Sample records for recognition techniques applied

  1. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  2. Application of pattern recognition techniques to crime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  3. Hyperspectral face recognition with spatiospectral information fusion and PLS regression.

    PubMed

    Uzair, Muhammad; Mahmood, Arif; Mian, Ajmal

    2015-03-01

    Hyperspectral imaging offers new opportunities for face recognition via improved discrimination along the spectral dimension. However, it poses new challenges, including low signal-to-noise ratio, interband misalignment, and high data dimensionality. Due to these challenges, the literature on hyperspectral face recognition is not only sparse but is limited to ad hoc dimensionality reduction techniques and lacks comprehensive evaluation. We propose a hyperspectral face recognition algorithm using a spatiospectral covariance for band fusion and partial least square regression for classification. Moreover, we extend 13 existing face recognition techniques, for the first time, to perform hyperspectral face recognition.We formulate hyperspectral face recognition as an image-set classification problem and evaluate the performance of seven state-of-the-art image-set classification techniques. We also test six state-of-the-art grayscale and RGB (color) face recognition algorithms after applying fusion techniques on hyperspectral images. Comparison with the 13 extended and five existing hyperspectral face recognition techniques on three standard data sets show that the proposed algorithm outperforms all by a significant margin. Finally, we perform band selection experiments to find the most discriminative bands in the visible and near infrared response spectrum.

  4. Syntactic/semantic techniques for feature description and character recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, R.C.

    1983-01-01

    The Pattern Analysis Branch, Mapping, Charting and Geodesy (MC/G) Division, of the Naval Ocean Research and Development Activity (NORDA) has been involved over the past several years in the development of algorithms and techniques for computer recognition of free-form handprinted symbols as they appear on the Defense Mapping Agency (DMA) maps and charts. NORDA has made significant contributions to the automation of MC/G through advancing the state of the art in such information extraction techniques. In particular, new concepts in character (symbol) skeletonization, rugged feature measurements, and expert system-oriented decision logic have allowed the development of a very high performancemore » Handprinted Symbol Recognition (HSR) system for identifying depth soundings from naval smooth sheets (accuracies greater than 99.5%). The study reported in this technical note is part of NORDA's continuing research and development in pattern and shape analysis as it applies to Navy and DMA ocean/environment problems. The issue addressed in this technical note deals with emerging areas of syntactic and semantic techniques in pattern recognition as they might apply to the free-form symbol problem.« less

  5. Acute effects of triazolam on false recognition.

    PubMed

    Mintzer, M Z; Griffiths, R R

    2000-12-01

    Neuropsychological, neuroimaging, and electrophysiological techniques have been applied to the study of false recognition; however, psychopharmacological techniques have not been applied. Benzodiazepine sedative/anxiolytic drugs produce memory deficits similar to those observed in organic amnesia and may be useful tools for studying normal and abnormal memory mechanisms. The present double-blind, placebo-controlled repeated measures study examined the acute effects of orally administered triazolam (Halcion; 0.125 and 0.25 mg/70 kg), a benzodiazepine hypnotic, on performance in the Deese (1959)/Roediger-McDermott (1995) false recognition paradigm in 24 healthy volunteers. Paralleling previous demonstrations in amnesic patients, triazolam produced significant dose-related reductions in false recognition rates to nonstudied words associatively related to studied words, suggesting that false recognition relies on normal memory mechanisms impaired in benzodiazepine-induced amnesia. The results also suggested that relative to placebo, triazolam reduced participants' reliance on memory for item-specific versus list-common semantic information and reduced participants' use of remember versus know responses.

  6. Early Detection of Severe Apnoea through Voice Analysis and Automatic Speaker Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Fernández, Ruben; Blanco, Jose Luis; Díaz, David; Hernández, Luis A.; López, Eduardo; Alcázar, José

    This study is part of an on-going collaborative effort between the medical and the signal processing communities to promote research on applying voice analysis and Automatic Speaker Recognition techniques (ASR) for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based diagnosis could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we present and discuss the possibilities of using generative Gaussian Mixture Models (GMMs), generally used in ASR systems, to model distinctive apnoea voice characteristics (i.e. abnormal nasalization). Finally, we present experimental findings regarding the discriminative power of speaker recognition techniques applied to severe apnoea detection. We have achieved an 81.25 % correct classification rate, which is very promising and underpins the interest in this line of inquiry.

  7. Deep learning and non-negative matrix factorization in recognition of mammograms

    NASA Astrophysics Data System (ADS)

    Swiderski, Bartosz; Kurek, Jaroslaw; Osowski, Stanislaw; Kruk, Michal; Barhoumi, Walid

    2017-02-01

    This paper presents novel approach to the recognition of mammograms. The analyzed mammograms represent the normal and breast cancer (benign and malignant) cases. The solution applies the deep learning technique in image recognition. To obtain increased accuracy of classification the nonnegative matrix factorization and statistical self-similarity of images are applied. The images reconstructed by using these two approaches enrich the data base and thanks to this improve of quality measures of mammogram recognition (increase of accuracy, sensitivity and specificity). The results of numerical experiments performed on large DDSM data base containing more than 10000 mammograms have confirmed good accuracy of class recognition, exceeding the best results reported in the actual publications for this data base.

  8. Applied learning-based color tone mapping for face recognition in video surveillance system

    NASA Astrophysics Data System (ADS)

    Yew, Chuu Tian; Suandi, Shahrel Azmin

    2012-04-01

    In this paper, we present an applied learning-based color tone mapping technique for video surveillance system. This technique can be applied onto both color and grayscale surveillance images. The basic idea is to learn the color or intensity statistics from a training dataset of photorealistic images of the candidates appeared in the surveillance images, and remap the color or intensity of the input image so that the color or intensity statistics match those in the training dataset. It is well known that the difference in commercial surveillance cameras models, and signal processing chipsets used by different manufacturers will cause the color and intensity of the images to differ from one another, thus creating additional challenges for face recognition in video surveillance system. Using Multi-Class Support Vector Machines as the classifier on a publicly available video surveillance camera database, namely SCface database, this approach is validated and compared to the results of using holistic approach on grayscale images. The results show that this technique is suitable to improve the color or intensity quality of video surveillance system for face recognition.

  9. Kruskal-Wallis-based computationally efficient feature selection for face recognition.

    PubMed

    Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz

    2014-01-01

    Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.

  10. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  11. Speech Recognition for A Digital Video Library.

    ERIC Educational Resources Information Center

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Production of the meta-data supporting the Informedia Digital Video Library interface is automated using techniques derived from artificial intelligence research. Speech recognition and natural-language processing, information retrieval, and image analysis are applied to produce an interface that helps users locate information and navigate more…

  12. New approach for logo recognition

    NASA Astrophysics Data System (ADS)

    Chen, Jingying; Leung, Maylor K. H.; Gao, Yongsheng

    2000-03-01

    The problem of logo recognition is of great interest in the document domain, especially for document database. By recognizing the logo we obtain semantic information about the document which may be useful in deciding whether or not to analyze the textual components. In order to develop a logo recognition method that is efficient to compute and product intuitively reasonable results, we investigate the Line Segment Hausdorff Distance on logo recognition. Researchers apply Hausdorff Distance to measure the dissimilarity of two point sets. It has been extended to match two sets of line segments. The new approach has the advantage to incorporate structural and spatial information to compute the dissimilarity. The added information can conceptually provide more and better distinctive capability for recognition. The proposed technique has been applied on line segments of logos with encouraging results that support the concept experimentally. This might imply a new way for logo recognition.

  13. Research on application of LADAR in ground vehicle recognition

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Shen, Zhuoxun

    2009-11-01

    For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.

  14. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  15. Assessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Fernández Pozo, Rubén; Blanco Murillo, Jose Luis; Hernández Gómez, Luis; López Gonzalo, Eduardo; Alcázar Ramírez, José; Toledano, Doroteo T.

    2009-12-01

    This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.

  16. Conic section function neural network circuitry for offline signature recognition.

    PubMed

    Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay

    2010-04-01

    In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.

  17. Speaker normalization for chinese vowel recognition in cochlear implants.

    PubMed

    Luo, Xin; Fu, Qian-Jie

    2005-07-01

    Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.

  18. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  19. Self-organized Evaluation of Dynamic Hand Gestures for Sign Language Recognition

    NASA Astrophysics Data System (ADS)

    Buciu, Ioan; Pitas, Ioannis

    Two main theories exist with respect to face encoding and representation in the human visual system (HVS). The first one refers to the dense (holistic) representation of the face, where faces have "holon"-like appearance. The second one claims that a more appropriate face representation is given by a sparse code, where only a small fraction of the neural cells corresponding to face encoding is activated. Theoretical and experimental evidence suggest that the HVS performs face analysis (encoding, storing, face recognition, facial expression recognition) in a structured and hierarchical way, where both representations have their own contribution and goal. According to neuropsychological experiments, it seems that encoding for face recognition, relies on holistic image representation, while a sparse image representation is used for facial expression analysis and classification. From the computer vision perspective, the techniques developed for automatic face and facial expression recognition fall into the same two representation types. Like in Neuroscience, the techniques which perform better for face recognition yield a holistic image representation, while those techniques suitable for facial expression recognition use a sparse or local image representation. The proposed mathematical models of image formation and encoding try to simulate the efficient storing, organization and coding of data in the human cortex. This is equivalent with embedding constraints in the model design regarding dimensionality reduction, redundant information minimization, mutual information minimization, non-negativity constraints, class information, etc. The presented techniques are applied as a feature extraction step followed by a classification method, which also heavily influences the recognition results.

  20. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  1. Dynamic detection of window starting positions and its implementation within an activity recognition framework.

    PubMed

    Ni, Qin; Patterson, Timothy; Cleland, Ian; Nugent, Chris

    2016-08-01

    Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.

    PubMed

    Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao

    2016-12-01

    Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.

  3. Exploring 3D Human Action Recognition: from Offline to Online.

    PubMed

    Liu, Zhenyu; Li, Rui; Tan, Jianrong

    2018-02-20

    With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems-including real-time performance and sequence segmentation-are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset.

  4. Exploring 3D Human Action Recognition: from Offline to Online

    PubMed Central

    Li, Rui; Liu, Zhenyu; Tan, Jianrong

    2018-01-01

    With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems—including real-time performance and sequence segmentation—are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset. PMID:29461502

  5. Vision-based obstacle recognition system for automated lawn mower robot development

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  6. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  7. Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks.

    PubMed

    Naz, Saeeda; Umar, Arif Iqbal; Ahmed, Riaz; Razzak, Muhammad Imran; Rashid, Sheikh Faisal; Shafait, Faisal

    2016-01-01

    The recognition of Arabic script and its derivatives such as Urdu, Persian, Pashto etc. is a difficult task due to complexity of this script. Particularly, Urdu text recognition is more difficult due to its Nasta'liq writing style. Nasta'liq writing style inherits complex calligraphic nature, which presents major issues to recognition of Urdu text owing to diagonality in writing, high cursiveness, context sensitivity and overlapping of characters. Therefore, the work done for recognition of Arabic script cannot be directly applied to Urdu recognition. We present Multi-dimensional Long Short Term Memory (MDLSTM) Recurrent Neural Networks with an output layer designed for sequence labeling for recognition of printed Urdu text-lines written in the Nasta'liq writing style. Experiments show that MDLSTM attained a recognition accuracy of 98% for the unconstrained Urdu Nasta'liq printed text, which significantly outperforms the state-of-the-art techniques.

  8. Linear Programming and Its Application to Pattern Recognition Problems

    NASA Technical Reports Server (NTRS)

    Omalley, M. J.

    1973-01-01

    Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

  9. Improving entrepreneurial opportunity recognition through web content analytics

    NASA Astrophysics Data System (ADS)

    Bakar, Muhamad Shahbani Abu; Azmi, Azwiyati

    2017-10-01

    The ability to recognize and develop an opportunity into a venture defines an entrepreneur. Research in opportunity recognition has been robust and focuses more on explaining the processes involved in opportunity recognition. Factors such as prior knowledge, cognitive and creative capabilities are shown to affect opportunity recognition in entrepreneurs. Prior knowledge in areas such as customer problems, ways to serve the market, and technology has been shows in various studies to be a factor that facilitates entrepreneurs to identify and recognize opportunities. Findings from research also shows that experienced entrepreneurs search and scan for information to discover opportunities. Searching and scanning for information has also been shown to help novice entrepreneurs who lack prior knowledge to narrow this gap and enable them to better identify and recognize opportunities. There is less focus in research on finding empirically proven techniques and methods to develop and enhance opportunity recognition in student entrepreneurs. This is important as the country pushes for more graduate entrepreneurs that can drive the economy. This paper aims to discuss Opportunity Recognition Support System (ORSS), an information support system to help especially student entrepreneurs in identifying and recognizing business opportunities. The ORSS aims to provide the necessary knowledge to student entrepreneurs to be able to better identify and recognize opportunities. Applying design research, theories in opportunity recognition are applied to identify the requirements for the support system and the requirements in turn dictate the design of the support system. The paper proposes the use of web content mining and analytics as two core components and techniques for the support system. Web content mining can mine the vast knowledge repositories available on the internet and analytics can provide entrepreneurs with further insights into the information needed to recognize opportunities in a given market or industry.

  10. Discrete classification technique applied to TV advertisements liking recognition system based on low-cost EEG headsets.

    PubMed

    Soria Morillo, Luis M; Alvarez-Garcia, Juan A; Gonzalez-Abril, Luis; Ortega Ramírez, Juan A

    2016-07-15

    In this paper a new approach is applied to the area of marketing research. The aim of this paper is to recognize how brain activity responds during the visualization of short video advertisements using discrete classification techniques. By means of low cost electroencephalography devices (EEG), the activation level of some brain regions have been studied while the ads are shown to users. We may wonder about how useful is the use of neuroscience knowledge in marketing, or what could provide neuroscience to marketing sector, or why this approach can improve the accuracy and the final user acceptance compared to other works. By using discrete techniques over EEG frequency bands of a generated dataset, C4.5, ANN and the new recognition system based on Ameva, a discretization algorithm, is applied to obtain the score given by subjects to each TV ad. The proposed technique allows to reach more than 75 % of accuracy, which is an excellent result taking into account the typology of EEG sensors used in this work. Furthermore, the time consumption of the algorithm proposed is reduced up to 30 % compared to other techniques presented in this paper. This bring about a battery lifetime improvement on the devices where the algorithm is running, extending the experience in the ubiquitous context where the new approach has been tested.

  11. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  12. Application of artificial neural networks with backpropagation technique in the financial data

    NASA Astrophysics Data System (ADS)

    Jaiswal, Jitendra Kumar; Das, Raja

    2017-11-01

    The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.

  13. Classification of motor activities through derivative dynamic time warping applied on accelerometer data.

    PubMed

    Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso

    2007-01-01

    In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).

  14. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Ye, Lin

    2004-08-01

    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  15. A Survey on Banknote Recognition Methods by Various Sensors

    PubMed Central

    Lee, Ji Woo; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-01-01

    Despite a decrease in the use of currency due to the recent growth in the use of electronic financial transactions, real money transactions remain very important in the global market. While performing transactions with real money, touching and counting notes by hand, is still a common practice in daily life, various types of automated machines, such as ATMs and banknote counters, are essential for large-scale and safe transactions. This paper presents studies that have been conducted in four major areas of research (banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification) in the accurate banknote recognition field by various sensors in such automated machines, and describes the advantages and drawbacks of the methods presented in those studies. While to a limited extent some surveys have been presented in previous studies in the areas of banknote recognition or counterfeit banknote recognition, this paper is the first of its kind to review all four areas. Techniques used in each of the four areas recognize banknote information (denomination, serial number, authenticity, and physical condition) based on image or sensor data, and are actually applied to banknote processing machines across the world. This study also describes the technological challenges faced by such banknote recognition techniques and presents future directions of research to overcome them. PMID:28208733

  16. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  17. An In-Process Surface Roughness Recognition System in End Milling Operations

    ERIC Educational Resources Information Center

    Yang, Lieh-Dai; Chen, Joseph C.

    2004-01-01

    To develop an in-process quality control system, a sensor technique and a decision-making algorithm need to be applied during machining operations. Several sensor techniques have been used in the in-process prediction of quality characteristics in machining operations. For example, an accelerometer sensor can be used to monitor the vibration of…

  18. A survey of visual preprocessing and shape representation techniques

    NASA Technical Reports Server (NTRS)

    Olshausen, Bruno A.

    1988-01-01

    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention).

  19. Dual Use of Image Based Tracking Techniques: Laser Eye Surgery and Low Vision Prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Barton, R. Shane

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  20. Dual use of image based tracking techniques: Laser eye surgery and low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  1. Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models

    PubMed Central

    Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.

    2015-01-01

    It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497

  2. Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Heracleous, Panikos; Kaino, Tomomi; Saruwatari, Hiroshi; Shikano, Kiyohiro

    2006-12-01

    We present the use of stethoscope and silicon NAM (nonaudible murmur) microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible) speech, but also very quietly uttered speech (nonaudible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc.) for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a[InlineEquation not available: see fulltext.] word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.

  3. Neural network application for thermal image recognition of low-resolution objects

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Wu, Bo-Wen

    2007-02-01

    In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.

  4. Orchestration of Molecular Information through Higher Order Chemical Recognition

    NASA Astrophysics Data System (ADS)

    Frezza, Brian M.

    Broadly defined, higher order chemical recognition is the process whereby discrete chemical building blocks capable of specifically binding to cognate moieties are covalently linked into oligomeric chains. These chains, or sequences, are then able to recognize and bind to their cognate sequences with a high degree of cooperativity. Principally speaking, DNA and RNA are the most readily obtained examples of this chemical phenomenon, and function via Watson-Crick cognate pairing: guanine pairs with cytosine and adenine with thymine (DNA) or uracil (RNA), in an anti-parallel manner. While the theoretical principles, techniques, and equations derived herein apply generally to any higher-order chemical recognition system, in practice we utilize DNA oligomers as a model-building material to experimentally investigate and validate our hypotheses. Historically, general purpose information processing has been a task limited to semiconductor electronics. Molecular computing on the other hand has been limited to ad hoc approaches designed to solve highly specific and unique computation problems, often involving components or techniques that cannot be applied generally in a manner suitable for precise and predictable engineering. Herein, we provide a fundamental framework for harnessing high-order recognition in a modular and programmable fashion to synthesize molecular information process networks of arbitrary construction and complexity. This document provides a solid foundation for routinely embedding computational capability into chemical and biological systems where semiconductor electronics are unsuitable for practical application.

  5. Comparing Pattern Recognition Feature Sets for Sorting Triples in the FIRST Database

    NASA Astrophysics Data System (ADS)

    Proctor, D. D.

    2006-07-01

    Pattern recognition techniques have been used with increasing success for coping with the tremendous amounts of data being generated by automated surveys. Usually this process involves construction of training sets, the typical examples of data with known classifications. Given a feature set, along with the training set, statistical methods can be employed to generate a classifier. The classifier is then applied to process the remaining data. Feature set selection, however, is still an issue. This paper presents techniques developed for accommodating data for which a substantive portion of the training set cannot be classified unambiguously, a typical case for low-resolution data. Significance tests on the sort-ordered, sample-size-normalized vote distribution of an ensemble of decision trees is introduced as a method of evaluating relative quality of feature sets. The technique is applied to comparing feature sets for sorting a particular radio galaxy morphology, bent-doubles, from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) database. Also examined are alternative functional forms for feature sets. Associated standard deviations provide the means to evaluate the effect of the number of folds, the number of classifiers per fold, and the sample size on the resulting classifications. The technique also may be applied to situations for which, although accurate classifications are available, the feature set is clearly inadequate, but is desired nonetheless to make the best of available information.

  6. A modified active appearance model based on an adaptive artificial bee colony.

    PubMed

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.

  7. Strength-based criterion shifts in recognition memory.

    PubMed

    Singer, Murray

    2009-10-01

    In manipulations of stimulus strength between lists, a more lenient signal detection criterion is more frequently applied to a weak than to a strong stimulus class. However, with randomly intermixed weak and strong test probes, such a criterion shift often does not result. A procedure that has yielded delay-based within-list criterion shifts was applied to strength manipulations in recognition memory for categorized word lists. When participants made semantic ratings about each stimulus word, strength-based criterion shifts emerged regardless of whether words from pairs of categories were studied in separate blocks (Experiment 1) or in intermixed blocks (Experiment 2). In Experiment 3, the criterion shift persisted under the semantic-rating study task, but not under rote memorization. These findings suggest that continually adjusting the recognition decision criterion is cognitively feasible. They provide a technique for manipulating the criterion shift, and they identify competing theoretical accounts of these effects.

  8. Behavioral biometrics for verification and recognition of malicious software agents

    NASA Astrophysics Data System (ADS)

    Yampolskiy, Roman V.; Govindaraju, Venu

    2008-04-01

    Homeland security requires technologies capable of positive and reliable identification of humans for law enforcement, government, and commercial applications. As artificially intelligent agents improve in their abilities and become a part of our everyday life, the possibility of using such programs for undermining homeland security increases. Virtual assistants, shopping bots, and game playing programs are used daily by millions of people. We propose applying statistical behavior modeling techniques developed by us for recognition of humans to the identification and verification of intelligent and potentially malicious software agents. Our experimental results demonstrate feasibility of such methods for both artificial agent verification and even for recognition purposes.

  9. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques.

    PubMed

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2011-03-04

    Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes

    PubMed Central

    Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli

    2014-01-01

    Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks. PMID:25014095

  11. Clustering-based ensemble learning for activity recognition in smart homes.

    PubMed

    Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli

    2014-07-10

    Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

  12. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  13. Dynamic programming and graph algorithms in computer vision.

    PubMed

    Felzenszwalb, Pedro F; Zabih, Ramin

    2011-04-01

    Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.

  14. A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony

    PubMed Central

    Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748

  15. Discovering the Sequential Structure of Thought

    ERIC Educational Resources Information Center

    Anderson, John R.; Fincham, Jon M.

    2014-01-01

    Multi-voxel pattern recognition techniques combined with Hidden Markov models can be used to discover the mental states that people go through in performing a task. The combined method identifies both the mental states and how their durations vary with experimental conditions. We apply this method to a task where participants solve novel…

  16. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    PubMed Central

    Sánchez, Daniela; Melin, Patricia

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461

  17. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.

    PubMed

    Sánchez, Daniela; Melin, Patricia; Castillo, Oscar

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.

  18. Optimization of Visual Information Presentation for Visual Prosthesis.

    PubMed

    Guo, Fei; Yang, Yuan; Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  19. Optimization of Visual Information Presentation for Visual Prosthesis

    PubMed Central

    Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769

  20. Spectral pattern recognition of controlled substances in street samples using artificial neural network system

    NASA Astrophysics Data System (ADS)

    Poryvkina, Larisa; Aleksejev, Valeri; Babichenko, Sergey M.; Ivkina, Tatjana

    2011-04-01

    The NarTest fluorescent technique is aimed at the detection of analyte of interest in street samples by recognition of its specific spectral patterns in 3-dimentional Spectral Fluorescent Signatures (SFS) measured with NTX2000 analyzer without chromatographic or other separation of controlled substances from a mixture with cutting agents. The illicit drugs have their own characteristic SFS features which can be used for detection and identification of narcotics, however typical street sample consists of a mixture with cutting agents: adulterants and diluents. Many of them interfere the spectral shape of SFS. The expert system based on Artificial Neural Networks (ANNs) has been developed and applied for such pattern recognition in SFS of street samples of illicit drugs.

  1. Computational Intelligence Techniques for Tactile Sensing Systems

    PubMed Central

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  2. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  3. Research for Key Techniques of Geophysical Recognition System of Hydrocarbon-induced Magnetic Anomalies Based on Hydrocarbon Seepage Theory

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hao, T.; Zhao, B.

    2009-12-01

    Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.

  4. Artificial intelligence in sports on the example of weight training.

    PubMed

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements.Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates.

  5. Artificial Intelligence in Sports on the Example of Weight Training

    PubMed Central

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements. Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates. PMID:24149722

  6. Dynamic Programming and Graph Algorithms in Computer Vision*

    PubMed Central

    Felzenszwalb, Pedro F.; Zabih, Ramin

    2013-01-01

    Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950

  7. Fine needle aspiration cytology.

    PubMed Central

    Lever, J V; Trott, P A; Webb, A J

    1985-01-01

    Fine needle aspiration cytology is an inexpensive, atraumatic technique for the diagnosis of disease sites. This paper describes the technique and illustrates how it may be applied to the management of tumours throughout the body. The limitations of the method, the dangers of false positive reports, and the inevitability of false negative diagnoses are emphasised. In a clinical context the method has much to offer by saving patients from inappropriate operations and investigations and allowing surgeons to plan quickly and more rationally. It is an economically valuable technique and deserves greater recognition. Images PMID:2578481

  8. Score-level fusion of two-dimensional and three-dimensional palmprint for personal recognition systems

    NASA Astrophysics Data System (ADS)

    Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab

    2017-01-01

    Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.

  9. Fuzzy recognition of noncompact musical objects

    NASA Astrophysics Data System (ADS)

    Cristobal Salas, Alfredo; Tchernykh, Andrei

    1997-03-01

    This article describes and compares some techniques to extract attributes from black and white images which contain musical objects. The inertia moment, the central moments and the wavelet transform methods are used to describe the images. Two supervised neural networks are applied to classify the images: backpropagation and fuzzy backpropagation. The results are compared.

  10. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  11. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.

    PubMed

    Cheng, Yezeng; Larin, Kirill V

    2006-12-20

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  12. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Yezeng; Larin, Kirill V.

    2006-12-01

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  13. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    PubMed

    Tang, Xin; Feng, Guo-Can; Li, Xiao-Xin; Cai, Jia-Xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the state-of-the-art results on AR, FERET, FRGC and LFW databases.

  14. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition

    PubMed Central

    Tang, Xin; Feng, Guo-can; Li, Xiao-xin; Cai, Jia-xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the state-of-the-art results on AR, FERET, FRGC and LFW databases. PMID:26571112

  15. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.

    PubMed

    Janidarmian, Majid; Roshan Fekr, Atena; Radecka, Katarzyna; Zilic, Zeljko

    2017-03-07

    Sensor-based motion recognition integrates the emerging area of wearable sensors with novel machine learning techniques to make sense of low-level sensor data and provide rich contextual information in a real-life application. Although Human Activity Recognition (HAR) problem has been drawing the attention of researchers, it is still a subject of much debate due to the diverse nature of human activities and their tracking methods. Finding the best predictive model in this problem while considering different sources of heterogeneities can be very difficult to analyze theoretically, which stresses the need of an experimental study. Therefore, in this paper, we first create the most complete dataset, focusing on accelerometer sensors, with various sources of heterogeneities. We then conduct an extensive analysis on feature representations and classification techniques (the most comprehensive comparison yet with 293 classifiers) for activity recognition. Principal component analysis is applied to reduce the feature vector dimension while keeping essential information. The average classification accuracy of eight sensor positions is reported to be 96.44% ± 1.62% with 10-fold evaluation, whereas accuracy of 79.92% ± 9.68% is reached in the subject-independent evaluation. This study presents significant evidence that we can build predictive models for HAR problem under more realistic conditions, and still achieve highly accurate results.

  16. Surviving blind decomposition: A distributional analysis of the time-course of complex word recognition.

    PubMed

    Schmidtke, Daniel; Matsuki, Kazunaga; Kuperman, Victor

    2017-11-01

    The current study addresses a discrepancy in the psycholinguistic literature about the chronology of information processing during the visual recognition of morphologically complex words. Form-then-meaning accounts of complex word recognition claim that morphemes are processed as units of form prior to any influence of their meanings, whereas form-and-meaning models posit that recognition of complex word forms involves the simultaneous access of morphological and semantic information. The study reported here addresses this theoretical discrepancy by applying a nonparametric distributional technique of survival analysis (Reingold & Sheridan, 2014) to 2 behavioral measures of complex word processing. Across 7 experiments reported here, this technique is employed to estimate the point in time at which orthographic, morphological, and semantic variables exert their earliest discernible influence on lexical decision RTs and eye movement fixation durations. Contrary to form-then-meaning predictions, Experiments 1-4 reveal that surface frequency is the earliest lexical variable to exert a demonstrable influence on lexical decision RTs for English and Dutch derived words (e.g., badness ; bad + ness ), English pseudoderived words (e.g., wander ; wand + er ) and morphologically simple control words (e.g., ballad ; ball + ad ). Furthermore, for derived word processing across lexical decision and eye-tracking paradigms (Experiments 1-2; 5-7), semantic effects emerge early in the time-course of word recognition, and their effects either precede or emerge simultaneously with morphological effects. These results are not consistent with the premises of the form-then-meaning view of complex word recognition, but are convergent with a form-and-meaning account of complex word recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Enhancement of face recognition learning in patients with brain injury using three cognitive training procedures.

    PubMed

    Powell, Jane; Letson, Susan; Davidoff, Jules; Valentine, Tim; Greenwood, Richard

    2008-04-01

    Twenty patients with impairments of face recognition, in the context of a broader pattern of cognitive deficits, were administered three new training procedures derived from contemporary theories of face processing to enhance their learning of new faces: semantic association (being given additional verbal information about the to-be-learned faces); caricaturing (presentation of caricatured versions of the faces during training and veridical versions at recognition testing); and part recognition (focusing patients on distinctive features during the training phase). Using a within-subjects design, each training procedure was applied to a different set of 10 previously unfamiliar faces and entailed six presentations of each face. In a "simple exposure" control procedure (SE), participants were given six presentations of another set of faces using the same basic protocol but with no further elaboration. Order of the four procedures was counterbalanced, and each condition was administered on a different day. A control group of 12 patients with similar levels of face recognition impairment were trained on all four sets of faces under SE conditions. Compared to the SE condition, all three training procedures resulted in more accurate discrimination between the 10 studied faces and 10 distractor faces in a post-training recognition test. This did not reflect any intrinsic lesser memorability of the faces used in the SE condition, as evidenced by the comparable performance across face sets by the control group. At the group level, the three experimental procedures were of similar efficacy, and associated cognitive deficits did not predict which technique would be most beneficial to individual patients; however, there was limited power to detect such associations. Interestingly, a pure prosopagnosic patient who was tested separately showed benefit only from the part recognition technique. Possible mechanisms for the observed effects, and implications for rehabilitation, are discussed.

  18. Implementation and Evaluation of a Mobile Mapping System Based on Integrated Range and Intensity Images for Traffic Signs Localization

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.

    2012-07-01

    Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83 % in RMS of range error and 72 % in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90 % true positive recognition and the average of 12 centimetres 3D positioning accuracy.

  19. Implementation and Evaluation of a Mobile Mapping System Based on Integrated Range and Intensity Images for Traffic Signs Localization

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.

    2012-07-01

    Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83% in RMS of range error and 72% in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90% true positive recognition and the average of 12 centimetres 3D positioning accuracy.

  20. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes

    PubMed Central

    Piekarczyk, Marcin; Ogiela, Marek R.

    2017-01-01

    The aim of this paper is to propose and evaluate the novel method of template generation, matching, comparing and visualization applied to motion capture (kinematic) analysis. To evaluate our approach, we have used motion capture recordings (MoCap) of two highly-skilled black belt karate athletes consisting of 560 recordings of various karate techniques acquired with wearable sensors. We have evaluated the quality of generated templates; we have validated the matching algorithm that calculates similarities and differences between various MoCap data; and we have examined visualizations of important differences and similarities between MoCap data. We have concluded that our algorithms works the best when we are dealing with relatively short (2–4 s) actions that might be averaged and aligned with the dynamic time warping framework. In practice, the methodology is designed to optimize the performance of some full body techniques performed in various sport disciplines, for example combat sports and martial arts. We can also use this approach to generate templates or to compare the correct performance of techniques between various top sportsmen in order to generate a knowledge base of reference MoCap videos. The motion template generated by our method can be used for action recognition purposes. We have used the DTW classifier with angle-based features to classify various karate kicks. We have performed leave-one-out action recognition for the Shorin-ryu and Oyama karate master separately. In this case, 100% actions were correctly classified. In another experiment, we used templates generated from Oyama master recordings to classify Shorin-ryu master recordings and vice versa. In this experiment, the overall recognition rate was 94.2%, which is a very good result for this type of complex action. PMID:29125560

  1. Feature Selection for Speech Emotion Recognition in Spanish and Basque: On the Use of Machine Learning to Improve Human-Computer Interaction

    PubMed Central

    Arruti, Andoni; Cearreta, Idoia; Álvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested. PMID:25279686

  2. Embedded wavelet-based face recognition under variable position

    NASA Astrophysics Data System (ADS)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  3. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.

    PubMed

    Yurtman, Aras; Barshan, Billur

    2017-08-09

    Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.

  4. Model-based vision using geometric hashing

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander, III; Patton, Ronald

    1991-04-01

    The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.

  5. Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang

    2018-03-01

    Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.

  6. Automatic Speech Recognition from Neural Signals: A Focused Review.

    PubMed

    Herff, Christian; Schultz, Tanja

    2016-01-01

    Speech interfaces have become widely accepted and are nowadays integrated in various real-life applications and devices. They have become a part of our daily life. However, speech interfaces presume the ability to produce intelligible speech, which might be impossible due to either loud environments, bothering bystanders or incapabilities to produce speech (i.e., patients suffering from locked-in syndrome). For these reasons it would be highly desirable to not speak but to simply envision oneself to say words or sentences. Interfaces based on imagined speech would enable fast and natural communication without the need for audible speech and would give a voice to otherwise mute people. This focused review analyzes the potential of different brain imaging techniques to recognize speech from neural signals by applying Automatic Speech Recognition technology. We argue that modalities based on metabolic processes, such as functional Near Infrared Spectroscopy and functional Magnetic Resonance Imaging, are less suited for Automatic Speech Recognition from neural signals due to low temporal resolution but are very useful for the investigation of the underlying neural mechanisms involved in speech processes. In contrast, electrophysiologic activity is fast enough to capture speech processes and is therefor better suited for ASR. Our experimental results indicate the potential of these signals for speech recognition from neural data with a focus on invasively measured brain activity (electrocorticography). As a first example of Automatic Speech Recognition techniques used from neural signals, we discuss the Brain-to-text system.

  7. Membership-degree preserving discriminant analysis with applications to face recognition.

    PubMed

    Yang, Zhangjing; Liu, Chuancai; Huang, Pu; Qian, Jianjun

    2013-01-01

    In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each sample to particular classes is firstly calculated by the fuzzy k-nearest neighbor (FKNN) algorithm to characterize the similarity between each sample and class centers, and then the membership degree is incorporated into the definition of the between-class scatter and the within-class scatter. The feature extraction criterion via maximizing the ratio of the between-class scatter to the within-class scatter is applied. Experimental results on the ORL, Yale, and FERET face databases demonstrate the effectiveness of the proposed algorithm.

  8. Multiview fusion for activity recognition using deep neural networks

    NASA Astrophysics Data System (ADS)

    Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad

    2016-07-01

    Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.

  9. Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods

    NASA Astrophysics Data System (ADS)

    Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.

    2016-01-01

    According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.

  10. Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition

    PubMed Central

    Islam, Md. Rabiul

    2014-01-01

    The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al. PMID:25114676

  11. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  12. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  13. Feature and score fusion based multiple classifier selection for iris recognition.

    PubMed

    Islam, Md Rabiul

    2014-01-01

    The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al.

  14. Invariant 2D object recognition using the wavelet transform and structured neural networks

    NASA Astrophysics Data System (ADS)

    Khalil, Mahmoud I.; Bayoumi, Mohamed M.

    1999-03-01

    This paper applies the dyadic wavelet transform and the structured neural networks approach to recognize 2D objects under translation, rotation, and scale transformation. Experimental results are presented and compared with traditional methods. The experimental results showed that this refined technique successfully classified the objects and outperformed some traditional methods especially in the presence of noise.

  15. Pattern recognition applied to mineral characterization of Brazilian coffees and sugar-cane spirits

    NASA Astrophysics Data System (ADS)

    Fernandes, Andréa P.; Santos, Mirian C.; Lemos, Sherlan G.; Ferreira, Márcia M. C.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    Aluminium, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn were determined in coffee and sugar-cane spirit (cachaça) samples by axial viewing inductively coupled plasma optical emission spectrometry (ICP OES). Pattern recognition techniques such as principal component analysis and cluster analysis were applied to data sets in order to characterize samples with relation to their geographical origin and production mode (industrial or homemade and organically or conventionally produced). Attempts to correlate metal ion content with the geographical origin of coffee and the production mode (organic or conventional) of cachaça were not successful. Some differentiation was suggested for the geographical origin of cachaça of three regions (Northeast, Central, and South), and for coffee samples, related to the production mode. Clear separations were only obtained for differentiation between industrial and homemade cachaças, and between instant soluble and roasted coffees.

  16. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  17. An iris recognition algorithm based on DCT and GLCM

    NASA Astrophysics Data System (ADS)

    Feng, G.; Wu, Ye-qing

    2008-04-01

    With the enlargement of mankind's activity range, the significance for person's status identity is becoming more and more important. So many different techniques for person's status identity were proposed for this practical usage. Conventional person's status identity methods like password and identification card are not always reliable. A wide variety of biometrics has been developed for this challenge. Among those biologic characteristics, iris pattern gains increasing attention for its stability, reliability, uniqueness, noninvasiveness and difficult to counterfeit. The distinct merits of the iris lead to its high reliability for personal identification. So the iris identification technique had become hot research point in the past several years. This paper presents an efficient algorithm for iris recognition using gray-level co-occurrence matrix(GLCM) and Discrete Cosine transform(DCT). To obtain more representative iris features, features from space and DCT transformation domain are extracted. Both GLCM and DCT are applied on the iris image to form the feature sequence in this paper. The combination of GLCM and DCT makes the iris feature more distinct. Upon GLCM and DCT the eigenvector of iris extracted, which reflects features of spatial transformation and frequency transformation. Experimental results show that the algorithm is effective and feasible with iris recognition.

  18. Secure method for biometric-based recognition with integrated cryptographic functions.

    PubMed

    Chiou, Shin-Yan

    2013-01-01

    Biometric systems refer to biometric technologies which can be used to achieve authentication. Unlike cryptography-based technologies, the ratio for certification in biometric systems needs not to achieve 100% accuracy. However, biometric data can only be directly compared through proximal access to the scanning device and cannot be combined with cryptographic techniques. Moreover, repeated use, improper storage, or transmission leaks may compromise security. Prior studies have attempted to combine cryptography and biometrics, but these methods require the synchronization of internal systems and are vulnerable to power analysis attacks, fault-based cryptanalysis, and replay attacks. This paper presents a new secure cryptographic authentication method using biometric features. The proposed system combines the advantages of biometric identification and cryptographic techniques. By adding a subsystem to existing biometric recognition systems, we can simultaneously achieve the security of cryptographic technology and the error tolerance of biometric recognition. This method can be used for biometric data encryption, signatures, and other types of cryptographic computation. The method offers a high degree of security with protection against power analysis attacks, fault-based cryptanalysis, and replay attacks. Moreover, it can be used to improve the confidentiality of biological data storage and biodata identification processes. Remote biometric authentication can also be safely applied.

  19. Geometry-based ensembles: toward a structural characterization of the classification boundary.

    PubMed

    Pujol, Oriol; Masip, David

    2009-06-01

    This paper introduces a novel binary discriminative learning technique based on the approximation of the nonlinear decision boundary by a piecewise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points-points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and nonlinear behavior is obtained. The simplicity of the method allows its extension to cope with some of today's machine learning challenges, such as online learning, large-scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database, comparing with several state-of-the-art classification techniques. Finally, we apply our technique in online and large-scale scenarios and in six real-life computer vision and pattern recognition problems: gender recognition based on face images, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease myocardial damage severity detection, old musical scores clef classification, and action recognition using 3D accelerometer data from a wearable device. The results are promising and this paper opens a line of research that deserves further attention.

  20. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil.

    PubMed

    Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali

    2016-03-01

    The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.

  1. A voice-input voice-output communication aid for people with severe speech impairment.

    PubMed

    Hawley, Mark S; Cunningham, Stuart P; Green, Phil D; Enderby, Pam; Palmer, Rebecca; Sehgal, Siddharth; O'Neill, Peter

    2013-01-01

    A new form of augmentative and alternative communication (AAC) device for people with severe speech impairment-the voice-input voice-output communication aid (VIVOCA)-is described. The VIVOCA recognizes the disordered speech of the user and builds messages, which are converted into synthetic speech. System development was carried out employing user-centered design and development methods, which identified and refined key requirements for the device. A novel methodology for building small vocabulary, speaker-dependent automatic speech recognizers with reduced amounts of training data, was applied. Experiments showed that this method is successful in generating good recognition performance (mean accuracy 96%) on highly disordered speech, even when recognition perplexity is increased. The selected message-building technique traded off various factors including speed of message construction and range of available message outputs. The VIVOCA was evaluated in a field trial by individuals with moderate to severe dysarthria and confirmed that they can make use of the device to produce intelligible speech output from disordered speech input. The trial highlighted some issues which limit the performance and usability of the device when applied in real usage situations, with mean recognition accuracy of 67% in these circumstances. These limitations will be addressed in future work.

  2. Trichotomous processes in early memory development, aging, and neurocognitive impairment: a unified theory.

    PubMed

    Brainerd, C J; Reyna, V F; Howe, M L

    2009-10-01

    One of the most extensively investigated topics in the adult memory literature, dual memory processes, has had virtually no impact on the study of early memory development. The authors remove the key obstacles to such research by formulating a trichotomous theory of recall that combines the traditional dual processes of recollection and familiarity with a reconstruction process. The theory is then embedded in a hidden Markov model that measures all 3 processes with low-burden tasks that are appropriate for even young children. These techniques are applied to a large corpus of developmental studies of recall, yielding stable findings about the emergence of dual memory processes between childhood and young adulthood and generating tests of many theoretical predictions. The techniques are extended to the study of healthy aging and to the memory sequelae of common forms of neurocognitive impairment, resulting in a theoretical framework that is unified over 4 major domains of memory research: early development, mainstream adult research, aging, and neurocognitive impairment. The techniques are also extended to recognition, creating a unified dual process framework for recall and recognition.

  3. Fuzzy-cellular neural network for face recognition HCI Authentication

    NASA Astrophysics Data System (ADS)

    Hoomod, Haider K.; ali, Ahmed abd

    2018-05-01

    Because of the rapid development of mobile devices technology, ease of use and interact with humans. May have found a mobile device most uses in our communications. Mobile devices can carry large amounts of personal and sensitive data, but often left not guaranteed (pin) locks are inconvenient to use and thus have seen low adoption while biometrics is more convenient and less susceptible to fraud and manipulation. Were propose in this paper authentication technique for using a mobile face recognition based on cellular neural networks [1] and fuzzy rules control. The good speed and get recognition rate from applied the proposed system in Android system. The images obtained in real time for 60 persons each person has 20 t0 60 different shot face images (about 3600 images), were the results for (FAR = 0), (FRR = 1.66%), (FER = 1.66) and accuracy = 98.34

  4. Limited receptive area neural classifier for recognition of swallowing sounds using continuous wavelet transform.

    PubMed

    Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael

    2007-01-01

    In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.

  5. Use of iris recognition camera technology for the quantification of corneal opacification in mucopolysaccharidoses.

    PubMed

    Aslam, Tariq Mehmood; Shakir, Savana; Wong, James; Au, Leon; Ashworth, Jane

    2012-12-01

    Mucopolysaccharidoses (MPS) can cause corneal opacification that is currently difficult to objectively quantify. With newer treatments for MPS comes an increased need for a more objective, valid and reliable index of disease severity for clinical and research use. Clinical evaluation by slit lamp is very subjective and techniques based on colour photography are difficult to standardise. In this article the authors present evidence for the utility of dedicated image analysis algorithms applied to images obtained by a highly sophisticated iris recognition camera that is small, manoeuvrable and adapted to achieve rapid, reliable and standardised objective imaging in a wide variety of patients while minimising artefactual interference in image quality.

  6. Doppler-Only Synthetic Aperture Radar

    DTIC Science & Technology

    2006-12-01

    5 B. TARGET RECOGNITION TECHNIQUES .................................................6 1. Cooperative Targets...6 3. Techniques ............................................................................................6 C. TARGET RECOGNITION...3. Implementation of High Range Resolution Techniques .................12 F. TWO-DIMENSIONAL IMAGING

  7. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    PubMed Central

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600

  8. Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.

    PubMed

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  9. Automatic recognition of topic-classified relations between prostate cancer and genes using MEDLINE abstracts

    PubMed Central

    Chun, Hong-Woo; Tsuruoka, Yoshimasa; Kim, Jin-Dong; Shiba, Rie; Nagata, Naoki; Hishiki, Teruyoshi; Tsujii, Jun'ichi

    2006-01-01

    Background Automatic recognition of relations between a specific disease term and its relevant genes or protein terms is an important practice of bioinformatics. Considering the utility of the results of this approach, we identified prostate cancer and gene terms with the ID tags of public biomedical databases. Moreover, considering that genetics experts will use our results, we classified them based on six topics that can be used to analyze the type of prostate cancers, genes, and their relations. Methods We developed a maximum entropy-based named entity recognizer and a relation recognizer and applied them to a corpus-based approach. We collected prostate cancer-related abstracts from MEDLINE, and constructed an annotated corpus of gene and prostate cancer relations based on six topics by biologists. We used it to train the maximum entropy-based named entity recognizer and relation recognizer. Results Topic-classified relation recognition achieved 92.1% precision for the relation (an increase of 11.0% from that obtained in a baseline experiment). For all topics, the precision was between 67.6 and 88.1%. Conclusion A series of experimental results revealed two important findings: a carefully designed relation recognition system using named entity recognition can improve the performance of relation recognition, and topic-classified relation recognition can be effectively addressed through a corpus-based approach using manual annotation and machine learning techniques. PMID:17134477

  10. Automatic recognition of topic-classified relations between prostate cancer and genes using MEDLINE abstracts.

    PubMed

    Chun, Hong-Woo; Tsuruoka, Yoshimasa; Kim, Jin-Dong; Shiba, Rie; Nagata, Naoki; Hishiki, Teruyoshi; Tsujii, Jun'ichi

    2006-11-24

    Automatic recognition of relations between a specific disease term and its relevant genes or protein terms is an important practice of bioinformatics. Considering the utility of the results of this approach, we identified prostate cancer and gene terms with the ID tags of public biomedical databases. Moreover, considering that genetics experts will use our results, we classified them based on six topics that can be used to analyze the type of prostate cancers, genes, and their relations. We developed a maximum entropy-based named entity recognizer and a relation recognizer and applied them to a corpus-based approach. We collected prostate cancer-related abstracts from MEDLINE, and constructed an annotated corpus of gene and prostate cancer relations based on six topics by biologists. We used it to train the maximum entropy-based named entity recognizer and relation recognizer. Topic-classified relation recognition achieved 92.1% precision for the relation (an increase of 11.0% from that obtained in a baseline experiment). For all topics, the precision was between 67.6 and 88.1%. A series of experimental results revealed two important findings: a carefully designed relation recognition system using named entity recognition can improve the performance of relation recognition, and topic-classified relation recognition can be effectively addressed through a corpus-based approach using manual annotation and machine learning techniques.

  11. Mathematical morphology-based shape feature analysis for Chinese character recognition systems

    NASA Astrophysics Data System (ADS)

    Pai, Tun-Wen; Shyu, Keh-Hwa; Chen, Ling-Fan; Tai, Gwo-Chin

    1995-04-01

    This paper proposes an efficient technique of shape feature extraction based on the application of mathematical morphology theory. A new shape complexity index for preclassification of machine printed Chinese Character Recognition (CCR) is also proposed. For characters represented in different fonts/sizes or in a low resolution environment, a more stable local feature such as shape structure is preferred for character recognition. Morphological valley extraction filters are applied to extract the protrusive strokes from four sides of an input Chinese character. The number of extracted local strokes reflects the shape complexity of each side. These shape features of characters are encoded as corresponding shape complexity indices. Based on the shape complexity index, data base is able to be classified into 16 groups prior to recognition procedures. The performance of associating with shape feature analysis reclaims several characters from misrecognized character sets and results in an average of 3.3% improvement of recognition rate from an existing recognition system. In addition to enhance the recognition performance, the extracted stroke information can be further analyzed and classified its own stroke type. Therefore, the combination of extracted strokes from each side provides a means for data base clustering based on radical or subword components. It is one of the best solutions for recognizing high complexity characters such as Chinese characters which are divided into more than 200 different categories and consist more than 13,000 characters.

  12. Facial recognition using multisensor images based on localized kernel eigen spaces.

    PubMed

    Gundimada, Satyanadh; Asari, Vijayan K

    2009-06-01

    A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.

  13. A Corpus-Based Approach for Automatic Thai Unknown Word Recognition Using Boosting Techniques

    NASA Astrophysics Data System (ADS)

    Techo, Jakkrit; Nattee, Cholwich; Theeramunkong, Thanaruk

    While classification techniques can be applied for automatic unknown word recognition in a language without word boundary, it faces with the problem of unbalanced datasets where the number of positive unknown word candidates is dominantly smaller than that of negative candidates. To solve this problem, this paper presents a corpus-based approach that introduces a so-called group-based ranking evaluation technique into ensemble learning in order to generate a sequence of classification models that later collaborate to select the most probable unknown word from multiple candidates. Given a classification model, the group-based ranking evaluation (GRE) is applied to construct a training dataset for learning the succeeding model, by weighing each of its candidates according to their ranks and correctness when the candidates of an unknown word are considered as one group. A number of experiments have been conducted on a large Thai medical text to evaluate performance of the proposed group-based ranking evaluation approach, namely V-GRE, compared to the conventional naïve Bayes classifier and our vanilla version without ensemble learning. As the result, the proposed method achieves an accuracy of 90.93±0.50% when the first rank is selected while it gains 97.26±0.26% when the top-ten candidates are considered, that is 8.45% and 6.79% improvement over the conventional record-based naïve Bayes classifier and the vanilla version. Another result on applying only best features show 93.93±0.22% and up to 98.85±0.15% accuracy for top-1 and top-10, respectively. They are 3.97% and 9.78% improvement over naive Bayes and the vanilla version. Finally, an error analysis is given.

  14. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.

    PubMed

    Agarwalla, Swapna; Sarma, Kandarpa Kumar

    2016-06-01

    Automatic Speaker Recognition (ASR) and related issues are continuously evolving as inseparable elements of Human Computer Interaction (HCI). With assimilation of emerging concepts like big data and Internet of Things (IoT) as extended elements of HCI, ASR techniques are found to be passing through a paradigm shift. Oflate, learning based techniques have started to receive greater attention from research communities related to ASR owing to the fact that former possess natural ability to mimic biological behavior and that way aids ASR modeling and processing. The current learning based ASR techniques are found to be evolving further with incorporation of big data, IoT like concepts. Here, in this paper, we report certain approaches based on machine learning (ML) used for extraction of relevant samples from big data space and apply them for ASR using certain soft computing techniques for Assamese speech with dialectal variations. A class of ML techniques comprising of the basic Artificial Neural Network (ANN) in feedforward (FF) and Deep Neural Network (DNN) forms using raw speech, extracted features and frequency domain forms are considered. The Multi Layer Perceptron (MLP) is configured with inputs in several forms to learn class information obtained using clustering and manual labeling. DNNs are also used to extract specific sentence types. Initially, from a large storage, relevant samples are selected and assimilated. Next, a few conventional methods are used for feature extraction of a few selected types. The features comprise of both spectral and prosodic types. These are applied to Recurrent Neural Network (RNN) and Fully Focused Time Delay Neural Network (FFTDNN) structures to evaluate their performance in recognizing mood, dialect, speaker and gender variations in dialectal Assamese speech. The system is tested under several background noise conditions by considering the recognition rates (obtained using confusion matrices and manually) and computation time. It is found that the proposed ML based sentence extraction techniques and the composite feature set used with RNN as classifier outperform all other approaches. By using ANN in FF form as feature extractor, the performance of the system is evaluated and a comparison is made. Experimental results show that the application of big data samples has enhanced the learning of the ASR system. Further, the ANN based sample and feature extraction techniques are found to be efficient enough to enable application of ML techniques in big data aspects as part of ASR systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  16. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  17. Benford's Law based detection of latent fingerprint forgeries on the example of artificial sweat printed fingerprints captured by confocal laser scanning microscopes

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Dittmann, Jana

    2015-03-01

    The possibility of forging latent fingerprints at crime scenes is known for a long time. Ever since it has been stated that an expert is capable of recognizing the presence of multiple identical latent prints as an indicator towards forgeries. With the possibility of printing fingerprint patterns to arbitrary surfaces using affordable ink- jet printers equipped with artificial sweat, it is rather simple to create a multitude of fingerprints with slight variations to avoid raising any suspicion. Such artificially printed fingerprints are often hard to detect during the analysis procedure. Moreover, the visibility of particular detection properties might be decreased depending on the utilized enhancement and acquisition technique. In previous work primarily such detection properties are used in combination with non-destructive high resolution sensory and pattern recognition techniques to detect fingerprint forgeries. In this paper we apply Benford's Law in the spatial domain to differentiate between real latent fingerprints and printed fingerprints. This technique has been successfully applied in media forensics to detect image manipulations. We use the differences between Benford's Law and the distribution of the most significant digit of the intensity and topography data from a confocal laser scanning microscope as features for a pattern recognition based detection of printed fingerprints. Our evaluation based on 3000 printed and 3000 latent print samples shows a very good detection performance of up to 98.85% using WEKA's Bagging classifier in a 10-fold stratified cross-validation.

  18. Discovery of Information Diffusion Process in Social Networks

    NASA Astrophysics Data System (ADS)

    Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun

    Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.

  19. Monovision techniques for telerobots

    NASA Technical Reports Server (NTRS)

    Goode, P. W.; Carnils, K.

    1987-01-01

    The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. The functional structure of the telerobotic vision system used in the Langley Research Center's Intelligent Systems Research Laboratory is discussed as well as two monovision techniques for accomplishing the vision subtasks.

  20. Real-time 3D reconstruction of road curvature in far look-ahead distance from analysis of image sequences

    NASA Astrophysics Data System (ADS)

    Behringer, Reinhold

    1995-12-01

    A system for visual road recognition in far look-ahead distance, implemented in the autonomous road vehicle VaMP (a passenger car), is described. Visual cues of a road in a video image are the bright lane markings and the edges formed at the road borders. In a distance of more than 100 m, the most relevant road cue is the homogeneous road area, limited by the two border edges. These cues can be detected by the image processing module KRONOS applying edge detection techniques and areal 2D segmentation based on resolution triangles (analogous to a resolution pyramid). An estimation process performs an update of a state vector, which describes spatial road shape and vehicle orientation relative to the road. This state vector is estimated every 40 ms by exploiting knowledge about the vehicle movement (spatio-temporal model of vehicle dynamics) and the road design rules (clothoidal segments). Kalman filter techniques are applied to obtain an optimal estimate of the state vector by evaluating the measurements of the road border positions in the image sequence taken by a set of CCD cameras. The road consists of segments with piecewise constant curvature parameters. The borders between these segments can be detected by applying methods which have been developed for detection of discontinuities during time-discrete measurements. The road recognition system has been tested in autonomous rides with VaMP on public Autobahnen in real traffic at speeds up to 130 km/h.

  1. 76 FR 81404 - Information From Foreign Regions Applying for Recognition of Animal Health Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    .... APHIS-2007-0158] RIN 0579-AD30 Information From Foreign Regions Applying for Recognition of Animal... Recognition of Regions'' (referred to below as the regulations), set forth the process by which a foreign government may request recognition of the animal health status of a region. Section 92.2 of the regulations...

  2. Insights from Classifying Visual Concepts with Multiple Kernel Learning

    PubMed Central

    Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-01-01

    Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970

  3. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.

  4. Video scrambling for privacy protection in video surveillance: recent results and validation framework

    NASA Astrophysics Data System (ADS)

    Dufaux, Frederic

    2011-06-01

    The issue of privacy in video surveillance has drawn a lot of interest lately. However, thorough performance analysis and validation is still lacking, especially regarding the fulfillment of privacy-related requirements. In this paper, we first review recent Privacy Enabling Technologies (PET). Next, we discuss pertinent evaluation criteria for effective privacy protection. We then put forward a framework to assess the capacity of PET solutions to hide distinguishing facial information and to conceal identity. We conduct comprehensive and rigorous experiments to evaluate the performance of face recognition algorithms applied to images altered by PET. Results show the ineffectiveness of naïve PET such as pixelization and blur. Conversely, they demonstrate the effectiveness of more sophisticated scrambling techniques to foil face recognition.

  5. Detecting buried explosive hazards with handheld GPR and deep learning

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.

    2016-05-01

    Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.

  6. Secure Method for Biometric-Based Recognition with Integrated Cryptographic Functions

    PubMed Central

    Chiou, Shin-Yan

    2013-01-01

    Biometric systems refer to biometric technologies which can be used to achieve authentication. Unlike cryptography-based technologies, the ratio for certification in biometric systems needs not to achieve 100% accuracy. However, biometric data can only be directly compared through proximal access to the scanning device and cannot be combined with cryptographic techniques. Moreover, repeated use, improper storage, or transmission leaks may compromise security. Prior studies have attempted to combine cryptography and biometrics, but these methods require the synchronization of internal systems and are vulnerable to power analysis attacks, fault-based cryptanalysis, and replay attacks. This paper presents a new secure cryptographic authentication method using biometric features. The proposed system combines the advantages of biometric identification and cryptographic techniques. By adding a subsystem to existing biometric recognition systems, we can simultaneously achieve the security of cryptographic technology and the error tolerance of biometric recognition. This method can be used for biometric data encryption, signatures, and other types of cryptographic computation. The method offers a high degree of security with protection against power analysis attacks, fault-based cryptanalysis, and replay attacks. Moreover, it can be used to improve the confidentiality of biological data storage and biodata identification processes. Remote biometric authentication can also be safely applied. PMID:23762851

  7. HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger.

    PubMed

    Feng, Xu; Kong, Weijun; Wei, Jianhe; Ou-Yang, Zhen; Yang, Meihua

    2014-03-01

    Ginger, the fresh rhizome of Zingiber officinale Rosc. (Zingiberaceae), has been used worldwide; however, for a long time, there has been no standard approbated internationally for its quality control. To establish an efficacious and combinational method and pattern recognition technique for quality control of ginger. A simple, accurate and reliable method based on high-performance liquid chromatography with photodiode array (HPLC-PDA) detection was developed for establishing the chemical fingerprints of 10 batches of ginger from different markets in China. The method was validated in terms of precision, reproducibility and stability; and the relative standard deviations were all less than 1.57%. On the basis of this method, the fingerprints of 10 batches of ginger samples were obtained, which showed 16 common peaks. Coupled with similarity evaluation software, the similarities between each fingerprint of the sample and the simulative mean chromatogram were in the range of 0.998-1.000. Then, the chemometric techniques, including similarity analysis, hierarchical clustering analysis and principal component analysis were applied to classify the ginger samples. Consistent results were obtained to show that ginger samples could be successfully classified into two groups. This study revealed that HPLC-PDA method was simple, sensitive and reliable for fingerprint analysis, and moreover, for pattern recognition and quality control of ginger.

  8. Recognition Without Words: Using Taste to Explore Survival Processing

    PubMed Central

    Hallock, Henry L.; Garman, Heather D.; Cook, Shaun P.; Gallagher, Shawn P.

    2017-01-01

    Many educational demonstrations of memory and recall employ word lists and number strings; items that lend themselves to semantic organization and “chunking.” By applying taste recall to the adaptive memory paradigm, which evaluates memory from a survival-based evolutionary perspective, we have developed a simple, inexpensive exercise that defies mnemonic strategies. Most adaptive memory studies have evaluated recall of words encountered while imagining survival and non-survival scenarios. Here, we’ve left the lexical domain and hypothesized that taste memory, as measured by recognition, would be best when acquisition occurs under imagined threat of personal harm, namely poisoning. We tested participants individually while they evaluated eight teas in one of three conditions: in one, they evaluated the toxicity of the tea (survival condition), in a second, they considered the marketability of the tea and, in the third, they evaluated the bitterness of the tea. After a filler task, a surprise recognition task required the participants to taste and identify the eight original teas from a group of 16 that included eight novel teas. The survival condition led to better recognition than the bitterness condition but, surprisingly, it did not yield better recognition than the marketing condition. A second experiment employed a streamlined design more appropriate for classroom settings and failed to support the hypothesis that planning enhanced recognition in survival scenarios. This simple technique has, at least, revealed a robust levels-of-processing effect for taste recognition and invites students to consider the adaptive advantages of all forms of memory. PMID:28690433

  9. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.

    PubMed

    Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua

    2013-08-01

    The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.

  10. Effects of emotional and perceptual-motor stress on a voice recognition system's accuracy: An applied investigation

    NASA Astrophysics Data System (ADS)

    Poock, G. K.; Martin, B. J.

    1984-02-01

    This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.

  11. Low spatial frequency characterization of holographic recording materials applied to correlation

    NASA Astrophysics Data System (ADS)

    Márquez, A.; Neipp, C.; Beléndez, A.; Campos, J.; Pascual, I.; Yzuel, M. J.; Fimia, A.

    2003-09-01

    Accurate recording of computer-generated holograms (CGH) on a phase material is not a trivial task. The range of available phase materials is large, and their suitability depends on the fabrication technique chosen to produce the hologram. We are particularly interested in low-cost fabrication techniques, easily available for any lab. In this work we present the results obtained with a wide variety of phase holographic recording materials, characterized at low spatial frequencies (leq32 lp mm-1) which is the range associated with the technique we use to produce the CGHs. We have considered bleached emulsion, silver halide sensitized gelatin (SHSG) and dichromated gelatin. Some interesting differences arise between the behaviour of these materials in the usual holographic range (>1000 lp mm-1), and the low-frequency range intended for digital holography. The ultimate goal of this paper is to establish the suitability of different phase materials as the media to generate correlation filters for optical pattern recognition. In all the materials considered, the phase filters generated ensure the discrimination of the target in the recognition process. Taking into account all the experimental results, we can say that SHSG is the best material to generate phase CGHs with low spatial frequencies.

  12. Using pattern recognition as a method for predicting extreme events in natural and socio-economic systems

    NASA Astrophysics Data System (ADS)

    Intriligator, M.

    2011-12-01

    Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.

  13. An automatic iris occlusion estimation method based on high-dimensional density estimation.

    PubMed

    Li, Yung-Hui; Savvides, Marios

    2013-04-01

    Iris masks play an important role in iris recognition. They indicate which part of the iris texture map is useful and which part is occluded or contaminated by noisy image artifacts such as eyelashes, eyelids, eyeglasses frames, and specular reflections. The accuracy of the iris mask is extremely important. The performance of the iris recognition system will decrease dramatically when the iris mask is inaccurate, even when the best recognition algorithm is used. Traditionally, people used the rule-based algorithms to estimate iris masks from iris images. However, the accuracy of the iris masks generated this way is questionable. In this work, we propose to use Figueiredo and Jain's Gaussian Mixture Models (FJ-GMMs) to model the underlying probabilistic distributions of both valid and invalid regions on iris images. We also explored possible features and found that Gabor Filter Bank (GFB) provides the most discriminative information for our goal. Finally, we applied Simulated Annealing (SA) technique to optimize the parameters of GFB in order to achieve the best recognition rate. Experimental results show that the masks generated by the proposed algorithm increase the iris recognition rate on both ICE2 and UBIRIS dataset, verifying the effectiveness and importance of our proposed method for iris occlusion estimation.

  14. Review of chart recognition in document images

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lu, Xiaoqing; Qin, Yeyang; Tang, Zhi; Xu, Jianbo

    2013-01-01

    As an effective information transmitting way, chart is widely used to represent scientific statistics datum in books, research papers, newspapers etc. Though textual information is still the major source of data, there has been an increasing trend of introducing graphs, pictures, and figures into the information pool. Text recognition techniques for documents have been accomplished using optical character recognition (OCR) software. Chart recognition techniques as a necessary supplement of OCR for document images are still an unsolved problem due to the great subjectiveness and variety of charts styles. This paper reviews the development process of chart recognition techniques in the past decades and presents the focuses of current researches. The whole process of chart recognition is presented systematically, which mainly includes three parts: chart segmentation, chart classification, and chart Interpretation. In each part, the latest research work is introduced. In the last, the paper concludes with a summary and promising future research direction.

  15. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  16. The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.

    PubMed

    Hachaj, Tomasz; Ogiela, Marek R

    2016-06-01

    The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment.

  17. Chemical named entities recognition: a review on approaches and applications

    PubMed Central

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132

  18. Chemical named entities recognition: a review on approaches and applications.

    PubMed

    Eltyeb, Safaa; Salim, Naomie

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.

  19. Multi-template image matching using alpha-rooted biquaternion phase correlation with application to logo recognition

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2011-06-01

    Hypercomplex approaches are seeing increased application to signal and image processing problems. The use of multicomponent hypercomplex numbers, such as quaternions, enables the simultaneous co-processing of multiple signal or image components. This joint processing capability can provide improved exploitation of the information contained in the data, thereby leading to improved performance in detection and recognition problems. In this paper, we apply hypercomplex processing techniques to the logo image recognition problem. Specifically, we develop an image matcher by generalizing classical phase correlation to the biquaternion case. We further incorporate biquaternion Fourier domain alpha-rooting enhancement to create Alpha-Rooted Biquaternion Phase Correlation (ARBPC). We present the mathematical properties which justify use of ARBPC as an image matcher. We present numerical performance results of a logo verification problem using real-world logo data, demonstrating the performance improvement obtained using the hypercomplex approach. We compare results of the hypercomplex approach to standard multi-template matching approaches.

  20. Quantification of two forms of green sulfur bacteria in their natural habitat using bacteriochlorophyll fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Zhiltsova, Anna A.; Lunina, Olga N.; Savvichev, Alexander S.; Patsaeva, Svetlana V.

    2016-04-01

    Detection of phototropic organisms in their natural habitat using optical instruments operating under water is urgently needed for many tasks of ecological monitoring. While fluorescence methods are widely applied nowadays to detect and characterize phytoplankton communities, the techniques for detection and recognition of anoxygenic phototrophs are considered challenging. Differentiation of the forms of anoxygenic green sulfur bacteria in natural water using spectral techniques remains problematic. Green sulfur bacteria could be found in two forms, green-colored (containing BChl d in pigment compound) and brown-colored (containing BChl e), have the special ecological niche in such reservoirs. Separate determination of these microorganisms by spectral methods is complicated because of similarity of spectral characteristics of their pigments. We describe the novel technique of quantification of two forms of green sulfur bacteria directly in water using bacteriochlorophyll fluorescence without pigment extraction. This technique is noninvasive and could be applied in remote mode in the water bodies with restricted water circulation to determine simultaneously concentrations of two forms of green sulfur bacteria in their natural habitat.

  1. Development of Collaborative Research Initiatives to Advance the Aerospace Sciences-via the Communications, Electronics, Information Systems Focus Group

    NASA Technical Reports Server (NTRS)

    Knasel, T. Michael

    1996-01-01

    The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.

  2. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  3. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  4. Pattern detection in forensic case data using graph theory: application to heroin cutting agents.

    PubMed

    Terrettaz-Zufferey, Anne-Laure; Ratle, Frédéric; Ribaux, Olivier; Esseiva, Pierre; Kanevski, Mikhail

    2007-04-11

    Pattern recognition techniques can be very useful in forensic sciences to point out to relevant sets of events and potentially encourage an intelligence-led style of policing. In this study, these techniques have been applied to categorical data corresponding to cutting agents found in heroin seizures. An application of graph theoretic methods has been performed, in order to highlight the possible relationships between the location of seizures and co-occurrences of particular heroin cutting agents. An analysis of the co-occurrences to establish several main combinations has been done. Results illustrate the practical potential of mathematical models in forensic data analysis.

  5. Dragon Ears airborne acoustic array: CSP analysis applied to cross array to compute real-time 2D acoustic sound field

    NASA Astrophysics Data System (ADS)

    Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark

    2003-09-01

    This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.

  6. Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.

    PubMed

    Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck

    2018-04-20

    Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.

  7. A Supplementary Clear-Sky Snow and Ice Recognition Technique for CERES Level 2 Products

    NASA Technical Reports Server (NTRS)

    Radkevich, Alexander; Khlopenkov, Konstantin; Rutan, David; Kato, Seiji

    2013-01-01

    Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm's goal is to enhance the identification of snow and ice within the Clouds and the Earth's Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.

  8. Use of Authentic-Speech Technique for Teaching Sound Recognition to EFL Students

    ERIC Educational Resources Information Center

    Sersen, William J.

    2011-01-01

    The main objective of this research was to test an authentic-speech technique for improving the sound-recognition skills of EFL (English as a foreign language) students at Roi-Et Rajabhat University. The secondary objective was to determine the correlation, if any, between students' self-evaluation of sound-recognition progress and the actual…

  9. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  10. Neural network classification technique and machine vision for bread crumb grain evaluation

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.; Chung, O. K.; Caley, M.

    1995-10-01

    Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.

  11. Extraction and fusion of spectral parameters for face recognition

    NASA Astrophysics Data System (ADS)

    Boisier, B.; Billiot, B.; Abdessalem, Z.; Gouton, P.; Hardeberg, J. Y.

    2011-03-01

    Many methods have been developed in image processing for face recognition, especially in recent years with the increase of biometric technologies. However, most of these techniques are used on grayscale images acquired in the visible range of the electromagnetic spectrum. The aims of our study are to improve existing tools and to develop new methods for face recognition. The techniques used take advantage of the different spectral ranges, the visible, optical infrared and thermal infrared, by either combining them or analyzing them separately in order to extract the most appropriate information for face recognition. We also verify the consistency of several keypoints extraction techniques in the Near Infrared (NIR) and in the Visible Spectrum.

  12. Determination of cell metabolite VEGF₁₆₅ and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe.

    PubMed

    Lin, Xuexia; Leung, Ka-Ho; Lin, Ling; Lin, Luyao; Lin, Sheng; Leung, Chung-Hang; Ma, Dik-Lung; Lin, Jin-Ming

    2016-05-15

    In this paper, we rationally design a novel G-quadruplex-selective luminescent iridium (III) complex for rapid detection of oligonucleotide and VEGF165 in microfluidics. This new probe is applied as a convenient biosensor for label-free quantitative analysis of VEGF165 protein from cell metabolism, as well as for studying the kinetics of the aptamer-protein interaction combination with a microfluidic platform. As a result, we have successfully established a quantitative analysis of VEGF165 from cell metabolism. Furthermore, based on the principles of hydrodynamic focusing and diffusive mixing, different transient states during kinetics process were monitored and recorded. Thus, the combination of microfluidic technique and G-quadruplex luminescent probe will be potentially applied in the studies of intramolecular interactions and molecule recognition in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Moving Window Technique: A Window into Developmental Changes in Attention during Facial Emotion Recognition

    ERIC Educational Resources Information Center

    Birmingham, Elina; Meixner, Tamara; Iarocci, Grace; Kanan, Christopher; Smilek, Daniel; Tanaka, James W.

    2013-01-01

    The strategies children employ to selectively attend to different parts of the face may reflect important developmental changes in facial emotion recognition. Using the Moving Window Technique (MWT), children aged 5-12 years and adults ("N" = 129) explored faces with a mouse-controlled window in an emotion recognition task. An…

  14. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  15. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  16. Efficiency and Flexibility of Fingerprint Scheme Using Partial Encryption and Discrete Wavelet Transform to Verify User in Cloud Computing.

    PubMed

    Yassin, Ali A

    2014-01-01

    Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification.

  17. Efficiency and Flexibility of Fingerprint Scheme Using Partial Encryption and Discrete Wavelet Transform to Verify User in Cloud Computing

    PubMed Central

    Yassin, Ali A.

    2014-01-01

    Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051

  18. Combining spiral and target wave detection to analyze excitable media dynamics

    NASA Astrophysics Data System (ADS)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2010-01-01

    Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.

  19. Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics.

    PubMed

    Bajoub, Aadil; Medina-Rodríguez, Santiago; Gómez-Romero, María; Ajal, El Amine; Bagur-González, María Gracia; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2017-01-15

    High Performance Liquid Chromatography (HPLC) with diode array (DAD) and fluorescence (FLD) detection was used to acquire the fingerprints of the phenolic fraction of monovarietal extra-virgin olive oils (extra-VOOs) collected over three consecutive crop seasons (2011/2012-2013/2014). The chromatographic fingerprints of 140 extra-VOO samples processed from olive fruits of seven olive varieties, were recorded and statistically treated for varietal authentication purposes. First, DAD and FLD chromatographic-fingerprint datasets were separately processed and, subsequently, were joined using "Low-level" and "Mid-Level" data fusion methods. After the preliminary examination by principal component analysis (PCA), three supervised pattern recognition techniques, Partial Least Squares Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogies (SIMCA) and K-Nearest Neighbors (k-NN) were applied to the four chromatographic-fingerprinting matrices. The classification models built were very sensitive and selective, showing considerably good recognition and prediction abilities. The combination "chromatographic dataset+chemometric technique" allowing the most accurate classification for each monovarietal extra-VOO was highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The selectivity of protein-imprinted gels and its relation to protein properties: A computer simulation study.

    PubMed

    Yankelov, Rami; Yungerman, Irena; Srebnik, Simcha

    2017-07-01

    Polymer-based protein recognition systems have enormous potential within clinical and diagnostic fields due to their reusability, biocompatibility, ease of manufacturing, and potential specificity. Imprinted polymer matrices have been extensively studied and applied as a simple technique for creating artificial polymer-based recognition gels for a target molecule. Although this technique has been proven effective when targeting small molecules (such as drugs), imprinting of proteins have so far resulted in materials with limited selectivity due to the large molecular size of the protein and aqueous environment. Using coarse-grained molecular simulation, we investigate the relation between protein makeup, polymer properties, and the selectivity of imprinted gels. Nonspecific binding that results in poor selectivity is shown to be strongly dependent on surface chemistry of the template and competitor proteins as well as on polymer chemistry. Residence time distributions of proteins diffusing within the gels provide a transparent picture of the relation between polymer constitution, protein properties, and the nonspecific interactions with the imprinted gel. The pronounced effect of protein surface chemistry on imprinted gel specificity is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A global optimization algorithm for protein surface alignment

    PubMed Central

    2010-01-01

    Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. PMID:20920230

  2. A Single-System Account of the Relationship between Priming, Recognition, and Fluency

    ERIC Educational Resources Information Center

    Berry, Christopher J.; Shanks, David R.; Henson, Richard N. A.

    2008-01-01

    A single-system computational model of priming and recognition was applied to studies that have looked at the relationship between priming, recognition, and fluency in continuous identification paradigms. The model was applied to 3 findings that have been interpreted as evidence for a multiple-systems account: (a) priming can occur for items not…

  3. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks.

    PubMed

    Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis

    2016-07-05

    Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.

  4. Experimental study on GMM-based speaker recognition

    NASA Astrophysics Data System (ADS)

    Ye, Wenxing; Wu, Dapeng; Nucci, Antonio

    2010-04-01

    Speaker recognition plays a very important role in the field of biometric security. In order to improve the recognition performance, many pattern recognition techniques have be explored in the literature. Among these techniques, the Gaussian Mixture Model (GMM) is proved to be an effective statistic model for speaker recognition and is used in most state-of-the-art speaker recognition systems. The GMM is used to represent the 'voice print' of a speaker through modeling the spectral characteristic of speech signals of the speaker. In this paper, we implement a speaker recognition system, which consists of preprocessing, Mel-Frequency Cepstrum Coefficients (MFCCs) based feature extraction, and GMM based classification. We test our system with TIDIGITS data set (325 speakers) and our own recordings of more than 200 speakers; our system achieves 100% correct recognition rate. Moreover, we also test our system under the scenario that training samples are from one language but test samples are from a different language; our system also achieves 100% correct recognition rate, which indicates that our system is language independent.

  5. On the prompt identification of traces of explosives

    NASA Astrophysics Data System (ADS)

    Trobajo, M. T.; López-Cabeceira, M. M.; Carriegos, M. V.; Díez-Machío, H.

    2014-12-01

    Some recent results in the use of Raman spectroscopy for recognition of explosives are reviewed. Experimental study using spectra data base has been developed. In order to simulate a more real situation, both blank substances and explosives substances have been considered in this research. Statistic classification techniques have been performed. Estimations of prediction errors were obtained by cross-validation methods. These results can be applied in airport security systems in order to prevent terror acts (by the detection of explosive/flammable substances).

  6. Joint Information Theoretic and Differential Geometrical Approach for Robust Automated Target Recognition

    DTIC Science & Technology

    2012-02-29

    surface and Swiss roll) and real-world data sets (UCI Machine Learning Repository [12] and USPS digit handwriting data). In our experiments, we use...less than µn ( say µ = 0.8), we can first use screening technique to select µn candidate nodes, and then apply BIPS on them for further selection and...identified from node j to node i. So we can say the probability for the existence of this connection is approximately 82%. Given the probability matrix

  7. A Taxonomy of 3D Occluded Objects Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh

    2016-03-01

    The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

  8. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan

    2010-12-01

    This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  9. Image distortion analysis using polynomial series expansion.

    PubMed

    Baggenstoss, Paul M

    2004-11-01

    In this paper, we derive a technique for analysis of local distortions which affect data in real-world applications. In the paper, we focus on image data, specifically handwritten characters. Given a reference image and a distorted copy of it, the method is able to efficiently determine the rotations, translations, scaling, and any other distortions that have been applied. Because the method is robust, it is also able to estimate distortions for two unrelated images, thus determining the distortions that would be required to cause the two images to resemble each other. The approach is based on a polynomial series expansion using matrix powers of linear transformation matrices. The technique has applications in pattern recognition in the presence of distortions.

  10. Objective response detection in an electroencephalogram during somatosensory stimulation.

    PubMed

    Simpson, D M; Tierra-Criollo, C J; Leite, R T; Zayen, E J; Infantosi, A F

    2000-06-01

    Techniques for objective response detection aim to identify the presence of evoked potentials based purely on statistical principles. They have been shown to be potentially more sensitive than the conventional approach of subjective evaluation by experienced clinicians and could be of great clinical use. Three such techniques to detect changes in an electroencephalogram (EEG) synchronous with the stimuli, namely, magnitude-squared coherence (MSC), the phase-synchrony measure (PSM) and the spectral F test (SFT) were applied to EEG signals of 12 normal subjects under conventional somatosensory pulse stimulation to the tibial nerve. The SFT, which uses only the power spectrum, showed the poorest performance, while the PSM, based only on the phase spectrum, gave results almost as good as those of the MSC, which uses both phase and power spectra. With the latter two techniques, stimulus responses were evident in the frequency range of 20-80 Hz in all subjects after 200 stimuli (5 Hz stimulus frequency), whereas for visual recognition at least 500 stimuli are usually applied. Based on these results and on simulations, the phase-based techniques appear promising for the automated detection and monitoring of somatosensory evoked potentials.

  11. Toward retail product recognition on grocery shelves

    NASA Astrophysics Data System (ADS)

    Varol, Gül; Kuzu, Rıdvan S.

    2015-03-01

    This paper addresses the problem of retail product recognition on grocery shelf images. We present a technique for accomplishing this task with a low time complexity. We decompose the problem into detection and recognition. The former is achieved by a generic product detection module which is trained on a specific class of products (e.g. tobacco packages). Cascade object detection framework of Viola and Jones [1] is used for this purpose. We further make use of Support Vector Machines (SVMs) to recognize the brand inside each detected region. We extract both shape and color information; and apply feature-level fusion from two separate descriptors computed with the bag of words approach. Furthermore, we introduce a dataset (available on request) that we have collected for similar research purposes. Results are presented on this dataset of more than 5,000 images consisting of 10 tobacco brands. We show that satisfactory detection and classification can be achieved on devices with cheap computational power. Potential applications of the proposed approach include planogram compliance control, inventory management and assisting visually impaired people during shopping.

  12. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...

  13. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...

  14. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...

  15. A modular framework for biomedical concept recognition

    PubMed Central

    2013-01-01

    Background Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex external libraries and/or the development of custom tools. Results This article presents Neji, an open source framework optimized for biomedical concept recognition built around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging, chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting overlapped concept names and respective disambiguation techniques. The most popular input and output formats, namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers and researchers can implement new processing modules or pipelines, or use the provided command-line interface tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts (CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition (F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%, chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list of identifiers: species 88%, cell 71%, cellular components 72%, gene and proteins 64%, chemicals 53%, and biological processes and molecular functions 40%). Neji provides fast and multi-threaded data processing, annotating up to 1200 sentences/second when using dictionary-based concept identification. Conclusions Considering the provided features and underlying characteristics, we believe that Neji is an important contribution to the biomedical community, streamlining the development of complex concept recognition solutions. Neji is freely available at http://bioinformatics.ua.pt/neji. PMID:24063607

  16. A selection of giant radio sources from NVSS

    DOE PAGES

    Proctor, D. D.

    2016-06-01

    Results of the application of pattern-recognition techniques to the problem of identifying giant radio sources (GRSs) from the data in the NVSS catalog are presented, and issues affecting the process are explored. Decision-tree pattern-recognition software was applied to training-set source pairs developed from known NVSS large-angular-size radio galaxies. The full training set consisted of 51,195 source pairs, 48 of which were known GRSs for which each lobe was primarily represented by a single catalog component. The source pairs had a maximum separation ofmore » $$20^{\\prime} $$ and a minimum component area of 1.87 square arcmin at the 1.4 mJy level. The importance of comparing the resulting probability distributions of the training and application sets for cases of unknown class ratio is demonstrated. The probability of correctly ranking a randomly selected (GRS, non-GRS) pair from the best of the tested classifiers was determined to be 97.8 ± 1.5%. The best classifiers were applied to the over 870,000 candidate pairs from the entire catalog. Images of higher-ranked sources were visually screened, and a table of over 1600 candidates, including morphological annotation, is presented. These systems include doubles and triples, wide-angle tail and narrow-angle tail, S- or Z-shaped systems, and core-jets and resolved cores. In conclusion, while some resolved-lobe systems are recovered with this technique, generally it is expected that such systems would require a different approach.« less

  17. Feature-Based Methods for Landmine Detection with Ground Penetrating Radar

    DTIC Science & Technology

    2012-09-27

    of abstraction without having to resort to assumptions about the events. DS fusion was applied to handwriting recognition [67], decision making [68...has been applied to landmine detection [80], and (in a different way) to handwriting recognition [46], and fusion of social choices (voting...applications to handwriting recognition, IEEE Transactions on Systems, Man and Cybernetics 22 (3) (1992) 418–435. [68] M. Beynon, D. Cosker, A.D. Marshall

  18. The cost to successfully apply for level 3 medical home recognition

    PubMed Central

    Mottus, Kathleen; Reiter, Kristin; Mitchell, C. Madeline; Donahue, Katrina E.; Gabbard, Wilson M.; Gush, Kimberly

    2016-01-01

    BACKGROUND The NCQA Patient Centered Medical Home (PCMH) recognition program provides practices an opportunity to implement Medical home activities. Understanding the costs to apply for recognition may enable practices to plan their work. METHODS Practice coaches identified 5 exemplar practices that received level 3 recognition (3 pediatric and 2 family medicine practices). This analysis focuses on 4 that received 2011 recognition. Clinical, informatics and administrative staff participated in 2–3 hour interviews. We collected the time required to develop, implement and maintain required activities. We categorized costs as: 1) non-personnel, 2) developmental 3) those to implement activities 4) those to maintain activities, 5) those to document the work and 6) consultant costs. Only incremental costs were included and are presented as costs per full-time equivalent provider (pFTE) RESULTS Practice size ranged from 2.5 – 10.5 pFTE’s, payer mixes from 7–43 % Medicaid. There was variation in the distribution of costs by activity by practice; but the costs to apply were remarkably similar ($11,453–$15,977 pFTE). CONCLUSION The costs to apply for 2011 recognition were noteworthy. Work to enhance care coordination and close loops were highly valued. Financial incentives were key motivators. Future efforts to minimize the burden of low value activities could benefit practices. PMID:26769879

  19. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  20. 46 CFR 8.240 - Application for recognition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ALTERNATIVES Recognition of a Classification Society § 8.240 Application for recognition. (a) A classification society must apply for recognition in writing to the Commandant (CG-521). (b) An application must indicate which specific authority the classification society seeks to have delegated. (c) Upon verification from...

  1. 46 CFR 8.240 - Application for recognition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ALTERNATIVES Recognition of a Classification Society § 8.240 Application for recognition. (a) A classification society must apply for recognition in writing to the Commandant (CG-521). (b) An application must indicate which specific authority the classification society seeks to have delegated. (c) Upon verification from...

  2. Face recognition using facial expression: a novel approach

    NASA Astrophysics Data System (ADS)

    Singh, Deepak Kumar; Gupta, Priya; Tiwary, U. S.

    2008-04-01

    Facial expressions are undoubtedly the most effective nonverbal communication. The face has always been the equation of a person's identity. The face draws the demarcation line between identity and extinction. Each line on the face adds an attribute to the identity. These lines become prominent when we experience an emotion and these lines do not change completely with age. In this paper we have proposed a new technique for face recognition which focuses on the facial expressions of the subject to identify his face. This is a grey area on which not much light has been thrown earlier. According to earlier researches it is difficult to alter the natural expression. So our technique will be beneficial for identifying occluded or intentionally disguised faces. The test results of the experiments conducted prove that this technique will give a new direction in the field of face recognition. This technique will provide a strong base to the area of face recognition and will be used as the core method for critical defense security related issues.

  3. Supervised linear dimensionality reduction with robust margins for object recognition

    NASA Astrophysics Data System (ADS)

    Dornaika, F.; Assoum, A.

    2013-01-01

    Linear Dimensionality Reduction (LDR) techniques have been increasingly important in computer vision and pattern recognition since they permit a relatively simple mapping of data onto a lower dimensional subspace, leading to simple and computationally efficient classification strategies. Recently, many linear discriminant methods have been developed in order to reduce the dimensionality of visual data and to enhance the discrimination between different groups or classes. Many existing linear embedding techniques relied on the use of local margins in order to get a good discrimination performance. However, dealing with outliers and within-class diversity has not been addressed by margin-based embedding method. In this paper, we explored the use of different margin-based linear embedding methods. More precisely, we propose to use the concepts of Median miss and Median hit for building robust margin-based criteria. Based on such margins, we seek the projection directions (linear embedding) such that the sum of local margins is maximized. Our proposed approach has been applied to the problem of appearance-based face recognition. Experiments performed on four public face databases show that the proposed approach can give better generalization performance than the classic Average Neighborhood Margin Maximization (ANMM). Moreover, thanks to the use of robust margins, the proposed method down-grades gracefully when label outliers contaminate the training data set. In particular, we show that the concept of Median hit was crucial in order to get robust performance in the presence of outliers.

  4. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    PubMed Central

    Park, Keunyeol; Song, Minkyu

    2018-01-01

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273

  5. Optimization of spectral bands for hyperspectral remote sensing of forest vegetation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Egor V.; Kozoderov, Vladimir V.

    2013-10-01

    Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.

  6. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    PubMed

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  7. Assessment of metal artifact reduction methods in pelvic CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdoli, Mehrsima; Mehranian, Abolfazl; Ailianou, Angeliki

    2016-04-15

    Purpose: Metal artifact reduction (MAR) produces images with improved quality potentially leading to confident and reliable clinical diagnosis and therapy planning. In this work, the authors evaluate the performance of five MAR techniques for the assessment of computed tomography images of patients with hip prostheses. Methods: Five MAR algorithms were evaluated using simulation and clinical studies. The algorithms included one-dimensional linear interpolation (LI) of the corrupted projection bins in the sinogram, two-dimensional interpolation (2D), a normalized metal artifact reduction (NMAR) technique, a metal deletion technique, and a maximum a posteriori completion (MAPC) approach. The algorithms were applied to ten simulatedmore » datasets as well as 30 clinical studies of patients with metallic hip implants. Qualitative evaluations were performed by two blinded experienced radiologists who ranked overall artifact severity and pelvic organ recognition for each algorithm by assigning scores from zero to five (zero indicating totally obscured organs with no structures identifiable and five indicating recognition with high confidence). Results: Simulation studies revealed that 2D, NMAR, and MAPC techniques performed almost equally well in all regions. LI falls behind the other approaches in terms of reducing dark streaking artifacts as well as preserving unaffected regions (p < 0.05). Visual assessment of clinical datasets revealed the superiority of NMAR and MAPC in the evaluated pelvic organs and in terms of overall image quality. Conclusions: Overall, all methods, except LI, performed equally well in artifact-free regions. Considering both clinical and simulation studies, 2D, NMAR, and MAPC seem to outperform the other techniques.« less

  8. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    NASA Astrophysics Data System (ADS)

    Duman, M.; Pfleger, M.; Zhu, R.; Rankl, C.; Chtcheglova, L. A.; Neundlinger, I.; Bozna, B. L.; Mayer, B.; Salio, M.; Shepherd, D.; Polzella, P.; Moertelmaier, M.; Kada, G.; Ebner, A.; Dieudonne, M.; Schütz, G. J.; Cerundolo, V.; Kienberger, F.; Hinterdorfer, P.

    2010-03-01

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ~ 25 to ~ 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  9. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging.

    PubMed

    Duman, M; Pfleger, M; Zhu, R; Rankl, C; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Mayer, B; Salio, M; Shepherd, D; Polzella, P; Moertelmaier, M; Kada, G; Ebner, A; Dieudonne, M; Schütz, G J; Cerundolo, V; Kienberger, F; Hinterdorfer, P

    2010-03-19

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on alpha-galactosylceramide (alphaGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from approximately 25 to approximately 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  10. Pattern recognition by wavelet transforms using macro fibre composites transducers

    NASA Astrophysics Data System (ADS)

    Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego

    2014-10-01

    This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.

  11. Diagnosis of diabetes diseases using an Artificial Immune Recognition System2 (AIRS2) with fuzzy K-nearest neighbor.

    PubMed

    Chikh, Mohamed Amine; Saidi, Meryem; Settouti, Nesma

    2012-10-01

    The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disease dataset used in our work is retrieved from UCI machine learning repository. The performances of the AIRS2 and MAIRS2 are evaluated regarding classification accuracy, sensitivity and specificity values. The highest classification accuracy obtained when applying the AIRS2 and MAIRS2 using 10-fold cross-validation was, respectively 82.69% and 89.10%.

  12. Speaker-independent phoneme recognition with a binaural auditory image model

    NASA Astrophysics Data System (ADS)

    Francis, Keith Ivan

    1997-09-01

    This dissertation presents phoneme recognition techniques based on a binaural fusion of outputs of the auditory image model and subsequent azimuth-selective phoneme recognition in a noisy environment. Background information concerning speech variations, phoneme recognition, current binaural fusion techniques and auditory modeling issues is explained. The research is constrained to sources in the frontal azimuthal plane of a simulated listener. A new method based on coincidence detection of neural activity patterns from the auditory image model of Patterson is used for azimuth-selective phoneme recognition. The method is tested in various levels of noise and the results are reported in contrast to binaural fusion methods based on various forms of correlation to demonstrate the potential of coincidence- based binaural phoneme recognition. This method overcomes smearing of fine speech detail typical of correlation based methods. Nevertheless, coincidence is able to measure similarity of left and right inputs and fuse them into useful feature vectors for phoneme recognition in noise.

  13. Permutation coding technique for image recognition systems.

    PubMed

    Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel

    2006-11-01

    A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.

  14. Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit

    2008-02-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.

  15. Crop identification technology assessment for remote sensing (CITARS). Volume 10: Interpretation of results

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Feiveson, A. H.; Hall, F. G.; Bauer, M. E.; Davis, B. J.; Malila, W. A.; Rice, D. P.

    1975-01-01

    The CITARS was an experiment designed to quantitatively evaluate crop identification performance for corn and soybeans in various environments using a well-defined set of automatic data processing (ADP) techniques. Each technique was applied to data acquired to recognize and estimate proportions of corn and soybeans. The CITARS documentation summarizes, interprets, and discusses the crop identification performances obtained using (1) different ADP procedures; (2) a linear versus a quadratic classifier; (3) prior probability information derived from historic data; (4) local versus nonlocal recognition training statistics and the associated use of preprocessing; (5) multitemporal data; (6) classification bias and mixed pixels in proportion estimation; and (7) data with differnt site characteristics, including crop, soil, atmospheric effects, and stages of crop maturity.

  16. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process

    NASA Astrophysics Data System (ADS)

    Tirado-Guizar, Antonio; Paraguay-Delgado, Francisco; Pina-Luis, Georgina E.

    2016-12-01

    A new ‘turn-on’ Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This ‘turn-on’ response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.

  17. The Cost to Successfully Apply for Level 3 Medical Home Recognition.

    PubMed

    Halladay, Jacqueline R; Mottus, Kathleen; Reiter, Kristin; Mitchell, C Madeline; Donahue, Katrina E; Gabbard, Wilson M; Gush, Kimberly

    2016-01-01

    The National Committee for Quality Assurance patient-centered medical home recognition program provides practices an opportunity to implement medical home activities. Understanding the costs to apply for recognition may enable practices to plan their work. Practice coaches identified 5 exemplar practices (3 pediatric and 2 family medicine practices) that received level 3 recognition. This analysis focuses on 4 that received recognition in 2011. Clinical, informatics, and administrative staff participated in 2- to 3-hour interviews. We determined the time required to develop, implement, and maintain required activities. We categorized costs as (1) nonpersonnel, (2) developmental, (3) those used to implement activities, (4) those used to maintain activities, (5) those to document the work, and (6) consultant costs. Only incremental costs were included and are presented as costs per full-time equivalent (pFTE) provider. Practice size ranged from 2.5 to 10.5 pFTE providers, and payer mixes ranged from 7% to 43% Medicaid. There was variation in the distribution of costs by activity by practice, but the costs to apply were remarkably similar ($11,453-15,977 pFTE provider). The costs to apply for 2011 recognition were noteworthy. Work to enhance care coordination and close loops were highly valued. Financial incentives were key motivators. Future efforts to minimize the burden of low-value activities could benefit practices. © Copyright 2016 by the American Board of Family Medicine.

  18. Towards NIRS-based hand movement recognition.

    PubMed

    Paleari, Marco; Luciani, Riccardo; Ariano, Paolo

    2017-07-01

    This work reports on preliminary results about on hand movement recognition with Near InfraRed Spectroscopy (NIRS) and surface ElectroMyoGraphy (sEMG). Either basing on physical contact (touchscreens, data-gloves, etc.), vision techniques (Microsoft Kinect, Sony PlayStation Move, etc.), or other modalities, hand movement recognition is a pervasive function in today environment and it is at the base of many gaming, social, and medical applications. Albeit, in recent years, the use of muscle information extracted by sEMG has spread out from the medical applications to contaminate the consumer world, this technique still falls short when dealing with movements of the hand. We tested NIRS as a technique to get another point of view on the muscle phenomena and proved that, within a specific movements selection, NIRS can be used to recognize movements and return information regarding muscles at different depths. Furthermore, we propose here three different multimodal movement recognition approaches and compare their performances.

  19. The Effective Use of Symbols in Teaching Word Recognition to Children with Severe Learning Difficulties: A Comparison of Word Alone, Integrated Picture Cueing and the Handle Technique.

    ERIC Educational Resources Information Center

    Sheehy, Kieron

    2002-01-01

    A comparison is made between a new technique (the Handle Technique), Integrated Picture Cueing, and a Word Alone Method. Results show using a new combination of teaching strategies enabled logographic symbols to be used effectively in teaching word recognition to 12 children with severe learning difficulties. (Contains references.) (Author/CR)

  20. Center for Neural Engineering: applications of pulse-coupled neural networks

    NASA Astrophysics Data System (ADS)

    Malkani, Mohan; Bodruzzaman, Mohammad; Johnson, John L.; Davis, Joel

    1999-03-01

    Pulsed-Coupled Neural Network (PCNN) is an oscillatory model neural network where grouping of cells and grouping among the groups that form the output time series (number of cells that fires in each input presentation also called `icon'). This is based on the synchronicity of oscillations. Recent work by Johnson and others demonstrated the functional capabilities of networks containing such elements for invariant feature extraction using intensity maps. PCNN thus presents itself as a more biologically plausible model with solid functional potential. This paper will present the summary of several projects and their results where we successfully applied PCNN. In project one, the PCNN was applied for object recognition and classification through a robotic vision system. The features (icons) generated by the PCNN were then fed into a feedforward neural network for classification. In project two, we developed techniques for sensory data fusion. The PCNN algorithm was implemented and tested on a B14 mobile robot. The PCNN-based features were extracted from the images taken from the robot vision system and used in conjunction with the map generated by data fusion of the sonar and wheel encoder data for the navigation of the mobile robot. In our third project, we applied the PCNN for speaker recognition. The spectrogram image of speech signals are fed into the PCNN to produce invariant feature icons which are then fed into a feedforward neural network for speaker identification.

  1. Recognition of Similar Shaped Handwritten Marathi Characters Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Jane, Archana P.; Pund, Mukesh A.

    2012-03-01

    The growing need have handwritten Marathi character recognition in Indian offices such as passport, railways etc has made it vital area of a research. Similar shape characters are more prone to misclassification. In this paper a novel method is provided to recognize handwritten Marathi characters based on their features extraction and adaptive smoothing technique. Feature selections methods avoid unnecessary patterns in an image whereas adaptive smoothing technique form smooth shape of charecters.Combination of both these approaches leads to the better results. Previous study shows that, no one technique achieves 100% accuracy in handwritten character recognition area. This approach of combining both adaptive smoothing & feature extraction gives better results (approximately 75-100) and expected outcomes.

  2. A subjective framework for seat comfort based on a heuristic multi criteria decision making technique and anthropometry.

    PubMed

    Fazlollahtabar, Hamed

    2010-12-01

    Consumer expectations for automobile seat comfort continue to rise. With this said, it is evident that the current automobile seat comfort development process, which is only sporadically successful, needs to change. In this context, there has been growing recognition of the need for establishing theoretical and methodological automobile seat comfort. On the other hand, seat producer need to know the costumer's required comfort to produce based on their interests. The current research methodologies apply qualitative approaches due to anthropometric specifications. The most significant weakness of these approaches is the inexact extracted inferences. Despite the qualitative nature of the consumer's preferences there are some methods to transform the qualitative parameters into numerical value which could help seat producer to improve or enhance their products. Nonetheless this approach would help the automobile manufacturer to provide their seats from the best producer regarding to the consumers idea. In this paper, a heuristic multi criteria decision making technique is applied to make consumers preferences in the numeric value. This Technique is combination of Analytical Hierarchy Procedure (AHP), Entropy method, and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A case study is conducted to illustrate the applicability and the effectiveness of the proposed heuristic approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation

    PubMed Central

    Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin

    2013-01-01

    With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144

  4. Image processing for x-ray inspection of pistachio nuts

    NASA Astrophysics Data System (ADS)

    Casasent, David P.

    2001-03-01

    A review is provided of image processing techniques that have been applied to the inspection of pistachio nuts using X-ray images. X-ray sensors provide non-destructive internal product detail not available from other sensors. The primary concern in this data is detecting the presence of worm infestations in nuts, since they have been linked to the presence of aflatoxin. We describe new techniques for segmentation, feature selection, selection of product categories (clusters), classifier design, etc. Specific novel results include: a new segmentation algorithm to produce images of isolated product items; preferable classifier operation (the classifier with the best probability of correct recognition Pc is not best); higher-order discrimination information is present in standard features (thus, high-order features appear useful); classifiers that use new cluster categories of samples achieve improved performance. Results are presented for X-ray images of pistachio nuts; however, all techniques have use in other product inspection applications.

  5. Efficient live face detection to counter spoof attack in face recognition systems

    NASA Astrophysics Data System (ADS)

    Biswas, Bikram Kumar; Alam, Mohammad S.

    2015-03-01

    Face recognition is a critical tool used in almost all major biometrics based security systems. But recognition, authentication and liveness detection of the face of an actual user is a major challenge because an imposter or a non-live face of the actual user can be used to spoof the security system. In this research, a robust technique is proposed which detects liveness of faces in order to counter spoof attacks. The proposed technique uses a three-dimensional (3D) fast Fourier transform to compare spectral energies of a live face and a fake face in a mathematically selective manner. The mathematical model involves evaluation of energies of selective high frequency bands of average power spectra of both live and non-live faces. It also carries out proper recognition and authentication of the face of the actual user using the fringe-adjusted joint transform correlation technique, which has been found to yield the highest correlation output for a match. Experimental tests show that the proposed technique yields excellent results for identifying live faces.

  6. Appearance-based human gesture recognition using multimodal features for human computer interaction

    NASA Astrophysics Data System (ADS)

    Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun

    2011-03-01

    The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.

  7. Transfer learning for visual categorization: a survey.

    PubMed

    Shao, Ling; Zhu, Fan; Li, Xuelong

    2015-05-01

    Regular machine learning and data mining techniques study the training data for future inferences under a major assumption that the future data are within the same feature space or have the same distribution as the training data. However, due to the limited availability of human labeled training data, training data that stay in the same feature space or have the same distribution as the future data cannot be guaranteed to be sufficient enough to avoid the over-fitting problem. In real-world applications, apart from data in the target domain, related data in a different domain can also be included to expand the availability of our prior knowledge about the target future data. Transfer learning addresses such cross-domain learning problems by extracting useful information from data in a related domain and transferring them for being used in target tasks. In recent years, with transfer learning being applied to visual categorization, some typical problems, e.g., view divergence in action recognition tasks and concept drifting in image classification tasks, can be efficiently solved. In this paper, we survey state-of-the-art transfer learning algorithms in visual categorization applications, such as object recognition, image classification, and human action recognition.

  8. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yan, Chang-Ling; Gao, Shu-Yan

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  9. Real-time mental arithmetic task recognition from EEG signals.

    PubMed

    Wang, Qiang; Sourina, Olga

    2013-03-01

    Electroencephalography (EEG)-based monitoring the state of the user's brain functioning and giving her/him the visual/audio/tactile feedback is called neurofeedback technique, and it could allow the user to train the corresponding brain functions. It could provide an alternative way of treatment for some psychological disorders such as attention deficit hyperactivity disorder (ADHD), where concentration function deficit exists, autism spectrum disorder (ASD), or dyscalculia where the difficulty in learning and comprehending the arithmetic exists. In this paper, a novel method for multifractal analysis of EEG signals named generalized Higuchi fractal dimension spectrum (GHFDS) was proposed and applied in mental arithmetic task recognition from EEG signals. Other features such as power spectrum density (PSD), autoregressive model (AR), and statistical features were analyzed as well. The usage of the proposed fractal dimension spectrum of EEG signal in combination with other features improved the mental arithmetic task recognition accuracy in both multi-channel and one-channel subject-dependent algorithms up to 97.87% and 84.15% correspondingly. Based on the channel ranking, four channels were chosen which gave the accuracy up to 97.11%. Reliable real-time neurofeedback system could be implemented based on the algorithms proposed in this paper.

  10. Connectivity strategies for higher-order neural networks applied to pattern recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1990-01-01

    Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.

  11. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal

    NASA Astrophysics Data System (ADS)

    Mlynarczuk, Mariusz; Skiba, Marta

    2017-06-01

    The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.

  12. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  13. Applying Affect Recognition in Serious Games: The PlayMancer Project

    NASA Astrophysics Data System (ADS)

    Ben Moussa, Maher; Magnenat-Thalmann, Nadia

    This paper presents an overview and the state-of-art in the applications of 'affect' recognition in serious games for the support of patients in behavioral and mental disorder treatments and chronic pain rehabilitation, within the framework of the European project PlayMancer. Three key technologies are discussed relating to facial affect recognition, fusion of different affect recognition methods, and the application of affect recognition in serious games.

  14. Fine-grained recognition of plants from images.

    PubMed

    Šulc, Milan; Matas, Jiří

    2017-01-01

    Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.

  15. Pattern Recognition Using Artificial Neural Network: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.

  16. The adaptive use of recognition in group decision making.

    PubMed

    Kämmer, Juliane E; Gaissmaier, Wolfgang; Reimer, Torsten; Schermuly, Carsten C

    2014-06-01

    Applying the framework of ecological rationality, the authors studied the adaptivity of group decision making. In detail, they investigated whether groups apply decision strategies conditional on their composition in terms of task-relevant features. The authors focused on the recognition heuristic, so the task-relevant features were the validity of the group members' recognition and knowledge, which influenced the potential performance of group strategies. Forty-three three-member groups performed an inference task in which they had to infer which of two German companies had the higher market capitalization. Results based on the choice data support the hypothesis that groups adaptively apply the strategy that leads to the highest theoretically achievable performance. Time constraints had no effect on strategy use but did have an effect on the proportions of different types of arguments. Possible mechanisms underlying the adaptive use of recognition in group decision making are discussed. © 2014 Cognitive Science Society, Inc.

  17. Dual-Process Models of Associative Recognition in Young and Older Adults: Evidence from Receiver Operating Characteristics

    ERIC Educational Resources Information Center

    Healy, Michael R.; Light, Leah L.; Chung, Christie

    2005-01-01

    In 3 experiments, young and older adults studied lists of unrelated word pairs and were given confidence-rated item and associative recognition tests. Several different models of recognition were fit to the confidence-rating data using techniques described by S. Macho (2002, 2004). Concordant with previous findings, item recognition data were best…

  18. Edge detection techniques for iris recognition system

    NASA Astrophysics Data System (ADS)

    Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.

    2013-12-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.

  19. Reducing the worst case running times of a family of RNA and CFG problems, using Valiant's approach.

    PubMed

    Zakov, Shay; Tsur, Dekel; Ziv-Ukelson, Michal

    2011-08-18

    RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining different variants of RNA structure prediction problems, and to developing techniques for improving prediction quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that presented by Nussinov and Jacobson in the late 70's, which typically yields cubic worst case running time algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms, motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of accumulated genome-wide data. We study Valiant's classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant's approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant's technique and can be applied to all problems which abide by these templates, including many problems within the world of RNA Secondary Structures and Context Free Grammars. The algorithms presented in this paper improve the theoretical asymptotic worst case running time bounds for a large family of important problems. It is also possible that the suggested techniques could be applied to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition function and base-pair binding probabilities), the presented techniques are the only ones which are currently known for reducing the asymptotic running time bounds of the standard algorithms.

  20. Reducing the worst case running times of a family of RNA and CFG problems, using Valiant's approach

    PubMed Central

    2011-01-01

    Background RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining different variants of RNA structure prediction problems, and to developing techniques for improving prediction quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that presented by Nussinov and Jacobson in the late 70's, which typically yields cubic worst case running time algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms, motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of accumulated genome-wide data. Results We study Valiant's classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant's approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant's technique and can be applied to all problems which abide by these templates, including many problems within the world of RNA Secondary Structures and Context Free Grammars. Conclusions The algorithms presented in this paper improve the theoretical asymptotic worst case running time bounds for a large family of important problems. It is also possible that the suggested techniques could be applied to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition function and base-pair binding probabilities), the presented techniques are the only ones which are currently known for reducing the asymptotic running time bounds of the standard algorithms. PMID:21851589

  1. The Role of Lattice Matching Techniques in the Characterization of Polymorphic Forms.

    PubMed

    Mighell, Alan D

    2011-01-01

    An inspection of the recent literature reveals that polymorphism is a frequently encountered phenomenon. The recognition of polymorphic forms plays a vital role in the materials sciences because such structures are characterized by different crystal packing and accordingly have different physical properties. In the pharmaceutical industry, recognition of polymorphic forms can be critical for, in certain cases, a polymorphic form of a drug may be an ineffective therapeutic agent due to its unfavorable physical properties. A check of the recent literature has revealed that in some cases new polymorphic forms are not recognized. In other instances, a supposedly new polymeric form is actually the result of an incorrect structure determination. Fortunately, lattice-matching techniques, which have proved invaluable in the identification and characterization of crystal structures, represent a powerful tool for analyzing polymorphic forms. These lattice-matching methods are based on either of two strategies: (a) the reduced cell strategy-the matching of reduced cells of the respective lattices or (b) the matrix strategy-the determination of a matrix or matrices relating the two lattices coupled with an analysis of the matrix elements. Herein, these techniques are applied to three typical cases-(a) the identification of a new polymorphic form, (b) the demonstration that a substance may not be a new polymorphic form due to missed symmetry, and (c) the evaluation of pseudo polymorphism because of a missed lattice. To identify new polymorphic forms and to prevent errors, it is recommended that these lattice matching techniques become an integral part of the editorial review process of crystallography journals.

  2. Learning to recognize rat social behavior: Novel dataset and cross-dataset application.

    PubMed

    Lorbach, Malte; Kyriakou, Elisavet I; Poppe, Ronald; van Dam, Elsbeth A; Noldus, Lucas P J J; Veltkamp, Remco C

    2018-04-15

    Social behavior is an important aspect of rodent models. Automated measuring tools that make use of video analysis and machine learning are an increasingly attractive alternative to manual annotation. Because machine learning-based methods need to be trained, it is important that they are validated using data from different experiment settings. To develop and validate automated measuring tools, there is a need for annotated rodent interaction datasets. Currently, the availability of such datasets is limited to two mouse datasets. We introduce the first, publicly available rat social interaction dataset, RatSI. We demonstrate the practical value of the novel dataset by using it as the training set for a rat interaction recognition method. We show that behavior variations induced by the experiment setting can lead to reduced performance, which illustrates the importance of cross-dataset validation. Consequently, we add a simple adaptation step to our method and improve the recognition performance. Most existing methods are trained and evaluated in one experimental setting, which limits the predictive power of the evaluation to that particular setting. We demonstrate that cross-dataset experiments provide more insight in the performance of classifiers. With our novel, public dataset we encourage the development and validation of automated recognition methods. We are convinced that cross-dataset validation enhances our understanding of rodent interactions and facilitates the development of more sophisticated recognition methods. Combining them with adaptation techniques may enable us to apply automated recognition methods to a variety of animals and experiment settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An analysis of pilot error-related aircraft accidents

    NASA Technical Reports Server (NTRS)

    Kowalsky, N. B.; Masters, R. L.; Stone, R. B.; Babcock, G. L.; Rypka, E. W.

    1974-01-01

    A multidisciplinary team approach to pilot error-related U.S. air carrier jet aircraft accident investigation records successfully reclaimed hidden human error information not shown in statistical studies. New analytic techniques were developed and applied to the data to discover and identify multiple elements of commonality and shared characteristics within this group of accidents. Three techniques of analysis were used: Critical element analysis, which demonstrated the importance of a subjective qualitative approach to raw accident data and surfaced information heretofore unavailable. Cluster analysis, which was an exploratory research tool that will lead to increased understanding and improved organization of facts, the discovery of new meaning in large data sets, and the generation of explanatory hypotheses. Pattern recognition, by which accidents can be categorized by pattern conformity after critical element identification by cluster analysis.

  4. A robust star identification algorithm with star shortlisting

    NASA Astrophysics Data System (ADS)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  5. IFNA approved Chinese Anaesthesia Nurse Education Program: A Delphi method.

    PubMed

    Hu, Jiale; Fallacaro, Michael D; Jiang, Lili; Wu, Junyan; Jiang, Hong; Shi, Zhen; Ruan, Hong

    2017-09-01

    Numerous nurses work in operating rooms and recovery rooms or participate in the performance of anaesthesia in China. However, the scope of practice and the education for Chinese Anaesthesia Nurses is not standardized, varying from one geographic location to another. Furthermore, most nurses are not trained sufficiently to provide anaesthesia care. This study aimed to develop the first Anaesthesia Nurse Education Program in Mainland China based on the Educational Standards of the International Federation of Nurse Anaesthetists. The Delphi technique was applied to develop the scope of practice, competencies for Chinese Anaesthesia Nurses and education program. In 2014 the Anaesthesia Nurse Education Program established by the hospital applied for recognition by the International Federation of Nurse Anaesthetists. The Program's curriculum was evaluated against the IFNA Standards and recognition was awarded in 2015. The four-category, 50-item practice scope, and the three-domain, 45-item competency list were identified for Chinese Anaesthesia Nurses. The education program, which was established based on the International Federation of Nurse Anaesthetists educational standards and Chinese context, included nine curriculum modules. In March 2015, 13 candidates received and passed the 21-month education program. The Anaesthesia Nurse Education Program became the first program approved by the International Federation of Nurse Anaesthetists in China. Policy makers and hospital leaders can be confident that anaesthesia nurses graduating from this Chinese program will be prepared to demonstrate high level patient care as reflected in the recognition by IFNA of their adoption of international nurse anaesthesia education standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  7. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  8. A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.

    ERIC Educational Resources Information Center

    Paul, James E., Jr.

    Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…

  9. Face recognition using 3D facial shape and color map information: comparison and combination

    NASA Astrophysics Data System (ADS)

    Godil, Afzal; Ressler, Sandy; Grother, Patrick

    2004-08-01

    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.

  10. Low energy physical activity recognition system on smartphones.

    PubMed

    Soria Morillo, Luis Miguel; Gonzalez-Abril, Luis; Ortega Ramirez, Juan Antonio; de la Concepcion, Miguel Angel Alvarez

    2015-03-03

    An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy.

  11. Protein-protein recognition control by modulating electrostatic interactions.

    PubMed

    Han, Song; Yin, Shijin; Yi, Hong; Mouhat, Stéphanie; Qiu, Su; Cao, Zhijian; Sabatier, Jean-Marc; Wu, Yingliang; Li, Wenxin

    2010-06-04

    Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.

  12. Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.

    PubMed

    Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin

    2016-04-14

    Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.

  13. V-DRASTIC: Using visualization to engage policymakers in groundwater vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Bojórquez-Tapia, Luis A.; Cruz-Bello, Gustavo M.; Luna-González, Laura; Juárez, Lourdes; Ortiz-Pérez, Mario A.

    2009-06-01

    SummaryGroundwater vulnerability mapping is increasingly being used to design aquifer protection and management strategies. This paper presents a dynamic visualization method to groundwater vulnerability mapping. This method—called V-DRASTIC—extends the capacities of DRASTIC, an overlay/index technique that has been applied worldwide to evaluate the condition of hydrogeological factors and determine groundwater vulnerability at regional scales. V-DRASTIC is based upon psychophysics' principles (a theory that describes the people's response to a stimulus) to generate alternative groundwater vulnerability categorization schemes. These are used as inputs in a fuzzy pattern recognition procedure to enable planners, decision makers and stakeholders identify which scheme conveys meaningful information regarding groundwater vulnerability across a territory. V-DRASTIC was applied in the groundwater vulnerability assessment of two urban watersheds in Mexico.

  14. Gas Sensors Based on Molecular Imprinting Technology.

    PubMed

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  15. Non-Traditional Organizational Design Concepts

    DTIC Science & Technology

    1982-05-01

    specialists benefit, for recognition ave. to ave. have associatelon with project; resembles job enrichment. 9 12 . Structure/concept Yes Synonym for program...provisions Little Wall (1980): Form of recognition is per- for recognition ceived by functional specialists ; resem- bles job enrichment. 12 ...Indirect reward to functional recognition specialists ; resembles job enrichment. 12 . Structure/concept No • S applied in the pub- lic sector 108 U

  16. Modelling Errors in Automatic Speech Recognition for Dysarthric Speakers

    NASA Astrophysics Data System (ADS)

    Caballero Morales, Santiago Omar; Cox, Stephen J.

    2009-12-01

    Dysarthria is a motor speech disorder characterized by weakness, paralysis, or poor coordination of the muscles responsible for speech. Although automatic speech recognition (ASR) systems have been developed for disordered speech, factors such as low intelligibility and limited phonemic repertoire decrease speech recognition accuracy, making conventional speaker adaptation algorithms perform poorly on dysarthric speakers. In this work, rather than adapting the acoustic models, we model the errors made by the speaker and attempt to correct them. For this task, two techniques have been developed: (1) a set of "metamodels" that incorporate a model of the speaker's phonetic confusion matrix into the ASR process; (2) a cascade of weighted finite-state transducers at the confusion matrix, word, and language levels. Both techniques attempt to correct the errors made at the phonetic level and make use of a language model to find the best estimate of the correct word sequence. Our experiments show that both techniques outperform standard adaptation techniques.

  17. Component Pin Recognition Using Algorithms Based on Machine Learning

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  18. A commentary on the status of the behavioral approach in the healthcare marketplace.

    PubMed

    Moss, G R

    1993-12-01

    Clinically applied behavioral technology (e.g., integrated, systems-based hospital programs) and specific behavior therapies (e.g., systematic desensitization) have a long record of documented and powerful efficacy yet have failed to penetrate successfully the healthcare marketplace and to receive adequate public recognition. Many behavioral techniques are utilized widely without acknowledgement of their true origins. The current position of the behavioral approach in the healthcare marketplace is examined, and factors making for resistance to its acceptance are identified. Recommendations are offered for the more effective promotion of behavioral methods and services.

  19. Generative Models in Deep Learning: Constraints for Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.

    2018-01-01

    New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.

  20. 33 CFR 106.220 - Security training for all other OCS facility personnel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; and (e) Recognition of techniques used to circumvent security measures. (f) Familiarity with all relevant aspects of...

  1. 33 CFR 106.220 - Security training for all other OCS facility personnel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; and (e) Recognition of techniques used to circumvent security measures. (f) Familiarity with all relevant aspects of...

  2. A perspective on two chemometrics tools: PCA and MCR, and introduction of a new one: Pattern recognition entropy (PRE), as applied to XPS and ToF-SIMS depth profiles of organic and inorganic materials

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shiladitya; Singh, Bhupinder; Diwan, Anubhav; Lee, Zheng Rong; Engelhard, Mark H.; Terry, Jeff; Tolley, H. Dennis; Gallagher, Neal B.; Linford, Matthew R.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are much used analytical techniques that provide information about the outermost atomic and molecular layers of materials. In this work, we discuss the application of multivariate spectral techniques, including principal component analysis (PCA) and multivariate curve resolution (MCR), to the analysis of XPS and ToF-SIMS depth profiles. Multivariate analyses often provide insight into data sets that is not easily obtained in a univariate fashion. Pattern recognition entropy (PRE), which has its roots in Shannon's information theory, is also introduced. This approach is not the same as the mutual information/entropy approaches sometimes used in data processing. A discussion of the theory of each technique is presented. PCA, MCR, and PRE are applied to four different data sets obtained from: a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized C3F6 on Si, a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized PNIPAM (poly (N-isopropylacrylamide)) on Si, an XPS depth profile through a film of SiO2 on Si, and an XPS depth profile through a film of Ta2O5 on Ta. PCA, MCR, and PRE reveal the presence of interfaces in the films, and often indicate that the first few scans in the depth profiles are different from those that follow. PRE and backward difference PRE provide this information in a straightforward fashion. Rises in the PRE signals at interfaces suggest greater complexity to the corresponding spectra. Results from PCA, especially for the higher principal components, were sometimes difficult to understand. MCR analyses were generally more interpretable.

  3. Binary optical filters for scale invariant pattern recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  4. Integrating LPR with CCTV systems: problems and solutions

    NASA Astrophysics Data System (ADS)

    Bissessar, David; Gorodnichy, Dmitry O.

    2011-06-01

    A new generation of high-resolution surveillance cameras makes it possible to apply video processing and recognition techniques on live video feeds for the purpose of automatically detecting and identifying objects and events of interest. This paper addresses a particular application of detecting and identifying vehicles passing through a checkpoint. This application is of interest to border services agencies and is also related to many other applications. With many commercial automated License Plate Recognition (LPR) systems available on the market, some of which are available as a plug-in for surveillance systems, this application still poses many unresolved technological challenges, the main two of which are: i) multiple and often noisy license plate readings generated for the same vehicle, and ii) failure to detect a vehicle or license plate altogether when the license plate is occluded or not visible. This paper presents a solution to both of these problems. A data fusion technique based on the Levenshtein distance is used to resolve the first problem. An integration of a commercial LPR system with the in-house built Video Analytic Platform is used to solve the latter. The developed solution has been tested in field environments and has been shown to yield a substantial improvement over standard off-the-shelf LPR systems.

  5. Efficient iris texture analysis method based on Gabor ordinal measures

    NASA Astrophysics Data System (ADS)

    Tajouri, Imen; Aydi, Walid; Ghorbel, Ahmed; Masmoudi, Nouri

    2017-07-01

    With the remarkably increasing interest directed to the security dimension, the iris recognition process is considered to stand as one of the most versatile technique critically useful for the biometric identification and authentication process. This is mainly due to every individual's unique iris texture. A modestly conceived efficient approach relevant to the feature extraction process is proposed. In the first place, iris zigzag "collarette" is extracted from the rest of the image by means of the circular Hough transform, as it includes the most significant regions lying in the iris texture. In the second place, the linear Hough transform is used for the eyelids' detection purpose while the median filter is applied for the eyelashes' removal. Then, a special technique combining the richness of Gabor features and the compactness of ordinal measures is implemented for the feature extraction process, so that a discriminative feature representation for every individual can be achieved. Subsequently, the modified Hamming distance is used for the matching process. Indeed, the advanced procedure turns out to be reliable, as compared to some of the state-of-the-art approaches, with a recognition rate of 99.98%, 98.12%, and 95.02% on CASIAV1.0, CASIAV3.0, and IIT Delhi V1 iris databases, respectively.

  6. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  7. AutoMap User’s Guide

    DTIC Science & Technology

    2006-10-01

    Hierarchy of Pre-Processing Techniques 3. NLP (Natural Language Processing) Utilities 3.1 Named-Entity Recognition 3.1.1 Example for Named-Entity... Recognition 3.2 Symbol RemovalN-Gram Identification: Bi-Grams 4. Stemming 4.1 Stemming Example 5. Delete List 5.1 Open a Delete List 5.1.1 Small...iterative and involves several key processes: • Named-Entity Recognition Named-Entity Recognition is an Automap feature that allows you to

  8. 78 FR 60898 - Regulation on Definition and Requirements for a Nationally Recognized Testing Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... organizations must follow to apply for, and to maintain, OSHA's recognition to test and certify equipment... procedures that organizations must follow to apply for, and to maintain, OSHA's recognition to test and... practicable, the forms will provide for automations such as drop down lists to increase ease of use and reduce...

  9. Improving activity recognition using temporal coherence.

    PubMed

    Ataya, Abbas; Jallon, Pierre; Bianchi, Pascal; Doron, Maeva

    2013-01-01

    Assessment of daily physical activity using data from wearable sensors has recently become a prominent research area in the biomedical engineering field and a substantial application for pattern recognition. In this paper, we present an accelerometer-based activity recognition scheme on the basis of a hierarchical structured classifier. A first step consists of distinguishing static activities from dynamic ones in order to extract relevant features for each activity type. Next, a separate classifier is applied to detect more specific activities of the same type. On top of our activity recognition system, we introduce a novel approach to take into account the temporal coherence of activities. Inter-activity transition information is modeled by a directed graph Markov chain. Confidence measures in activity classes are then evaluated from conventional classifier's outputs and coupled with the graph to reinforce activity estimation. Accurate results and significant improvement of activity detection are obtained when applying our system for the recognition of 9 activities for 48 subjects.

  10. An Individual Finger Gesture Recognition System Based on Motion-Intent Analysis Using Mechanomyogram Signal

    PubMed Central

    Ding, Huijun; He, Qing; Zhou, Yongjin; Dan, Guo; Cui, Song

    2017-01-01

    Motion-intent-based finger gesture recognition systems are crucial for many applications such as prosthesis control, sign language recognition, wearable rehabilitation system, and human–computer interaction. In this article, a motion-intent-based finger gesture recognition system is designed to correctly identify the tapping of every finger for the first time. Two auto-event annotation algorithms are firstly applied and evaluated for detecting the finger tapping frame. Based on the truncated signals, the Wavelet packet transform (WPT) coefficients are calculated and compressed as the features, followed by a feature selection method that is able to improve the performance by optimizing the feature set. Finally, three popular classifiers including naive Bayes (NBC), K-nearest neighbor (KNN), and support vector machine (SVM) are applied and evaluated. The recognition accuracy can be achieved up to 94%. The design and the architecture of the system are presented with full system characterization results. PMID:29167655

  11. Direct electrical control of IgG conformation and functional activity at surfaces

    NASA Astrophysics Data System (ADS)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  12. [Development of image quality assurance support system using image recognition technology in radiography in lacked images of chest and abdomen].

    PubMed

    Shibuya, Toru; Kato, Kyouichi; Eshima, Hidekazu; Sumi, Shinichirou; Kubo, Tadashi; Ishida, Hideki; Nakazawa, Yasuo

    2012-01-01

    In order to provide a precise radiography for diagnosis, it is required that we avoid radiography with defects by having enough evaluation. Conventionally, evaluation was performed only by observation of a radiological technologist (RT). The evaluation support system was developed for providing a high quality assurance without depending on RT observation only. The evaluation support system, called as the Image Quality Assurance Support System (IQASS), is characterized in that "image recognition technology" for the purpose of diagnostic radiography of chest and abdomen areas. The technique of the system used in this study. Of the 259 samples of posterior-anterior (AP) chest, lateral chest, and upright abdominal x-rays, the sensitivity and specificity was 93.1% and 91.8% in the chest AP, 93.3% and 93.6% in the chest lateral, and 95.0% and 93.8% in the upright abdominal x-rays. In the light of these results, it is suggested that AIQAS could be applied to practical usage for the RT.

  13. Automotive System for Remote Surface Classification.

    PubMed

    Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail

    2017-04-01

    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.

  14. Automotive System for Remote Surface Classification

    PubMed Central

    Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail

    2017-01-01

    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions. PMID:28368297

  15. Ultra wide band 3-D cross section (RCS) holography

    NASA Astrophysics Data System (ADS)

    Collins, H. D.; Hall, T. E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  16. Rad4 recognition-at-a-distance: Physical basis of conformation-specific anomalous diffusion of DNA repair proteins.

    PubMed

    Kong, Muwen; Van Houten, Bennett

    2017-08-01

    Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Analysis of digitized cervical images to detect cervical neoplasia

    NASA Astrophysics Data System (ADS)

    Ferris, Daron G.

    2004-05-01

    Cervical cancer is the second most common malignancy in women worldwide. If diagnosed in the premalignant stage, cure is invariably assured. Although the Papanicolaou (Pap) smear has significantly reduced the incidence of cervical cancer where implemented, the test is only moderately sensitive, highly subjective and skilled-labor intensive. Newer optical screening tests (cervicography, direct visual inspection and speculoscopy), including fluorescent and reflective spectroscopy, are fraught with certain weaknesses. Yet, the integration of optical probes for the detection and discrimination of cervical neoplasia with automated image analysis methods may provide an effective screening tool for early detection of cervical cancer, particularly in resource poor nations. Investigative studies are needed to validate the potential for automated classification and recognition algorithms. By applying image analysis techniques for registration, segmentation, pattern recognition, and classification, cervical neoplasia may be reliably discriminated from normal epithelium. The National Cancer Institute (NCI), in cooperation with the National Library of Medicine (NLM), has embarked on a program to begin this and other similar investigative studies.

  18. On the Application of Pattern Recognition and AI Technique to the Cytoscreening of Vaginal Smears by Computer

    NASA Astrophysics Data System (ADS)

    Bow, Sing T.; Wang, Xia-Fang

    1989-05-01

    In this paper the concepts of pattern recognition, image processing and artificial intelligence are applied to the development of an intelligent cytoscreening system to differentiate the abnormal cytological objects from the normal ones in vaginal smears. To achieve this goal,work listed below are involved: 1. Enhancement of the microscopic images of the smears; 2. Elevation of the qualitative differentiation under the microscope by cytologists to a quantitative differentiation plateau on the epithelial cells, ciliated cells, vacuolated cells, foreign-body-giant cells, plasma cells, lymph cells, white blood cells, red blood cells, etc. These knowledges are to be inputted into our intelligent cyto-screening system to ameliorate machine differentiation; 3. Selection of a set of effective features to characterize the cytological objects onto various regions of the multiclustered by computer algorithms; and 4. Systematical summarization of the knowledge that a gynecologist has and the way he/she follows when dealing with a case.

  19. Building Searchable Collections of Enterprise Speech Data.

    ERIC Educational Resources Information Center

    Cooper, James W.; Viswanathan, Mahesh; Byron, Donna; Chan, Margaret

    The study has applied speech recognition and text-mining technologies to a set of recorded outbound marketing calls and analyzed the results. Since speaker-independent speech recognition technology results in a significantly lower recognition rate than that found when the recognizer is trained for a particular speaker, a number of post-processing…

  20. The Wireless Ubiquitous Surveillance Testbed

    DTIC Science & Technology

    2003-03-01

    c. Eye Patterns.............................................................................17 d. Facial Recognition ..................................................................19...27). ...........................................98 Table F.4. Facial Recognition Products. (After: Polemi, p. 25 and BiometriTech, 15 May 2002...it applies to homeland security. C. RESEARCH TASKS The main goals of this thesis are to: • Set up the biometric sensors and facial recognition surveillance

  1. An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device

    USDA-ARS?s Scientific Manuscript database

    Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...

  2. Shape and Color Features for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.

    2012-01-01

    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.

  3. Retinal blood vessel segmentation using fully convolutional network with transfer learning.

    PubMed

    Jiang, Zhexin; Zhang, Hao; Wang, Yi; Ko, Seok-Bum

    2018-04-26

    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automated or computer-aided diagnosis systems. In this paper, a supervised method is presented based on a pre-trained fully convolutional network through transfer learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition and result merging. Meanwhile, additional unsupervised image post-processing techniques are applied to this proposed method so as to refine the final result. Extensive experiments have been conducted on DRIVE, STARE, CHASE_DB1 and HRF databases, and the accuracy of the cross-database test on these four databases is state-of-the-art, which also presents the high robustness of the proposed approach. This successful result has not only contributed to the area of automated retinal blood vessel segmentation but also supports the effectiveness of transfer learning when applying deep learning technique to medical imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Authentication of fattening diet of Iberian pigs according to their volatile compounds profile from raw subcutaneous fat.

    PubMed

    Narváez-Rivas, M; Pablos, F; Jurado, J M; León-Camacho, M

    2011-02-01

    The composition of volatile components of subcutaneous fat from Iberian pig has been studied. Purge and trap gas chromatography-mass spectrometry has been used. The composition of the volatile fraction of subcutaneous fat has been used for authentication purposes of different types of Iberian pig fat. Three types of this product have been considered, montanera, extensive cebo and intensive cebo. With classification purposes, several pattern recognition techniques have been applied. In order to find out possible tendencies in the sample distribution as well as the discriminant power of the variables, principal component analysis was applied as visualisation technique. Linear discriminant analysis (LDA) and soft independent modelling by class analogy (SIMCA) were used to obtain suitable classification models. LDA and SIMCA allowed the differentiation of three fattening diets by using the contents in 2,2,4,6,6-pentamethyl-heptane, m-xylene, 2,4-dimethyl-heptane, 6-methyl-tridecane, 1-methoxy-2-propanol, isopropyl alcohol, o-xylene, 3-ethyl-2,2-dimethyl-oxirane, 2,6-dimethyl-undecane, 3-methyl-3-pentanol and limonene.

  5. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    PubMed

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  6. Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: An integrated computational-assisted approach.

    PubMed

    Martins, Nuno; Carreiro, Elisabete P; Locati, Abel; Ramalho, João P Prates; Cabrita, Maria João; Burke, Anthony J; Garcia, Raquel

    2015-08-28

    This work firstly addresses the design and development of molecularly imprinted systems selective for deltamethrin aiming to provide a suitable sorbent for solid phase (SPE) extraction that will be further used for the implementation of an analytical methodology for the trace analysis of the target pesticide in spiked olive oil samples. To achieve this goal, a preliminary evaluation of the molecular recognition and selectivity of the molecularly imprinted polymers has been performed. In order to investigate the complexity of the mechanistic basis for template selective recognition in these polymeric matrices, the use of a quantum chemical approach has been attempted providing new insights about the mechanisms underlying template recognition, and in particular the crucial role of the crosslinker agent and the solvent used. Thus, DFT calculations corroborate the results obtained by experimental molecular recognition assays enabling one to select the most suitable imprinting system for MISPE extraction technique which encompasses acrylamide as functional monomer and ethylene glycol dimethacrylate as crosslinker. Furthermore, an analytical methodology comprising a sample preparation step based on solid phase extraction has been implemented using this "tailor made" imprinting system as sorbent, for the selective isolation/pre-concentration of deltamethrin from olive oil samples. Molecularly imprinted solid phase extraction (MISPE) methodology was successfully applied for the clean-up of spiked olive oil samples, with recovery rates up to 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Object Recognition in Mental Representations: Directions for Exploring Diagnostic Features through Visual Mental Imagery.

    PubMed

    Roldan, Stephanie M

    2017-01-01

    One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation.

  8. Object Recognition in Mental Representations: Directions for Exploring Diagnostic Features through Visual Mental Imagery

    PubMed Central

    Roldan, Stephanie M.

    2017-01-01

    One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation. PMID:28588538

  9. [Measuring impairment of facial affects recognition in schizophrenia. Preliminary study of the facial emotions recognition task (TREF)].

    PubMed

    Gaudelus, B; Virgile, J; Peyroux, E; Leleu, A; Baudouin, J-Y; Franck, N

    2015-06-01

    The impairment of social cognition, including facial affects recognition, is a well-established trait in schizophrenia, and specific cognitive remediation programs focusing on facial affects recognition have been developed by different teams worldwide. However, even though social cognitive impairments have been confirmed, previous studies have also shown heterogeneity of the results between different subjects. Therefore, assessment of personal abilities should be measured individually before proposing such programs. Most research teams apply tasks based on facial affects recognition by Ekman et al. or Gur et al. However, these tasks are not easily applicable in a clinical exercise. Here, we present the Facial Emotions Recognition Test (TREF), which is designed to identify facial affects recognition impairments in a clinical practice. The test is composed of 54 photos and evaluates abilities in the recognition of six universal emotions (joy, anger, sadness, fear, disgust and contempt). Each of these emotions is represented with colored photos of 4 different models (two men and two women) at nine intensity levels from 20 to 100%. Each photo is presented during 10 seconds; no time limit for responding is applied. The present study compared the scores of the TREF test in a sample of healthy controls (64 subjects) and people with stabilized schizophrenia (45 subjects) according to the DSM IV-TR criteria. We analysed global scores for all emotions, as well as sub scores for each emotion between these two groups, taking into account gender differences. Our results were coherent with previous findings. Applying TREF, we confirmed an impairment in facial affects recognition in schizophrenia by showing significant differences between the two groups in their global results (76.45% for healthy controls versus 61.28% for people with schizophrenia), as well as in sub scores for each emotion except for joy. Scores for women were significantly higher than for men in the population without psychiatric diagnosis. The study also allowed the identification of cut-off scores; results below 2 standard deviations of the healthy control average (61.57%) pointed to a facial affect recognition deficit. The TREF appears to be a useful tool to identify facial affects recognition impairment in schizophrenia. Neuropsychologists, who have tried this task, have positive feedback. The TREF is easy to use (duration of about 15 minutes), easy to apply in subjects with attentional difficulties, and tests facial affects recognition at ecological intensity levels. These results have to be confirmed in the future with larger sample sizes, and in comparison with other tasks, evaluating the facial affects recognition processes. Copyright © 2014 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  10. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  11. The Effect of Jigsaw Technique on the Students' Laboratory Material Recognition and Usage Skills in General Physics Laboratory-I Course

    ERIC Educational Resources Information Center

    Aydin, Abdullah; Biyikli, Filiz

    2017-01-01

    This research aims to compare the effects of Jigsaw technique from the cooperative learning methods and traditional learning method on laboratory material recognition and usage skills of students in General Physics Lab-I Course. This study was conducted with 63 students who took general physics laboratory-I course in the department of science…

  12. Terrain type recognition using ERTS-1 MSS images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1973-01-01

    For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.

  13. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  14. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Wei

    Biomacromolecules play an important role in the control of hard tissue structure and function via specific molecular recognition interactions between proteins of the matrix and inorganic species of the biomineral phase. During the construction of the tissue, biomacromolecules are usually folded into a certain comformation, analogous to a "lock" for fitting with other proteins or smaller molecules as a "key". Currently, the rational design of molecular recognition in biomacro-molecules is still hard to accomplish because the protein conformation is too complex to precisely predict based on the existing conformational information of proteins found in biological systems. In the past two decades, the combinatorial approach (e.g. phage display techniques) has been used to select short binding peptides with molecular recognition to an inorganic target material without a prior knowledge of the amino acid sequence required for the specific binding. The technique has been referred to as "biopanning" because bacteriophages are used to "screen" for peptides that exhibit strong binding to a target material of interest. In this study, two diverse applications were chosen to demonstrate the utility of the biopanning approach. In one project, phage display techniques were used to pan for Indium Zinc Oxide (InZnO) binding peptides to serve as linkers between transducer devices and biosensing elements for demonstration of the feasibility of reversibly electro-activated biosensors. The amorphous InZnO, with its homogeneous surface, led to three consensus peptide sequences, AGFPNSTHSSNL, SHAPDSTWFALF, and TNSSSQFVVAIP. In addition, it was demonstrated that some selected phage clones of the InZnO binding peptides were able to be released from the InZnO surface after applying a voltage of 1400 mV on an electro-activated releasing device. In the second project, phage display techniques were used to select phage clones that bind specifically to francolite mineral in order to achieve separation of francolite particles from dolomitic particles within Florida phosphate ore. A phage clone with a 12-mer francolite binding peptide of WSITTYHDRAIV was able to concentrate the content of francolite from 25% to 42% in a bench-top flotation process of mixed minerals. The first system demonstrates an advanced technology application of the biopanning approach for the development of novel biosensors, while the second system demonstrates application of the biotechnology approach to a commodity industry.

  15. Computational intelligence techniques for biological data mining: An overview

    NASA Astrophysics Data System (ADS)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  16. Event identification by acoustic signature recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and futuremore » applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.« less

  17. Face recognition via edge-based Gabor feature representation for plastic surgery-altered images

    NASA Astrophysics Data System (ADS)

    Chude-Olisah, Chollette C.; Sulong, Ghazali; Chude-Okonkwo, Uche A. K.; Hashim, Siti Z. M.

    2014-12-01

    Plastic surgery procedures on the face introduce skin texture variations between images of the same person (intra-subject), thereby making the task of face recognition more difficult than in normal scenario. Usually, in contemporary face recognition systems, the original gray-level face image is used as input to the Gabor descriptor, which translates to encoding some texture properties of the face image. The texture-encoding process significantly degrades the performance of such systems in the case of plastic surgery due to the presence of surgically induced intra-subject variations. Based on the proposition that the shape of significant facial components such as eyes, nose, eyebrow, and mouth remains unchanged after plastic surgery, this paper employs an edge-based Gabor feature representation approach for the recognition of surgically altered face images. We use the edge information, which is dependent on the shapes of the significant facial components, to address the plastic surgery-induced texture variation problems. To ensure that the significant facial components represent useful edge information with little or no false edges, a simple illumination normalization technique is proposed for preprocessing. Gabor wavelet is applied to the edge image to accentuate on the uniqueness of the significant facial components for discriminating among different subjects. The performance of the proposed method is evaluated on the Georgia Tech (GT) and the Labeled Faces in the Wild (LFW) databases with illumination and expression problems, and the plastic surgery database with texture changes. Results show that the proposed edge-based Gabor feature representation approach is robust against plastic surgery-induced face variations amidst expression and illumination problems and outperforms the existing plastic surgery face recognition methods reported in the literature.

  18. Effective connectivity of visual word recognition and homophone orthographic errors

    PubMed Central

    Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel; Zarabozo-Hurtado, Daniel; González-Garrido, Andrés A.; Gudayol-Ferré, Esteve

    2015-01-01

    The study of orthographic errors in a transparent language like Spanish is an important topic in relation to writing acquisition. The development of neuroimaging techniques, particularly functional magnetic resonance imaging (fMRI), has enabled the study of such relationships between brain areas. The main objective of the present study was to explore the patterns of effective connectivity by processing pseudohomophone orthographic errors among subjects with high and low spelling skills. Two groups of 12 Mexican subjects each, matched by age, were formed based on their results in a series of ad hoc spelling-related out-scanner tests: a high spelling skills (HSSs) group and a low spelling skills (LSSs) group. During the f MRI session, two experimental tasks were applied (spelling recognition task and visuoperceptual recognition task). Regions of Interest and their signal values were obtained for both tasks. Based on these values, structural equation models (SEMs) were obtained for each group of spelling competence (HSS and LSS) and task through maximum likelihood estimation, and the model with the best fit was chosen in each case. Likewise, dynamic causal models (DCMs) were estimated for all the conditions across tasks and groups. The HSS group’s SEM results suggest that, in the spelling recognition task, the right middle temporal gyrus, and, to a lesser extent, the left parahippocampal gyrus receive most of the significant effects, whereas the DCM results in the visuoperceptual recognition task show less complex effects, but still congruent with the previous results, with an important role in several areas. In general, these results are consistent with the major findings in partial studies about linguistic activities but they are the first analyses of statistical effective brain connectivity in transparent languages. PMID:26042070

  19. High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Kevin J.; Wright, Bob W.; Jarman, Kristin H.

    2003-05-09

    A rapid retention time alignment algorithm was developed as a preprocessing utility to be used prior to chemometric analysis of large datasets of diesel fuel gas chromatographic profiles. Retention time variation from chromatogram-to-chromatogram has been a significant impediment against the use of chemometric techniques in the analysis of chromatographic data due to the inability of current multivariate techniques to correctly model information that shifts from variable to variable within a dataset. The algorithm developed is shown to increase the efficacy of pattern recognition methods applied to a set of diesel fuel chromatograms by retaining chemical selectivity while reducing chromatogram-to-chromatogram retentionmore » time variations and to do so on a time scale that makes analysis of large sets of chromatographic data practical.« less

  20. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  1. DNA recognition by peptide nucleic acid-modified PCFs: from models to real samples

    NASA Astrophysics Data System (ADS)

    Selleri, S.; Coscelli, E.; Poli, F.; Passaro, D.; Cucinotta, A.; Lantano, C.; Corradini, R.; Marchelli, R.

    2010-04-01

    The increased concern, emerged in the last few years, on food products safety has stimulated the research on new techniques for traceability of raw food materials. DNA analysis is one of the most powerful tools for the certification of food quality, and it is presently performed through the polymerase chain reaction technique. Photonic crystal fibers, due to the presence of an array of air holes running along their length, can be exploited for performing DNA recognition by derivatizing hole surfaces and checking hybridization of complementary nucledotide chains in the sample. In this paper the application of a suspended core photonic crystal fiber in the recognition of DNA sequences is discussed. The fiber is characterized in terms of electromagnetic properties by means of a full-vector modal solver based on the finite element method. Then, the performances of the fiber in the recognition of mall synthetic oligonucleotides are discussed, together with a test of the possibility to extend this recognition to samples of DNA of applicative interest, such as olive leaves.

  2. Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.

    PubMed

    Selvaraj, Lokesh; Ganesan, Balakrishnan

    2014-01-01

    Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.

  3. Facial patterns in a tropical social wasp correlate with colony membership

    NASA Astrophysics Data System (ADS)

    Baracchi, David; Turillazzi, Stefano; Chittka, Lars

    2016-10-01

    Social insects excel in discriminating nestmates from intruders, typically relying on colony odours. Remarkably, some wasp species achieve such discrimination using visual information. However, while it is universally accepted that odours mediate a group level recognition, the ability to recognise colony members visually has been considered possible only via individual recognition by which wasps discriminate `friends' and `foes'. Using geometric morphometric analysis, which is a technique based on a rigorous statistical theory of shape allowing quantitative multivariate analyses on structure shapes, we first quantified facial marking variation of Liostenogaster flavolineata wasps. We then compared this facial variation with that of chemical profiles (generated by cuticular hydrocarbons) within and between colonies. Principal component analysis and discriminant analysis applied to sets of variables containing pure shape information showed that despite appreciable intra-colony variation, the faces of females belonging to the same colony resemble one another more than those of outsiders. This colony-specific variation in facial patterns was on a par with that observed for odours. While the occurrence of face discrimination at the colony level remains to be tested by behavioural experiments, overall our results suggest that, in this species, wasp faces display adequate information that might be potentially perceived and used by wasps for colony level recognition.

  4. The Facespan-the perceptual span for face recognition.

    PubMed

    Papinutto, Michael; Lao, Junpeng; Ramon, Meike; Caldara, Roberto; Miellet, Sébastien

    2017-05-01

    In reading, the perceptual span is a well-established concept that refers to the amount of information that can be read in a single fixation. Surprisingly, despite extensive empirical interest in determining the perceptual strategies deployed to process faces and an ongoing debate regarding the factors or mechanism(s) underlying efficient face processing, the perceptual span for faces-the Facespan-remains undetermined. To address this issue, we applied the gaze-contingent Spotlight technique implemented in an old-new face recognition paradigm. This procedure allowed us to parametrically vary the amount of facial information available at a fixated location in order to determine the minimal aperture size at which face recognition performance plateaus. As expected, accuracy increased nonlinearly with spotlight size apertures. Analyses of Structural Similarity comparing the available information during spotlight and natural viewing conditions indicate that the Facespan-the minimum spatial extent of preserved facial information leading to comparable performance as in natural viewing-encompasses 7° of visual angle in our viewing conditions (size of the face stimulus: 15.6°; viewing distance: 70 cm), which represents 45% of the face. The present findings provide a benchmark for future investigations that will address if and how the Facespan is modulated by factors such as cultural, developmental, idiosyncratic, or task-related differences.

  5. Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation

    PubMed Central

    Fernández-Llatas, Carlos; Meneu, Teresa; Traver, Vicente; Benedi, José-Miguel

    2013-01-01

    Born in the early nineteen nineties, evidence-based medicine (EBM) is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized. PMID:24185841

  6. Locally linear regression for pose-invariant face recognition.

    PubMed

    Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2007-07-01

    The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.

  7. Face liveness detection using shearlet-based feature descriptors

    NASA Astrophysics Data System (ADS)

    Feng, Litong; Po, Lai-Man; Li, Yuming; Yuan, Fang

    2016-07-01

    Face recognition is a widely used biometric technology due to its convenience but it is vulnerable to spoofing attacks made by nonreal faces such as photographs or videos of valid users. The antispoof problem must be well resolved before widely applying face recognition in our daily life. Face liveness detection is a core technology to make sure that the input face is a live person. However, this is still very challenging using conventional liveness detection approaches of texture analysis and motion detection. The aim of this paper is to propose a feature descriptor and an efficient framework that can be used to effectively deal with the face liveness detection problem. In this framework, new feature descriptors are defined using a multiscale directional transform (shearlet transform). Then, stacked autoencoders and a softmax classifier are concatenated to detect face liveness. We evaluated this approach using the CASIA Face antispoofing database and replay-attack database. The experimental results show that our approach performs better than the state-of-the-art techniques following the provided protocols of these databases, and it is possible to significantly enhance the security of the face recognition biometric system. In addition, the experimental results also demonstrate that this framework can be easily extended to classify different spoofing attacks.

  8. Is talking to an automated teller machine natural and fun?

    PubMed

    Chan, F Y; Khalid, H M

    Usability and affective issues of using automatic speech recognition technology to interact with an automated teller machine (ATM) are investigated in two experiments. The first uncovered dialogue patterns of ATM users for the purpose of designing the user interface for a simulated speech ATM system. Applying the Wizard-of-Oz methodology, multiple mapping and word spotting techniques, the speech driven ATM accommodates bilingual users of Bahasa Melayu and English. The second experiment evaluates the usability of a hybrid speech ATM, comparing it with a simulated manual ATM. The aim is to investigate how natural and fun can talking to a speech ATM be for these first-time users. Subjects performed the withdrawal and balance enquiry tasks. The ANOVA was performed on the usability and affective data. The results showed significant differences between systems in the ability to complete the tasks as well as in transaction errors. Performance was measured on the time taken by subjects to complete the task and the number of speech recognition errors that occurred. On the basis of user emotions, it can be said that the hybrid speech system enabled pleasurable interaction. Despite the limitations of speech recognition technology, users are set to talk to the ATM when it becomes available for public use.

  9. Two-stage neural-network-based technique for Urdu character two-dimensional shape representation, classification, and recognition

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.

    2001-03-01

    This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.

  10. Target recognition of ladar range images using even-order Zernike moments.

    PubMed

    Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi

    2012-11-01

    Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

  11. Vision-Based Finger Detection, Tracking, and Event Identification Techniques for Multi-Touch Sensing and Display Systems

    PubMed Central

    Chen, Yen-Lin; Liang, Wen-Yew; Chiang, Chuan-Yen; Hsieh, Tung-Ju; Lee, Da-Cheng; Yuan, Shyan-Ming; Chang, Yang-Lang

    2011-01-01

    This study presents efficient vision-based finger detection, tracking, and event identification techniques and a low-cost hardware framework for multi-touch sensing and display applications. The proposed approach uses a fast bright-blob segmentation process based on automatic multilevel histogram thresholding to extract the pixels of touch blobs obtained from scattered infrared lights captured by a video camera. The advantage of this automatic multilevel thresholding approach is its robustness and adaptability when dealing with various ambient lighting conditions and spurious infrared noises. To extract the connected components of these touch blobs, a connected-component analysis procedure is applied to the bright pixels acquired by the previous stage. After extracting the touch blobs from each of the captured image frames, a blob tracking and event recognition process analyzes the spatial and temporal information of these touch blobs from consecutive frames to determine the possible touch events and actions performed by users. This process also refines the detection results and corrects for errors and occlusions caused by noise and errors during the blob extraction process. The proposed blob tracking and touch event recognition process includes two phases. First, the phase of blob tracking associates the motion correspondence of blobs in succeeding frames by analyzing their spatial and temporal features. The touch event recognition process can identify meaningful touch events based on the motion information of touch blobs, such as finger moving, rotating, pressing, hovering, and clicking actions. Experimental results demonstrate that the proposed vision-based finger detection, tracking, and event identification system is feasible and effective for multi-touch sensing applications in various operational environments and conditions. PMID:22163990

  12. The monocular visual imaging technology model applied in the airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  13. 38 CFR 52.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Adult Day Health Care in State Homes § 52.20 Application for recognition based on certification. To apply for recognition and certification of a State home for adult day health care, a State...

  14. 38 CFR 52.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Adult Day Health Care in State Homes § 52.20 Application for recognition based on certification. To apply for recognition and certification of a State home for adult day health care, a State...

  15. 38 CFR 52.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Adult Day Health Care in State Homes § 52.20 Application for recognition based on certification. To apply for recognition and certification of a State home for adult day health care, a State...

  16. Making Employee Recognition a Tool for Achieving Improved Performance: Implication for Ghanaian Universities

    ERIC Educational Resources Information Center

    Amoatemaa, Abena Serwaa; Kyeremeh, Dorcas Darkoah

    2016-01-01

    Many organisations are increasingly making use of employee recognition to motivate employees to achieve high performance and productivity. Research has shown that effective recognition occurs in organisations that have strong supportive culture, understand the psychology of praising employees for their good work, and apply the principles of…

  17. 78 FR 7348 - Patient Protection and Affordable Care Act; Exchange Functions: Eligibility for Exemptions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... se and those that may apply for recognition are neither group health insurance coverage nor.... 156.602) c. Requirements for Recognition as Minimum Essential Coverage for Coverage Not Otherwise... recognition that they meet the standards under section 5000A(d)(2)(B) of the Code. We also received...

  18. 38 CFR 51.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in State Homes § 51.20 Application for recognition based on certification. To apply for recognition and certification of a State home for nursing home care, a State must: (a) Send a...

  19. 38 CFR 51.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in State Homes § 51.20 Application for recognition based on certification. To apply for recognition and certification of a State home for nursing home care, a State must: (a) Send a...

  20. 38 CFR 51.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in State Homes § 51.20 Application for recognition based on certification. To apply for recognition and certification of a State home for nursing home care, a State must: (a) Send a...

  1. 38 CFR 51.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in State Homes § 51.20 Application for recognition based on certification. To apply for recognition and certification of a State home for nursing home care, a State must: (a) Send a...

  2. 38 CFR 51.20 - Application for recognition based on certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VETERANS AFFAIRS (CONTINUED) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in State Homes § 51.20 Application for recognition based on certification. To apply for recognition and certification of a State home for nursing home care, a State must: (a) Send a...

  3. Marketing/Sales Students' Understanding of What Counts as Sales

    ERIC Educational Resources Information Center

    Hoshower, Leon; Gupta, Ashok K.

    2009-01-01

    Improper sales revenue recognition is the single largest issue contributing to financial restatements. Understanding and applying the rules of sales revenue recognition is not just an accounting problem; it is a marketing problem, too. Thus, it is important that the sales force has a basic understanding of the rules of sales recognition and be…

  4. Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    PubMed Central

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586

  5. Image processing and recognition for biological images

    PubMed Central

    Uchida, Seiichi

    2013-01-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. PMID:23560739

  6. Accurate, fast, and secure biometric fingerprint recognition system utilizing sensor fusion of fingerprint patterns

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy

    2011-04-01

    Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.

  7. A proposed technique for vehicle tracking, direction, and speed determination

    NASA Astrophysics Data System (ADS)

    Fisher, Paul S.; Angaye, Cleopas O.; Fisher, Howard P.

    2004-12-01

    A technique for recognition of vehicles in terms of direction, distance, and rate of change is presented. This represents very early work on this problem with significant hurdles still to be addressed. These are discussed in the paper. However, preliminary results also show promise for this technique for use in security and defense environments where the penetration of a perimeter is of concern. The material described herein indicates a process whereby the protection of a barrier could be augmented by computers and installed cameras assisting the individuals charged with this responsibility. The technique we employ is called Finite Inductive Sequences (FI) and is proposed as a means for eliminating data requiring storage and recognition where conventional mathematical models don"t eliminate enough and statistical models eliminate too much. FI is a simple idea and is based upon a symbol push-out technique that allows the order (inductive base) of the model to be set to an a priori value for all derived rules. The rules are obtained from exemplar data sets, and are derived by a technique called Factoring, yielding a table of rules called a Ruling. These rules can then be used in pattern recognition applications such as described in this paper.

  8. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  9. Asbestos Information

    MedlinePlus

    ... Recognition Societies Percentage Donations Other Giving/Fundraising Opportunities Bitcoin Donation Form The Meso Foundation saves lives by ... Recognition Societies Percentage Donations Other Giving/Fundraising Opportunities Bitcoin Donation Form © 2017 Mesothelioma Applied Research Foundation, Inc. ...

  10. Peritoneal Mesothelioma

    MedlinePlus

    ... Recognition Societies Percentage Donations Other Giving/Fundraising Opportunities Bitcoin Donation Form The Meso Foundation saves lives by ... Recognition Societies Percentage Donations Other Giving/Fundraising Opportunities Bitcoin Donation Form © 2017 Mesothelioma Applied Research Foundation, Inc. ...

  11. Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis

    PubMed Central

    Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana

    2012-01-01

    Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153

  12. Model–Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning

    PubMed Central

    Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.

    2008-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616

  13. A smart technique for attendance system to recognize faces through parallelism

    NASA Astrophysics Data System (ADS)

    Prabhavathi, B.; Tanuja, V.; Madhu Viswanatham, V.; Rajashekhara Babu, M.

    2017-11-01

    Major part of recognising a person is face with the help of image processing techniques we can exploit the physical features of a person. In the old approach method that is used in schools and colleges it is there that the professor calls the student name and then the attendance for the students marked. Here in paper want to deviate from the old approach and go with the new approach by using techniques that are there in image processing. In this paper we presenting spontaneous presence for students in classroom. At first classroom image has been in use and after that image is kept in data record. For the images that are stored in the database we apply system algorithm which includes steps such as, histogram classification, noise removal, face detection and face recognition methods. So by using these steps we detect the faces and then compare it with the database. The attendance gets marked automatically if the system recognizes the faces.

  14. Covalent Chemical 5'-Functionalization of RNA with Diazo Reagents.

    PubMed

    Gampe, Christian M; Hollis-Symynkywicz, Micah; Zécri, Frédéric

    2016-08-22

    Functionalization of RNA at the 5'-terminus is important for analytical and therapeutic purposes. Currently, these RNAs are synthesized de novo starting with a chemically functionalized 5'-nucleotide, which is incorporated into RNA using chemical synthesis or biochemical techniques. Methods for direct chemical modification of native RNA would provide an attractive alternative but are currently underexplored. Herein, we report that diazo compounds can be used to selectively alkylate the 5'-phosphate of ribo(oligo)nucleotides to give RNA labelled through a native phosphate ester bond. We applied this method to functionalize oligonucleotides with biotin and an orthosteric inhibitor of the eukaryotic initiation factor 4E (eIF4E), an enzyme involved in mRNA recognition. The modified RNA binds to eIF4E, demonstrating the utility of this labelling technique to modulate biological activity of RNA. This method complements existing techniques and may be used to chemically introduce a broad range of functional handles at the 5'-end of RNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Visual cluster analysis and pattern recognition methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    2001-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  16. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  17. 33 CFR 105.215 - Security training for all other facility personnel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... apply to them, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...

  18. 33 CFR 105.215 - Security training for all other facility personnel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... apply to them, including emergency procedures and contingency plans; (c) Recognition and detection of dangerous substances and devices; (d) Recognition of characteristics and behavioral patterns of persons who...

  19. Time-resolved fluorescence spectroscopy for chemical sensors

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Lippitsch, Max E.

    1996-07-01

    A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

  20. Calculating binding free energies for protein-carbohydrate complexes.

    PubMed

    Hadden, Jodi A; Tessier, Matthew B; Fadda, Elisa; Woods, Robert J

    2015-01-01

    A variety of computational techniques may be applied to compute theoretical binding free energies for protein-carbohydrate complexes. Elucidation of the intermolecular interactions, as well as the thermodynamic effects, that contribute to the relative strength of receptor binding can shed light on biomolecular recognition, and the resulting initiation or inhibition of a biological process. Three types of free energy methods are discussed here, including MM-PB/GBSA, thermodynamic integration, and a non-equilibrium alternative utilizing SMD. Throughout this chapter, the well-known concanavalin A lectin is employed as a model system to demonstrate the application of these methods to the special case of carbohydrate binding.

  1. Automatic Estimation of Volcanic Ash Plume Height using WorldView-2 Imagery

    NASA Technical Reports Server (NTRS)

    McLaren, David; Thompson, David R.; Davies, Ashley G.; Gudmundsson, Magnus T.; Chien, Steve

    2012-01-01

    We explore the use of machine learning, computer vision, and pattern recognition techniques to automatically identify volcanic ash plumes and plume shadows, in WorldView-2 imagery. Using information of the relative position of the sun and spacecraft and terrain information in the form of a digital elevation map, classification, the height of the ash plume can also be inferred. We present the results from applying this approach to six scenes acquired on two separate days in April and May of 2010 of the Eyjafjallajokull eruption in Iceland. These results show rough agreement with ash plume height estimates from visual and radar based measurements.

  2. LANDSAT and radar mapping of intrusive rocks in SE-Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Moreira, J. C.; Barbosa, M. P.; Veneziani, P.

    1982-01-01

    The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing.

  3. Introducing memory and association mechanism into a biologically inspired visual model.

    PubMed

    Qiao, Hong; Li, Yinlin; Tang, Tang; Wang, Peng

    2014-09-01

    A famous biologically inspired hierarchical model (HMAX model), which was proposed recently and corresponds to V1 to V4 of the ventral pathway in primate visual cortex, has been successfully applied to multiple visual recognition tasks. The model is able to achieve a set of position- and scale-tolerant recognition, which is a central problem in pattern recognition. In this paper, based on some other biological experimental evidence, we introduce the memory and association mechanism into the HMAX model. The main contributions of the work are: 1) mimicking the active memory and association mechanism and adding the top down adjustment to the HMAX model, which is the first try to add the active adjustment to this famous model and 2) from the perspective of information, algorithms based on the new model can reduce the computation storage and have a good recognition performance. The new model is also applied to object recognition processes. The primary experimental results show that our method is efficient with a much lower memory requirement.

  4. Applications of rule-induction in the derivation of quantitative structure-activity relationships.

    PubMed

    A-Razzak, M; Glen, R C

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  5. Applications of rule-induction in the derivation of quantitative structure-activity relationships

    NASA Astrophysics Data System (ADS)

    A-Razzak, Mohammed; Glen, Robert C.

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  6. Employment Research Method for Early Recognition of Skills Needs

    ERIC Educational Resources Information Center

    Spottl, Georg; Windelband, Lars

    2006-01-01

    Given that the early recognition procedures used to date focus on trends and the scenario technique and are less concerned with the design of VET, a research-based employment research early recognition tool was developed as part of the "EarlyBird" Leonardo Project, by means of which it is possible to identify changes at shop-floor level. What was…

  7. 45 CFR 260.55 - What are the additional requirements for Federal recognition of good cause domestic violence...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... recognition of good cause domestic violence waivers? 260.55 Section 260.55 Public Welfare Regulations Relating...) PROVISIONS What Special Provisions Apply to Victims of Domestic Violence? § 260.55 What are the additional requirements for Federal recognition of good cause domestic violence waivers? To be federally recognized, good...

  8. Material recognition based on thermal cues: Mechanisms and applications.

    PubMed

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  9. Material recognition based on thermal cues: Mechanisms and applications

    PubMed Central

    Ho, Hsin-Ni

    2018-01-01

    ABSTRACT Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering. PMID:29687043

  10. [The present state and progress of researches on gait recognition].

    PubMed

    Xue, Zhaojun; Jin, Jingna; Ming, Dong; Wan, Baikun

    2008-10-01

    Recognition by gait is a new field for the biometric recognition technology. Its aim is to recognize people and detect physiological, pathological and mental characters by their walk style. The use of gait as a biometric for human identification is promising. The technique of gait recognition, as an attractive research area of biomedical information detection, attracts more and more attention. In this paper is introduced a survey of the basic theory, existing gait recognition methods and potential prospects. The latest progress and key factors of research difficulties are analyzed, and future researches are envisaged.

  11. Character recognition using a neural network model with fuzzy representation

    NASA Technical Reports Server (NTRS)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  12. Salient Feature Identification and Analysis using Kernel-Based Classification Techniques for Synthetic Aperture Radar Automatic Target Recognition

    DTIC Science & Technology

    2014-03-27

    and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine

  13. Bilingual Language Switching: Production vs. Recognition

    PubMed Central

    Mosca, Michela; de Bot, Kees

    2017-01-01

    This study aims at assessing how bilinguals select words in the appropriate language in production and recognition while minimizing interference from the non-appropriate language. Two prominent models are considered which assume that when one language is in use, the other is suppressed. The Inhibitory Control (IC) model suggests that, in both production and recognition, the amount of inhibition on the non-target language is greater for the stronger compared to the weaker language. In contrast, the Bilingual Interactive Activation (BIA) model proposes that, in language recognition, the amount of inhibition on the weaker language is stronger than otherwise. To investigate whether bilingual language production and recognition can be accounted for by a single model of bilingual processing, we tested a group of native speakers of Dutch (L1), advanced speakers of English (L2) in a bilingual recognition and production task. Specifically, language switching costs were measured while participants performed a lexical decision (recognition) and a picture naming (production) task involving language switching. Results suggest that while in language recognition the amount of inhibition applied to the non-appropriate language increases along with its dominance as predicted by the IC model, in production the amount of inhibition applied to the non-relevant language is not related to language dominance, but rather it may be modulated by speakers' unconscious strategies to foster the weaker language. This difference indicates that bilingual language recognition and production might rely on different processing mechanisms and cannot be accounted within one of the existing models of bilingual language processing. PMID:28638361

  14. Bilingual Language Switching: Production vs. Recognition.

    PubMed

    Mosca, Michela; de Bot, Kees

    2017-01-01

    This study aims at assessing how bilinguals select words in the appropriate language in production and recognition while minimizing interference from the non-appropriate language. Two prominent models are considered which assume that when one language is in use, the other is suppressed. The Inhibitory Control (IC) model suggests that, in both production and recognition, the amount of inhibition on the non-target language is greater for the stronger compared to the weaker language. In contrast, the Bilingual Interactive Activation (BIA) model proposes that, in language recognition, the amount of inhibition on the weaker language is stronger than otherwise. To investigate whether bilingual language production and recognition can be accounted for by a single model of bilingual processing, we tested a group of native speakers of Dutch (L1), advanced speakers of English (L2) in a bilingual recognition and production task. Specifically, language switching costs were measured while participants performed a lexical decision (recognition) and a picture naming (production) task involving language switching. Results suggest that while in language recognition the amount of inhibition applied to the non-appropriate language increases along with its dominance as predicted by the IC model, in production the amount of inhibition applied to the non-relevant language is not related to language dominance, but rather it may be modulated by speakers' unconscious strategies to foster the weaker language. This difference indicates that bilingual language recognition and production might rely on different processing mechanisms and cannot be accounted within one of the existing models of bilingual language processing.

  15. Intelligent form removal with character stroke preservation

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.

    1996-03-01

    A new technique for intelligent form removal has been developed along with a new method for evaluating its impact on optical character recognition (OCR). All the dominant lines in the image are automatically detected using the Hough line transform and intelligently erased while simultaneously preserving overlapping character strokes by computing line width statistics and keying off of certain visual cues. This new method of form removal operates on loosely defined zones with no image deskewing. Any field in which the writer is provided a horizontal line to enter a response can be processed by this method. Several examples of processed fields are provided, including a comparison of results between the new method and a commercially available forms removal package. Even if this new form removal method did not improve character recognition accuracy, it is still a significant improvement to the technology because the requirement of a priori knowledge of the form's geometric details has been greatly reduced. This relaxes the recognition system's dependence on rigid form design, printing, and reproduction by automatically detecting and removing some of the physical structures (lines) on the form. Using the National Institute of Standards and Technology (NIST) public domain form-based handprint recognition system, the technique was tested on a large number of fields containing randomly ordered handprinted lowercase alphabets, as these letters (especially those with descenders) frequently touch and extend through the line along which they are written. Preserving character strokes improves overall lowercase recognition performance by 3%, which is a net improvement, but a single performance number like this doesn't communicate how the recognition process was really influenced. There is expected to be trade- offs with the introduction of any new technique into a complex recognition system. To understand both the improvements and the trade-offs, a new analysis was designed to compare the statistical distributions of individual confusion pairs between two systems. As OCR technology continues to improve, sophisticated analyses like this are necessary to reduce the errors remaining in complex recognition problems.

  16. Background characterization techniques for target detection using scene metrics and pattern recognition

    NASA Astrophysics Data System (ADS)

    Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.

    1990-09-01

    The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.

  17. 100 Most Influential Publications in Scoliosis Surgery.

    PubMed

    Zhou, James Jun; Koltz, Michael T; Agarwal, Nitin; Tempel, Zachary J; Kanter, Adam S; Okonkwo, David O; Hamilton, D Kojo

    2017-03-01

    Bibliometric analysis. To apply the established technique of citation analysis to identify the 100 most influential articles in scoliosis surgery research published between 1900 and 2015. Previous studies have applied the technique of citation analysis to other areas of study. This is the first article to apply this technique to the field of scoliosis surgery. A two-step search of the Thomson Reuters Web of Science was conducted to identify all articles relevant to the field of scoliosis surgery. The top 100 articles with the most citations were identified based on analysis of titles and abstracts. Further statistical analysis was conducted to determine whether measures of author reputation and overall publication influence affected the rate at which publications were recognized and incorporated by other researchers in the field. Total citations for the final 100 publications included in the list ranged from 82 to 509. The period for publication ranged from 1954 to 2010. Most studies were published in the journal Spine (n = 63). The most frequently published topics of study were surgical techniques (n = 35) and outcomes (n = 35). Measures of author reputation (number of total studies in the top 100, number of first-author studies in the top 100) were found to have no effect on the rate at which studies were adopted by other researchers (number of years until first citation, and number of years until maximum citations). The number of citations/year a publication received was found to be negatively correlated with the rate at which it was adopted by other researchers, indicating that more influential manuscripts attained more rapid recognition by the scientific community at large. In assembling this publication, we have strived to identify and recognize the 100 most influential articles in scoliosis surgery research from 1900 to 2015. N/A.

  18. Bridge Health Monitoring Using a Machine Learning Strategy

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this project was to cast the SHM problem within a statistical pattern recognition framework. Techniques borrowed from speaker recognition, particularly speaker verification, were used as this discipline deals with problems very similar to...

  19. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    1999-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  20. Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    1985-01-01

    A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.

  1. Learning discriminative features from RGB-D images for gender and ethnicity identification

    NASA Astrophysics Data System (ADS)

    Azzakhnini, Safaa; Ballihi, Lahoucine; Aboutajdine, Driss

    2016-11-01

    The development of sophisticated sensor technologies gave rise to an interesting variety of data. With the appearance of affordable devices, such as the Microsoft Kinect, depth-maps and three-dimensional data became easily accessible. This attracted many computer vision researchers seeking to exploit this information in classification and recognition tasks. In this work, the problem of face classification in the context of RGB images and depth information (RGB-D images) is addressed. The purpose of this paper is to study and compare some popular techniques for gender recognition and ethnicity classification to understand how much depth data can improve the quality of recognition. Furthermore, we investigate which combination of face descriptors, feature selection methods, and learning techniques is best suited to better exploit RGB-D images. The experimental results show that depth data improve the recognition accuracy for gender and ethnicity classification applications in many use cases.

  2. Artificially intelligent recognition of Arabic speaker using voice print-based local features

    NASA Astrophysics Data System (ADS)

    Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz

    2016-11-01

    Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.

  3. Recognition of emotions in autism: a formal meta-analysis.

    PubMed

    Uljarevic, Mirko; Hamilton, Antonia

    2013-07-01

    Determining the integrity of emotion recognition in autistic spectrum disorder is important to our theoretical understanding of autism and to teaching social skills. Previous studies have reported both positive and negative results. Here, we take a formal meta-analytic approach, bringing together data from 48 papers testing over 980 participants with autism. Results show there is an emotion recognition difficulty in autism, with a mean effect size of 0.80 which reduces to 0.41 when a correction for publication bias is applied. Recognition of happiness was only marginally impaired in autism, but recognition of fear was marginally worse than recognition of happiness. This meta-analysis provides an opportunity to survey the state of emotion recognition research in autism and to outline potential future directions.

  4. Mesothelioma Treatment: Recovery, Side Effects, What to Expect

    MedlinePlus

    ... Recognition Societies Percentage Donations Other Giving/Fundraising Opportunities Bitcoin Donation Form The Meso Foundation saves lives by ... Recognition Societies Percentage Donations Other Giving/Fundraising Opportunities Bitcoin Donation Form © 2017 Mesothelioma Applied Research Foundation, Inc. ...

  5. Applications of artificial neural network in AIDS research and therapy.

    PubMed

    Sardari, S; Sardari, D

    2002-01-01

    In recent years considerable effort has been devoted to applying pattern recognition techniques to the complex task of data analysis in drug research. Artificial neural networks (ANN) methodology is a modeling method with great ability to adapt to a new situation, or control an unknown system, using data acquired in previous experiments. In this paper, a brief history of ANN and the basic concepts behind the computing, the mathematical and algorithmic formulation of each of the techniques, and their developmental background is presented. Based on the abilities of ANNs in pattern recognition and estimation of system outputs from the known inputs, the neural network can be considered as a tool for molecular data analysis and interpretation. Analysis by neural networks improves the classification accuracy, data quantification and reduces the number of analogues necessary for correct classification of biologically active compounds. Conformational analysis and quantifying the components in mixtures using NMR spectra, aqueous solubility prediction and structure-activity correlation are among the reported applications of ANN as a new modeling method. Ranging from drug design and discovery to structure and dosage form design, the potential pharmaceutical applications of the ANN methodology are significant. In the areas of clinical monitoring, utilization of molecular simulation and design of bioactive structures, ANN would make the study of the status of the health and disease possible and brings their predicted chemotherapeutic response closer to reality.

  6. Pattern recognition and image processing for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khalid J.; Eastwood, DeLyle

    1999-12-01

    Pattern recognition (PR) and signal/image processing methods are among the most powerful tools currently available for noninvasively examining spectroscopic and other chemical data for environmental monitoring. Using spectral data, these systems have found a variety of applications employing analytical techniques for chemometrics such as gas chromatography, fluorescence spectroscopy, etc. An advantage of PR approaches is that they make no a prior assumption regarding the structure of the patterns. However, a majority of these systems rely on human judgment for parameter selection and classification. A PR problem is considered as a composite of four subproblems: pattern acquisition, feature extraction, feature selection, and pattern classification. One of the basic issues in PR approaches is to determine and measure the features useful for successful classification. Selection of features that contain the most discriminatory information is important because the cost of pattern classification is directly related to the number of features used in the decision rules. The state of the spectral techniques as applied to environmental monitoring is reviewed. A spectral pattern classification system combining the above components and automatic decision-theoretic approaches for classification is developed. It is shown how such a system can be used for analysis of large data sets, warehousing, and interpretation. In a preliminary test, the classifier was used to classify synchronous UV-vis fluorescence spectra of relatively similar petroleum oils with reasonable success.

  7. In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury.

    PubMed

    Albert, Mark V; Azeze, Yohannes; Courtois, Michael; Jayaraman, Arun

    2017-02-06

    Although commercially available activity trackers can aid in tracking therapy and recovery of patients, most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques can be applied on recorded accelerometer signals in order to classify the activities of ambulatory subjects with incomplete spinal cord injury in a way that is specific to this population and the location of the recording-at home or in the clinic. Subjects were instructed to perform a standardized set of movements while wearing a waist-worn accelerometer in the clinic and at-home. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Multiple classifiers and validation methods were used to quantify the ability of the machine learning techniques to distinguish the activities recorded in-lab or at-home. In the lab, classifiers trained and tested using within-subject cross-validation provided an accuracy of 91.6%. When the classifier was trained on data collected in the lab but tested on at home data, the accuracy fell to 54.6% indicating distinct movement patterns between locations. However, the accuracy of the at-home classifications, when training the classifier with at-home data, improved to 85.9%. Individuals with unique movement patterns can benefit from using tailored activity recognition algorithms easily implemented using modern machine learning methods on collected movement data.

  8. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.

    PubMed

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-07-23

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.

  9. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems

    PubMed Central

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-01-01

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932

  10. Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.

  11. Recognition of handprinted characters for automated cartography A progress report

    NASA Technical Reports Server (NTRS)

    Lybanon, M.; Brown, R. M.; Gronmeyer, L. K.

    1980-01-01

    A research program for developing handwritten character recognition techniques is reported. The generation of cartographic/hydrographic manuscripts is overviewed. The performance of hardware/software systems is discussed, along with future research problem areas and planned approaches.

  12. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Methods of conducting audits, inspection, control, and monitoring; and (7) Techniques for security... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral...

  13. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Methods of conducting audits, inspection, control, and monitoring; and (7) Techniques for security... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral...

  14. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Methods of conducting audits, inspection, control, and monitoring; and (7) Techniques for security... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral...

  15. Cucurbituril mediated single molecule detection and identification via recognition tunneling.

    PubMed

    Xiao, Bohuai; Liang, Feng; Liu, Simin; Im, JongOne; Li, Yunchuan; Liu, Jing; Zhang, Bintian; Zhou, Jianghao; He, Jin; Chang, Shuai

    2018-06-08

    Recognition tunneling (RT) is an emerging technique for investigating single molecules in a tunnel junction. We have previously demonstrated its capability of single molecule detection and identification, as well as probing the dynamics of intermolecular bonding at the single molecule level. Here by introducing cucurbituril as a new class of recognition molecule, we demonstrate a powerful platform for electronically investigating the host-guest chemistry at single molecule level. In this report, we first investigated the single molecule electrical properties of cucurbituril in a tunnel junction. Then we studied two model guest molecules, aminoferrocene and amantadine, which were encapsulated by cucurbituril. Small differences in conductance and lifetime can be recognized between the host-guest complexes with the inclusion of different guest molecules. By using a machine learning algorithm to classify the RT signals in a hyper dimensional space, the accuracy of guest molecule recognition can be significantly improved, suggesting the possibility of using cucurbituril molecule for single molecule identification. This work enables a new class of recognition molecule for RT technique and opens the door for detecting a vast variety of small molecules by electrical measurements.

  16. Parallel and distributed computation for fault-tolerant object recognition

    NASA Technical Reports Server (NTRS)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  17. A novel approach for fire recognition using hybrid features and manifold learning-based classifier

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Hu, Xueying; Tang, Jiajun; Hu, Sheng

    2018-03-01

    Although image/video based fire recognition has received growing attention, an efficient and robust fire detection strategy is rarely explored. In this paper, we propose a novel approach to automatically identify the flame or smoke regions in an image. It is composed to three stages: (1) a block processing is applied to divide an image into several nonoverlapping image blocks, and these image blocks are identified as suspicious fire regions or not by using two color models and a color histogram-based similarity matching method in the HSV color space, (2) considering that compared to other information, the flame and smoke regions have significant visual characteristics, so that two kinds of image features are extracted for fire recognition, where local features are obtained based on the Scale Invariant Feature Transform (SIFT) descriptor and the Bags of Keypoints (BOK) technique, and texture features are extracted based on the Gray Level Co-occurrence Matrices (GLCM) and the Wavelet-based Analysis (WA) methods, and (3) a manifold learning-based classifier is constructed based on two image manifolds, which is designed via an improve Globular Neighborhood Locally Linear Embedding (GNLLE) algorithm, and the extracted hybrid features are used as input feature vectors to train the classifier, which is used to make decision for fire images or non fire images. Experiments and comparative analyses with four approaches are conducted on the collected image sets. The results show that the proposed approach is superior to the other ones in detecting fire and achieving a high recognition accuracy and a low error rate.

  18. Severity-Based Adaptation with Limited Data for ASR to Aid Dysarthric Speakers

    PubMed Central

    Mustafa, Mumtaz Begum; Salim, Siti Salwah; Mohamed, Noraini; Al-Qatab, Bassam; Siong, Chng Eng

    2014-01-01

    Automatic speech recognition (ASR) is currently used in many assistive technologies, such as helping individuals with speech impairment in their communication ability. One challenge in ASR for speech-impaired individuals is the difficulty in obtaining a good speech database of impaired speakers for building an effective speech acoustic model. Because there are very few existing databases of impaired speech, which are also limited in size, the obvious solution to build a speech acoustic model of impaired speech is by employing adaptation techniques. However, issues that have not been addressed in existing studies in the area of adaptation for speech impairment are as follows: (1) identifying the most effective adaptation technique for impaired speech; and (2) the use of suitable source models to build an effective impaired-speech acoustic model. This research investigates the above-mentioned two issues on dysarthria, a type of speech impairment affecting millions of people. We applied both unimpaired and impaired speech as the source model with well-known adaptation techniques like the maximum likelihood linear regression (MLLR) and the constrained-MLLR(C-MLLR). The recognition accuracy of each impaired speech acoustic model is measured in terms of word error rate (WER), with further assessments, including phoneme insertion, substitution and deletion rates. Unimpaired speech when combined with limited high-quality speech-impaired data improves performance of ASR systems in recognising severely impaired dysarthric speech. The C-MLLR adaptation technique was also found to be better than MLLR in recognising mildly and moderately impaired speech based on the statistical analysis of the WER. It was found that phoneme substitution was the biggest contributing factor in WER in dysarthric speech for all levels of severity. The results show that the speech acoustic models derived from suitable adaptation techniques improve the performance of ASR systems in recognising impaired speech with limited adaptation data. PMID:24466004

  19. Has your ancient stamp been regummed with synthetic glue? A FT-NIR and FT-Raman study.

    PubMed

    Simonetti, Remo; Oliveri, Paolo; Henry, Adrien; Duponchel, Ludovic; Lanteri, Silvia

    2016-01-01

    The potential of FT-NIR and FT-Raman spectroscopies to characterise the gum applied on the backside of ancient stamps was investigated for the first time. This represents a very critical issue for the collectors' market, since gum conditions heavily influence stamp quotations, and fraudulent application of synthetic gum onto damaged stamp backsides to increase their desirability is a well-documented practice. Spectral data were processed by exploratory pattern recognition tools. In particular, application of principal component analysis (PCA) revealed that both of the spectroscopic techniques provide information useful to characterise stamp gum. Examination of PCA loadings and their chemical interpretation confirmed the robustness of the outcomes. Fusion of FT-NIR and FT-Raman spectral data was performed, following both a low-level and a mid-level procedure. The results were critically compared with those obtained separately for the two spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterising laser beams with liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  1. Theta-burst microstimulation in the human entorhinal area improves memory specificity.

    PubMed

    Titiz, Ali S; Hill, Michael R H; Mankin, Emily A; M Aghajan, Zahra; Eliashiv, Dawn; Tchemodanov, Natalia; Maoz, Uri; Stern, John; Tran, Michelle E; Schuette, Peter; Behnke, Eric; Suthana, Nanthia A; Fried, Itzhak

    2017-10-24

    The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm -diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents-a radical departure from commonly used deep brain stimulation protocols-is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.

  2. Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques--the Rodalquilar (Southern Spain) mining district.

    PubMed

    Bagur, M G; Morales, S; López-Chicano, M

    2009-11-15

    Unsupervised and supervised pattern recognition techniques such as hierarchical cluster analysis, principal component analysis, factor analysis and linear discriminant analysis have been applied to water samples recollected in Rodalquilar mining district (Southern Spain) in order to identify different sources of environmental pollution caused by the abandoned mining industry. The effect of the mining activity on waters was monitored determining the concentration of eleven elements (Mn, Ba, Co, Cu, Zn, As, Cd, Sb, Hg, Au and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). The Box-Cox transformation has been used to transform the data set in normal form in order to minimize the non-normal distribution of the geochemical data. The environmental impact is affected mainly by the mining activity developed in the zone, the acid drainage and finally by the chemical treatment used for the benefit of gold.

  3. Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)

    NASA Astrophysics Data System (ADS)

    Feizi, F.; Mansouri, E.

    2014-07-01

    The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.

  4. NIR and UV-vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterisation of Italian red wines.

    PubMed

    Casale, M; Oliveri, P; Armanino, C; Lanteri, S; Forina, M

    2010-06-04

    Four rapid and low-cost vanguard analytical systems (NIR and UV-vis spectroscopy, a headspace-mass based artificial nose and a voltammetric artificial tongue), together with chemometric pattern recognition techniques, were applied and compared in addressing a food authentication problem: the distinction between wine samples from the same Italian oenological region, according to the grape variety. Specifically, 59 certified samples belonging to the Barbera d'Alba and Dolcetto d'Alba appellations and collected from the same vintage (2007) were analysed. The instrumental responses, after proper data pre-processing, were used as fingerprints of the characteristics of the samples: the results from principal component analysis and linear discriminant analysis were discussed, comparing the capability of the four analytical strategies in addressing the problem studied. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Critical concepts and important anatomic landmarks encountered during transanal total mesorectal excision (taTME): toward the mastery of a new operation for rectal cancer surgery.

    PubMed

    Atallah, S; Albert, M; Monson, J R T

    2016-07-01

    Over the past 3 years, colorectal surgeons have begun to adapt the technique of transanal total mesorectal excision. As international experience has been quickly forged, an improved recognition of the pitfalls and the practical details of this disruptive technique have been realized. The purpose of this technical note was to express the various nuances of transanal total mesorectal excision as learned during the course of its clinical application and international teaching, so as to rapidly communicate and share important insights with other surgeons who are in the early adoption phase of this approach. The technical points specific to transanal total mesorectal excision are addressed herein. When correctly applied, these will likely improve the quality of surgery and decrease morbidity attributable to inexperience with the transanal approach to total mesorectal excision.

  6. Characterizing the 21-cm absorption trough with pattern recognition and a numerical sampler

    NASA Astrophysics Data System (ADS)

    Tauscher, Keith A.; Rapetti, David; Burns, Jack O.; Monsalve, Raul A.; Bowman, Judd D.

    2018-06-01

    The highly redshifted sky-averaged 21-cm spectrum from neutral hydrogen is a key probe to a period of the Universe never before studied. Recent experimental advances have led to increasingly tightened constraints and the Experiment to Detect the Global Eor Signal (EDGES) has presented evidence for a detection of this global signal. In order to glean scientifically valuable information from these new measurements in a consistent manner, sophisticated fitting procedures must be applied. Here, I present a pipeline known as pylinex which takes advantage of Singular Value Decomposition (SVD), a pattern recognition tool, to leverage structure in the data induced by the design of an experiment to fit for signals in the experiment's data in the presence of large systematics (such as the beam-weighted foregrounds), especially those without parametric forms. This method requires training sets for each component of the data. Once the desired signal is extracted in SVD eigenmode coefficient space, the posterior distribution must be consistently transformed into a physical parameter space. This is done with the combination of a numerical least squares fitter and a Markov Chain Monte Carlo (MCMC) distribution sampler. After describing the pipeline's procedures and techniques, I present preliminary results of applying it to the EDGES low-band data used for their detection. The results include estimates of the signal in frequency space with errors and relevant parameter distributions.

  7. A framework for the recognition of high-level surgical tasks from video images for cataract surgeries

    PubMed Central

    Lalys, Florent; Riffaud, Laurent; Bouget, David; Jannin, Pierre

    2012-01-01

    The need for a better integration of the new generation of Computer-Assisted-Surgical (CAS) systems has been recently emphasized. One necessity to achieve this objective is to retrieve data from the Operating Room (OR) with different sensors, then to derive models from these data. Recently, the use of videos from cameras in the OR has demonstrated its efficiency. In this paper, we propose a framework to assist in the development of systems for the automatic recognition of high level surgical tasks using microscope videos analysis. We validated its use on cataract procedures. The idea is to combine state-of-the-art computer vision techniques with time series analysis. The first step of the framework consisted in the definition of several visual cues for extracting semantic information, therefore characterizing each frame of the video. Five different pieces of image-based classifiers were therefore implemented. A step of pupil segmentation was also applied for dedicated visual cue detection. Time series classification algorithms were then applied to model time-varying data. Dynamic Time Warping (DTW) and Hidden Markov Models (HMM) were tested. This association combined the advantages of all methods for better understanding of the problem. The framework was finally validated through various studies. Six binary visual cues were chosen along with 12 phases to detect, obtaining accuracies of 94%. PMID:22203700

  8. Identification and classification of failure modes in laminated composites by using a multivariate statistical analysis of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Baccar, D.; Söffker, D.

    2017-11-01

    Acoustic Emission (AE) is a suitable method to monitor the health of composite structures in real-time. However, AE-based failure mode identification and classification are still complex to apply due to the fact that AE waves are generally released simultaneously from all AE-emitting damage sources. Hence, the use of advanced signal processing techniques in combination with pattern recognition approaches is required. In this paper, AE signals generated from laminated carbon fiber reinforced polymer (CFRP) subjected to indentation test are examined and analyzed. A new pattern recognition approach involving a number of processing steps able to be implemented in real-time is developed. Unlike common classification approaches, here only CWT coefficients are extracted as relevant features. Firstly, Continuous Wavelet Transform (CWT) is applied to the AE signals. Furthermore, dimensionality reduction process using Principal Component Analysis (PCA) is carried out on the coefficient matrices. The PCA-based feature distribution is analyzed using Kernel Density Estimation (KDE) allowing the determination of a specific pattern for each fault-specific AE signal. Moreover, waveform and frequency content of AE signals are in depth examined and compared with fundamental assumptions reported in this field. A correlation between the identified patterns and failure modes is achieved. The introduced method improves the damage classification and can be used as a non-destructive evaluation tool.

  9. Image processing and recognition for biological images.

    PubMed

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  10. Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals

    NASA Astrophysics Data System (ADS)

    Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin

    2016-12-01

    Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.

  11. A LANDSAT study of ephemeral and perennial rangeland vegetation and soils

    NASA Technical Reports Server (NTRS)

    Bentley, R. G., Jr. (Principal Investigator); Salmon-Drexler, B. C.; Bonner, W. J.; Vincent, R. K.

    1976-01-01

    The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species.

  12. Multi-frame knowledge based text enhancement for mobile phone captured videos

    NASA Astrophysics Data System (ADS)

    Ozarslan, Suleyman; Eren, P. Erhan

    2014-02-01

    In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.

  13. Artificial neural networks for document analysis and recognition.

    PubMed

    Marinai, Simone; Gori, Marco; Soda, Giovanni; Society, Computer

    2005-01-01

    Artificial neural networks have been extensively applied to document analysis and recognition. Most efforts have been devoted to the recognition of isolated handwritten and printed characters with widely recognized successful results. However, many other document processing tasks, like preprocessing, layout analysis, character segmentation, word recognition, and signature verification, have been effectively faced with very promising results. This paper surveys the most significant problems in the area of offline document image processing, where connectionist-based approaches have been applied. Similarities and differences between approaches belonging to different categories are discussed. A particular emphasis is given on the crucial role of prior knowledge for the conception of both appropriate architectures and learning algorithms. Finally, the paper provides a critical analysis on the reviewed approaches and depicts the most promising research guidelines in the field. In particular, a second generation of connectionist-based models are foreseen which are based on appropriate graphical representations of the learning environment.

  14. The recognition of female voice based on voice registers in singing techniques in real-time using hankel transform method and macdonald function

    NASA Astrophysics Data System (ADS)

    Meiyanti, R.; Subandi, A.; Fuqara, N.; Budiman, M. A.; Siahaan, A. P. U.

    2018-03-01

    A singer doesn’t just recite the lyrics of a song, but also with the use of particular sound techniques to make it more beautiful. In the singing technique, more female have a diverse sound registers than male. There are so many registers of the human voice, but the voice registers used while singing, among others, Chest Voice, Head Voice, Falsetto, and Vocal fry. Research of speech recognition based on the female’s voice registers in singing technique is built using Borland Delphi 7.0. Speech recognition process performed by the input recorded voice samples and also in real time. Voice input will result in weight energy values based on calculations using Hankel Transformation method and Macdonald Functions. The results showed that the accuracy of the system depends on the accuracy of sound engineering that trained and tested, and obtained an average percentage of the successful introduction of the voice registers record reached 48.75 percent, while the average percentage of the successful introduction of the voice registers in real time to reach 57 percent.

  15. Recognition and classification of colon cells applying the ensemble of classifiers.

    PubMed

    Kruk, M; Osowski, S; Koktysz, R

    2009-02-01

    The paper presents the application of an ensemble of classifiers for the recognition of colon cells on the basis of the microscope colon image. The solved task include: segmentation of the individual cells from the image using the morphological operations, the preprocessing stages, leading to the extraction of features, selection of the most important features, and the classification stage applying the classifiers arranged in the form of ensemble. The paper presents and discusses the results concerning the recognition of four most important colon cell types: eosinophylic granulocyte, neutrophilic granulocyte, lymphocyte and plasmocyte. The proposed system is able to recognize the cells with the accuracy comparable to the human expert (around 5% of discrepancy of both results).

  16. Artificial intelligence tools for pattern recognition

    NASA Astrophysics Data System (ADS)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  17. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  18. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  19. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  20. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, G.C.; Martinez, R.F.

    1999-05-04

    A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.

  1. Multiple degree of freedom optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  2. Facial recognition in education system

    NASA Astrophysics Data System (ADS)

    Krithika, L. B.; Venkatesh, K.; Rathore, S.; Kumar, M. Harish

    2017-11-01

    Human beings exploit emotions comprehensively for conveying messages and their resolution. Emotion detection and face recognition can provide an interface between the individuals and technologies. The most successful applications of recognition analysis are recognition of faces. Many different techniques have been used to recognize the facial expressions and emotion detection handle varying poses. In this paper, we approach an efficient method to recognize the facial expressions to track face points and distances. This can automatically identify observer face movements and face expression in image. This can capture different aspects of emotion and facial expressions.

  3. Emotion Recognition From Singing Voices Using Contemporary Commercial Music and Classical Styles.

    PubMed

    Hakanpää, Tua; Waaramaa, Teija; Laukkanen, Anne-Maria

    2018-02-22

    This study examines the recognition of emotion in contemporary commercial music (CCM) and classical styles of singing. This information may be useful in improving the training of interpretation in singing. This is an experimental comparative study. Thirteen singers (11 female, 2 male) with a minimum of 3 years' professional-level singing studies (in CCM or classical technique or both) participated. They sang at three pitches (females: a, e1, a1, males: one octave lower) expressing anger, sadness, joy, tenderness, and a neutral state. Twenty-nine listeners listened to 312 short (0.63- to 4.8-second) voice samples, 135 of which were sung using a classical singing technique and 165 of which were sung in a CCM style. The listeners were asked which emotion they heard. Activity and valence were derived from the chosen emotions. The percentage of correct recognitions out of all the answers in the listening test (N = 9048) was 30.2%. The recognition percentage for the CCM-style singing technique was higher (34.5%) than for the classical-style technique (24.5%). Valence and activation were better perceived than the emotions themselves, and activity was better recognized than valence. A higher pitch was more likely to be perceived as joy or anger, and a lower pitch as sorrow. Both valence and activation were better recognized in the female CCM samples than in the other samples. There are statistically significant differences in the recognition of emotions between classical and CCM styles of singing. Furthermore, in the singing voice, pitch affects the perception of emotions, and valence and activity are more easily recognized than emotions. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Unsupervised learning of structure in spectroscopic cubes

    NASA Astrophysics Data System (ADS)

    Araya, M.; Mendoza, M.; Solar, M.; Mardones, D.; Bayo, A.

    2018-07-01

    We consider the problem of analyzing the structure of spectroscopic cubes using unsupervised machine learning techniques. We propose representing the target's signal as a homogeneous set of volumes through an iterative algorithm that separates the structured emission from the background while not overestimating the flux. Besides verifying some basic theoretical properties, the algorithm is designed to be tuned by domain experts, because its parameters have meaningful values in the astronomical context. Nevertheless, we propose a heuristic to automatically estimate the signal-to-noise ratio parameter of the algorithm directly from data. The resulting light-weighted set of samples (≤ 1% compared to the original data) offer several advantages. For instance, it is statistically correct and computationally inexpensive to apply well-established techniques of the pattern recognition and machine learning domains; such as clustering and dimensionality reduction algorithms. We use ALMA science verification data to validate our method, and present examples of the operations that can be performed by using the proposed representation. Even though this approach is focused on providing faster and better analysis tools for the end-user astronomer, it also opens the possibility of content-aware data discovery by applying our algorithm to big data.

  5. Rotation covariant image processing for biomedical applications.

    PubMed

    Skibbe, Henrik; Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  6. [Molecular techniques applied in species identification of Toxocara].

    PubMed

    Fogt, Renata

    2006-01-01

    Toxocarosis is still an important and actual problem in human medicine. It can manifest as visceral (VLM), ocular (OLM) or covert (CT) larva migrans syndroms. Complicated life cycle of Toxocara, lack of easy and practical methods of species differentiation of the adult nematode and embarrassing in recognition of the infection in definitive hosts create difficulties in fighting with the infection. Although studies on human toxocarosis have been continued for over 50 years there is no conclusive answer, which of species--T. canis or T. cati constitutes a greater risk of transmission of the nematode to man. Neither blood serological examinations nor microscopic observations of the morphological features of the nematode give the satisfied answer on the question. Since the 90-ths molecular methods were developed for species identification and became useful tools being widely applied in parasitological diagnosis. This paper cover the survey of methods of DNA analyses used for identification of Toxocara species. The review may be helpful for researchers focused on Toxocara and toxocarosis as well as on detection of new species. The following techniques are described: PCR (Polymerase Chain Reaction), RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA) and SSCP (Single Strand Conformation Polymorphism).

  7. Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors.

    PubMed

    Šilar, Radoslav; Holátko, Jiří; Rucká, Lenka; Rapoport, Andrey; Dostálová, Hana; Kadeřábková, Pavla; Nešvera, Jan; Pátek, Miroslav

    2016-09-01

    Promoter activities in Corynebacterium glutamicum strains with deletions of genes encoding sigma factors of RNA polymerase suggested that transcription from some promoters is controlled by two sigma factors. To prove that different sigma factors are involved in the recognition of selected Corynebacterium glutamicum promoters, in vitro transcription system was applied. It was found that a typical housekeeping promoter Pper interacts with the alternative sigma factor σ(B) in addition to the primary sigma factor σ(A). On the other way round, the σ(B)-dependent promoter of the pqo gene that is expressed mainly in the stationary growth phase was active also with σ(A). Some promoters of genes involved in stress responses (P1clgR, P2dnaK, and P2dnaJ2) were found to be recognized by two stress-responding sigma factors, σ(H) and σ(E). In vitro transcription system thus proved to be a useful direct technique for demonstrating the overlap of different sigma factors in recognition of individual promoters in C. glutamicum.

  8. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.

    PubMed

    Zhang, Lei; Zeng, Zhi; Ji, Qiang

    2011-09-01

    Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.

  9. Electromyography data for non-invasive naturally-controlled robotic hand prostheses

    PubMed Central

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible. PMID:25977804

  10. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    PubMed

    Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun

    2014-01-01

    Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.

  11. 26 CFR 1.684-3 - Exceptions to general rule of gain recognition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... before his death, and must recognize 1100X of gain at that time under § 1.684-1. Example 4. Transfer of... recognition. (a) Transfers to grantor trusts. The general rule of gain recognition under § 1.684-1 shall not apply to any transfer of property by a U.S. person to a foreign trust to the extent that any person is...

  12. Non-Cooperative Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution Range Profiles †

    PubMed Central

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Fernández-Recio, Raúl; Bravo, Ignacio

    2015-01-01

    Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising. PMID:25551484

  13. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  14. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models.

    PubMed

    Misra, Dharitri; Chen, Siyuan; Thoma, George R

    2009-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.

  15. Novel texture-based descriptors for tool wear condition monitoring

    NASA Astrophysics Data System (ADS)

    Antić, Aco; Popović, Branislav; Krstanović, Lidija; Obradović, Ratko; Milošević, Mijodrag

    2018-01-01

    All state-of-the-art tool condition monitoring systems (TCM) in the tool wear recognition task, especially those that use vibration sensors, heavily depend on the choice of descriptors containing information about the tool wear state which are extracted from the particular sensor signals. All other post-processing techniques do not manage to increase the recognition precision if those descriptors are not discriminative enough. In this work, we propose a tool wear monitoring strategy which relies on the novel texture based descriptors. We consider the module of the Short Term Discrete Fourier Transform (STDFT) spectra obtained from the particular vibration sensors signal utterance as the 2D textured image. This is done by identifying the time scale of STDFT as the first dimension, and the frequency scale as the second dimension of the particular textured image. The obtained textured image is then divided into particular 2D texture patches, covering a part of the frequency range of interest. After applying the appropriate filter bank, 2D textons are extracted for each predefined frequency band. By averaging in time, we extract from the textons for each band of interest the information regarding the Probability Density Function (PDF) in the form of lower order moments, thus obtaining robust tool wear state descriptors. We validate the proposed features by the experiments conducted on the real TCM system, obtaining the high recognition accuracy.

  16. Design method of ARM based embedded iris recognition system

    NASA Astrophysics Data System (ADS)

    Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting

    2008-03-01

    With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.

  17. Frontal view reconstruction for iris recognition

    DOEpatents

    Santos-Villalobos, Hector J; Bolme, David S; Boehnen, Chris Bensing

    2015-02-17

    Iris recognition can be accomplished for a wide variety of eye images by correcting input images with an off-angle gaze. A variety of techniques, from limbus modeling, corneal refraction modeling, optical flows, and genetic algorithms can be used. A variety of techniques, including aspherical eye modeling, corneal refraction modeling, ray tracing, and the like can be employed. Precomputed transforms can enhance performance for use in commercial applications. With application of the technologies, images with significantly unfavorable gaze angles can be successfully recognized.

  18. See-What-I-Do: Increasing Mentor and Trainee Sense of Co-Presence in Trauma Surgeries with the STAR Platform

    DTIC Science & Technology

    2016-04-01

    publications, images, and videos.  Technologies or techniques . The technique for one shot gesture recognition is a result from the research activity... shot learning concept for gesture recognition. Name: Aditya Ajay Shanghavi Project Role: Master Student Researcher Identifier (e.g. ORCID ID...use case . The transparency error depends more on the x than the z head tracking error. Head tracking is typically accurate to less than 10mm in x

  19. Automatic classification of fish germ cells through optimum-path forest.

    PubMed

    Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A

    2011-01-01

    The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.

  20. Pattern recognition analysis and classification modeling of selenium-producing areas

    USGS Publications Warehouse

    Naftz, D.L.

    1996-01-01

    Established chemometric and geochemical techniques were applied to water quality data from 23 National Irrigation Water Quality Program (NIWQP) study areas in the Western United States. These techniques were applied to the NIWQP data set to identify common geochemical processes responsible for mobilization of selenium and to develop a classification model that uses major-ion concentrations to identify areas that contain elevated selenium concentrations in water that could pose a hazard to water fowl. Pattern recognition modeling of the simple-salt data computed with the SNORM geochemical program indicate three principal components that explain 95% of the total variance. A three-dimensional plot of PC 1, 2 and 3 scores shows three distinct clusters that correspond to distinct hydrochemical facies denoted as facies 1, 2 and 3. Facies 1 samples are distinguished by water samples without the CaCO3 simple salt and elevated concentrations of NaCl, CaSO4, MgSO4 and Na2SO4 simple salts relative to water samples in facies 2 and 3. Water samples in facies 2 are distinguished from facies 1 by the absence of the MgSO4 simple salt and the presence of the CaCO3 simple salt. Water samples in facies 3 are similar to samples in facies 2, with the absence of both MgSO4 and CaSO4 simple salts. Water samples in facies 1 have the largest selenium concentration (10 ??gl-1), compared to a median concentration of 2.0 ??gl-1 and less than 1.0 ??gl-1 for samples in facies 2 and 3. A classification model using the soft independent modeling by class analogy (SIMCA) algorithm was constructed with data from the NIWQP study areas. The classification model was successful in identifying water samples with a selenium concentration that is hazardous to some species of water-fowl from a test data set comprised of 2,060 water samples from throughout Utah and Wyoming. Application of chemometric and geochemical techniques during data synthesis analysis of multivariate environmental databases from other national-scale environmental programs such as the NIWQP could also provide useful insights for addressing 'real world' environmental problems.

  1. Face recognition by applying wavelet subband representation and kernel associative memory.

    PubMed

    Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam

    2004-01-01

    In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.

  2. Image enhancement and advanced information extraction techniques for ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Nalepka, R. F.; Sarno, J. E.

    1975-01-01

    The author has identified the following significant results. It was demonstrated and concluded that: (1) the atmosphere has significant effects on ERTS MSS data which can seriously degrade recognition performance; (2) the application of selected signature extension techniques serve to reduce the deleterious effects of both the atmosphere and changing ground conditions on recognition performance; and (3) a proportion estimation algorithm for overcoming problems in acreage estimation accuracy resulting from the coarse spatial resolution of the ERTS MSS, was able to significantly improve acreage estimation accuracy over that achievable by conventional techniques, especially for high contrast targets such as lakes and ponds.

  3. Background Characterization Techniques For Pattern Recognition Applications

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Noah, Paul V.; Schroeder, John W.; Kessler, Bernard V.; Chernick, Julian A.

    1989-08-01

    The Department of Defense has a requirement to investigate technologies for the detection of air and ground vehicles in a clutter environment. The use of autonomous systems using infrared, visible, and millimeter wave detectors has the potential to meet DOD's needs. In general, however, the hard-ware technology (large detector arrays with high sensitivity) has outpaced the development of processing techniques and software. In a complex background scene the "problem" is as much one of clutter rejection as it is target detection. The work described in this paper has investigated a new, and innovative, methodology for background clutter characterization, target detection and target identification. The approach uses multivariate statistical analysis to evaluate a set of image metrics applied to infrared cloud imagery and terrain clutter scenes. The techniques are applied to two distinct problems: the characterization of atmospheric water vapor cloud scenes for the Navy's Infrared Search and Track (IRST) applications to support the Infrared Modeling Measurement and Analysis Program (IRAMMP); and the detection of ground vehicles for the Army's Autonomous Homing Munitions (AHM) problems. This work was sponsored under two separate Small Business Innovative Research (SBIR) programs by the Naval Surface Warfare Center (NSWC), White Oak MD, and the Army Material Systems Analysis Activity at Aberdeen Proving Ground MD. The software described in this paper will be available from the respective contract technical representatives.

  4. The Next Era: Deep Learning in Pharmaceutical Research.

    PubMed

    Ekins, Sean

    2016-11-01

    Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule's properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique.

  5. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  6. Aptamers against pathogenic microorganisms

    PubMed Central

    Davydova, Anna; Vorobjeva, Maria; Pyshnyi, Dmitrii; Altman, Sidney; Vlassov, Valentin; Venyaminova, Alya

    2016-01-01

    Abstract An important current issue of modern molecular medicine and biotechnology is the search for new approaches to early diagnostic assays and adequate therapy of infectious diseases. One of the promising solutions to this problem might be a development of nucleic acid aptamers capable of interacting specifically with bacteria, protozoa, and viruses. Such aptamers can be used for the specific recognition of infectious agents as well as for blocking of their functions. The present review summarizes various modern SELEX techniques used in this field, and of several currently identified aptamers against viral particles and unicellular organisms, and their applications. The prospects of applying nucleic acid aptamers for the development of novel detection systems and antibacterial and antiviral drugs are discussed. PMID:26258445

  7. Computerized recognition of persons by EEG spectral patterns.

    PubMed

    Stassen, H H

    1980-07-01

    Modified techniques of communication theory in connection with multivariate statistical procedures were applied to a sample of 82 patients for the purpose of defining EEG spectral patterns and for solving the relevant classification problems. Ten measurements per patient were made and it could be shown that a subject can be characterized and be recognized by his EEG spectral pattern with high reliability and a confidence probability of almost 90%. This result is valid not only for normal adults but also for schizophrenic patients, implying a close relationship between the EEG spectral pattern and the individual person. At the moment the nature of this relationship is not clear; in particular the supposed relationship to psychopathology could not be proved.

  8. Medical Named Entity Recognition for Indonesian Language Using Word Representations

    NASA Astrophysics Data System (ADS)

    Rahman, Arief

    2018-03-01

    Nowadays, Named Entity Recognition (NER) system is used in medical texts to obtain important medical information, like diseases, symptoms, and drugs. While most NER systems are applied to formal medical texts, informal ones like those from social media (also called semi-formal texts) are starting to get recognition as a gold mine for medical information. We propose a theoretical Named Entity Recognition (NER) model for semi-formal medical texts in our medical knowledge management system by comparing two kinds of word representations: cluster-based word representation and distributed representation.

  9. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  10. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  11. Getting What You Want: Accurate Document Filtering in a Terabyte World

    DTIC Science & Technology

    2002-11-01

    models are used widely in speech recognition and have shown promise for ad-hoc information retrieval (Ponte and Croft, 1998; Lafferty and Zhai, 2001...tasks is focused on developing techniques similar to those used in speech recognition. However the differing requirements of speech recognition and...Conference on Research and Development in Information Retrieval. ACM. 6. T.Ault, and Y. Yang. (2001.) kNN at TREC-9: A failure analysis. In

  12. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  13. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  14. Does Employee Recognition Affect Positive Psychological Functioning and Well-Being?

    PubMed

    Merino, M Dolores; Privado, Jesús

    2015-09-14

    Employee recognition is one of the typical characteristics of healthy organizations. The majority of research on recognition has studied the consequences of this variable on workers. But few investigations have focused on understanding what mechanisms mediate between recognition and its consequences. This work aims to understand whether the relationship between employee recognition and well-being, psychological resources mediate. To answer this question a sample of 1831 workers was used. The variables measured were: employee recognition, subjective well-being and positive psychological functioning (PPF), which consists of 11 psychological resources. In the analysis of data, structural equation models were applied. The results confirmed our hypothesis and showed that PPF mediate the relationship between recognition and well-being. The effect of recognition over PPF is two times greater (.39) with peer-recognition than with supervisor-recognition (.20), and, the effect of PPF over well-being is .59. This study highlights the importance of promoting employee recognition policies in organizations for the impact it has, not only on well-being, but also on the positive psychological functioning of the workers.

  15. Container-code recognition system based on computer vision and deep neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  16. Optical Fourier diffractometry applied to degraded bone structure recognition

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Godwod, Krzysztof; Szawdyn, Jacek; Sawicki, Andrzej

    1993-09-01

    Image processing and recognition methods are useful in many fields. This paper presents the hybrid optical and digital method applied to recognition of pathological changes in bones involved by metabolic bone diseases. The trabecular bone structure, registered by x ray on the photographic film, is analyzed in the new type of computer controlled diffractometer. The set of image parameters, extracted from diffractogram, is evaluated by statistical analysis. The synthetic image descriptors in discriminant space, constructed on the base of 3 training groups of images (control, osteoporosis, and osteomalacia groups) by discriminant analysis, allow us to recognize bone samples with degraded bone structure and to recognize the disease. About 89% of the images were classified correctly. This method after optimization process will be verified in medical investigations.

  17. Fifty years of progress in speech and speaker recognition

    NASA Astrophysics Data System (ADS)

    Furui, Sadaoki

    2004-10-01

    Speech and speaker recognition technology has made very significant progress in the past 50 years. The progress can be summarized by the following changes: (1) from template matching to corpus-base statistical modeling, e.g., HMM and n-grams, (2) from filter bank/spectral resonance to Cepstral features (Cepstrum + DCepstrum + DDCepstrum), (3) from heuristic time-normalization to DTW/DP matching, (4) from gdistanceh-based to likelihood-based methods, (5) from maximum likelihood to discriminative approach, e.g., MCE/GPD and MMI, (6) from isolated word to continuous speech recognition, (7) from small vocabulary to large vocabulary recognition, (8) from context-independent units to context-dependent units for recognition, (9) from clean speech to noisy/telephone speech recognition, (10) from single speaker to speaker-independent/adaptive recognition, (11) from monologue to dialogue/conversation recognition, (12) from read speech to spontaneous speech recognition, (13) from recognition to understanding, (14) from single-modality (audio signal only) to multi-modal (audio/visual) speech recognition, (15) from hardware recognizer to software recognizer, and (16) from no commercial application to many practical commercial applications. Most of these advances have taken place in both the fields of speech recognition and speaker recognition. The majority of technological changes have been directed toward the purpose of increasing robustness of recognition, including many other additional important techniques not noted above.

  18. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  19. HMM-based lexicon-driven and lexicon-free word recognition for online handwritten Indic scripts.

    PubMed

    Bharath, A; Madhvanath, Sriganesh

    2012-04-01

    Research for recognizing online handwritten words in Indic scripts is at its early stages when compared to Latin and Oriental scripts. In this paper, we address this problem specifically for two major Indic scripts--Devanagari and Tamil. In contrast to previous approaches, the techniques we propose are largely data driven and script independent. We propose two different techniques for word recognition based on Hidden Markov Models (HMM): lexicon driven and lexicon free. The lexicon-driven technique models each word in the lexicon as a sequence of symbol HMMs according to a standard symbol writing order derived from the phonetic representation. The lexicon-free technique uses a novel Bag-of-Symbols representation of the handwritten word that is independent of symbol order and allows rapid pruning of the lexicon. On handwritten Devanagari word samples featuring both standard and nonstandard symbol writing orders, a combination of lexicon-driven and lexicon-free recognizers significantly outperforms either of them used in isolation. In contrast, most Tamil word samples feature the standard symbol order, and the lexicon-driven recognizer outperforms the lexicon free one as well as their combination. The best recognition accuracies obtained for 20,000 word lexicons are 87.13 percent for Devanagari when the two recognizers are combined, and 91.8 percent for Tamil using the lexicon-driven technique.

  20. Effective evaluation of privacy protection techniques in visible and thermal imagery

    NASA Astrophysics Data System (ADS)

    Nawaz, Tahir; Berg, Amanda; Ferryman, James; Ahlberg, Jörgen; Felsberg, Michael

    2017-09-01

    Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgments or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. An annotation-free evaluation method that is neither subjective nor assumes a specific target type is proposed. It assesses two key aspects of privacy protection: "protection" and "utility." Protection is quantified as an appearance similarity, and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences), including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for the community. We demonstrate effectiveness of the proposed method by evaluating six image-based privacy protection techniques and also show comparisons of the proposed method over existing methods.

  1. Detection and Monitoring of Toxic Chemical at Ultra Trace Level by Utilizing Doped Nanomaterial

    PubMed Central

    Khan, Sher Bahadar; Rahman, Mohammed M.; Akhtar, Kalsoom; Asiri, Abdullah M.

    2014-01-01

    Composite nanoparticles were synthesized by eco-friendly hydrothermal process and characterized by different spectroscopic techniques. All the spectroscopic techniques suggested the synthesis of well crystalline optically active composite nanoparticles with average diameter of ∼30 nm. The synthesized nanoparticles were applied for the development of chemical sensor which was fabricated by coating the nanoparticles on silver electrode for the recognition of phthalimide using simple I–V technique. The developed sensor exhibited high sensitivity (1.7361 µA.mM−1.cm−2), lower detection limit (8.0 µM) and long range of detection (77.0 µM to 0.38 M). Further the resistances of composite nanoparticles based sensor was found to be 2.7 MΩ which change from 2.7 to 1.7 with change in phthalimide concentration. The major advantages of the designed sensor over existing sensors are its simple technique, low cost, lower detection limit, high sensitivity and long range of detection. It can detect phthalimide even at trace level and sense over wide range of concentrations. Therefore the composite nanoparticals would be a better choice for the fabrication of phthalimide chemical sensor and would be time and cost substituted implement for environmental safety. PMID:25329666

  2. High Resolution Ultrasonic Method for 3D Fingerprint Recognizable Characteristics in Biometrics Identification

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Bakulin, E. Yu.; Maeva, A.; Severin, F.

    Biometrics is a rapidly evolving scientific and applied discipline that studies possible ways of personal identification by means of unique biological characteristics. Such identification is important in various situations requiring restricted access to certain areas, information and personal data and for cases of medical emergencies. A number of automated biometric techniques have been developed, including fingerprint, hand shape, eye and facial recognition, thermographic imaging, etc. All these techniques differ in the recognizable parameters, usability, accuracy and cost. Among these, fingerprint recognition stands alone since a very large database of fingerprints has already been acquired. Also, fingerprints are key evidence left at a crime scene and can be used to indentify suspects. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. We introduce a newer development of the ultrasonic fingerprint imaging. The proposed method obtains a scan only once and then varies the C-scan gate position and width to visualize acoustic reflections from any appropriate depth inside the skin. Also, B-scans and A-scans can be recreated from any position using such data array, which gives the control over the visualization options. By setting the C-scan gate deeper inside the skin, distribution of the sweat pores (which are located along the ridges) can be easily visualized. This distribution should be unique for each individual so this provides a means of personal identification, which is not affected by any changes (accidental or intentional) of the fingers' surface conditions. This paper discusses different setups, acoustic parameters of the system, signal and image processing options and possible ways of 3-dimentional visualization that could be used as a recognizable characteristic in biometric identification.

  3. Model, analysis, and evaluation of the effects of analog VLSI arithmetic on linear subspace-based image recognition.

    PubMed

    Carvajal, Gonzalo; Figueroa, Miguel

    2014-07-01

    Typical image recognition systems operate in two stages: feature extraction to reduce the dimensionality of the input space, and classification based on the extracted features. Analog Very Large Scale Integration (VLSI) is an attractive technology to achieve compact and low-power implementations of these computationally intensive tasks for portable embedded devices. However, device mismatch limits the resolution of the circuits fabricated with this technology. Traditional layout techniques to reduce the mismatch aim to increase the resolution at the transistor level, without considering the intended application. Relating mismatch parameters to specific effects in the application level would allow designers to apply focalized mismatch compensation techniques according to predefined performance/cost tradeoffs. This paper models, analyzes, and evaluates the effects of mismatched analog arithmetic in both feature extraction and classification circuits. For the feature extraction, we propose analog adaptive linear combiners with on-chip learning for both Least Mean Square (LMS) and Generalized Hebbian Algorithm (GHA). Using mathematical abstractions of analog circuits, we identify mismatch parameters that are naturally compensated during the learning process, and propose cost-effective guidelines to reduce the effect of the rest. For the classification, we derive analog models for the circuits necessary to implement Nearest Neighbor (NN) approach and Radial Basis Function (RBF) networks, and use them to emulate analog classifiers with standard databases of face and hand-writing digits. Formal analysis and experiments show how we can exploit adaptive structures and properties of the input space to compensate the effects of device mismatch at the application level, thus reducing the design overhead of traditional layout techniques. Results are also directly extensible to multiple application domains using linear subspace methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Empirical study on neural network based predictive techniques for automatic number plate recognition

    NASA Astrophysics Data System (ADS)

    Shashidhara, M. S.; Indrakumar, S. S.

    2011-10-01

    The objective of this study is to provide an easy, accurate and effective technology for the Bangalore city traffic control. This is based on the techniques of image processing and laser beam technology. The core concept chosen here is an image processing technology by the method of automatic number plate recognition system. First number plate is recognized if any vehicle breaks the traffic rules in the signals. The number is fetched from the database of the RTO office by the process of automatic database fetching. Next this sends the notice and penalty related information to the vehicle owner email-id and an SMS sent to vehicle owner. In this paper, we use of cameras with zooming options & laser beams to get accurate pictures further applied image processing techniques such as Edge detection to understand the vehicle, Identifying the location of the number plate, Identifying the number plate for further use, Plain plate number, Number plate with additional information, Number plates in the different fonts. Accessing the database of the vehicle registration office to identify the name and address and other information of the vehicle number. The updates to be made to the database for the recording of the violation and penalty issues. A feed forward artificial neural network is used for OCR. This procedure is particularly important for glyphs that are visually similar such as '8' and '9' and results in training sets of between 25,000 and 40,000 training samples. Over training of the neural network is prevented by Bayesian regularization. The neural network output value is set to 0.05 when the input is not desired glyph, and 0.95 for correct input.

  5. Circle Hough transform implementation for dots recognition in braille cells

    NASA Astrophysics Data System (ADS)

    Jacinto Gómez, Edwar; Montiel Ariza, Holman; Martínez Sarmiento, Fredy Hernán.

    2017-02-01

    This paper shows a technique based on CHT (Circle Hough Transform) to achieve the optical Braille recognition (OBR). Unlike other papers developed around the same topic, this one is made by using Hough Transform to process the recognition and transcription of Braille cells, proving CHT to be an appropriate technique to go over different non-systematics factors who can affect the process, as the paper type where the text to traduce is placed, some lightning factors, input image resolution and some flaws derived from the capture process, which is realized using a scanner. Tests are performed with a local database using text generated by visual nondisabled people and some transcripts by sightless people; all of this with the support of National Institute for Blind People (INCI for their Spanish acronym) placed in Colombia.

  6. Automatic recognition of light source from color negative films using sorting classification techniques

    NASA Astrophysics Data System (ADS)

    Sanger, Demas S.; Haneishi, Hideaki; Miyake, Yoichi

    1995-08-01

    This paper proposed a simple and automatic method for recognizing the light sources from various color negative film brands by means of digital image processing. First, we stretched the image obtained from a negative based on the standardized scaling factors, then extracted the dominant color component among red, green, and blue components of the stretched image. The dominant color component became the discriminator for the recognition. The experimental results verified that any one of the three techniques could recognize the light source from negatives of any film brands and all brands greater than 93.2 and 96.6% correct recognitions, respectively. This method is significant for the automation of color quality control in color reproduction from color negative film in mass processing and printing machine.

  7. A comparison of image processing techniques for bird recognition.

    PubMed

    Nadimpalli, Uma D; Price, Randy R; Hall, Steven G; Bomma, Pallavi

    2006-01-01

    Bird predation is one of the major concerns for fish culture in open ponds. A novel method for dispersing birds is the use of autonomous vehicles. Image recognition software can improve their efficiency. Several image processing techniques for recognition of birds have been tested. A series of morphological operations were implemented. We divided images into 3 types, Type 1, Type 2, and Type 3, based on the level of difficulty of recognizing birds. Type 1 images were clear; Type 2 images were medium clear, and Type 3 images were unclear. Local thresholding has been implemented using HSV (Hue, Saturation, and Value), GRAY, and RGB (Red, Green, and Blue) color models on all three sections of images and results were tabulated. Template matching using normal correlation and artificial neural networks (ANN) are the other methods that have been developed in this study in addition to image morphology. Template matching produced satisfactory results irrespective of the difficulty level of images, but artificial neural networks produced accuracies of 100, 60, and 50% on Type 1, Type 2, and Type 3 images, respectively. Correct classification rate can be increased by further training. Future research will focus on testing the recognition algorithms in natural or aquacultural settings on autonomous boats. Applications of such techniques to industrial, agricultural, or related areas are additional future possibilities.

  8. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  9. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  10. Mirror self-recognition: a review and critique of attempts to promote and engineer self-recognition in primates.

    PubMed

    Anderson, James R; Gallup, Gordon G

    2015-10-01

    We review research on reactions to mirrors and self-recognition in nonhuman primates, focusing on methodological issues. Starting with the initial demonstration in chimpanzees in 1970 and subsequent attempts to extend this to other species, self-recognition in great apes is discussed with emphasis on spontaneous manifestations of mirror-guided self-exploration as well as spontaneous use of the mirror to investigate foreign marks on otherwise nonvisible body parts-the mark test. Attempts to show self-recognition in other primates are examined with particular reference to the lack of convincing examples of spontaneous mirror-guided self-exploration, and efforts to engineer positive mark test responses by modifying the test or using conditioning techniques. Despite intensive efforts to demonstrate self-recognition in other primates, we conclude that to date there is no compelling evidence that prosimians, monkeys, or lesser apes-gibbons and siamangs-are capable of mirror self-recognition.

  11. New baseline correction algorithm for text-line recognition with bidirectional recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Morillot, Olivier; Likforman-Sulem, Laurence; Grosicki, Emmanuèle

    2013-04-01

    Many preprocessing techniques have been proposed for isolated word recognition. However, recently, recognition systems have dealt with text blocks and their compound text lines. In this paper, we propose a new preprocessing approach to efficiently correct baseline skew and fluctuations. Our approach is based on a sliding window within which the vertical position of the baseline is estimated. Segmentation of text lines into subparts is, thus, avoided. Experiments conducted on a large publicly available database (Rimes), with a BLSTM (bidirectional long short-term memory) recurrent neural network recognition system, show that our baseline correction approach highly improves performance.

  12. Recognition of complex human behaviours using 3D imaging for intelligent surveillance applications

    NASA Astrophysics Data System (ADS)

    Yao, Bo; Lepley, Jason J.; Peall, Robert; Butler, Michael; Hagras, Hani

    2016-10-01

    We introduce a system that exploits 3-D imaging technology as an enabler for the robust recognition of the human form. We combine this with pose and feature recognition capabilities from which we can recognise high-level human behaviours. We propose a hierarchical methodology for the recognition of complex human behaviours, based on the identification of a set of atomic behaviours, individual and sequential poses (e.g. standing, sitting, walking, drinking and eating) that provides a framework from which we adopt time-based machine learning techniques to recognise complex behaviour patterns.

  13. New Optical Transforms For Statistical Image Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Sing H.

    1983-12-01

    In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.

  14. Scanning probe recognition microscopy investigation of tissue scaffold properties

    PubMed Central

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  15. Scanning probe recognition microscopy investigation of tissue scaffold properties.

    PubMed

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.

  16. Learning by Sorting

    ERIC Educational Resources Information Center

    Lovrencic, Michael; Vena, Laurie

    2014-01-01

    A kinesthetic technique for learning to recognize elements and compounds is presented in this article. The current common pedagogy appears to merge recognition and implementation into one naming method. A separate recognition skill is critical to students being able to correctly name and write the formulas of compounds. This article focuses on…

  17. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    USDA-ARS?s Scientific Manuscript database

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  18. Advances in carbonate exploration and reservoir analysis

    USGS Publications Warehouse

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  19. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography.

    PubMed

    Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M D; Rotenberg, Alexander; Daskalakis, Zafiris J; Pascual-Leone, Alvaro

    2016-01-01

    The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.

  20. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography

    PubMed Central

    Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M. D.; Rotenberg, Alexander; Daskalakis, Zafiris J.; Pascual-Leone, Alvaro

    2016-01-01

    The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research. PMID:27713691

  1. Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran

    NASA Astrophysics Data System (ADS)

    Sarparandeh, Mohammadali; Hezarkhani, Ardeshir

    2017-12-01

    The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed methods and geological studies leads to finding some hidden information, and this approach has the best results compared to using only one of them.

  2. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.

  3. [Recognition of occupational cancers: review of existing methods and perspectives].

    PubMed

    Vandentorren, Stéphanie; Salmi, L Rachid; Brochard, Patrick

    2005-09-01

    Occupational risk factors represent a significant part of cancer causes and are involved in all type of cancers. Nonetheless, the frequency of these cancers is largely under-estimated. Parallel to the epidemiological approach (collective), the concept of occupational cancer is often linked (at the individual level) to the compensation of occupational diseases. To give rise to a financial compensation, the occupational origin of the exposition has to be established for a given cancer. Whatever the method used to explore an occupational cause, the approach is that of an imputation. The aim of this work is to synthesize and describe the main principles of recognition of occupational cancers, to discuss the limits of available methods and to consider the research needed to improve these methods. In France, the recognition of a cancer's occupational origin consists in tables of occupational diseases that are based on presumption of causality. These tables consist in medical, technical and administrative conditions that are necessary and sufficient for the recognition of an occupational disease and its financial compensation. Whenever causality presumption does not apply, imputation is based on case analyses run by experts within regional committees of occupational diseases recognition that lack reproducibility. They do not allow statistical quantization and do not always take into account the weight of associated factors. Nonetheless, reliability and validity of the expertise could be reinforced by the use of formal consensus techniques. This process could ideally lead to the generation of decision-making algorithms that could guide the user towards the decision of imputing or not the cancer to an occupational exposure. This would be adapted to the build-up of new tables. The imputation process would be better represented by statistical methods based on the use of Bayes' theorem. The application of these methods to occupational cancers is promising but remains limited due to the lack of epidemiological data. Acquiring these data and diffusing these methods should become research and development priorities in the cancer field.

  4. Texture- and deformability-based surface recognition by tactile image analysis.

    PubMed

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.

  5. Boundary methods for mode estimation

    NASA Astrophysics Data System (ADS)

    Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.

    1999-08-01

    This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).

  6. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    NASA Astrophysics Data System (ADS)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  7. Face Recognition, Musical Appraisal, and Emotional Crossmodal Bias.

    PubMed

    Invitto, Sara; Calcagnì, Antonio; Mignozzi, Arianna; Scardino, Rosanna; Piraino, Giulia; Turchi, Daniele; De Feudis, Irio; Brunetti, Antonio; Bevilacqua, Vitoantonio; de Tommaso, Marina

    2017-01-01

    Recent research on the crossmodal integration of visual and auditory perception suggests that evaluations of emotional information in one sensory modality may tend toward the emotional value generated in another sensory modality. This implies that the emotions elicited by musical stimuli can influence the perception of emotional stimuli presented in other sensory modalities, through a top-down process. The aim of this work was to investigate how crossmodal perceptual processing influences emotional face recognition and how potential modulation of this processing induced by music could be influenced by the subject's musical competence. We investigated how emotional face recognition processing could be modulated by listening to music and how this modulation varies according to the subjective emotional salience of the music and the listener's musical competence. The sample consisted of 24 participants: 12 professional musicians and 12 university students (non-musicians). Participants performed an emotional go/no-go task whilst listening to music by Albeniz, Chopin, or Mozart. The target stimuli were emotionally neutral facial expressions. We examined the N170 Event-Related Potential (ERP) and behavioral responses (i.e., motor reaction time to target recognition and musical emotional judgment). A linear mixed-effects model and a decision-tree learning technique were applied to N170 amplitudes and latencies. The main findings of the study were that musicians' behavioral responses and N170 is more affected by the emotional value of music administered in the emotional go/no-go task and this bias is also apparent in responses to the non-target emotional face. This suggests that emotional information, coming from multiple sensory channels, activates a crossmodal integration process that depends upon the stimuli emotional salience and the listener's appraisal.

  8. Fluorescent sensor systems based on nanostructured polymeric membranes for selective recognition of Aflatoxin B1.

    PubMed

    Sergeyeva, Tetyana; Yarynka, Daria; Piletska, Elena; Lynnik, Rostyslav; Zaporozhets, Olga; Brovko, Oleksandr; Piletsky, Sergey; El'skaya, Anna

    2017-12-01

    Nanostructured polymeric membranes for selective recognition of aflatoxin B1 were synthesized in situ and used as highly sensitive recognition elements in the developed fluorescent sensor. Artificial binding sites capable of selective recognition of aflatoxin B1 were formed in the structure of the polymeric membranes using the method of molecular imprinting. A composition of molecularly imprinted polymer (MIP) membranes was optimized using the method of computational modeling. The MIP membranes were synthesized using the non-toxic close structural analogue of aflatoxin B1, ethyl-2-oxocyclopentanecarboxylate as a dummy template. The MIP membranes with the optimized composition demonstrated extremely high selectivity towards aflatoxin B1 (AFB1). Negligible binding of close structural analogues of AFB1 - aflatoxins B2 (AFB2), aflatoxin G2 (AFG2), and ochratoxin A (OTA) was demonstrated. Binding of AFB1 by the MIP membranes was investigated as a function of both type and concentration of the functional monomer in the initial monomer composition used for the membranes' synthesis, as well as sample composition. The conditions of the solid-phase extraction of the mycotoxin using the MIP membrane as a stationary phase (pH, ionic strength, buffer concentration, volume of the solution, ratio between water and organic solvent, filtration rate) were optimized. The fluorescent sensor system based on the optimized MIP membranes provided a possibility of AFB1 detection within the range 14-500ngmL -1 demonstrating detection limit (3Ϭ) of 14ngmL -1 . The developed technique was successfully applied for the analysis of model solutions and waste waters from bread-making plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of a finite multipole expansion technique for the computation of electrostatic potentials of dibenzo-p-dioxins and related systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.S.; Grice, M.E.; Politzer, P.

    1990-01-01

    The electrostatic potential V(r) that the nuclei and electrons of a molecule create in the surrounding space is well established as a guide in the study of molecular reactivity, and particularly, of biological recognition processes. Its rigorous computation is, however, very demanding of computer time for large molecules, such as those of interest in recognition interactions. The authors have accordingly investigated the use of an approximate finite multicenter multipole expansion technique to determine its applicability for producing reliable electrostatic potentials of dibenzo-p-dioxins and related molecules, with significantly reduced amounts of computer time, at distances of interest in recognition studies. Amore » comparative analysis of the potentials of three dibenzo-q-dioxins and a substituted naphthalene molecule computed using both the multipole expansion technique and GAUSSIAN 82 at the STO-5G level has been carried out. Overall they found that regions of negative and positive V(r) at 1.75 A above the molecular plane are very well reproduced by the multipole expansion technique, with up to a twenty-fold improvement in computer time.« less

  10. Classification of Uxo by Principal Dipole Polarizability

    NASA Astrophysics Data System (ADS)

    Kappler, K. N.

    2010-12-01

    Data acquired by multiple-Transmitter, multiple-receiver time-domain electromagnetic devices show great potential for determining the geometric and compositional information relating to near surface conductive targets. Here is presented an analysis of data from one such system; the Berkeley Unexploded-ordnance Discriminator (BUD) system. BUD data are succinctly reduced by processing the multi-static data matrices to obtain magnetic dipole polarizability matrices for data from each time gate. When viewed over all time gates, the projections of the data onto the principal polar axes yield so-called polarizability curves. These curves are especially well suited to discriminating between subsurface conductivity anomalies which correspond to objects of rotational symmetry and irregularly shaped objects. The curves have previously been successfully employed as library elements in a pattern recognition scheme aimed at discriminating harmless scrap metal from dangerous intact unexploded ordnance. However, previous polarizability-curve matching methods have only been applied at field sites which are known a priori to be contaminated by a single type of ordnance, and furthermore, the particular ordnance present in the subsurface was known to be large. Thus signal amplitude was a key element in the discrimination process. The work presented here applies feature-based pattern classification techniques to BUD field data where more than 20 categories of object are present. Data soundings from a calibration grid at the Yuma, AZ proving ground are used in a cross validation study to calibrate the pattern recognition method. The resultant method is then applied to a Blind Test Grid. Results indicate that when lone UXO are present and SNR is reasonably high, Polarizability Curve Matching successfully discriminates UXO from scrap metal when a broad range of objects are present.

  11. Iris recognition based on robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Karn, Pradeep; He, Xiao Hai; Yang, Shuai; Wu, Xiao Hong

    2014-11-01

    Iris images acquired under different conditions often suffer from blur, occlusion due to eyelids and eyelashes, specular reflection, and other artifacts. Existing iris recognition systems do not perform well on these types of images. To overcome these problems, we propose an iris recognition method based on robust principal component analysis. The proposed method decomposes all training images into a low-rank matrix and a sparse error matrix, where the low-rank matrix is used for feature extraction. The sparsity concentration index approach is then applied to validate the recognition result. Experimental results using CASIA V4 and IIT Delhi V1iris image databases showed that the proposed method achieved competitive performances in both recognition accuracy and computational efficiency.

  12. Noise Robust Speech Recognition Applied to Voice-Driven Wheelchair

    NASA Astrophysics Data System (ADS)

    Sasou, Akira; Kojima, Hiroaki

    2009-12-01

    Conventional voice-driven wheelchairs usually employ headset microphones that are capable of achieving sufficient recognition accuracy, even in the presence of surrounding noise. However, such interfaces require users to wear sensors such as a headset microphone, which can be an impediment, especially for the hand disabled. Conversely, it is also well known that the speech recognition accuracy drastically degrades when the microphone is placed far from the user. In this paper, we develop a noise robust speech recognition system for a voice-driven wheelchair. This system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors. We verified the effectiveness of our system in experiments in different environments, and confirmed that our system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors.

  13. Chemical recognition of gases and gas mixtures with terahertz waves.

    PubMed

    Jacobsen, R H; Mittleman, D M; Nuss, M C

    1996-12-15

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classif ication of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  14. Chemical recognition of gases and gas mixtures with terahertz waves

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. H.; Mittleman, D. M.; Nuss, M. C.

    1996-12-01

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classification of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  15. Infrared/Terahertz Double Resonance for Chemical Remote Sensing: Signatures and Performance Predictions

    DTIC Science & Technology

    2011-01-01

    remote sensing , such as Fourier-transform infrared spectroscopy, has limited recognition specificity because of atmospheric pressure broadening. Active interrogation techniques promise much greater chemical recognition that can overcome the limits imposed by atmospheric pressure broadening. Here we introduce infrared - terahertz (IR/THz) double resonance spectroscopy as an active means of chemical remote sensing that retains recognition specificity through rare, molecule-unique coincidences between IR molecular absorption and a line-tunable CO2

  16. Exploiting Hidden Layer Responses of Deep Neural Networks for Language Recognition

    DTIC Science & Technology

    2016-09-08

    trained DNNs. We evaluated this ap- proach in NIST 2015 language recognition evaluation. The per- formances achieved by the proposed approach are very...activations, used in direct DNN-LID. Results from the LID experiments support our hypothesis. The LID experiments are performed on NIST Language Recognition...of-the-art I- vector system [3, 10, 11] in evaluation (eval) set of NIST LRE 2015. Combination of proposed technique and state-of-the-art I-vector

  17. An articulatorily constrained, maximum entropy approach to speech recognition and speech coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, J.

    Hidden Markov models (HMM`s) are among the most popular tools for performing computer speech recognition. One of the primary reasons that HMM`s typically outperform other speech recognition techniques is that the parameters used for recognition are determined by the data, not by preconceived notions of what the parameters should be. This makes HMM`s better able to deal with intra- and inter-speaker variability despite the limited knowledge of how speech signals vary and despite the often limited ability to correctly formulate rules describing variability and invariance in speech. In fact, it is often the case that when HMM parameter values aremore » constrained using the limited knowledge of speech, recognition performance decreases. However, the structure of an HMM has little in common with the mechanisms underlying speech production. Here, the author argues that by using probabilistic models that more accurately embody the process of speech production, he can create models that have all the advantages of HMM`s, but that should more accurately capture the statistical properties of real speech samples--presumably leading to more accurate speech recognition. The model he will discuss uses the fact that speech articulators move smoothly and continuously. Before discussing how to use articulatory constraints, he will give a brief description of HMM`s. This will allow him to highlight the similarities and differences between HMM`s and the proposed technique.« less

  18. The cross-race effect in face recognition memory by bicultural individuals.

    PubMed

    Marsh, Benjamin U; Pezdek, Kathy; Ozery, Daphna Hausman

    2016-09-01

    Social-cognitive models of the cross-race effect (CRE) generally specify that cross-race faces are automatically categorized as an out-group, and that different encoding processes are then applied to same-race and cross-race faces, resulting in better recognition memory for same-race faces. We examined whether cultural priming moderates the cognitive categorization of cross-race faces. In Experiment 1, monoracial Latino-Americans, considered to have a bicultural self, were primed to focus on either a Latino or American cultural self and then viewed Latino and White faces. Latino-Americans primed as Latino exhibited higher recognition accuracy (A') for Latino than White faces; those primed as American exhibited higher recognition accuracy for White than Latino faces. In Experiment 2, as predicted, prime condition did not moderate the CRE in European-Americans. These results suggest that for monoracial biculturals, priming either of their cultural identities influences the encoding processes applied to same- and cross-race faces, thereby moderating the CRE. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Developing a hybrid dictionary-based bio-entity recognition technique.

    PubMed

    Song, Min; Yu, Hwanjo; Han, Wook-Shin

    2015-01-01

    Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.

  20. Developing a hybrid dictionary-based bio-entity recognition technique

    PubMed Central

    2015-01-01

    Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907

  1. [Application of image recognition technology in census of national traditional Chinese medicine resources].

    PubMed

    Zhang, Xiao-Bo; Ge, Xiao-Guang; Jin, Yan; Shi, Ting-Ting; Wang, Hui; Li, Meng; Jing, Zhi-Xian; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    With the development of computer and image processing technology, image recognition technology has been applied to the national medicine resources census work at all stages.Among them: ①In the preparatory work, in order to establish a unified library of traditional Chinese medicine resources, using text recognition technology based on paper materials, be the assistant in the digitalization of various categories related to Chinese medicine resources; to determine the representative area and plots of the survey from each census team, based on the satellite remote sensing image and vegetation map and other basic data, using remote sensing image classification and other technical methods to assist in determining the key investigation area. ②In the process of field investigation, to obtain the planting area of Chinese herbal medicine was accurately, we use the decision tree model, spectral feature and object-oriented method were used to assist the regional identification and area estimation of Chinese medicinal materials.③In the process of finishing in the industry, in order to be able to relatively accurately determine the type of Chinese medicine resources in the region, based on the individual photos of the plant, the specimens and the name of the use of image recognition techniques, to assist the statistical summary of the types of traditional Chinese medicine resources. ④In the application of the results of transformation, based on the pharmaceutical resources and individual samples of medicinal herbs, the development of Chinese medicine resources to identify APP and authentic herbs 3D display system, assisted the identification of Chinese medicine resources and herbs identification characteristics. The introduction of image recognition technology in the census of Chinese medicine resources, assisting census personnel to carry out related work, not only can reduce the workload of the artificial, improve work efficiency, but also improve the census results of information technology and sharing application ability. With the deepening of the work of Chinese medicine resources census, image recognition technology in the relevant work will also play its unique role. Copyright© by the Chinese Pharmaceutical Association.

  2. Machine-assisted verification of latent fingerprints: first results for nondestructive contact-less optical acquisition techniques with a CWL sensor

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Kiltz, Stefan; Krapyvskyy, Dmytro; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    A machine-assisted analysis of traces from crime scenes might be possible with the advent of new high-resolution non-destructive contact-less acquisition techniques for latent fingerprints. This requires reliable techniques for the automatic extraction of fingerprint features from latent and exemplar fingerprints for matching purposes using pattern recognition approaches. Therefore, we evaluate the NIST Biometric Image Software for the feature extraction and verification of contact-lessly acquired latent fingerprints to determine potential error rates. Our exemplary test setup includes 30 latent fingerprints from 5 people in two test sets that are acquired from different surfaces using a chromatic white light sensor. The first test set includes 20 fingerprints on two different surfaces. It is used to determine the feature extraction performance. The second test set includes one latent fingerprint on 10 different surfaces and an exemplar fingerprint to determine the verification performance. This utilized sensing technique does not require a physical or chemical visibility enhancement of the fingerprint residue, thus the original trace remains unaltered for further investigations. No particular feature extraction and verification techniques have been applied to such data, yet. Hence, we see the need for appropriate algorithms that are suitable to support forensic investigations.

  3. Morphological Influences on the Recognition of Monosyllabic Monomorphemic Words

    ERIC Educational Resources Information Center

    Baayen, R. H.; Feldman, L. B.; Schreuder, R.

    2006-01-01

    Balota et al. [Balota, D., Cortese, M., Sergent-Marshall, S., Spieler, D., & Yap, M. (2004). Visual word recognition for single-syllable words. "Journal of Experimental Psychology: General, 133," 283-316] studied lexical processing in word naming and lexical decision using hierarchical multiple regression techniques for a large data set of…

  4. Concept Recognition in an Automatic Text-Processing System for the Life Sciences.

    ERIC Educational Resources Information Center

    Vleduts-Stokolov, Natasha

    1987-01-01

    Describes a system developed for the automatic recognition of biological concepts in titles of scientific articles; reports results of several pilot experiments which tested the system's performance; analyzes typical ambiguity problems encountered by the system; describes a disambiguation technique that was developed; and discusses future plans…

  5. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  6. A hydrogel-based versatile screening platform for specific biomolecular recognition in a well plate format.

    PubMed

    Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen

    2012-04-01

    Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.

  7. Automatic face recognition in HDR imaging

    NASA Astrophysics Data System (ADS)

    Pereira, Manuela; Moreno, Juan-Carlos; Proença, Hugo; Pinheiro, António M. G.

    2014-05-01

    The gaining popularity of the new High Dynamic Range (HDR) imaging systems is raising new privacy issues caused by the methods used for visualization. HDR images require tone mapping methods for an appropriate visualization on conventional and non-expensive LDR displays. These visualization methods might result in completely different visualization raising several issues on privacy intrusion. In fact, some visualization methods result in a perceptual recognition of the individuals, while others do not even show any identity. Although perceptual recognition might be possible, a natural question that can rise is how computer based recognition will perform using tone mapping generated images? In this paper, a study where automatic face recognition using sparse representation is tested with images that result from common tone mapping operators applied to HDR images. Its ability for the face identity recognition is described. Furthermore, typical LDR images are used for the face recognition training.

  8. Document recognition serving people with disabilities

    NASA Astrophysics Data System (ADS)

    Fruchterman, James R.

    2007-01-01

    Document recognition advances have improved the lives of people with print disabilities, by providing accessible documents. This invited paper provides perspectives on the author's career progression from document recognition professional to social entrepreneur applying this technology to help people with disabilities. Starting with initial thoughts about optical character recognition in college, it continues with the creation of accurate omnifont character recognition that did not require training. It was difficult to make a reading machine for the blind in a commercial setting, which led to the creation of a nonprofit social enterprise to deliver these devices around the world. This network of people with disabilities scanning books drove the creation of Bookshare.org, an online library of scanned books. Looking forward, the needs for improved document recognition technology to further lower the barriers to reading are discussed. Document recognition professionals should be proud of the positive impact their work has had on some of society's most disadvantaged communities.

  9. Laser scanning-based recognition of rotational movements on a deep seated gravitational instability: The Cinque Torri case (North-Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Viero, Alessia; Teza, Giordano; Massironi, Matteo; Jaboyedoff, Michel; Galgaro, Antonio

    2010-10-01

    The Cinque Torri group (Cortina d'Ampezzo, Italy) is an articulated system of unstable carbonatic rock monoliths located in a very important tourism area and therefore characterized by a significant risk. The instability phenomena involved represent an example of lateral spreading developed over a larger deep seated gravitational slope deformation (DSGSD) area. After the recent fall of a monolith of more than 10 000 m 3, a scientific study was initiated to monitor the more unstable sectors and to characterize the past movements as a fundamental tool for predicting future movements and hazard assessment. To achieve greater insight on the ongoing lateral spreading process, a method for a quantitative analysis of rotational movements associated with the lateral spreading has been developed, applied and validated. The method is based on: i) detailed geometrical characterization of the area by means of laser scanner techniques; ii) recognition of the discontinuity sets and definition of a reference frame for each set, iii) correlation between the obtained reference frames related to a specific sector and a stable external reference frame, and iv) determination of the 3D rotations in terms of Euler angles to describe the present settlement of the Cinque Torri system with respect to the surrounding stable areas. In this way, significant information on the processes involved in the fragmentation and spreading of a former dolomitic plateau into different rock cliffs has been gained. The method is suitable to be applied to similar case studies.

  10. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.

    PubMed

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-08-06

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.

  11. CNN: a speaker recognition system using a cascaded neural network.

    PubMed

    Zaki, M; Ghalwash, A; Elkouny, A A

    1996-05-01

    The main emphasis of this paper is to present an approach for combining supervised and unsupervised neural network models to the issue of speaker recognition. To enhance the overall operation and performance of recognition, the proposed strategy integrates the two techniques, forming one global model called the cascaded model. We first present a simple conventional technique based on the distance measured between a test vector and a reference vector for different speakers in the population. This particular distance metric has the property of weighting down the components in those directions along which the intraspeaker variance is large. The reason for presenting this method is to clarify the discrepancy in performance between the conventional and neural network approach. We then introduce the idea of using unsupervised learning technique, presented by the winner-take-all model, as a means of recognition. Due to several tests that have been conducted and in order to enhance the performance of this model, dealing with noisy patterns, we have preceded it with a supervised learning model--the pattern association model--which acts as a filtration stage. This work includes both the design and implementation of both conventional and neural network approaches to recognize the speakers templates--which are introduced to the system via a voice master card and preprocessed before extracting the features used in the recognition. The conclusion indicates that the system performance in case of neural network is better than that of the conventional one, achieving a smooth degradation in respect of noisy patterns, and higher performance in respect of noise-free patterns.

  12. Application of the SP theory of intelligence to the understanding of natural vision and the development of computer vision.

    PubMed

    Wolff, J Gerard

    2014-01-01

    The SP theory of intelligence aims to simplify and integrate concepts in computing and cognition, with information compression as a unifying theme. This article is about how the SP theory may, with advantage, be applied to the understanding of natural vision and the development of computer vision. Potential benefits include an overall simplification of concepts in a universal framework for knowledge and seamless integration of vision with other sensory modalities and other aspects of intelligence. Low level perceptual features such as edges or corners may be identified by the extraction of redundancy in uniform areas in the manner of the run-length encoding technique for information compression. The concept of multiple alignment in the SP theory may be applied to the recognition of objects, and to scene analysis, with a hierarchy of parts and sub-parts, at multiple levels of abstraction, and with family-resemblance or polythetic categories. The theory has potential for the unsupervised learning of visual objects and classes of objects, and suggests how coherent concepts may be derived from fragments. As in natural vision, both recognition and learning in the SP system are robust in the face of errors of omission, commission and substitution. The theory suggests how, via vision, we may piece together a knowledge of the three-dimensional structure of objects and of our environment, it provides an account of how we may see things that are not objectively present in an image, how we may recognise something despite variations in the size of its retinal image, and how raster graphics and vector graphics may be unified. And it has things to say about the phenomena of lightness constancy and colour constancy, the role of context in recognition, ambiguities in visual perception, and the integration of vision with other senses and other aspects of intelligence.

  13. Enabling analytical and Modeling Tools for Enhanced Disease Surveillance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawn K. Manley

    2003-04-01

    Early detection, identification, and warning are essential to minimize casualties from a biological attack. For covert attacks, sick people are likely to provide the first indication of an attack. An enhanced medical surveillance system that synthesizes distributed health indicator information and rapidly analyzes the information can dramatically increase the number of lives saved. Current surveillance methods to detect both biological attacks and natural outbreaks are hindered by factors such as distributed ownership of information, incompatible data storage and analysis programs, and patient privacy concerns. Moreover, because data are not widely shared, few data mining algorithms have been tested on andmore » applied to diverse health indicator data. This project addressed both integration of multiple data sources and development and integration of analytical tools for rapid detection of disease outbreaks. As a first prototype, we developed an application to query and display distributed patient records. This application incorporated need-to-know access control and incorporated data from standard commercial databases. We developed and tested two different algorithms for outbreak recognition. The first is a pattern recognition technique that searches for space-time data clusters that may signal a disease outbreak. The second is a genetic algorithm to design and train neural networks (GANN) that we applied toward disease forecasting. We tested these algorithms against influenza, respiratory illness, and Dengue Fever data. Through this LDRD in combination with other internal funding, we delivered a distributed simulation capability to synthesize disparate information and models for earlier recognition and improved decision-making in the event of a biological attack. The architecture incorporates user feedback and control so that a user's decision inputs can impact the scenario outcome as well as integrated security and role-based access-control for communicating between distributed data and analytical tools. This work included construction of interfaces to various commercial database products and to one of the data analysis algorithms developed through this LDRD.« less

  14. A Monitoring System for Laying Hens That Uses a Detection Sensor Based on Infrared Technology and Image Pattern Recognition.

    PubMed

    Zaninelli, Mauro; Redaelli, Veronica; Luzi, Fabio; Bontempo, Valentino; Dell'Orto, Vittorio; Savoini, Giovanni

    2017-05-24

    In Italy, organic egg production farms use free-range housing systems with a big outdoor area and a flock of no more than 500 hens. With additional devices and/or farming procedures, the whole flock could be forced to stay in the outdoor area for a limited time of the day. As a consequence, ozone treatments of housing areas could be performed in order to reduce the levels of atmospheric ammonia and bacterial load without risks, due by its toxicity, both for hens and workers. However, an automatic monitoring system, and a sensor able to detect the presence of animals, would be necessary. For this purpose, a first sensor was developed but some limits, related to the time necessary to detect a hen, were observed. In this study, significant improvements, for this sensor, are proposed. They were reached by an image pattern recognition technique that was applied to thermografic images acquired from the housing system. An experimental group of seven laying hens was selected for the tests, carried out for three weeks. The first week was used to set-up the sensor. Different templates, to use for the pattern recognition, were studied and different floor temperature shifts were investigated. At the end of these evaluations, a template of elliptical shape, and sizes of 135 × 63 pixels, was chosen. Furthermore, a temperature shift of one degree was selected to calculate, for each image, a color background threshold to apply in the following field tests. Obtained results showed an improvement of the sensor detection accuracy that reached values of sensitivity and specificity of 95.1% and 98.7%. In addition, the range of time necessary to detect a hen, or classify a case, was reduced at two seconds. This result could allow the sensor to control a bigger area of the housing system. Thus, the resulting monitoring system could allow to perform the sanitary treatments without risks both for animals and humans.

  15. A Monitoring System for Laying Hens That Uses a Detection Sensor Based on Infrared Technology and Image Pattern Recognition

    PubMed Central

    Zaninelli, Mauro; Redaelli, Veronica; Luzi, Fabio; Bontempo, Valentino; Dell’Orto, Vittorio; Savoini, Giovanni

    2017-01-01

    In Italy, organic egg production farms use free-range housing systems with a big outdoor area and a flock of no more than 500 hens. With additional devices and/or farming procedures, the whole flock could be forced to stay in the outdoor area for a limited time of the day. As a consequence, ozone treatments of housing areas could be performed in order to reduce the levels of atmospheric ammonia and bacterial load without risks, due by its toxicity, both for hens and workers. However, an automatic monitoring system, and a sensor able to detect the presence of animals, would be necessary. For this purpose, a first sensor was developed but some limits, related to the time necessary to detect a hen, were observed. In this study, significant improvements, for this sensor, are proposed. They were reached by an image pattern recognition technique that was applied to thermografic images acquired from the housing system. An experimental group of seven laying hens was selected for the tests, carried out for three weeks. The first week was used to set-up the sensor. Different templates, to use for the pattern recognition, were studied and different floor temperature shifts were investigated. At the end of these evaluations, a template of elliptical shape, and sizes of 135 × 63 pixels, was chosen. Furthermore, a temperature shift of one degree was selected to calculate, for each image, a color background threshold to apply in the following field tests. Obtained results showed an improvement of the sensor detection accuracy that reached values of sensitivity and specificity of 95.1% and 98.7%. In addition, the range of time necessary to detect a hen, or classify a case, was reduced at two seconds. This result could allow the sensor to control a bigger area of the housing system. Thus, the resulting monitoring system could allow to perform the sanitary treatments without risks both for animals and humans. PMID:28538654

  16. Cross-domain expression recognition based on sparse coding and transfer learning

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Weiyi; Huang, Yong

    2017-05-01

    Traditional facial expression recognition methods usually assume that the training set and the test set are independent and identically distributed. However, in actual expression recognition applications, the conditions of independent and identical distribution are hardly satisfied for the training set and test set because of the difference of light, shade, race and so on. In order to solve this problem and improve the performance of expression recognition in the actual applications, a novel method based on transfer learning and sparse coding is applied to facial expression recognition. First of all, a common primitive model, that is, the dictionary is learnt. Then, based on the idea of transfer learning, the learned primitive pattern is transferred to facial expression and the corresponding feature representation is obtained by sparse coding. The experimental results in CK +, JAFFE and NVIE database shows that the transfer learning based on sparse coding method can effectively improve the expression recognition rate in the cross-domain expression recognition task and is suitable for the practical facial expression recognition applications.

  17. Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.

    PubMed

    Sidek, Khairul Azami; Khalil, Ibrahim

    2013-01-01

    Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Exploring Biomolecular Recognition by Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Wade, Rebecca

    2007-12-01

    Biomolecular recognition is complex. The balance between the different molecular properties that contribute to molecular recognition, such as shape, electrostatics, dynamics and entropy, varies from case to case. This, along with the extent of experimental characterization, influences the choice of appropriate computational approaches to study biomolecular interactions. I will present computational studies in which we aim to make concerted use of bioinformatics, biochemical network modeling and molecular simulation techniques to study protein-protein and protein-small molecule interactions and to facilitate computer-aided drug design.

  19. The asymmetric distribution of informative face information during gender recognition.

    PubMed

    Hu, Fengpei; Hu, Huan; Xu, Lian; Qin, Jungang

    2013-02-01

    Recognition of the gender of a face is important in social interactions. In the current study, the distribution of informative facial information was systematically examined during gender judgment using two methods, Bubbles and Focus windows techniques. Two experiments found that the most informative information was around the eyes, followed by the mouth and nose. Other parts of the face contributed to the gender recognition but were less important. The left side of the face was used more during gender recognition in two experiments. These results show mainly areas around the eyes are used for gender judgment and demonstrate perceptual asymmetry with a normal (non-chimeric) face.

  20. Syntactic error modeling and scoring normalization in speech recognition: Error modeling and scoring normalization in the speech recognition task for adult literacy training

    NASA Technical Reports Server (NTRS)

    Olorenshaw, Lex; Trawick, David

    1991-01-01

    The purpose was to develop a speech recognition system to be able to detect speech which is pronounced incorrectly, given that the text of the spoken speech is known to the recognizer. Better mechanisms are provided for using speech recognition in a literacy tutor application. Using a combination of scoring normalization techniques and cheater-mode decoding, a reasonable acceptance/rejection threshold was provided. In continuous speech, the system was tested to be able to provide above 80 pct. correct acceptance of words, while correctly rejecting over 80 pct. of incorrectly pronounced words.

  1. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    PubMed

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-04-15

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Deep learning and face recognition: the state of the art

    NASA Astrophysics Data System (ADS)

    Balaban, Stephen

    2015-05-01

    Deep Neural Networks (DNNs) have established themselves as a dominant technique in machine learning. DNNs have been top performers on a wide variety of tasks including image classification, speech recognition, and face recognition.1-3 Convolutional neural networks (CNNs) have been used in nearly all of the top performing methods on the Labeled Faces in the Wild (LFW) dataset.3-6 In this talk and accompanying paper, I attempt to provide a review and summary of the deep learning techniques used in the state-of-the-art. In addition, I highlight the need for both larger and more challenging public datasets to benchmark these systems. Despite the ability of DNNs and autoencoders to perform unsupervised feature learning, modern facial recognition pipelines still require domain specific engineering in the form of re-alignment. For example, in Facebook's recent DeepFace paper, a 3D "frontalization" step lies at the beginning of the pipeline. This step creates a 3D face model for the incoming image and then uses a series of affine transformations of the fiducial points to "frontalize" the image. This step enables the DeepFace system to use a neural network architecture with locally connected layers without weight sharing as opposed to standard convolutional layers.6 Deep learning techniques combined with large datasets have allowed research groups to surpass human level performance on the LFW dataset.3, 5 The high accuracy (99.63% for FaceNet at the time of publishing) and utilization of outside data (hundreds of millions of images in the case of Google's FaceNet) suggest that current face verification benchmarks such as LFW may not be challenging enough, nor provide enough data, for current techniques.3, 5 There exist a variety of organizations with mobile photo sharing applications that would be capable of releasing a very large scale and highly diverse dataset of facial images captured on mobile devices. Such an "ImageNet for Face Recognition" would likely receive a warm welcome from researchers and practitioners alike.

  3. A comparison of algorithms for inference and learning in probabilistic graphical models.

    PubMed

    Frey, Brendan J; Jojic, Nebojsa

    2005-09-01

    Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.

  4. Recognising out-of-hospital cardiac arrest during emergency calls increases bystander cardiopulmonary resuscitation and survival.

    PubMed

    Viereck, Søren; Møller, Thea Palsgaard; Ersbøll, Annette Kjær; Bækgaard, Josefine Stokholm; Claesson, Andreas; Hollenberg, Jacob; Folke, Fredrik; Lippert, Freddy K

    2017-06-01

    Initiation of early bystander cardiopulmonary resuscitation (CPR) depends on bystanders' or medical dispatchers' recognition of out-of-hospital cardiac arrest (OHCA). The primary aim of our study was to investigate if OHCA recognition during the emergency call was associated with bystander CPR, return of spontaneous circulation (ROSC), and 30-day survival. Our secondary aim was to identify patient-, setting-, and dispatcher-related predictors of OHCA recognition. We performed an observational study of all OHCA patients' emergency calls in the Capital Region of Denmark from 01/01/2013-31/12/2013. OHCAs were collected from the Danish Cardiac Arrest Registry and the Mobile Critical Care Unit database. Emergency call recordings were identified and evaluated. Multivariable logistic regression analyses were applied to all OHCAs and witnessed OHCAs only to analyse the association between OHCA recognition and bystander CPR, ROSC, and 30-day survival. Univariable logistic regression analyses were applied to identify predictors of OHCA recognition. We included 779 emergency calls in the analyses. During the emergency calls, 70.1% (n=534) of OHCAs were recognised; OHCA recognition was positively associated with bystander CPR (odds ratio [OR]=7.84, 95% confidence interval [CI]: 5.10-12.05) in all OHCAs; and ROSC (OR=1.86, 95% CI: 1.13-3.06) and 30-day survival (OR=2.80, 95% CI: 1.58-4.96) in witnessed OHCA. Predictors of OHCA recognition were addressing breathing (OR=1.76, 95% CI: 1.17-2.66) and callers located by the patient's side (OR=2.16, 95% CI: 1.46-3.19). Recognition of OHCA during emergency calls was positively associated with the provision of bystander CPR, ROSC, and 30-day survival in witnessed OHCA. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Writing Strengthens Orthography and Alphabetic-Coding Strengthens Phonology in Learning to Read Chinese

    ERIC Educational Resources Information Center

    Guan, Connie Qun; Liu, Ying; Chan, Derek Ho Leung; Ye, Feifei; Perfetti, Charles A.

    2011-01-01

    Learning to write words may strengthen orthographic representations and thus support word-specific recognition processes. This hypothesis applies especially to Chinese because its writing system encourages character-specific recognition that depends on accurate representation of orthographic form. We report 2 studies that test this hypothesis in…

  6. Pattern Recognition by Retina-Like Devices.

    ERIC Educational Resources Information Center

    Weiman, Carl F. R.; Rothstein, Jerome

    This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…

  7. Cockpit voice recognition program at Princeton University

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.

    1983-01-01

    Voice recognition technology (VRT) is applied to aeronautics, particularly on the pilot workload alleviation. The VRT does not have to prove its maturity any longer. The feasibility of voice tuning of radio and DME are demonstrated since there are immediate advantages to the pilot and can be completed in a reasonable time.

  8. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and themore » cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.« less

  9. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  10. Relevance feedback-based building recognition

    NASA Astrophysics Data System (ADS)

    Li, Jing; Allinson, Nigel M.

    2010-07-01

    Building recognition is a nontrivial task in computer vision research which can be utilized in robot localization, mobile navigation, etc. However, existing building recognition systems usually encounter the following two problems: 1) extracted low level features cannot reveal the true semantic concepts; and 2) they usually involve high dimensional data which require heavy computational costs and memory. Relevance feedback (RF), widely applied in multimedia information retrieval, is able to bridge the gap between the low level visual features and high level concepts; while dimensionality reduction methods can mitigate the high-dimensional problem. In this paper, we propose a building recognition scheme which integrates the RF and subspace learning algorithms. Experimental results undertaken on our own building database show that the newly proposed scheme appreciably enhances the recognition accuracy.

  11. Facial Emotions Recognition using Gabor Transform and Facial Animation Parameters with Neural Networks

    NASA Astrophysics Data System (ADS)

    Harit, Aditya; Joshi, J. C., Col; Gupta, K. K.

    2018-03-01

    The paper proposed an automatic facial emotion recognition algorithm which comprises of two main components: feature extraction and expression recognition. The algorithm uses a Gabor filter bank on fiducial points to find the facial expression features. The resulting magnitudes of Gabor transforms, along with 14 chosen FAPs (Facial Animation Parameters), compose the feature space. There are two stages: the training phase and the recognition phase. Firstly, for the present 6 different emotions, the system classifies all training expressions in 6 different classes (one for each emotion) in the training stage. In the recognition phase, it recognizes the emotion by applying the Gabor bank to a face image, then finds the fiducial points, and then feeds it to the trained neural architecture.

  12. A Survey on Sentiment Classification in Face Recognition

    NASA Astrophysics Data System (ADS)

    Qian, Jingyu

    2018-01-01

    Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.

  13. Offline Arabic handwriting recognition: a survey.

    PubMed

    Lorigo, Liana M; Govindaraju, Venu

    2006-05-01

    The automatic recognition of text on scanned images has enabled many applications such as searching for words in large volumes of documents, automatic sorting of postal mail, and convenient editing of previously printed documents. The domain of handwriting in the Arabic script presents unique technical challenges and has been addressed more recently than other domains. Many different methods have been proposed and applied to various types of images. This paper provides a comprehensive review of these methods. It is the first survey to focus on Arabic handwriting recognition and the first Arabic character recognition survey to provide recognition rates and descriptions of test data for the approaches discussed. It includes background on the field, discussion of the methods, and future research directions.

  14. Blood perfusion construction for infrared face recognition based on bio-heat transfer.

    PubMed

    Xie, Zhihua; Liu, Guodong

    2014-01-01

    To improve the performance of infrared face recognition for time-lapse data, a new construction of blood perfusion is proposed based on bio-heat transfer. Firstly, by quantifying the blood perfusion based on Pennes equation, the thermal information is converted into blood perfusion rate, which is stable facial biological feature of face image. Then, the separability discriminant criterion in Discrete Cosine Transform (DCT) domain is applied to extract the discriminative features of blood perfusion information. Experimental results demonstrate that the features of blood perfusion are more concentrative and discriminative for recognition than those of thermal information. The infrared face recognition based on the proposed blood perfusion is robust and can achieve better recognition performance compared with other state-of-the-art approaches.

  15. Dynamic nanoplatforms in biosensor and membrane constitutional systems.

    PubMed

    Mahon, Eugene; Aastrup, Teodor; Barboiu, Mihail

    2012-01-01

    Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate-protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell-cell interaction and communication. Protein-protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.

  16. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models

    PubMed Central

    Misra, Dharitri; Chen, Siyuan; Thoma, George R.

    2010-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386

  17. Development and application of an algorithm to compute weighted multiple glycan alignments.

    PubMed

    Hosoda, Masae; Akune, Yukie; Aoki-Kinoshita, Kiyoko F

    2017-05-01

    A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. http://www.rings.t.soka.ac.jp. kkiyoko@soka.ac.jp. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  18. Automatic Speech Recognition Technology as an Effective Means for Teaching Pronunciation

    ERIC Educational Resources Information Center

    Elimat, Amal Khalil; AbuSeileek, Ali Farhan

    2014-01-01

    This study aimed to explore the effect of using automatic speech recognition technology (ASR) on the third grade EFL students' performance in pronunciation, whether teaching pronunciation through ASR is better than regular instruction, and the most effective teaching technique (individual work, pair work, or group work) in teaching pronunciation…

  19. Evidence for Early Morphological Decomposition in Visual Word Recognition

    ERIC Educational Resources Information Center

    Solomyak, Olla; Marantz, Alec

    2010-01-01

    We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…

  20. Segment-based acoustic models for continuous speech recognition

    NASA Astrophysics Data System (ADS)

    Ostendorf, Mari; Rohlicek, J. R.

    1993-07-01

    This research aims to develop new and more accurate stochastic models for speaker-independent continuous speech recognition, by extending previous work in segment-based modeling and by introducing a new hierarchical approach to representing intra-utterance statistical dependencies. These techniques, which are more costly than traditional approaches because of the large search space associated with higher order models, are made feasible through rescoring a set of HMM-generated N-best sentence hypotheses. We expect these different modeling techniques to result in improved recognition performance over that achieved by current systems, which handle only frame-based observations and assume that these observations are independent given an underlying state sequence. In the fourth quarter of the project, we have completed the following: (1) ported our recognition system to the Wall Street Journal task, a standard task in the ARPA community; (2) developed an initial dependency-tree model of intra-utterance observation correlation; and (3) implemented baseline language model estimation software. Our initial results on the Wall Street Journal task are quite good and represent significantly improved performance over most HMM systems reporting on the Nov. 1992 5k vocabulary test set.

Top