)) for real-time emotion recognition in e-learning by using webcams. FILTWAM offers timely and relevant feedback based upon learner's facial expressions and verbalizations. FILTWAM's facial expression software module has been developed and…
On the Design of Smart Homes: A Framework for Activity Recognition in Home Environment.
Cicirelli, Franco; Fortino, Giancarlo; Giordano, Andrea; Guerrieri, Antonio; Spezzano, Giandomenico; Vinci, Andrea
2016-09-01
A smart home is a home environment enriched with sensing, actuation, communication and computation capabilities which permits to adapt it to inhabitants preferences and requirements. Establishing a proper strategy of actuation on the home environment can require complex computational tasks on the sensed data. This is the case of activity recognition, which consists in retrieving high-level knowledge about what occurs in the home environment and about the behaviour of the inhabitants. The inherent complexity of this application domain asks for tools able to properly support the design and implementation phases. This paper proposes a framework for the design and implementation of smart home applications focused on activity recognition in home environments. The framework mainly relies on the Cloud-assisted Agent-based Smart home Environment (CASE) architecture offering basic abstraction entities which easily allow to design and implement Smart Home applications. CASE is a three layered architecture which exploits the distributed multi-agent paradigm and the cloud technology for offering analytics services. Details about how to implement activity recognition onto the CASE architecture are supplied focusing on the low-level technological issues as well as the algorithms and the methodologies useful for the activity recognition. The effectiveness of the framework is shown through a case study consisting of a daily activity recognition of a person in a home environment.
NASA Astrophysics Data System (ADS)
Wen, Di; Ding, Xiaoqing
2003-12-01
In this paper we propose a general framework for character segmentation in complex multilingual documents, which is an endeavor to combine the traditionally separated segmentation and recognition processes into a cooperative system. The framework contains three basic steps: Dissection, Local Optimization and Global Optimization, which are designed to fuse various properties of the segmentation hypotheses hierarchically into a composite evaluation to decide the final recognition results. Experimental results show that this framework is general enough to be applied in variety of documents. A sample system based on this framework to recognize Chinese, Japanese and Korean documents and experimental performance is reported finally.
ERIC Educational Resources Information Center
Parks, Colleen M.
2013-01-01
Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which…
Jeffery, Alvin D; Mosier, Sammie; Baker, Allison; Korwek, Kimberly; Borum, Cindy; Englebright, Jane
2018-02-01
Hospital medical-surgical (M/S) nursing units are responsible for up to 28 million encounters annually, yet receive little attention from professional organizations and national initiatives targeted to improve quality and performance. We sought to develop a framework recognizing high-performing units within our large hospital system. This was a retrospective data analysis of M/S units throughout a 168-hospital system. Measures represented patient experience, employee engagement, staff scheduling, nursing-sensitive patient outcomes, professional practices, and clinical process measures. Four hundred ninety units from 129 hospitals contributed information to test the framework. A manual scoring system identified the top 5% and recognized them as a "Unit of Distinction." Secondary analyses with machine learning provided validation of the proposed framework. Similar to external recognition programs, this framework and process provide a holistic evaluation useful for meaningful recognition and lay the groundwork for benchmarking in improvement efforts.
Recognition memory: a review of the critical findings and an integrated theory for relating them.
Malmberg, Kenneth J
2008-12-01
The development of formal models has aided theoretical progress in recognition memory research. Here, I review the findings that are critical for testing them, including behavioral and brain imaging results of single-item recognition, plurality discrimination, and associative recognition experiments under a variety of testing conditions. I also review the major approaches to measurement and process modeling of recognition. The review indicates that several extant dual-process measures of recollection are unreliable, and thus they are unsuitable as a basis for forming strong conclusions. At the process level, however, the retrieval dynamics of recognition memory and the effect of strengthening operations suggest that a recall-to-reject process plays an important role in plurality discrimination and associative recognition, but not necessarily in single-item recognition. A new theoretical framework proposes that the contribution of recollection to recognition depends on whether the retrieval of episodic details improves accuracy, and it organizes the models around the construct of efficiency. Accordingly, subjects adopt strategies that they believe will produce a desired level of accuracy in the shortest amount of time. Several models derived from this framework are shown to account the accuracy, latency, and confidence with which the various recognition tasks are performed.
Software Life Cycle Management Workshop (2nd) August 21-22, 1978, Atlanta, Georgia.
1978-08-01
34Rt44l P/Sll tC/, PC/Al/m4’Ma~rF P’FI’ACPONI C/SEVA I’ Sf 58 ANALE Ol L’N~A 4 CL Ci MODEL,. D(,,,e fPA cows " rgENr SotrF rsAR Ne /NcARN~~rVAoJlSr OOzO...271 and reports his experimental results 1281. Then, using the method of equally likely subintervals, the decision StIl on Holstein and his...ESD-TR-65-220, Air Force Sys- tems Command L. G. Hanscom Field, Bedford, Massachusetts. 23. CarI-Axel S. Stael von Holstein . Assessment and
Academic Recognition: Status and Challenges
ERIC Educational Resources Information Center
Bergan, Sjur
2009-01-01
The Council of Europe/UNESCO Recognition Convention (also known as the Lisbon Recognition Convention) provides the legal framework for academic recognition in Europe, and it serves a double purpose: as a legal text and as a guide to good practice. The ENIC and NARIC Networks promote the implementation of the Convention and seek to develop a better…
A unified framework for gesture recognition and spatiotemporal gesture segmentation.
Alon, Jonathan; Athitsos, Vassilis; Yuan, Quan; Sclaroff, Stan
2009-09-01
Within the context of hand gesture recognition, spatiotemporal gesture segmentation is the task of determining, in a video sequence, where the gesturing hand is located and when the gesture starts and ends. Existing gesture recognition methods typically assume either known spatial segmentation or known temporal segmentation, or both. This paper introduces a unified framework for simultaneously performing spatial segmentation, temporal segmentation, and recognition. In the proposed framework, information flows both bottom-up and top-down. A gesture can be recognized even when the hand location is highly ambiguous and when information about when the gesture begins and ends is unavailable. Thus, the method can be applied to continuous image streams where gestures are performed in front of moving, cluttered backgrounds. The proposed method consists of three novel contributions: a spatiotemporal matching algorithm that can accommodate multiple candidate hand detections in every frame, a classifier-based pruning framework that enables accurate and early rejection of poor matches to gesture models, and a subgesture reasoning algorithm that learns which gesture models can falsely match parts of other longer gestures. The performance of the approach is evaluated on two challenging applications: recognition of hand-signed digits gestured by users wearing short-sleeved shirts, in front of a cluttered background, and retrieval of occurrences of signs of interest in a video database containing continuous, unsegmented signing in American Sign Language (ASL).
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
Ordóñez, Francisco Javier; Roggen, Daniel
2016-01-18
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters' influence on performance to provide insights about their optimisation.
NASA Astrophysics Data System (ADS)
Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew
2016-03-01
Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.
Finger Vein Recognition Based on a Personalized Best Bit Map
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735
Finger vein recognition based on a personalized best bit map.
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.
Applying Affect Recognition in Serious Games: The PlayMancer Project
NASA Astrophysics Data System (ADS)
Ben Moussa, Maher; Magnenat-Thalmann, Nadia
This paper presents an overview and the state-of-art in the applications of 'affect' recognition in serious games for the support of patients in behavioral and mental disorder treatments and chronic pain rehabilitation, within the framework of the European project PlayMancer. Three key technologies are discussed relating to facial affect recognition, fusion of different affect recognition methods, and the application of affect recognition in serious games.
Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.
Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin
2016-04-14
Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.
Practical vision based degraded text recognition system
NASA Astrophysics Data System (ADS)
Mohammad, Khader; Agaian, Sos; Saleh, Hani
2011-02-01
Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
Ordóñez, Francisco Javier; Roggen, Daniel
2016-01-01
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation. PMID:26797612
MarFS-Requirements-Design-Configuration-Admin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kettering, Brett Michael; Grider, Gary Alan
This document will be organized into sections that are defined by the requirements for a file system that presents a near-POSIX (Portable Operating System Interface) interface to the user, but whose data is stored in whatever form is most efficient for the type of data being stored. After defining the requirement the design for meeting the requirement will be explained. Finally there will be sections on configuring and administering this file system. More and more, data dominates the computing world. There is a “sea” of data out there in many different formats that needs to be managed and used. “Mar”more » means “sea” in Spanish. Thus, this product is dubbed MarFS, a file system for a sea of data.« less
NASA Astrophysics Data System (ADS)
Anagnostopoulos, Christos Nikolaos; Vovoli, Eftichia
An emotion recognition framework based on sound processing could improve services in human-computer interaction. Various quantitative speech features obtained from sound processing of acting speech were tested, as to whether they are sufficient or not to discriminate between seven emotions. Multilayered perceptrons were trained to classify gender and emotions on the basis of a 24-input vector, which provide information about the prosody of the speaker over the entire sentence using statistics of sound features. Several experiments were performed and the results were presented analytically. Emotion recognition was successful when speakers and utterances were “known” to the classifier. However, severe misclassifications occurred during the utterance-independent framework. At least, the proposed feature vector achieved promising results for utterance-independent recognition of high- and low-arousal emotions.
Fatima, Iram; Fahim, Muhammad; Lee, Young-Koo; Lee, Sungyoung
2013-01-01
In recent years, activity recognition in smart homes is an active research area due to its applicability in many applications, such as assistive living and healthcare. Besides activity recognition, the information collected from smart homes has great potential for other application domains like lifestyle analysis, security and surveillance, and interaction monitoring. Therefore, discovery of users common behaviors and prediction of future actions from past behaviors become an important step towards allowing an environment to provide personalized service. In this paper, we develop a unified framework for activity recognition-based behavior analysis and action prediction. For this purpose, first we propose kernel fusion method for accurate activity recognition and then identify the significant sequential behaviors of inhabitants from recognized activities of their daily routines. Moreover, behaviors patterns are further utilized to predict the future actions from past activities. To evaluate the proposed framework, we performed experiments on two real datasets. The results show a remarkable improvement of 13.82% in the accuracy on average of recognized activities along with the extraction of significant behavioral patterns and precise activity predictions with 6.76% increase in F-measure. All this collectively help in understanding the users” actions to gain knowledge about their habits and preferences. PMID:23435057
Formal Models of Word Recognition. Final Report.
ERIC Educational Resources Information Center
Travers, Jeffrey R.
Existing mathematical models of word recognition are reviewed and a new theory is proposed in this research. The new theory integrates earlier proposals within a single framework, sacrificing none of the predictive power of the earlier proposals, but offering a gain in theoretical economy. The theory holds that word recognition is accomplished by…
Van Hoof, Thomas J; Kelvey-Albert, Michele; Katz, Matthew; Lalime, Ken; Sacks, Ken; Meehan, Thomas P
2014-01-01
The patient-centered medical home is a model for delivering primary care in the United States. Primary care clinicians and their staffs require assistance in understanding the innovation and in applying it to practice. The purpose of this article is to describe and to critique a continuing education program that is relevant to, and will become more common in, primary care. A multifaceted educational strategy prepared 20 primary care private practices to achieve National Committee for Quality Assurance Level 3 recognition as Patient-Centered Medical Homes. Eighteen (90%) practices submitted an application to the National Committee for Quality Assurance. On the first submission attempt, 13 of 18 (72%) achieved Level 3 recognition and 5 (28%) achieved Level 1 recognition. An interactive multifaceted educational strategy can be successful in preparing primary care practices for Patient-Centered Medical Homes recognition, but the strategy may not ensure transformation. Future educational activities should consider an expanded outcomes framework and the evidence of effective continuing education to be more successful with recognition and transformation.
Finger vein recognition based on personalized weight maps.
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-09-10
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.
Finger Vein Recognition Based on Personalized Weight Maps
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-01-01
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556
Sources of interference in item and associative recognition memory.
Osth, Adam F; Dennis, Simon
2015-04-01
A powerful theoretical framework for exploring recognition memory is the global matching framework, in which a cue's memory strength reflects the similarity of the retrieval cues being matched against the contents of memory simultaneously. Contributions at retrieval can be categorized as matches and mismatches to the item and context cues, including the self match (match on item and context), item noise (match on context, mismatch on item), context noise (match on item, mismatch on context), and background noise (mismatch on item and context). We present a model that directly parameterizes the matches and mismatches to the item and context cues, which enables estimation of the magnitude of each interference contribution (item noise, context noise, and background noise). The model was fit within a hierarchical Bayesian framework to 10 recognition memory datasets that use manipulations of strength, list length, list strength, word frequency, study-test delay, and stimulus class in item and associative recognition. Estimates of the model parameters revealed at most a small contribution of item noise that varies by stimulus class, with virtually no item noise for single words and scenes. Despite the unpopularity of background noise in recognition memory models, background noise estimates dominated at retrieval across nearly all stimulus classes with the exception of high frequency words, which exhibited equivalent levels of context noise and background noise. These parameter estimates suggest that the majority of interference in recognition memory stems from experiences acquired before the learning episode. (c) 2015 APA, all rights reserved).
Pires, Ivan Miguel; Garcia, Nuno M; Pombo, Nuno; Flórez-Revuelta, Francisco; Spinsante, Susanna
2018-02-21
Sensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature.
Pombo, Nuno
2018-01-01
Sensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature. PMID:29466316
Zhang, Ying; Zhan, Tian-Guang; Zhou, Tian-You; Qi, Qiao-Yan; Xu, Xiao-Na; Zhao, Xin
2016-06-18
A two-dimensional (2D) supramolecular organic framework (SOF) has been constructed through the co-assembly of a triphenylamine-based building block and cucurbit[8]uril (CB[8]). Fluorescence turn-on of the non-emissive building block was observed upon the formation of the 2D SOF, which displayed highly selective and sensitive recognition of picric acid over a variety of nitroaromatics.
ERIC Educational Resources Information Center
Clark, Steven E.; Abbe, Allison; Larson, Rakel P.
2006-01-01
S. E. Clark, A. Hori, A. Putnam, and T. J. Martin (2000) showed that collaboration on a recognition memory task produced facilitation in recognition of targets but had inconsistent and sometimes negative effects regarding distractors. They accounted for these results within the framework of a dual-process, recall-plus-familiarity model but…
The Significance of the Learner Profile in Recognition of Prior Learning
ERIC Educational Resources Information Center
Snyman, Marici; van den Berg, Geesje
2018-01-01
Recognition of prior learning (RPL) is based on the principle that valuable learning, worthy of recognition, takes place outside formal education. In the context of higher education, legislation provides an enabling framework for the implementation of RPL. However, RPL will only gain its rightful position if it can ensure the RPL candidates'…
Activity inference for Ambient Intelligence through handling artifacts in a healthcare environment.
Martínez-Pérez, Francisco E; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C; Rodríguez, Marcela D
2012-01-01
Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user.
Activity Inference for Ambient Intelligence Through Handling Artifacts in a Healthcare Environment
Martínez-Pérez, Francisco E.; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C.; Rodríguez, Marcela D.
2012-01-01
Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user. PMID:22368512
Bridge Health Monitoring Using a Machine Learning Strategy
DOT National Transportation Integrated Search
2017-01-01
The goal of this project was to cast the SHM problem within a statistical pattern recognition framework. Techniques borrowed from speaker recognition, particularly speaker verification, were used as this discipline deals with problems very similar to...
Remembering the snake in the grass: Threat enhances recognition but not source memory.
Meyer, Miriam Magdalena; Bell, Raoul; Buchner, Axel
2015-12-01
Research on the influence of emotion on source memory has yielded inconsistent findings. The object-based framework (Mather, 2007) predicts that negatively arousing stimuli attract attention, resulting in enhanced within-object binding, and, thereby, enhanced source memory for intrinsic context features of emotional stimuli. To test this prediction, we presented pictures of threatening and harmless animals, the color of which had been experimentally manipulated. In a memory test, old-new recognition for the animals and source memory for their color was assessed. In all 3 experiments, old-new recognition was better for the more threatening material, which supports previous reports of an emotional memory enhancement. This recognition advantage was due to the emotional properties of the stimulus material, and not specific for snake stimuli. However, inconsistent with the prediction of the object-based framework, intrinsic source memory was not affected by emotion. (c) 2015 APA, all rights reserved).
An Exemplar-Based Multi-View Domain Generalization Framework for Visual Recognition.
Niu, Li; Li, Wen; Xu, Dong; Cai, Jianfei
2018-02-01
In this paper, we propose a new exemplar-based multi-view domain generalization (EMVDG) framework for visual recognition by learning robust classifier that are able to generalize well to arbitrary target domain based on the training samples with multiple types of features (i.e., multi-view features). In this framework, we aim to address two issues simultaneously. First, the distribution of training samples (i.e., the source domain) is often considerably different from that of testing samples (i.e., the target domain), so the performance of the classifiers learnt on the source domain may drop significantly on the target domain. Moreover, the testing data are often unseen during the training procedure. Second, when the training data are associated with multi-view features, the recognition performance can be further improved by exploiting the relation among multiple types of features. To address the first issue, considering that it has been shown that fusing multiple SVM classifiers can enhance the domain generalization ability, we build our EMVDG framework upon exemplar SVMs (ESVMs), in which a set of ESVM classifiers are learnt with each one trained based on one positive training sample and all the negative training samples. When the source domain contains multiple latent domains, the learnt ESVM classifiers are expected to be grouped into multiple clusters. To address the second issue, we propose two approaches under the EMVDG framework based on the consensus principle and the complementary principle, respectively. Specifically, we propose an EMVDG_CO method by adding a co-regularizer to enforce the cluster structures of ESVM classifiers on different views to be consistent based on the consensus principle. Inspired by multiple kernel learning, we also propose another EMVDG_MK method by fusing the ESVM classifiers from different views based on the complementary principle. In addition, we further extend our EMVDG framework to exemplar-based multi-view domain adaptation (EMVDA) framework when the unlabeled target domain data are available during the training procedure. The effectiveness of our EMVDG and EMVDA frameworks for visual recognition is clearly demonstrated by comprehensive experiments on three benchmark data sets.
Multi-task learning with group information for human action recognition
NASA Astrophysics Data System (ADS)
Qian, Li; Wu, Song; Pu, Nan; Xu, Shulin; Xiao, Guoqiang
2018-04-01
Human action recognition is an important and challenging task in computer vision research, due to the variations in human motion performance, interpersonal differences and recording settings. In this paper, we propose a novel multi-task learning framework with group information (MTL-GI) for accurate and efficient human action recognition. Specifically, we firstly obtain group information through calculating the mutual information according to the latent relationship between Gaussian components and action categories, and clustering similar action categories into the same group by affinity propagation clustering. Additionally, in order to explore the relationships of related tasks, we incorporate group information into multi-task learning. Experimental results evaluated on two popular benchmarks (UCF50 and HMDB51 datasets) demonstrate the superiority of our proposed MTL-GI framework.
NASA Astrophysics Data System (ADS)
Chen, Chen; Hao, Huiyan; Jafari, Roozbeh; Kehtarnavaz, Nasser
2017-05-01
This paper presents an extension to our previously developed fusion framework [10] involving a depth camera and an inertial sensor in order to improve its view invariance aspect for real-time human action recognition applications. A computationally efficient view estimation based on skeleton joints is considered in order to select the most relevant depth training data when recognizing test samples. Two collaborative representation classifiers, one for depth features and one for inertial features, are appropriately weighted to generate a decision making probability. The experimental results applied to a multi-view human action dataset show that this weighted extension improves the recognition performance by about 5% over equally weighted fusion deployed in our previous fusion framework.
EUReKA! A Conceptual Model of Emotion Understanding
Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel
2015-01-01
The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904
Chavan, Vishwas S; Ingwersen, Peter
2009-01-01
Background Currently primary scientific data, especially that dealing with biodiversity, is neither easily discoverable nor accessible. Amongst several impediments, one is a lack of professional recognition of scientific data publishing efforts. A possible solution is establishment of a 'Data Publishing Framework' which would encourage and recognise investments and efforts by institutions and individuals towards management, and publishing of primary scientific data potentially on a par with recognitions received for scholarly publications. Discussion This paper reviews the state-of-the-art of primary biodiversity data publishing, and conceptualises a 'Data Publishing Framework' that would help incentivise efforts and investments by institutions and individuals in facilitating free and open access to biodiversity data. It further postulates the institutionalisation of a 'Data Usage Index (DUI)', that would attribute due recognition to multiple players in the data collection/creation, management and publishing cycle. Conclusion We believe that institutionalisation of such a 'Data Publishing Framework' that offers socio-cultural, legal, technical, economic and policy environment conducive for data publishing will facilitate expedited discovery and mobilisation of an exponential increase in quantity of 'fit-for-use' primary biodiversity data, much of which is currently invisible. PMID:19900298
Chavan, Vishwas S; Ingwersen, Peter
2009-11-10
Currently primary scientific data, especially that dealing with biodiversity, is neither easily discoverable nor accessible. Amongst several impediments, one is a lack of professional recognition of scientific data publishing efforts. A possible solution is establishment of a 'Data Publishing Framework' which would encourage and recognise investments and efforts by institutions and individuals towards management, and publishing of primary scientific data potentially on a par with recognitions received for scholarly publications. This paper reviews the state-of-the-art of primary biodiversity data publishing, and conceptualises a 'Data Publishing Framework' that would help incentivise efforts and investments by institutions and individuals in facilitating free and open access to biodiversity data. It further postulates the institutionalisation of a 'Data Usage Index (DUI)', that would attribute due recognition to multiple players in the data collection/creation, management and publishing cycle. We believe that institutionalisation of such a 'Data Publishing Framework' that offers socio-cultural, legal, technical, economic and policy environment conducive for data publishing will facilitate expedited discovery and mobilisation of an exponential increase in quantity of 'fit-for-use' primary biodiversity data, much of which is currently invisible.
Designing a robust activity recognition framework for health and exergaming using wearable sensors.
Alshurafa, Nabil; Xu, Wenyao; Liu, Jason J; Huang, Ming-Chun; Mortazavi, Bobak; Roberts, Christian K; Sarrafzadeh, Majid
2014-09-01
Detecting human activity independent of intensity is essential in many applications, primarily in calculating metabolic equivalent rates and extracting human context awareness. Many classifiers that train on an activity at a subset of intensity levels fail to recognize the same activity at other intensity levels. This demonstrates weakness in the underlying classification method. Training a classifier for an activity at every intensity level is also not practical. In this paper, we tackle a novel intensity-independent activity recognition problem where the class labels exhibit large variability, the data are of high dimensionality, and clustering algorithms are necessary. We propose a new robust stochastic approximation framework for enhanced classification of such data. Experiments are reported using two clustering techniques, K-Means and Gaussian Mixture Models. The stochastic approximation algorithm consistently outperforms other well-known classification schemes which validate the use of our proposed clustered data representation. We verify the motivation of our framework in two applications that benefit from intensity-independent activity recognition. The first application shows how our framework can be used to enhance energy expenditure calculations. The second application is a novel exergaming environment aimed at using games to reward physical activity performed throughout the day, to encourage a healthy lifestyle.
Vehicle logo recognition using multi-level fusion model
NASA Astrophysics Data System (ADS)
Ming, Wei; Xiao, Jianli
2018-04-01
Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.
Automatic forensic face recognition from digital images.
Peacock, C; Goode, A; Brett, A
2004-01-01
Digital image evidence is now widely available from criminal investigations and surveillance operations, often captured by security and surveillance CCTV. This has resulted in a growing demand from law enforcement agencies for automatic person-recognition based on image data. In forensic science, a fundamental requirement for such automatic face recognition is to evaluate the weight that can justifiably be attached to this recognition evidence in a scientific framework. This paper describes a pilot study carried out by the Forensic Science Service (UK) which explores the use of digital facial images in forensic investigation. For the purpose of the experiment a specific software package was chosen (Image Metrics Optasia). The paper does not describe the techniques used by the software to reach its decision of probabilistic matches to facial images, but accepts the output of the software as though it were a 'black box'. In this way, the paper lays a foundation for how face recognition systems can be compared in a forensic framework. The aim of the paper is to explore how reliably and under what conditions digital facial images can be presented in evidence.
A sensor and video based ontology for activity recognition in smart environments.
Mitchell, D; Morrow, Philip J; Nugent, Chris D
2014-01-01
Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.
DOT National Transportation Integrated Search
2015-11-01
One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...
Automatic event recognition and anomaly detection with attribute grammar by learning scene semantics
NASA Astrophysics Data System (ADS)
Qi, Lin; Yao, Zhenyu; Li, Li; Dong, Junyu
2007-11-01
In this paper we present a novel framework for automatic event recognition and abnormal behavior detection with attribute grammar by learning scene semantics. This framework combines learning scene semantics by trajectory analysis and constructing attribute grammar-based event representation. The scene and event information is learned automatically. Abnormal behaviors that disobey scene semantics or event grammars rules are detected. By this method, an approach to understanding video scenes is achieved. Further more, with this prior knowledge, the accuracy of abnormal event detection is increased.
A framework of text detection and recognition from natural images for mobile device
NASA Astrophysics Data System (ADS)
Selmi, Zied; Ben Halima, Mohamed; Wali, Ali; Alimi, Adel M.
2017-03-01
On the light of the remarkable audio-visual effect on modern life, and the massive use of new technologies (smartphones, tablets ...), the image has been given a great importance in the field of communication. Actually, it has become the most effective, attractive and suitable means of communication for transmitting information between different people. Of all the various parts of information that can be extracted from the image, our focus will be particularly on the text. Actually, since its detection and recognition in a natural image is a major problem in many applications, the text has drawn the attention of a great number of researchers in recent years. In this paper, we present a framework for text detection and recognition from natural images for mobile devices.
Distributed Recognition of Natural Songs by European Starlings
ERIC Educational Resources Information Center
Knudsen, Daniel; Thompson, Jason V.; Gentner, Timothy Q.
2010-01-01
Individual vocal recognition behaviors in songbirds provide an excellent framework for the investigation of comparative psychological and neurobiological mechanisms that support the perception and cognition of complex acoustic communication signals. To this end, the complex songs of European starlings have been studied extensively. Yet, several…
The A2iA French handwriting recognition system at the Rimes-ICDAR2011 competition
NASA Astrophysics Data System (ADS)
Menasri, Farès; Louradour, Jérôme; Bianne-Bernard, Anne-Laure; Kermorvant, Christopher
2012-01-01
This paper describes the system for the recognition of French handwriting submitted by A2iA to the competition organized at ICDAR2011 using the Rimes database. This system is composed of several recognizers based on three different recognition technologies, combined using a novel combination method. A framework multi-word recognition based on weighted finite state transducers is presented, using an explicit word segmentation, a combination of isolated word recognizers and a language model. The system was tested both for isolated word recognition and for multi-word line recognition and submitted to the RIMES-ICDAR2011 competition. This system outperformed all previously proposed systems on these tasks.
Dynamic constitutional frameworks for DNA biomimetic recognition.
Catana, Romina; Barboiu, Mihail; Moleavin, Ioana; Clima, Lilia; Rotaru, Alexandru; Ursu, Elena-Laura; Pinteala, Mariana
2015-02-07
Linear and cross-linked dynamic constitutional frameworks generated from reversibly interacting linear PEG/core constituents and cationic sites shed light on the dominant coiling versus linear DNA binding behaviours, closer to the histone DNA binding wrapping mechanism.
A Framework for Integrating Implicit Bias Recognition Into Health Professions Education.
Sukhera, Javeed; Watling, Chris
2018-01-01
Existing literature on implicit bias is fragmented and comes from a variety of fields like cognitive psychology, business ethics, and higher education, but implicit-bias-informed educational approaches have been underexplored in health professions education and are difficult to evaluate using existing tools. Despite increasing attention to implicit bias recognition and management in health professions education, many programs struggle to meaningfully integrate these topics into curricula. The authors propose a six-point actionable framework for integrating implicit bias recognition and management into health professions education that draws on the work of previous researchers and includes practical tools to guide curriculum developers. The six key features of this framework are creating a safe and nonthreatening learning context, increasing knowledge about the science of implicit bias, emphasizing how implicit bias influences behaviors and patient outcomes, increasing self-awareness of existing implicit biases, improving conscious efforts to overcome implicit bias, and enhancing awareness of how implicit bias influences others. Important considerations for designing implicit-bias-informed curricula-such as individual and contextual variables, as well as formal and informal cultural influences-are discussed. The authors also outline assessment and evaluation approaches that consider outcomes at individual, organizational, community, and societal levels. The proposed framework may facilitate future research and exploration regarding the use of implicit bias in health professions education.
Multispectral image fusion for illumination-invariant palmprint recognition
Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064
Multispectral image fusion for illumination-invariant palmprint recognition.
Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.
Ahmad, Riaz; Naz, Saeeda; Afzal, Muhammad Zeshan; Amin, Sayed Hassan; Breuel, Thomas
2015-01-01
The presence of a large number of unique shapes called ligatures in cursive languages, along with variations due to scaling, orientation and location provides one of the most challenging pattern recognition problems. Recognition of the large number of ligatures is often a complicated task in oriental languages such as Pashto, Urdu, Persian and Arabic. Research on cursive script recognition often ignores the fact that scaling, orientation, location and font variations are common in printed cursive text. Therefore, these variations are not included in image databases and in experimental evaluations. This research uncovers challenges faced by Arabic cursive script recognition in a holistic framework by considering Pashto as a test case, because Pashto language has larger alphabet set than Arabic, Persian and Urdu. A database containing 8000 images of 1000 unique ligatures having scaling, orientation and location variations is introduced. In this article, a feature space based on scale invariant feature transform (SIFT) along with a segmentation framework has been proposed for overcoming the above mentioned challenges. The experimental results show a significantly improved performance of proposed scheme over traditional feature extraction techniques such as principal component analysis (PCA). PMID:26368566
Physiology-based face recognition in the thermal infrared spectrum.
Buddharaju, Pradeep; Pavlidis, Ioannis T; Tsiamyrtzis, Panagiotis; Bazakos, Mike
2007-04-01
The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g., lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information contained in thermal imagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points (TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification stage, the algorithm first estimates the pose of the test image. Then, it matches the local and global TMP structures extracted from the test image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental results show that the proposed methodology has merit, especially with respect to the problem of low permanence over time. More importantly, the results demonstrate the feasibility of the physiological framework in face recognition and open the way for further methodological and experimental research in the area.
Sessional Academic Success: A Distributed Framework for Academic Support and Development
ERIC Educational Resources Information Center
Hamilton, Jillian; Fox, Michelle; McEwan, Mitchell
2013-01-01
With approximately half of Australian university teaching now performed by Sessional Academics, there has been growing recognition of the contribution they make to student learning. At the same time, sector-wide research and institutional audits continue to raise concerns about academic development, quality assurance, recognition and belonging…
Impact of Intention on the ERP Correlates of Face Recognition
ERIC Educational Resources Information Center
Guillaume, Fabrice; Tiberghien, Guy
2013-01-01
The present study investigated the impact of study-test similarity on face recognition by manipulating, in the same experiment, the expression change (same vs. different) and the task-processing context (inclusion vs. exclusion instructions) as within-subject variables. Consistent with the dual-process framework, the present results showed that…
How to Deal with Emotional Abuse and Neglect--Further Development of a Conceptual Framework (FRAMEA)
ERIC Educational Resources Information Center
Glaser, Danya
2011-01-01
Objective: To develop further the understanding of emotional abuse and neglect. Methods: Building on previous work, this paper describes the further development of a conceptual framework for the recognition and management of emotional abuse and neglect. Training in this framework is currently being evaluated. The paper also briefly reviews more…
Anatomical Entity Recognition with a Hierarchical Framework Augmented by External Resources
Xu, Yan; Hua, Ji; Ni, Zhaoheng; Chen, Qinlang; Fan, Yubo; Ananiadou, Sophia; Chang, Eric I-Chao; Tsujii, Junichi
2014-01-01
References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs) work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF) model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments) with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available. PMID:25343498
When the face fits: recognition of celebrities from matching and mismatching faces and voices.
Stevenage, Sarah V; Neil, Greg J; Hamlin, Iain
2014-01-01
The results of two experiments are presented in which participants engaged in a face-recognition or a voice-recognition task. The stimuli were face-voice pairs in which the face and voice were co-presented and were either "matched" (same person), "related" (two highly associated people), or "mismatched" (two unrelated people). Analysis in both experiments confirmed that accuracy and confidence in face recognition was consistently high regardless of the identity of the accompanying voice. However accuracy of voice recognition was increasingly affected as the relationship between voice and accompanying face declined. Moreover, when considering self-reported confidence in voice recognition, confidence remained high for correct responses despite the proportion of these responses declining across conditions. These results converged with existing evidence indicating the vulnerability of voice recognition as a relatively weak signaller of identity, and results are discussed in the context of a person-recognition framework.
Combination of minimum enclosing balls classifier with SVM in coal-rock recognition.
Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan
2017-01-01
Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition.
Combination of minimum enclosing balls classifier with SVM in coal-rock recognition
Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan
2017-01-01
Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition. PMID:28937987
Recognition of complex human behaviours using 3D imaging for intelligent surveillance applications
NASA Astrophysics Data System (ADS)
Yao, Bo; Lepley, Jason J.; Peall, Robert; Butler, Michael; Hagras, Hani
2016-10-01
We introduce a system that exploits 3-D imaging technology as an enabler for the robust recognition of the human form. We combine this with pose and feature recognition capabilities from which we can recognise high-level human behaviours. We propose a hierarchical methodology for the recognition of complex human behaviours, based on the identification of a set of atomic behaviours, individual and sequential poses (e.g. standing, sitting, walking, drinking and eating) that provides a framework from which we adopt time-based machine learning techniques to recognise complex behaviour patterns.
A Theoretical Framework for Studying Adolescent Contraceptive Use.
ERIC Educational Resources Information Center
Urberg, Kathryn A.
1982-01-01
Presents a theoretical framework for viewing adolescent contraceptive usage. The problem-solving process is used for developmentally examining the competencies that must be present for effective contraceptive use, including: problem recognition, motivation, generation of alternatives, decision making and implementation. Each aspect is discussed…
Warnings reduce false memories for missing aspects of events.
Gerrie, Matthew P; Garry, Maryanne
2011-01-01
When people see movies with some parts missing, they falsely recognize many of the missing parts later. In two experiments, we examined the effect of warnings on people's false memories for these parts. In Experiment 1, warning subjects about false recognition before the movie (forewarnings) reduced false recognition, but warning them after the movie (postwarnings) reduced false recognition to a lesser extent. In Experiment 2, the effect of the warnings depended on the nature of the missing parts. Forewarnings were more effective than postwarnings in reducing false recognition of missing noncrucial parts, but forewarnings and postwarnings were similarly effective in reducing false recognition of crucial missing parts. We use the source monitoring framework to explain our results.
Knowledge Discovery from Vibration Measurements
Li, Jian; Wang, Daoyao
2014-01-01
The framework as well as the particular algorithms of pattern recognition process is widely adopted in structural health monitoring (SHM). However, as a part of the overall process of knowledge discovery from data bases (KDD), the results of pattern recognition are only changes and patterns of changes of data features. In this paper, based on the similarity between KDD and SHM and considering the particularity of SHM problems, a four-step framework of SHM is proposed which extends the final goal of SHM from detecting damages to extracting knowledge to facilitate decision making. The purposes and proper methods of each step of this framework are discussed. To demonstrate the proposed SHM framework, a specific SHM method which is composed by the second order structural parameter identification, statistical control chart analysis, and system reliability analysis is then presented. To examine the performance of this SHM method, real sensor data measured from a lab size steel bridge model structure are used. The developed four-step framework of SHM has the potential to clarify the process of SHM to facilitate the further development of SHM techniques. PMID:24574933
On the Measurement of Criterion Noise in Signal Detection Theory: The Case of Recognition Memory
ERIC Educational Resources Information Center
Kellen, David; Klauer, Karl Christoph; Singmann, Henrik
2012-01-01
Traditional approaches within the framework of signal detection theory (SDT; Green & Swets, 1966), especially in the field of recognition memory, assume that the positioning of response criteria is not a noisy process. Recent work (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008) has challenged this assumption, arguing not only…
Maximising Confidence in Assessment Decision-Making: A Springboard to Quality in Assessment.
ERIC Educational Resources Information Center
Clayton, Berwyn; Booth, Robin; Roy, Sue
The introduction of training packages has focused attention on the quality of assessment in the Australian vocational education and training (VET) sector on the quality of assessment. For the process of mutual recognition under the Australian Recognition Framework (ARF) to work effectively, there needs to be confidence in assessment decisions made…
ERIC Educational Resources Information Center
Thornton, Tim
2014-01-01
This study is on how one higher education institution included the United Kingdom Professional Standards Framework, developed by the Higher Education Academy, as a strategic benchmark for teaching and learning. The article outlines the strategies used to engage all academic (and academic-related) staff in achieving relevant professional…
Cross-sensor iris recognition through kernel learning.
Pillai, Jaishanker K; Puertas, Maria; Chellappa, Rama
2014-01-01
Due to the increasing popularity of iris biometrics, new sensors are being developed for acquiring iris images and existing ones are being continuously upgraded. Re-enrolling users every time a new sensor is deployed is expensive and time-consuming, especially in applications with a large number of enrolled users. However, recent studies show that cross-sensor matching, where the test samples are verified using data enrolled with a different sensor, often lead to reduced performance. In this paper, we propose a machine learning technique to mitigate the cross-sensor performance degradation by adapting the iris samples from one sensor to another. We first present a novel optimization framework for learning transformations on iris biometrics. We then utilize this framework for sensor adaptation, by reducing the distance between samples of the same class, and increasing it between samples of different classes, irrespective of the sensors acquiring them. Extensive evaluations on iris data from multiple sensors demonstrate that the proposed method leads to improvement in cross-sensor recognition accuracy. Furthermore, since the proposed technique requires minimal changes to the iris recognition pipeline, it can easily be incorporated into existing iris recognition systems.
ERIC Educational Resources Information Center
Ali, Saandia
2016-01-01
This paper reports on the early stages of a locally funded research and development project taking place at Rennes 2 university. It aims at developing a comprehensive pedagogical framework for pronunciation training for adult learners of English. This framework will combine a direct approach to pronunciation training (face-to-face teaching) with…
ERIC Educational Resources Information Center
Robson, Sue
2014-01-01
Increased international recognition of the value of supporting creative thinking suggests the value of development of approaches to its identification in children. Development of an observation-led framework, the Analysing Children's Creative Thinking (ACCT) framework, is described, and a case made for the validity of inferring creative thinking…
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Feng, Cong; Cui, Mingjian
Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less
NASA Astrophysics Data System (ADS)
Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo
2014-03-01
A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.
Toward More Accurate Iris Recognition Using Cross-Spectral Matching.
Nalla, Pattabhi Ramaiah; Kumar, Ajay
2017-01-01
Iris recognition systems are increasingly deployed for large-scale applications such as national ID programs, which continue to acquire millions of iris images to establish identity among billions. However, with the availability of variety of iris sensors that are deployed for the iris imaging under different illumination/environment, significant performance degradation is expected while matching such iris images acquired under two different domains (either sensor-specific or wavelength-specific). This paper develops a domain adaptation framework to address this problem and introduces a new algorithm using Markov random fields model to significantly improve cross-domain iris recognition. The proposed domain adaptation framework based on the naive Bayes nearest neighbor classification uses a real-valued feature representation, which is capable of learning domain knowledge. Our approach to estimate corresponding visible iris patterns from the synthesis of iris patches in the near infrared iris images achieves outperforming results for the cross-spectral iris recognition. In this paper, a new class of bi-spectral iris recognition system that can simultaneously acquire visible and near infra-red images with pixel-to-pixel correspondences is proposed and evaluated. This paper presents experimental results from three publicly available databases; PolyU cross-spectral iris image database, IIITD CLI and UND database, and achieve outperforming results for the cross-sensor and cross-spectral iris matching.
Sensor-Based Human Activity Recognition in a Multi-user Scenario
NASA Astrophysics Data System (ADS)
Wang, Liang; Gu, Tao; Tao, Xianping; Lu, Jian
Existing work on sensor-based activity recognition focuses mainly on single-user activities. However, in real life, activities are often performed by multiple users involving interactions between them. In this paper, we propose Coupled Hidden Markov Models (CHMMs) to recognize multi-user activities from sensor readings in a smart home environment. We develop a multimodal sensing platform and present a theoretical framework to recognize both single-user and multi-user activities. We conduct our trace collection done in a smart home, and evaluate our framework through experimental studies. Our experimental result shows that we achieve an average accuracy of 85.46% with CHMMs.
Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †.
Lee, Yeongjun; Choi, Jinwoo; Ko, Nak Yong; Choi, Hyun-Taek
2017-08-24
This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status-i.e., the existence and identity (or name)-of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods-particle filtering and Bayesian feature estimation-are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented.
Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu
2015-01-01
Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing “Palm Downward” sign gestures from “Palm Inward” ones. Only the “Palm Inward” gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system. PMID:26389907
Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu
2015-09-15
Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system.
Revisiting Metacognition and Metaliteracy in the ACRL Framework
ERIC Educational Resources Information Center
Fulkerson, Diane M.; Ariew, Susan Andriette; Jacobson, Trudi E.
2017-01-01
In the early drafts of the "Information Literacy Framework for Higher Education," metaliteracy and metacognition contributed several guiding principles in recognition of the fact that information literacy concepts need to reflect students' roles as creators and participants in research and scholarship. The authors contend that diminution…
NASA Astrophysics Data System (ADS)
Xu, Guoping; Udupa, Jayaram K.; Tong, Yubing; Cao, Hanqiang; Odhner, Dewey; Torigian, Drew A.; Wu, Xingyu
2018-03-01
Currently, there are many papers that have been published on the detection and segmentation of lymph nodes from medical images. However, it is still a challenging problem owing to low contrast with surrounding soft tissues and the variations of lymph node size and shape on computed tomography (CT) images. This is particularly very difficult on low-dose CT of PET/CT acquisitions. In this study, we utilize our previous automatic anatomy recognition (AAR) framework to recognize the thoracic-lymph node stations defined by the International Association for the Study of Lung Cancer (IASLC) lymph node map. The lymph node stations themselves are viewed as anatomic objects and are localized by using a one-shot method in the AAR framework. Two strategies have been taken in this paper for integration into AAR framework. The first is to combine some lymph node stations into composite lymph node stations according to their geometrical nearness. The other is to find the optimal parent (organ or union of organs) as an anchor for each lymph node station based on the recognition error and thereby find an overall optimal hierarchy to arrange anchor organs and lymph node stations. Based on 28 contrast-enhanced thoracic CT image data sets for model building, 12 independent data sets for testing, our results show that thoracic lymph node stations can be localized within 2-3 voxels compared to the ground truth.
Let the Doors of Learning Be Open to All--A Case for Recognition of Prior Learning
ERIC Educational Resources Information Center
Singh, A. M.
2011-01-01
Recognition of Prior Learning (RPL) is a process of evaluating an adult learners previous experience, skills, knowledge and informal learning and articulating it towards a formal qualification. Whilst RPL is enshrined in a number of international qualifications frameworks, there are certain barriers which have prevented its application and…
TRACX: A Recognition-Based Connectionist Framework for Sequence Segmentation and Chunk Extraction
ERIC Educational Resources Information Center
French, Robert M.; Addyman, Caspar; Mareschal, Denis
2011-01-01
Individuals of all ages extract structure from the sequences of patterns they encounter in their environment, an ability that is at the very heart of cognition. Exactly what underlies this ability has been the subject of much debate over the years. A novel mechanism, implicit chunk recognition (ICR), is proposed for sequence segmentation and chunk…
Mexican sign language recognition using normalized moments and artificial neural networks
NASA Astrophysics Data System (ADS)
Solís-V., J.-Francisco; Toxqui-Quitl, Carina; Martínez-Martínez, David; H.-G., Margarita
2014-09-01
This work presents a framework designed for the Mexican Sign Language (MSL) recognition. A data set was recorded with 24 static signs from the MSL using 5 different versions, this MSL dataset was captured using a digital camera in incoherent light conditions. Digital Image Processing was used to segment hand gestures, a uniform background was selected to avoid using gloved hands or some special markers. Feature extraction was performed by calculating normalized geometric moments of gray scaled signs, then an Artificial Neural Network performs the recognition using a 10-fold cross validation tested in weka, the best result achieved 95.83% of recognition rate.
Oyedotun, Oyebade K; Khashman, Adnan
2017-02-01
Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.
Developing a Qualifications Structure for the Finance Services Industry in Malaysia and Beyond
ERIC Educational Resources Information Center
Manshor, Amat Taap; Chong, Siong Choy; Cameron, Roslyn
2014-01-01
The development of qualifications systems and frameworks assists in promoting lifelong learning and work-based recognition systems. Several nations in the Asian Pacific region have established national qualifications frameworks across their respective educational sectors (e.g., Australia, New Zealand, Hong Kong, Malaysia and the Philippines),…
A hierarchical framework of aquatic ecological units in North America (Nearctic Zone).
James R. Maxwell; Clayton J. Edwards; Mark E. Jensen; Steven J. Paustian; Harry Parrott; Donley M. Hill
1995-01-01
Proposes a framework for classifying and mapping aquatic systems at various scales using ecologically significant physical and biological criteria. Classification and mapping concepts follow tenets of hierarchical theory, pattern recognition, and driving variables. Criteria are provided for the hierarchical classification and mapping of aquatic ecological units of...
Towards a Pedagogical Framework for Global Citizenship Education
ERIC Educational Resources Information Center
Blackmore, Chloe
2016-01-01
Amidst growing recognition of the importance of the learning process within global citizenship education, this paper develops a pedagogical framework including dimensions of critical thinking, dialogue, reflection, and responsible being/action. It draws on a variety of critical literatures to identify characteristics of each of these dimensions.…
ERIC Educational Resources Information Center
Perera, Srinath; Babatunde, Solomon Olusola; Zhou, Lei; Pearson, John; Ekundayo, Damilola
2017-01-01
Recognition of the huge variation between professional graduate degree programmes and employer requirements, especially in the construction industry, necessitated a need for assessing and developing competencies that aligned with professionally oriented programmes. The purpose of this research is to develop a competency mapping framework (CMF) in…
Page, M. P. A.; Norris, D.
2009-01-01
We briefly review the considerable evidence for a common ordering mechanism underlying both immediate serial recall (ISR) tasks (e.g. digit span, non-word repetition) and the learning of phonological word forms. In addition, we discuss how recent work on the Hebb repetition effect is consistent with the idea that learning in this task is itself a laboratory analogue of the sequence-learning component of phonological word-form learning. In this light, we present a unifying modelling framework that seeks to account for ISR and Hebb repetition effects, while being extensible to word-form learning. Because word-form learning is performed in the service of later word recognition, our modelling framework also subsumes a mechanism for word recognition from continuous speech. Simulations of a computational implementation of the modelling framework are presented and are shown to be in accordance with data from the Hebb repetition paradigm. PMID:19933143
Sridharan, Sanjeev; Jones, Bobby; Caudill, Barry; Nakaima, April
2016-10-01
This paper describes a framework that can help refine program theory through data explorations and stakeholder dialogue. The framework incorporates the following steps: a recognition that program implementation might need to be multi-phased for a number of interventions, the need to take stock of program theory, the application of pattern recognition methods to help identify heterogeneous program mechanisms, and stakeholder dialogue to refine the program. As part of the data exploration, a method known as developmental trajectories is implemented to learn about heterogeneous trajectories of outcomes in longitudinal evaluations. This method identifies trajectory clusters and also can estimate different treatment impacts for the various groups. The framework is highlighted with data collected in an evaluation of an alcohol risk-reduction program delivered in a college fraternity setting. The framework discussed in the paper is informed by a realist focus on "what works for whom under what contexts." The utility of the framework in contributing to a dialogue on heterogeneous mechanism and subsequent implementation is described. The connection of the ideas in paper to a 'learning through principled discovery' approach is also described. Copyright © 2016. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Cooper, Linda; Ralphs, Alan; Harris, Judy
2017-01-01
This article provides some insight into the constraints on the potential of recognition of prior learning (RPL) to widen access to educational qualifications. Its focus is on a conceptual framework that emerged from a South African study of RPL practices across four different learning contexts. Working from a social realist perspective, it argues…
The Categorization-Individuation Model: An Integrative Account of the Other-Race Recognition Deficit
ERIC Educational Resources Information Center
Hugenberg, Kurt; Young, Steven G.; Bernstein, Michael J.; Sacco, Donald F.
2010-01-01
The "other-race effect" (ORE), or the finding that same-race faces are better recognized than other-race faces, is one of the best replicated phenomena in face recognition. The current article reviews existing evidence and theory and proposes a new theoretical framework for the ORE, which argues that the effect results from a confluence of social…
A novel probabilistic framework for event-based speech recognition
NASA Astrophysics Data System (ADS)
Juneja, Amit; Espy-Wilson, Carol
2003-10-01
One of the reasons for unsatisfactory performance of the state-of-the-art automatic speech recognition (ASR) systems is the inferior acoustic modeling of low-level acoustic-phonetic information in the speech signal. An acoustic-phonetic approach to ASR, on the other hand, explicitly targets linguistic information in the speech signal, but such a system for continuous speech recognition (CSR) is not known to exist. A probabilistic and statistical framework for CSR based on the idea of the representation of speech sounds by bundles of binary valued articulatory phonetic features is proposed. Multiple probabilistic sequences of linguistically motivated landmarks are obtained using binary classifiers of manner phonetic features-syllabic, sonorant and continuant-and the knowledge-based acoustic parameters (APs) that are acoustic correlates of those features. The landmarks are then used for the extraction of knowledge-based APs for source and place phonetic features and their binary classification. Probabilistic landmark sequences are constrained using manner class language models for isolated or connected word recognition. The proposed method could overcome the disadvantages encountered by the early acoustic-phonetic knowledge-based systems that led the ASR community to switch to systems highly dependent on statistical pattern analysis methods and probabilistic language or grammar models.
Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu
2016-01-14
Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.
Parks, Colleen M
2013-07-01
Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which suggest that the extent to which perceptual fluency matters on a recognition test depends in large part on the task demands. A test that recruits perceptual processing for discrimination should show greater perceptual effects and smaller conceptual effects than standard recognition, similar to the pattern of effects found in perceptual implicit memory tasks. This idea was tested in the current experiment by crossing a levels of processing manipulation with a modality manipulation on a series of recognition tests that ranged from conceptual (standard recognition) to very perceptually demanding (a speeded recognition test with degraded stimuli). Results showed that the levels of processing effect decreased and the effect of modality increased when tests were made perceptually demanding. These results support the idea that surface-level features influence performance on recognition tests when they are made salient by the task demands. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Jooste, Karien; Jasper, Melanie
2010-09-01
The present study focuses on the development of an initial framework to guide educators in nursing management in designing a portfolio for the recognition of prior learning for accreditation of competencies within a postgraduate diploma in South Africa. In South Africa, there is a unique educational need, arising from the legacy of apartheid and previous political regimes, to facilitate educational development in groups previously unable to access higher education. Awareness of the need for continuous professional development in nursing management practice and recognition of prior learning in the educational environment has presented the possibility of using one means to accomplish both aims. Although the content of the present study is pertinent to staff development of nurse managers, it is primarily written for nurse educators in the field of nursing management. The findings identify focus areas to be addressed in a recognition of prior learning portfolio to comply with the programme specific outcomes of Nursing Service Management. Further work to refine these focus areas to criteria that specify the level of performance required to demonstrate achievement is needed. CONCLUSION AND IMPLICATIONS FOR NURSE MANAGERS: Managers need to facilitate continuous professional development through portfolio compilation which acknowledges the learning opportunities within the workplace and can be used as recognition of prior learning. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Fooprateepsiri, Rerkchai; Kurutach, Werasak
2014-03-01
Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason
2015-01-01
Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.
Competences as the Core Element of the European Qualifications Framework
ERIC Educational Resources Information Center
Bohlinger, Sandra
2008-01-01
The development and implementation of the EQF, as a meta-framework for the promotion of transparency, quality assurance, mobility and mutual recognition of qualifications, has given rise to some difficulties. These are due partly to different definitions of competences, skills and knowledge. Taking the German-speaking countries as an example, the…
Expanding the Frontiers of National Qualifications Frameworks through Lifelong Learning
ERIC Educational Resources Information Center
Owusu-Agyeman, Yaw
2017-01-01
The adoption of a national qualifications framework (NQF) by some governments in all world regions has shown some success in the area of formal learning. However, while NQFs continue to enhance "formal" learning in many countries, the same cannot be said for the recognition, validation and accreditation (RVA) of "non-formal"…
Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †
Choi, Jinwoo; Choi, Hyun-Taek
2017-01-01
This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status—i.e., the existence and identity (or name)—of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods—particle filtering and Bayesian feature estimation—are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented. PMID:28837068
Face liveness detection using shearlet-based feature descriptors
NASA Astrophysics Data System (ADS)
Feng, Litong; Po, Lai-Man; Li, Yuming; Yuan, Fang
2016-07-01
Face recognition is a widely used biometric technology due to its convenience but it is vulnerable to spoofing attacks made by nonreal faces such as photographs or videos of valid users. The antispoof problem must be well resolved before widely applying face recognition in our daily life. Face liveness detection is a core technology to make sure that the input face is a live person. However, this is still very challenging using conventional liveness detection approaches of texture analysis and motion detection. The aim of this paper is to propose a feature descriptor and an efficient framework that can be used to effectively deal with the face liveness detection problem. In this framework, new feature descriptors are defined using a multiscale directional transform (shearlet transform). Then, stacked autoencoders and a softmax classifier are concatenated to detect face liveness. We evaluated this approach using the CASIA Face antispoofing database and replay-attack database. The experimental results show that our approach performs better than the state-of-the-art techniques following the provided protocols of these databases, and it is possible to significantly enhance the security of the face recognition biometric system. In addition, the experimental results also demonstrate that this framework can be easily extended to classify different spoofing attacks.
Geometry Of Discrete Sets With Applications To Pattern Recognition
NASA Astrophysics Data System (ADS)
Sinha, Divyendu
1990-03-01
In this paper we present a new framework for discrete black and white images that employs only integer arithmetic. This framework is shown to retain the essential characteristics of the framework for Euclidean images. We propose two norms and based on them, the permissible geometric operations on images are defined. The basic invariants of our geometry are line images, structure of image and the corresponding local property of strong attachment of pixels. The permissible operations also preserve the 3x3 neighborhoods, area, and perpendicularity. The structure, patterns, and the inter-pattern gaps in a discrete image are shown to be conserved by the magnification and contraction process. Our notions of approximate congruence, similarity and symmetry are similar, in character, to the corresponding notions, for Euclidean images [1]. We mention two discrete pattern recognition algorithms that work purely with integers, and which fit into our framework. Their performance has been shown to be at par with the performance of traditional geometric schemes. Also, all the undesired effects of finite length registers in fixed point arithmetic that plague traditional algorithms, are non-existent in this family of algorithms.
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.
Yu, Lequan; Chen, Hao; Dou, Qi; Qin, Jing; Heng, Pheng-Ann
2017-04-01
Automated melanoma recognition in dermoscopy images is a very challenging task due to the low contrast of skin lesions, the huge intraclass variation of melanomas, the high degree of visual similarity between melanoma and non-melanoma lesions, and the existence of many artifacts in the image. In order to meet these challenges, we propose a novel method for melanoma recognition by leveraging very deep convolutional neural networks (CNNs). Compared with existing methods employing either low-level hand-crafted features or CNNs with shallower architectures, our substantially deeper networks (more than 50 layers) can acquire richer and more discriminative features for more accurate recognition. To take full advantage of very deep networks, we propose a set of schemes to ensure effective training and learning under limited training data. First, we apply the residual learning to cope with the degradation and overfitting problems when a network goes deeper. This technique can ensure that our networks benefit from the performance gains achieved by increasing network depth. Then, we construct a fully convolutional residual network (FCRN) for accurate skin lesion segmentation, and further enhance its capability by incorporating a multi-scale contextual information integration scheme. Finally, we seamlessly integrate the proposed FCRN (for segmentation) and other very deep residual networks (for classification) to form a two-stage framework. This framework enables the classification network to extract more representative and specific features based on segmented results instead of the whole dermoscopy images, further alleviating the insufficiency of training data. The proposed framework is extensively evaluated on ISBI 2016 Skin Lesion Analysis Towards Melanoma Detection Challenge dataset. Experimental results demonstrate the significant performance gains of the proposed framework, ranking the first in classification and the second in segmentation among 25 teams and 28 teams, respectively. This study corroborates that very deep CNNs with effective training mechanisms can be employed to solve complicated medical image analysis tasks, even with limited training data.
A multi-view face recognition system based on cascade face detector and improved Dlib
NASA Astrophysics Data System (ADS)
Zhou, Hongjun; Chen, Pei; Shen, Wei
2018-03-01
In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.
Sudden Event Recognition: A Survey
Suriani, Nor Surayahani; Hussain, Aini; Zulkifley, Mohd Asyraf
2013-01-01
Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition. PMID:23921828
ERIC Educational Resources Information Center
van der Sluis, Hendrik; Burden, Penny; Huet, Isabel
2017-01-01
Raising the quality and profile of teaching and student learning is something universities across the UK are aspiring to achieve in order to maintain reputations. Currently, the UK Professional Standards Framework (UKPSF) provides a standard by which academic staff can gain professional recognition for their academic practice and many UK…
ERIC Educational Resources Information Center
Corson, Alan; And Others
Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…
A modular framework for biomedical concept recognition
2013-01-01
Background Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex external libraries and/or the development of custom tools. Results This article presents Neji, an open source framework optimized for biomedical concept recognition built around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging, chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting overlapped concept names and respective disambiguation techniques. The most popular input and output formats, namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers and researchers can implement new processing modules or pipelines, or use the provided command-line interface tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts (CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition (F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%, chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list of identifiers: species 88%, cell 71%, cellular components 72%, gene and proteins 64%, chemicals 53%, and biological processes and molecular functions 40%). Neji provides fast and multi-threaded data processing, annotating up to 1200 sentences/second when using dictionary-based concept identification. Conclusions Considering the provided features and underlying characteristics, we believe that Neji is an important contribution to the biomedical community, streamlining the development of complex concept recognition solutions. Neji is freely available at http://bioinformatics.ua.pt/neji. PMID:24063607
Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding
Li, Xin; Guo, Rui; Chen, Chao
2014-01-01
Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216
Sparse aperture 3D passive image sensing and recognition
NASA Astrophysics Data System (ADS)
Daneshpanah, Mehdi
The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.
Conic section function neural network circuitry for offline signature recognition.
Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay
2010-04-01
In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.
NASA Astrophysics Data System (ADS)
Dufaux, Frederic
2011-06-01
The issue of privacy in video surveillance has drawn a lot of interest lately. However, thorough performance analysis and validation is still lacking, especially regarding the fulfillment of privacy-related requirements. In this paper, we first review recent Privacy Enabling Technologies (PET). Next, we discuss pertinent evaluation criteria for effective privacy protection. We then put forward a framework to assess the capacity of PET solutions to hide distinguishing facial information and to conceal identity. We conduct comprehensive and rigorous experiments to evaluate the performance of face recognition algorithms applied to images altered by PET. Results show the ineffectiveness of naïve PET such as pixelization and blur. Conversely, they demonstrate the effectiveness of more sophisticated scrambling techniques to foil face recognition.
A multibiometric face recognition fusion framework with template protection
NASA Astrophysics Data System (ADS)
Chindaro, S.; Deravi, F.; Zhou, Z.; Ng, M. W. R.; Castro Neves, M.; Zhou, X.; Kelkboom, E.
2010-04-01
In this work we present a multibiometric face recognition framework based on combining information from 2D with 3D facial features. The 3D biometrics channel is protected by a privacy enhancing technology, which uses error correcting codes and cryptographic primitives to safeguard the privacy of the users of the biometric system at the same time enabling accurate matching through fusion with 2D. Experiments are conducted to compare the matching performance of such multibiometric systems with the individual biometric channels working alone and with unprotected multibiometric systems. The results show that the proposed hybrid system incorporating template protection, match and in some cases exceed the performance of corresponding unprotected equivalents, in addition to offering the additional privacy protection.
ERIC Educational Resources Information Center
Murray, Victor; Jick, Todd D.
This paper presents a conceptual framework for analyzing the impact of funding cutbacks on human services organizations (HSOs). HSOs include publicly-funded educational, health, welfare, and cultural organizations. The framework identifies five categories of variables which influence an organization's reaction to cutbacks. Category one, "objective…
ERIC Educational Resources Information Center
Evangelista, Nancy; McLellan, Mary J.
2004-01-01
The expansion of early childhood services has brought increasing recognition of the need to address mental health disorders in young children. The transactional perspective of developmental psychopathology is the basis for review of diagnostic frameworks for young children. The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) is…
Clark, Steven E; Abbe, Allison; Larson, Rakel P
2006-11-01
S. E. Clark, A. Hori, A. Putnam, and T. J. Martin (2000) showed that collaboration on a recognition memory task produced facilitation in recognition of targets but had inconsistent and sometimes negative effects regarding distractors. They accounted for these results within the framework of a dual-process, recall-plus-familiarity model but showed only weak evidence to support it. The present results of 3 experiments present stronger evidence for Clark et al.'s dual-process view and also show why such evidence is difficult to obtain. Copyright 2006 APA, all rights reserved.
Automatic Mexican sign language and digits recognition using normalized central moments
NASA Astrophysics Data System (ADS)
Solís, Francisco; Martínez, David; Espinosa, Oscar; Toxqui, Carina
2016-09-01
This work presents a framework for automatic Mexican sign language and digits recognition based on computer vision system using normalized central moments and artificial neural networks. Images are captured by digital IP camera, four LED reflectors and a green background in order to reduce computational costs and prevent the use of special gloves. 42 normalized central moments are computed per frame and used in a Multi-Layer Perceptron to recognize each database. Four versions per sign and digit were used in training phase. 93% and 95% of recognition rates were achieved for Mexican sign language and digits respectively.
Self-Referent Constructs and Medical Sociology: In Search of an Integrative Framework*
Kaplan, Howard B.
2010-01-01
A theoretical framework centering on four classes of self-referent constructs is offered as a device for integrating the diverse areas constituting medical sociology. Guidance by this framework sensitizes the researcher to the occurrence of parallel processes in adjacent disciplines, facilitates recognition of the etiological significance of findings from other disciplines for explaining medical sociological phenomena, and encourages transactions between sociology and medical sociology whereby each informs and is informed by the other. PMID:17583268
Local linear discriminant analysis framework using sample neighbors.
Fan, Zizhu; Xu, Yong; Zhang, David
2011-07-01
The linear discriminant analysis (LDA) is a very popular linear feature extraction approach. The algorithms of LDA usually perform well under the following two assumptions. The first assumption is that the global data structure is consistent with the local data structure. The second assumption is that the input data classes are Gaussian distributions. However, in real-world applications, these assumptions are not always satisfied. In this paper, we propose an improved LDA framework, the local LDA (LLDA), which can perform well without needing to satisfy the above two assumptions. Our LLDA framework can effectively capture the local structure of samples. According to different types of local data structure, our LLDA framework incorporates several different forms of linear feature extraction approaches, such as the classical LDA and principal component analysis. The proposed framework includes two LLDA algorithms: a vector-based LLDA algorithm and a matrix-based LLDA (MLLDA) algorithm. MLLDA is directly applicable to image recognition, such as face recognition. Our algorithms need to train only a small portion of the whole training set before testing a sample. They are suitable for learning large-scale databases especially when the input data dimensions are very high and can achieve high classification accuracy. Extensive experiments show that the proposed algorithms can obtain good classification results.
ERIC Educational Resources Information Center
Singh, Madhu, Ed.; Duvekot, Ruud, Ed.
2013-01-01
This publication is the outcome of the international conference organized by UNESCO Institute for Lifelong Learning (UIL), in collaboration with the Centre for Validation of Prior Learning at Inholland University of Applied Sciences, the Netherlands, and in partnership with the French National Commission for UNESCO that was held in Hamburg in…
ERIC Educational Resources Information Center
Piazza, Roberta
2013-01-01
In Italy, accreditation of prior learning is a sensitive issue. Despite the lack of laws or qualification frameworks regulating the recognition of non-formal and informal learning, most Italian universities proceed with caution, allowing only a restricted number of credits in the university curriculum related to practical activities or to external…
ERIC Educational Resources Information Center
Glushkova, Alina; Manitsaris, Sotiris
2018-01-01
This paper presents a methodological framework for the use of gesture recognition technologies in the learning/mastery of the gestural skills required in wheel-throwing pottery. In the case of self-instruction or training, learners face difficulties due to the absence of the teacher/expert and the consequent lack of guidance. Motion capture…
Hargreaves, Ian S; Pexman, Penny M
2014-05-01
According to several current frameworks, semantic processing involves an early influence of language-based information followed by later influences of object-based information (e.g., situated simulations; Santos, Chaigneau, Simmons, & Barsalou, 2011). In the present study we examined whether these predictions extend to the influence of semantic variables in visual word recognition. We investigated the time course of semantic richness effects in visual word recognition using a signal-to-respond (STR) paradigm fitted to a lexical decision (LDT) and a semantic categorization (SCT) task. We used linear mixed effects to examine the relative contributions of language-based (number of senses, ARC) and object-based (imageability, number of features, body-object interaction ratings) descriptions of semantic richness at four STR durations (75, 100, 200, and 400ms). Results showed an early influence of number of senses and ARC in the SCT. In both LDT and SCT, object-based effects were the last to influence participants' decision latencies. We interpret our results within a framework in which semantic processes are available to influence word recognition as a function of their availability over time, and of their relevance to task-specific demands. Copyright © 2014 Elsevier B.V. All rights reserved.
Web Video Event Recognition by Semantic Analysis From Ubiquitous Documents.
Yu, Litao; Yang, Yang; Huang, Zi; Wang, Peng; Song, Jingkuan; Shen, Heng Tao
2016-12-01
In recent years, the task of event recognition from videos has attracted increasing interest in multimedia area. While most of the existing research was mainly focused on exploring visual cues to handle relatively small-granular events, it is difficult to directly analyze video content without any prior knowledge. Therefore, synthesizing both the visual and semantic analysis is a natural way for video event understanding. In this paper, we study the problem of Web video event recognition, where Web videos often describe large-granular events and carry limited textual information. Key challenges include how to accurately represent event semantics from incomplete textual information and how to effectively explore the correlation between visual and textual cues for video event understanding. We propose a novel framework to perform complex event recognition from Web videos. In order to compensate the insufficient expressive power of visual cues, we construct an event knowledge base by deeply mining semantic information from ubiquitous Web documents. This event knowledge base is capable of describing each event with comprehensive semantics. By utilizing this base, the textual cues for a video can be significantly enriched. Furthermore, we introduce a two-view adaptive regression model, which explores the intrinsic correlation between the visual and textual cues of the videos to learn reliable classifiers. Extensive experiments on two real-world video data sets show the effectiveness of our proposed framework and prove that the event knowledge base indeed helps improve the performance of Web video event recognition.
Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda
2015-11-04
European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.
A dynamical pattern recognition model of gamma activity in auditory cortex
Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.
2012-01-01
This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049
Ni, Qin; Patterson, Timothy; Cleland, Ian; Nugent, Chris
2016-08-01
Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Miske, Shirley; Meagher, Margaret; DeJaeghere, Joan
2010-01-01
Following the adoption of gender mainstreaming at the Beijing Conference for Women in 1995 as a major strategy to promote gender equality and the recognition of gender analysis as central to this process, Gender and Development (GAD) frameworks have provided tools for gender analysis in various sectors. Gender mainstreaming in basic education has…
Finger vein recognition based on the hyperinformation feature
NASA Astrophysics Data System (ADS)
Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Yang, Lu
2014-01-01
The finger vein is a promising biometric pattern for personal identification due to its advantages over other existing biometrics. In finger vein recognition, feature extraction is a critical step, and many feature extraction methods have been proposed to extract the gray, texture, or shape of the finger vein. We treat them as low-level features and present a high-level feature extraction framework. Under this framework, base attribute is first defined to represent the characteristics of a certain subcategory of a subject. Then, for an image, the correlation coefficient is used for constructing the high-level feature, which reflects the correlation between this image and all base attributes. Since the high-level feature can reveal characteristics of more subcategories and contain more discriminative information, we call it hyperinformation feature (HIF). Compared with low-level features, which only represent the characteristics of one subcategory, HIF is more powerful and robust. In order to demonstrate the potential of the proposed framework, we provide a case study to extract HIF. We conduct comprehensive experiments to show the generality of the proposed framework and the efficiency of HIF on our databases, respectively. Experimental results show that HIF significantly outperforms the low-level features.
ATR evaluation through the synthesis of multiple performance measures
NASA Astrophysics Data System (ADS)
Bassham, Christopher B.; Klimack, William K.; Bauer, Kenneth W., Jr.
2002-07-01
This research demonstrates the application of decision analysis (DA) techniques to decisions made within Automatic Target Recognition (ATR) technology development. This work is accomplished to improve the means by which ATR technologies are evaluated. The first step in this research was to create a flexible decision analysis framework that could be applied to several decisions across different ATR programs evaluated by the Comprehensive ATR Scientific Evaluation (COMPASE) Center of the Air Force Research Laboratory (AFRL). For the purposes of this research, a single COMPASE Center representative provided the value, utility, and preference functions for the DA framework. The DA framework employs performance measures collected during ATR classification system (CS) testing to calculate value and utility scores. The authors gathered data from the Moving and Stationary Target Acquisition and Recognition (MSTAR) program to demonstrate how the decision framework could be used to evaluate three different ATR CSs. A decision-maker may use the resultant scores to gain insight into any of the decisions that occur throughout the lifecycle of ATR technologies. Additionally, a means of evaluating ATR CS self-assessment ability is presented. This represents a new criterion that emerged from this study, and no present evaluation metric is known.
An early illness recognition framework using a temporal Smith Waterman algorithm and NLP.
Hajihashemi, Zahra; Popescu, Mihail
2013-01-01
In this paper we propose a framework for detecting health patterns based on non-wearable sensor sequence similarity and natural language processing (NLP). In TigerPlace, an aging in place facility from Columbia, MO, we deployed 47 sensor networks together with a nursing electronic health record (EHR) system to provide early illness recognition. The proposed framework utilizes sensor sequence similarity and NLP on EHR nursing comments to automatically notify the physician when health problems are detected. The reported methodology is inspired by genomic sequence annotation using similarity algorithms such as Smith Waterman (SW). Similarly, for each sensor sequence, we associate health concepts extracted from the nursing notes using Metamap, a NLP tool provided by Unified Medical Language System (UMLS). Since sensor sequences, unlike genomics ones, have an associated time dimension we propose a temporal variant of SW (TSW) to account for time. The main challenges presented by our framework are finding the most suitable time sequence similarity and aggregation of the retrieved UMLS concepts. On a pilot dataset from three Tiger Place residents, with a total of 1685 sensor days and 626 nursing records, we obtained an average precision of 0.64 and a recall of 0.37.
Model and algorithmic framework for detection and correction of cognitive errors.
Feki, Mohamed Ali; Biswas, Jit; Tolstikov, Andrei
2009-01-01
This paper outlines an approach that we are taking for elder-care applications in the smart home, involving cognitive errors and their compensation. Our approach involves high level modeling of daily activities of the elderly by breaking down these activities into smaller units, which can then be automatically recognized at a low level by collections of sensors placed in the homes of the elderly. This separation allows us to employ plan recognition algorithms and systems at a high level, while developing stand-alone activity recognition algorithms and systems at a low level. It also allows the mixing and matching of multi-modality sensors of various kinds that go to support the same high level requirement. Currently our plan recognition algorithms are still at a conceptual stage, whereas a number of low level activity recognition algorithms and systems have been developed. Herein we present our model for plan recognition, providing a brief survey of the background literature. We also present some concrete results that we have achieved for activity recognition, emphasizing how these results are incorporated into the overall plan recognition system.
Pattern Recognition Using Artificial Neural Network: A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.
Color constancy in 3D-2D face recognition
NASA Astrophysics Data System (ADS)
Meyer, Manuel; Riess, Christian; Angelopoulou, Elli; Evangelopoulos, Georgios; Kakadiaris, Ioannis A.
2013-05-01
Face is one of the most popular biometric modalities. However, up to now, color is rarely actively used in face recognition. Yet, it is well-known that when a person recognizes a face, color cues can become as important as shape, especially when combined with the ability of people to identify the color of objects independent of illuminant color variations. In this paper, we examine the feasibility and effect of explicitly embedding illuminant color information in face recognition systems. We empirically examine the theoretical maximum gain of including known illuminant color to a 3D-2D face recognition system. We also investigate the impact of using computational color constancy methods for estimating the illuminant color, which is then incorporated into the face recognition framework. Our experiments show that under close-to-ideal illumination estimates, one can improve face recognition rates by 16%. When the illuminant color is algorithmically estimated, the improvement is approximately 5%. These results suggest that color constancy has a positive impact on face recognition, but the accuracy of the illuminant color estimate has a considerable effect on its benefits.
Eckert, Mark A; Teubner-Rhodes, Susan; Vaden, Kenneth I
2016-01-01
This review examines findings from functional neuroimaging studies of speech recognition in noise to provide a neural systems level explanation for the effort and fatigue that can be experienced during speech recognition in challenging listening conditions. Neuroimaging studies of speech recognition consistently demonstrate that challenging listening conditions engage neural systems that are used to monitor and optimize performance across a wide range of tasks. These systems appear to improve speech recognition in younger and older adults, but sustained engagement of these systems also appears to produce an experience of effort and fatigue that may affect the value of communication. When considered in the broader context of the neuroimaging and decision making literature, the speech recognition findings from functional imaging studies indicate that the expected value, or expected level of speech recognition given the difficulty of listening conditions, should be considered when measuring effort and fatigue. The authors propose that the behavioral economics or neuroeconomics of listening can provide a conceptual and experimental framework for understanding effort and fatigue that may have clinical significance.
Eckert, Mark A.; Teubner-Rhodes, Susan; Vaden, Kenneth I.
2016-01-01
This review examines findings from functional neuroimaging studies of speech recognition in noise to provide a neural systems level explanation for the effort and fatigue that can be experienced during speech recognition in challenging listening conditions. Neuroimaging studies of speech recognition consistently demonstrate that challenging listening conditions engage neural systems that are used to monitor and optimize performance across a wide range of tasks. These systems appear to improve speech recognition in younger and older adults, but sustained engagement of these systems also appears to produce an experience of effort and fatigue that may affect the value of communication. When considered in the broader context of the neuroimaging and decision making literature, the speech recognition findings from functional imaging studies indicate that the expected value, or expected level of speech recognition given the difficulty of listening conditions, should be considered when measuring effort and fatigue. We propose that the behavioral economics and/or neuroeconomics of listening can provide a conceptual and experimental framework for understanding effort and fatigue that may have clinical significance. PMID:27355759
Image simulation for automatic license plate recognition
NASA Astrophysics Data System (ADS)
Bala, Raja; Zhao, Yonghui; Burry, Aaron; Kozitsky, Vladimir; Fillion, Claude; Saunders, Craig; Rodríguez-Serrano, José
2012-01-01
Automatic license plate recognition (ALPR) is an important capability for traffic surveillance applications, including toll monitoring and detection of different types of traffic violations. ALPR is a multi-stage process comprising plate localization, character segmentation, optical character recognition (OCR), and identification of originating jurisdiction (i.e. state or province). Training of an ALPR system for a new jurisdiction typically involves gathering vast amounts of license plate images and associated ground truth data, followed by iterative tuning and optimization of the ALPR algorithms. The substantial time and effort required to train and optimize the ALPR system can result in excessive operational cost and overhead. In this paper we propose a framework to create an artificial set of license plate images for accelerated training and optimization of ALPR algorithms. The framework comprises two steps: the synthesis of license plate images according to the design and layout for a jurisdiction of interest; and the modeling of imaging transformations and distortions typically encountered in the image capture process. Distortion parameters are estimated by measurements of real plate images. The simulation methodology is successfully demonstrated for training of OCR.
Shen, Yi; Kern, Allison B.
2018-01-01
Individual differences in the recognition of monosyllabic words, either in isolation (NU6 test) or in sentence context (SPIN test), were investigated under the theoretical framework of the speech intelligibility index (SII). An adaptive psychophysical procedure, namely the quick-band-importance-function procedure, was developed to enable the fitting of the SII model to individual listeners. Using this procedure, the band importance function (i.e., the relative weights of speech information across the spectrum) and the link function relating the SII to recognition scores can be simultaneously estimated while requiring only 200 to 300 trials of testing. Octave-frequency band importance functions and link functions were estimated separately for NU6 and SPIN materials from 30 normal-hearing listeners who were naïve to speech recognition experiments. For each type of speech material, considerable individual differences in the spectral weights were observed in some but not all frequency regions. At frequencies where the greatest intersubject variability was found, the spectral weights were correlated between the two speech materials, suggesting that the variability in spectral weights reflected listener-originated factors. PMID:29532711
Winterich, Karen Page; Aquino, Karl; Mittal, Vikas; Swartz, Richard
2013-09-01
This article examines the role of moral identity symbolization in motivating prosocial behaviors. We propose a 3-way interaction of moral identity symbolization, internalization, and recognition to predict prosocial behavior. When moral identity internalization is low, we hypothesize that high moral identity symbolization motivates recognized prosocial behavior due to the opportunity to present one's moral characteristics to others. In contrast, when moral identity internalization is high, prosocial behavior is motivated irrespective of the level of symbolization and recognition. Two studies provide support for this pattern examining volunteering of time. Our results provide a framework for predicting prosocial behavior by combining the 2 dimensions of moral identity with the situational factor of recognition. PsycINFO Database Record (c) 2013 APA, all rights reserved
Perceptual effects on remembering: recollective processes in picture recognition memory.
Rajaram, S
1996-03-01
In 3 experiments, the effects of perceptual manipulations on recollective experience were tested. In Experiment 1, a picture-superiority effect was obtained for overall recognition and Remember judgements in a picture recognition task. In Experiment 2, size changes of pictorial stimuli across study and test reduced recognition memory and Remember judgements. In Experiment 3, deleterious effects of changes in left-right orientation of pictorial stimuli across study and test were obtained for Remember judgements. An alternate framework that emphasizes a distinctiveness-fluency processing distinction is proposed to account for these findings because they cannot easily be accommodated within the existing account of differences in conceptual and perceptual processing for the 2 categories of recollective experience: Remembering and Knowing, respectively (J. M. Gardiner, 1988; S. Rajaram, 1993).
Mirzoev, Tolib N; Green, Andrew; Van Kalliecharan, Ricky
2015-01-01
An adequate capacity of ministries of health (MOH) to develop and implement policies is essential. However, no frameworks were found assessing MOH capacity to conduct health policy processes within developing countries. This paper presents a conceptual framework for assessing MOH capacity to conduct policy processes based on a study from Tajikistan, a former Soviet republic where independence highlighted capacity challenges. The data collection for this qualitative study included in-depth interviews, document reviews and observations of policy events. Framework approach for analysis was used. The conceptual framework was informed by existing literature, guided the data collection and analysis, and was subsequently refined following insights from the study. The Tajik MOH capacity, while gradually improving, remains weak. There is poor recognition of wider contextual influences, ineffective leadership and governance as reflected in centralised decision-making, limited use of evidence, inadequate actors' participation and ineffective use of resources to conduct policy processes. However, the question is whether this is a reflection of lack of MOH ability or evidence of constraining environment or both. The conceptual framework identifies five determinants of robust policy processes, each with specific capacity needs: policy context, MOH leadership and governance, involvement of policy actors, the role of evidence and effective resource use for policy processes. Three underlying considerations are important for applying the capacity to policy processes: the need for clear focus, recognition of capacity levels and elements, and both ability and enabling environment. The proposed framework can be used in assessing and strengthening of the capacity of different policy actors. Copyright © 2013 John Wiley & Sons, Ltd.
Bradbury-Jones, Caroline; Taylor, Julie; Kroll, Thilo; Duncan, Fiona
2014-11-01
To investigate the dynamics of domestic abuse awareness and recognition among primary healthcare professionals and abused women. Domestic abuse is a serious, public health issue that crosses geographical and demographic boundaries. Health professionals are well placed to recognise and respond to domestic abuse, but empirical evidence suggests that they are reluctant to broach the issue. Moreover, research has shown that women are reluctant to disclose abuse. A two-phase, qualitative study was conducted in Scotland. Twenty-nine primary health professionals (midwives, health visitors and general practitioners) participated in the first phase of the study, and 14 abused women took part in phase two. Data were collected in 2011. Semi-structured, individual interviews were conducted with the health professionals, and three focus groups were facilitated with the abused women. Data were analysed using a framework analysis approach. Differing levels of awareness of the nature and existence of abuse are held by abused women and primary healthcare professionals. Specifically, many women do not identify their experiences as abusive. A conceptual representation of domestic abuse - the "abused women, awareness, recognition and empowerment' framework - arising from the study - presents a new way of capturing the complexity of the disclosure process. Further research is necessary to test and empirically validate the framework, but it has potential pedagogical use for the training and education of health professionals and clinical use with abused women. The framework may be used in clinical practice by nurses and other health professionals to facilitate open discussion between professionals and women. In turn, this may empower women to make choices regarding disclosure and safety planning. © 2014 John Wiley & Sons Ltd.
Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan
2017-09-01
It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.
NASA Astrophysics Data System (ADS)
Hamza, Karim; Piqueras, Jesús; Wickman, Per-Olof; Angelin, Marcus
2017-06-01
We present analyses of teacher professional growth during collaboration between science teachers and science education researchers, with special focus on how the differential assumption of responsibility between teachers and researchers affected the growth processes. The collaboration centered on a new conceptual framework introduced by the researchers, which aimed at empowering teachers to plan teaching in accordance with perceived purposes. Seven joint planning meetings between teachers and researchers were analyzed, both quantitatively concerning the extent to which the introduced framework became part of the discussions and qualitatively through the interconnected model of teacher professional growth. The collaboration went through three distinct phases characterized by how and the extent to which the teachers made use of the new framework. The change sequences identified in relation to each phase show that teacher recognition of salient outcomes from the framework was important for professional growth to occur. Moreover, our data suggest that this recognition may have been facilitated because the researchers, in initial phases of the collaboration, took increased responsibility for the implementation of the new framework. We conclude that although this differential assumption of responsibility may result in unequal distribution of power between teachers and researchers, it may at the same time mean more equal distribution of concrete work required as well as the inevitable risks associated with pedagogical innovation and introduction of research-based knowledge into science teachers' practice.
Mandak, Kelsey; O'Neill, Tara; Light, Janice; Fosco, Gregory M
2017-03-01
Despite the growing recognition of the importance of family involvement in augmentative and alternative communication (AAC) intervention, little guidance exists on how professionals can establish successful collaborative relationships with families. In this paper, we discuss family systems theory and ecological systems theory as a framework to guide family-centered AAC practice, review family-focused research in AAC, consider how AAC may impact the family system, and provide examples of the clinical implications of using the proposed family systems framework to improve family-centered AAC practice.
ERIC Educational Resources Information Center
Lange, Elizabeth; Baillie Abidi, Catherine
2015-01-01
This chapter summarizes the key themes across the articles on transnational migration, social inclusion, and adult education, using Nancy Fraser's framework of redistributive, recognitive, and representational justice.
Deceived, Disgusted, and Defensive: Motivated Processing of Anti-Tobacco Advertisements.
Leshner, Glenn; Clayton, Russell B; Bolls, Paul D; Bhandari, Manu
2017-08-29
A 2 × 2 experiment was conducted, where participants watched anti-tobacco messages that varied in deception (content portraying tobacco companies as dishonest) and disgust (negative graphic images) content. Psychophysiological measures, self-report, and a recognition test were used to test hypotheses generated from the motivated cognition framework. The results of this study indicate that messages containing both deception and disgust push viewers into a cascade of defensive responses reflected by increased self-reported unpleasantness, reduced resources allocated to encoding, worsened recognition memory, and dampened emotional responses compared to messages depicting one attribute or neither. Findings from this study demonstrate the value of applying a motivated cognition theoretical framework in research on responses to emotional content in health messages and support previous research on defensive processing and message design of anti-tobacco messages.
A general framework for sensor-based human activity recognition.
Köping, Lukas; Shirahama, Kimiaki; Grzegorzek, Marcin
2018-04-01
Today's wearable devices like smartphones, smartwatches and intelligent glasses collect a large amount of data from their built-in sensors like accelerometers and gyroscopes. These data can be used to identify a person's current activity and in turn can be utilised for applications in the field of personal fitness assistants or elderly care. However, developing such systems is subject to certain restrictions: (i) since more and more new sensors will be available in the future, activity recognition systems should be able to integrate these new sensors with a small amount of manual effort and (ii) such systems should avoid high acquisition costs for computational power. We propose a general framework that achieves an effective data integration based on the following two characteristics: Firstly, a smartphone is used to gather and temporally store data from different sensors and transfer these data to a central server. Thus, various sensors can be integrated into the system as long as they have programming interfaces to communicate with the smartphone. The second characteristic is a codebook-based feature learning approach that can encode data from each sensor into an effective feature vector only by tuning a few intuitive parameters. In the experiments, the framework is realised as a real-time activity recognition system that integrates eight sensors from a smartphone, smartwatch and smartglasses, and its effectiveness is validated from different perspectives such as accuracies, sensor combinations and sampling rates. Copyright © 2018 Elsevier Ltd. All rights reserved.
Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas.
Liu, Yanpeng; Li, Yibin; Ma, Xin; Song, Rui
2017-03-29
In the pattern recognition domain, deep architectures are currently widely used and they have achieved fine results. However, these deep architectures make particular demands, especially in terms of their requirement for big datasets and GPU. Aiming to gain better results without deep networks, we propose a simplified algorithm framework using fusion features extracted from the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than some deep architectures. For extracting more effective features, this paper firstly defines the salient areas on the faces. This paper normalizes the salient areas of the same location in the faces to the same size; therefore, it can extracts more similar features from different subjects. LBP and HOG features are extracted from the salient areas, fusion features' dimensions are reduced by Principal Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at once. This paper proposes a salient areas definitude method which uses peak expressions frames compared with neutral faces. This paper also proposes and applies the idea of normalizing the salient areas to align the specific areas which express the different expressions. As a result, the salient areas found from different subjects are the same size. In addition, the gamma correction method is firstly applied on LBP features in our algorithm framework which improves our recognition rates significantly. By applying this algorithm framework, our research has gained state-of-the-art performances on CK+ database and JAFFE database.
A robust probabilistic collaborative representation based classification for multimodal biometrics
NASA Astrophysics Data System (ADS)
Zhang, Jing; Liu, Huanxi; Ding, Derui; Xiao, Jianli
2018-04-01
Most of the traditional biometric recognition systems perform recognition with a single biometric indicator. These systems have suffered noisy data, interclass variations, unacceptable error rates, forged identity, and so on. Due to these inherent problems, it is not valid that many researchers attempt to enhance the performance of unimodal biometric systems with single features. Thus, multimodal biometrics is investigated to reduce some of these defects. This paper proposes a new multimodal biometric recognition approach by fused faces and fingerprints. For more recognizable features, the proposed method extracts block local binary pattern features for all modalities, and then combines them into a single framework. For better classification, it employs the robust probabilistic collaborative representation based classifier to recognize individuals. Experimental results indicate that the proposed method has improved the recognition accuracy compared to the unimodal biometrics.
Multi-layer sparse representation for weighted LBP-patches based facial expression recognition.
Jia, Qi; Gao, Xinkai; Guo, He; Luo, Zhongxuan; Wang, Yi
2015-03-19
In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach.
Line-based logo recognition through a web-camera
NASA Astrophysics Data System (ADS)
Chen, Xiaolu; Wang, Yangsheng; Feng, Xuetao
2007-11-01
Logo recognition has gained much development in the document retrieval and shape analysis domain. As human computer interaction becomes more and more popular, the logo recognition through a web-camera is a promising technology in view of application. But for practical application, the study of logo recognition in real scene is much more difficult than the work in clear scene. To cope with the need, we make some improvements on conventional method. First, moment information is used to calculate the test image's orientation angle, which is used to normalize the test image. Second, the main structure of the test image, which is represented by lines patterns, is acquired and modified Hausdorff distance is employed to match the image and each of the existing templates. The proposed method, which is invariant to scale and rotation, gives good result and can work at real-time. The main contribution of this paper is that some improvements are introduced into the exiting recognition framework which performs much better than the original one. Besides, we have built a highly successful logo recognition system using our improved method.
Isaacowitz, Derek M.; Stanley, Jennifer Tehan
2011-01-01
Older adults perform worse on traditional tests of emotion recognition accuracy than do young adults. In this paper, we review descriptive research to date on age differences in emotion recognition from facial expressions, as well as the primary theoretical frameworks that have been offered to explain these patterns. We propose that this is an area of inquiry that would benefit from an ecological approach in which contextual elements are more explicitly considered and reflected in experimental methods. Use of dynamic displays and examination of specific cues to accuracy, for example, may reveal more nuanced age-related patterns and may suggest heretofore unexplored underlying mechanisms. PMID:22125354
Cat-eye effect target recognition with single-pixel detectors
NASA Astrophysics Data System (ADS)
Jian, Weijian; Li, Li; Zhang, Xiaoyue
2015-12-01
A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.
A Mathematical Framework for Image Analysis
1991-08-01
The results reported here were derived from the research project ’A Mathematical Framework for Image Analysis ’ supported by the Office of Naval...Research, contract N00014-88-K-0289 to Brown University. A common theme for the work reported is the use of probabilistic methods for problems in image ... analysis and image reconstruction. Five areas of research are described: rigid body recognition using a decision tree/combinatorial approach; nonrigid
Robust and Effective Component-based Banknote Recognition for the Blind
Hasanuzzaman, Faiz M.; Yang, Xiaodong; Tian, YingLi
2012-01-01
We develop a novel camera-based computer vision technology to automatically recognize banknotes for assisting visually impaired people. Our banknote recognition system is robust and effective with the following features: 1) high accuracy: high true recognition rate and low false recognition rate, 2) robustness: handles a variety of currency designs and bills in various conditions, 3) high efficiency: recognizes banknotes quickly, and 4) ease of use: helps blind users to aim the target for image capture. To make the system robust to a variety of conditions including occlusion, rotation, scaling, cluttered background, illumination change, viewpoint variation, and worn or wrinkled bills, we propose a component-based framework by using Speeded Up Robust Features (SURF). Furthermore, we employ the spatial relationship of matched SURF features to detect if there is a bill in the camera view. This process largely alleviates false recognition and can guide the user to correctly aim at the bill to be recognized. The robustness and generalizability of the proposed system is evaluated on a dataset including both positive images (with U.S. banknotes) and negative images (no U.S. banknotes) collected under a variety of conditions. The proposed algorithm, achieves 100% true recognition rate and 0% false recognition rate. Our banknote recognition system is also tested by blind users. PMID:22661884
Recognition without identification, erroneous familiarity, and déjà vu.
O'Connor, Akira R; Moulin, Chris J A
2010-06-01
Déjà vu is characterized by the recognition of a situation concurrent with the awareness that this recognition is inappropriate. Although forms of déjà vu resolve in favor of the inappropriate recognition and therefore have behavioral consequences, typical déjà vu experiences resolve in favor of the awareness that the sensation of recognition is inappropriate. The resultant lack of behavioral modification associated with typical déjà vu means that clinicians and experimenters rely heavily on self-report when observing the experience. In this review, we focus on recent déjà vu research. We consider issues facing neuropsychological, neuroscientific, and cognitive experimental frameworks attempting to explore and experimentally generate the experience. In doing this, we suggest the need for more experimentation and a more cautious interpretation of research findings, particularly as many techniques being used to explore déjà vu are in the early stages of development.
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-05-27
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation.
Experience moderates overlap between object and face recognition, suggesting a common ability
Gauthier, Isabel; McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E.
2014-01-01
Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. PMID:24993021
Experience moderates overlap between object and face recognition, suggesting a common ability.
Gauthier, Isabel; McGugin, Rankin W; Richler, Jennifer J; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E
2014-07-03
Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. © 2014 ARVO.
Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai
2012-01-01
In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism. PMID:23193391
Cho, Woon; Jang, Jinbeum; Koschan, Andreas; Abidi, Mongi A; Paik, Joonki
2016-11-28
A fundamental limitation of hyperspectral imaging is the inter-band misalignment correlated with subject motion during data acquisition. One way of resolving this problem is to assess the alignment quality of hyperspectral image cubes derived from the state-of-the-art alignment methods. In this paper, we present an automatic selection framework for the optimal alignment method to improve the performance of face recognition. Specifically, we develop two qualitative prediction models based on: 1) a principal curvature map for evaluating the similarity index between sequential target bands and a reference band in the hyperspectral image cube as a full-reference metric; and 2) the cumulative probability of target colors in the HSV color space for evaluating the alignment index of a single sRGB image rendered using all of the bands of the hyperspectral image cube as a no-reference metric. We verify the efficacy of the proposed metrics on a new large-scale database, demonstrating a higher prediction accuracy in determining improved alignment compared to two full-reference and five no-reference image quality metrics. We also validate the ability of the proposed framework to improve hyperspectral face recognition.
Three-dimensional deformable-model-based localization and recognition of road vehicles.
Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong
2012-01-01
We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.
A cortical framework for invariant object categorization and recognition.
Rodrigues, João; Hans du Buf, J M
2009-08-01
In this paper we present a new model for invariant object categorization and recognition. It is based on explicit multi-scale features: lines, edges and keypoints are extracted from responses of simple, complex and end-stopped cells in cortical area V1, and keypoints are used to construct saliency maps for Focus-of-Attention. The model is a functional but dichotomous one, because keypoints are employed to model the "where" data stream, with dynamic routing of features from V1 to higher areas to obtain translation, rotation and size invariance, whereas lines and edges are employed in the "what" stream for object categorization and recognition. Furthermore, both the "where" and "what" pathways are dynamic in that information at coarse scales is employed first, after which information at progressively finer scales is added in order to refine the processes, i.e., both the dynamic feature routing and the categorization level. The construction of group and object templates, which are thought to be available in the prefrontal cortex with "what" and "where" components in PF46d and PF46v, is also illustrated. The model was tested in the framework of an integrated and biologically plausible architecture.
Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai
2012-01-01
In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun
2017-04-01
In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.
CNN based approach for activity recognition using a wrist-worn accelerometer.
Panwar, Madhuri; Dyuthi, S Ram; Chandra Prakash, K; Biswas, Dwaipayan; Acharyya, Amit; Maharatna, Koushik; Gautam, Arvind; Naik, Ganesh R
2017-07-01
In recent years, significant advancements have taken place in human activity recognition using various machine learning approaches. However, feature engineering have dominated conventional methods involving the difficult process of optimal feature selection. This problem has been mitigated by using a novel methodology based on deep learning framework which automatically extracts the useful features and reduces the computational cost. As a proof of concept, we have attempted to design a generalized model for recognition of three fundamental movements of the human forearm performed in daily life where data is collected from four different subjects using a single wrist worn accelerometer sensor. The validation of the proposed model is done with different pre-processing and noisy data condition which is evaluated using three possible methods. The results show that our proposed methodology achieves an average recognition rate of 99.8% as opposed to conventional methods based on K-means clustering, linear discriminant analysis and support vector machine.
On the particular vulnerability of face recognition to aging: a review of three hypotheses
Boutet, Isabelle; Taler, Vanessa; Collin, Charles A.
2015-01-01
Age-related face recognition deficits are characterized by high false alarms to unfamiliar faces, are not as pronounced for other complex stimuli, and are only partially related to general age-related impairments in cognition. This paper reviews some of the underlying processes likely to be implicated in theses deficits by focusing on areas where contradictions abound as a means to highlight avenues for future research. Research pertaining to the three following hypotheses is presented: (i) perceptual deterioration, (ii) encoding of configural information, and (iii) difficulties in recollecting contextual information. The evidence surveyed provides support for the idea that all three factors are likely to contribute, under certain conditions, to the deficits in face recognition seen in older adults. We discuss how these different factors might interact in the context of a generic framework of the different stages implicated in face recognition. Several suggestions for future investigations are outlined. PMID:26347670
The adaptive use of recognition in group decision making.
Kämmer, Juliane E; Gaissmaier, Wolfgang; Reimer, Torsten; Schermuly, Carsten C
2014-06-01
Applying the framework of ecological rationality, the authors studied the adaptivity of group decision making. In detail, they investigated whether groups apply decision strategies conditional on their composition in terms of task-relevant features. The authors focused on the recognition heuristic, so the task-relevant features were the validity of the group members' recognition and knowledge, which influenced the potential performance of group strategies. Forty-three three-member groups performed an inference task in which they had to infer which of two German companies had the higher market capitalization. Results based on the choice data support the hypothesis that groups adaptively apply the strategy that leads to the highest theoretically achievable performance. Time constraints had no effect on strategy use but did have an effect on the proportions of different types of arguments. Possible mechanisms underlying the adaptive use of recognition in group decision making are discussed. © 2014 Cognitive Science Society, Inc.
Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images
Srivastava, Anuj
2010-01-01
We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692
Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan
2015-09-01
Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-modal gesture recognition using integrated model of motion, audio and video
NASA Astrophysics Data System (ADS)
Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko
2015-07-01
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.
CHAMPION: Intelligent Hierarchical Reasoning Agents for Enhanced Decision Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohimer, Ryan E.; Greitzer, Frank L.; Noonan, Christine F.
2011-11-15
We describe the design and development of an advanced reasoning framework employing semantic technologies, organized within a hierarchy of computational reasoning agents that interpret domain specific information. Designed based on an inspirational metaphor of the pattern recognition functions performed by the human neocortex, the CHAMPION reasoning framework represents a new computational modeling approach that derives invariant knowledge representations through memory-prediction belief propagation processes that are driven by formal ontological language specification and semantic technologies. The CHAMPION framework shows promise for enhancing complex decision making in diverse problem domains including cyber security, nonproliferation and energy consumption analysis.
Summary of tracking and identification methods
NASA Astrophysics Data System (ADS)
Blasch, Erik; Yang, Chun; Kadar, Ivan
2014-06-01
Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.
ARCH: Adaptive recurrent-convolutional hybrid networks for long-term action recognition
Xin, Miao; Zhang, Hong; Wang, Helong; Sun, Mingui; Yuan, Ding
2017-01-01
Recognition of human actions from digital video is a challenging task due to complex interfering factors in uncontrolled realistic environments. In this paper, we propose a learning framework using static, dynamic and sequential mixed features to solve three fundamental problems: spatial domain variation, temporal domain polytrope, and intra- and inter-class diversities. Utilizing a cognitive-based data reduction method and a hybrid “network upon networks” architecture, we extract human action representations which are robust against spatial and temporal interferences and adaptive to variations in both action speed and duration. We evaluated our method on the UCF101 and other three challenging datasets. Our results demonstrated a superior performance of the proposed algorithm in human action recognition. PMID:29290647
How color enhances visual memory for natural scenes.
Spence, Ian; Wong, Patrick; Rusan, Maria; Rastegar, Naghmeh
2006-01-01
We offer a framework for understanding how color operates to improve visual memory for images of the natural environment, and we present an extensive data set that quantifies the contribution of color in the encoding and recognition phases. Using a continuous recognition task with colored and monochrome gray-scale images of natural scenes at short exposure durations, we found that color enhances recognition memory by conferring an advantage during encoding and by strengthening the encoding-specificity effect. Furthermore, because the pattern of performance was similar at all exposure durations, and because form and color are processed in different areas of cortex, the results imply that color must be bound as an integral part of the representation at the earliest stages of processing.
Activity recognition using dynamic multiple sensor fusion in body sensor networks.
Gao, Lei; Bourke, Alan K; Nelson, John
2012-01-01
Multiple sensor fusion is a main research direction for activity recognition. However, there are two challenges in those systems: the energy consumption due to the wireless transmission and the classifier design because of the dynamic feature vector. This paper proposes a multi-sensor fusion framework, which consists of the sensor selection module and the hierarchical classifier. The sensor selection module adopts the convex optimization to select the sensor subset in real time. The hierarchical classifier combines the Decision Tree classifier with the Naïve Bayes classifier. The dataset collected from 8 subjects, who performed 8 scenario activities, was used to evaluate the proposed system. The results show that the proposed system can obviously reduce the energy consumption while guaranteeing the recognition accuracy.
NASA Astrophysics Data System (ADS)
Kelly, F. A.; Stacey, W. M.; Rapp, J.
2001-11-01
The observed dependence of the TEXTOR [Tokamak Experiment for Technology Oriented Research: E. Hintz, P. Bogen, H. A. Claassen et al., Contributions to High Temperature Plasma Physics, edited by K. H. Spatschek and J. Uhlenbusch (Akademie Verlag, Berlin, 1994), p. 373] density limit on global parameters (I, B, P, etc.) and wall conditioning is compared with the predicted density limit parametric scaling of thermal instability theory. It is necessary first to relate the edge parameters of the thermal instability theory to n¯ and the other global parameters. The observed parametric dependence of the density limit in TEXTOR is generally consistent with the predicted density limit scaling of thermal instability theory. The observed wall conditioning dependence of the density limit can be reconciled with the theory in terms of the radiative emissivity temperature dependence of different impurities in the plasma edge. The thermal instability theory also provides an explanation of why symmetric detachment precedes radiative collapse for most low power shots, while a multifaceted asymmetric radiation from the edge MARFE precedes detachment for most high power shots.
Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.
Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina
2018-05-14
The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.
Summary: Ecosystem Services and Human Welfare
The ecosystem services paradigm is a framework conceived to engage support among people, especially policy- and decision-makers, for the recognition that human welfare, prosperity, security, and well-being are intrinsically linked to the health of the environment. Simply stated, ...
War and peace: morphemes and full forms in a noninteractive activation parallel dual-route model.
Baayen, H; Schreuder, R
This article introduces a computational tool for modeling the process of morphological segmentation in visual and auditory word recognition in the framework of a parallel dual-route model. Copyright 1999 Academic Press.
Familiarity and recollection in heuristic decision making.
Schwikert, Shane R; Curran, Tim
2014-12-01
Heuristics involve the ability to utilize memory to make quick judgments by exploiting fundamental cognitive abilities. In the current study we investigated the memory processes that contribute to the recognition heuristic and the fluency heuristic, which are both presumed to capitalize on the byproducts of memory to make quick decisions. In Experiment 1, we used a city-size comparison task while recording event-related potentials (ERPs) to investigate the potential contributions of familiarity and recollection to the 2 heuristics. ERPs were markedly different for recognition heuristic-based decisions and fluency heuristic-based decisions, suggesting a role for familiarity in the recognition heuristic and recollection in the fluency heuristic. In Experiment 2, we coupled the same city-size comparison task with measures of subjective preexperimental memory for each stimulus in the task. Although previous literature suggests the fluency heuristic relies on recognition speed alone, our results suggest differential contributions of recognition speed and recollected knowledge to these decisions, whereas the recognition heuristic relies on familiarity. Based on these results, we created a new theoretical framework that explains decisions attributed to both heuristics based on the underlying memory associated with the choice options. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Laurence, Sarah; Mondloch, Catherine J
2016-03-01
Most previous research on the development of face recognition has focused on recognition of highly controlled images. One of the biggest challenges of face recognition is to identify an individual across images that capture natural variability in appearance. We created a child-friendly version of Jenkins, White, Van Montford, and Burton's sorting task (Cognition, 2011, Vol. 121, pp. 313-323) to investigate children's recognition of personally familiar and unfamiliar faces. Children between 4 and 12years of age were presented with a familiar/unfamiliar teacher's house and a pile of face photographs (nine pictures each of the teacher and another identity). Each child was asked to put all the pictures of the teacher inside the house while keeping the other identity out. Children over 6years of age showed adult-like familiar face recognition. Unfamiliar face recognition improved across the entire age range, with considerable variability in children's performance. These findings suggest that children's ability to tolerate within-person variability improves with age and support a face-space framework in which faces are represented as regions, the size of which increases with age. Copyright © 2015 Elsevier Inc. All rights reserved.
Cognitive object recognition system (CORS)
NASA Astrophysics Data System (ADS)
Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy
2010-04-01
We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.
Automatic speech recognition using a predictive echo state network classifier.
Skowronski, Mark D; Harris, John G
2007-04-01
We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.
Structural elements and organization of the ancestral translational machinery
NASA Technical Reports Server (NTRS)
Rein, R.; Srinivasan, S.; Mcdonald, J.; Raghunathan, G.; Shibata, M.
1987-01-01
The molecular mechanisms of the primitive translational apparatus are discussed in the framework of present-day protein biosynthesis. The structural necessities of an early adaptor and the multipoint recognition properties of such an adaptor are investigated on the basis of structure/function relationships found in a contemporary system and a molecular model of the contemporary transpeptidation complex. A model of the tRNA(Tyr)-tyrosyl tRNA synthetase complex including the positioning of the disordered region is proposed; the model is used to illustrate the required recognition properties of the ancestor aminoacyl synthetase.
Connected word recognition using a cascaded neuro-computational model
NASA Astrophysics Data System (ADS)
Hoya, Tetsuya; van Leeuwen, Cees
2016-10-01
We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.
Framework for Understanding Balance Dysfunction in Parkinson’s Disease
Schoneburg, Bernadette; Mancini, Martina; Horak, Fay; Nutt, John G.
2013-01-01
People with Parkinson’s disease (PD) suffer from progressive impairment in their mobility. Locomotor and balance dysfunction that impairs mobility in PD is an important cause of physical and psychosocial disability. The recognition and evaluation of balance dysfunction by the clinician is an essential component of managing PD. In this review, we describe a framework for understanding balance dysfunction in PD to help clinicians recognize patients that are at risk for falling and impaired mobility. PMID:23925954
[Radiotherapy quality and risk manager role optimization in 2017].
Ponsard, N; Brusadin, G; Schick, U
2017-10-01
The quality and risk manager works in a regulated framework, which delimits its missions. Nevertheless, the variety among the centers generates heterogeneous situations regarding the positioning and the range of action. A well-defined framework is needed in order to ratify the legitimacy and the recognition of quality and risk manager's main function. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Lalys, Florent; Riffaud, Laurent; Bouget, David; Jannin, Pierre
2012-01-01
The need for a better integration of the new generation of Computer-Assisted-Surgical (CAS) systems has been recently emphasized. One necessity to achieve this objective is to retrieve data from the Operating Room (OR) with different sensors, then to derive models from these data. Recently, the use of videos from cameras in the OR has demonstrated its efficiency. In this paper, we propose a framework to assist in the development of systems for the automatic recognition of high level surgical tasks using microscope videos analysis. We validated its use on cataract procedures. The idea is to combine state-of-the-art computer vision techniques with time series analysis. The first step of the framework consisted in the definition of several visual cues for extracting semantic information, therefore characterizing each frame of the video. Five different pieces of image-based classifiers were therefore implemented. A step of pupil segmentation was also applied for dedicated visual cue detection. Time series classification algorithms were then applied to model time-varying data. Dynamic Time Warping (DTW) and Hidden Markov Models (HMM) were tested. This association combined the advantages of all methods for better understanding of the problem. The framework was finally validated through various studies. Six binary visual cues were chosen along with 12 phases to detect, obtaining accuracies of 94%. PMID:22203700
An embedded system for face classification in infrared video using sparse representation
NASA Astrophysics Data System (ADS)
Saavedra M., Antonio; Pezoa, Jorge E.; Zarkesh-Ha, Payman; Figueroa, Miguel
2017-09-01
We propose a platform for robust face recognition in Infrared (IR) images using Compressive Sensing (CS). In line with CS theory, the classification problem is solved using a sparse representation framework, where test images are modeled by means of a linear combination of the training set. Because the training set constitutes an over-complete dictionary, we identify new images by finding their sparsest representation based on the training set, using standard l1-minimization algorithms. Unlike conventional face-recognition algorithms, we feature extraction is performed using random projections with a precomputed binary matrix, as proposed in the CS literature. This random sampling reduces the effects of noise and occlusions such as facial hair, eyeglasses, and disguises, which are notoriously challenging in IR images. Thus, the performance of our framework is robust to these noise and occlusion factors, achieving an average accuracy of approximately 90% when the UCHThermalFace database is used for training and testing purposes. We implemented our framework on a high-performance embedded digital system, where the computation of the sparse representation of IR images was performed by a dedicated hardware using a deeply pipelined architecture on an Field-Programmable Gate Array (FPGA).
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-01-01
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation. PMID:28555022
Akroyd, Mike; Jordan, Gary; Rowlands, Paul
2016-06-01
People with serious mental illness have reduced life expectancy compared with a control population, much of which is accounted for by significant physical comorbidity. Frontline clinical staff in mental health often lack confidence in recognition, assessment and management of such 'medical' problems. Simulation provides one way for staff to practise these skills in a safe setting. We produced a multidisciplinary simulation course around recognition and assessment of medical problems in psychiatric settings. We describe an audit of strategic and design aspects of the recognition and assessment of medical problems in psychiatric settings course, using the Department of Health's 'Framework for Technology Enhanced Learning' as our audit standards. At the same time as highlighting areas where recognition and assessment of medical problems in psychiatric settings adheres to these identified principles, such as the strategic underpinning of the approach, and the means by which information is collected, reviewed and shared, it also helps us to identify areas where we can improve. © The Author(s) 2014.
Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a...
Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a...
Self-recognition in corals facilitates deep-sea habitat engineering
Hennige, Sebastian J; Morrison, Cheryl L.; Form, Armin U.; Buscher, Janina; Kamenos, Nicholas A.; Roberts, J. Murray
2014-01-01
The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.
SleepSense: A Noncontact and Cost-Effective Sleep Monitoring System.
Lin, Feng; Zhuang, Yan; Song, Chen; Wang, Aosen; Li, Yiran; Gu, Changzhan; Li, Changzhi; Xu, Wenyao
2017-02-01
Quality of sleep is an important indicator of health and well being. Recent developments in the field of in-home sleep monitoring have the potential to enhance a person's sleeping experience and contribute to an overall sense of well being. Existing in-home sleep monitoring devices either fail to provide adequate sleep information or are obtrusive to use. To overcome these obstacles, a noncontact and cost-effective sleep monitoring system, named SleepSense, is proposed for continuous recognition of the sleep status, including on-bed movement, bed exit, and breathing section. SleepSense consists of three parts: a Doppler radar-based sensor, a robust automated radar demodulation module, and a sleep status recognition framework. Herein, several time-domain and frequency-domain features are extracted for the sleep recognition framework. A prototype of SleepSense is presented and evaluated using two sets of experiments. In the short-term controlled experiment, the SleepSense achieves an overall 95.1% accuracy rate in identifying various sleep status. In the 75-minute sleep study, SleepSense demonstrates wide usability in real life. The error rate for breathing rate extraction in this study is only 6.65%. These experimental results indicate that SleepSense is an effective and promising solution for in-home sleep monitoring.
Avola, Danilo; Spezialetti, Matteo; Placidi, Giuseppe
2013-06-01
Rehabilitation is often required after stroke, surgery, or degenerative diseases. It has to be specific for each patient and can be easily calibrated if assisted by human-computer interfaces and virtual reality. Recognition and tracking of different human body landmarks represent the basic features for the design of the next generation of human-computer interfaces. The most advanced systems for capturing human gestures are focused on vision-based techniques which, on the one hand, may require compromises from real-time and spatial precision and, on the other hand, ensure natural interaction experience. The integration of vision-based interfaces with thematic virtual environments encourages the development of novel applications and services regarding rehabilitation activities. The algorithmic processes involved during gesture recognition activity, as well as the characteristics of the virtual environments, can be developed with different levels of accuracy. This paper describes the architectural aspects of a framework supporting real-time vision-based gesture recognition and virtual environments for fast prototyping of customized exercises for rehabilitation purposes. The goal is to provide the therapist with a tool for fast implementation and modification of specific rehabilitation exercises for specific patients, during functional recovery. Pilot examples of designed applications and preliminary system evaluation are reported and discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Getting an evidence-based post-partum haemorrhage policy into practice.
Cameron, Carolyn A; Roberts, Christine L; Bell, Jane; Fischer, Wendy
2007-06-01
Post-partum haemorrhage (PPH) is a potentially life-threatening complication of childbirth occurring in up to 10% of births. The NSW Department of Health (DoH) issued a new evidence-based policy (Framework for Prevention, Early Recognition and Management of Post-partum Haemorrhage) in November 2002. Feedback from maternity units indicated that there were deficiencies in the skills and experience is needed to develop the written protocols and local plans of action required by the Framework. All 96 hospitals in NSW that provide care for childbirth were surveyed. A senior midwife completed a semistructured telephone interview. Ninety four per cent of hospitals had PPH policies. Among hospitals that provided a copy of their policy, 83% were dated after the release of the DoH's Framework, but 22% contained an incorrect definition of PPH. Only 71% of respondents in small rural and urban district hospitals recalled receiving a copy of the Framework. There was considerable variation in the frequency of postnatal observations. Key factors that impede local policy development were resources, entrenched practices and centralised policy development. Enabling factors were effective relationships, the DoH policy directive (Framework), education and organisational issues/time. Greater assistance is needed to ensure that hospitals have the capacity to develop a policy applicable to local needs. Maternity hospitals throughout the state provide different levels of care and NSW DoH policy directives should not be 'one size fits all' documents. Earlier recognition of PPH may be facilitated by routine post-partum monitoring of all women and should be consistent throughout the state, regardless of hospital level.
An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework
NASA Astrophysics Data System (ADS)
Sarı, H.; Eken, S.; Sayar, A.
2017-11-01
In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.
Method for secure electronic voting system: face recognition based approach
NASA Astrophysics Data System (ADS)
Alim, M. Affan; Baig, Misbah M.; Mehboob, Shahzain; Naseem, Imran
2017-06-01
In this paper, we propose a framework for low cost secure electronic voting system based on face recognition. Essentially Local Binary Pattern (LBP) is used for face feature characterization in texture format followed by chi-square distribution is used for image classification. Two parallel systems are developed based on smart phone and web applications for face learning and verification modules. The proposed system has two tire security levels by using person ID followed by face verification. Essentially class specific threshold is associated for controlling the security level of face verification. Our system is evaluated three standard databases and one real home based database and achieve the satisfactory recognition accuracies. Consequently our propose system provides secure, hassle free voting system and less intrusive compare with other biometrics.
A Grassmann graph embedding framework for gait analysis
NASA Astrophysics Data System (ADS)
Connie, Tee; Goh, Michael Kah Ong; Teoh, Andrew Beng Jin
2014-12-01
Gait recognition is important in a wide range of monitoring and surveillance applications. Gait information has often been used as evidence when other biometrics is indiscernible in the surveillance footage. Building on recent advances of the subspace-based approaches, we consider the problem of gait recognition on the Grassmann manifold. We show that by embedding the manifold into reproducing kernel Hilbert space and applying the mechanics of graph embedding on such manifold, significant performance improvement can be obtained. In this work, the gait recognition problem is studied in a unified way applicable for both supervised and unsupervised configurations. Sparse representation is further incorporated in the learning mechanism to adaptively harness the local structure of the data. Experiments demonstrate that the proposed method can tolerate variations in appearance for gait identification effectively.
Horry, Ruth; Wright, Daniel B; Tredoux, Colin G
2010-03-01
People are more accurate at recognizing faces from their own ethnic group than at recognizing faces from other ethnic groups. This other-ethnicity effect (OEE) in recognition may be produced by a deficit in recollective memory for other-ethnicity faces. In a single study, White and Black participants saw White and Black faces presented within several different visual contexts. The participants were then given an old/new recognition task. Old responses were followed by remember-know-guess judgments and context judgments. Own-ethnicity faces were recognized more accurately, were given more remember responses, and produced more accurate context judgments than did other-ethnicity faces. These results are discussed in a dual-process framework, and implications for eyewitness memory are considered.
Object recognition in images via a factor graph model
NASA Astrophysics Data System (ADS)
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
Context-dependent logo matching and recognition.
Sahbi, Hichem; Ballan, Lamberto; Serra, Giuseppe; Del Bimbo, Alberto
2013-03-01
We contribute, through this paper, to the design of a novel variational framework able to match and recognize multiple instances of multiple reference logos in image archives. Reference logos and test images are seen as constellations of local features (interest points, regions, etc.) and matched by minimizing an energy function mixing: 1) a fidelity term that measures the quality of feature matching, 2) a neighborhood criterion that captures feature co-occurrence/geometry, and 3) a regularization term that controls the smoothness of the matching solution. We also introduce a detection/recognition procedure and study its theoretical consistency. Finally, we show the validity of our method through extensive experiments on the challenging MICC-Logos dataset. Our method overtakes, by 20%, baseline as well as state-of-the-art matching/recognition procedures.
An Unsolved Mystery: The Target-Recognizing RNA Species of MicroRNA Genes
Chen, Chang-Zheng
2013-01-01
MicroRNAs (miRNAs) are an abundant class of endogenous ~ 21-nucleotide (nt) RNAs. These small RNAs are produced from long primary miRNA transcripts — pri-miRNAs — through sequential endonucleolytic maturation steps that yield precursor miRNA (pre-miRNA) intermediates and then the mature miRNAs. The mature miRNAs are loaded into the RNA-induced silencing complexes (RISC), and guide RISC to target mRNAs for cleavage and/or translational repression. This paradigm, which represents one of major discoveries of modern molecular biology, is built on the assumption that mature miRNAs are the only species produced from miRNA genes that recognize targets. This assumption has guided the miRNA field for more than a decade and has led to our current understanding of the mechanisms of target recognition and repression by miRNAs. Although progress has been made, fundamental questions remain unanswered with regard to the principles of target recognition and mechanisms of repression. Here I raise questions about the assumption that mature miRNAs are the only target-recognizing species produced from miRNA genes and discuss the consequences of working under an incomplete or incorrect assumption. Moreover, I present evolution-based and experimental evidence that support the roles of pri-/pre-miRNAs in target recognition and repression. Finally, I propose a conceptual framework that integrates the functions of pri-/pre-miRNAs and mature miRNAs in target recognition and repression. The integrated framework opens experimental enquiry and permits interpretation of fundamental problems that have so far been precluded. PMID:23685275
Dries, Daniel R; Dean, Diane M; Listenberger, Laura L; Novak, Walter R P; Franzen, Margaret A; Craig, Paul A
2017-01-02
A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three-dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure-function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69-75, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.
Framework for objective evaluation of privacy filters
NASA Astrophysics Data System (ADS)
Korshunov, Pavel; Melle, Andrea; Dugelay, Jean-Luc; Ebrahimi, Touradj
2013-09-01
Extensive adoption of video surveillance, affecting many aspects of our daily lives, alarms the public about the increasing invasion into personal privacy. To address these concerns, many tools have been proposed for protection of personal privacy in image and video. However, little is understood regarding the effectiveness of such tools and especially their impact on the underlying surveillance tasks, leading to a tradeoff between the preservation of privacy offered by these tools and the intelligibility of activities under video surveillance. In this paper, we investigate this privacy-intelligibility tradeoff objectively by proposing an objective framework for evaluation of privacy filters. We apply the proposed framework on a use case where privacy of people is protected by obscuring faces, assuming an automated video surveillance system. We used several popular privacy protection filters, such as blurring, pixelization, and masking and applied them with varying strengths to people's faces from different public datasets of video surveillance footage. Accuracy of face detection algorithm was used as a measure of intelligibility (a face should be detected to perform a surveillance task), and accuracy of face recognition algorithm as a measure of privacy (a specific person should not be identified). Under these conditions, after application of an ideal privacy protection tool, an obfuscated face would be visible as a face but would not be correctly identified by the recognition algorithm. The experiments demonstrate that, in general, an increase in strength of privacy filters under consideration leads to an increase in privacy (i.e., reduction in recognition accuracy) and to a decrease in intelligibility (i.e., reduction in detection accuracy). Masking also shows to be the most favorable filter across all tested datasets.
Dries, Daniel R.; Dean, Diane M.; Listenberger, Laura L.; Novak, Walter R.P.
2016-01-01
Abstract A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three‐dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure‐function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69–75, 2017. PMID:27486685
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
Automatic anatomy recognition on CT images with pathology
NASA Astrophysics Data System (ADS)
Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.
2016-03-01
Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.
Robust Indoor Human Activity Recognition Using Wireless Signals.
Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang
2015-07-15
Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.
Robust representation and recognition of facial emotions using extreme sparse learning.
Shojaeilangari, Seyedehsamaneh; Yau, Wei-Yun; Nandakumar, Karthik; Li, Jun; Teoh, Eam Khwang
2015-07-01
Recognition of natural emotions from human faces is an interesting topic with a wide range of potential applications, such as human-computer interaction, automated tutoring systems, image and video retrieval, smart environments, and driver warning systems. Traditionally, facial emotion recognition systems have been evaluated on laboratory controlled data, which is not representative of the environment faced in real-world applications. To robustly recognize the facial emotions in real-world natural situations, this paper proposes an approach called extreme sparse learning, which has the ability to jointly learn a dictionary (set of basis) and a nonlinear classification model. The proposed approach combines the discriminative power of extreme learning machine with the reconstruction property of sparse representation to enable accurate classification when presented with noisy signals and imperfect data recorded in natural settings. In addition, this paper presents a new local spatio-temporal descriptor that is distinctive and pose-invariant. The proposed framework is able to achieve the state-of-the-art recognition accuracy on both acted and spontaneous facial emotion databases.
Parker, Andrew; Relph, Sarah; Dagnall, Neil
2008-01-01
Two experiments are reported that investigate the effects of saccadic bilateral eye movements on the retrieval of item, associative, and contextual information. Experiment 1 compared the effects of bilateral versus vertical versus no eye movements on tests of item recognition, followed by remember-know responses and associative recognition. Supporting previous research, bilateral eye movements enhanced item recognition by increasing the hit rate and decreasing the false alarm rate. Analysis of remember-know responses indicated that eye movement effects were accompanied by increases in remember responses. The test of associative recognition found that bilateral eye movements increased correct responses to intact pairs and decreased false alarms to rearranged pairs. Experiment 2 assessed the effects of eye movements on the recall of intrinsic (color) and extrinsic (spatial location) context. Bilateral eye movements increased correct recall for both types of context. The results are discussed within the framework of dual-process models of memory and the possible neural underpinnings of these effects are considered.
Akroyd, Mike; Jordan, Gary; Rowlands, Paul
2016-06-01
People with serious mental illness have reduced life expectancy compared with a control population, much of which is accounted for by significant physical comorbidity. Frontline clinical staff in mental health often lack confidence in recognition, assessment and management of such 'medical' problems. Simulation provides one way for staff to practise these skills in a safe setting. We produced a multidisciplinary simulation course around recognition and assessment of medical problems in psychiatric settings. We describe an audit of strategic and design aspects of the recognition and assessment of medical problems in psychiatric settings, using the Department of Health's 'Framework for Technology Enhanced Learning' as our audit standards. At the same time, as highlighting areas where recognition and assessment of medical problems in psychiatric settings adheres to these identified principles, such as the strategic underpinning of the approach, and the means by which information is collected, reviewed and shared, it also helps us to identify areas where we can improve. © The Author(s) 2014.
Surgical gesture segmentation and recognition.
Tao, Lingling; Zappella, Luca; Hager, Gregory D; Vidal, René
2013-01-01
Automatic surgical gesture segmentation and recognition can provide useful feedback for surgical training in robotic surgery. Most prior work in this field relies on the robot's kinematic data. Although recent work [1,2] shows that the robot's video data can be equally effective for surgical gesture recognition, the segmentation of the video into gestures is assumed to be known. In this paper, we propose a framework for joint segmentation and recognition of surgical gestures from kinematic and video data. Unlike prior work that relies on either frame-level kinematic cues, or segment-level kinematic or video cues, our approach exploits both cues by using a combined Markov/semi-Markov conditional random field (MsM-CRF) model. Our experiments show that the proposed model improves over a Markov or semi-Markov CRF when using video data alone, gives results that are comparable to state-of-the-art methods on kinematic data alone, and improves over state-of-the-art methods when combining kinematic and video data.
Deep Neural Networks for Speech Separation With Application to Robust Speech Recognition
acoustic -phonetic features. The second objective is integration of spectrotemporal context for improved separation performance. Conditional random fields...will be used to encode contextual constraints. The third objective is to achieve robust ASR in the DNN framework through integrated acoustic modeling
Medical History as an Introduction to Clinical Reasoning.
ERIC Educational Resources Information Center
Maulitz, Russell C.; And Others
1983-01-01
An elective course in the history of medicine focuses on clinical thinking using the case study method. Course goals include: student recognition of clinical reasoning as a historical process; understanding of distinctions between disease categories and etiological frameworks; and different conceptualizations (etiological and syndromic) of…
Luo, Jiebo; Boutell, Matthew
2005-05-01
Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.
Open source OCR framework using mobile devices
NASA Astrophysics Data System (ADS)
Zhou, Steven Zhiying; Gilani, Syed Omer; Winkler, Stefan
2008-02-01
Mobile phones have evolved from passive one-to-one communication device to powerful handheld computing device. Today most new mobile phones are capable of capturing images, recording video, and browsing internet and do much more. Exciting new social applications are emerging on mobile landscape, like, business card readers, sing detectors and translators. These applications help people quickly gather the information in digital format and interpret them without the need of carrying laptops or tablet PCs. However with all these advancements we find very few open source software available for mobile phones. For instance currently there are many open source OCR engines for desktop platform but, to our knowledge, none are available on mobile platform. Keeping this in perspective we propose a complete text detection and recognition system with speech synthesis ability, using existing desktop technology. In this work we developed a complete OCR framework with subsystems from open source desktop community. This includes a popular open source OCR engine named Tesseract for text detection & recognition and Flite speech synthesis module, for adding text-to-speech ability.
Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins
NASA Astrophysics Data System (ADS)
Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team
The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Auditory models for speech analysis
NASA Astrophysics Data System (ADS)
Maybury, Mark T.
This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.
Schädler, Marc René; Warzybok, Anna; Ewert, Stephan D; Kollmeier, Birger
2016-05-01
A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100-107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognition experiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892-2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with-and hence to predict-empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.
Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm. PMID:27711125
Cadavid, Sara; Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm.
The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition.
Fox, Jerome M; Zhao, Mengxia; Fink, Michael J; Kang, Kyungtae; Whitesides, George M
2018-05-20
Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon-termed enthalpy/entropy (H/S) compensation-hinders efforts in biomolecular design, and its incidence-often a surprise to experimentalists-makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting-and, perhaps, avoiding or exploiting-this phenomenon in biophysical systems.
Integrated segmentation and recognition of connected Ottoman script
NASA Astrophysics Data System (ADS)
Yalniz, Ismet Zeki; Altingovde, Ismail Sengor; Güdükbay, Uğur; Ulusoy, Özgür
2009-11-01
We propose a novel context-sensitive segmentation and recognition method for connected letters in Ottoman script. This method first extracts a set of segments from a connected script and determines the candidate letters to which extracted segments are most similar. Next, a function is defined for scoring each different syntactically correct sequence of these candidate letters. To find the candidate letter sequence that maximizes the score function, a directed acyclic graph is constructed. The letters are finally recognized by computing the longest path in this graph. Experiments using a collection of printed Ottoman documents reveal that the proposed method provides >90% precision and recall figures in terms of character recognition. In a further set of experiments, we also demonstrate that the framework can be used as a building block for an information retrieval system for digital Ottoman archives.
Young, Steven G; Hugenberg, Kurt; Bernstein, Michael J; Sacco, Donald F
2012-05-01
Although humans possess well-developed face processing expertise, face processing is nevertheless subject to a variety of biases. Perhaps the best known of these biases is the Cross-Race Effect--the tendency to have more accurate recognition for same-race than cross-race faces. The current work reviews the evidence for and provides a critical review of theories of the Cross-Race Effect, including perceptual expertise and social cognitive accounts of the bias. The authors conclude that recent hybrid models of the Cross-Race Effect, which combine elements of both perceptual expertise and social cognitive frameworks, provide an opportunity for theoretical synthesis and advancement not afforded by independent expertise or social cognitive models. Finally, the authors suggest future research directions intended to further develop a comprehensive and integrative understanding of biases in face recognition.
Extended target recognition in cognitive radar networks.
Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin
2010-01-01
We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.
Memory strength and specificity revealed by pupillometry
Papesh, Megan H.; Goldinger, Stephen D.; Hout, Michael C.
2011-01-01
Voice-specificity effects in recognition memory were investigated using both behavioral data and pupillometry. Volunteers initially heard spoken words and nonwords in two voices; they later provided confidence-based old/new classifications to items presented in their original voices, changed (but familiar) voices, or entirely new voices. Recognition was more accurate for old-voice items, replicating prior research. Pupillometry was used to gauge cognitive demand during both encoding and testing: Enlarged pupils revealed that participants devoted greater effort to encoding items that were subsequently recognized. Further, pupil responses were sensitive to the cue match between encoding and retrieval voices, as well as memory strength. Strong memories, and those with the closest encoding-retrieval voice matches, resulted in the highest peak pupil diameters. The results are discussed with respect to episodic memory models and Whittlesea’s (1997) SCAPE framework for recognition memory. PMID:22019480
Development of coffee maker service robot using speech and face recognition systems using POMDP
NASA Astrophysics Data System (ADS)
Budiharto, Widodo; Meiliana; Santoso Gunawan, Alexander Agung
2016-07-01
There are many development of intelligent service robot in order to interact with user naturally. This purpose can be done by embedding speech and face recognition ability on specific tasks to the robot. In this research, we would like to propose Intelligent Coffee Maker Robot which the speech recognition is based on Indonesian language and powered by statistical dialogue systems. This kind of robot can be used in the office, supermarket or restaurant. In our scenario, robot will recognize user's face and then accept commands from the user to do an action, specifically in making a coffee. Based on our previous work, the accuracy for speech recognition is about 86% and face recognition is about 93% in laboratory experiments. The main problem in here is to know the intention of user about how sweetness of the coffee. The intelligent coffee maker robot should conclude the user intention through conversation under unreliable automatic speech in noisy environment. In this paper, this spoken dialog problem is treated as a partially observable Markov decision process (POMDP). We describe how this formulation establish a promising framework by empirical results. The dialog simulations are presented which demonstrate significant quantitative outcome.
Brug, Johannes; van Dale, Djoeke; Lanting, Loes; Kremers, Stef; Veenhof, Cindy; Leurs, Mariken; van Yperen, Tom; Kok, Gerjo
2010-01-01
Registration or recognition systems for best-practice health promotion interventions may contribute to better quality assurance and control in health promotion practice. In the Netherlands, such a system has been developed and is being implemented aiming to provide policy makers and professionals with more information on the quality and effectiveness of available health promotion interventions and to promote use of good-practice and evidence-based interventions by health promotion organizations. The quality assessments are supervised by the Netherlands Organization for Public Health and the Environment and the Netherlands Youth Institute and conducted by two committees, one for interventions aimed at youth and one for adults. These committees consist of experts in the fields of research, policy and practice. Four levels of recognition are distinguished inspired by the UK Medical Research Council's evaluation framework for complex interventions to improve health: (i) theoretically sound, (ii) probable effectiveness, (iii) established effectiveness, and (iv) established cost effectiveness. Specific criteria have been set for each level of recognition, except for Level 4 which will be included from 2011. This point of view article describes and discusses the rationale, organization and criteria of this Dutch recognition system and the first experiences with the system. PMID:20841318
Toward a Blueprint for Trauma-Informed Service Delivery in Schools
ERIC Educational Resources Information Center
Chafouleas, Sandra M.; Johnson, Austin H.; Overstreet, Stacy; Santos, Natascha M.
2016-01-01
Recognition of the benefits to trauma-informed approaches is expanding, along with commensurate interest in extending delivery within school systems. Although information about trauma-informed approaches has quickly burgeoned, systematic attention to integration within multitiered service delivery frameworks has not occurred yet is essential to…
A User Centered Faculty Scheduled Development Framework
ERIC Educational Resources Information Center
Hadian, Shohreh; Sly, Nancy
2014-01-01
Colleges provide professional development opportunities to faculty to promote knowledge growth and improvement of skills. At the college, Scheduled Development (SD) time for faculty is based on the educational practice and recognition of the need for continuous professional development of faculty members. The paper presents a user-centered…
USDA-ARS?s Scientific Manuscript database
There are technical and financial advantages for pursuing agroforestry-derived mitigation and adaptation services simultaneously, with a recognition that carbon (C) payments could assist in supporting the deployment of adaptation strategies (Motocha et al. (2012). However, we lack the repeated/repea...
Voice Enabled Framework to Support Post-Surgical Discharge Monitoring
Blansit, Kevin; Marmor, Rebecca; Zhao, Beiqun; Tien, Dan
2017-01-01
Unplanned surgical readmissions pose a challenging problem for the American healthcare system. We propose to combine consumer electronic voice recognition technology with the FHIR standard to create a post-surgical discharge monitoring app to identify and alert physicians to a patient’s deteriorating status. PMID:29854267
Expansive Learning as Production of Community
ERIC Educational Resources Information Center
Morck, Line Lerche
2010-01-01
This article contributes a framework for analyzing learning as an expansive process in which persons come to partly transcend marginalization. Expansive learning is a kind of learning that partly transcends marginalization through changed participation and recognition by others of participants in their changed communities. This article draws on…
Dimension Reduction With Extreme Learning Machine.
Kasun, Liyanaarachchi Lekamalage Chamara; Yang, Yan; Huang, Guang-Bin; Zhang, Zhengyou
2016-08-01
Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.
Zhao, Yu; Ge, Fangfei; Liu, Tianming
2018-07-01
fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.
Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye
Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael
2017-01-01
Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847
Spoof Detection for Finger-Vein Recognition System Using NIR Camera.
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-10-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-01-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods. PMID:28974031
Schädler, Marc René; Warzybok, Anna; Meyer, Bernd T.; Brand, Thomas
2016-01-01
To characterize the individual patient’s hearing impairment as obtained with the matrix sentence recognition test, a simulation Framework for Auditory Discrimination Experiments (FADE) is extended here using the Attenuation and Distortion (A+D) approach by Plomp as a blueprint for setting the individual processing parameters. FADE has been shown to predict the outcome of both speech recognition tests and psychoacoustic experiments based on simulations using an automatic speech recognition system requiring only few assumptions. It builds on the closed-set matrix sentence recognition test which is advantageous for testing individual speech recognition in a way comparable across languages. Individual predictions of speech recognition thresholds in stationary and in fluctuating noise were derived using the audiogram and an estimate of the internal level uncertainty for modeling the individual Plomp curves fitted to the data with the Attenuation (A-) and Distortion (D-) parameters of the Plomp approach. The “typical” audiogram shapes from Bisgaard et al with or without a “typical” level uncertainty and the individual data were used for individual predictions. As a result, the individualization of the level uncertainty was found to be more important than the exact shape of the individual audiogram to accurately model the outcome of the German Matrix test in stationary or fluctuating noise for listeners with hearing impairment. The prediction accuracy of the individualized approach also outperforms the (modified) Speech Intelligibility Index approach which is based on the individual threshold data only. PMID:27604782
An Emerging Research Framework for Studying Informal Learning and Schools
ERIC Educational Resources Information Center
Martin, Laura M. W.
2004-01-01
In recognition of the fact that science centers and other informal educational institutions can play a role in the reform of science, technology, engineering, and mathematics (STEM) education, several major research and professional programs are currently underway. This article discusses one such effort, the Center for Informal Learning and…
Identity Work of a Prospective Teacher: An Argumentation Perspective on Identity
ERIC Educational Resources Information Center
Gomez, Carlos Nicolas
2018-01-01
An investigation on the identity work of a prospective teacher is conducted to better understand how the participant argued for recognition of her projective mathematics teacher identity. Characteristics of the claims, evidence, and anticipatory statements used are explored. Using an argumentation framework, the participant's discourse…
Item Memory, Context Memory and the Hippocampus: fMRI Evidence
ERIC Educational Resources Information Center
Rugg, Michael D.; Vilberg, Kaia L.; Mattson, Julia T.; Yu, Sarah S.; Johnson, Jeffrey D.; Suzuki, Maki
2012-01-01
Dual-process models of recognition memory distinguish between the retrieval of qualitative information about a prior event (recollection), and judgments of prior occurrence based on an acontextual sense of familiarity. fMRI studies investigating the neural correlates of memory encoding and retrieval conducted within the dual-process framework have…
Defining and Measuring Literacy: Facing the Reality
ERIC Educational Resources Information Center
Ahmed, Manzoor
2011-01-01
Increasing recognition of a broadened concept of literacy challenges policy-makers and practitioners to re-define literacy operationally, develop and apply appropriate methods of assessing literacy and consider and act upon the consequent policy implications. This task is given a new urgency by the call of the Belem Framework for Action to…
Carbon pools and flux in U.S. forest products
Linda S. Heath; Richard A. Birdsey; Clark Row; Andrew J. Plantinga
1996-01-01
Increasing recognition that anthropogenic CO2 and other greenhouse gas emissions may effect climate change has prompted research studies on global carbon (C) budgets and international agreements for action. At the United Nations Conference on Environment and Development in 1992, world leaders and citizens gathered and initiated the Framework...
Building Simple Hidden Markov Models. Classroom Notes
ERIC Educational Resources Information Center
Ching, Wai-Ki; Ng, Michael K.
2004-01-01
Hidden Markov models (HMMs) are widely used in bioinformatics, speech recognition and many other areas. This note presents HMMs via the framework of classical Markov chain models. A simple example is given to illustrate the model. An estimation method for the transition probabilities of the hidden states is also discussed.
Shared Professional Knowledge: Implications for Emerging Leaders
ERIC Educational Resources Information Center
Tran, Lynn Uyen; King, Heather
2009-01-01
Educators make significant contributions to museums' educational agendas, yet recognition of their status in the museum field remains minimal. Furthermore, limited research has been directed at the nature of their practice and pedagogy. By establishing a common body of knowledge underpinned by theory and leading to a shared framework for practice,…
From Redistribution to Recognition: How School Principals Perceive Social Justice
ERIC Educational Resources Information Center
Wang, Fei
2016-01-01
Where there are people, there is social in/justice. Using Nancy Fraser's framework, this qualitative research examines how school principals perceive social justice in schools. Twenty-one elementary and secondary school principals were interviewed in the Greater Toronto Area. The study provides some empirical evidence on the ways social…
Sustainability in Recruitment and Selection: Building a Framework of Practices
ERIC Educational Resources Information Center
Jepsen, Denise M.; Grob, Suzanne
2015-01-01
Much has been written about the role of human resources professionals in creating sustainable organizations. However, despite recognition that organizational human resources functions have an important role to play in sustainability, researchers tend to focus on strategic issues and sustainability. This higher-order focus has often meant that…
Serrano-Gotarredona, Rafael; Oster, Matthias; Lichtsteiner, Patrick; Linares-Barranco, Alejandro; Paz-Vicente, Rafael; Gomez-Rodriguez, Francisco; Camunas-Mesa, Luis; Berner, Raphael; Rivas-Perez, Manuel; Delbruck, Tobi; Liu, Shih-Chii; Douglas, Rodney; Hafliger, Philipp; Jimenez-Moreno, Gabriel; Civit Ballcels, Anton; Serrano-Gotarredona, Teresa; Acosta-Jimenez, Antonio J; Linares-Barranco, Bernabé
2009-09-01
This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.
Food Recognition: A New Dataset, Experiments, and Results.
Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo
2017-05-01
We propose a new dataset for the evaluation of food recognition algorithms that can be used in dietary monitoring applications. Each image depicts a real canteen tray with dishes and foods arranged in different ways. Each tray contains multiple instances of food classes. The dataset contains 1027 canteen trays for a total of 3616 food instances belonging to 73 food classes. The food on the tray images has been manually segmented using carefully drawn polygonal boundaries. We have benchmarked the dataset by designing an automatic tray analysis pipeline that takes a tray image as input, finds the regions of interest, and predicts for each region the corresponding food class. We have experimented with three different classification strategies using also several visual descriptors. We achieve about 79% of food and tray recognition accuracy using convolutional-neural-networks-based features. The dataset, as well as the benchmark framework, are available to the research community.
On the measurement of criterion noise in signal detection theory: the case of recognition memory.
Kellen, David; Klauer, Karl Christoph; Singmann, Henrik
2012-07-01
Traditional approaches within the framework of signal detection theory (SDT; Green & Swets, 1966), especially in the field of recognition memory, assume that the positioning of response criteria is not a noisy process. Recent work (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008) has challenged this assumption, arguing not only for the existence of criterion noise but also for its large magnitude and substantive contribution to individuals' performance. A review of these recent approaches for the measurement of criterion noise in SDT identifies several shortcomings and confoundings. A reanalysis of Benjamin et al.'s (2009) data sets as well as the results from a new experimental method indicate that the different forms of criterion noise proposed in the recognition memory literature are of very low magnitudes, and they do not provide a significant improvement over the account already given by traditional SDT without criterion noise. Copyright 2012 APA, all rights reserved.
Transfer Learning for Improved Audio-Based Human Activity Recognition.
Ntalampiras, Stavros; Potamitis, Ilyas
2018-06-25
Human activities are accompanied by characteristic sound events, the processing of which might provide valuable information for automated human activity recognition. This paper presents a novel approach addressing the case where one or more human activities are associated with limited audio data, resulting in a potentially highly imbalanced dataset. Data augmentation is based on transfer learning; more specifically, the proposed method: (a) identifies the classes which are statistically close to the ones associated with limited data; (b) learns a multiple input, multiple output transformation; and (c) transforms the data of the closest classes so that it can be used for modeling the ones associated with limited data. Furthermore, the proposed framework includes a feature set extracted out of signal representations of diverse domains, i.e., temporal, spectral, and wavelet. Extensive experiments demonstrate the relevance of the proposed data augmentation approach under a variety of generative recognition schemes.
ESARR: enhanced situational awareness via road sign recognition
NASA Astrophysics Data System (ADS)
Perlin, V. E.; Johnson, D. B.; Rohde, M. M.; Lupa, R. M.; Fiorani, G.; Mohammad, S.
2010-04-01
The enhanced situational awareness via road sign recognition (ESARR) system provides vehicle position estimates in the absence of GPS signal via automated processing of roadway fiducials (primarily directional road signs). Sign images are detected and extracted from vehicle-mounted camera system, and preprocessed and read via a custom optical character recognition (OCR) system specifically designed to cope with low quality input imagery. Vehicle motion and 3D scene geometry estimation enables efficient and robust sign detection with low false alarm rates. Multi-level text processing coupled with GIS database validation enables effective interpretation even of extremely low resolution low contrast sign images. In this paper, ESARR development progress will be reported on, including the design and architecture, image processing framework, localization methodologies, and results to date. Highlights of the real-time vehicle-based directional road-sign detection and interpretation system will be described along with the challenges and progress in overcoming them.
NASA Astrophysics Data System (ADS)
Graham, James; Ternovskiy, Igor V.
2013-06-01
We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.
Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunyuan; Stevens, Andrew J.; Chen, Changyou
2016-08-10
Learning the representation of shape cues in 2D & 3D objects for recognition is a fundamental task in computer vision. Deep neural networks (DNNs) have shown promising performance on this task. Due to the large variability of shapes, accurate recognition relies on good estimates of model uncertainty, ignored in traditional training of DNNs, typically learned via stochastic optimization. This paper leverages recent advances in stochastic gradient Markov Chain Monte Carlo (SG-MCMC) to learn weight uncertainty in DNNs. It yields principled Bayesian interpretations for the commonly used Dropout/DropConnect techniques and incorporates them into the SG-MCMC framework. Extensive experiments on 2D &more » 3D shape datasets and various DNN models demonstrate the superiority of the proposed approach over stochastic optimization. Our approach yields higher recognition accuracy when used in conjunction with Dropout and Batch-Normalization.« less
A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation
NASA Astrophysics Data System (ADS)
Pham, Cuong; Plötz, Thomas; Olivier, Patrick
We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.
Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification.
Sladojevic, Srdjan; Arsenovic, Marko; Anderla, Andras; Culibrk, Dubravko; Stefanovic, Darko
2016-01-01
The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.
Conrad, Markus; Carreiras, Manuel; Tamm, Sascha; Jacobs, Arthur M
2009-04-01
Over the last decade, there has been increasing evidence for syllabic processing during visual word recognition. If syllabic effects prove to be independent from orthographic redundancy, this would seriously challenge the ability of current computational models to account for the processing of polysyllabic words. Three experiments are presented to disentangle effects of the frequency of syllabic units and orthographic segments in lexical decision. In Experiment 1 the authors obtained an inhibitory syllable frequency effect that was unaffected by the presence or absence of a bigram trough at the syllable boundary. In Experiments 2 and 3 an inhibitory effect of initial syllable frequency but a facilitative effect of initial bigram frequency emerged when manipulating 1 of the 2 measures and controlling for the other in Spanish words starting with consonant-vowel syllables. The authors conclude that effects of syllable frequency and letter-cluster frequency are independent and arise at different processing levels of visual word recognition. Results are discussed within the framework of an interactive activation model of visual word recognition. (c) 2009 APA, all rights reserved.
Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification
Sladojevic, Srdjan; Arsenovic, Marko; Culibrk, Dubravko; Stefanovic, Darko
2016-01-01
The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923
Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.
Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Liu, Dan; Bai, Ou
2018-01-01
Emotion recognition based on EEG signals is a critical component in Human-Machine collaborative environments and psychiatric health diagnoses. However, EEG patterns have been found to vary across subjects due to user fatigue, different electrode placements, and varying impedances, etc. This problem renders the performance of EEG-based emotion recognition highly specific to subjects, requiring time-consuming individual calibration sessions to adapt an emotion recognition system to new subjects. Recently, domain adaptation (DA) strategies have achieved a great deal success in dealing with inter-subject adaptation. However, most of them can only adapt one subject to another subject, which limits their applicability in real-world scenarios. To alleviate this issue, a novel unsupervised DA strategy called Multi-Subject Subspace Alignment (MSSA) is proposed in this paper, which takes advantage of subspace alignment solution and multi-subject information in a unified framework to build personalized models without user-specific labeled data. Experiments on a public EEG dataset known as SEED verify the effectiveness and superiority of MSSA over other state of the art methods for dealing with multi-subject scenarios.
Item-specific processing reduces false memories.
McCabe, David P; Presmanes, Alison G; Robertson, Chuck L; Smith, Anderson D
2004-12-01
We examined the effect of item-specific and relational encoding instructions on false recognition in two experiments in which the DRM paradigm was used (Deese, 1959; Roediger & McDermott, 1995). Type of encoding (item-specific or relational) was manipulated between subjects in Experiment 1 and within subjects in Experiment 2. Decision-based explanations (e.g., the distinctiveness heuristic) predict reductions in false recognition in between-subjects designs, but not in within-subjects designs, because they are conceptualized as global shifts in decision criteria. Memory-based explanations predict reductions in false recognition in both designs, resulting from enhanced recollection of item-specific details. False recognition was reduced following item-specific encoding instructions in both experiments, favoring a memory-based explanation. These results suggest that providing unique cues for the retrieval of individual studied items results in enhanced discrimination between those studied items and critical lures. Conversely, enhancing the similarity of studied items results in poor discrimination among items within a particular list theme. These results are discussed in terms of the item-specific/ relational framework (Hunt & McDaniel, 1993).
Offline handwritten word recognition using MQDF-HMMs
NASA Astrophysics Data System (ADS)
Ramachandrula, Sitaram; Hambarde, Mangesh; Patial, Ajay; Sahoo, Dushyant; Kochar, Shaivi
2015-01-01
We propose an improved HMM formulation for offline handwriting recognition (HWR). The main contribution of this work is using modified quadratic discriminant function (MQDF) [1] within HMM framework. In an MQDF-HMM the state observation likelihood is calculated by a weighted combination of MQDF likelihoods of individual Gaussians of GMM (Gaussian Mixture Model). The quadratic discriminant function (QDF) of a multivariate Gaussian can be rewritten by avoiding the inverse of covariance matrix by using the Eigen values and Eigen vectors of it. The MQDF is derived from QDF by substituting few of badly estimated lower-most Eigen values by an appropriate constant. The estimation errors of non-dominant Eigen vectors and Eigen values of covariance matrix for which the training data is insufficient can be controlled by this approach. MQDF has been successfully shown to improve the character recognition performance [1]. The usage of MQDF in HMM improves the computation, storage and modeling power of HMM when there is limited training data. We have got encouraging results on offline handwritten character (NIST database) and word recognition in English using MQDF HMMs.
Human gait recognition by pyramid of HOG feature on silhouette images
NASA Astrophysics Data System (ADS)
Yang, Guang; Yin, Yafeng; Park, Jeanrok; Man, Hong
2013-03-01
As a uncommon biometric modality, human gait recognition has a great advantage of identify people at a distance without high resolution images. It has attracted much attention in recent years, especially in the fields of computer vision and remote sensing. In this paper, we propose a human gait recognition framework that consists of a reliable background subtraction method followed by the pyramid of Histogram of Gradient (pHOG) feature extraction on the silhouette image, and a Hidden Markov Model (HMM) based classifier. Through background subtraction, the silhouette of human gait in each frame is extracted and normalized from the raw video sequence. After removing the shadow and noise in each region of interest (ROI), pHOG feature is computed on the silhouettes images. Then the pHOG features of each gait class will be used to train a corresponding HMM. In the test stage, pHOG feature will be extracted from each test sequence and used to calculate the posterior probability toward each trained HMM model. Experimental results on the CASIA Gait Dataset B1 demonstrate that with our proposed method can achieve very competitive recognition rate.
Statistical Evaluation of Biometric Evidence in Forensic Automatic Speaker Recognition
NASA Astrophysics Data System (ADS)
Drygajlo, Andrzej
Forensic speaker recognition is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). This paper aims at presenting forensic automatic speaker recognition (FASR) methods that provide a coherent way of quantifying and presenting recorded voice as biometric evidence. In such methods, the biometric evidence consists of the quantified degree of similarity between speaker-dependent features extracted from the trace and speaker-dependent features extracted from recorded speech of a suspect. The interpretation of recorded voice as evidence in the forensic context presents particular challenges, including within-speaker (within-source) variability and between-speakers (between-sources) variability. Consequently, FASR methods must provide a statistical evaluation which gives the court an indication of the strength of the evidence given the estimated within-source and between-sources variabilities. This paper reports on the first ENFSI evaluation campaign through a fake case, organized by the Netherlands Forensic Institute (NFI), as an example, where an automatic method using the Gaussian mixture models (GMMs) and the Bayesian interpretation (BI) framework were implemented for the forensic speaker recognition task.
Expanding the frontiers of national qualifications frameworks through lifelong learning
NASA Astrophysics Data System (ADS)
Owusu-Agyeman, Yaw
2017-10-01
The adoption of a national qualifications framework (NQF) by some governments in all world regions has shown some success in the area of formal learning. However, while NQFs continue to enhance formal learning in many countries, the same cannot be said for the recognition, validation and accreditation (RVA) of non-formal and informal learning. Focusing on competency-based technical and vocational education and training (TVET) within its NQF, Ghana introduced the National Technical and Vocational Education and Training Qualifications Framework (NTVETQF) as a sub-framework in 2012. In the wake of the NTVETQF's limited success, the author of this article reasons that a lifelong learning approach could enhance its effectiveness considerably. Comparing national and international policies, he argues that the NTVETQF should be able to properly address the issues of progression from informal and non-formal to formal modes of lifelong learning within the country's broad context of education. In addition, the study conceptualises the integration of lifelong learning within a broad NQF in four key domains: (1) individual; (2) institutional; (3) industry; and (4) state. The author concludes that, for the NTVETQF to achieve its goal of facilitating access to further education and training while also promoting lifelong learning for all (including workers in the informal economy), effective integration of all modes of lifelong learning is required. Although this entails some challenges, such as recognition of prior learning and validation of all modes of learning, it will help to widen access to education as well as providing individuals with a pathway for achieving their educational aspirations.
Barista: A Framework for Concurrent Speech Processing by USC-SAIL
Can, Doğan; Gibson, James; Vaz, Colin; Georgiou, Panayiotis G.; Narayanan, Shrikanth S.
2016-01-01
We present Barista, an open-source framework for concurrent speech processing based on the Kaldi speech recognition toolkit and the libcppa actor library. With Barista, we aim to provide an easy-to-use, extensible framework for constructing highly customizable concurrent (and/or distributed) networks for a variety of speech processing tasks. Each Barista network specifies a flow of data between simple actors, concurrent entities communicating by message passing, modeled after Kaldi tools. Leveraging the fast and reliable concurrency and distribution mechanisms provided by libcppa, Barista lets demanding speech processing tasks, such as real-time speech recognizers and complex training workflows, to be scheduled and executed on parallel (and/or distributed) hardware. Barista is released under the Apache License v2.0. PMID:27610047
Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks
NASA Astrophysics Data System (ADS)
Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong
2017-03-01
Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.
Barista: A Framework for Concurrent Speech Processing by USC-SAIL.
Can, Doğan; Gibson, James; Vaz, Colin; Georgiou, Panayiotis G; Narayanan, Shrikanth S
2014-05-01
We present Barista, an open-source framework for concurrent speech processing based on the Kaldi speech recognition toolkit and the libcppa actor library. With Barista, we aim to provide an easy-to-use, extensible framework for constructing highly customizable concurrent (and/or distributed) networks for a variety of speech processing tasks. Each Barista network specifies a flow of data between simple actors, concurrent entities communicating by message passing, modeled after Kaldi tools. Leveraging the fast and reliable concurrency and distribution mechanisms provided by libcppa, Barista lets demanding speech processing tasks, such as real-time speech recognizers and complex training workflows, to be scheduled and executed on parallel (and/or distributed) hardware. Barista is released under the Apache License v2.0.
Phonological mismatch makes aided speech recognition in noise cognitively taxing.
Rudner, Mary; Foo, Catharina; Rönnberg, Jerker; Lunner, Thomas
2007-12-01
The working memory framework for Ease of Language Understanding predicts that speech processing becomes more effortful, thus requiring more explicit cognitive resources, when there is mismatch between speech input and phonological representations in long-term memory. To test this prediction, we changed the compression release settings in the hearing instruments of experienced users and allowed them to train for 9 weeks with the new settings. After training, aided speech recognition in noise was tested with both the trained settings and orthogonal settings. We postulated that training would lead to acclimatization to the trained setting, which in turn would involve establishment of new phonological representations in long-term memory. Further, we postulated that after training, testing with orthogonal settings would give rise to phonological mismatch, associated with more explicit cognitive processing. Thirty-two participants (mean=70.3 years, SD=7.7) with bilateral sensorineural hearing loss (pure-tone average=46.0 dB HL, SD=6.5), bilaterally fitted for more than 1 year with digital, two-channel, nonlinear signal processing hearing instruments and chosen from the patient population at the Linköping University Hospital were randomly assigned to 9 weeks training with new, fast (40 ms) or slow (640 ms), compression release settings in both channels. Aided speech recognition in noise performance was tested according to a design with three within-group factors: test occasion (T1, T2), test setting (fast, slow), and type of noise (unmodulated, modulated) and one between-group factor: experience setting (fast, slow) for two types of speech materials-the highly constrained Hagerman sentences and the less-predictable Hearing in Noise Test (HINT). Complex cognitive capacity was measured using the reading span and letter monitoring tests. PREDICTION: We predicted that speech recognition in noise at T2 with mismatched experience and test settings would be associated with more explicit cognitive processing and thus stronger correlations with complex cognitive measures, as well as poorer performance if complex cognitive capacity was exceeded. Under mismatch conditions, stronger correlations were found between performance on speech recognition with the Hagerman sentences and reading span, along with poorer speech recognition for participants with low reading span scores. No consistent mismatch effect was found with HINT. The mismatch prediction generated by the working memory framework for Ease of Language Understanding is supported for speech recognition in noise with the highly constrained Hagerman sentences but not the less-predictable HINT.
Applying systems thinking to inform studies of wildlife trade in primates.
Blair, Mary E; Le, Minh D; Thạch, Hoàng M; Panariello, Anna; Vũ, Ngọc B; Birchette, Mark G; Sethi, Gautam; Sterling, Eleanor J
2017-11-01
Wildlife trade presents a major threat to primate populations, which are in demand from local to international scales for a variety of uses from food and traditional medicine to the exotic pet trade. We argue that an interdisciplinary framework to facilitate integration of socioeconomic, anthropological, and biological data across multiple spatial and temporal scales is essential to guide the study of wildlife trade dynamics and its impacts on primate populations. Here, we present a new way to design research on wildlife trade in primates using a systems thinking framework. We discuss how we constructed our framework, which follows a social-ecological system framework, to design an ongoing study of local, regional, and international slow loris (Nycticebus spp.) trade in Vietnam. We outline the process of iterative variable exploration and selection via this framework to inform study design. Our framework, guided by systems thinking, enables recognition of complexity in study design, from which the results can inform more holistic, site-appropriate, and effective trade management practices. We place our framework in the context of other approaches to studying wildlife trade and discuss options to address foreseeable challenges to implementing this new framework. © 2017 Wiley Periodicals, Inc.
Measuring Social Capital Accumulation in Rural Development
ERIC Educational Resources Information Center
Teilmann, Kasper
2012-01-01
Using a theoretical framework, the study proposes an index that can measure the social capital of local action group (LAG) projects. The index is founded on four indicators: number of ties, bridging social capital, recognition, and diversity, which are aggregated into one social capital index. The index has been tested in LAG-Djursland, Denmark,…
Barry R. Noon; Kevin S. McKelvey
1996-01-01
Many populations exhibit pronounced spatial structure: dispersed areas of high population density embedded in areas of low density, with population centers connected through dispersal. This recognition has led many conservation biologists to embrace the metapopulation concept (Levins 1970) as the appropriate paradigm for reserve design structures (reviewed in Hanski...
Using Digital Badges for Developing High School Chemistry Laboratory Skills
ERIC Educational Resources Information Center
Hennah, Naomi; Seery, Michael K.
2017-01-01
Digital badges are emerging as an approach to offer microaccreditation for student achievements obtained in ongoing course work. They act to offer a formal recognition and framework for multiple small components which together make a significant contribution to student learning. Badges are promoted as a way of highlighting these particular…
A Framework for Model-Based Inquiry through Agent-Based Programming
ERIC Educational Resources Information Center
Xiang, Lin; Passmore, Cynthia
2015-01-01
There has been increased recognition in the past decades that model-based inquiry (MBI) is a promising approach for cultivating deep understandings by helping students unite phenomena and underlying mechanisms. Although multiple technology tools have been used to improve the effectiveness of MBI, there are not enough detailed examinations of how…
A Framework to Embed Communication Skills across the Curriculum: A Design-Based Research Approach
ERIC Educational Resources Information Center
Johnson, Steve; Veitch, Sarah; Dewiyanti, Silvia
2015-01-01
There is widespread recognition that universities are now delivering higher education to diverse student populations with very different needs and aspirations from the more traditional cohorts of the past. In order to prepare students for a broad range of employment opportunities, universities are also fostering the development of "graduate…
2010-12-01
discovered that the NSA is concerned about speaker recognition being vulnerable to man- in-the-middle ( MITM ) attacks. The professional could tailor an MITM ...with the results of the test against the MITM threat. The Collective Acquisition framework comprises powerful search techniques found in the CRC
Epistemological Separation of Research and Teaching among Graduate Teaching Assistants
ERIC Educational Resources Information Center
Kinchin, Ian Miles; Hatzipanagos, Stylianos; Turner, Nancy
2009-01-01
Development of a more scholarly approach to teaching at university may expose the novice university teacher to an apparent conflict in belief systems about teaching and learning (i.e. epistemological beliefs). Educational research is explicit in its recognition of a constructivist framework, whilst other academic research is often embedded more…
ERIC Educational Resources Information Center
Starcic, Andreja Istenic
2012-01-01
A competence management system (CMS) was devised to assist the registration of competencies in the textile and clothing sector, starting in the four EU countries of Portugal, Slovenia, the UK and Denmark, further leading to the European network. This paper presents the design and development framework assisting international multicultural…
Prevention, Recognition and Treatment of Common Recess Injuries
ERIC Educational Resources Information Center
Linker, Jenny M.; David, Shannon L.
2017-01-01
When examining recess within a school's comprehensive school physical activity program (CSPAP), stakeholders should consider that 30% to 70% of school injuries occur during this part of the school day (Posner, 2000). Thus, existing frameworks to prevent and manage recess injuries may require a thorough review. The purpose of this article is to…
Sexual Harassment in Employment: Recent Judicial and Arbitral Trends.
ERIC Educational Resources Information Center
Aeberhard-Hodges, Jane
1996-01-01
Review of national legislation and key cases on sexual harassment in North America, Europe, Asia, and Africa identified the following trends: recognition of harassment as employment discrimination, the importance of the legal framework used and the composition of the hearing body, the issue of individual or employer liability, and the influence of…
ERIC Educational Resources Information Center
Ngoma, Sylvester
2010-01-01
There is growing recognition that an electronic Student Information System (SIS) affects student learning. Given the strategic importance of SIS in supporting school administration and enhancing student performance, school districts are increasingly interested in acquiring the most effective and efficient Student Information Systems for their…
Indigenous Wellbeing Frameworks in Australia and the Quest for Quantification
ERIC Educational Resources Information Center
Prout, Sarah
2012-01-01
There is an emerging global recognition of the inadequacies of conventional socio-economic and demographic data in being able to reflect the relative wellbeing of Indigenous peoples. This paper emerges out of a recent desktop study commissioned by an Australian Indigenous organization who identified a need to enhance local literacies in data…
Sensor agnostic object recognition using a map seeking circuit
NASA Astrophysics Data System (ADS)
Overman, Timothy L.; Hart, Michael
2012-05-01
Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.
Definition and automatic anatomy recognition of lymph node zones in the pelvis on CT images
NASA Astrophysics Data System (ADS)
Liu, Yu; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Guo, Shuxu; Attor, Rosemary; Reinicke, Danica; Torigian, Drew A.
2016-03-01
Currently, unlike IALSC-defined thoracic lymph node zones, no explicitly provided definitions for lymph nodes in other body regions are available. Yet, definitions are critical for standardizing the recognition, delineation, quantification, and reporting of lymphadenopathy in other body regions. Continuing from our previous work in the thorax, this paper proposes a standardized definition of the grouping of pelvic lymph nodes into 10 zones. We subsequently employ our earlier Automatic Anatomy Recognition (AAR) framework designed for body-wide organ modeling, recognition, and delineation to actually implement these zonal definitions where the zones are treated as anatomic objects. First, all 10 zones and key anatomic organs used as anchors are manually delineated under expert supervision for constructing fuzzy anatomy models of the assembly of organs together with the zones. Then, optimal hierarchical arrangement of these objects is constructed for the purpose of achieving the best zonal recognition. For actual localization of the objects, two strategies are used -- optimal thresholded search for organs and one-shot method for the zones where the known relationship of the zones to key organs is exploited. Based on 50 computed tomography (CT) image data sets for the pelvic body region and an equal division into training and test subsets, automatic zonal localization within 1-3 voxels is achieved.
Action Spotting and Recognition Based on a Spatiotemporal Orientation Analysis.
Derpanis, Konstantinos G; Sizintsev, Mikhail; Cannons, Kevin J; Wildes, Richard P
2013-03-01
This paper provides a unified framework for the interrelated topics of action spotting, the spatiotemporal detection and localization of human actions in video, and action recognition, the classification of a given video into one of several predefined categories. A novel compact local descriptor of video dynamics in the context of action spotting and recognition is introduced based on visual spacetime oriented energy measurements. This descriptor is efficiently computed directly from raw image intensity data and thereby forgoes the problems typically associated with flow-based features. Importantly, the descriptor allows for the comparison of the underlying dynamics of two spacetime video segments irrespective of spatial appearance, such as differences induced by clothing, and with robustness to clutter. An associated similarity measure is introduced that admits efficient exhaustive search for an action template, derived from a single exemplar video, across candidate video sequences. The general approach presented for action spotting and recognition is amenable to efficient implementation, which is deemed critical for many important applications. For action spotting, details of a real-time GPU-based instantiation of the proposed approach are provided. Empirical evaluation of both action spotting and action recognition on challenging datasets suggests the efficacy of the proposed approach, with state-of-the-art performance documented on standard datasets.
A nonlinear heartbeat dynamics model approach for personalized emotion recognition.
Valenza, Gaetano; Citi, Luca; Lanatà, Antonio; Scilingo, Enzo Pasquale; Barbieri, Riccardo
2013-01-01
Emotion recognition based on autonomic nervous system signs is one of the ambitious goals of affective computing. It is well-accepted that standard signal processing techniques require relative long-time series of multivariate records to ensure reliability and robustness of recognition and classification algorithms. In this work, we present a novel methodology able to assess cardiovascular dynamics during short-time (i.e. < 10 seconds) affective stimuli, thus overcoming some of the limitations of current emotion recognition approaches. We developed a personalized, fully parametric probabilistic framework based on point-process theory where heartbeat events are modelled using a 2(nd)-order nonlinear autoregressive integrative structure in order to achieve effective performances in short-time affective assessment. Experimental results show a comprehensive emotional characterization of 4 subjects undergoing a passive affective elicitation using a sequence of standardized images gathered from the international affective picture system. Each picture was identified by the IAPS arousal and valence scores as well as by a self-reported emotional label associating a subjective positive or negative emotion. Results show a clear classification of two defined levels of arousal, valence and self-emotional state using features coming from the instantaneous spectrum and bispectrum of the considered RR intervals, reaching up to 90% recognition accuracy.
Grant, Bettyanne; Colello, Sandra; Riehle, Martha; Dende, Denise
2010-04-01
To discuss the new Magnet Model as it relates to the successful implementation of a practice change. There is growing international interest in the Magnet Recognition Programme. The latest generation of the Magnet Model has been designed not only as a road map for organizations seeking to achieve Magnet recognition but also as a framework for nursing practice and research in the future. The Magnet Model was used to identify success factors related to a practice change and to evaluate the nursing practice environment. Even when proposed changes to practice are evidence based and thoughtfully considered, the nurses' work environment must be supportive and empowering in order to yield successful and sustainable implementation of new practice. Success factors for implementation of a practice change can be illuminated by aligning environmental characteristics to the components of the new Magnet Model. The Magnet Model provides an exceptional framework for building an agile and dynamic work force. Thoughtful consideration of the components and inter-relationships represented in the new model can help to both predict and ensure organizational vitality.
Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier.
Zhang, Baochang; Yang, Yun; Chen, Chen; Yang, Linlin; Han, Jungong; Shao, Ling
2017-10-01
Human action recognition is an important yet challenging task. This paper presents a low-cost descriptor called 3D histograms of texture (3DHoTs) to extract discriminant features from a sequence of depth maps. 3DHoTs are derived from projecting depth frames onto three orthogonal Cartesian planes, i.e., the frontal, side, and top planes, and thus compactly characterize the salient information of a specific action, on which texture features are calculated to represent the action. Besides this fast feature descriptor, a new multi-class boosting classifier (MBC) is also proposed to efficiently exploit different kinds of features in a unified framework for action classification. Compared with the existing boosting frameworks, we add a new multi-class constraint into the objective function, which helps to maintain a better margin distribution by maximizing the mean of margin, whereas still minimizing the variance of margin. Experiments on the MSRAction3D, MSRGesture3D, MSRActivity3D, and UTD-MHAD data sets demonstrate that the proposed system combining 3DHoTs and MBC is superior to the state of the art.
Brainerd, C J; Reyna, V F; Howe, M L
2009-10-01
One of the most extensively investigated topics in the adult memory literature, dual memory processes, has had virtually no impact on the study of early memory development. The authors remove the key obstacles to such research by formulating a trichotomous theory of recall that combines the traditional dual processes of recollection and familiarity with a reconstruction process. The theory is then embedded in a hidden Markov model that measures all 3 processes with low-burden tasks that are appropriate for even young children. These techniques are applied to a large corpus of developmental studies of recall, yielding stable findings about the emergence of dual memory processes between childhood and young adulthood and generating tests of many theoretical predictions. The techniques are extended to the study of healthy aging and to the memory sequelae of common forms of neurocognitive impairment, resulting in a theoretical framework that is unified over 4 major domains of memory research: early development, mainstream adult research, aging, and neurocognitive impairment. The techniques are also extended to recognition, creating a unified dual process framework for recall and recognition.
NASA Astrophysics Data System (ADS)
Sun, Hao; Wang, Cheng; Wang, Boliang
2011-02-01
We present a hybrid generative-discriminative learning method for human action recognition from video sequences. Our model combines a bag-of-words component with supervised latent topic models. A video sequence is represented as a collection of spatiotemporal words by extracting space-time interest points and describing these points using both shape and motion cues. The supervised latent Dirichlet allocation (sLDA) topic model, which employs discriminative learning using labeled data under a generative framework, is introduced to discover the latent topic structure that is most relevant to action categorization. The proposed algorithm retains most of the desirable properties of generative learning while increasing the classification performance though a discriminative setting. It has also been extended to exploit both labeled data and unlabeled data to learn human actions under a unified framework. We test our algorithm on three challenging data sets: the KTH human motion data set, the Weizmann human action data set, and a ballet data set. Our results are either comparable to or significantly better than previously published results on these data sets and reflect the promise of hybrid generative-discriminative learning approaches.
Sun, Zhengjuan; Liu, Yali; Li, Yuanfang
2015-03-15
A novel and rapid spectrofluorometry method for the recognition of 6-mercaptopurine (6-MP) has been developed based on luminescent metal-organic frameworks Fe-MIL-88NH2 as fluorescent probe. The strong fluorescence of Fe-MIL-88NH2 at 430 nm could be quenched by 6-MP directly, and the Fe-MIL-88NH2 shows high selectivity for 6-MP compared to other thiol-containing amino acids such as homocysteine (Hcy), cysteine (Cys), glutathione (GSH), etc. Under optimal conditions, the relative fluorescence intensity was linearly proportional to the concentration of 6-MP in the range of 5-600 μM with the detection limit at 1.17 μM (S/N=3). Furthermore, the present approach has been successfully applied to the determination of 6-MP in human serum samples. The possible fluorescence quenching mechanism has also been investigated, where it is revealed that the quenching was attributed to competition of absorption of the light source energy as well as electron transfer between Fe-MIL-88NH2 and 6-MP. Copyright © 2014 Elsevier B.V. All rights reserved.
Concreteness effects in short-term memory: a test of the item-order hypothesis.
Roche, Jaclynn; Tolan, G Anne; Tehan, Gerald
2011-12-01
The following experiments explore word length and concreteness effects in short-term memory within an item-order processing framework. This framework asserts order memory is better for those items that are relatively easy to process at the item level. However, words that are difficult to process benefit at the item level for increased attention/resources being applied. The prediction of the model is that differential item and order processing can be detected in episodic tasks that differ in the degree to which item or order memory are required by the task. The item-order account has been applied to the word length effect such that there is a short word advantage in serial recall but a long word advantage in item recognition. The current experiment considered the possibility that concreteness effects might be explained within the same framework. In two experiments, word length (Experiment 1) and concreteness (Experiment 2) are examined using forward serial recall, backward serial recall, and item recognition. These results for word length replicate previous studies showing the dissociation in item and order tasks. The same was not true for the concreteness effect. In all three tasks concrete words were better remembered than abstract words. The concreteness effect cannot be explained in terms of an item-order trade off. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing.
Ehatisham-Ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar
2017-09-06
Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework.
Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing
Ehatisham-ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar
2017-01-01
Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework. PMID:28878177
Dynamic Textures Modeling via Joint Video Dictionary Learning.
Wei, Xian; Li, Yuanxiang; Shen, Hao; Chen, Fang; Kleinsteuber, Martin; Wang, Zhongfeng
2017-04-06
Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DT) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.
A framework for supervising lifestyle diseases using long-term activity monitoring.
Han, Yongkoo; Han, Manhyung; Lee, Sungyoung; Sarkar, A M Jehad; Lee, Young-Koo
2012-01-01
Activity monitoring of a person for a long-term would be helpful for controlling lifestyle associated diseases. Such diseases are often linked with the way a person lives. An unhealthy and irregular standard of living influences the risk of such diseases in the later part of one's life. The symptoms and the initial signs of these diseases are common to the people with irregular lifestyle. In this paper, we propose a novel healthcare framework to manage lifestyle diseases using long-term activity monitoring. The framework recognizes the user's activities with the help of the sensed data in runtime and reports the irregular and unhealthy activity patterns to a doctor and a caregiver. The proposed framework is a hierarchical structure that consists of three modules: activity recognition, activity pattern generation and lifestyle disease prediction. We show that it is possible to assess the possibility of lifestyle diseases from the sensor data. We also show the viability of the proposed framework.
Gillespie, Mary; Shackell, Eileen
2017-11-01
In nursing education, physiological concepts are typically presented within a body 'systems' framework yet learners are often challenged to apply this knowledge in the holistic and functional manner needed for effective clinical decision-making and safe patient care. A nursing faculty addressed this learning challenge by developing an advanced organizer as a conceptual and integrative learning tool to support learners in diverse learning environments and practice settings. A mixed methods research study was conducted that explored the effectiveness of the Oxygen Supply and Demand Framework as a learning tool in undergraduate nursing education. A pretest/post-test assessment and reflective journal were used to gather data. Findings indicated the Oxygen Supply and Demand Framework guided the development of pattern recognition and thinking processes and supported knowledge development, knowledge application and clinical decision-making. The Oxygen Supply and Demand Framework supports undergraduate students learning to provide safe and effective nursing care. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arousal Rather than Basic Emotions Influence Long-Term Recognition Memory in Humans
Marchewka, Artur; Wypych, Marek; Moslehi, Abnoos; Riegel, Monika; Michałowski, Jarosław M.; Jednoróg, Katarzyna
2016-01-01
Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After 6 months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized) vs. forgotten (not recognized) images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia. PMID:27818626
Arousal Rather than Basic Emotions Influence Long-Term Recognition Memory in Humans.
Marchewka, Artur; Wypych, Marek; Moslehi, Abnoos; Riegel, Monika; Michałowski, Jarosław M; Jednoróg, Katarzyna
2016-01-01
Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After 6 months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized) vs. forgotten (not recognized) images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia.
Kollmeier, Birger; Schädler, Marc René; Warzybok, Anna; Meyer, Bernd T; Brand, Thomas
2016-09-07
To characterize the individual patient's hearing impairment as obtained with the matrix sentence recognition test, a simulation Framework for Auditory Discrimination Experiments (FADE) is extended here using the Attenuation and Distortion (A+D) approach by Plomp as a blueprint for setting the individual processing parameters. FADE has been shown to predict the outcome of both speech recognition tests and psychoacoustic experiments based on simulations using an automatic speech recognition system requiring only few assumptions. It builds on the closed-set matrix sentence recognition test which is advantageous for testing individual speech recognition in a way comparable across languages. Individual predictions of speech recognition thresholds in stationary and in fluctuating noise were derived using the audiogram and an estimate of the internal level uncertainty for modeling the individual Plomp curves fitted to the data with the Attenuation (A-) and Distortion (D-) parameters of the Plomp approach. The "typical" audiogram shapes from Bisgaard et al with or without a "typical" level uncertainty and the individual data were used for individual predictions. As a result, the individualization of the level uncertainty was found to be more important than the exact shape of the individual audiogram to accurately model the outcome of the German Matrix test in stationary or fluctuating noise for listeners with hearing impairment. The prediction accuracy of the individualized approach also outperforms the (modified) Speech Intelligibility Index approach which is based on the individual threshold data only. © The Author(s) 2016.
Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation
NASA Astrophysics Data System (ADS)
Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong
2014-07-01
The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.
Multi-tasking arbitration and behaviour design for human-interactive robots
NASA Astrophysics Data System (ADS)
Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei
2013-05-01
Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.
RPD-based Hypothesis Reasoning for Cyber Situation Awareness
NASA Astrophysics Data System (ADS)
Yen, John; McNeese, Michael; Mullen, Tracy; Hall, David; Fan, Xiaocong; Liu, Peng
Intelligence workers such as analysts, commanders, and soldiers often need a hypothesis reasoning framework to gain improved situation awareness of the highly dynamic cyber space. The development of such a framework requires the integration of interdisciplinary techniques, including supports for distributed cognition (human-in-the-loop hypothesis generation), supports for team collaboration (identification of information for hypothesis evaluation), and supports for resource-constrained information collection (hypotheses competing for information collection resources). We here describe a cognitively-inspired framework that is built upon Klein’s recognition-primed decision model and integrates the three components of Endsley’s situation awareness model. The framework naturally connects the logic world of tools for cyber situation awareness with the mental world of human analysts, enabling the perception, comprehension, and prediction of cyber situations for better prevention, survival, and response to cyber attacks by adapting missions at the operational, tactical, and strategic levels.
Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu
2018-01-01
Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Critical object recognition in millimeter-wave images with robustness to rotation and scale.
Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi
2017-06-01
Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.
NASA Astrophysics Data System (ADS)
Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.
2016-10-01
Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.
Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
Schafer, Phillip B; Jin, Dezhe Z
2014-03-01
Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.
A simplified conjoint recognition paradigm for the measurement of gist and verbatim memory.
Stahl, Christoph; Klauer, Karl Christoph
2008-05-01
The distinction between verbatim and gist memory traces has furthered the understanding of numerous phenomena in various fields, such as false memory research, research on reasoning and decision making, and cognitive development. To measure verbatim and gist memory empirically, an experimental paradigm and multinomial measurement model has been proposed but rarely applied. In the present article, a simplified conjoint recognition paradigm and multinomial model is introduced and validated as a measurement tool for the separate assessment of verbatim and gist memory processes. A Bayesian metacognitive framework is applied to validate guessing processes. Extensions of the model toward incorporating the processes of phantom recollection and erroneous recollection rejection are discussed.
A leadership framework to support the use of e-learning resources.
McCutcheon, Karen
2014-06-01
Recognition needs to be given to emerging postgraduate nursing students' status of 'consumer', and the challenge for nurse education is to remain relevant and competitive in a consumer-led market. An e-learning model has been suggested as a competitive and contemporary way forward for student consumers, but successful introduction of this requires leadership and strong organisational management systems. This article applies the NHS leadership framework to nurse education in relation to implementation of e-learning and describes and interprets each element for application in higher education settings. By applying a leadership framework that acknowledges the skills and abilities of staff and encourages the formation of collaborative partnerships in the wider university community, educators can begin to develop skills and confidence in teaching using e-learning resources.
ERIC Educational Resources Information Center
Fandakova, Yana; Shing, Yee Lee; Lindenberger, Ulman
2013-01-01
Based on a 2-component framework of episodic memory development across the lifespan (Shing & Lindenberger, 2011), we examined the contribution of memory-related binding and monitoring processes to false memory susceptibility in childhood and old age. We administered a repeated continuous recognition task to children (N = 20, 10-12 years),…
Three DIBELS Tasks vs. Three Informal Reading/Spelling Tasks: A Comparison of Predictive Validity
ERIC Educational Resources Information Center
Morris, Darrell; Trathen, Woodrow; Perney, Jan; Gill, Tom; Schlagal, Robert; Ward, Devery; Frye, Elizabeth M.
2017-01-01
Within a developmental framework, this study compared the predictive validity of three DIBELS tasks (phoneme segmentation fluency [PSF], nonsense word fluency [NWF], and oral reading fluency [ORF]) with that of three alternative tasks drawn from the field of reading (phonemic spelling [phSPEL], word recognition-timed [WR-t], and graded passage…
ERIC Educational Resources Information Center
Greene, Michelle R.; Oliva, Aude
2009-01-01
Human observers are able to rapidly and accurately categorize natural scenes, but the representation mediating this feat is still unknown. Here we propose a framework of rapid scene categorization that does not segment a scene into objects and instead uses a vocabulary of global, ecological properties that describe spatial and functional aspects…
The Rights of Children and Young People in State Care
ERIC Educational Resources Information Center
Ashton, Sarah
2014-01-01
This article highlights the lack of human rights recognition for arguably one of the most vulnerable groups in our society, children and young people in the care of the state. Currently under New Zealand legislation and policy frameworks these children do not have their rights upheld, as per New Zealand's obligations under the United Nations…
A Human Mirror Neuron System for Language: Perspectives from Signed Languages of the Deaf
ERIC Educational Resources Information Center
Knapp, Heather Patterson; Corina, David P.
2010-01-01
Language is proposed to have developed atop the human analog of the macaque mirror neuron system for action perception and production [Arbib M.A. 2005. From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics (with commentaries and author's response). "Behavioral and Brain Sciences, 28", 105-167; Arbib…
"Children of the Street": Sexual Citizenship and the Unprotected Lives of Ghanaian Street Youth
ERIC Educational Resources Information Center
Oduro, Georgina Yaa
2012-01-01
Youth-sensitive policies are gradually gaining recognition in Africa. The release of the recent publication "Children in Ghana" by the Ministry of Women and Children's Affairs (MOWAC) and UNICEF-Ghana attests to the value the country places on young people's perspectives. Guided by Richardson's conceptual framework on sexual citizenship,…
The Liberal Arts at Work: Marketing the Liberal Arts to Employers in the 21st Century.
ERIC Educational Resources Information Center
Brooks, Kate S.
2003-01-01
This article discusses the formation of a new framework for marketing the liberal arts, supported by the marketing successes of the past and strengthened by a renewed recognition of the specific educational value and relevance of the curriculum. Highlighted are four components in developing a new marketing plan. (GCP)
Potential Originality and Effectiveness: The Dynamic Definition of Creativity
ERIC Educational Resources Information Center
Corazza, Giovanni Emanuele
2016-01-01
Given the central role of creativity in the future post-information society, a call for a pragmatist approach to the study of creativity is advocated, that brings as a consequence the recognition of the dynamic nature of this phenomenon. At the foundation of the proposed new theoretical framework lies the definition of creativity itself, which is…
ERIC Educational Resources Information Center
Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire
2010-01-01
This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…
Refugees in Higher Education: Boundaries of Belonging and Recognition, Stigma and Exclusion
ERIC Educational Resources Information Center
Morrice, Linda
2013-01-01
For highly educated refugee professionals who flee to the UK, gaining a university qualification is one of the key strategies which can be used to re-establish a professional identity and find employment, and yet little is known about their experiences in higher education. This article utilises Bourdieu's framework of field, capital and…
Speculation about Behavior, Brain Damage, and Self-Organization: The Other Way to Herd a Cat
ERIC Educational Resources Information Center
Colangelo, Annette; Holden, John G.; Buchanan, Lori; Van Orden, Guy C.
2004-01-01
This article contrasts aphasic patients' performance of word naming and lexical decision with that of intact college-aged readers. We discuss this contrast within a framework of self-organization; word recognition by aphasic patients is destabilized relative to intact performance. Less stable performance shows itself as an increase in the…
ERIC Educational Resources Information Center
Cawthorne, Jon E.
2010-01-01
Shared leadership theory recognizes leader influence throughout the organization, not just from the top down. This study explores how middle managers from 22 academic libraries in the Pacific West perceive their own agreement, participation and recognition of shared leadership. This survey and framework is the first to examine the extent shared…
Academic Autonomy in a Rapidly Changing Higher Education Framework: Academia on the Procrustean Bed?
ERIC Educational Resources Information Center
Schmidt, Evanthia Kalpazidou; Langberg, Kamma
2008-01-01
In a number of European countries, the recognition of the university's key role in the evolution of the knowledge society--and in the identification and solving of political, socioeconomic, environmental, and cultural problems--has led to radical reforms of higher education systems. Denmark has implemented the most radical reforms of the region in…
ERIC Educational Resources Information Center
Webb, Andrew
2015-01-01
This article assesses the extent to which indigenous grants administered to school pupils and university students in Chile can be considered affirmative action towards social justice. Drawing on Fraser's framework for parity of participation, I question whether the grants are able to provide both redistribution and recognition for indigenous…
ERIC Educational Resources Information Center
Chang, Y. C.; Peng, H. Y.; Chao, H. C.
2010-01-01
In recent years, games have been proven to be an effective tool in supplementing traditional teaching methods. Through game playing, students can strengthen their cognitive-recognition architecture and can gain satisfaction as well as a sense of achievement. This study presents a conceptual framework for examining various effective strategies by…
ERIC Educational Resources Information Center
Nagaoka, Jenny; Farrington, Camille A.; Ehrlich, Stacy B.; Heath, Ryan D.
2015-01-01
Amid growing recognition that strong academic skills alone are not enough for young people to become successful adults, this comprehensive report offers wide-ranging evidence to show what young people need to develop from preschool to young adulthood to succeed in college and career, have healthy relationships, be engaged citizens, and make wise…
Participating in Science at Home: Recognition Work and Learning in Biology
ERIC Educational Resources Information Center
Zimmerman, Heather Toomey
2012-01-01
This article presents an analysis of the longitudinal consequences of out-of-school science learning with a conceptual framework that connects the intentions of youth to their participation in science. The focus is on one girl's science activities in her home and hobby pursuits from fourth to seventh grade to create an empirical account of how…
Towards a Context-Aware Proactive Decision Support Framework
2013-11-15
initiative that has developed text analytic technology that crosses the semantic gap into the area of event recognition and representation. The...recognizing operational context, and techniques for recognizing context shift. Additional research areas include: • Adequately capturing users...Universal Interaction Context Ontology [12] might serve as a foundation • Instantiating formal models of decision making based on information seeking
ERIC Educational Resources Information Center
Bartlett, James Craig
1977-01-01
An experiment examined the mnemonic effects of initial testing with semantic, orthographic, temporal, and recognition cues. Results were interpreted within a levels-of-processing framework in which the nature of the information used in retrieval, rather than the speed or difficulty of retrieval determines subsequent accessibility. (Editor/RK)
David S. deCalesta; Susan L. Stout
1997-01-01
White-tailed deer (Odocoileus virginianus) populations and harvests of white-tailed deer have increased dramatically in the eastern United States on public and private lands during the 20th century (Porter 1992, Kroll 1994). Recognition of the impacts of deer on ecosystem components (deCalesta 1997) and controversy over management of deer...
ERIC Educational Resources Information Center
Zarcone, Alessandra; Padó, Sebastian; Lenci, Alessandro
2014-01-01
Logical metonymy resolution ("begin a book" ? "begin reading a book" or "begin writing a book") has traditionally been explained either through complex lexical entries (qualia structures) or through the integration of the implicit event via post-lexical access to world knowledge. We propose that recent work within the…
Detecting Different Types of Reading Difficulties: A Comparison of Tests
ERIC Educational Resources Information Center
Moore, Danielle M.; Porter, Melanie A.; Kohnen, Saskia; Castles, Anne
2012-01-01
The focus of this paper is on the assessment of the two main processes that children must acquire at the single word reading level: word recognition (lexical) and decoding (nonlexical) skills. Guided by the framework of the dual route model, this study aimed to (1) investigate the impact of item characteristics on test performance, and (2)…
Assessment, Referral and Placement Kit for Adult Literacy & Basic Education Programs in Victoria.
ERIC Educational Resources Information Center
Purdey, Margaret
This kit is an aid to the assessment, referral, placement, and recognition of achievement of adult literacy and basic education students across Victoria (Australia). It is designed as a guide to the integration of current assessment with new placement processes within the context of the new Adult Basic Education Accreditation Framework and the…
In Search of Social Movement Learning: The Growing Jobs for Living Project. NALL Working Paper.
ERIC Educational Resources Information Center
Clover, Darlene E.; Hall, Budd L.
The New Approaches to Lifelong Learning (NALL) project is a Canada-wide 5-year research initiative during which more than 70 academic and community members are working collaboratively within a framework of informal learning to address the following issues: informal computer-based learning, recognition of prior learning, informal learning in a…
Weighted score-level feature fusion based on Dempster-Shafer evidence theory for action recognition
NASA Astrophysics Data System (ADS)
Zhang, Guoliang; Jia, Songmin; Li, Xiuzhi; Zhang, Xiangyin
2018-01-01
The majority of human action recognition methods use multifeature fusion strategy to improve the classification performance, where the contribution of different features for specific action has not been paid enough attention. We present an extendible and universal weighted score-level feature fusion method using the Dempster-Shafer (DS) evidence theory based on the pipeline of bag-of-visual-words. First, the partially distinctive samples in the training set are selected to construct the validation set. Then, local spatiotemporal features and pose features are extracted from these samples to obtain evidence information. The DS evidence theory and the proposed rule of survival of the fittest are employed to achieve evidence combination and calculate optimal weight vectors of every feature type belonging to each action class. Finally, the recognition results are deduced via the weighted summation strategy. The performance of the established recognition framework is evaluated on Penn Action dataset and a subset of the joint-annotated human metabolome database (sub-JHMDB). The experiment results demonstrate that the proposed feature fusion method can adequately exploit the complementarity among multiple features and improve upon most of the state-of-the-art algorithms on Penn Action and sub-JHMDB datasets.
Human action recognition based on point context tensor shape descriptor
NASA Astrophysics Data System (ADS)
Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan
2017-07-01
Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.
Clustered Multi-Task Learning for Automatic Radar Target Recognition
Li, Cong; Bao, Weimin; Xu, Luping; Zhang, Hua
2017-01-01
Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms. PMID:28953267
Bayesian Face Recognition and Perceptual Narrowing in Face-Space
Balas, Benjamin
2012-01-01
During the first year of life, infants’ face recognition abilities are subject to “perceptual narrowing,” the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in developing humans and primates. Though the phenomenon is highly robust and replicable, there have been few efforts to model the emergence of perceptual narrowing as a function of the accumulation of experience with faces during infancy. The goal of the current study is to examine how perceptual narrowing might manifest as statistical estimation in “face space,” a geometric framework for describing face recognition that has been successfully applied to adult face perception. Here, I use a computer vision algorithm for Bayesian face recognition to study how the acquisition of experience in face space and the presence of race categories affect performance for own and other-race faces. Perceptual narrowing follows from the establishment of distinct race categories, suggesting that the acquisition of category boundaries for race is a key computational mechanism in developing face expertise. PMID:22709406
SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.
Xu, Wenxuan; Zhang, Li; Lu, Yaping
2016-06-01
The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
In-the-wild facial expression recognition in extreme poses
NASA Astrophysics Data System (ADS)
Yang, Fei; Zhang, Qian; Zheng, Chi; Qiu, Guoping
2018-04-01
In the computer research area, facial expression recognition is a hot research problem. Recent years, the research has moved from the lab environment to in-the-wild circumstances. It is challenging, especially under extreme poses. But current expression detection systems are trying to avoid the pose effects and gain the general applicable ability. In this work, we solve the problem in the opposite approach. We consider the head poses and detect the expressions within special head poses. Our work includes two parts: detect the head pose and group it into one pre-defined head pose class; do facial expression recognize within each pose class. Our experiments show that the recognition results with pose class grouping are much better than that of direct recognition without considering poses. We combine the hand-crafted features, SIFT, LBP and geometric feature, with deep learning feature as the representation of the expressions. The handcrafted features are added into the deep learning framework along with the high level deep learning features. As a comparison, we implement SVM and random forest to as the prediction models. To train and test our methodology, we labeled the face dataset with 6 basic expressions.
Strengthening the human rights framework to protect breastfeeding: a focus on CEDAW.
Galtry, Judith
2015-01-01
There have been recent calls for increased recognition of breastfeeding as a human right. The United Nations Convention on the Elimination of All Forms of Discrimination against Women, 1979 (CEDAW) is the core human rights treaty on women. CEDAW's approach to breastfeeding is considered from an historical perspective. A comparison is drawn with breastfeeding protection previously outlined in the International Labour Organization's Maternity Protection Convention, 1919 (ILO C3), and its 1952 revision (ILO C103), and subsequently, in the United Nations Convention on the Rights of the Child, 1989 (CRC). Despite breastfeeding's sex-specific significance to an international human rights treaty on women and CEDAW's emphasis on facilitating women's employment, CEDAW is, in reality, a relatively weak instrument for breastfeeding protection. In both its text and subsequent interpretations explicit recognition of breastfeeding is minimal or nonexistent. Explanations for this are proposed and contextualised in relation to various political, social and economic forces, especially those influencing notions of gender equality. During the mid to late 1970s -when CEDAW was formulated - breastfeeding posed a strategic challenge for key feminist goals, particularly those of equal employment opportunity, gender neutral childrearing policy and reproductive rights. Protective legislation aimed at working women had been rejected as outdated and oppressive. Moreover, the right of women to breastfeed was generally assumed, with choice over infant feeding practices often perceived as the right NOT to breastfeed. There was also little awareness or analysis of the various structural obstacles to breastfeeding's practice, such as lack of workplace support, that undermine 'choice'. Subsequent interpretations of CEDAW show that despite significant advances in scientific and epidemiological knowledge about breastfeeding's importance for short-term and long-term maternal health, breastfeeding continues to be inadequately addressed in international human rights law on women. A comparison is made with CRC and its subsequent elaborations. Increasing recognition of the need to protect, promote and support breastfeeding within the framework of CRC but not that of CEDAW suggests that breastfeeding is regarded primarily as a children's rights issue but only minimally as a women's rights issue. The human rights framework requires strengthening in every direction to protect, promote and support breastfeeding. Discussion is needed regarding whether a separate strengthening of the international human rights framework on women is required with regard to breastfeeding.
Ball-scale based hierarchical multi-object recognition in 3D medical images
NASA Astrophysics Data System (ADS)
Bağci, Ulas; Udupa, Jayaram K.; Chen, Xinjian
2010-03-01
This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.
EMG-based speech recognition using hidden markov models with global control variables.
Lee, Ki-Seung
2008-03-01
It is well known that a strong relationship exists between human voices and the movement of articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The sequence of EMG signals for each word is modelled by a hidden Markov model (HMM) framework. The main objective of the work involves building a model for state observation density when multichannel observation sequences are given. The proposed model reflects the dependencies between each of the EMG signals, which are described by introducing a global control variable. We also develop an efficient model training method, based on a maximum likelihood criterion. In a preliminary study, 60 isolated words were used as recognition variables. EMG signals were acquired from three articulatory facial muscles. The findings indicate that such a system may have the capacity to recognize speech signals with an accuracy of up to 87.07%, which is superior to the independent probabilistic model.
Super Normal Vector for Human Activity Recognition with Depth Cameras.
Yang, Xiaodong; Tian, YingLi
2017-05-01
The advent of cost-effectiveness and easy-operation depth cameras has facilitated a variety of visual recognition tasks including human activity recognition. This paper presents a novel framework for recognizing human activities from video sequences captured by depth cameras. We extend the surface normal to polynormal by assembling local neighboring hypersurface normals from a depth sequence to jointly characterize local motion and shape information. We then propose a general scheme of super normal vector (SNV) to aggregate the low-level polynormals into a discriminative representation, which can be viewed as a simplified version of the Fisher kernel representation. In order to globally capture the spatial layout and temporal order, an adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a set of space-time cells. In the extensive experiments, the proposed approach achieves superior performance to the state-of-the-art methods on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin
2016-09-01
Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.
Classification of time-series images using deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Hatami, Nima; Gavet, Yann; Debayle, Johan
2018-04-01
Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier. Image representation of time-series introduces different feature types that are not available for 1D signals, and therefore TSC can be treated as texture image recognition task. CNN model also allows learning different levels of representations together with a classifier, jointly and automatically. Therefore, using RP and CNN in a unified framework is expected to boost the recognition rate of TSC. Experimental results on the UCR time-series classification archive demonstrate competitive accuracy of the proposed approach, compared not only to the existing deep architectures, but also to the state-of-the art TSC algorithms.
Medical migration within Europe: opportunities and challenges.
Ling, Kate; Belcher, Paul
2014-12-01
The free movement of European citizens to live and work within the European Union (EU) is one of the fundamental pillars of the European single market. Recent EU legislation on the recognition of professional qualifications (to take effect January 2016) updates the framework within which doctors and others can migrate freely between EU member states to practise their profession. UK organisations lobbied extensively to change aspects of the original proposals, in particular those that threatened to 'water down' public protection in the interest of free movement. The legislation finally adopted significantly increases safeguards for patients and the public. The revised law covers the rules to be applied by regulators on (for example) assuring language competence, warning 'blacklists' of practitioners subject to sanctions, 'fast track' registration based on mutual recognition of professional qualifications, agreed minimum education and training requirements for mutual recognition, and encouragement of continuing professional development. Drafting of detailed secondary legislation is ongoing and poses opportunities and challenges for patient safety, quality of care and transparency. © 2014 Royal College of Physicians.
Human detection in sensitive security areas through recognition of omega shapes using MACH filters
NASA Astrophysics Data System (ADS)
Rehman, Saad; Riaz, Farhan; Hassan, Ali; Liaquat, Muwahida; Young, Rupert
2015-03-01
Human detection has gained considerable importance in aggravated security scenarios over recent times. An effective security application relies strongly on detailed information regarding the scene under consideration. A larger accumulation of humans than the number of personal authorized to visit a security controlled area must be effectively detected, amicably alarmed and immediately monitored. A framework involving a novel combination of some existing techniques allows an immediate detection of an undesirable crowd in a region under observation. Frame differencing provides a clear visibility of moving objects while highlighting those objects in each frame acquired by a real time camera. Training of a correlation pattern recognition based filter on desired shapes such as elliptical representations of human faces (variants of an Omega Shape) yields correct detections. The inherent ability of correlation pattern recognition filters caters for angular rotations in the target object and renders decision regarding the existence of the number of persons exceeding an allowed figure in the monitored area.
Seeing Life through Positive-Tinted Glasses: Color–Meaning Associations
Gil, Sandrine; Le Bigot, Ludovic
2014-01-01
There is a growing body of literature to show that color can convey information, owing to its emotionally meaningful associations. Most research so far has focused on negative hue–meaning associations (e.g., red) with the exception of the positive aspects associated with green. We therefore set out to investigate the positive associations of two colors (i.e., green and pink), using an emotional facial expression recognition task in which colors provided the emotional contextual information for the face processing. In two experiments, green and pink backgrounds enhanced happy face recognition and impaired sad face recognition, compared with a control color (gray). Our findings therefore suggest that because green and pink both convey positive information, they facilitate the processing of emotionally congruent facial expressions (i.e., faces expressing happiness) and interfere with that of incongruent facial expressions (i.e., faces expressing sadness). Data also revealed a positive association for white. Results are discussed within the theoretical framework of emotional cue processing and color meaning. PMID:25098167
Seeing life through positive-tinted glasses: color-meaning associations.
Gil, Sandrine; Le Bigot, Ludovic
2014-01-01
There is a growing body of literature to show that color can convey information, owing to its emotionally meaningful associations. Most research so far has focused on negative hue-meaning associations (e.g., red) with the exception of the positive aspects associated with green. We therefore set out to investigate the positive associations of two colors (i.e., green and pink), using an emotional facial expression recognition task in which colors provided the emotional contextual information for the face processing. In two experiments, green and pink backgrounds enhanced happy face recognition and impaired sad face recognition, compared with a control color (gray). Our findings therefore suggest that because green and pink both convey positive information, they facilitate the processing of emotionally congruent facial expressions (i.e., faces expressing happiness) and interfere with that of incongruent facial expressions (i.e., faces expressing sadness). Data also revealed a positive association for white. Results are discussed within the theoretical framework of emotional cue processing and color meaning.
Facial expression recognition based on weber local descriptor and sparse representation
NASA Astrophysics Data System (ADS)
Ouyang, Yan
2018-03-01
Automatic facial expression recognition has been one of the research hotspots in the area of computer vision for nearly ten years. During the decade, many state-of-the-art methods have been proposed which perform very high accurate rate based on the face images without any interference. Nowadays, many researchers begin to challenge the task of classifying the facial expression images with corruptions and occlusions and the Sparse Representation based Classification framework has been wildly used because it can robust to the corruptions and occlusions. Therefore, this paper proposed a novel facial expression recognition method based on Weber local descriptor (WLD) and Sparse representation. The method includes three parts: firstly the face images are divided into many local patches, and then the WLD histograms of each patch are extracted, finally all the WLD histograms features are composed into a vector and combined with SRC to classify the facial expressions. The experiment results on the Cohn-Kanade database show that the proposed method is robust to occlusions and corruptions.
Point spread function engineering for iris recognition system design.
Ashok, Amit; Neifeld, Mark A
2010-04-01
Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple subpixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.
NASA Astrophysics Data System (ADS)
Chen, Cunjian; Ross, Arun
2013-05-01
Researchers in face recognition have been using Gabor filters for image representation due to their robustness to complex variations in expression and illumination. Numerous methods have been proposed to model the output of filter responses by employing either local or global descriptors. In this work, we propose a novel but simple approach for encoding Gradient information on Gabor-transformed images to represent the face, which can be used for identity, gender and ethnicity assessment. Extensive experiments on the standard face benchmark FERET (Visible versus Visible), as well as the heterogeneous face dataset HFB (Near-infrared versus Visible), suggest that the matching performance due to the proposed descriptor is comparable against state-of-the-art descriptor-based approaches in face recognition applications. Furthermore, the same feature set is used in the framework of a Collaborative Representation Classification (CRC) scheme for deducing soft biometric traits such as gender and ethnicity from face images in the AR, Morph and CAS-PEAL databases.
Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.
Venkataraman, Vinay; Turaga, Pavan
2016-12-01
This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-01
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-21
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
A super resolution framework for low resolution document image OCR
NASA Astrophysics Data System (ADS)
Ma, Di; Agam, Gady
2013-01-01
Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.
Nielsen, Matthew E; Birken, Sarah A
2018-05-01
The field of implementation science has been conventionally applied in the context of increasing the application of evidence-based practices into clinical care, given evidence of underusage of appropriate interventions in many settings. Increasingly, however, there is recognition of the potential for similar frameworks to inform efforts to reduce the application of ineffective or potentially harmful practices. In this article, we provide some examples of clinical scenarios in which the quality problem may be overuse and misuse, and review relevant theories and frameworks that may inform improvement activities. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-12-08
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-01-01
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system. PMID:25494350
A fast automatic recognition and location algorithm for fetal genital organs in ultrasound images.
Tang, Sheng; Chen, Si-ping
2009-09-01
Severe sex ratio imbalance at birth is now becoming an important issue in several Asian countries. Its leading immediate cause is prenatal sex-selective abortion following illegal sex identification by ultrasound scanning. In this paper, a fast automatic recognition and location algorithm for fetal genital organs is proposed as an effective method to help prevent ultrasound technicians from unethically and illegally identifying the sex of the fetus. This automatic recognition algorithm can be divided into two stages. In the 'rough' stage, a few pixels in the image, which are likely to represent the genital organs, are automatically chosen as points of interest (POIs) according to certain salient characteristics of fetal genital organs. In the 'fine' stage, a specifically supervised learning framework, which fuses an effective feature data preprocessing mechanism into the multiple classifier architecture, is applied to every POI. The basic classifiers in the framework are selected from three widely used classifiers: radial basis function network, backpropagation network, and support vector machine. The classification results of all the POIs are then synthesized to determine whether the fetal genital organ is present in the image, and to locate the genital organ within the positive image. Experiments were designed and carried out based on an image dataset comprising 658 positive images (images with fetal genital organs) and 500 negative images (images without fetal genital organs). The experimental results showed true positive (TP) and true negative (TN) results from 80.5% (265 from 329) and 83.0% (415 from 500) of samples, respectively. The average computation time was 453 ms per image.
Deng, Qiannan; Guo, Ting; Zhou, Xiu; Xi, Yongmei; Yang, Xiaohang; Ge, Wanzhong
2016-08-01
Cell proliferation and tissue growth depend on the coordinated regulation of multiple signaling molecules and pathways during animal development. Previous studies have linked mitochondrial function and the Hippo signaling pathway in growth control. However, the underlying molecular mechanisms are not fully understood. Here we identify a Drosophila mitochondrial inner membrane protein ChChd3 as a novel regulator for tissue growth. Loss of ChChd3 leads to tissue undergrowth and cell proliferation defects. ChChd3 is required for mitochondrial fusion and removal of ChChd3 increases mitochondrial fragmentation. ChChd3 is another mitochondrial target of the Hippo pathway, although it is only partially required for Hippo pathway-mediated overgrowth. Interestingly, lack of ChChd3 leads to inactivation of Hippo activity under normal development, which is also dependent on the transcriptional coactivator Yorkie (Yki). Furthermore, loss of ChChd3 induces oxidative stress and activates the JNK pathway. In addition, depletion of other mitochondrial fusion components, Opa1 or Marf, inactivates the Hippo pathway as well. Taken together, we propose that there is a cross-talk between mitochondrial fusion and the Hippo pathway, which is essential in controlling cell proliferation and tissue homeostasis in Drosophila. Copyright © 2016 by the Genetics Society of America.
Krychowiak, M; Adnan, A; Alonso, A; Andreeva, T; Baldzuhn, J; Barbui, T; Beurskens, M; Biel, W; Biedermann, C; Blackwell, B D; Bosch, H S; Bozhenkov, S; Brakel, R; Bräuer, T; Brotas de Carvalho, B; Burhenn, R; Buttenschön, B; Cappa, A; Cseh, G; Czarnecka, A; Dinklage, A; Drews, P; Dzikowicka, A; Effenberg, F; Endler, M; Erckmann, V; Estrada, T; Ford, O; Fornal, T; Frerichs, H; Fuchert, G; Geiger, J; Grulke, O; Harris, J H; Hartfuß, H J; Hartmann, D; Hathiramani, D; Hirsch, M; Höfel, U; Jabłoński, S; Jakubowski, M W; Kaczmarczyk, J; Klinger, T; Klose, S; Knauer, J; Kocsis, G; König, R; Kornejew, P; Krämer-Flecken, A; Krawczyk, N; Kremeyer, T; Książek, I; Kubkowska, M; Langenberg, A; Laqua, H P; Laux, M; Lazerson, S; Liang, Y; Liu, S C; Lorenz, A; Marchuk, A O; Marsen, S; Moncada, V; Naujoks, D; Neilson, H; Neubauer, O; Neuner, U; Niemann, H; Oosterbeek, J W; Otte, M; Pablant, N; Pasch, E; Sunn Pedersen, T; Pisano, F; Rahbarnia, K; Ryć, L; Schmitz, O; Schmuck, S; Schneider, W; Schröder, T; Schuhmacher, H; Schweer, B; Standley, B; Stange, T; Stephey, L; Svensson, J; Szabolics, T; Szepesi, T; Thomsen, H; Travere, J-M; Trimino Mora, H; Tsuchiya, H; Weir, G M; Wenzel, U; Werner, A; Wiegel, B; Windisch, T; Wolf, R; Wurden, G A; Zhang, D; Zimbal, A; Zoletnik, S
2016-11-01
Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered a MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. An overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns.
Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials
NASA Astrophysics Data System (ADS)
Philipps, V.; Neu, R.; Rapp, J.; Samm, U.; Tokar, M.; Tanabe, T.; Rubel, M.
2000-12-01
Graphite wall materials are used in present day fusion devices in order to optimize plasma core performance and to enable access to a large operational space. A large physics database exists for operation with these plasma facing materials, which also indicate their use in future devices with extended burn times. The radiation from carbon impurities in the edge and divertor regions strongly helps to reduce the peak power loads on the strike areas, but carbon radiation also supports the formation of MARFE instabilities which can hinder access to high densities. The main concerns with graphite are associated with its strong chemical affinity to hydrogen, which leads to chemical erosion and to the formation of hydrogen-rich carbon layers. These layers can store a significant fraction of the total tritium fuel, which might prevent the use of these materials in future tritium devices. High-Z plasma facing materials are much more advantageous in this sense, but these advantages compete with the strong poisoning of the plasma if they enter the plasma core. New promising experiences have been obtained with high-Z wall materials in several devices, about which a survey is given in this paper and which also addresses open questions for future research and development work.
ERIC Educational Resources Information Center
Shimpi, Priya Mariana; Nicholson, Julie
2014-01-01
Discussion of children's play in international and diverse communities requires careful consideration of social, cultural and political contexts impacting children's lives, as well as recognition of the complexities revealed when these variables are identified and analysed. Using diverse conceptual frameworks represented in the research…
ERIC Educational Resources Information Center
Knickel, Karlheinz; Brunori, Gianluca; Rand, Sigrid; Proost, Jet
2009-01-01
The role of farming previously dedicated mainly to food production changed with an increasing recognition of the multifunctionality of agriculture and rural areas. It seems obvious to expect that farmers and rural actors adapt themselves to these new conditions, which are innovative and redefine their job. In many regions farmers can increase…
ERIC Educational Resources Information Center
Moalosi, Richie; Setlhatlhanyo, Keiphe Nani; Sealetsa, Oanthata Jester
2016-01-01
Culture is gaining recognition globally as an important driver of sustainable development in the creative economy. The significance of the role of design and culture with the creative industries is under-researched, especially from the new emerging economies perspective. Therefore, designers need a framework which will guide them on how they can…
The Complexity of Literacy in Kenya: Narrative Analysis of Maasai Women's Experiences
ERIC Educational Resources Information Center
Taeko, Takayanagi
2014-01-01
This paper aims to challenge limited notions of literacy and argues for the recognition of Maasai women's self-determined learning in order to bring about human development in Kenya. It also seeks to construct a complex picture of literacy, drawing on postcolonial feminist theory as a framework to ensure that the woman's voice is heard. Through…
ERIC Educational Resources Information Center
Black, Ryan A.; Yang, Yanyun; Beitra, Danette; McCaffrey, Stacey
2015-01-01
Estimation of composite reliability within a hierarchical modeling framework has recently become of particular interest given the growing recognition that the underlying assumptions of coefficient alpha are often untenable. Unfortunately, coefficient alpha remains the prominent estimate of reliability when estimating total scores from a scale with…
ERIC Educational Resources Information Center
Borgeaud, Jane
2018-01-01
Secondary school science teachers report that their approaches to some topics are affected by the recognition that some pupils hold religious beliefs, while primary school teacher trainees express concern about teaching evolution to children with a religious faith. Pupils in British schools and internationally often assume a conflict between…
ERIC Educational Resources Information Center
Raychaudhuri, Debasree
2014-01-01
Although there is no consensus in regard to a unique meaning for abstraction, there is a recognition of the existence of several theories of abstraction, and that the ability to abstract is imperative to learning and doing meaningful mathematics. The theory of "reducing abstraction" maps the abstract nature of mathematics to the nature…
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
Li, Frédéric; Nisar, Muhammad Adeel; Köping, Lukas; Grzegorzek, Marcin
2018-01-01
Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches—in particular deep-learning based—have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. Our studies carried out on the OPPORTUNITY and UniMiB-SHAR datasets highlight the effectiveness of hybrid deep-learning architectures involving convolutional and Long-Short-Term-Memory (LSTM) to obtain features characterising both short- and long-term time dependencies in the data. PMID:29495310
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.
Li, Frédéric; Shirahama, Kimiaki; Nisar, Muhammad Adeel; Köping, Lukas; Grzegorzek, Marcin
2018-02-24
Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches-in particular deep-learning based-have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. Our studies carried out on the OPPORTUNITY and UniMiB-SHAR datasets highlight the effectiveness of hybrid deep-learning architectures involving convolutional and Long-Short-Term-Memory (LSTM) to obtain features characterising both short- and long-term time dependencies in the data.
The importance of unitization for familiarity-based learning.
Parks, Colleen M; Yonelinas, Andrew P
2015-05-01
It is often assumed that recollection is necessary to support memory for novel associations, whereas familiarity supports memory for single items. However, the levels of unitization framework assumes that familiarity can support associative memory under conditions in which the components of an association are unitized (i.e., treated as a single coherent item). In the current study we tested two critical assumptions of this framework. First, does unitization reflect a specialized form of learning or is it simply a form of semantic or elaborative encoding, and, second, can the beneficial effects of unitization on familiarity be observed for across-domain associations or are they limited to creating new associations between items that are from the same stimulus domains? Unitization was found to increase associative recognition but not item recognition. It affected familiarity more than recollection, increased associative but not item priming, and was dissociable from levels of processing effects. Moreover, unitization effects were found to be particularly effective in supporting face-word and fractal-sound pairs. The current results indicate that unitization reflects a specialized form of learning that supports associative familiarity of within- and across-domain associations. (c) 2015 APA, all rights reserved).
Kurakin, Alexei
2007-01-01
A large body of experimental evidence indicates that the specific molecular interactions and/or chemical conversions depicted as links in the conventional diagrams of cellular signal transduction and metabolic pathways are inherently probabilistic, ambiguous and context-dependent. Being the inevitable consequence of the dynamic nature of protein structure in solution, the ambiguity of protein-mediated interactions and conversions challenges the conceptual adequacy and practical usefulness of the mechanistic assumptions and inferences embodied in the design charts of cellular circuitry. It is argued that the reconceptualization of molecular recognition and cellular organization within the emerging interpretational framework of self-organization, which is expanded here to include such concepts as bounded stochasticity, evolutionary memory, and adaptive plasticity offers a significantly more adequate representation of experimental reality than conventional mechanistic conceptions do. Importantly, the expanded framework of self-organization appears to be universal and scale-invariant, providing conceptual continuity across multiple scales of biological organization, from molecules to societies. This new conceptualization of biological phenomena suggests that such attributes of intelligence as adaptive plasticity, decision-making, and memory are enforced by evolution at different scales of biological organization and may represent inherent properties of living matter. (c) 2007 John Wiley & Sons, Ltd.
The importance of unitization for familiarity-based learning
Parks, Colleen M.; Yonelinas, Andrew P.
2014-01-01
It is often assumed that recollection is necessary to support memory for novel associations, whereas familiarity supports memory for single items. However, the levels of unitization (LOU) framework assumes that familiarity can support associative memory under conditions in which the components of an association are unitized (i.e., treated as a single coherent item). In the current study we test two critical assumptions of this framework. First, does unitization reflect a specialized form of learning or is it simply a form of semantic or elaborative encoding, and, second, can the beneficial effects of unitization on familiarity be observed for across-domain associations or are they limited to creating new associations between items that are from the same stimulus domains? Unitization was found to increase associative recognition but not item recognition, it affected familiarity more so than recollection, it increased associative but not item priming, and it was dissociable from levels of processing effects. Moreover, unitization effects were found to be particularly effective in supporting face-word and fractal-sound pairs. The current results indicate that unitization reflects a specialized form of learning that supports associative familiarity of within- and across-domain associations. PMID:25329077
Sparse network-based models for patient classification using fMRI
Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina
2015-01-01
Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459
The diffusion of Magnet hospital recognition.
Abraham, Jean; Jerome-D'Emilia, Bonnie; Begun, James W
2011-01-01
Magnet recognition is promoted by many in the practice community as the gold standard of nursing care quality. The Magnet hospital population has exploded in recent years, with about 8% of U.S. general hospitals now recognized. The purpose of this study was to identify the characteristics that distinguish Magnet-recognized hospitals from other hospitals within the framework of diffusion theory. We conceptualize Magnet recognition as an organizational innovation and Magnet-recognized hospitals as adopters of the innovation. We hypothesize that adoption is associated with selected characteristics of hospitals and their markets. The study population consists of the 3,657 general hospitals in the United States in 2008 located in metropolitan or micropolitan areas. We used logistic regression analysis to estimate the association of Magnet recognition with organizational and market characteristics. Empirical results support hypotheses that adoption is positively associated with hospital complexity and specialization, as measured by teaching affiliation, and with hospital size, slack resources, and not-for-profit or public ownership (vs. for-profit). Adopters also are more likely to be located in markets that are experiencing population growth and are more likely to have competitor hospitals within the market that also have adopted Magnet status. A positive association of adoption with baccalaureate nursing school supply is contrary to the hypothesized relationship. Because of its rapid recent growth, consideration of Magnet program recognition should be on the strategic planning agenda of hospitals and hospital systems. Hospital administrators, particularly in smaller, for-profit hospitals, may expect more of their larger not-for-profit competitors, particularly teaching hospitals, to adopt Magnet recognition, increasing competition for baccalaureate-prepared registered nurses in the labor market.
Levels-of-processing effect on internal source monitoring in schizophrenia
RAGLAND, J. DANIEL; McCARTHY, ERIN; BILKER, WARREN B.; RENSINGER, COLLEEN M. B; VALDEZ, JEFFREY; KOHLER, CHRISTIAN; GUR, RAQUEL E.; GUR, RUBEN C.
2015-01-01
Background Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients’ internal source-monitoring performance. Method Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a ‘shallow’ perceptual versus a ‘deep’ semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. Results As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Conclusions Providing a deep processing semantic encoding strategy significantly improved patients’ recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reffect subtle problems in the relational binding of semantic information that are independent of strategic memory processes. PMID:16608558
Levels-of-processing effect on internal source monitoring in schizophrenia.
Ragland, J Daniel; McCarthy, Erin; Bilker, Warren B; Brensinger, Colleen M; Valdez, Jeffrey; Kohler, Christian; Gur, Raquel E; Gur, Ruben C
2006-05-01
Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients' internal source-monitoring performance. Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a 'shallow' perceptual versus a 'deep' semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Providing a deep processing semantic encoding strategy significantly improved patients' recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reflect subtle problems in the relational binding of semantic information that are independent of strategic memory processes.
Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey
2014-04-15
In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.
Wright, Jenny; Rao, Mala; Walker, Karen
2008-06-01
There is growing recognition of the impact of the wider determinants of health and health inequalities, and an acknowledgement that addressing these root causes of ill health requires public health to be everyone's business and responsibility. Therefore, equipping the whole of the public health workforce and a wide range of other disciplines with the knowledge and skills to have a positive influence on health is a priority. The UK is implementing a competence-based skills framework that addresses this dual need. The aim of this paper is to describe how the UK Public Health Skills and Career Framework was developed, and to invite discussion on its potential usefulness as a tool for facilitating a shared approach to strengthening public health competence within and across countries.
Learning Theory Foundations of Simulation-Based Mastery Learning.
McGaghie, William C; Harris, Ilene B
2018-06-01
Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.
Beets, Michael W; Webster, Collin; Saunders, Ruth; Huberty, Jennifer L
2013-03-01
Afterschool programs (3-6 p.m.) are positioned to play a critical role in combating childhood obesity. To this end, state and national organizations have developed policies related to promoting physical activity and guiding the nutritional quality of snacks served in afterschool programs. No conceptual frameworks, however, are available that describe the process of how afterschool programs will translate such policies into daily practice to reach eventual outcomes. Drawing from complex systems theory, this article describes the development of a framework that identifies critical modifiable levers within afterschool programs that can be altered and/or strengthened to reach policy goals. These include the policy environment at the national, state, and local levels; individual site, afterschool program leader, staff, and child characteristics; and existing outside organizational partnerships. Use of this framework and recognition of its constituent elements have the potential to lead to the successful and sustainable adoption and implementation of physical activity and nutrition policies in afterschool programs nationwide.
FunBlocks. A modular framework for AmI system development.
Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos
2012-01-01
The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios.
FunBlocks. A Modular Framework for AmI System Development
Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos
2012-01-01
The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios. PMID:23112599
A prospective earthquake forecast experiment for Japan
NASA Astrophysics Data System (ADS)
Yokoi, Sayoko; Nanjo, Kazuyoshi; Tsuruoka, Hiroshi; Hirata, Naoshi
2013-04-01
One major focus of the current Japanese earthquake prediction research program (2009-2013) is to move toward creating testable earthquake forecast models. For this purpose we started an experiment of forecasting earthquake activity in Japan under the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) through an international collaboration. We established the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan, and to conduct verifiable prospective tests of their model performance. On 1 November in 2009, we started the 1st earthquake forecast testing experiment for the Japan area. We use the unified JMA catalogue compiled by the Japan Meteorological Agency as authorized catalogue. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year, and 3 years) and 3 testing regions called All Japan, Mainland, and Kanto. A total of 91 models were submitted to CSEP-Japan, and are evaluated with the CSEP official suite of tests about forecast performance. In this presentation, we show the results of the experiment of the 3-month testing class for 5 rounds. HIST-ETAS7pa, MARFS and RI10K models corresponding to the All Japan, Mainland and Kanto regions showed the best score based on the total log-likelihood. It is also clarified that time dependency of model parameters is no effective factor to pass the CSEP consistency tests for the 3-month testing class in all regions. Especially, spatial distribution in the All Japan region was too difficult to pass consistency test due to multiple events at a bin. Number of target events for a round in the Mainland region tended to be smaller than model's expectation during all rounds, which resulted in rejections of consistency test because of overestimation. In the Kanto region, pass ratios of consistency tests in each model showed more than 80%, which was associated with good balanced forecasting of event number and spatial distribution. Due to the multiple rounds of the experiment, we are now understanding the stability of models, robustness of model selection and earthquake predictability in each region beyond stochastic fluctuations of seismicity. We plan to use the results for design of 3 dimensional earthquake forecasting model in Kanto region, which is supported by the special project for reducing vulnerability for urban mega earthquake disasters from Ministy of Education, Culture, Sports and Technology of Japan.
ERIC Educational Resources Information Center
Raven, Neil
2016-01-01
The need for a robust evidence base able to demonstrate the impact of widening participation activity across the student lifecycle has been emphasised in recent guidance to the higher education sector. However, with competing demands on their time this is likely to represent a challenge for practitioners. Yet, there is wide recognition of the need…
Tectonic and neotectonic framework of the Yucca Mountain Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweickert, R.A.
1992-09-30
Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.
ERIC Educational Resources Information Center
Otte, Pia Piroschka
2016-01-01
Universities are understood to play an essential role in the promotion of sustainable development. However, the recognition of sustainable development in higher education poses multiple challenges to the traditional higher education system. This article introduces a course concept called "Experts in Teams" (EiT) as a new platform of…
Living excellence: life after Magnet designation.
Malloch, Kathy
2009-01-01
The achievement of Magnet recognition is the beginning of a new way of being as an organization. Strategies to support innovation leadership, value-based decision making, agility, sustainability of excellence, technology advancements, and lifelong learning are discussed within the framework of the Magnet organization. Behaviors and challenges of living the expectations of the Magnet organization are presented as opportunities to assist healthcare leaders in this important work.
Advocate: A Distributed Architecture for Speech-to-Speech Translation
2009-01-01
tecture, are either wrapped natural-language processing ( NLP ) components or objects developed from scratch using the architecture’s API. GATE is...framework, we put together a demonstration Arabic -to- English speech translation system using both internally developed ( Arabic speech recognition and MT...conditions of our Arabic S2S demonstration system described earlier. Once again, the data size was varied and eighty identical requests were
ERIC Educational Resources Information Center
Bargiela, Sarah; Steward, Robyn; Mandy, William
2016-01-01
We used Framework Analysis to investigate the female autism phenotype and its impact upon the under-recognition of autism spectrum conditions (ASC) in girls and women. Fourteen women with ASC (aged 22-30 years) diagnosed in late adolescence or adulthood gave in-depth accounts of: "pretending to be normal"; of how their gender led various…
1988-08-23
research institutions. The special recognition of performance and the chal- lenge to top performance in research, development, and innovation will...continue to be a central concern of the federal government. Top performances , the achievement of internationally recognized breakthroughs, and suc...government places on improving busi- ness framework conditions for more growth and employ- ment, for strengthening the power of performance , com
ERIC Educational Resources Information Center
Shaw, Angela
2016-01-01
This paper examines the challenges faced by higher education institutions in designing, teaching and quality assuring programmes of study which, of necessity, must combine the gaining of professional vocational competence with academic study. The paper gives recognition to the policy framework in which these programmes fit--with particular…
Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G
2017-09-01
To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.
Bainbridge, Wilma A; Rissman, Jesse
2018-06-06
While much of memory research takes an observer-centric focus looking at participant performance, recent work has pinpointed important item-centric effects on memory, or how intrinsically memorable a given stimulus is. However, little is known about the neural correlates of memorability during memory retrieval, or how such correlates relate to subjective memory behavior. Here, stimuli and blood-oxygen-level dependent data from a prior functional magnetic resonance imaging (fMRI) study were reanalyzed using a memorability-based framework. In that study, sixteen participants studied 200 novel face images and were scanned while making recognition memory judgments on those faces, interspersed with 200 unstudied faces. In the current investigation, memorability scores for those stimuli were obtained through an online crowd-sourced (N = 740) continuous recognition test that measured each image's corrected recognition rate. Representational similarity analyses were conducted across the brain to identify regions wherein neural pattern similarity tracked item-specific effects (stimulus memorability) versus observer-specific effects (individual memory performance). We find two non-overlapping sets of regions, with memorability-related information predominantly represented within ventral and medial temporal regions and memory retrieval outcome-related information within fronto-parietal regions. These memorability-based effects persist regardless of image history, implying that coding of stimulus memorability may be a continuous and automatic perceptual process.
Human body contour data based activity recognition.
Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei
2013-01-01
This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.
NASA Astrophysics Data System (ADS)
Siontorou, Christina G.
2012-12-01
Biosensors are analytic devices that incorporate a biochemical recognition system (biological, biologicalderived or biomimic: enzyme, antibody, DNA, receptor, etc.) in close contact with a physicochemical transducer (electrochemical, optical, piezoelectric, conductimetric, etc.) that converts the biochemical information, produced by the specific biological recognition reaction (analyte-biomolecule binding), into a chemical or physical output signal, related to the concentration of the analyte in the measuring sample. The biosensing concept is based on natural chemoreception mechanisms, which are feasible over/within/by means of a biological membrane, i.e., a structured lipid bilayer, incorporating or attached to proteinaceous moieties that regulate molecular recognition events which trigger ion flux changes (facilitated or passive) through the bilayer. The creation of functional structures that are similar to natural signal transduction systems, correlating and interrelating compatibly and successfully the physicochemical transducer with the lipid film that is self-assembled on its surface while embedding the reconstituted biological recognition system, and at the same time manage to satisfy the basic conditions for measuring device development (simplicity, easy handling, ease of fabrication) is far from trivial. The aim of the present work is to present a methodological framework for designing such molecular sensing interfaces, functioning within a knowledge-based system built on an ontological platform for supplying sub-systems options, compatibilities, and optimization parameters.
Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.
2012-01-01
Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225
Shankle, William R; Pooley, James P; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D
2013-01-01
Determining how cognition affects functional abilities is important in Alzheimer disease and related disorders. A total of 280 patients (normal or Alzheimer disease and related disorders) received a total of 1514 assessments using the functional assessment staging test (FAST) procedure and the MCI Screen. A hierarchical Bayesian cognitive processing model was created by embedding a signal detection theory model of the MCI Screen-delayed recognition memory task into a hierarchical Bayesian framework. The signal detection theory model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the 6 FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. Hierarchical Bayesian cognitive processing models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition into a continuous measure of functional severity for both individuals and FAST groups. Such a translation links 2 levels of brain information processing and may enable more accurate correlations with other levels, such as those characterized by biomarkers.
Search algorithm complexity modeling with application to image alignment and matching
NASA Astrophysics Data System (ADS)
DelMarco, Stephen
2014-05-01
Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.
Measuring the development of conceptual understanding in chemistry
NASA Astrophysics Data System (ADS)
Claesgens, Jennifer Marie
The purpose of this dissertation research is to investigate and characterize how students learn chemistry from pre-instruction to deeper understanding of the subject matter in their general chemistry coursework. Based on preliminary work, I believe that students have a general pathway of learning across the "big ideas," or concepts, in chemistry that can be characterized over the course of instruction. My hypothesis is that as students learn chemistry they build from experience and logical reasoning then relate chemistry specific ideas in a pair-wise fashion before making more complete multi-relational links for deeper understanding of the subject matter. This proposed progression of student learning, which starts at Notions, moves to Recognition, and then to Formulation, is described in the ChemQuery Perspectives framework. My research continues the development of ChemQuery, an NSF-funded assessment system that uses a framework of the key ideas in the discipline and criterion-referenced analysis using item response theory (IRT) to map student progress. Specifially, this research investigates the potential for using criterion-referenced analysis to describe and measure how students learn chemistry followed by more detailed task analysis of patterns in student responses found in the data. My research question asks: does IRT work to describe and measure how students learn chemistry and if so, what is discovered about how students learn? Although my findings seem to neither entirely support nor entirely refute the pathway of student understanding proposed in the ChemQuery Perspectives framework. My research does provide an indication of trouble spots. For example, it seems like the pathway from Notions to Recognition is holding but there are difficulties around the transition from Recognition to Formulation that cannot be resolved with this data. Nevertheless, this research has produced the following, which has contributed to the development of the ChemQuery assessment system, (a) 13 new change items with good fits, 3 new change items that need further study, (b) a refined scoring guide and (c) a set of item exemplars that can then be developed further into a computer-adapted model so that more data can be captured.
Pergola, Giulio; Güntürkün, Onur; Koch, Benno; Schwarz, Michael; Daum, Irene; Suchan, Boris
2012-08-01
The functional role of the mediodorsal thalamic nucleus (MD) and its cortical network in memory processes is discussed controversially. While Aggleton and Brown (1999) suggested a role for recognition and not recall, Van der Werf et al. (2003) suggested that this nucleus is functionally related to executive function and strategic retrieval, based on its connections to the prefrontal cortices (PFC). The present study used a lesion approach including patients with focal thalamic lesions to examine the functions of the MD, the intralaminar nuclei and the midline nuclei in memory processing. A newly designed pair association task was used, which allowed the assessment of recognition and cued recall performance. Volume loss in thalamic nuclei was estimated as a predictor for alterations in memory performance. Patients performed poorer than healthy controls on recognition accuracy and cued recall. Furthermore, patients responded slower than controls specifically on recognition trials followed by successful cued recall of the paired associate. Reduced recall of picture pairs and increased response times during recognition followed by cued recall covaried with the volume loss in the parvocellular MD. This pattern suggests a role of this thalamic region in recall and thus recollection, which does not fit the framework proposed by Aggleton and Brown (1999). The functional specialization of the parvocellular MD accords with its connectivity to the dorsolateral PFC, highlighting the role of this thalamocortical network in explicit memory (Van der Werf et al., 2003). Copyright © 2012 Elsevier Ltd. All rights reserved.
Tcheng, David K.; Nayak, Ashwin K.; Fowlkes, Charless C.; Punyasena, Surangi W.
2016-01-01
Discriminating between black and white spruce (Picea mariana and Picea glauca) is a difficult palynological classification problem that, if solved, would provide valuable data for paleoclimate reconstructions. We developed an open-source visual recognition software (ARLO, Automated Recognition with Layered Optimization) capable of differentiating between these two species at an accuracy on par with human experts. The system applies pattern recognition and machine learning to the analysis of pollen images and discovers general-purpose image features, defined by simple features of lines and grids of pixels taken at different dimensions, size, spacing, and resolution. It adapts to a given problem by searching for the most effective combination of both feature representation and learning strategy. This results in a powerful and flexible framework for image classification. We worked with images acquired using an automated slide scanner. We first applied a hash-based “pollen spotting” model to segment pollen grains from the slide background. We next tested ARLO’s ability to reconstruct black to white spruce pollen ratios using artificially constructed slides of known ratios. We then developed a more scalable hash-based method of image analysis that was able to distinguish between the pollen of black and white spruce with an estimated accuracy of 83.61%, comparable to human expert performance. Our results demonstrate the capability of machine learning systems to automate challenging taxonomic classifications in pollen analysis, and our success with simple image representations suggests that our approach is generalizable to many other object recognition problems. PMID:26867017
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
Invariant recognition drives neural representations of action sequences
Poggio, Tomaso
2017-01-01
Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs), that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences. PMID:29253864
The time course of individual face recognition: A pattern analysis of ERP signals.
Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian
2016-05-15
An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
A conceptual framework for the evolutionary origins of multicellularity
NASA Astrophysics Data System (ADS)
Libby, Eric; Rainey, Paul B.
2013-06-01
The evolution of multicellular organisms from unicellular counterparts involved a transition in Darwinian individuality from single cells to groups. A particular challenge is to understand the nature of the earliest groups, the causes of their evolution, and the opportunities for emergence of Darwinian properties. Here we outline a conceptual framework based on a logical set of possible pathways for evolution of the simplest self-replicating groups. Central to these pathways is the recognition of a finite number of routes by which genetic information can be transmitted between individual cells and groups. We describe the form and organization of each primordial group state and consider factors affecting persistence and evolution of the nascent multicellular forms. Implications arising from our conceptual framework become apparent when attempting to partition fitness effects at individual and group levels. These are discussed with reference to the evolutionary emergence of individuality and its manifestation in extant multicellular life—including those of marginal Darwinian status.
Intentional Voice Command Detection for Trigger-Free Speech Interface
NASA Astrophysics Data System (ADS)
Obuchi, Yasunari; Sumiyoshi, Takashi
In this paper we introduce a new framework of audio processing, which is essential to achieve a trigger-free speech interface for home appliances. If the speech interface works continually in real environments, it must extract occasional voice commands and reject everything else. It is extremely important to reduce the number of false alarms because the number of irrelevant inputs is much larger than the number of voice commands even for heavy users of appliances. The framework, called Intentional Voice Command Detection, is based on voice activity detection, but enhanced by various speech/audio processing techniques such as emotion recognition. The effectiveness of the proposed framework is evaluated using a newly-collected large-scale corpus. The advantages of combining various features were tested and confirmed, and the simple LDA-based classifier demonstrated acceptable performance. The effectiveness of various methods of user adaptation is also discussed.
ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.
Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping
2018-04-27
A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.
Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically
Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro
2015-01-01
Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086
Hinterholzinger, Florian M.; Rühle, Bastian; Wuttke, Stefan; Karaghiosoff, Konstantin; Bein, Thomas
2013-01-01
The detection, differentiation and visualization of compounds such as gases, liquids or ions are key challenges for the design of selective optical chemosensors. Optical chemical sensors employ a transduction mechanism that converts a specific analyte recognition event into an optical signal. Here we report a novel concept for fluoride ion sensing where a porous crystalline framework serves as a host for a fluorescent reporter molecule. The detection is based on the decomposition of the host scaffold which induces the release of the fluorescent dye molecule. Specifically, the hybrid composite of the metal-organic framework NH2-MIL-101(Al) and fluorescein acting as reporter shows an exceptional turn-on fluorescence in aqueous fluoride-containing solutions. Using this novel strategy, the optical detection of fluoride is extremely sensitive and highly selective in the presence of many other anions. PMID:24008779
A conceptual review of decision making in social dilemmas: applying a logic of appropriateness.
Weber, J Mark; Kopelman, Shirli; Messick, David M
2004-01-01
Despite decades of experimental social dilemma research, "theoretical integration has proven elusive" (Smithson & Foddy, 1999, p. 14). To advance a theory of decision making in social dilemmas, this article provides a conceptual review of the literature that applies a "logic of appropriateness" (March, 1994) framework. The appropriateness framework suggests that people making decisions ask themselves (explicitly or implicitly), "What does a person like me do in a situation like this? " This question identifies 3 significant factors: recognition and classification of the kind of situation encountered, the identity of the individual making the decision, and the application of rules or heuristics in guiding behavioral choice. In contrast with dominant rational choice models, the appropriateness framework proposed accommodates the inherently social nature of social dilemmas, and the role of rule and heuristic based processing. Implications for the interpretation of past findings and the direction of future research are discussed.
Takahashi-Omoe, H; Omoe, K
2009-12-01
Zoonoses have earned recognition as the source of serious problems for both public and animal health throughout the world. Emerging infectious diseases have been occurring at an unprecedented rate since the 1970s and a large proportion of these diseases are considered zoonotic. To aid in controlling zoonoses, countermeasures have been strengthened against these diseases and are maintained at both national and international levels. Atypical example of this international effort can be found in the revised International Health Regulations (2005), known as the IHR (2005), which were instituted by the World Health Organization and have been implemented since 2007. In Japan, the appropriate Ministries have established frameworks for controlling zoonoses that employ both administrative and scientific approaches to fulfill the demands of the IHR (2005). In this paper, the authors present the Japanese framework for controlling zoonoses, as a useful example for global public and animal health management in coming years.
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Ogiela, Marek R.
2012-10-01
The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.
Efficient LIDAR Point Cloud Data Managing and Processing in a Hadoop-Based Distributed Framework
NASA Astrophysics Data System (ADS)
Wang, C.; Hu, F.; Sha, D.; Han, X.
2017-10-01
Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop's storage and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.
Wang, Zonghua; Yan, Zhiyong; Wang, Feng; Cai, Jibao; Guo, Lei; Su, Jiakun; Liu, Yang
2017-11-15
A turn-on photoelectrochemical (PEC) biosensor based on the surface defect recognition and multiple signal amplification of metal-organic frameworks (MOFs) was proposed for highly sensitive protein kinase activity analysis and inhibitor evaluation. In this strategy, based on the phosphorylation reaction in the presence of protein kinase A (PKA), the Zr-based metal-organic frameworks (UiO-66) accommodated with [Ru(bpy) 3 ] 2+ photoactive dyes in the pores were linked to the phosphorylated kemptide modified TiO 2 /ITO electrode through the chelation between the Zr 4+ defects on the surface of UiO-66 and the phosphate groups in kemptide. Under visible light irradiation, the excited electrons from [Ru(bpy) 3 ] 2+ adsorbed in the pores of UiO-66 injected into the TiO 2 conduction band to generate photocurrent, which could be utilized for protein kinase activities detection. The large surface area and high porosities of UiO-66 facilitated a large number of [Ru(bpy) 3 ] 2+ that increased the photocurrent significantly, and afforded a highly sensitive PEC analysis of kinase activity. The detection limit of the as-proposed PEC biosensor was 0.0049UmL -1 (S/N!=!3). The biosensor was also applied for quantitative kinase inhibitor evaluation and PKA activities detection in MCF-7 cell lysates. The developed visible-light PEC biosensor provides a simple detection procedure and a cost-effective manner for PKA activity assays, and shows great potential in clinical diagnosis and drug discoveries. Copyright © 2017 Elsevier B.V. All rights reserved.
Beyond perceptual expertise: revisiting the neural substrates of expert object recognition
Harel, Assaf; Kravitz, Dwight; Baker, Chris I.
2013-01-01
Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex. PMID:24409134
A method of depth image based human action recognition
NASA Astrophysics Data System (ADS)
Li, Pei; Cheng, Wanli
2017-05-01
In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.
Park, D C; Puglisi, J T; Sovacool, M
1983-09-01
In the present study the spatial location of picture and word stimuli was varied across four quadrants of photographic slides. Young and old people received either pictures or words to study and were told to remember either just the item or the item and its location. Recognition memory for items and memory for spatial location were tested. A pictorial superiority effect occurred for both old and young people's item recognition. Additionally, instructions to study position decreased item memory and facilitated position memory in both age groups. Spatial memory was markedly superior for pictures compared with matched words for old and young adults. The results are interpreted within the Hasher and Zacks framework of automatic processing. The implications of the data for designing mnemonic aids for elderly persons are considered.
NASA Astrophysics Data System (ADS)
Li, Xiao-Tian; Yang, Xiao-Bao; Zhao, Yu-Jun
2017-04-01
We have developed an extended distance matrix approach to study the molecular geometric configuration through spectral decomposition. It is shown that the positions of all atoms in the eigen-space can be specified precisely by their eigen-coordinates, while the refined atomic eigen-subspace projection array adopted in our approach is demonstrated to be a competent invariant in structure comparison. Furthermore, a visual eigen-subspace projection function (EPF) is derived to characterize the surrounding configuration of an atom naturally. A complete set of atomic EPFs constitute an intrinsic representation of molecular conformation, based on which the interatomic EPF distance and intermolecular EPF distance can be reasonably defined. Exemplified with a few cases, the intermolecular EPF distance shows exceptional rationality and efficiency in structure recognition and comparison.
Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins
NASA Astrophysics Data System (ADS)
Jian, Yiren; Zhao, Yunjie; Zeng, Chen
The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Establishing an Explanatory Model for Mathematics Identity.
Cribbs, Jennifer D; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M
2015-04-01
This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence in mathematics directly impact their identity as a "math person," findings indicate that students' self-perceptions related to competence and performance have an indirect effect on their mathematics identity, primarily by association with students' interest and external recognition in mathematics. Thus, the model indicates that students' competence and performance beliefs are not sufficient for their mathematics identity development, and it highlights the roles of interest and recognition. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
Ricci, Clarisse Gravina; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew
2018-01-01
Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed) solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes. PMID:29484300
Ranganath, Charan
2010-11-01
There is currently an intense debate about the nature of recognition memory and about the roles of medial temporal lobe subregions in recognition memory processes. At a larger level, this debate has been about whether it is appropriate to propose unified theories to explain memory at neural, functional, and phenomenological levels of analysis. Here, I review findings from physiology, functional imaging, and lesion studies in humans, monkeys, and rodents relevant to the roles of medial temporal lobe subregions in recognition memory, as well as in short-term memory and perception. The results from these studies are consistent with the idea that there is functional heterogeneity in the medial temporal lobes, although the differences among medial temporal lobe subregions do not precisely correspond to different types of memory tasks, cognitive processes, or states of awareness. Instead, the evidence is consistent with the idea that medial temporal lobe subregions differ in terms of the kind of information they process and represent, and that these regions collectively support episodic memory by binding item and context information. © 2010 Wiley-Liss, Inc.
Automatic detection and recognition of signs from natural scenes.
Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex
2004-01-01
In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.
Unsupervised Medical Entity Recognition and Linking in Chinese Online Medical Text
Gan, Liang; Cheng, Mian; Wu, Quanyuan
2018-01-01
Online medical text is full of references to medical entities (MEs), which are valuable in many applications, including medical knowledge-based (KB) construction, decision support systems, and the treatment of diseases. However, the diverse and ambiguous nature of the surface forms gives rise to a great difficulty for ME identification. Many existing solutions have focused on supervised approaches, which are often task-dependent. In other words, applying them to different kinds of corpora or identifying new entity categories requires major effort in data annotation and feature definition. In this paper, we propose unMERL, an unsupervised framework for recognizing and linking medical entities mentioned in Chinese online medical text. For ME recognition, unMERL first exploits a knowledge-driven approach to extract candidate entities from free text. Then, the categories of the candidate entities are determined using a distributed semantic-based approach. For ME linking, we propose a collaborative inference approach which takes full advantage of heterogenous entity knowledge and unstructured information in KB. Experimental results on real corpora demonstrate significant benefits compared to recent approaches with respect to both ME recognition and linking. PMID:29849994
Toward retail product recognition on grocery shelves
NASA Astrophysics Data System (ADS)
Varol, Gül; Kuzu, Rıdvan S.
2015-03-01
This paper addresses the problem of retail product recognition on grocery shelf images. We present a technique for accomplishing this task with a low time complexity. We decompose the problem into detection and recognition. The former is achieved by a generic product detection module which is trained on a specific class of products (e.g. tobacco packages). Cascade object detection framework of Viola and Jones [1] is used for this purpose. We further make use of Support Vector Machines (SVMs) to recognize the brand inside each detected region. We extract both shape and color information; and apply feature-level fusion from two separate descriptors computed with the bag of words approach. Furthermore, we introduce a dataset (available on request) that we have collected for similar research purposes. Results are presented on this dataset of more than 5,000 images consisting of 10 tobacco brands. We show that satisfactory detection and classification can be achieved on devices with cheap computational power. Potential applications of the proposed approach include planogram compliance control, inventory management and assisting visually impaired people during shopping.
Research review: reading comprehension in developmental disorders of language and communication.
Ricketts, Jessie
2011-11-01
Deficits in reading airment (SLI), Down syndrome (DS) and autism spectrum disorders (ASD). In this review (based on a search of the ISI Web of Knowledge database to 2011), the Simple View of Reading is used as a framework for considering reading comprehension in these groups. There is substantial evidence for reading comprehension impairments in SLI and growing evidence that weaknesses in this domain are common in DS and ASD. Further, in these groups reading comprehension is typically more impaired than word recognition. However, there is also evidence that some children and adolescents with DS, ASD and a history of SLI develop reading comprehension and word recognition skills at or above the age appropriate level. This review of the literature indicates that factors including word recognition, oral language, nonverbal ability and working memory may explain reading comprehension difficulties in SLI, DS and ASD. In addition, it highlights methodological issues, implications of poor reading comprehension and fruitful areas for future research. © 2011 The Author. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.
Entity recognition in the biomedical domain using a hybrid approach.
Basaldella, Marco; Furrer, Lenz; Tasso, Carlo; Rinaldi, Fabio
2017-11-09
This article describes a high-recall, high-precision approach for the extraction of biomedical entities from scientific articles. The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a machine-learning classifier. First, the OGER entity recognizer, which has a bias towards high recall, annotates the terms that appear in selected domain ontologies. Subsequently, the Distiller framework uses this information as a feature for a machine learning algorithm to select the relevant entities only. For this step, we compare two different supervised machine-learning algorithms: Conditional Random Fields and Neural Networks. In an in-domain evaluation using the CRAFT corpus, we test the performance of the combined systems when recognizing chemicals, cell types, cellular components, biological processes, molecular functions, organisms, proteins, and biological sequences. Our best system combines dictionary-based candidate generation with Neural-Network-based filtering. It achieves an overall precision of 86% at a recall of 60% on the named entity recognition task, and a precision of 51% at a recall of 49% on the concept recognition task. These results are to our knowledge the best reported so far in this particular task.
Van Gelderen, Stacey A; Krumwiede, Kelly A; Krumwiede, Norma K; Fenske, Candace
2018-01-01
To describe the application of the Community-Based Collaborative Action Research (CBCAR) framework to uplift rural community voices while conducting a community health needs assessment (CHNA) by formulating a partnership between a critical access hospital, public health agency, school of nursing, and community members to improve societal health of this rural community. This prospective explorative study used the CBCAR framework in the design, collection, and analysis of the data. The framework phases include: Partnership, dialogue, pattern recognition, dialogue on meaning of pattern, insight into action, and reflecting on evolving pattern. Hospital and public health agency leaders learned how to use the CBCAR framework when conducting a CHNA to meet Affordable Care Act federal requirements. Closing the community engagement gap helped ensure all voices were heard, maximized intellectual capital, synergized efforts, improved communication by establishing trust, aligned resources with initiatives, and diminished power struggles regarding rural health. The CBCAR framework facilitated community engagement and promoted critical dialogue where community voices were heard. A sustainable community-based collaborative was formed. The project increased the critical access hospital's capacity to conduct a CHNA. The collaborative's decision-making capacity was challenged and ultimately strengthened as efforts continue to be made to address rural health.
Martin-Sanchez, Fernando; Rowlands, David; Schaper, Louise; Hansen, David
2017-01-01
The Certified Health Informatician Australasia (CHIA) program consists of an online exam, which aims to test whether a candidate has the knowledge and skills that are identified in the competencies framework to perform as a health informatics professional. The CHIA Health Informatics Competencies Framework provides the context in which the questions for the exam have been developed. The core competencies for health informatics that are tested in the exam have been developed with reference to similar programs by the American Medical Informatics Association, the International Medical Informatics Association and COACH, Canada's Health Informatics Association, and builds on the previous work done by the Australian Health Informatics Education Council. This paper shows how the development of this competency framework is helping to raise the profile of health informaticians in Australasia, contributing to a wider recognition of the profession, and defining more clearly the body of knowledge underpinning this discipline. This framework can also be used as a set of guidelines for recruiting purposes, definitions of career pathways, or the design of educational and training activities. We discuss here the current status of the program, its resultsandprospectsfor the future.
Strategy-Selection in Question-Answering.
1985-10-03
34 form of "perceptual learning." They note that levels of processing (See Craik & Lockhart , 1972) affect recognition memory but not perceptual... Craik , F. I. M., & Lockhart , R. S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11...practice, subjects seemed able to achieve higher levels of performance on both tasks. One possibility they consider is that the processes involved *. in the
Matrix and Tensor Completion on a Human Activity Recognition Framework.
Savvaki, Sofia; Tsagkatakis, Grigorios; Panousopoulou, Athanasia; Tsakalides, Panagiotis
2017-11-01
Sensor-based activity recognition is encountered in innumerable applications of the arena of pervasive healthcare and plays a crucial role in biomedical research. Nonetheless, the frequent situation of unobserved measurements impairs the ability of machine learning algorithms to efficiently extract context from raw streams of data. In this paper, we study the problem of accurate estimation of missing multimodal inertial data and we propose a classification framework that considers the reconstruction of subsampled data during the test phase. We introduce the concept of forming the available data streams into low-rank two-dimensional (2-D) and 3-D Hankel structures, and we exploit data redundancies using sophisticated imputation techniques, namely matrix and tensor completion. Moreover, we examine the impact of reconstruction on the classification performance by experimenting with several state-of-the-art classifiers. The system is evaluated with respect to different data structuring scenarios, the volume of data available for reconstruction, and various levels of missing values per device. Finally, the tradeoff between subsampling accuracy and energy conservation in wearable platforms is examined. Our analysis relies on two public datasets containing inertial data, which extend to numerous activities, multiple sensing parameters, and body locations. The results highlight that robust classification accuracy can be achieved through recovery, even for extremely subsampled data streams.
A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting
NASA Astrophysics Data System (ADS)
Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle
2017-10-01
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.
Optimizing one-shot learning with binary synapses.
Romani, Sandro; Amit, Daniel J; Amit, Yali
2008-08-01
A network of excitatory synapses trained with a conservative version of Hebbian learning is used as a model for recognizing the familiarity of thousands of once-seen stimuli from those never seen before. Such networks were initially proposed for modeling memory retrieval (selective delay activity). We show that the same framework allows the incorporation of both familiarity recognition and memory retrieval, and estimate the network's capacity. In the case of binary neurons, we extend the analysis of Amit and Fusi (1994) to obtain capacity limits based on computations of signal-to-noise ratio of the field difference between selective and non-selective neurons of learned signals. We show that with fast learning (potentiation probability approximately 1), the most recently learned patterns can be retrieved in working memory (selective delay activity). A much higher number of once-seen learned patterns elicit a realistic familiarity signal in the presence of an external field. With potentiation probability much less than 1 (slow learning), memory retrieval disappears, whereas familiarity recognition capacity is maintained at a similarly high level. This analysis is corroborated in simulations. For analog neurons, where such analysis is more difficult, we simplify the capacity analysis by studying the excess number of potentiated synapses above the steady-state distribution. In this framework, we derive the optimal constraint between potentiation and depression probabilities that maximizes the capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanam, A; Min, Y; Beron, P
Purpose: Patient safety hazards such as a wrong patient/site getting treated can lead to catastrophic results. The purpose of this project is to automatically detect potential patient safety hazards during the radiotherapy setup and alert the therapist before the treatment is initiated. Methods: We employed a set of co-located and co-registered 3D cameras placed inside the treatment room. Each camera provided a point-cloud of fraxels (fragment pixels with 3D depth information). Each of the cameras were calibrated using a custom-built calibration target to provide 3D information with less than 2 mm error in the 500 mm neighborhood around the isocenter.more » To identify potential patient safety hazards, the treatment room components and the patient’s body needed to be identified and tracked in real-time. For feature recognition purposes, we used a graph-cut based feature recognition with principal component analysis (PCA) based feature-to-object correlation to segment the objects in real-time. Changes in the object’s position were tracked using the CamShift algorithm. The 3D object information was then stored for each classified object (e.g. gantry, couch). A deep learning framework was then used to analyze all the classified objects in both 2D and 3D and was then used to fine-tune a convolutional network for object recognition. The number of network layers were optimized to identify the tracked objects with >95% accuracy. Results: Our systematic analyses showed that, the system was effectively able to recognize wrong patient setups and wrong patient accessories. The combined usage of 2D camera information (color + depth) enabled a topology-preserving approach to verify patient safety hazards in an automatic manner and even in scenarios where the depth information is partially available. Conclusion: By utilizing the 3D cameras inside the treatment room and a deep learning based image classification, potential patient safety hazards can be effectively avoided.« less
Younger and Older Users’ Recognition of Virtual Agent Facial Expressions
Beer, Jenay M.; Smarr, Cory-Ann; Fisk, Arthur D.; Rogers, Wendy A.
2015-01-01
As technology advances, robots and virtual agents will be introduced into the home and healthcare settings to assist individuals, both young and old, with everyday living tasks. Understanding how users recognize an agent’s social cues is therefore imperative, especially in social interactions. Facial expression, in particular, is one of the most common non-verbal cues used to display and communicate emotion in on-screen agents (Cassell, Sullivan, Prevost, & Churchill, 2000). Age is important to consider because age-related differences in emotion recognition of human facial expression have been supported (Ruffman et al., 2008), with older adults showing a deficit for recognition of negative facial expressions. Previous work has shown that younger adults can effectively recognize facial emotions displayed by agents (Bartneck & Reichenbach, 2005; Courgeon et al. 2009; 2011; Breazeal, 2003); however, little research has compared in-depth younger and older adults’ ability to label a virtual agent’s facial emotions, an import consideration because social agents will be required to interact with users of varying ages. If such age-related differences exist for recognition of virtual agent facial expressions, we aim to understand if those age-related differences are influenced by the intensity of the emotion, dynamic formation of emotion (i.e., a neutral expression developing into an expression of emotion through motion), or the type of virtual character differing by human-likeness. Study 1 investigated the relationship between age-related differences, the implication of dynamic formation of emotion, and the role of emotion intensity in emotion recognition of the facial expressions of a virtual agent (iCat). Study 2 examined age-related differences in recognition expressed by three types of virtual characters differing by human-likeness (non-humanoid iCat, synthetic human, and human). Study 2 also investigated the role of configural and featural processing as a possible explanation for age-related differences in emotion recognition. First, our findings show age-related differences in the recognition of emotions expressed by a virtual agent, with older adults showing lower recognition for the emotions of anger, disgust, fear, happiness, sadness, and neutral. These age-related difference might be explained by older adults having difficulty discriminating similarity in configural arrangement of facial features for certain emotions; for example, older adults often mislabeled the similar emotions of fear as surprise. Second, our results did not provide evidence for the dynamic formation improving emotion recognition; but, in general, the intensity of the emotion improved recognition. Lastly, we learned that emotion recognition, for older and younger adults, differed by character type, from best to worst: human, synthetic human, and then iCat. Our findings provide guidance for design, as well as the development of a framework of age-related differences in emotion recognition. PMID:25705105
Reasoning and Knowledge Acquisition Framework for 5G Network Analytics
2017-01-01
Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration. PMID:29065473
3D face recognition under expressions, occlusions, and pose variations.
Drira, Hassen; Ben Amor, Boulbaba; Srivastava, Anuj; Daoudi, Mohamed; Slama, Rim
2013-09-01
We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. This framework is shown to be promising from both--empirical and theoretical--perspectives. In terms of the empirical evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes.
Reasoning and Knowledge Acquisition Framework for 5G Network Analytics.
Sotelo Monge, Marco Antonio; Maestre Vidal, Jorge; García Villalba, Luis Javier
2017-10-21
Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration.
Learning and recognition of on-premise signs from weakly labeled street view images.
Tsai, Tsung-Hung; Cheng, Wen-Huang; You, Chuang-Wen; Hu, Min-Chun; Tsui, Arvin Wen; Chi, Heng-Yu
2014-03-01
Camera-enabled mobile devices are commonly used as interaction platforms for linking the user's virtual and physical worlds in numerous research and commercial applications, such as serving an augmented reality interface for mobile information retrieval. The various application scenarios give rise to a key technique of daily life visual object recognition. On-premise signs (OPSs), a popular form of commercial advertising, are widely used in our living life. The OPSs often exhibit great visual diversity (e.g., appearing in arbitrary size), accompanied with complex environmental conditions (e.g., foreground and background clutter). Observing that such real-world characteristics are lacking in most of the existing image data sets, in this paper, we first proposed an OPS data set, namely OPS-62, in which totally 4649 OPS images of 62 different businesses are collected from Google's Street View. Further, for addressing the problem of real-world OPS learning and recognition, we developed a probabilistic framework based on the distributional clustering, in which we proposed to exploit the distributional information of each visual feature (the distribution of its associated OPS labels) as a reliable selection criterion for building discriminative OPS models. Experiments on the OPS-62 data set demonstrated the outperformance of our approach over the state-of-the-art probabilistic latent semantic analysis models for more accurate recognitions and less false alarms, with a significant 151.28% relative improvement in the average recognition rate. Meanwhile, our approach is simple, linear, and can be executed in a parallel fashion, making it practical and scalable for large-scale multimedia applications.
NASA Astrophysics Data System (ADS)
Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab
2017-01-01
Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.
Krychowiak, M.
2016-10-27
Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered amore » MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. Finally, an overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krychowiak, M.
Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered amore » MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. Finally, an overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns.« less
Ad hoc categories and false memories: Memory illusions for categories created on-the-spot.
Soro, Jerônimo C; Ferreira, Mário B; Semin, Gün R; Mata, André; Carneiro, Paula
2017-11-01
Three experiments were designed to test whether experimentally created ad hoc associative networks evoke false memories. We used the DRM (Deese, Roediger, McDermott) paradigm with lists of ad hoc categories composed of exemplars aggregated toward specific goals (e.g., going for a picnic) that do not share any consistent set of features. Experiment 1 revealed considerable levels of false recognitions of critical words from ad hoc categories. False recognitions occurred even when the lists were presented without an organizing theme (i.e., the category's label). Experiments 1 and 2 tested whether (a) the ease of identifying the categories' themes, and (b) the lists' backward associative strength could be driving the effect. List identifiability did not correlate with false recognition, and the effect remained even when backward associative strength was controlled for. Experiment 3 manipulated the distractor items in the recognition task to address the hypothesis that the salience of unrelated items could be facilitating the occurrence of the phenomenon. The effect remained when controlling for this source of facilitation. These results have implications for assumptions made by theories of false memories, namely the preexistence of associations in the activation-monitoring framework and the central role of gist extraction in fuzzy-trace theory, while providing evidence of the occurrence of false memories for more dynamic and context-dependent knowledge structures. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Orchestration of Molecular Information through Higher Order Chemical Recognition
NASA Astrophysics Data System (ADS)
Frezza, Brian M.
Broadly defined, higher order chemical recognition is the process whereby discrete chemical building blocks capable of specifically binding to cognate moieties are covalently linked into oligomeric chains. These chains, or sequences, are then able to recognize and bind to their cognate sequences with a high degree of cooperativity. Principally speaking, DNA and RNA are the most readily obtained examples of this chemical phenomenon, and function via Watson-Crick cognate pairing: guanine pairs with cytosine and adenine with thymine (DNA) or uracil (RNA), in an anti-parallel manner. While the theoretical principles, techniques, and equations derived herein apply generally to any higher-order chemical recognition system, in practice we utilize DNA oligomers as a model-building material to experimentally investigate and validate our hypotheses. Historically, general purpose information processing has been a task limited to semiconductor electronics. Molecular computing on the other hand has been limited to ad hoc approaches designed to solve highly specific and unique computation problems, often involving components or techniques that cannot be applied generally in a manner suitable for precise and predictable engineering. Herein, we provide a fundamental framework for harnessing high-order recognition in a modular and programmable fashion to synthesize molecular information process networks of arbitrary construction and complexity. This document provides a solid foundation for routinely embedding computational capability into chemical and biological systems where semiconductor electronics are unsuitable for practical application.
Appearance-based human gesture recognition using multimodal features for human computer interaction
NASA Astrophysics Data System (ADS)
Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun
2011-03-01
The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.
Unification of automatic target tracking and automatic target recognition
NASA Astrophysics Data System (ADS)
Schachter, Bruce J.
2014-06-01
The subject being addressed is how an automatic target tracker (ATT) and an automatic target recognizer (ATR) can be fused together so tightly and so well that their distinctiveness becomes lost in the merger. This has historically not been the case outside of biology and a few academic papers. The biological model of ATT∪ATR arises from dynamic patterns of activity distributed across many neural circuits and structures (including retina). The information that the brain receives from the eyes is "old news" at the time that it receives it. The eyes and brain forecast a tracked object's future position, rather than relying on received retinal position. Anticipation of the next moment - building up a consistent perception - is accomplished under difficult conditions: motion (eyes, head, body, scene background, target) and processing limitations (neural noise, delays, eye jitter, distractions). Not only does the human vision system surmount these problems, but it has innate mechanisms to exploit motion in support of target detection and classification. Biological vision doesn't normally operate on snapshots. Feature extraction, detection and recognition are spatiotemporal. When vision is viewed as a spatiotemporal process, target detection, recognition, tracking, event detection and activity recognition, do not seem as distinct as they are in current ATT and ATR designs. They appear as similar mechanism taking place at varying time scales. A framework is provided for unifying ATT and ATR.
Gaze Estimation for Off-Angle Iris Recognition Based on the Biometric Eye Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J
Iris recognition is among the highest accuracy biometrics. However, its accuracy relies on controlled high quality capture data and is negatively affected by several factors such as angle, occlusion, and dilation. Non-ideal iris recognition is a new research focus in biometrics. In this paper, we present a gaze estimation method designed for use in an off-angle iris recognition framework based on the ANONYMIZED biometric eye model. Gaze estimation is an important prerequisite step to correct an off-angle iris images. To achieve the accurate frontal reconstruction of an off-angle iris image, we first need to estimate the eye gaze direction frommore » elliptical features of an iris image. Typically additional information such as well-controlled light sources, head mounted equipment, and multiple cameras are not available. Our approach utilizes only the iris and pupil boundary segmentation allowing it to be applicable to all iris capture hardware. We compare the boundaries with a look-up-table generated by using our biologically inspired biometric eye model and find the closest feature point in the look-up-table to estimate the gaze. Based on the results from real images, the proposed method shows effectiveness in gaze estimation accuracy for our biometric eye model with an average error of approximately 3.5 degrees over a 50 degree range.« less
Valency-Controlled Framework Nucleic Acid Signal Amplifiers.
Liu, Qi; Ge, Zhilei; Mao, Xiuhai; Zhou, Guobao; Zuo, Xiaolei; Shen, Juwen; Shi, Jiye; Li, Jiang; Wang, Lihua; Chen, Xiaoqing; Fan, Chunhai
2018-06-11
Weak ligand-receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)-programmed strategy to develop valence-controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA-programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence-controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor-relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3-5 orders of magnitude and improved dynamic range. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Dynamic psychology and psychoanalysis in Giovanni Jervis' thought].
Dazzi, Nino
2012-01-01
As against the background of an unconditioned reception of Darwinian theory and its developments, mainly in the field of ethology, a reflection deploys itself on complex theoretical themes, such as identity, consciousness and motivation. This leads Jervis to deal not only and not as much with psychoanalysis, as with a broader theoretical framework, labelled as "dynamic psychology". Contributions from different fields of contemporary psychological knowledge, particularly from cognitive sciences, personality and social psychology and developmental observations converge into this new framework. A proposal is made that is characterized by a peculiar critical sensitivity and is open to future developments. It is in this new light that Jervis was able to carry out a retrospective recognition of the century of Psychoanalysis.
Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming
2014-10-10
Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.
Implicit Shape Models for Object Detection in 3d Point Clouds
NASA Astrophysics Data System (ADS)
Velizhev, A.; Shapovalov, R.; Schindler, K.
2012-07-01
We present a method for automatic object localization and recognition in 3D point clouds representing outdoor urban scenes. The method is based on the implicit shape models (ISM) framework, which recognizes objects by voting for their center locations. It requires only few training examples per class, which is an important property for practical use. We also introduce and evaluate an improved version of the spin image descriptor, more robust to point density variation and uncertainty in normal direction estimation. Our experiments reveal a significant impact of these modifications on the recognition performance. We compare our results against the state-of-the-art method and get significant improvement in both precision and recall on the Ohio dataset, consisting of combined aerial and terrestrial LiDAR scans of 150,000 m2 of urban area in total.
Inverse scattering approach to improving pattern recognition
NASA Astrophysics Data System (ADS)
Chapline, George; Fu, Chi-Yung
2005-05-01
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.
Interference with olfactory memory by visual and verbal tasks.
Annett, J M; Cook, N M; Leslie, J C
1995-06-01
It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.
Inverse Scattering Approach to Improving Pattern Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapline, G; Fu, C
2005-02-15
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less
State-level marriage equality and the health of same-sex couples.
Kail, Ben Lennox; Acosta, Katie L; Wright, Eric R
2015-06-01
We assessed the association between the health of people in same-sex relationships and the degree and nature of the legal recognition of same-sex relationships offered in the states in which they resided. We conducted secondary data analyses on the 2010 to 2013 Current Population Survey and publicly available data from Freedom to Marry, Inc. We estimated ordered logistic regression models in a 4-level framework to assess the impact of states' legal stances toward same-sex marriage on self-assessed health. Our findings indicated, relative to states with antigay constitutional amendments, that same-sex couples living in states with legally sanctioned marriage reported higher levels of self-assessed health. Our findings suggested that full legal recognition of same-sex relationships through marriage might be an important legal and policy strategy for improving the health of same-sex couples.
A new license plate extraction framework based on fast mean shift
NASA Astrophysics Data System (ADS)
Pan, Luning; Li, Shuguang
2010-08-01
License plate extraction is considered to be the most crucial step of Automatic license plate recognition (ALPR) system. In this paper, a region-based license plate hybrid detection method is proposed to solve practical problems under complex background in which existing large quantity of disturbing information. In this method, coarse license plate location is carried out firstly to get the head part of a vehicle. Then a new Fast Mean Shift method based on random sampling of Kernel Density Estimate (KDE) is adopted to segment the color vehicle images, in order to get candidate license plate regions. The remarkable speed-up it brings makes Mean Shift segmentation more suitable for this application. Feature extraction and classification is used to accurately separate license plate from other candidate regions. At last, tilted license plate regulation is used for future recognition steps.
The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy
Gervais, Mathieu-Joël; Hunt, Matthew
2015-01-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959
Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew
2015-04-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.
Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition
2017-01-01
004 OFFICE OF NAVAL RESEARCH ATTN JASON STACK MINE WARFARE & OCEAN ENGINEERING PROGRAMS CODE 32, SUITE 1092 875 N RANDOLPH ST ARLINGTON VA 22203 ONR...naval mine countermeasures (MCM) operations by automating a large portion of the data analysis. Successful long-term implementation of ATR requires a...Modular Algorithm Testbed Suite; MATS; Mine Countermeasures Operations U U U SAR 24 Derek R. Kolacinski (850) 230-7218 THIS PAGE INTENTIONALLY LEFT
Picking Deep Filter Responses for Fine-Grained Image Recognition (Open Access Author’s Manuscript)
2016-12-16
stages. Our method explores a unified framework based on two steps of deep filter response picking. The first picking step is to find distinctive... filters which respond to specific patterns significantly and consistently, and learn a set of part detectors via iteratively alternating between new...positive sample mining and part model retraining. The second picking step is to pool deep filter responses via spatially weighted combination of Fisher
Exploiting Early Intent Recognition for Competitive Advantage
2009-01-01
basketball [Bhan- dari et al., 1997; Jug et al., 2003], and Robocup soccer sim- ulations [Riley and Veloso, 2000; 2002; Kuhlmann et al., 2006] and non...actions (e.g. before, after, around). Jug et al. [2003] used a similar framework for offline basketball game analysis. More recently, Hess et al...and K. Ramanujam. Advanced Scout: Data mining and knowledge discovery in NBA data. Data Mining and Knowledge Discovery, 1(1):121–125, 1997. [Chang
Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak
2018-02-08
Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.