Scavenging nucleic acid debris to combat autoimmunity and infectious disease
NASA Astrophysics Data System (ADS)
Holl, Eda K.; Shumansky, Kara L.; Borst, Luke B.; Burnette, Angela D.; Sample, Christopher J.; Ramsburg, Elizabeth A.; Sullenger, Bruce A.
2016-08-01
Nucleic acid-containing debris released from dead and dying cells can be recognized as damage-associated molecular patterns (DAMPs) or pattern-associated molecular patterns (PAMPs) by the innate immune system. Inappropriate activation of the innate immune response can engender pathological inflammation and autoimmune disease. To combat such diseases, major efforts have been made to therapeutically target the pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs) that recognize such DAMPs and PAMPs, or the downstream effector molecules they engender, to limit inflammation. Unfortunately, such strategies can limit the ability of the immune system to combat infection. Previously, we demonstrated that nucleic acid-binding polymers can act as molecular scavengers and limit the ability of artificial nucleic acid ligands to activate PRRs. Herein, we demonstrate that nucleic acid scavengers (NASs) can limit pathological inflammation and nucleic acid-associated autoimmunity in lupus-prone mice. Moreover, we observe that such NASs do not limit an animal’s ability to combat viral infection, but rather their administration improves survival when animals are challenged with lethal doses of influenza. These results indicate that molecules that scavenge extracellular nucleic acid debris represent potentially safer agents to control pathological inflammation associated with a wide range of autoimmune and infectious diseases.
Genetic dissection of the maize (Zea mays L.) MAMP response
USDA-ARS?s Scientific Manuscript database
Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...
Gupta, Kirti; Jogunoori, Swathi; Satapathy, Ayusman; Salunke, Pravin; Kumar, Narendra; Radotra, Bishan Dass; Vasishta, Rakesh Kumar
2018-05-01
The World Health Organization classification of central nervous system neoplasms (2016 update) recognizes 4 histological variants and genetically defined molecular subgroups within medulloblastoma (MB). MB with myogenic differentiation is one of the rare variants, which is usually recognized as a pattern alongside the known histological variants. Because of its rarity, less is known about its molecular landscape and importantly about its placement in the current molecular schema. We aimed to analyze this rare variant for expression of 3 immunohistochemical markers conventionally used in molecular stratification of MB. Demographic profile and imaging details with survival outcome were also analyzed. Sixty-five MB cases were molecularly stratified using immunohistochemical markers (YAP1, GAB1, β-catenin). MB with myogenic differentiation and MB cases showing variable immunoreactivity with the above 3 antibodies were further evaluated for smooth muscle actin, desmin, myogenin, and HMB45. Seven cases were categorized as MB with myogenic and/or melanotic differentiation. Age ranged from 2 to 40 years with a male-to-female ratio of 1:1.3. In 4 cases, myogenic or melanotic differentiation was evident on histology, whereas in 3, differentiation was highlighted only with muscle markers. Interestingly, all 7 cases showed variable immunoreactivity with 3 molecular markers and did not follow the conventionally accepted algorithm used for molecular stratification. Follow-up period ranged from 9 to 57 months. Overall survival revealed a varied pattern, with 3 deaths and 4 patients being alive with no evidence of disease at last follow-up. Our results provide evidence that these variants are distinct and do not align immunohistochemically with the currently recognized genetic subgroups. Copyright © 2018 Elsevier Inc. All rights reserved.
Tani, Hiroyuki; Shimizu, Reiko; Sasai, Kazumi; Baba, Eiichiroh
2003-10-01
Circulating thyroglobulin autoantibody (TgAA) was analyzed using the Western immunoblot for determination of the dominant epitopes recognized by TgAA on tryptic peptides of canine thyroglobulin (cTg) in hypothyroid dogs. TgAA was measured in hypothyroid dogs, non-hypothyroid dogs with skin diseases and clinically normal dogs. Five of the 7 hypothyroid dogs, 1 of the 8 dogs with skin diseases and 1 of the 4 normal dogs were positive for TgAA. Four of the 5 TgAA-positive hypothyroid dogs were Golden Retrievers, and 3 of them showed high antibody titers. The sera of TgAA positive-dogs reacted to several peptides, and their patterns varied from sample to sample. Sera from 3 dogs with high titers of TgAA reacted broadly to high molecular weight peptides ranging from 45 to 90 kDa. These Western immunoblot patterns of the sera were disappeared after pretreatment with sufficient amount of intact cTg. All serum samples of both TgAA positive dogs and negative controls reacted to low molecular weight peptides ranging from 15 to 20 kDa. These immunoblot patterns of the sera were not disappeared even after pretreatment with sufficient amount of intact cTg. These findings show the possibility that the epitopes recognized by TgAA depend upon individual dogs with hypothyroidism and these autoantibodies recognize conformational epitopes on the cTg molecule.
USDA-ARS?s Scientific Manuscript database
Induction of innate immune pathways is critical for early host defense but there is limited understanding of how teleost fish recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition rece...
Miller, Yury I.; Choi, Soo-Ho; Wiesner, Philipp; Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Boullier, Agnès; Gonen, Ayelet; Diehl, Cody J.; Que, Xuchu; Montano, Erica; Shaw, Peter X.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.
2010-01-01
Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we will discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage) associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy. PMID:21252151
Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.
Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta
2013-09-01
Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
DAMPs, MAMPs, and NAMPs in plant innate immunity.
Choi, Hyong Woo; Klessig, Daniel F
2016-10-26
Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Immune functions of insect βGRPs and their potential application.
Rao, Xiang-Jun; Zhan, Ming-Yue; Pan, Yue-Min; Liu, Su; Yang, Pei-Jin; Yang, Li-Ling; Yu, Xiao-Qiang
2018-06-01
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbial and human heat shock proteins as 'danger signals' in sarcoidosis.
Dubaniewicz, Anna
2013-12-01
In the light of the Matzinger's model of immune response, human heat shock proteins (HSPs) as main 'danger signals' (tissue damage-associated molecular patterns-DAMPs) or/and microbial HSPs as pathogen-associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRR), may induce sarcoid granuloma by both infectious and non-infectious factors in genetically different predisposed host. Regarding infectious causes of sarcoid models, low-virulence strains of, e.g. mycobacteria and propionibacteria recognized through changed PRR and persisting in altered host phagocytes, generate increased release of both human and microbial HSPs with their molecular and functional homology. High chronic spread of human and microbial HSPs altering cytokines, co-stimulatory molecules, and Tregs expression, apoptosis, oxidative stress, induces the autoimmunity, considered in sarcoidosis. Regarding non-infectious causes of sarcoidosis, human HSPs may be released at high levels during chronic low-grade exposure to misfolding amyloid precursor protein in stressed cells, phagocyted metal fumes, pigments with/without aluminum in tattoos, and due to heat shock in firefighters. Therefore, human HSPs as DAMPs and/or microbial HSPs as PAMPs produced as a result of non-infectious and infectious factors may induce different models of sarcoidosis, depending on the genetic background of the host. The number/expression of PRRs/ligands may influence the occurrence of sarcoidosis in particular organs. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparotto, Piero; Ceriotti, Michele, E-mail: michele.ceriotti@epfl.ch
The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding – a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogenmore » bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.« less
Gasparotto, Piero; Ceriotti, Michele
2014-11-07
The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding--a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.
Plant pattern recognition receptor complexes at the plasma membrane.
Monaghan, Jacqueline; Zipfel, Cyril
2012-08-01
A key feature of innate immunity is the ability to recognize and respond to potential pathogens in a highly sensitive and specific manner. In plants, the activation of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) elicits a defense programme known as PAMP-triggered immunity (PTI). Although only a handful of PAMP-PRR pairs have been defined, all known PRRs are modular transmembrane proteins containing ligand-binding ectodomains. It is becoming clear that PRRs do not act alone but rather function as part of multi-protein complexes at the plasma membrane. Recent studies describing the molecular interactions and protein modifications that occur between PRRs and their regulatory proteins have provided important mechanistic insight into how plants avoid infection and achieve immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Plants recognize a variety of stimuli that invoke defenses against attacking pathogens and herbivores. This recognition primes the plant to mount defenses against herbivory and disease. These stimuli include molecules called damage-associated molecular patterns or DAMPs, among them signaling peptide...
USDA-ARS?s Scientific Manuscript database
Macrophages express various pathogen-recognition receptors (PRRs) which recognize pathogen-associated molecular patterns (PAMPs) and activate genes responsible for host defense. The aim of this study was to characterize two porcine macrophage cell lines (Cdelta+ and Cdelta–) for the expression of P...
ERIC Educational Resources Information Center
Douglas, Kristin R.
2008-01-01
Prerequisites for the Developmental Biology course at Augustana College are introductory courses in zoology and cell biology. After introductory courses students appreciate the fact that proteins have three-dimensional structures; however, they often fail to recognize how protein interactions with other cellular components can lead to specific…
Ng, Sim-Kun; Huang, Yu-Tsyr; Lee, Yuan-Chuan; Low, Ee-Ling; Chiu, Cheng-Hsun; Chen, Shiu-Ling; Mao, Liang-Chi; Chang, Margaret Dah-Tsyr
2014-01-01
Horseshoe crab is an ancient marine arthropod that, in the absence of a vertebrate-like immune system, relies solely on innate immune responses by defense molecules found in hemolymph plasma and granular hemocytes for host defense. A plasma lectin isolated from the hemolymph of Taiwanese Tachypleus tridentatus recognizes bacteria and lipopolysaccharides (LPSs), yet its structure and mechanism of action remain unclear, largely because of limited availability of horseshoe crabs and the lack of a heterogeneous expression system. In this study, we have successfully expressed and purified a soluble and functional recombinant horseshoe crab plasma lectin (rHPL) in an Escherichia coli system. Interestingly, rHPL bound not only to bacteria and LPSs like the native HPL but also to selective medically important pathogens isolated from clinical specimens, such as Gram-negative Pseudomonas aeruginosa and Klebsiella pneumoniae and Gram-positive Streptococcus pneumoniae serotypes. The binding was demonstrated to occur through a specific molecular interaction with rhamnose in pathogen-associated molecular patterns (PAMPs) on the bacterial surface. Additionally, rHPL inhibited the growth of P. aeruginosa PAO1 in a concentration-dependent manner. The results suggest that a specific protein-glycan interaction between rHPL and rhamnosyl residue may further facilitate development of novel diagnostic and therapeutic strategies for microbial pathogens. PMID:25541995
Dy-Ledesma, Janelyn L; Khoury, Joseph D; Agbay, Rose Lou Marie C; Garcia, Mar; Miranda, Roberto N; Medeiros, L Jeffrey
2016-11-01
The starry sky pattern is a distinctive histologic feature wherein a rapidly proliferating hematolymphoid neoplasm contains scattered histiocytes with abundant pale cytoplasm in a background of monomorphic neoplastic cells. The cytoplasm of these histiocytes typically contains cellular remnants, also known as tingible bodies, incorporated through active phagocytosis. Although common and widely recognized, relatively little is known about the pathophysiological underpinnings of the starry sky pattern. Its resemblance to a similar pattern seen in the germinal centers of secondary follicles suggests a possible starting point for understanding the molecular basis of the starry sky pattern and potential routes for its exploitation for therapeutic purposes. In this review, we discuss the historical, pathophysiological, and clinical implications of the starry sky pattern.
Flipping the NF-κB Switch in Macrophages | Center for Cancer Research
A critical component of the innate immune system, macrophages respond to diverse microbes by recognizing certain molecular patterns, such as the Gram-negative bacteria product lipopolysaccharide (LPS), via Toll-like receptors. Receptor activation stimulates a complex signaling network that involves, among others, the NF-κB pathway. The complexity of this network has hampered
Identifying Regulators of the Immune Response to Dying Cells | Center for Cancer Research
Cytotoxic T cells are responsible for carrying out antigen-mediated immune responses against virally-infected and malignant cells. In both cases, cytotoxic T cells are stimulated by interacting with antigen presenting cells, such as dendritic cells (DCs). Infected cells produce virus-specific antigens and pathogen associated molecular patterns, which are recognized by DCs and
DAMPs as mediators of sterile inflammation in aging-related pathologies.
Feldman, Noa; Rotter-Maskowitz, Aviva; Okun, Eitan
2015-11-01
Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.
Neural Plasticity and Memory: Is Memory Encoded in Hydrogen Bonding Patterns?
Amtul, Zareen; Rahman, Atta-Ur
2016-02-01
Current models of memory storage recognize posttranslational modification vital for short-term and mRNA translation for long-lasting information storage. However, at the molecular level things are quite vague. A comprehensive review of the molecular basis of short and long-lasting synaptic plasticity literature leads us to propose that the hydrogen bonding pattern at the molecular level may be a permissive, vital step of memory storage. Therefore, we propose that the pattern of hydrogen bonding network of biomolecules (glycoproteins and/or DNA template, for instance) at the synapse is the critical edifying mechanism essential for short- and long-term memories. A novel aspect of this model is that nonrandom impulsive (or unplanned) synaptic activity functions as a synchronized positive-feedback rehearsal mechanism by revising the configurations of the hydrogen bonding network by tweaking the earlier tailored hydrogen bonds. This process may also maintain the elasticity of the related synapses involved in memory storage, a characteristic needed for such networks to alter intricacy and revise endlessly. The primary purpose of this review is to stimulate the efforts to elaborate the mechanism of neuronal connectivity both at molecular and chemical levels. © The Author(s) 2014.
Breast cancer pathology: the impact of molecular taxonomy on morphological taxonomy.
Masuda, Shinobu
2012-05-01
The concept of having an 'intrinsic subtype,' or a molecular taxonomy, lets us clearly recognize that breast cancers have characteristically different patterns of gene expression, thus giving newfound significance to morphological taxonomy. In this review, the concept of the 'intrinsic subtype' is discussed, research questions are introduced to refine the significance of morphological taxonomy, and a corresponding example is presented between microarray analysis and 'immunohistochemical subtype,' or histological taxonomy. © 2012 The Author. Pathology International © 2012 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.
Wörheide, Gert; Solé-Cava, Antonio M; Hooper, John N A
2005-04-01
Marine sponges are an ecologically important and highly diverse component of marine benthic communities, found in all the world's oceans, at all depths. Although their commercial potential and evolutionary importance is increasingly recognized, many pivotal aspects of their basic biology remain enigmatic. Knowledge of historical biogeographic affinities and biodiversity patterns is rudimentary, and there are still few data about genetic variation among sponge populations and spatial patterns of this variation. Biodiversity analyses of tropical Australasian sponges revealed spatial trends not universally reflected in the distributions of other marine phyla within the Indo-West Pacific region. At smaller spatial scales sponges frequently form heterogeneous, spatially patchy assemblages, with some empirical evidence suggesting that environmental variables such as light and/or turbidity strongly contribute to local distributions. There are no apparent latitudinal diversity gradients at larger spatial scales but stochastic processes, such as changing current patterns, the presence or absence of major carbonate platforms and historical biogeography, may determine modern day distributions. Studies on Caribbean oceanic reefs have revealed similar patterns, only weakly correlated with environmental factors. However, several questions remain where molecular approaches promise great potential, e.g., concerning connectivity and biogeographic relationships. Studies to date have helped to reveal that sponge populations are genetically highly structured and that historical processes might play an important role in determining such structure. Increasingly sophisticated molecular tools are now being applied, with results contributing significantly to a better understanding of poriferan microevolutionary processes and molecular ecology.
Receptor-mediated signalling in plants: molecular patterns and programmes
Tör, Mahmut; Lotze, Michael T.; Holton, Nicholas
2009-01-01
A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed. PMID:19628572
Arroteia, Kélen Fabíola; Barbieri, Mainara Ferreira; Souza, Gustavo Henrique Martins Ferreira; Tanaka, Hiromitsu; Eberlin, Marcos Nogueira; Hyslop, Stephen; Alvares, Lúcia Elvira; Pereira, Luís Antonio Violin Dias
2014-01-01
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.
The evolution of vertebrate Toll-like receptors
Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.
2005-01-01
The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.
Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor.
Hegenauer, Volker; Fürst, Ursula; Kaiser, Bettina; Smoker, Matthew; Zipfel, Cyril; Felix, Georg; Stahl, Mark; Albert, Markus
2016-07-29
Parasitic plants are a constraint on agriculture worldwide. Cuscuta reflexa is a stem holoparasite that infests most dicotyledonous plants. One exception is tomato, which is resistant to C. reflexa We discovered that tomato responds to a small peptide factor occurring in Cuscuta spp. with immune responses typically activated after perception of microbe-associated molecular patterns. We identified the cell surface receptor-like protein CUSCUTA RECEPTOR 1 (CuRe1) as essential for the perception of this parasite-associated molecular pattern. CuRe1 is sufficient to confer responsiveness to the Cuscuta factor and increased resistance to parasitic C. reflexa when heterologously expressed in otherwise susceptible host plants. Our findings reveal that plants recognize parasitic plants in a manner similar to perception of microbial pathogens. Copyright © 2016, American Association for the Advancement of Science.
Tima, Hermann Giresse; Huygen, Kris; Romano, Marta
2016-11-01
Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.
Plant immunity triggered by microbial molecular signatures.
Zhang, Jie; Zhou, Jian-Min
2010-09-01
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resulting in diminished plant defenses and increased bacterial virulence. Some of the proteins targeted by pathogen effectors have evolved to sense the effector activity by associating with cytoplasmic immune receptors classically known as resistance proteins. This allows plants to activate a second layer of immunity termed effector-triggered immunity (ETI). Recent studies on PTI regulation and P. syringae effector targets have uncovered new components in PTI signaling. Although MAP kinase (MAPK) cascades have been considered crucial for PTI, emerging evidence indicates that a MAPK-independent pathway also plays an important role in PTI signaling.
Turunen, S. Pauliina; Kummu, Outi; Harila, Kirsi; Veneskoski, Marja; Soliymani, Rabah; Baumann, Marc; Pussinen, Pirkko J.; Hörkkö, Sohvi
2012-01-01
Objective Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL) and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA) modified LDL. Methods and Results Mouse monoclonal IgM (MDmAb) specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR−/− mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp) by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans. Conclusion Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis. PMID:22496875
Alkylcyclohexanes in environmental geochemistry
Hostettler, F.D.; Kvenvolden, K.A.
2002-01-01
The n-alkylated cyclohexanes (CHs) are a homologous series of hydrocarbon compounds that are commonly present in crude oil and refinery products such as diesel fuel. These compounds exhibit specific distribution patterns for different fuel types, providing useful fingerprints for characterizing petroleum products, especially after degradation of n-alkanes has occurred. However, there are no published data to show how these compounds are altered in the environment after long-term spillage of petroleum products. This paper presents two case studies of oil spills that demonstrate the changing distribution patterns resulting from long-term anaerobic microbial degradation. These spills are the 1979 crude-oil spill in Bemidji, Minnesota, and a chronic diesel-fuel spillage from 1953-1991 at Mandan, North Dakota. The alkyl CHs in both spilled oil products are affected by similar biodegradative processes in which the compounds undergo a consistent pattern of loss from the high molecular weight end of the homolog distribution. Degradation results in a measurable increase in the concentrations of the homologs in the lower molecular weight range, a gradual lowering in carbon number of the homolog maximum, and a gradual decrease of the total homolog range from the high molecular weight end. This pattern is the opposite of low-end loss expected with weathering and aerobic biodegradation. The enhancement of the low molecular mass alkyl CH homologs, if not recognized as a degradative pathway of diesel fuel in an anaerobic environment, can potentially be misinterpreted in fuel-oil fingerprinting as deriving from lower distillation-range fuels or admixture of diesel with other fuels.
Porter-Utley, Kristen
2014-01-01
Abstract Passiflora subgenus Decaloba supersection Cieca is a monophyletic group of herbaceous to woody climbers found in subtropical and tropical regions of the world. The 19 species recognized here are primarily distributed in the southern United States, Mexico, Central America, South America, and the Caribbean. Two species, Passiflora suberosa and Passiflora pallida, are also naturalized in various regions of the Old World. The species of the supersection are recognized by their small, apetalous, usually greenish flowers with the filaments of the corona mostly in two series. The plants commonly lack c-glycosylflavones but possess flavonol 3-O-glycosides. The supersection contains two problematic species complexes, Passiflora suberosa and Passiflora coriacea. Phylogenetic relationships within supersection Cieca are investigated by means of phenetic and cladistic analyses of morphological and molecular (ITS 1 & 2) characters. The morphological and molecular data sets were analyzed separately because of incongruity due to taxon sampling and the complicated evolutionary history of entities within the Passiflora suberosa complex. All analyses confirm the monophyly of the supersection. They also show that the Passiflora suberosa complex is a non-monophyletic group of cryptic species, and inter-taxic hybridization and polyploidy have contributed to the confusing and complex pattern of variation evident within the group. Four taxa that were formerly included in this complex are recognized: Passiflora pallida, Passiflora suberosa subsp. suberosa, Passiflora suberosa subsp. litoralis, and Passiflora tridactylites. On the basis of molecular and morphological data, three species from the Passiflora coriacea complex are recognized: Passiflora coriacea, Passiflora sexocellata, and Passiflora megacoriacea. A key, detailed descriptions, distribution maps, and illustrations are included in the revision. Pollination, dispersal, and herbivory of the group are reviewed. The distribution and ecology of the species within the supersection are also discussed. PMID:25408618
[Role of HMGB1 in Inflammatory-mediated Injury Caused by Digestive System Diseases and Its Repair].
Wang, Fucai; Xie, Yong
2015-08-01
High mobility group box 1 protein (HMGB1), a damage-associated molecular pattern, exists ubiquitously in the cells of mammals. It contributes to maintaining the structure of nucleosome and modulating transcription of gene in nuclei. Extracellular HMGB1 plays two-way roles in promoting inflammatory and tissue repair. Released actively as well as passively following cytokine stimulation during cell death, HMGB1 may act as a late inflammatory factor and an endogenous damage-associated molecular pattern recognized by its receptors. And it may mediate the occurrence, development and outcome of the inflammatory injury of digestive system diseases, such as gastric mucosal injury, inflammatory bowel-disease, liver injury, pancreatitis, and so on. This review mainly concerns the research progresses of HMGB1 in the inflammatory injury of digestive system diseases. At the same time, HMGB1 itself, or as a therapeutic target, can promote tissue repair.
Identifying Regulators of the Immune Response to Dying Cells | Center for Cancer Research
Cytotoxic T cells are responsible for carrying out antigen-mediated immune responses against virally-infected and malignant cells. In both cases, cytotoxic T cells are stimulated by interacting with antigen presenting cells, such as dendritic cells (DCs). Infected cells produce virus-specific antigens and pathogen associated molecular patterns, which are recognized by DCs and lead to robust T cell activation. Dead or dying uninfected cells, on the other hand, release damage associated molecular patterns, but their release does not always appear to be sufficient to induce cytotoxic T cell activity. Tim Greten, M.D., of CCR’s Medical Oncology Branch, and a group of international collaborators set out to understand how immune responses against dying cancer cells are regulated. These processes are likely to be important for improving the efficacy of cancer treatment vaccines, which induce an immune reaction against a patient’s cancer cells.
Flipping the NF-κB Switch in Macrophages | Center for Cancer Research
A critical component of the innate immune system, macrophages respond to diverse microbes by recognizing certain molecular patterns, such as the Gram-negative bacteria product lipopolysaccharide (LPS), via Toll-like receptors. Receptor activation stimulates a complex signaling network that involves, among others, the NF-κB pathway. The complexity of this network has hampered researchers’ understanding of how macrophages resolve conflicting signals to determine when to mount an immune response.
Molecular signaling along the anterior–posterior axis of early palate development
Smith, Tara M.; Lozanoff, Scott; Iyyanar, Paul P.; Nazarali, Adil J.
2013-01-01
Cleft palate is a common congenital birth defect in humans. In mammals, the palatal tissue can be distinguished into anterior bony hard palate and posterior muscular soft palate that have specialized functions in occlusion, speech or swallowing. Regulation of palate development appears to be the result of distinct signaling and genetic networks in the anterior and posterior regions of the palate. Development and maintenance of expression of these region-specific genes is crucial for normal palate development. Numerous transcription factors and signaling pathways are now recognized as either anterior- (e.g., Msx1, Bmp4, Bmp2, Shh, Spry2, Fgf10, Fgf7, and Shox2) or posterior-specific (e.g., Meox2, Tbx22, and Barx1). Localized expression and function clearly highlight the importance of regional patterning and differentiation within the palate at the molecular level. Here, we review how these molecular pathways and networks regulate the anterior–posterior patterning and development of secondary palate. We hypothesize that the anterior palate acts as a signaling center in setting up development of the secondary palate. PMID:23316168
Heilmann, Romy M; Allenspach, Karin
2017-11-01
Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.
Higher-Order Neural Networks Recognize Patterns
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen
1996-01-01
Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.
Does Infection-Induced Immune Activation Contribute to Dementia?
Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe
2015-01-01
The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389
Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N.; Jones, Byron C.; Lu, Lu; Wang, Xusheng
2018-01-01
Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses. PMID:29674951
Preliminary study on 2 colour patterns in Ochlerotatus caspius (Pallas, 1771) (Diptera, Culicidae).
Toma, Luciano; Severini, Francesco; Romi, Roberto; Di Luca, Marco
2016-08-30
Ochlerotatus caspius is a mosquito of medical and veterinary relevance both for its synanthropy and for its potential role in transmission of viruses and nematodes in the areas that it inhabits. Due to its wide range and the marked variability in the adult colour pattern, some authors have recognized Ochlerotatus caspius as a complex of species. In this study, we purposed to evaluate the possible taxonomic heterogeneity between 2 chromatic forms by using both morphological and molecular approaches. The preliminary results based on the identity of the rRNA internal transcribed spacer 2 (ITS-2) lead us to believe the 2 forms as a single species with a chromatic polymorphism.
Vasta, Gerardo R.; Ahmed, Hafiz; Nita-Lazar, Mihai; Banerjee, Aditi; Pasek, Marta; Shridhar, Surekha; Guha, Prasun; Fernández-Robledo, José A.
2012-01-01
Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation. PMID:22811679
Padler-Karavani, Vered; Hurtado-Ziola, Nancy; Chang, Yung-Chi; Sonnenburg, Justin L.; Ronaghy, Arash; Yu, Hai; Verhagen, Andrea; Nizet, Victor; Chen, Xi; Varki, Nissi; Varki, Ajit; Angata, Takashi
2014-01-01
Siglecs are sialic acid-binding Ig-like lectins that recognize sialoglycans via amino-terminal V-set domains. CD33-related Siglecs (CD33rSiglecs) on innate immune cells recognize endogenous sialoglycans as “self-associated molecular patterns” (SAMPs), dampening immune responses via cytosolic immunoreceptor tyrosine-based inhibition motifs that recruit tyrosine phosphatases. However, sialic acid-expressing pathogens subvert this mechanism through molecular mimicry. Meanwhile, endogenous host SAMPs must continually evolve to evade other pathogens that exploit sialic acids as invasion targets. We hypothesized that these opposing selection forces have accelerated CD33rSiglec evolution. We address this by comparative analysis of major CD33rSiglec (Siglec-3, Siglec-5, and Siglec-9) orthologs in humans, chimpanzees, and baboons. Recombinant soluble molecules displaying ligand-binding domains show marked quantitative and qualitative interspecies differences in interactions with strains of the sialylated pathogen, group B Streptococcus, and with sialoglycans presented as gangliosides or in the form of sialoglycan microarrays, including variations such as N-glycolyl and O-acetyl groups. Primate Siglecs also show quantitative and qualitative intra- and interspecies variations in expression patterns on leukocytes, both in circulation and in tissues. Taken together our data explain why the CD33rSiglec-encoding gene cluster is undergoing rapid evolution via multiple mechanisms, driven by the need to maintain self-recognition by innate immune cells, while escaping 2 distinct mechanisms of pathogen subversion.—Padler-Karavani, V., Hurtado-Ziola, N., Chang, Y.-C., Sonnenburg, J. L., Ronaghy, A., Yu, H., Verhagen, A., Nizet, V., Chen, X., Varki, N., Varki, A., Angata, T. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. PMID:24308974
Interplay Between Innate Immunity and the Plant Microbiota.
Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul
2017-08-04
The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.
Innate Immunity against Cryptococcus, from Recognition to Elimination
Wormley, Floyd L.
2018-01-01
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast’s large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR–ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus. PMID:29518906
Peptidoglycan recognition proteins in Drosophila immunity.
Kurata, Shoichiro
2014-01-01
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genomic determinants of epidermal appendage patterning and structure in domestic birds
Boer, Elena F.; Van Hollebeke, Hannah F.; Shapiro, Michael D.
2017-01-01
Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity. PMID:28347644
Responses of innate immune cells to group A Streptococcus
Fieber, Christina; Kovarik, Pavel
2014-01-01
Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies. PMID:25325020
Ramírez, Carlos; Mendoza, Luis
2018-04-01
Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.
Jasso-Martínez, Jovana M; Machkour-M'Rabet, Salima; Vila, Roger; Rodríguez-Arnaiz, Rosario; Castañeda-Sortibrán, América Nitxin
2018-01-01
Hybridization events are frequently demonstrated in natural butterfly populations. One interesting butterfly complex species is the Enantia jethys complex that has been studied for over a century; many debates exist regarding the species composition of this complex. Currently, three species that live sympatrically in the Gulf slope of Mexico (Enantia jethys, E. mazai, and E. albania) are recognized in this complex (based on morphological and molecular studies). Where these species live in sympatry, some cases of interspecific mating have been observed, suggesting hybridization events. Considering this, we employed a multilocus approach (analyses of mitochondrial and nuclear sequences: COI, RpS5, and Wg; and nuclear dominant markers: inter-simple sequence repeat (ISSRs) to study hybridization in sympatric populations from Veracruz, Mexico. Genetic diversity parameters were determined for all molecular markers, and species identification was assessed by different methods such as analyses of molecular variance (AMOVA), clustering, principal coordinate analysis (PCoA), gene flow, and PhiPT parameters. ISSR molecular markers were used for a more profound study of hybridization process. Although species of the Enantia jethys complex have a low dispersal capacity, we observed high genetic diversity, probably reflecting a high density of individuals locally. ISSR markers provided evidence of a contemporary hybridization process, detecting a high number of hybrids (from 17% to 53%) with significant differences in genetic diversity. Furthermore, a directional pattern of hybridization was observed from E. albania to other species. Phylogenetic study through DNA sequencing confirmed the existence of three clades corresponding to the three species previously recognized by morphological and molecular studies. This study underlines the importance of assessing hybridization in evolutionary studies, by tracing the lineage separation process that leads to the origin of new species. Our research demonstrates that hybridization processes have a high occurrence in natural populations.
Molecular systematics and global phylogeography of angel sharks (genus Squatina).
Stelbrink, Björn; von Rintelen, Thomas; Cliff, Geremy; Kriwet, Jürgen
2010-02-01
Angel sharks of the genus Squatina represent a group comprising 22 extant benthic species inhabiting continental shelves and upper slopes. In the present study, a comprehensive phylogenetic reconstruction of 17 Squatina species based on two mitochondrial markers (COI and 16S rRNA) is provided. The phylogenetic reconstructions are used to test biogeographic patterns. In addition, a molecular clock analysis is conducted to estimate divergence times of the emerged clades. All analyses show Squatina to be monophyletic. Four geographic clades are recognized, of which the Europe-North Africa-Asia clade is probably a result of the Tethys Sea closure. A second sister group relationship emerged in the analyses, including S. californica (eastern North Pacific) and S. dumeril (western North Atlantic), probably related to the rise of the Panamanian isthmus. The molecular clock analysis show that both lineage divergences coincide with the estimated time of these two geological events. Copyright (c) 2009. Published by Elsevier Inc.
Sihvonen, Pasi; Mutanen, Marko; Kaila, Lauri; Brehm, Gunnar; Hausmann, Axel; Staude, Hermann S.
2011-01-01
Background The moth family Geometridae (inchworms or loopers), with approximately 23 000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. Methodology/Principal Findings We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. Conclusions/Significance Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic. PMID:21673814
Kudo, Yuko; Oki, Kaihei; Watanabe, Koichi
2012-11-01
Although four strains of bacteria isolated from sunki, a traditional Japanese, non-salted pickle, were initially identified as Lactobacillus delbrueckii, the molecular and phenotypic characteristics of the strains did not match those of any of the four recognized subspecies of L. delbrueckii. Together, the results of phenotypic characterization, DNA-DNA hybridizations (in which the relatedness values between the novel strains and type strains of the recognized subspecies of L. delbrueckii were all >88.7%) and 16S rRNA gene sequence, amplified fragment length polymorphism (AFLP) and whole-cell MALDI-TOF/MS spectral pattern analyses indicated that the four novel strains represented a single, novel subspecies, for which the name Lactobacillus delbrueckii subsp. sunkii subsp. nov. is proposed. The type strain is YIT 11221(T) (=JCM 17838(T) =DSM 24966(T)).
te Riet, Joost; Reinieren-Beeren, Inge; Figdor, Carl G; Cambi, Alessandra
2015-11-01
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C-type lectin dendritic cell-specific intracellular cell adhesion molecule-3 (ICAM-3)-grabbing non-integrin (DC-SIGN), because a detailed characterization at the structural level is lacking. DC-SIGN recognizes specific Candida-associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan-branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope-based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC-SIGN. We demonstrate that slight differences in the N-mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC-SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kB T. The single-bond affinity of tetrameric DC-SIGN for wild-type C. albicans is ~10.7 kB T and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate-protein interactions described in the literature. In conclusion, this study shows that DC-SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC-SIGN and its pathogenic ligands will lead to a better understanding of how fungal-associated carbohydrate structures are recognized by receptors of the immune system and can ultimately contribute to the development of new anti-fungal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
Luciani, Mirella; Di Febo, Tiziana; Orsini, Massimiliano; Krasteva, Ivanka; Cattaneo, Angela; Podaliri Vulpiani, Michele; Di Pancrazio, Chiara; Bachi, Angela; Tittarelli, Manuela
2018-01-01
The diagnosis of dourine can be difficult because the clinical signs of this disease in horses are similar to those of surra, caused by Trypanosoma evansi. Moreover, T. equiperdum and T. evansi are closely related and, so far, they cannot be distinguished using serological tests. In a previous work, the T. equiperdum protein pattern recognized by antibodies from dourine-infected horses and the humoral immune response kinetics were investigated by immunoblotting assay; a total of 20 sera from naturally and experimentally infected horses and from healthy animals were tested. Immunoblotting analysis showed that antibodies from infected horses specifically bind T. equiperdum low molecular weight proteins (from 16 to 35 kDa), which are not recognized by antibodies from uninfected horses. In this work, we tested other 615 sera (7 from naturally infected horses and 608 sera from healthy horses and donkeys): results confirmed the data obtained previously. In addition, six SDS-PAGE bands with molecular weight ranging from 10 to 37 kDa were analyzed by mass spectrometry, in order to identify immunogenic proteins that could be used as biomarkers for the diagnosis of dourine. A total of 167 proteins were identified. Among them, 37 were found unique for T. equiperdum. Twenty-four of them could represent possible candidate diagnostic antigens for the development of serological tests specific for T. equiperdum. PMID:29556505
Activation of RIG-I-like Receptor Signal Transduction
Bruns, Annie; Horvath, Curt M.
2011-01-01
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed. PMID:22066529
Ruiz Salas, Veronica; Alegre, Marta; Garcés, Joan Ramón; Puig, Lluis
2014-06-01
The hedgehog (Hh) signaling pathway has been identified as important to normal embryonic development in living organisms and it is implicated in processes including cell proliferation, differentiation and tissue patterning. Aberrant Hh pathway has been involved in the pathogenesis and chemotherapy resistance of different solid and hematologic malignancies. Basal cell carcinoma (BCC) and medulloblastoma are two well-recognized cancers with mutations in components of the Hh pathway. Vismodegib has recently approved as the first inhibitor of one of the components of the Hh pathway (smoothened). This review attempts to provide current data on the molecular pathways involved in the development of BCC and the therapeutic options available for the treatment of locally advanced and metastatic BCC, and the new targeted therapies in development.
Aisa, M J; Castillejo, S; Gallego, M; Fisa, R; Riera, M C; de Colmenares, M; Torras, S; Roura, X; Sentis, J; Portus, M
1998-02-01
Serum samples collected from 237 dogs in Catalonia (northeastern Spain) were screened by Western blot analysis to detect the presence of antibodies specific to different Leishmania infantum polypeptide fractions. Leishmaniasis was confirmed in 72 of these dogs by direct examination and/or culture. Another 165 animals from the Priorat region were studied periodically for 2-8 years between 1987 and 1995, giving a total of 565 determinations. A control group of 93 dogs from nonendemic areas was also studied. Sera from dogs with leishmaniasis recognized antigens with molecular weights ranging from 12 to 85 kD. The most sensitive antigens were those of 70, 65, 46, 30, 28, 14, and 12 kD, which were recognized by 75%, 75%, 78%, 75%, 81%, 79%, and 75%, respectively, of the sera from dogs with positive parasitologic examination results. Antigens of 70 and 65 kD were also recognized by two dogs from nonendemic areas. Antigens of 14 and 12 kD were the first to be recognized by sera of asymptomatic dogs with titers less than the cut-off value of the dot-ELISA that increased during the longitudinal study, and the presence of antibodies specific for these fractions was observed for up to six years before seroconversion observed by dot-ELISA. These antibodies were also the first to disappear in dogs in which the disease was self-limited. The study corroborates the high sensitivity and specificity of Western blots in the diagnosis of canine leishmaniasis when the bands of low molecular weight (less than 46 kD) are considered, and indicates that fractions of 14 and 12 kD are useful in detecting early forms of the disease.
NASA Astrophysics Data System (ADS)
Grajales, Alejandro; Rodríguez, Estefanía; Thornhill, Daniel J.
2016-03-01
Although the symbiotic relationships between dinoflagellates and cnidarians are well recognized, few studies have examined these associations from an evolutionary perspective. This is especially true for symbiotic sea anemones, in which many reports consist of an approximate species identification of the host, followed by the identification of the dinoflagellate symbiont using molecular genetic markers. To further explore the evolutionary history of sea anemone-dinoflagellate associations, we documented the diversity of Symbiodinium spp. in a monophyletic clade of sea anemones, the family Aiptasiidae. We combined information from several molecular genetic markers, including nuclear ITS2 and plastid cp23S-rDNA, to evaluate the patterns of evolution and diversification of Symbiodinium in the light of an existing phylogenetic framework for the sea anemone host. At the host family level, we found no evidence for coevolution or reciprocal phylogenies between host and endosymbiont. However, within some individual host species, Symbiodinium spp. exhibited patterns of host specialization and cladogenesis. This pattern suggests that coevolution between host and symbiont occurred within species and genera lineages, but that this process was regularly disrupted and symbiotic partners were recombined during the longer-term evolutionary history of the Aiptasiidae. Furthermore, we observed independent cases of phylogeographical partitioning of Symbiodinium within a single host species, suggesting that ecological speciation along an environmental gradient contributed to the diversity of associations found in nature.
LGP2 Synergy with MDA5 in RLR-Mediated RNA Recognition and Antiviral Signaling
Bruns, Annie M.; Horvath, Curt M.
2015-01-01
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling. The RIG-I-like receptor (RLR) proteins are expressed in the cytoplasm of nearly all cells and specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RLR family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All RLRs have the ability to detect virus-derived dsRNA and hydrolyze ATP, but display individual differences in enzymatic activity, intrinsic ability to recognize RNA, and mechanisms of activation. Emerging evidence suggests that MDA5 and RIG-I utilize distinct mechanisms to form oligomeric complexes along dsRNA. Aligning of their signaling domains creates a platform capable of propagating and amplifying antiviral signaling responses. LGP2 with intact ATP hydrolysis is critical for the MDA5-mediated antiviral response, but LGP2 lacks the domains essential for activation of antiviral signaling, leaving the role of LGP2 in antiviral signaling unclear. Recent studies revealed a mechanistic basis of synergy between LGP2 and MDA5 leading to enhanced antiviral signaling. This review briefly summarizes the RLR system, and focuses on the relationship between LGP2 and MDA5, describing in detail how these two proteins work together to detect foreign RNA and generate a fully functional antiviral response. PMID:25794939
Molecular determinants of T cell epitope recognition to the common Timothy grass allergen.
Oseroff, Carla; Sidney, John; Kotturi, Maya F; Kolla, Ravi; Alam, Rafeul; Broide, David H; Wasserman, Stephen I; Weiskopf, Daniela; McKinney, Denise M; Chung, Jo L; Petersen, Arnd; Grey, Howard; Peters, Bjoern; Sette, Alessandro
2010-07-15
We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-gamma, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-gamma, IL-10, and IL-17 production.
Expression of toll-like receptors in hepatic cirrhosis and hepatocellular carcinoma.
Sun, L; Dai, J J; Hu, W F; Wang, J
2016-07-14
Toll-like receptors (TLRs) can specifically identify pathogen-associated molecular patterns (PAMPs) by recognizing structural patterns in diverse microbial molecules, and can provide an effective defense against multiple microbial infectious. A variety of TLRs can be expressed on the surface of liver parenchymal as well as nonparenchymal cells. Kupffer cells are a type of hepatic nonparenchymal macrophage, and are positively associated with the severity of liver fibrosis. They play an important role in the synthesis and deposition of the extracellular matrix by upregulating the expression of tissue inhibitor of metalloproteinases and downregulating the activity of matrix metalloproteinases. Cirrhosis, a chronic diffuse lesion usually accompanying extensive liver fibrosis and nodular regeneration, is caused by liver parenchymal cells repeating injury-repair following reconstruction of organizational structure in the hepatic lobules. Hepatocellular carcinoma is caused by repeated and persistent chronic severe liver injury, and partial hepatocytes can eventually transform into hepatoma cells. Multiple TLRs such as TLR2, TLR3, TLR4, and TLR9, as well as other receptors, can be expressed in cirrhosis and hepatocellular carcinoma. About 53 and 85% of hepatocellular carcinoma patients frequently express TLR3 and TLR9, respectively. The chronic and repeated liver injury caused by alcohol, and HBV, HCV, or other pathogens can be recognized by TLRs through the PAMP pathway, which directly increases the risk for hepatic cirrhosis and hepatocellular carcinoma. In this review, we briefly present evidence that the novel cellular molecular mechanisms of TLRs may provide more information about new therapeutics targets of the anti-inflammatory immune response.
Rheindt, Frank E; Christidis, Les; Norman, Janette A; Eaton, James A; Sadanandan, Keren R; Schodde, Richard
2017-04-07
White-bellied swiftlets of the Collocalia esculenta complex constitute a radiation of colony-breeding swifts distributed throughout the tropical Indo-Pacific region. Resolution of their taxonomy is challenging due to their morphological uniformity. To analyze the evolutionary history of this complex, we combine new biometric measurements and results from plumage assessment of museum specimens with novel as well as previously published molecular data. Together, this body of information constitutes the largest systematic dataset for white-bellied swiftlets yet compiled, drawn from 809 individuals belonging to 32 taxa for which new molecular, biometric, and/or plumage data are presented. We propose changing the classification of white-bellied swiftlets, for which two species are currently recognized, to elevate eight regional forms to species level, and we also describe two new subspecies. The ten taxa we recommend recognizing at the species level are: Collocalia linchi (Java to Lombok, Sumatran hills), C. dodgei (montane Borneo), C. natalis (Christmas Island), C. affinis (Greater Sundas, including the Thai-Malay Peninsula and Andaman-Nicobar Islands), C. marginata (Philippines), C. isonota (Philippines), C. sumbawae (west Lesser Sundas), C. neglecta (east Lesser Sundas), C. esculenta (Sulawesi, Moluccas, New Guinea, Bismarck Archipelago, Solomon Islands), and C. uropygialis (Vanuatu, New Caledonia). Future molecular and morphological work is needed to resolve questions of speciation and population affinities in the Philippines, Christmas Island, Wallacea and central Melanesia, and to shed light on historic diversification and patterns of gene flow in the complex.
Yamaguchi, M; Miya, M; Okiyama, M; Nishida, M
2000-04-01
Larvae of the deep-sea lanternfish genus Hygophum (Myctophidae) exhibit a remarkable morphological diversity that is quite unexpected, considering their homogeneous adult morphology. In an attempt to elucidate the evolutionary patterns of such larval morphological diversity, nucleotide sequences of a portion of the mitochondrially encoded 16S ribosomal RNA gene were determined for seven Hygophum species and three outgroup taxa. Secondary structure-based alignment resulted in a character matrix consisting of 1172 bp of unambiguously aligned sequences, which were subjected to phylogenetic analyses using maximum-parsimony, maximum-likelihood, and neighbor-joining methods. The resultant tree topologies from the three methods were congruent, with most nodes, including that of the genus Hygophum, being strongly supported by various tree statistics. The most parsimonious reconstruction of the three previously recognized, distinct larval morphs onto the molecular phylogeny revealed that one of the morphs had originated as the common ancestor of the genus, the other two having diversified separately in two subsequent major clades. The patterns of such diversification are discussed in terms of the unusual larval eye morphology and geographic distribution. Copyright 2000 Academic Press.
Kanofsky, Konstantin; Lehmeyer, Mona; Schulze, Jutta; Hehl, Reinhard
2016-01-01
Plants recognize pathogens by microbe-associated molecular patterns (MAMPs) and subsequently induce an immune response. The regulation of gene expression during the immune response depends largely on cis-sequences conserved in promoters of MAMP-responsive genes. These cis-sequences can be analyzed by constructing synthetic promoters linked to a reporter gene and by testing these constructs in transient expression systems. Here, the use of the parsley (Petroselinum crispum) protoplast system for analyzing MAMP-responsive synthetic promoters is described. The synthetic promoter consists of four copies of a potential MAMP-responsive cis-sequence cloned upstream of a minimal promoter and the uidA reporter gene. The reporter plasmid contains a second reporter gene, which is constitutively expressed and hence eliminates the requirement of a second plasmid used as a transformation control. The reporter plasmid is transformed into parsley protoplasts that are elicited by the MAMP Pep25. The MAMP responsiveness is validated by comparing the reporter gene activity from MAMP-treated and untreated cells and by normalizing reporter gene activity using the constitutively expressed reporter gene.
Koehler, Samantha; Cabral, Juliano S; Whitten, W Mark; Williams, Norris H; Singer, Rodrigo B; Neubig, Kurt M; Guerra, Marcelo; Souza, Anete P; Amaral, Maria do Carmo E
2008-10-01
Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Six of 21 currently accepted species were recovered. The results also support recognition of the 'C. pumila' clade as a single species. Molecular phylogenetic relationships within the 'C. acicularis-C. madida' and 'C. ferdinandiana-C. neowiedii' species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic data proved to be a valuable source of information to understand evolutionary patterns within Maxillariinae orchids.
Koehler, Samantha; Cabral, Juliano S.; Whitten, W. Mark; Williams, Norris H.; Singer, Rodrigo B.; Neubig, Kurt M.; Guerra, Marcelo; Souza, Anete P.; Amaral, Maria do Carmo E.
2008-01-01
Background and Aims Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Methods Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Key Results Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularis–C. madida’ and ‘C. ferdinandiana–C. neowiedii’ species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. Conclusions The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic data proved to be a valuable source of information to understand evolutionary patterns within Maxillariinae orchids. PMID:18687799
Immunotherapeutic potential of CpG oligodeoxynucleotides in veterinary species.
Manuja, Anju; Manuja, Balvinder K; Kaushik, Jyoti; Singha, Harisankar; Singh, Raj Kumar
2013-10-01
Innate immunity plays a critical role in host defense against infectious diseases by discriminating between self and infectious non-self. The recognition of infectious non-self involves germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). The PAMPs are the components of pathogenic microbes which include not only the cell wall constituents but also the unmethylated 2'-deoxy-ribo-cytosine-phosphate-guanosine (CpG) motifs. These CpG motifs present within bacterial and viral DNA are recognized by toll-like receptor 9 (TLR9), and signaling by this receptor triggers a proinflammatory cytokine response which, in turn, influences both innate and adaptive immune responses. The activation of TLR9 with synthetic CpG oligodeoxynucleotides (ODNs) induces powerful Th1-like immune responses. It has been shown to provide protection against infectious diseases, allergy and cancer in laboratory animal models and some domestic animal species. With better understanding of the basic biology and immune mechanisms, it would be possible to exploit the potential of CpG motifs for animal welfare. The research developments in the area of CpG and TLR9 and the potential applications in animal health have been reviewed in this article.
Iwabuchi, Kazuhisa; Nakayama, Hitoshi; Masuda, Hiromi; Kina, Katsunari; Ogawa, Hideoki; Takamori, Kenji
2012-01-01
Over the last 30 years, many studies have indicated that glycosphingolipids (GSLs) expressed on the cell surface may act as binding sites for microorganisms. Based on their physicochemical characteristics, GSLs form membrane microdomains with cholesterol, sphingomyelin, glycosylphosphatidylinositol (GPI)-anchored proteins, and various signaling molecules, and GSL-enriched domains have been shown to be involved in these defense responses. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms. LacCer is expressed at high levels on the plasma membrane of human neutrophils, and forms membrane microdomains associated with the Src family tyrosine kinase Lyn. LacCer-enriched membrane microdomains mediate superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. In contrast, several pathogens have developed infection mechanisms using membrane microdomains. In addition, some pathogens have the ability to avoid degradation by escaping from the vacuolar compartment or preventing phagosome maturation, utilizing membrane microdomains, such as LacCer-enriched domains, of host cells. The detailed molecular mechanisms of these membrane microdomain-associated host-pathogen interactions remain to be elucidated. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Genomic determinants of epidermal appendage patterning and structure in domestic birds.
Boer, Elena F; Van Hollebeke, Hannah F; Shapiro, Michael D
2017-09-15
Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Guillain-Barré Syndrome and Variants
Barohn, Richard J.
2014-01-01
Synopsis Guillain-Barré syndrome (GBS) is characterized by rapidly evolving ascending weakness, mild sensory loss and hypo- or areflexia, progressing to a nadir over up to four weeks. Cerebrospinal fluid evaluation demonstrates albuminocytologic dissociation in 90% of cases. Acute inflammatory demyelinating polyneuropathy (AIDP) was the first to be recognized over a century ago and is the most common form of GBS. In AIDP, the immune attack is directed at peripheral nerve myelin with secondary by-stander axon loss. Axonal motor and sensorimotor variants have been described in the last 3 decades and are mediated by molecular mimicry targeting peripheral nerve motor axons. Besides the Miller-Fisher syndrome (MFS) and descending weakness, other rare phenotypic variants have been recently described with pure sensory variant, restricted autonomic manifestations and the pharyngeal-cervical-brachial pattern. It is important to recognize GBS and its variants due to the availability of equally effective therapies in the form of plasmapheresis and intravenous immunoglobulins. PMID:23642721
Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.
2010-01-01
Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia. PMID:20628613
NASA Astrophysics Data System (ADS)
Newman, Stuart A.; Bhat, Ramray
2008-03-01
The shapes and forms of multicellular organisms arise by the generation of new cell states and types and changes in the numbers and rearrangements of the various kinds of cells. While morphogenesis and pattern formation in all animal species are widely recognized to be mediated by the gene products of an evolutionarily conserved 'developmental-genetic toolkit', the link between these molecular players and the physics underlying these processes has been generally ignored. This paper introduces the concept of 'dynamical patterning modules' (DPMs), units consisting of one or more products of the 'toolkit' genes that mobilize physical processes characteristic of chemically and mechanically excitable meso- to macroscopic systems such as cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on lateral inhibition and multistable and oscillatory dynamics. We suggest that ancient toolkit gene products, most predating the emergence of multicellularity, assumed novel morphogenetic functions due to change in the scale and context inherent to multicellularity. We show that DPMs, acting individually and in concert with each other, constitute a 'pattern language' capable of generating all metazoan body plans and organ forms. The physical dimension of developmental causation implies that multicellular forms during the explosive radiation of animal body plans in the middle Cambrian, approximately 530 million years ago, could have explored an extensive morphospace without concomitant genotypic change or selection for adaptation. The morphologically plastic body plans and organ forms generated by DPMs, and their ontogenetic trajectories, would subsequently have been stabilized and consolidated by natural selection and genetic drift. This perspective also solves the apparent 'molecular homology-analogy paradox', whereby widely divergent modern animal types utilize the same molecular toolkit during development by proposing, in contrast to the Neo-Darwinian principle, that phenotypic disparity early in evolution occurred in advance of, rather than closely tracked, genotypic change.
Babiker, E E; Azakami, H; Ogawa, T; Kato, A
2000-02-01
To elucidate the molecular mechanism of the allergenicity of soybean P34 protein recognized as the most allergenic protein in soybean, the protein was expressed in Escherichia coli transformed with a plasmid carrying P34 cDNA. SDS-PAGE pattern showed that the molecular weight of the recombinant P34 was approximately 2 kDa less than that of the native soybean P34. The difference in the molecular mass between these two proteins could be due to the native P34 in soybean being glycosylated at position Asn(170), whereas the recombinant protein generated in E. coli lacks this post-translational modification. Immunoblot analysis showed that both soybean and recombinant P34 proteins cross-reacted not only with polyclonal and monoclonal antibodies produced against P34 and crude soybean protein but also with patients' sera. The results suggest that the recombinant P34 is immunologically reactive, indicating that both proteins have similar epitope structures. Thus, the recombinant P34 produced by the E. coli expression system can be used as a standard allergen for molecular design to reduce the allergenic structure.
Teng, Y-T A
2006-03-01
Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.
Integrated Molecular Characterization of Testicular Germ Cell Tumors.
Shen, Hui; Shih, Juliann; Hollern, Daniel P; Wang, Linghua; Bowlby, Reanne; Tickoo, Satish K; Thorsson, Vésteinn; Mungall, Andrew J; Newton, Yulia; Hegde, Apurva M; Armenia, Joshua; Sánchez-Vega, Francisco; Pluta, John; Pyle, Louise C; Mehra, Rohit; Reuter, Victor E; Godoy, Guilherme; Jones, Jeffrey; Shelley, Carl S; Feldman, Darren R; Vidal, Daniel O; Lessel, Davor; Kulis, Tomislav; Cárcano, Flavio M; Leraas, Kristen M; Lichtenberg, Tara M; Brooks, Denise; Cherniack, Andrew D; Cho, Juok; Heiman, David I; Kasaian, Katayoon; Liu, Minwei; Noble, Michael S; Xi, Liu; Zhang, Hailei; Zhou, Wanding; ZenKlusen, Jean C; Hutter, Carolyn M; Felau, Ina; Zhang, Jiashan; Schultz, Nikolaus; Getz, Gad; Meyerson, Matthew; Stuart, Joshua M; Akbani, Rehan; Wheeler, David A; Laird, Peter W; Nathanson, Katherine L; Cortessis, Victoria K; Hoadley, Katherine A
2018-06-12
We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significance-KIT, KRAS, and NRAS-exclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Mechanisms that Underlie Co-variation of the Brain and Face
Marcucio, Ralph S.; Young, Nathan M.; Hu, Diane; Hallgrimsson, Benedikt
2011-01-01
The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this paper we describe factors that are active between development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time. PMID:21381182
S100A8 and S100A9: New Insights into Their Roles in Malignancy
Srikrishna, Geetha
2011-01-01
Recent studies have highlighted key roles played by non-neoplastic host cells of the tumor microenvironment, and by secreted factors from tumor and host cells, in promoting malignancy. In this regard, damage-associated molecular pattern (DAMP) molecules such as S100A8 and S100A9, with well-known functions in inflammation, have been increasingly recognized not only as markers, but also as new candidates with important roles in modulating tumor growth and metastasis. This review focuses on our current understanding of the pro- and anti-tumorigenic functions of S100A8 and S100A9. Elucidating molecular pathways mediated by these proteins promises to provide potential novel targets for the development of cancer therapeutics and to establish valid biomarkers to identify early stages of tumor progression. PMID:21912088
Fernandez, Michael; Breedon, Michael; Cole, Ivan S; Barnard, Amanda S
2016-10-01
Traditionally many structural alloys are protected by primer coatings loaded with corrosion inhibiting additives. Strontium Chromate (or other chromates) have been shown to be extremely effectively inhibitors, and find extensive use in protective primer formulations. Unfortunately, hexavalent chromium which imbues these coatings with their corrosion inhibiting properties is also highly toxic, and their use is being increasingly restricted by legislation. In this work we explore a novel tridimensional Quantitative-Structure Property Relationship (3D-QSPR) approach, comparative molecular surface analysis (CoMSA), which was developed to recognize "high-performing" corrosion inhibitor candidates from the distributions of electronegativity, polarizability and van der Waals volume on the molecular surfaces of 28 small organic molecules. Multivariate statistical analysis identified five prototypes molecules, which are capable of explaining 71% of the variance within the inhibitor data set; whilst a further five molecules were also identified as archetypes, describing 75% of data variance. All active corrosion inhibitors, at a 80% threshold, were successfully recognized by the CoMSA model with adequate specificity and precision higher than 70% and 60%, respectively. The model was also capable of identifying structural patterns, that revealed reasonable starting points for where structural changes may augment corrosion inhibition efficacy. The presented methodology can be applied to other functional molecules and extended to cover structure-activity studies in a diverse range of areas such as drug design and novel material discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lucas, Kurt; Maes, Michael
2013-08-01
Activation of the Toll-like receptor 4 (TLR4) complex, a receptor of the innate immune system, may underpin the pathophysiology of many human diseases, including asthma, cardiovascular disorder, diabetes, obesity, metabolic syndrome, autoimmune disorders, neuroinflammatory disorders, schizophrenia, bipolar disorder, autism, clinical depression, chronic fatigue syndrome, alcohol abuse, and toluene inhalation. TLRs are pattern recognition receptors that recognize damage-associated molecular patterns and pathogen-associated molecular patterns, including lipopolysaccharide (LPS) from gram-negative bacteria. Here we focus on the environmental factors, which are known to trigger TLR4, e.g., ozone, atmosphere particulate matter, long-lived reactive oxygen intermediate, pentachlorophenol, ionizing radiation, and toluene. Activation of the TLR4 pathways may cause chronic inflammation and increased production of reactive oxygen and nitrogen species (ROS/RNS) and oxidative and nitrosative stress and therefore TLR-related diseases. This implies that drugs or substances that modify these pathways may prevent or improve the abovementioned diseases. Here we review some of the most promising drugs and agents that have the potential to attenuate TLR-mediated inflammation, e.g., anti-LPS strategies that aim to neutralize LPS (synthetic anti-LPS peptides and recombinant factor C) and TLR4/MyD88 antagonists, including eritoran, CyP, EM-163, epigallocatechin-3-gallate, 6-shogaol, cinnamon extract, N-acetylcysteine, melatonin, and molecular hydrogen. The authors posit that activation of the TLR radical (ROS/RNS) cycle is a common pathway underpinning many "civilization" disorders and that targeting the TLR radical cycle may be an effective method to treat many inflammatory disorders.
JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR
Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem
2013-01-01
Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554
OsLYP4 and OsLYP6 play critical roles in rice defense signal transduction.
Liu, Bing; Li, Jian-Feng; Ao, Ying; Li, Zhangqun; Liu, Jun; Feng, Dongru; Qi, Kangbiao; He, Yanming; Zeng, Liexian; Wang, Jinfa; Wang, Hong-Bin
2013-02-01
Plant innate immunity relies on successful detection of trespassing pathogens through recognizing their microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) at the cell surface. We recently reported two rice lysin motif (LysM)-containing proteins, OsLYP4 and OsLYP6, as dual functional PRRs sensing bacterial peptidoglycan (PGN) and fungal chitin. Here we further demonstrated the important roles of OsLYP4 and OsLYP6 in rice defense signaling, as silencing of either LYP impaired the defense marker gene activation induced by either bacterial pathogen Xanthomonas oryzaecola or fungal pathogen Magnaporthe oryzae. Moreover, we found that OsLYP4 and OsLYP6 could form homo- and hetero-dimers, and could interact with CEBiP, suggesting an unexpected complexity of chitin perception in rice.
Fruet, Pedro F; Secchi, Eduardo R; Di Tullio, Juliana C; Simões-Lopes, Paulo César; Daura-Jorge, Fábio; Costa, Ana P B; Vermeulen, Els; Flores, Paulo A C; Genoves, Rodrigo Cezar; Laporta, Paula; Beheregaray, Luciano B; Möller, Luciana M
2017-11-01
Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal-offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal ( n = 127) and offshore ( n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites F ST = 0.385, p < .001; mtDNA F ST = 0.183, p < .001; Φ ST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential "contact zones", we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.
Pearl, Jeremy I; Ma, Ting; Irani, Afraaz R; Huang, Zhinong; Robinson, William H; Smith, Robert L; Goodman, Stuart B
2011-08-01
The inflammatory response to prosthetic implant-derived wear particles is the primary cause of bone loss and aseptic loosening of implants, but the mechanisms by which macrophages recognize and respond to particles remain unknown. Studies of innate immunity demonstrate that Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPS). All TLRs signal through myeloid differentiation factor 88 (MyD88), except TLR3 which signals through TIR domain containing adapter inducing interferon-beta (TRIF), and TLR4 which signals through both MyD88 and TRIF. We hypothesized that wear-debris particles may act as PAMPs/DAMPs and activate macrophages via TLRs. To test this hypothesis, we first demonstrated that inhibition of MyD88 decreases polymethylmethacrylate (PMMA) particle-induced production of TNF-α in RAW 264.7 macrophages. Next we compared particle-induced production of TNF-α among MyD88 knockout (MyD88(-/-)), TRIF knockout (TRIF(-/-)), and wild type (WT) murine macrophages. Relative to WT, disruption of MyD88 signaling diminished, and disruption of TRIF amplified the particle-induced production of TNF-α. Gene expression data indicated that this latter increase in TNF-α was due to a compensatory increase in expression of MyD88 associated components of the TLR pathway. Finally, using an in vivo model, MyD88(-/-) mice developed less particle-induced osteolysis than WT mice. These results indicate that the response to PMMA particles is partly dependent on MyD88, presumably as part of TLR signaling; MyD88 may represent a therapeutic target for prevention of wear debris-induced periprosthetic osteolysis. Copyright © 2011 Elsevier Ltd. All rights reserved.
MAMPs and MIMPs: proposed classifications for inducers of innate immunity.
Mackey, David; McFall, Aidan J
2006-09-01
Plants encode a sophisticated innate immune system. Resistance against potential pathogens often relies on active responses. Prerequisite to the induction of defences is recognition of the pathogenic threat. Significant advances have been made in our understanding of the non-self molecules that are recognized by plants and the means by which plants perceive them. Established terms describing these recognition events, including microbe-associated molecular pattern (MAMP), MAMP-receptor, effector, and resistance (R) protein, need clarification to represent our current knowledge adequately. In this review we propose criteria to classify inducers of plant defence as either MAMPs or microbe-induced molecular patterns (MIMPs). We refine the definition of MAMP to mean a molecular sequence or structure in ANY pathogen-derived molecule that is perceived via direct interaction with a host defence receptor. MIMPs are modifications of host-derived molecules that are induced by an intrinsic activity of a pathogen-derived effector and are perceived by a host defence receptor. MAMP-receptors have previously been classified separately from R-proteins as a discrete class of surveillance molecules. However, MAMP-receptors and R-proteins cannot be distinguished on the basis of their protein structures or their induced responses. We propose that MAMP-receptors and MIMP-receptors are each a subset of R-proteins. Although our review is based on examples from plant pathogens and plants, the principles discussed might prove applicable to other organisms.
Natural Killer (NK) Cells in Antibacterial Innate Immunity: Angels or Devils?
Souza-Fonseca-Guimaraes, Fernando; Adib-Conquy, Minou; Cavaillon, Jean-Marc
2012-01-01
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances. PMID:22105606
The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity.
Caddell, Daniel F; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C
2015-05-05
Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21 , recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas , and confers robust resistance to X. oryzae pv. oryzae ( Xoo ). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21 . Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression.
The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity
Caddell, Daniel F.; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C.
2016-01-01
Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21, recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas, and confers robust resistance to X. oryzae pv. oryzae (Xoo). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21. Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression. PMID:27525297
Jin, Xing-Kun; Li, Shuang; Guo, Xiao-Nv; Cheng, Lin; Wu, Min-Hao; Tan, Shang-Jian; Zhu, You-Ting; Yu, Ai-Qing; Li, Wei-Wei; Wang, Qun
2013-12-01
The first step of host fighting against pathogens is that pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. In the present study, we investigated how invertebrate pattern recognition receptor (PRR) C-type lectins might be involved in the antimicrobial response in crustacean. Based on our previously obtained completed coding regions of EsLecA and EsLecG in Eriocheir sinensis, the recombinant EsLectin proteins were produced via prokaryotic expression system and affinity chromatography. Subsequently, both rEsLecA and rEsLecG were discovered to have wide spectrum binding activities towards microorganisms, and their microbial-binding was calcium-independent. Moreover, the binding activities of both rEsLecA and rEsLecG induced the aggregation against microbial pathogens. Both microorganism growth inhibitory activities assays and antibacterial activities assays revealed their capabilities of suppressing microorganisms growth and directly killing microorganisms respectively. Furthermore, the encapsulation assays signified that both rEsLecA and rEsLecG could stimulate the cellular encapsulation in vitro. Collectively, data presented here demonstrated the successful expression and purification of two C-type lectins proteins in the Chinese mitten crab, and their critical role in the innate immune system of an invertebrate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Activation and manipulation of host responses by a Gram-positive bacterium
Balaji, Vasudevan
2008-01-01
The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease. PMID:19704516
The Interactions of Human Neutrophils with Shiga Toxins and Related Plant Toxins: Danger or Safety?
Brigotti, Maurizio
2012-01-01
Shiga toxins and ricin are well characterized similar toxins belonging to quite different biological kingdoms. Plant and bacteria have evolved the ability to produce these powerful toxins in parallel, while humans have evolved a defense system that recognizes molecular patterns common to foreign molecules through specific receptors expressed on the surface of the main actors of innate immunity, namely monocytes and neutrophils. The interactions between these toxins and neutrophils have been widely described and have stimulated intense debate. This paper is aimed at reviewing the topic, focusing particularly on implications for the pathogenesis and diagnosis of hemolytic uremic syndrome. PMID:22741061
Hinrichs, Benjamin H; Newman, Scott; Appin, Christina L; Dunn, William; Cooper, Lee; Pauly, Rini; Kowalski, Jeanne; Rossi, Michael R; Brat, Daniel J
2016-01-13
Glioblastoma with oligodendroglioma component (GBM-O) was recognized as a histologic pattern of glioblastoma (GBM) by the World Health Organization (WHO) in 2007 and is distinguished by the presence of oligodendroglioma-like differentiation. To better understand the genetic underpinnings of this morphologic entity, we performed a genome-wide, integrated copy number, mutational and transcriptomic analysis of eight (seven primary, primary secondary) cases. Three GBM-O samples had IDH1 (p.R132H) mutations; two of these also demonstrated 1p/19q co-deletion and had a proneural transcriptional profile, a molecular signature characteristic of oligodendroglioma. The additional IDH1 mutant tumor lacked 1p/19q co-deletion, harbored a TP53 mutation, and overall, demonstrated features most consistent with IDH mutant (secondary) GBM. Finally, five tumors were IDH wild-type (IDHwt) and had chromosome seven gains, chromosome 10 losses, and homozygous 9p deletions (CDKN2A), alterations typical of IDHwt (primary) GBM. IDHwt GBM-Os also demonstrated EGFR and PDGFRA amplifications, which correlated with classical and proneural expression subtypes, respectively. Our findings demonstrate that GBM-O is composed of three discrete molecular subgroups with characteristic mutations, copy number alterations and gene expression patterns. Despite displaying areas that morphologically resemble oligodendroglioma, the current results indicate that morphologically defined GBM-O does not correspond to a particular genetic signature, but rather represents a collection of genetically dissimilar entities. Ancillary testing, especially for IDH and 1p/19q, should be used for determining these molecular subtypes.
Loimaranta, Vuokko; Hytönen, Jukka; Pulliainen, Arto T.; Sharma, Ashu; Tenovuo, Jorma; Strömberg, Nicklas; Finne, Jukka
2009-01-01
Scavenger receptors are innate immune molecules recognizing and inducing the clearance of non-host as well as modified host molecules. To recognize a wide pattern of invading microbes, many scavenger receptors bind to common pathogen-associated molecular patterns, such as lipopolysaccharides and lipoteichoic acids. Similarly, the gp340/DMBT1 protein, a member of the human scavenger receptor cysteine-rich protein family, displays a wide ligand repertoire. The peptide motif VEVLXXXXW derived from its scavenger receptor cysteine-rich domains is involved in some of these interactions, but most of the recognition mechanisms are unknown. In this study, we used mass spectrometry sequencing, gene inactivation, and recombinant proteins to identify Streptococcus pyogenes protein Spy0843 as a recognition receptor of gp340. Antibodies against Spy0843 are shown to protect against S. pyogenes infection, but no function or host receptor have been identified for the protein. Spy0843 belongs to the leucine-rich repeat (Lrr) family of eukaryotic and prokaryotic proteins. Experiments with truncated forms of the recombinant proteins confirmed that the Lrr region is needed in the binding of Spy0843 to gp340. The same motif of two other Lrr proteins, LrrG from the Gram-positive S. agalactiae and BspA from the Gram-negative Tannerella forsythia, also mediated binding to gp340. Moreover, inhibition of Spy0843 binding occurred with peptides containing the VEVLXXXXW motif, but also peptides devoid of the XXXXW motif inhibited binding of Lrr proteins. These results thus suggest that the conserved Lrr motif in bacterial proteins serves as a novel pattern recognition motif for unique core peptides of human scavenger receptor gp340. PMID:19465482
Das, Soumita; Owen, Katherine A.; Ly, Kim T.; Park, Daeho; Black, Steven G.; Wilson, Jeffrey M.; Sifri, Costi D.; Ravichandran, Kodi S.; Ernst, Peter B.; Casanova, James E.
2011-01-01
Bacterial recognition by host cells is essential for initiation of infection and the host response. Bacteria interact with host cells via multiple pattern recognition receptors that recognize microbial products or pathogen-associated molecular patterns. In response to this interaction, host cell signaling cascades are activated that lead to inflammatory responses and/or phagocytic clearance of attached bacteria. Brain angiogenesis inhibitor 1 (BAI1) is a receptor that recognizes apoptotic cells through its conserved type I thrombospondin repeats and triggers their engulfment through an ELMO1/Dock/Rac1 signaling module. Because thrombospondin repeats in other proteins have been shown to bind bacterial surface components, we hypothesized that BAI1 may also mediate the recognition and clearance of pathogenic bacteria. We found that preincubation of bacteria with recombinant soluble BAI1 ectodomain or knockdown of endogenous BAI1 in primary macrophages significantly reduced binding and internalization of the Gram-negative pathogen Salmonella typhimurium. Conversely, overexpression of BAI1 enhanced attachment and engulfment of Salmonella in macrophages and in heterologous nonphagocytic cells. Bacterial uptake is triggered by the BAI1-mediated activation of Rac through an ELMO/Dock-dependent mechanism, and inhibition of the BAI1/ELMO1 interaction prevents both Rac activation and bacterial uptake. Moreover, inhibition of ELMO1 or Rac function significantly impairs the proinflammatory response to infection. Finally, we show that BAI1 interacts with a variety of Gram-negative, but not Gram-positive, bacteria through recognition of their surface lipopolysaccharide. Together these findings identify BAI1 as a pattern recognition receptor that mediates nonopsonic phagocytosis of Gram-negative bacteria by macrophages and directly affects the host response to infection. PMID:21245295
Mitochondrial Disorders of DNA Polymerase γ Dysfunction
Zhang, Linsheng; Chan, Sherine S. L.; Wolff, Daynna J.
2011-01-01
Context Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. Objectives To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. Data Sources Review of pertinent published literature and relevant Internet databases. Conclusions Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis. PMID:21732785
TLR9-based immunotherapy for the treatment of allergic diseases.
Farrokhi, Shokrollah; Abbasirad, Narjes; Movahed, Ali; Khazaei, Hossein Ali; Pishjoo, Masoud; Rezaei, Nima
2017-03-01
Toll-like receptors (TLRs), a family of pattern recognition receptors expressed on many cell types of innate immunity, recognize the pathogen-associated molecular patterns of microbes. The hygiene hypothesis suggests that a reduced microbial exposure in early childhood increases the susceptibility to allergic diseases due to deviation in development of the immune system. TLRs are key roles in the right and healthy direction of adaptive immunity with the induction of T-helper 2 toward Th1 immune responses and regulatory T cells. TLR ligand CpG-ODN-based immunomodulation is independent of allergen and it mainly affects innate immune system. While, CpG-oligodeoxynucleotide-based vaccination is allergen specific and induces adaptive immune system. The use of agonists of TLR9 in two distinct strategies of immunotherapy, immunomodulation and vaccination, could be presented as the curative method for the treatment of allergic diseases.
Koppenol-Raab, Marijke; Sjoelund, Virginie; Manes, Nathan P.; Gottschalk, Rachel A.; Dutta, Bhaskar; Benet, Zachary L.; Fraser, Iain D. C.
2017-01-01
The innate immune system is the organism's first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF. Deciphering the differences in the complex signaling events that lead to pathogen recognition and initiation of the correct response remains challenging. Here we report the discovery of temporal changes in the protein signaling components involved in innate immunity. Using an integrated strategy combining unbiased proteomics, transcriptomics and macrophage stimulations with three different PAMPs, we identified differences in signaling between individual TLRs and revealed specifics of pathway regulation at the protein level. PMID:28235783
Alvarez-Corrales, Nancy; Ahmed, Raija K; Rodriguez, Carol A; Balaji, Kithiganahalli N; Rivera, Rebeca; Sompallae, Ramakrishna; Vudattu, Nalini K; Hoffner, Sven E; Zumla, Alimuddin; Pineda-Garcia, Lelany; Maeurer, Markus
2013-03-06
A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.
Mohanan, Vishnu; Grimes, Catherine Leimkuhler
2014-07-04
Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Learning surface molecular structures via machine vision
NASA Astrophysics Data System (ADS)
Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.
2017-08-01
Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.
Zhang, Xianchun; Xiang, Qiaoping
2015-01-01
The cliff fern family Woodsiaceae has experienced frequent taxonomic changes at the familial and generic ranks since its establishment. The bulk of its species were placed in Woodsia, while Cheilanthopsis, Hymenocystis, Physematium, and Protowoodsia are segregates recognized by some authors. Phylogenetic relationships among the genera of Woodsiaceae remain unclear because of the extreme morphological diversity and inadequate taxon sampling in phylogenetic studies to date. In this study, we carry out comprehensive phylogenetic analyses of Woodsiaceae using molecular evidence from four chloroplast DNA markers (atpA, matK, rbcL and trnL–F) and covering over half the currently recognized species. Our results show three main clades in Woodsiaceae corresponding to Physematium (clade I), Cheilanthopsis–Protowoodsia (clade II) and Woodsia s.s. (clade III). In the interest of preserving monophyly and taxonomic stability, a broadly defined Woodsia including the other segregates is proposed, which is characterized by the distinctive indument and inferior indusia. Therefore, we present a new subgeneric classification of the redefined Woodsia based on phylogenetic and ancestral state reconstructions to better reflect the morphological variation, geographic distribution pattern, and evolutionary history of the genus. Our analyses of the cytological character evolution support multiple aneuploidy events that have resulted in the reduction of chromosome base number from 41 to 33, 37, 38, 39 and 40 during the evolutionary history of the cliff ferns. PMID:26348852
Conservation of Toll-like receptor signaling pathways in teleost fish
Purcell, M.K.; Smith, K.D.; Aderem, A.; Hood, L.; Winton, J.R.; Roach, J.C.
2006-01-01
In mammals, toll-like receptors (TLR) recognize ligands, including pathogen-associated molecular patterns (PAMPs), and respond with ligand-specific induction of genes. In this study, we establish evolutionary conservation in teleost fish of key components of the TLR-signaling pathway that act as switches for differential gene induction, including MYD88, TIRAP, TRIF, TRAF6, IRF3, and IRF7. We further explore this conservation with a molecular phylogenetic analysis of MYD88. To the extent that current genomic analysis can establish, each vertebrate has one ortholog to each of these genes. For molecular tree construction and phylogeny inference, we demonstrate a methodology for including genes with only partial primary sequences without disrupting the topology provided by the high-confidence full-length sequences. Conservation of the TLR-signaling molecules suggests that the basic program of gene regulation by the TLR-signaling pathway is conserved across vertebrates. To test this hypothesis, leukocytes from a model fish, rainbow trout (Oncorhynchus mykiss), were stimulated with known mammalian TLR agonists including: diacylated and triacylated forms of lipoprotein, flagellin, two forms of LPS, synthetic double-stranded RNA, and two imidazoquinoline compounds (loxoribine and R848). Trout leukocytes responded in vitro to a number of these agonists with distinct patterns of cytokine expression that correspond to mammalian responses. Our results support the key prediction from our phylogenetic analyses that strong selective pressure of pathogenic microbes has preserved both TLR recognition and signaling functions during vertebrate evolution.
Cosacov, Andrea; Sérsic, Alicia N; Sosa, Victoria; De-Nova, J Arturo; Nylinder, Stephan; Cocucci, Andrea A
2009-12-01
Biogeographical patterns and diversification processes in Andean and Patagonian flora are not yet well understood. Calceolaria is a highly diversified genus of these areas, representing one of the most specialized plant-pollinator systems because flowers produce nonvolatile oils, a very unusual floral reward. Phylogenetic analyses with molecular (ITS and matK) and morphological characters from 103 Calceolaria species were conducted to examine relationships, to understand biogeographic patterns, and to detect evolutionary patterns of floral and ecological characters. Total evidence analysis retrieved three major clades, which strongly correspond to the three previously recognized subgenera, although only subgenus Rosula was retrieved as a monophyletic group. A single historical event explains the expansion from the southern to central Andes, while different parallel evolutionary lines show a northward expansion from the central to northern Andes across the Huancabamba Deflection, an important geographical barrier in northern Peru. Polyploidy, acquisition of elaiophores, and a nototribic pollination mechanism are key aspects of the evolutionary history of Calceolaria. Pollination interactions were more frequently established with Centris than with Chalepogenus oil-collecting bee species. The repeated loss of the oil gland and shifts to pollen as the only reward suggest an evolutionary tendency from highly to moderately specialized pollination systems.
ChemEngine: harvesting 3D chemical structures of supplementary data from PDF files.
Karthikeyan, Muthukumarasamy; Vyas, Renu
2016-01-01
Digital access to chemical journals resulted in a vast array of molecular information that is now available in the supplementary material files in PDF format. However, extracting this molecular information, generally from a PDF document format is a daunting task. Here we present an approach to harvest 3D molecular data from the supporting information of scientific research articles that are normally available from publisher's resources. In order to demonstrate the feasibility of extracting truly computable molecules from PDF file formats in a fast and efficient manner, we have developed a Java based application, namely ChemEngine. This program recognizes textual patterns from the supplementary data and generates standard molecular structure data (bond matrix, atomic coordinates) that can be subjected to a multitude of computational processes automatically. The methodology has been demonstrated via several case studies on different formats of coordinates data stored in supplementary information files, wherein ChemEngine selectively harvested the atomic coordinates and interpreted them as molecules with high accuracy. The reusability of extracted molecular coordinate data was demonstrated by computing Single Point Energies that were in close agreement with the original computed data provided with the articles. It is envisaged that the methodology will enable large scale conversion of molecular information from supplementary files available in the PDF format into a collection of ready- to- compute molecular data to create an automated workflow for advanced computational processes. Software along with source codes and instructions available at https://sourceforge.net/projects/chemengine/files/?source=navbar.Graphical abstract.
Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.
Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M
2018-05-31
Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.
Genetic dissection of the maize (Zea mays L.) MAMP response.
Zhang, Xinye; Valdés-López, Oswaldo; Arellano, Consuelo; Stacey, Gary; Balint-Kurti, Peter
2017-06-01
Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified. Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.
Toll-Like Receptor Function in Acute Wounds
Chen, Lin; DiPietro, Luisa A.
2017-01-01
Significance: Inflammation is an integral part of immune response and supports optimal wound healing in adults. Inflammatory cells such as neutrophils, macrophages, dendritic cells, lymphocytes, and mast cells produce important cytokines, chemokines, and growth factors. These immune cells interact with keratinocytes, fibroblasts, and endothelial cells (ECs), as well as the extracellular matrix within a complicated network that promotes and regulates wound healing. Aberrant and persistent inflammation may result in delayed wound healing, scar formation, or chronic wounds. Targeting the molecules involved in the inflammatory response may have great potential therapeutic value. Recent Advances and Critical Issues: Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns from microbes or danger-associated molecular patterns from damaged cells. The discovery of TLRs sheds new light on the mechanism by which the inflammatory or innate immune response is initiated in wound healing. Convincing evidence now shows that multiple types of cells, including infiltrating or resident inflammatory cells, keratinocytes, fibroblasts, and ECs, express specific types of TLRs. Experimental reduction of certain TLRs or treatment of wounds with TLR ligands has been shown to affect wound healing. A better understanding of the involvement of TLRs in the innate immune response during skin wound healing may suggest novel strategies to improve the quality of tissue repair. Future Directions: Despite the indisputable role of TLRs in regulating the immune response in acute wound healing, the functions of TLRs that are relevant to human wound healing and chronic wounds are poorly understood. PMID:29062591
Fraser, D A; Tenner, A J
2008-02-01
Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.
Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios
2017-09-08
More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.
Alarmins and Their Receptors as Modulators and Indicators of Alloimmune Responses.
Matta, B M; Reichenbach, D K; Blazar, B R; Turnquist, H R
2017-02-01
Cell damage and death releases alarmins, self-derived immunomodulatory molecules that recruit and activate the immune system. Unfortunately, numerous processes critical to the transplantation of allogeneic materials result in the destruction of donor and recipient cells and may trigger alarmin release. Alarmins, often described as damage-associated molecular patterns, together with exogenous pathogen-associated molecular patterns, are potent orchestrators of immune responses; however, the precise role that alarmins play in alloimmune responses remains relatively undefined. We examined evolving concepts regarding how alarmins affect solid organ and allogeneic hematopoietic cell transplantation outcomes and the mechanisms by which self molecules are released. We describe how, once released, alarmins may act alone or in conjunction with nonself materials to contribute to cytokine networks controlling alloimmune responses and their intensity. It is becoming recognized that this class of molecules has pleotropic functions, and certain alarmins can promote both inflammatory and regulatory responses in transplant models. Emerging evidence indicates that alarmins and their receptors may be promising transplantation biomarkers. Developing the therapeutic ability to support alarmin regulatory mechanisms and the predictive value of alarmin pathway biomarkers for early intervention may provide opportunities to benefit graft recipients. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Jo, Eunyoung; Elvitigala, Don Anushka Sandaruwan; Wan, Qiang; Oh, Minyoung; Oh, Chulhong; Lee, Jehee
2017-12-01
Dendritic-cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is a C-type lectin that functions as a pattern recognition receptor by recognizing pathogen-associated molecular patterns (PAMPs). It is also involved in various events of the dendritic cell (DC) life cycle, such as DC migration, antigen capture and presentation, and T cell priming. In this study, a DC-SIGN-like gene from the big belly seahorse Hippocampus abdominalis (designated as ShDCS-like) was identified and molecularly characterized. The putative, complete ORF was found to be 1368 bp in length, encoding a protein of 462 amino acids with a molecular mass of 52.6 kDa and a theoretical isoelectric point of 8.26. The deduced amino acid sequence contains a single carbohydrate recognition domain (CRD), in which six conserved cysteine residues and two Ca 2+ -binding site motifs (QPN, WND) were identified. Based on pairwise sequence analysis, ShDCS-like exhibits the highest amino acid identity (94.6%) and similarity (97.4%) with DC-SIGN-like counterpart from tiger tail seahorse Hippocampus comes. Quantitative real-time PCR revealed that ShDCS-like mRNA is transcribed universally in all tissues examined, but with abundance in kidney and gill tissues. The basal mRNA expression of ShDCS-like was modulated in blood cell, kidney, gill and liver tissues in response to the stimulation of healthy fish with lipopolysaccharides (LPS), Edwardsiella tarda, or Streptococcus iniae. Moreover, recombinant ShDCS-like-CRD domain exhibited detectable agglutination activity against different bacteria. Collectively, these results suggest that ShDCS-like may potentially involve in immune function in big belly seahorses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Learning surface molecular structures via machine vision
Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.
2017-08-10
Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (‘read out’) all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds andmore » thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. Here, the method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.« less
Learning surface molecular structures via machine vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.
Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (‘read out’) all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds andmore » thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. Here, the method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.« less
Neural Networks for the Beginner.
ERIC Educational Resources Information Center
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
International Journal of Molecular Science 2017 Best Paper Award.
2017-11-02
The Editors of the International Journal of Molecular Sciences have established the Best Paper Award to recognize the most outstanding articles published in the areas of molecular biology, molecular physics and chemistry that have been published in the International Journal of Molecular Sciences. The prizes have been awarded annually since 2012 [...].
Enzyme specificity under dynamic control
NASA Astrophysics Data System (ADS)
Ota, Nobuyuki; Agard, David A.
2002-03-01
The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.
A Molecular Code for Identity in the Vomeronasal System.
Fu, Xiaoyan; Yan, Yuetian; Xu, Pei S; Geerlof-Vidavsky, Ilan; Chong, Wongi; Gross, Michael L; Holy, Timothy E
2015-10-08
In social interactions among mammals, individuals are recognized by olfactory cues, but identifying the key signals among thousands of compounds remains a major challenge. To address this need, we developed a new technique, component-activity matching (CAM), to select candidate ligands that "explain" patterns of bioactivity across diverse complex mixtures. Using mouse urine from eight different sexes and strains, we identified 23 components to explain firing rates in seven of eight functional classes of vomeronasal sensory neurons. Focusing on a class of neurons selective for females, we identified a novel family of vomeronasal ligands, steroid carboxylic acids. These ligands accounted for much of the neuronal activity of urine from some female strains, were necessary for normal levels of male investigatory behavior of female scents, and were sufficient to trigger mounting behavior. CAM represents the first step toward an exhaustive characterization of the molecular cues for natural behavior in a mammalian olfactory system. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Takahashi, Riku; Wu, Zi Liang; Arifuzzaman, Md; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping
2014-08-01
Biomacromolecules usually form complex superstructures in natural biotissues, such as different alignments of collagen fibres in articular cartilages, for multifunctionalities. Inspired by nature, there are efforts towards developing multiscale ordered structures in hydrogels (recognized as one of the best candidates of soft biotissues). However, creating complex superstructures in gels are hardly realized because of the absence of effective approaches to control the localized molecular orientation. Here we introduce a method to create various superstructures of rigid polyanions in polycationic hydrogels. The control of localized orientation of rigid molecules, which are sensitive to the internal stress field of the gel, is achieved by tuning the swelling mismatch between masked and unmasked regions of the photolithographic patterned gel. Furthermore, we develop a double network structure to toughen the hydrogels with programmed superstructures, which deform reversibly under large strain. This work presents a promising pathway to develop superstructures in hydrogels and should shed light on designing biomimetic materials with intricate molecular alignments.
A National Comparison of Biochemistry and Molecular Biology Capstone Experiences
ERIC Educational Resources Information Center
Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis
2015-01-01
Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…
Deaf-And-Mute Sign Language Generation System
NASA Astrophysics Data System (ADS)
Kawai, Hideo; Tamura, Shinichi
1984-08-01
We have developed a system which can recognize speech and generate the corresponding animation-like sign language sequence. The system is implemented in a popular personal computer. This has three video-RAM's and a voice recognition board which can recognize only registered voice of a specific speaker. Presently, fourty sign language patterns and fifty finger spellings are stored in two floppy disks. Each sign pattern is composed of one to four sub-patterns. That is, if the pattern is composed of one sub-pattern, it is displayed as a still pattern. If not, it is displayed as a motion pattern. This system will help communications between deaf-and-mute persons and healthy persons. In order to display in high speed, almost programs are written in a machine language.
Bronze-da-Rocha, E; Catita, J A; Sunkel, C E
1998-02-01
Systemic lupus erythematosus autoantibodies were used to identify and to characterize new human chromosome-associated proteins. Previous immunolocalization studies in human and murine tissue culture cells showed that some of these monoclonal antibodies recognize nuclear antigens that associate with condensed chromosomes during mitosis. One antibody was selected for screening a human HeLa S3 cDNA expression library, and cDNAs that code for an antigen of 31-33 kDa were isolated. Immunological, biochemical and cell fractionation data indicate that the 31- to 33-kDa antigen corresponds to the chromosome-associated protein recognized by the original monoclonal antibody. Sequence analysis shows that we isolated a novel human gene. Immunolocalization to human tissue culture cells shows that during interphase the antigen is dispersed in the nucleus and that during mitosis it associates exclusively with condensed chromosomes. A similar pattern of localization was also observed in mouse fibroblasts, suggesting that the antigen is conserved among different species. Finally, we show that part of the antigen remains bound to the scaffold/matrix component, even after high salt extraction.
Lee, Mi-Kyung; Kim, Hee-Eun; Park, Eun-Byeol; Lee, Janghyun; Kim, Ki-Hun; Lim, Kyungeun; Yum, Seoyun; Lee, Young-Hoon; Kang, Suk-Jo; Lee, Joon-Hwa; Choi, Byong-Seok
2016-01-01
Retinoic acid-inducible gene I (RIG-I) recognizes specific molecular patterns of viral RNAs for inducing type I interferon. The C-terminal domain (CTD) of RIG-I binds to double-stranded RNA (dsRNA) with the 5′-triphosphate (5′-PPP), which induces a conformational change in RIG-I to an active form. It has been suggested that RIG-I detects infection of influenza A virus by recognizing the 5′-triphosphorylated panhandle structure of the viral RNA genome. Influenza panhandle RNA has a unique structure with a sharp helical bending. In spite of extensive studies of how viral RNAs activate RIG-I, whether the structural elements of the influenza panhandle RNA confer the ability to activate RIG-I signaling has been poorly explored. Here, we investigated the dynamics of the influenza panhandle RNA in complex with RIG-I CTD using NMR spectroscopy and showed that the bending structure of the panhandle RNA negates the requirement of a 5′-PPP moiety for RIG-I activation. PMID:27288441
Developing Signal-Pattern-Recognition Programs
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Hammen, David
2006-01-01
Pattern Interpretation and Recognition Application Toolkit Environment (PIRATE) is a block-oriented software system that aids the development of application programs that analyze signals in real time in order to recognize signal patterns that are indicative of conditions or events of interest. PIRATE was originally intended for use in writing application programs to recognize patterns in space-shuttle telemetry signals received at Johnson Space Center's Mission Control Center: application programs were sought to (1) monitor electric currents on shuttle ac power busses to recognize activations of specific power-consuming devices, (2) monitor various pressures and infer the states of affected systems by applying a Kalman filter to the pressure signals, (3) determine fuel-leak rates from sensor data, (4) detect faults in gyroscopes through analysis of system measurements in the frequency domain, and (5) determine drift rates in inertial measurement units by regressing measurements against time. PIRATE can also be used to develop signal-pattern-recognition software for different purposes -- for example, to monitor and control manufacturing processes.
Complex Event Recognition Architecture
NASA Technical Reports Server (NTRS)
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei
2014-07-15
Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.
Czaja, Albert J
2016-11-14
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.
Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis
Czaja, Albert J
2016-01-01
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies. PMID:27895415
Farhat, Katja; Riekenberg, Sabine; Heine, Holger; Debarry, Jennifer; Lang, Roland; Mages, Jörg; Buwitt-Beckmann, Ute; Röschmann, Kristina; Jung, Günther; Wiesmüller, Karl-Heinz; Ulmer, Artur J
2008-03-01
TLR are primary triggers of the innate immune system by recognizing various microorganisms through conserved pathogen-associated molecular patterns. TLR2 is the receptor for a functional recognition of bacterial lipopeptides (LP) and is up-regulated during various disorders such as chronic obstructive pulmonary disease and sepsis. This receptor is unique in its ability to form heteromers with TLR1 or TLR6 to mediate intracellular signaling. According to the fatty acid pattern as well as the assembling of the polypeptide tail, LP can signal through TLR2 in a TLR1- or TLR6-dependent manner. There are also di- and triacylated LP, which stimulate TLR1-deficient cells and TLR6-deficient cells. In this study, we investigated whether heterodimerization evolutionarily developed to broaden the ligand spectrum or to induce different immune responses. We analyzed the signal transduction pathways activated through the different TLR2 dimers using the three LP, palmitic acid (Pam)octanoic acid (Oct)(2)C-(VPGVG)(4)VPGKG, fibroblast-stimulating LP-1, and Pam(2)C-SK(4). Dominant-negative forms of signaling molecules, immunoblotting of MAPK, as well as microarray analysis indicate that all dimers use the same signaling cascade, leading to an identical pattern of gene activation. We conclude that heterodimerization of TLR2 with TLR1 or TLR6 evolutionarily developed to expand the ligand spectrum to enable the innate immune system to recognize the numerous, different structures of LP present in various pathogens. Thus, although mycoplasma and Gram-positive and Gram-negative bacteria may activate different TLR2 dimers, the development of different signal pathways in response to different LP does not seem to be of vital significance for the innate defense system.
Pizarro, Lorena; Leibman-Markus, Meirav; Schuster, Silvia; Bar, Maya; Meltz, Tal; Avni, Adi
2018-01-01
Plants recognize microbial/pathogen associated molecular patterns (MAMP/PAMP) through pattern recognition receptors (PRRs) triggering an immune response against pathogen progression. MAMP/PAMP triggered immune response requires PRR endocytosis and trafficking for proper deployment. LeEIX2 is a well-known Solanum lycopersicum RLP-PRR, able to recognize and respond to the fungal MAMP/PAMP ethylene-inducing xylanase (EIX), and its function is highly dependent on intracellular trafficking. Identifying protein machinery components regulating LeEIX2 intracellular trafficking is crucial to our understanding of LeEIX2 mediated immune responses. In this work, we identified a novel trafficking protein, SlPRA1A, a predicted regulator of RAB, as an interactor of LeEIX2. Overexpression of SlPRA1A strongly decreases LeEIX2 endosomal localization, as well as LeEIX2 protein levels. Accordingly, the innate immune responses to EIX are markedly reduced by SlPRA1A overexpression, presumably due to a decreased LeEIX2 availability. Studies into the role of SlPRA1A in LeEIX2 trafficking revealed that LeEIX2 localization in multivesicular bodies/late endosomes is augmented by SlPRA1A. Furthermore, inhibiting vacuolar function prevents the LeEIX2 protein level reduction mediated by SlPRA1A, suggesting that SlPRA1A may redirect LeEIX2 trafficking to the vacuole for degradation. Interestingly, SlPRA1A overexpression reduces the amount of several RLP-PRRs, but does not affect the protein level of receptor-like kinase PRRs, suggesting a specific role of SlPRA1A in RLP-PRR trafficking and degradation. PMID:29545816
Molecular systematics and historical biogeography of tree boas (Corallus spp.).
Colston, Timothy J; Grazziotin, Felipe G; Shepard, Donald B; Vitt, Laurie J; Colli, Guarino R; Henderson, Robert W; Blair Hedges, S; Bonatto, Sandro; Zaher, Hussam; Noonan, Brice P; Burbrink, Frank T
2013-03-01
Inferring the evolutionary and biogeographic history of taxa occurring in a particular region is one way to determine the processes by which the biodiversity of that region originated. Tree boas of the genus Corallus are an ancient clade and occur throughout Central and South America and the Lesser Antilles, making it an excellent group for investigating Neotropical biogeography. Using sequenced portions of two mitochondrial and three nuclear loci for individuals of all recognized species of Corallus, we infer phylogenetic relationships, present the first molecular analysis of the phylogenetic placement of the enigmatic C. cropanii, develop a time-calibrated phylogeny, and explore the biogeographic history of the genus. We found that Corallus diversified within mainland South America, via over-water dispersals to the Lesser Antilles and Central America, and via the traditionally recognized Panamanian land bridge. Divergence time estimates reject the South American Caribbean-Track as a general biogeographic model for Corallus and implicate a role for events during the Oligocene and Miocene in diversification such as marine incursions and the uplift of the Andes. Our findings also suggest that recognition of the island endemic species, C. grenadensis and C. cookii, is questionable as they are nested within the widely distributed species, C. hortulanus. Our results highlight the importance of using widespread taxa when forming and testing biogeographic hypotheses in complex regions and further illustrate the difficulty of forming broadly applicable hypotheses regarding patterns of diversification in the Neotropical region. Copyright © 2012 Elsevier Inc. All rights reserved.
The molecular bases of δ/αβ T cell-mediated antigen recognition.
Pellicci, Daniel G; Uldrich, Adam P; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B G; de Boer, Renate; Lim, Ricky T; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H M; Gras, Stephanie; Rossjohn, Jamie; Godfrey, Dale I
2014-12-15
αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1(+) human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. © 2014 Pellicci et al.
The molecular bases of δ/αβ T cell–mediated antigen recognition
Pellicci, Daniel G.; Uldrich, Adam P.; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B.G.; de Boer, Renate; Lim, Ricky T.; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R.; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H.M.; Gras, Stephanie
2014-01-01
αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1+ human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. PMID:25452463
Toussaint, Emmanuel F A; Morinière, Jérôme; Müller, Chris J; Kunte, Krushnamegh; Turlin, Bernard; Hausmann, Axel; Balke, Michael
2015-10-01
The charismatic tropical Polyura Nawab butterflies are distributed across twelve biodiversity hotspots in the Indomalayan/Australasian archipelago. In this study, we tested an array of species delimitation methods and compared the results to existing morphology-based taxonomy. We sequenced two mitochondrial and two nuclear gene fragments to reconstruct phylogenetic relationships within Polyura using both Bayesian inference and maximum likelihood. Based on this phylogenetic framework, we used the recently introduced bGMYC, BPP and PTP methods to investigate species boundaries. Based on our results, we describe two new species Polyura paulettae Toussaint sp. n. and Polyura smilesi Toussaint sp. n., propose one synonym, and five populations are raised to species status. Most of the newly recognized species are single-island endemics likely resulting from the recent highly complex geological history of the Indomalayan-Australasian archipelago. Surprisingly, we also find two newly recognized species in the Indomalayan region where additional biotic or abiotic factors have fostered speciation. Species delimitation methods were largely congruent and succeeded to cross-validate most extant morphological species. PTP and BPP seem to yield more consistent and robust estimations of species boundaries with respect to morphological characters while bGMYC delivered contrasting results depending on the different gene trees considered. Our findings demonstrate the efficiency of comparative approaches using molecular species delimitation methods on empirical data. They also pave the way for the investigation of less well-known groups to unveil patterns of species richness and catalogue Earth's concealed, therefore unappreciated diversity. Published by Elsevier Inc.
Metals and lipid oxidation. Contemporary issues.
Schaich, K M
1992-03-01
Lipid oxidation is now recognized to be a critically important reaction in physiological and toxicological processes as well as in food products. This provides compelling reasons to understand what causes lipid oxidation in order to be able to prevent or control the reactions. Redox-active metals are major factors catalyzing lipid oxidation in biological systems. Classical mechanisms of direct electron transfer to double bonds by higher valence metals and of reduction of hydroperoxides by lower valence metals do not always account for patterns of metal catalysis of lipid oxidation in multiphasic or compartmentalized biological systems. To explain why oxidation kinetics, mechanisms, and products in molecular environments which are both chemically and physically complex often do not follow classical patterns predicted by model system studies, increased consideration must be given to five contemporary issues regarding metal catalysis of lipid oxidation: hypervalent non-heme iron or iron-oxygen complexes, heme catalysis mechanism(s), compartmentalization of reactions and lipid phase reactions of metals, effects of metals on product mixes, and factors affecting the mode of metal catalytic action.
The role of TLRs in cervical cancer with HPV infection: a review
Yang, Xiao; Cheng, Yanxiang; Li, Chunsheng
2017-01-01
The main cause of cervical cancer is persistent infection with high-risk human papilloma virus (HR-HPV), but not all human papilloma virus (HPV) infections lead to cervical cancer. The key factors that determine the outcome of HPV infection remain poorly understood, and how the host immune system protects against HPV infection is unclear. Toll-like receptors (TLRs) are a group of pattern recognition receptors present in the cytoplasm and cell membrane, and can specifically recognize pathogen-associated molecular patterns. As the key molecules of innate and acquired immunity, TLRs not only play important roles in the immune defense against infectious diseases, but also are involved in the occurrence and development of a variety of malignant tumors. In cervical cancer caused by HR-HPV infection, TLRs have been found to regulate the local immune microenvironment. The role of TLRs in HR-HPV infection and HPV-induced cervical cancer and its relationship with HPV vaccine are reviewed in this article. PMID:29263932
Implications of Biospheric Energization
NASA Astrophysics Data System (ADS)
Budding, Edd; Demircan, Osman; Gündüz, Güngör; Emin Özel, Mehmet
2016-07-01
Our physical model relating to the origin and development of lifelike processes from very simple beginnings is reviewed. This molecular ('ABC') process is compared with the chemoton model, noting the role of the autocatalytic tuning to the time-dependent source of energy. This substantiates a Darwinian character to evolution. The system evolves from very simple beginnings to a progressively more highly tuned, energized and complex responding biosphere, that grows exponentially; albeit with a very low net growth factor. Rates of growth and complexity in the evolution raise disturbing issues of inherent stability. Autocatalytic processes can include a fractal character to their development allowing recapitulative effects to be observed. This property, in allowing similarities of pattern to be recognized, can be useful in interpreting complex (lifelike) systems.
NASA Technical Reports Server (NTRS)
Lathram, E. H. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A pattern of very old geostructures was recognized, reflecting structures in the crust. This pattern is not peculiar to Alaska, but can be recognized throughout the northern cordillera. A new metallogenic hypothesis for Alaska was developed, based on the relationship of space image linears to known mineral deposits. Using image linear analysis, regional geologic features were also recognized; these features may be used to guide in the location of undiscovered oil and/or gas accumulations in northern Alaska. The effectiveness of ERTS data in enhancing medium and small scale mapping was demonstrated. ERTS data were also used to recognize and monitor the state of large scale vehicular scars on Arctic tundra.
Directed evolution of FLS2 towards novel flagellin peptide recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helft, Laura; Thompson, Mikayla; Bent, Andrew F.
Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wildtype Arabidopsis FLS2 confers little or no response. A targeted approachmore » generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. Furthermore, these studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets.« less
Directed evolution of FLS2 towards novel flagellin peptide recognition
Helft, Laura; Thompson, Mikayla; Bent, Andrew F.
2016-06-06
Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wildtype Arabidopsis FLS2 confers little or no response. A targeted approachmore » generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. Furthermore, these studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets.« less
Xie, Sha; Chen, Xin-Xin; Qiao, Songlin; Li, Rui; Sun, Yangang; Xia, Shuangfei; Wang, Lin-Jian; Luo, Xuegang; Deng, Ruiguang; Zhou, En-Min; Zhang, Gai-Ping
2018-06-15
Once infected by viruses, cells can detect pathogen-associated molecular patterns (PAMPs) on viral nucleic acid by host pattern recognition receptors (PRRs) to initiate the antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failure in sows and respiratory diseases in pigs of different ages. To date, the sensing mechanism of PRRSV has not been elucidated. Here, we reported that the pseudoknot region residing in the 3' untranslated regions (UTR) of the PRRSV genome, which has been proposed to regulate RNA synthesis and virus replication, was sensed as nonself by retinoic acid-inducible gene I (RIG-I) and Toll-like receptor 3 (TLR3) and strongly induced type I interferons (IFNs) and interferon-stimulated genes (ISGs) in porcine alveolar macrophages (PAMs). The interaction between the two stem-loops inside the pseudoknot structure was sufficient for IFN induction, since disruption of the pseudoknot interaction powerfully dampened the IFN induction. Furthermore, transfection of the 3' UTR pseudoknot transcripts in PAMs inhibited PRRSV replication in vitro Importantly, the predicted similar structures of other arterivirus members, including equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV), also displayed strong IFN induction activities. Together, in this work we identified an innate recognition mechanism by which the PRRSV 3' UTR pseudoknot region served as PAMPs of arteriviruses and activated innate immune signaling to produce IFNs that inhibit virus replication. All of these results provide novel insights into innate immune recognition during virus infection. IMPORTANCE PRRS is the most common viral disease in the pork industry. It is caused by PRRSV, a positive single-stranded RNA virus, whose infection often leads to persistent infection. To date, it is not yet clear how PRRSV is recognized by the host and what is the exact mechanism of IFN induction. Here, we investigated the nature of PAMPs on PRRSV and the associated PRRs. We found that the 3' UTR pseudoknot region of PRRSV, which has been proposed to regulate viral RNA synthesis, could act as PAMPs recognized by RIG-I and TLR3 to induce type I IFN production to suppress PRRSV infection. This report is the first detailed description of pattern recognition for PRRSV, which is important in understanding the antiviral response of arteriviruses, especially PRRSV, and extends our knowledge on virus recognition. Copyright © 2018 American Society for Microbiology.
Fouquet, Antoine; Loebmann, Daniel; Castroviejo-Fisher, Santiago; Padial, José M; Orrico, Victor G D; Lyra, Mariana L; Roberto, Igor Joventino; Kok, Philippe J R; Haddad, Célio F B; Rodrigues, Miguel T
2012-11-01
Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. Copyright © 2012 Elsevier Inc. All rights reserved.
Fingerprint pattern restoration by digital image processing techniques.
Wen, Che-Yen; Yu, Chiu-Chung
2003-09-01
Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared.
Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S
2014-02-25
Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.
Symbol Recognition Using a Concept Lattice of Graphical Patterns
NASA Astrophysics Data System (ADS)
Rusiñol, Marçal; Bertet, Karell; Ogier, Jean-Marc; Lladós, Josep
In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.
Increasing elevation of fire in the Sierra Nevada and implications for forest change
Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.
2015-01-01
Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.
NREL Receives Editors' Choice Awards for Supercomputer Research | News |
function," Beckham said. "We followed up these molecular simulations with experimental work to Award. The awards recognize outstanding research in computational molecular science and engineering Mechanisms of Cellulose-Active Enzymes Using Molecular Simulation" at the AIChE 2014 Annual Meeting
2010-01-01
Background The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life. Results Our molecular phylogeny reveals 1) a basal divergence between Erpetoichthys and Polypterus, 2) polyphyly of P. endlicheri and P. palmas, and thus 3) the current taxonomy of Polypteridae masks its underlying genetic diversity. Ancestral state reconstructions suggest that pelvic fins were lost independently in Erpetoichthys, and unambiguously estimate multiple independent derivations of body elongation and shortening. Our mitochondrial phylogeny suggested species that have lower jaw protrusion and up-righted orbit are closely related to each other, indicating a single transformation of craniofacial morphology. Conclusion The mitochondrial phylogeny of polypterid fish provides a strongly-supported phylogenetic framework for future comparative evolutionary, physiological, ecological, and genetic analyses. Indeed, ancestral reconstruction and geometric morphometric analyses revealed that the patterns of morphological evolution in Polypteridae are similar to those seen in other osteichthyans, thus implying the underlying genetic and developmental mechanisms responsible for those patterns were established early in the evolutionary history of Osteichthyes. We propose developmental and genetic mechanisms to be tested under the light of this new phylogenetic framework. PMID:20100320
Research of Daily Conversation Transmitting System Based on Mouth Part Pattern Recognition
NASA Astrophysics Data System (ADS)
Watanabe, Mutsumi; Nishi, Natsuko
The authors are developing a vision-based intension transfer technique by recognizing user’s face expressions and movements, to help free and convenient communications with aged or disabled persons who find difficulties in talking, discriminating small character prints and operating keyboards by hands and fingers. In this paper we report a prototype system, where layered daily conversations are successively selected by recognizing the transition in shape of user’s mouth parts using camera image sequences settled in front of the user. Four mouth part patterns are used in the system. A method that automatically recognizes these patterns by analyzing the intensity histogram data around the mouth region is newly developed. The confirmation of a selection on the way is executed by detecting the open and shut movements of mouth through the temporal change in intensity histogram data. The method has been installed in a desktop PC by VC++ programs. Experimental results of mouth shape pattern recognition by twenty-five persons have shown the effectiveness of the method.
2007-04-19
define the patterns and are better at analyzing behavior. SPQR (System for Pattern Query and Recognition) [18, 58] can recognize pattern vari- ants...Stotts. SPQR : Flexible automated design pattern extraction from source code. ase, 00:215, 2003. ISSN 1527-1366. doi: http://doi.ieeecomputersociety. org
Dos Reis, Julio Cesar; Dinh, Duy; Da Silveira, Marcos; Pruski, Cédric; Reynaud-Delaître, Chantal
2015-03-01
Mappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking. This research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation. The summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings is adapted. We found that the detected correlations cover ∼66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms. The experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation. Copyright © 2014 Elsevier B.V. All rights reserved.
Voice response system of color and pattern on clothes for visually handicapped person.
Miyake, Masao; Manabe, Yoshitsugu; Uranishi, Yuki; Imura, Masataka; Oshiro, Osamu
2013-01-01
For visually handicapped people, a mental support is important in their independent daily life and participation in a society. It is expected to develop a system which can recognize colors and patterns on clothes so that they can go out with less concerns. We have worked on a basic study into such a system, and developed a prototype system which can stably recognize colors and patterns and immediately provide these information in voice, when a user faces it to clothes. In the results of evaluation experiments it is shown that the prototype system is superior to the system in the basic study at the accuracy rate for the recognition of color and pattern.
Klishko, Olga K.; Bogan, Arthur E.
2018-01-01
The diversity and taxonomy of anodontine species in Lake Baikal and Transbaikalia region has been contentious since it is based on a typological species concept, the so called “Comparatory Method”. Using this method, six Comparatory anodontine species have been described for the study area as belonging to the genus Colletopterum. This genus was separated from Anodonta based on shell characteristics and further split into two subgenera, i.e. Colletopterum sensu stricto and Colletopterum (Piscinaliana). However, many authors do not recognize this separation maintaining all Colletopterum forms within Anodonta. The current study clarifies the taxonomy and systematics of Anodontinae in this region, using a combination of molecular, morphological and anatomical data. All previously recognized Comparatory forms are here recognized as a single species, i.e. Anodonta anatina. PMID:29630628
Innate immunity against HIV-1 infection.
Altfeld, Marcus; Gale, Michael
2015-06-01
During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.
Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?
Block, Anna; Alfano, James R
2011-02-01
The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle trafficking, and altering organelle function. T3Es can be recognized indirectly by resistance proteins monitoring specific T3E targets resulting in ETI. It is presently unclear whether the monitored targets represent bona fide virulence targets or guarded decoys. Extensive overlap between PTI and ETI signaling suggests that T3Es may suppress both pathways through common targets and by possessing multiple activities. Copyright © 2010 Elsevier Ltd. All rights reserved.
Strong, Ellen E.; Rumi, Alejandra; Peso, Juana G.
2016-01-01
Highly oxygenated freshwater habitats in the High Paraná River (Argentina–Paraguay) were home to highly endemic snails of the genus Aylacostoma, which face extinction owing to the impoundment of the Yacyretá Reservoir in the 1990s. Two species, A. chloroticum and A. brunneum, are currently included in an ongoing ex situ conservation programme, whereas A. guaraniticum and A. stigmaticum are presumed extinct. Consequently, the validity and affinities of the latter two have remained enigmatic. Here, we provide the first molecular data on the extinct A. stigmaticum by means of historical DNA analysis. We describe patterns of molecular evolution based on partial sequences of the mitochondrial 12S ribosomal RNA gene from the extinct species and from those being bred within the ex situ programme. We further use this gene to derive a secondary structure model, to examine the specific status of A. stigmaticum and to explore the evolutionary history of these snails. The secondary structure model based on A. stigmaticum revealed that most polymorphic sites are located in unpaired regions. Our results support the view that the mitochondrial 12S region is an efficient marker for the discrimination of species, and the extinct A. stigmaticum is recognized here as a distinct evolutionary genetic species. Molecular phylogenetic analyses revealed a sister group relationship between A. chloroticum and A. brunneum, and estimated divergence times suggest that diversification of Aylacostoma in the High Paraná River might have started in the late Miocene via intra-basin speciation due to a past marine transgression. Finally, our findings reveal that DNA may be obtained from dried specimens at least 80 years after their collection, and confirms the feasibility of extracting historical DNA from museum collections for elucidating evolutionary patterns and processes in gastropods. PMID:28033407
Ennen, J.R.; Kreiser, B.R.; Qualls, C.P.; Lovich, J.E.
2010-01-01
The turtle genus Graptemys consists of 15 recognized taxa, distinguished largely on the basis of pigmentation pattern (i.e., soft tissue and shell), head size, and shell morphology. However, phylogenetic studies have shown limited sequence divergence within the genus and between Graptemys oculifera and Graptemys flavimaculata relative to most other members of the Emydidae. Graptemys oculifera of the Pearl River drainage and G. flavimaculata of the Pascagoula River drainage have been recognized as species since 1890 and 1954, respectively. However, the description of G. flavimaculata was based on a limited number of morphological characters. Several of these characters overlap between G. flavimaculata and G. oculifera, and no attempt was made to test for significant morphological differentiation. In this study, we reevaluated the morphological and genetic distinctiveness of G. flavimaculata and G. oculifera with (1) multivariate statistical analyses of 44 morphological characters and (2) 1,560 bp of sequence data from two mitochondrial genes (control region and ND4). The morphological and molecular analyses produced incongruent results. The principal components analysis ordinations separated the two species along a pigmentation gradient with G. flavimaculata having more yellow pigmentation than G. oculifera. Likewise, clustering analyses separated the specimens into two distinct groups with little overlap between the species. Our mitochondrial data supported previous findings of limited genetic differentiation between the two species. However, the results of our morphological analyses, in conjunction with recently published nuclear gene sequence data, support the continued recognition of the two species. Copyright 2010 Society for the Study of Amphibians and Reptiles.
Zeng, Zhao-Chi; Wang, Ying-Yong
2018-01-01
The Asian leaf litter toads of the genus Leptolalax represent a highly diverse species group and currently contain 53 recognized species. During herpetological surveys in Yingjiang County, western Yunnan of China, we collected series of Leptolalax specimens from an isolated small fragment of montane evergreen forest. Subsequent study based on acoustic, morphological and molecular data reveals that there were three different species among the specimens sampled: while one of them belongs to Leptolalax ventripunctataus, the other two species represent unknown taxa and are described herein: Leptolalax purpurus sp. nov. and Leptolalax yingjiangensis sp. nov. The two new species can be distinguished from other congeners by the molecular divergences, acoustic data, and by a combination of morphological characters including: body size, dorsal and ventral patterns, dorsal skin texture, sizes of pectoral and femoral glands, degree of webbing and fringing on the toes and fingers, dorsum coloration and iris coloration in life. Our results further reveal that species diversity of the genus Leptolalax still remains highly underestimated and warrants further attention. PMID:29666755
Patel, Riddhi P; Förster, Daniel W; Kitchener, Andrew C; Rayan, Mark D; Mohamed, Shariff W; Werner, Laura; Lenz, Dorina; Pfestorf, Hans; Kramer-Schadt, Stephanie; Radchuk, Viktoriia; Fickel, Jörns; Wilting, Andreas
2016-10-01
Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis .
Förster, Daniel W.; Kitchener, Andrew C.; Rayan, Mark D.; Mohamed, Shariff W.; Werner, Laura; Lenz, Dorina; Pfestorf, Hans; Kramer-Schadt, Stephanie; Radchuk, Viktoriia; Fickel, Jörns; Wilting, Andreas
2016-01-01
Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis. PMID:27853549
Niv, Masha Y.; Skrabanek, Lucy; Roberts, Richard J.; Scheraga, Harold A.; Weinstein, Harel
2008-01-01
Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering. PMID:17972284
Niv, Masha Y; Skrabanek, Lucy; Roberts, Richard J; Scheraga, Harold A; Weinstein, Harel
2008-05-01
Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering.
Lähdeoja, Tuomas; Pajarinen, Jukka; Kouri, Vesa-Petteri; Sillat, Tarvo; Salo, Jari; Konttinen, Yrjö T
2010-02-01
Bacterial remnants and subclinical biofilms residing on prosthesis surfaces have been speculated to play a role in hip implant loosening by opsonizing otherwise relatively inert wear particles. The innate immune system recognizes these microbial pathogen-associated molecular patterns (PAMPs) using Toll-like receptors (TLRs). Our objective was to evaluate the possible presence of TLRs in aseptic synovial membrane-like interface tissue. Bacterial culture-negative, aseptic (n = 4) periprosthetic synovial membrane-like tissue was compared to osteoarthritis synovial membrane (n = 5) for the presence of cells positive for all known human functional TLRs, stained using specific antibodies by immunohistochemistry, and evaluated using morphometry. In comparison to osteoarthtritic synovium, the number of TLR-positive cells was found to be increased in the aseptic setting, reflecting the considerable macrophage infiltration to the tissues investigated. Thus aseptic periprosthetic tissue seems to be very reactive to PAMPs. It has been recently recognized that TLR do not only respond to traditional PAMPs, but also to endogenous alarmings or danger signals released from necrotic and activated cells. Alarming-TLR interaction in the periprosthetic tissue might be a novel mechanism of aseptic loosening of endoprosthesis. (c) 2009 Orthopaedic Research Society.
Arteaga, Alejandro; Mebert, Konrad; Valencia, Jorge H; Cisneros-Heredia, Diego F; Peñafiel, Nicolás; Reyes-Puig, Carolina; Vieira-Fernandes, José L; Guayasamin, Juan M
2017-01-01
We present a molecular phylogeny of snake genus Atractus , with an improved taxon sampling that includes 30 of the 140 species currently recognized. The phylogenetic tree supports the existence of at least three new species in the Pacific lowlands and adjacent Andean slopes of the Ecuadorian Andes, which we describe here. A unique combination of molecular, meristic and color pattern characters support the validity of the new species. With the newly acquired data, we propose and define the Atractus iridescens species group, as well as redefine the Atractus roulei species group. The species Atractus iridescens is reported for the first time in Ecuador, whereas Atractus bocourti and Atractus medusa are removed from the herpetofauna of this country. We provide the first photographic vouchers of live specimens for Atractus multicinctus , Atractus paucidens and Atractus touzeti , along with photographs of 19 other Ecuadorian Atractus species. The current status of Atractus occidentalis and Atractus paucidens is maintained based on the discovery of new material referable to these species. With these changes, the species number reported in Ecuador increases to 27, a number that is likely to increase as material not examined in this work becomes available and included in systematic studies.
Arteaga, Alejandro; Mebert, Konrad; Valencia, Jorge H.; Cisneros-Heredia, Diego F.; Peñafiel, Nicolás; Reyes-Puig, Carolina; Vieira-Fernandes, José L.; Guayasamin, Juan M.
2017-01-01
Abstract We present a molecular phylogeny of snake genus Atractus, with an improved taxon sampling that includes 30 of the 140 species currently recognized. The phylogenetic tree supports the existence of at least three new species in the Pacific lowlands and adjacent Andean slopes of the Ecuadorian Andes, which we describe here. A unique combination of molecular, meristic and color pattern characters support the validity of the new species. With the newly acquired data, we propose and define the Atractus iridescens species group, as well as redefine the Atractus roulei species group. The species Atractus iridescens is reported for the first time in Ecuador, whereas Atractus bocourti and Atractus medusa are removed from the herpetofauna of this country. We provide the first photographic vouchers of live specimens for Atractus multicinctus, Atractus paucidens and Atractus touzeti, along with photographs of 19 other Ecuadorian Atractus species. The current status of Atractus occidentalis and Atractus paucidens is maintained based on the discovery of new material referable to these species. With these changes, the species number reported in Ecuador increases to 27, a number that is likely to increase as material not examined in this work becomes available and included in systematic studies. PMID:28769604
Mohanan, Vishnu; Grimes, Catherine Leimkuhler
2014-01-01
Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. PMID:24790089
Nonell, Lara; Puigdecanet, Eulàlia; Astier, Laura; Solé, Francesc; Bayes-Genis, Antoni
2013-01-01
Molecular mechanisms associated with pathophysiological changes in ventricular remodelling due to myocardial infarction (MI) remain poorly understood. We analyzed changes in gene expression by microarray technology in porcine myocardial tissue at 1, 4, and 6 weeks post-MI. MI was induced by coronary artery ligation in 9 female pigs (30–40 kg). Animals were randomly sacrificed at 1, 4, or 6 weeks post-MI (n = 3 per group) and 3 healthy animals were also included as control group. Total RNA from myocardial samples was hybridized to GeneChip® Porcine Genome Arrays. Functional analysis was obtained with the Ingenuity Pathway Analysis (IPA) online tool. Validation of microarray data was performed by quantitative real-time PCR (qRT-PCR). More than 8,000 different probe sets showed altered expression in the remodelling myocardium at 1, 4, or 6 weeks post-MI. Ninety-seven percent of altered transcripts were detected in the infarct core and 255 probe sets were differentially expressed in the remote myocardium. Functional analysis revealed 28 genes de-regulated in the remote myocardial region in at least one of the three temporal analyzed stages, including genes associated with heart failure (HF), systemic sclerosis and coronary artery disease. In the infarct core tissue, eight major time-dependent gene expression patterns were recognized among 4,221 probe sets commonly altered over time. Altered gene expression of ACVR2B, BID, BMP2, BMPR1A, LMNA, NFKBIA, SMAD1, TGFB3, TNFRSF1A, and TP53 were further validated. The clustering of similar expression patterns for gene products with related function revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes at different stages after MI. PMID:23372767
The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity1[OPEN
Fritz, Marion
2016-01-01
The first layer of immunity against pathogenic microbes relies on the detection of conserved pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI). Despite the increasing knowledge of early PTI signaling mediated by PRRs and their associated proteins, many downstream signaling components remain elusive. Here, we identify the Arabidopsis (Arabidopsis thaliana) GLYCOGEN SYNTHASE KINASE3 (GSK3)/Shaggy-like kinase ASKα as a positive regulator of plant immune signaling. The perception of several unrelated PAMPs rapidly induced ASKα kinase activity. Loss of ASKα attenuated, whereas its overexpression enhanced, diverse PTI responses, ultimately affecting susceptibility to the bacterial pathogen Pseudomonas syringae. Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the oxidative pentose phosphate pathway, provides reducing equivalents important for defense responses and is a direct target of ASKα. ASKα phosphorylates cytosolic G6PD6 on an evolutionarily conserved threonine residue, thereby stimulating its activity. Plants deficient for or overexpressing G6PD6 showed a modified immune response, and the insensitivity of g6pd6 mutant plants to PAMP-induced growth inhibition was complemented by a phosphomimetic but not by a phosphonegative G6PD6 version. Overall, our data provide evidence that ASKα and G6PD6 constitute an immune signaling module downstream of PRRs, linking protein phosphorylation cascades to metabolic regulation. PMID:27208232
Liu, Jie; Qian, Tao; Wang, Mengfan; Liu, Xuejun; Xu, Na; You, Yizhou; Yan, Chenglin
2017-08-09
Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li 2 S x , x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g -1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li 2 S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.
Baldwin, Carole C.; Castillo, Cristina I.; Weigt, Lee A.; Benjamin C., Victor
2011-01-01
Abstract Specimens of Starksia were collected throughout the western Atlantic, and a 650-bp portion of the mitochondrial gene cytochrome oxidase-c subunit I (COl) was sequenced as part of a re-analysis of species diversity of western Central Atlantic shorefishes. A neighbor-joining tree constructed from the sequence data suggests the existence of several cryptic species. Voucher specimens from each genetically distinct lineage and color photographs of vouchers taken prior to dissection and preservation were examined for diagnostic morphological characters. The results suggest that Starksia atlantica, Starksia lepicoelia, and Starksia sluiteri are species complexes, and each comprises three or more species. Seven new species are described. DNA data usually support morphological features, but some incongruence between genetic and morphological data exists. Genetic lineages are only recognized as species if supported by morphology. Genetic lineages within western Atlantic Starksia generally correspond to geography, such that members of each species complex have a very restricted geographical distribution. Increasing geographical coverage of sampling locations will almost certainly increase the number of Starksia species and species complexes recognized in the western Atlantic. Combining molecular and morphological investigations is bringing clarity to the taxonomy of many genera of morphologically similar fishes and increasing the number of currently recognized species. Future phylogenetic studies should help resolve species relationships and shed light on patterns of speciation in western Atlantic Starksia. PMID:21594143
Ramasindrazana, Beza; Dellagi, Koussay; Lagadec, Erwan; Randrianarivelojosia, Milijaona; Goodman, Steven M; Tortosa, Pablo
2016-01-01
We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors.
Barker, F Keith; Burns, Kevin J; Klicka, John; Lanyon, Scott M; Lovette, Irby J
2013-03-01
Recent analyses suggest that a few major shifts in diversification rate may be enough to explain most of the disparity in diversity among vertebrate lineages. At least one significant increase in diversification rate appears to have occurred within the birds; however, several nested lineages within birds have been identified as hyperdiverse by different studies. A clade containing the finches and relatives (within the avian order Passeriformes), including a large radiation endemic to the New World that comprises ~8% of all bird species, may be the true driver of this rate increase. Understanding the patterns and processes of diversification of this diverse lineage may go a long way toward explaining the apparently rapid diversification rates of both passerines and of birds as a whole. We present the first multilocus phylogenetic analyses of this endemic New World radiation of finch relatives that include sampling of all recognized genera, a relaxed molecular clock analysis of its divergence history, and an analysis of its broad-scale diversification patterns. These analyses recovered 5 major lineages traditionally recognized as avian families, but identified an additional 10 relatively ancient lineages worthy of recognition at the family level. Time-calibrated diversification analyses suggested that at least 3 of the 15 family-level lineages were significantly species poor given the entire group's background diversification rate, whereas at least one-the tanagers of family Thraupidae-appeared significantly more diverse. Lack of an age-diversity relationship within this clade suggests that, due to rapid initial speciation, it may have experienced density-dependent ecological limits on its overall diversity.
The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens
Díaz-Alvarez, Laura
2017-01-01
Galectins are a group of evolutionarily conserved proteins with the ability to bind β-galactosides through characteristic carbohydrate-recognition domains (CRD). Galectin-3 is structurally unique among all galectins as it contains a C-terminal CRD linked to an N-terminal protein-binding domain, being the only chimeric galectin. Galectin-3 participates in many functions, both intra- and extracellularly. Among them, a prominent role for Galectin-3 in inflammation has been recognized. Galectin-3 has also been shown to directly bind to pathogens and to have various effects on the functions of the cells of the innate immune system. Thanks to these two properties, Galectin-3 participates in several ways in the innate immune response against invading pathogens. Galectin-3 has been proposed to function not only as a pattern-recognition receptor (PRR) but also as a danger-associated molecular pattern (DAMP). In this review, we analyze the various roles that have been assigned to Galectin-3, both as a PRR and as a DAMP, in the context of immune responses against pathogenic microorganisms. PMID:28607536
Gimalova, G F; Karunas, A S; Fedorova, Iu Iu; Gumennaia, É R; Levasheva, S V; Khismatullina, Z R; Prans, E; Koks, S; Étkina, É I; Khusnutdinova, É K
2014-01-01
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease developing as a result of the interaction between genetic predisposition and environmental factors. Considerable role in allergic diseases development is played by polymorphisms of genes of pattern-recognition receptors (PRR) which are capable of recognizing conservative standard molecular structures (patterns) unique for large pathogen groups. In this study polymorphic variants of PRR genes--Toll-like receptors (TLR1, TLR2, TLR4, TLR5, TLR6, TLR9, TLR10), NOD-like receptors (NOD1, NOD2), lipopolysaccharide receptor CD14 gene, and C11orf30 and LRRC32 genes, located in 11q13.5 region, have been investigated in AD patients and control subjects from the Republic of Bashkortostan. An association of TLR1 (rs5743571 and rs5743604), TLR6 (rs5743794) and TLR10 (rs11466617) with AD was found. Our results confirm an important role of the innate immune system in the pathogenesis of AD and the significance of polymorphisms within the Toll-like receptor 2 subfamily genes in AD development.
Chronic Malaria Revealed by a New Fluorescence Pattern on the Antinuclear Autoantibodies Test
Hommel, Benjamin; Charuel, Jean-Luc; Jaureguiberry, Stéphane; Arnaud, Laurent; Courtin, Regis; Kassab, Petra; Prendki, Virginie; Paris, Luc; Ghillani-Dalbin, Pascale; Thellier, Marc; Caumes, Eric; Amoura, Zahir; Mazier, Dominique; Musset, Lucile; Buffet, Pierre; Miyara, Makoto
2014-01-01
Background Several clinical forms of malaria such as chronic carriage, gestational malaria or hyper-reactive malarial splenomegaly may follow a cryptic evolution with afebrile chronic fatigue sometimes accompanied by anemia and/or splenomegaly. Conventional parasitological tests are often negative or not performed, and severe complications may occur. Extensive explorations of these conditions often include the search for antinuclear autoantibodies (ANA). Methods We analysed fluorescence patterns in the ANA test in patients with either chronic cryptic or acute symptomatic malaria, then conducted a one-year prospective study at a single hospital on all available sera drawn for ANA detections. We then identified autoantibodies differentially expressed in malaria patients and in controls using human protein microarray. Results We uncovered and defined a new, malaria-related, nucleo-cytoplasmic ANA pattern displaying the specific association of a nuclear speckled pattern with diffuse cytoplasmic perinuclearly-enhanced fluorescence. In the one-year prospective analysis, 79% of sera displaying this new nucleo-cytoplasmic fluorescence were from patients with malaria. This specific pattern, not seen in other parasitic diseases, allowed a timely reorientation of the diagnosis toward malaria. To assess if the autoantibody immune response was due to autoreactivity or molecular mimicry we isolated 42 autoantigens, targets of malarial autoantibodies. BLAST analysis indicated that 23 of recognized autoantigens were homologous to plasmodial proteins suggesting autoimmune responses directly driven by the plasmodial infection. Conclusion In patients with malaria in whom parasitological tests have not been performed recognition of this new, malaria-related fluorescence pattern on the ANA test is highly suggestive of the diagnosis and triggers immediate, easy confirmation and adapted therapy. PMID:24551116
Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning.
Alexander, J; Stainier, D Y; Yelon, D
1998-01-01
The genetic pathways underlying the induction and anterior-posterior patterning of the heart are poorly understood. The recent emergence of the zebrafish model system now allows a classical genetic approach to such challenging problems in vertebrate development. Two large-scale screens for mutations affecting zebrafish embryonic development have recently been completed; among the hundreds of mutations identified were several that affect specific aspects of cardiac morphogenesis, differentiation, and function. However, very few mutations affecting induction and/or anterior-posterior patterning of the heart were identified. We hypothesize that a directed approach utilizing molecular markers to examine these particular steps of heart development will uncover additional such mutations. To test this hypothesis, we are conducting two parallel screens for mutations that affect either the induction or the anterior-posterior patterning of the zebrafish heart. As an indicator of cardiac induction, we examine expression of nkx2.5, the earliest known marker of precardiac mesoderm; to assess anterior-posterior patterning, we distinguish ventricle from atrium with antibodies that recognize different myosin heavy chain isoforms. In order to expedite the examination of a large number of mutations, we are screening the haploid progeny of mosaic F1 females. In these ongoing screens, we have identified four mutations that affect nkx2.5 expression as well as 21 that disrupt either ventricular or atrial development and thus far have recovered several of these mutations, demonstrating the value of our approach. Future analysis of these and other cardiac mutations will provide further insight into the processes of induction and anterior-posterior patterning of the heart.
Evolution of meiotic recombination genes in maize and teosinte.
Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P
2017-01-25
Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.
You Look Familiar: How Malaysian Chinese Recognize Faces
Tan, Chrystalle B. Y.; Stephen, Ian D.; Whitehead, Ross; Sheppard, Elizabeth
2012-01-01
East Asian and white Western observers employ different eye movement strategies for a variety of visual processing tasks, including face processing. Recent eye tracking studies on face recognition found that East Asians tend to integrate information holistically by focusing on the nose while white Westerners perceive faces featurally by moving between the eyes and mouth. The current study examines the eye movement strategy that Malaysian Chinese participants employ when recognizing East Asian, white Western, and African faces. Rather than adopting the Eastern or Western fixation pattern, Malaysian Chinese participants use a mixed strategy by focusing on the eyes and nose more than the mouth. The combination of Eastern and Western strategies proved advantageous in participants' ability to recognize East Asian and white Western faces, suggesting that individuals learn to use fixation patterns that are optimized for recognizing the faces with which they are more familiar. PMID:22253762
Understanding molecular structure from molecular mechanics.
Allinger, Norman L
2011-04-01
Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.
Molecular self-assembly for biological investigations and nanoscale lithography
NASA Astrophysics Data System (ADS)
Cheunkar, Sarawut
Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.
Sensing disease and danger: A survey of vertebrate PRRs and their origins
Hansen, John D.; Vojtech, Lucia N.; Laing, Kerry J.
2011-01-01
A key facet of the innate immune response lays in its ability to recognize and respond to invading microorganisms and cellular disturbances. Through the use of germ-line encoded PRRs, the innate immune system is capable of detecting invariant pathogen motifs termed pathogen-associated molecular patterns (PAMPS) that are distinct from host encoded proteins or products released from dying cells, which are known as damage-associated molecular patterns (DAMPs). PAMPs and DAMPs include both protein and nucleic acids for the detection and response to pathogens and metabolic "danger" signals. This is by far one of the most active areas of research as recent studies have shown retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs) and Toll-like receptors (TLRs) and the recently described AIM-like receptors (ALRs) are responsible for initiating interferon production or the assembly and activation of the inflammasome, ultimately resulting in the release of bioactive IL-1 family members. Overall, the vertebrate PRR recognition machinery consists of seven domains (e.g., Death, NACHT, CARD, TIR, LRR, PYD, helicase), most of which can be traced to the very origins of the deuterostomes. This review is intended to provide an overview of the basic components that are used by vertebrates to detect and respond to pathogens, with an emphasis on these receptors in fish as well as a brief note on their likely origins.
Marine turtle mitogenome phylogenetics and evolution.
Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A
2012-10-01
The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. Published by Elsevier Inc.
Obstacle detection by recognizing binary expansion patterns
NASA Technical Reports Server (NTRS)
Baram, Yoram; Barniv, Yair
1993-01-01
This paper describes a technique for obstacle detection, based on the expansion of the image-plane projection of a textured object, as its distance from the sensor decreases. Information is conveyed by vectors whose components represent first-order temporal and spatial derivatives of the image intensity, which are related to the time to collision through the local divergence. Such vectors may be characterized as patterns corresponding to 'safe' or 'dangerous' situations. We show that essential information is conveyed by single-bit vector components, representing the signs of the relevant derivatives. We use two recently developed, high capacity classifiers, employing neural learning techniques, to recognize the imminence of collision from such patterns.
Scaling of muscle metabolic enzymes: an historical perspective.
Moyes, Christopher D; Genge, Christine E
2010-07-01
In this paper, we take an historical approach to reviewing research into the patterns of metabolic enzymes in muscle in relation to body size, focusing on mitochondrial enzymes. One of the first studies on allometric scaling of muscle enzymes was published in an early issue of this journal (George and Talesara, 1961 Comp. Biochem. Physiol. 3: 267-273). These researchers studied a number of locally available birds and a bat, measuring the activity of the mitochondrial enzyme succinate dehydrogenase in relation to body mass and muscle structure. Though the phenomenon of allometric scaling of metabolism was well recognized even 50 years earlier, this study was one of the first to explore the enzymatic underpinnings of the metabolic patterns in different animals. In this review, we begin by considering the George and Talesara study in the context of this early era in metabolic biochemistry and comparative physiology. We review subsequent studies in the last 50 years that continued the comparative analysis of enzyme patterns in relation to body size in diverse experimental models. This body of work identified a recurrent (though not ubiquitous) reciprocal relationship between oxidative and glycolytic enzymes. In the last 10 years, studies have focused on identifying the molecular mechanisms that determine the muscle metabolic enzyme phenotype. Copyright 2010 Elsevier Inc. All rights reserved.
Effects of musical training on sound pattern processing in high-school students.
Wang, Wenjung; Staffaroni, Laura; Reid, Errold; Steinschneider, Mitchell; Sussman, Elyse
2009-05-01
Recognizing melody in music involves detection of both the pitch intervals and the silence between sequentially presented sounds. This study tested the hypothesis that active musical training in adolescents facilitates the ability to passively detect sequential sound patterns compared to musically non-trained age-matched peers. Twenty adolescents, aged 15-18 years, were divided into groups according to their musical training and current experience. A fixed order tone pattern was presented at various stimulus rates while electroencephalogram was recorded. The influence of musical training on passive auditory processing of the sound patterns was assessed using components of event-related brain potentials (ERPs). The mismatch negativity (MMN) ERP component was elicited in different stimulus onset asynchrony (SOA) conditions in non-musicians than musicians, indicating that musically active adolescents were able to detect sound patterns across longer time intervals than age-matched peers. Musical training facilitates detection of auditory patterns, allowing the ability to automatically recognize sequential sound patterns over longer time periods than non-musical counterparts.
A controllable molecular sieve for Na+ and K+ ions.
Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui
2010-02-17
The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.
Cutis laxa and fatal pulmonary hypertension: a newly recognized syndrome?
Brunetti-Pierri, Nicola; Piccolo, Pasquale; Morava, Eva; Wevers, Ron A.; McGuirk, Megan; Johnson, Yvette R.; Urban, Zsolt; Dishop, Megan K.; Potocki, Lorraine
2015-01-01
Cutis laxa is a connective tissue disorder with distinctive lax, redundant, and inelastic skin. It is a genetically heterogenous disorder with autosomal dominant and recessive patterns of inheritance. We report a patient with cutis laxa supported by clinical, microscopic, and ultrastructural findings. Molecular analysis of fibulin-4 and -5, of the α2 subunit of the V-type H+ ATPase, and of the component of the oligomeric Golgi complex 7 (COG7) genes excluded the type I and type II autosomal recessive forms of cutis laxa, and congenital disorders of glycosylation associated with cutis laxa. Remarkably, our patient also presented severe and lethal pulmonary hypertension as a newborn. This case with cutis laxa, severe pulmonary hypertension, and no detectable mutations in fibulin-4 and -5 genes may represent a previously unrecognized syndrome. PMID:21285876
Computer Program Recognizes Patterns in Time-Series Data
NASA Technical Reports Server (NTRS)
Hand, Charles
2003-01-01
A computer program recognizes selected patterns in time-series data like digitized samples of seismic or electrophysiological signals. The program implements an artificial neural network (ANN) and a set of N clocks for the purpose of determining whether N or more instances of a certain waveform, W, occur within a given time interval, T. The ANN must be trained to recognize W in the incoming stream of data. The first time the ANN recognizes W, it sets clock 1 to count down from T to zero; the second time it recognizes W, it sets clock 2 to count down from T to zero, and so forth through the Nth instance. On the N + 1st instance, the cycle is repeated, starting with clock 1. If any clock has not reached zero when it is reset, then N instances of W have been detected within time T, and the program so indicates. The program can readily be encoded in a field-programmable gate array or an application-specific integrated circuit that could be used, for example, to detect electroencephalographic or electrocardiographic waveforms indicative of epileptic seizures or heart attacks, respectively.
Protein-targeted corona phase molecular recognition
Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.
2016-01-01
Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890
Molecular Identification of the Schwannomatosis Locus
2006-07-01
DAMD17-03-1-0445 TITLE: Molecular Identification of the Schwannomatosis Locus PRINCIPAL INVESTIGATOR: Mia MacCollin, M.D...COVERED (From - To) 1 Jul 2005 – 30 Jun 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Molecular Identification of the Schwannomatosis Locus 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Background: Schwannomatosis is a recently recognized third major type of
Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition
Cui, Zhiming; Zhao, Pengpeng
2014-01-01
A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045
Floor-fractured crater models of the Sudbury structure, Canada
NASA Technical Reports Server (NTRS)
Wichman, R. W.; Schultz, P. H.
1992-01-01
The Sudbury structure in Ontario, Canada, is one of the oldest and largest impact structures recognized in the geological record. It is also one of the most extensively deformed and volcanically modified impact structures on Earth. Although few other terrestrial craters are recognized as volcanically modified, numerous impact craters on the Moon have been volcanically and tectonically modified and provide possible analogs for the observed pattern of modification at Sudbury. We correlate the pattern of early deformation at Sudbury to fracture patterns in two alternative lunar analogs and then use these analogs both to estimate the initial size of the Sudbury structure and to model the nature of early crater modification at Sudbury.
DNA Based Molecular Scale Nanofabrication
2015-12-04
structure. We developed a method to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer...to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer substrates. Developed a high... imprinting using DNA nanostructure templates. Soft lithography uses polymeric stamps with certain features to transfer the pattern for printing
Tan, Shuai; Zou, Dandan; Tang, Lei; Wang, Gaochao; Peng, Quekun; Zeng, Bo; Zhang, Chen; Zou, Fangdong
2012-06-01
Blue sheep (Pseudois nayaur), a Central Asian ungulate with restricted geographic distribution, exhibits unclear variation in morphology and phylogeographic structure. The composition of species and subspecies in the genus Pseudois is controversial, particularly with respect to the taxonomic designation of geographically restricted populations. Here, 26 specimens including 5 dwarf blue sheep (Pseudois schaeferi), which were collected from a broad geographic region in China, were analyzed for 2 mitochondrial DNA fragments (cytochrome b and control region sequences). In a pattern consistent with geographically defined subspecies, we found three deeply divergent mitochondrial lineages restricted to different geographic regions. The currently designated two subspecies of blue sheep, Pseudois nayaur nayaur and Pseudois nayaur szechuanensis, were recognized in the phylogenetic trees. In addition, the Helan Mountain population showed distinct genetic characteristics from other geographic populations, and thus should be classified as a new subspecies. In contrast, dwarf blue sheep clustered closely with some blue sheep from Sichuan Province in the phylogenetic trees. Therefore, dwarf blue sheep appear to be a subset of Pseudois nayaur szechuanensis. After considering both population genetic information and molecular clock analysis, we obtained some relevant molecular phylogeographic information concerning the historical biogeography of blue sheep. These results also indicate that western Sichuan was a potential refugium for blue sheep during the Quaternary period.
Strekalova, Tatyana; Evans, Matthew; Costa-Nunes, Joao; Bachurin, Sergey; Yeritsyan, Naira; Couch, Yvonne; Steinbusch, Harry M W; Eleonore Köhler, S; Lesch, Klaus-Peter; Anthony, Daniel C
2015-08-01
An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce non-alcoholic fatty liver disease (NAFLD), exhibited behavioral despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioral changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioral changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Boomkens, Sacha Y; Spee, Bart; IJzer, Jooske; Kisjes, Ronald; Egberink, Herman F; van den Ingh, Ted SGAM; Rothuizen, Jan; Penning, Louis C
2004-01-01
Background Hepatocellular carcinoma (HCC) is one of the most worldwide frequent primary carcinomas resulting in the death of many cirrhotic patients. Unfortunately, the molecular mechanisms of this cancer are not well understood; therefore, we need a good model system to study HCC. The dog is recognized as a promising model for human medical research, namely compared with rodents. The objective of this study was to establish and characterize a spontaneous canine tumor cell line as a potential model for studies on HCC. Results Histomorphological, biochemical, molecular biological and quantitative assays were performed to characterize the canine HCC cell line that originated from a dog with a spontaneous liver tumor. Morphological investigations provided strong evidence for the hepatocytic and neoplastic nature of the cell line, while biochemical assays showed that they produced liver-specific enzymes. PCR analysis confirmed expression of ceruloplasmin, alpha-fetoprotein and serum albumin. Quantitative RT-PCR showed that the canine HCC cell line resembles human HCC based on the measurements of expression profiles of genes involved in cell proliferation and apoptosis. Conclusions We have developed a novel, spontaneous tumor liver cell line of canine origin that has many characteristics of human HCC. Therefore, the canine HCC cell line might be an excellent model for comparative studies on the molecular pathogenesis of HCC. PMID:15566568
Fan, Han-Tian; Guo, Jun-Fang; Zhang, Yu-Xin; Gu, Yu-Xi; Ning, Zhong-Qi; Qiao, Yan-Jiang; Wang, Xing
2018-01-01
Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.
Goč, Sanja; Janković, Miroslava
2013-01-01
This study was aimed at defining molecular species of prostate-specific antigen (PSA) in immune complexes with immunoglobulin M (IgM). Having in mind the oligoreactivity of IgM and its preference for carbohydrate antigens, there is the possibility that it can selectively recognize known PSA glycoisoforms. PSA-IgM complexes and free PSA fractions were separated from the sera of subjects with prostate cancer (PCa) and benign prostatic hyperplasia (BPH) by gel filtration and subjected to on-chip immunoaffinity and ion-exchange chromatography. PSA-immunoreactive species were detected using surface-enhanced laser desorption/ionization time of flight mass spectrometry. The obtained spectra were analyzed for protein and glycan composition. The general pattern of the molecular species of PCa PSA and BPH PSA found in complexes with IgM was similar. It comprised major peaks at 17 kDa and minor peaks at 28 kDa, corresponding to the entire mature glycosylated PSA. The main difference was the presence of incompletely glycosylated 26.8 kDa species, having putative paucimannosidic structures, observed in PCa PSA-IgM, but not in BPH PSA-IgM. Characteristic PCa PSA-IgM glycoforms pose the question of the possible role of glycosylation as a framework for immune surveillance and may be of interest in light of recent data indicating mannose-containing glycans as cancer biomarker.
Roshani, G H; Nazemi, E; Roshani, M M
2017-05-01
Changes of fluid properties (especially density) strongly affect the performance of radiation-based multiphase flow meter and could cause error in recognizing the flow pattern and determining void fraction. In this work, we proposed a methodology based on combination of multi-beam gamma ray attenuation and dual modality densitometry techniques using RBF neural network in order to recognize the flow regime and determine the void fraction in gas-liquid two phase flows independent of the liquid phase changes. The proposed system is consisted of one 137 Cs source, two transmission detectors and one scattering detector. The registered counts in two transmission detectors were used as the inputs of one primary Radial Basis Function (RBF) neural network for recognizing the flow regime independent of liquid phase density. Then, after flow regime identification, three RBF neural networks were utilized for determining the void fraction independent of liquid phase density. Registered count in scattering detector and first transmission detector were used as the inputs of these three RBF neural networks. Using this simple methodology, all the flow patterns were correctly recognized and the void fraction was predicted independent of liquid phase density with mean relative error (MRE) of less than 3.28%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular Identification of the Schwannomatosis Locus
2004-07-01
AD Award Number: DAMD17-03-1-0445 TITLE: Molecular Identification of the Schwannomatosis Locus PRINCIPAL INVESTIGATOR: Mia M. MacCollin, M.D...COVERED (Leave blank) July 2004 Annual (1 Jul 2003 - 30 Jun 2004) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Molecular Identification of the Schwannomatosis ...DISTRIBUTION CODE Approved for Public Release; Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) Background: Schwannomatosis is a recently recognized
Essential Use Cases for Pedagogical Patterns
ERIC Educational Resources Information Center
Derntl, Michael; Botturi, Luca
2006-01-01
Coming from architecture, through computer science, pattern-based design spread into other disciplines and is nowadays recognized as a powerful way of capturing and reusing effective design practice. However, current pedagogical pattern approaches lack widespread adoption, both by users and authors, and are still limited to individual initiatives.…
Leibman-Markus, Meirav; Pizarro, Lorena; Schuster, Silvia; Lin, Z J Daniel; Gershony, Ofir; Bar, Maya; Coaker, Gitta; Avni, Adi
2018-05-23
Plant recognition and defense against pathogens employs a two-tiered perception system. Surface localized pattern recognition receptors (PRRs) act to recognize microbial features, while intracellular nucleotide binding leucine-rich repeat receptors (NLRs) directly or indirectly recognize pathogen effectors inside host cells. Employing the tomato PRR LeEIX2/EIX model system, we explored the molecular mechanism of signaling pathways. We identified an NLR that can associate with LeEIX2, termed SlNRC4a (NB-LRR Required for HR-associated Cell death-4). Co-immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR-mediated responses. SlNRC4a overexpression enhances defense responses while silencing SlNRC4 reduces plant immunity. Moreover, the coiled-coil domain of SlNRC4a is able to associate with LeEIX2 and is sufficient to enhance responses upon EIX perception. Based on these findings, we propose that SlNRC4a acts as a non-canonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perception. This article is protected by copyright. All rights reserved.
Yang, P-J; Zhan, M-Y; Ye, C; Yu, X-Q; Rao, X-J
2017-12-01
Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern-recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N-acetylmuramoyl-L-alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP-S4, a short-form PGRP from the domesticated silkworm, Bombyx mori. The PGRP-S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP-S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP-S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn 2+ . Scanning electron microscopy showed that PGRP-S4 disrupted the bacterial cell surface. PGRP-S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP-S4 has multiple functions in immunity. © 2017 The Royal Entomological Society.
Pulmonary adenocarcinoma: A renewed entity in 2011
Kadara, Humam; Kabbout, Mohamed; Wistuba, Ignacio I.
2014-01-01
Lung cancer, of which non-small-cell lung cancer comprises the majority, is the leading cause of cancer-related deaths in the United States and worldwide. Lung adenocarcinomas are a major subtype of non-small-cell lung cancers, are increasing in incidence globally in both males and females and in smokers and non-smokers, and are the cause for almost 50% of deaths attributable to lung cancer. Lung adenocarcinoma is a tumour with complex biology that we have recently started to understand with the advent of various histological, transcriptomic, genomic and proteomic technologies. However, the histological and molecular pathogenesis of this malignancy is still largely unknown. This review will describe advances in the molecular pathology of lung adenocarcinoma with emphasis on genomics and DNA alterations of this disease. Moreover, the review will discuss recognized lung adenocarcinoma preneoplastic lesions and current concepts of the early pathogenesis and progression of the disease. We will also portray the field cancerization phenomenon and lineage-specific oncogene expression pattern in lung cancer and how both remerging concepts can be exploited to increase our understanding of lung adenocarcinoma pathogenesis for subsequent development of biomarkers for early detection of adenocarcinomas and possibly personalized prevention. PMID:22040022
Tham, Heng L; Jacob, Megan E; Bizikova, Petra
2016-08-01
An acute onset furunculosis due to Pseudomonas aeruginosa following grooming is a well recognized entity. Although contaminated shampoos have been suspected to be the source of the infection, a molecular confirmation of this association has been missing. This case report describes a dog with postgrooming furunculosis in which Pseudomonas aeruginosa with an identical genetic fingerprint was isolated from the skin lesions as well as from the shampoo used prior to the disease onset. The dog presented for lethargy, anorexia, pain and rapidly progressing skin lesions consistent with haemorrhagic papules, pustules, coalescing ulcers and crusts localized to the dorsal and lateral aspects of the thorax and gluteal region, which developed within 24 h after a bath. Cytology demonstrated suppurative inflammation with occasional intracellular rod-shaped bacteria. Bacterial culture from skin lesions and the shampoo bottle yielded Pseudomonas aeruginosa with an identical pulsed-field gel electrophoresis pattern. Treatment with oral ciprofloxacin and topical antimicrobial shampoo resulted in a complete resolution of skin lesions within eight weeks. Our clinical investigation suggests a link between Pseudomonas-contaminated shampoo and development of postgrooming furunculosis, and underscores the need for hygienic management of shampoos to help limit this disease. © 2016 ESVD and ACVD.
Yu, Farong; Yu, Fahong; Pang, Junfeng; Kilpatrick, C William; McGuire, Peter M; Wang, Yingxiang; Lu, Shunqing; Woods, Charles A
2006-03-01
With modified DNA extraction and purification protocols, the complete cytochrome b gene sequences (1140 bp) were determined from degraded museum specimens. Molecular analysis and morphological examination of cranial characteristics of the giant flying squirrels of Petaurista philippensis complex (P. grandis, P. hainana, and P. yunanensis) and other Petaurista species yielded new insights into long-standing controversies in the Petaurista systematics. Patterns of genetic variations and morphological differences observed in this study indicate that P. hainana, P. albiventer, and P. yunanensis can be recognized as distinct species, and P. grandis and P. petaurista are conspecific populations. Phylogenetic relationships reconstructed by using parsimony, likelihood, and Bayesian methods reveal that, with P. leucogenys as the basal branch, all Petaurista groups formed two distinct clades. Petaurista philippensis, P. hainana, P. yunanensis, and P. albiventer are clustered in the same clade, while P. grandis shows a close relationship to P. petaurista. Deduced divergence times based on Bayesian analysis and the transversional substitution at the third codon suggest that the retreating of glaciers and upheavals or movements of tectonic plates in the Pliocene-Pleistocene were the major factors responsible for the present geographical distributions of Petaurista groups.
Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)
USDA-ARS?s Scientific Manuscript database
Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and very little is known about fungal molecular responses to bacteria, a...
Burns, Kevin J; Shultz, Allison J; Title, Pascal O; Mason, Nicholas A; Barker, F Keith; Klicka, John; Lanyon, Scott M; Lovette, Irby J
2014-06-01
Thraupidae is the second largest family of birds and represents about 4% of all avian species and 12% of the Neotropical avifauna. Species in this family display a wide range of plumage colors and patterns, foraging behaviors, vocalizations, ecotypes, and habitat preferences. The lack of a complete phylogeny for tanagers has hindered the study of this evolutionary diversity. Here, we present a comprehensive, species-level phylogeny for tanagers using six molecular markers. Our analyses identified 13 major clades of tanagers that we designate as subfamilies. In addition, two species are recognized as distinct branches on the tanager tree. Our topologies disagree in many places with previous estimates of relationships within tanagers, and many long-recognized genera are not monophyletic in our analyses. Our trees identify several cases of convergent evolution in plumage ornaments and bill morphology, and two cases of social mimicry. The phylogeny produced by this study provides a robust framework for studying macroevolutionary patterns and character evolution. We use our new phylogeny to study diversification processes, and find that tanagers show a background model of exponentially declining diversification rates. Thus, the evolution of tanagers began with an initial burst of diversification followed by a rate slowdown. In addition to this background model, two later, clade-specific rate shifts are supported, one increase for Darwin's finches and another increase for some species of Sporophila. The rate of diversification within these two groups is exceptional, even when compared to the overall rapid rate of diversification found within tanagers. This study provides the first robust assessment of diversification rates for the Darwin's finches in the context of the larger group within which they evolved. Copyright © 2014 Elsevier Inc. All rights reserved.
Literman, Robert; Burrett, Alexandria; Bista, Basanta; Valenzuela, Nicole
2018-01-01
The evolutionary lability of sex-determining mechanisms across the tree of life is well recognized, yet the extent of molecular changes that accompany these repeated transitions remain obscure. Most turtles retain the ancestral temperature-dependent sex determination (TSD) from which multiple transitions to genotypic sex determination (GSD) occurred independently, and two contrasting hypotheses posit the existence or absence of reversals back to TSD. Here we examined the molecular evolution of the coding regions of a set of gene regulators involved in gonadal development in turtles and several other vertebrates. We found slower molecular evolution in turtles and crocodilians compared to other vertebrates, but an acceleration in Trionychia turtles and at some phylogenetic branches demarcating major taxonomic diversification events. Of all gene classes examined, hormone signaling genes, and Srd5a1 in particular, evolve faster in many lineages and especially in turtles. Our data show that sex-linked genes do not follow a ubiquitous nor uniform pattern of molecular evolution. We then evaluated turtle nucleotide and protein evolution under two evolutionary hypotheses with or without GSD-to-TSD reversals, and found that when GSD-to-TSD reversals are considered, all transitional branches irrespective of direction, exhibit accelerated molecular evolution of nucleotide sequences, while GSD-to-TSD transitional branches also show acceleration in protein evolution. Significant changes in predicted secondary structure that may affect protein function were identified in three genes that exhibited hastened evolution in turtles compared to other vertebrates or in transitional versus non-transitional branches within turtles, rendering them candidates for a key role during SDM evolution in turtles.
The Common Prescription Patterns Based on the Hierarchical Clustering of Herb-Pairs Efficacies
2016-01-01
Prescription patterns are rules or regularities used to generate, recognize, or judge a prescription. Most of existing studies focused on the specific prescription patterns for diverse diseases or syndromes, while little attention was paid to the common patterns, which reflect the global view of the regularities of prescriptions. In this paper, we designed a method CPPM to find the common prescription patterns. The CPPM is based on the hierarchical clustering of herb-pair efficacies (HPEs). Firstly, HPEs were hierarchically clustered; secondly, the individual herbs are labeled by the HPEC (the clusters of HPEs); and then the prescription patterns were extracted from the combinations of HPEC; finally the common patterns are recognized statistically. The results showed that HPEs have hierarchical clustering structure. When the clustering level is 2 and the HPEs were classified into two clusters, the common prescription patterns are obvious. Among 332 candidate prescriptions, 319 prescriptions follow the common patterns. The description of the patterns is that if a prescription contains the herbs of the cluster (C 1), it is very likely to have other herbs of another cluster (C 2); while a prescription has the herbs of C 2, it may have no herbs of C 1. Finally, we discussed that the common patterns are mathematically coincident with the Blood-Qi theory. PMID:27190534
ERIC Educational Resources Information Center
McGarvey, Lynn M.
2013-01-01
This article describes how in early mathematics learning, young children are often asked to recognize and describe visual patterns in their environment--perhaps on their clothing, a toy, or the carpet; around a picture frame; or in the playground equipment. Exploring patterns in the early years is seen as an important introduction to algebraic…
Imaging diagnosis--pulmonary metastases in New World camelids.
Gall, David A; Zekas, Lisa J; Van Metre, David; Holt, Timothy
2006-01-01
The radiographic appearance of pulmonary metastatic disease from carcinoma is described in a llama and an alpaca. In one, a diffuse miliary pattern was seen. In the other, a more atypical unstructured interstitial pattern was recognized. Metastatic pulmonary neoplasia in camelids may assume a generalized miliary or unstructured pattern.
Limiting assumptions in molecular modeling: electrostatics.
Marshall, Garland R
2013-02-01
Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.
ERIC Educational Resources Information Center
Ynalvez, Ruby; Garza-Gongora, Claudia; Ynalvez, Marcus Antonius; Hara, Noriko
2014-01-01
Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research…
Williamson, Sean R; Bunde, Paula J; Montironi, Rodolfo; Lopez-Beltran, Antonio; Zhang, Shaobo; Wang, Mingsheng; Maclennan, Gregory T; Cheng, Liang
2013-10-01
Recently, a small subgroup of PEComas has been recognized to harbor rearrangements involving TFE3, a gene also involved in rearrangements in translocation-associated renal cell carcinomas and alveolar soft part sarcomas. The few TFE3 rearrangement-associated PEComas reported have exhibited distinctive pathologic characteristics contrasting to PEComas in general, including predominantly epithelioid nested or alveolar morphology and underexpression of muscle markers by immunohistochemistry. In this study, we report the clinicopathologic, immunohistochemical, and molecular features of a primary urinary bladder PEComa diagnosed by transurethral resection in a 55-year-old woman that clinically mimicked urothelial carcinoma. Light microscopy demonstrated mixed spindle cell and epithelioid morphology with the epithelioid component preferentially associated with blood vessels. Immunohistochemistry revealed positive staining for HMB45, tyrosinase, MiTF, cathepsin K, smooth muscle actin, and TFE3 protein. Fluorescence in situ hybridization for the TFE3 gene revealed a split signal pattern, indicating TFE3 rearrangement. X chromosome inactivation analysis demonstrated a clonal pattern despite the heterogenous appearance of the tumor. Unfortunately, despite surgical resection and sarcoma-directed therapy, the patient died of metastatic disease 12 months after diagnosis. This report adds to the known data regarding urinary bladder PEComas and PEComas with TFE3 rearrangement, indicating that both can pursue an aggressive course. Although the few reported TFE3-rearranged PEComas have predominantly lacked a spindle cell component and expression of smooth muscle actin and MiTF by immunohistochemistry, the findings in this study indicate that these features are sometimes present in TFE3-rearranged PEComas.
Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.
Xu, Jiehua; Teng, I-Ting; Zhang, Liqin; Delgado, Stefanie; Champanhac, Carole; Cansiz, Sena; Wu, Cuichen; Shan, Hong; Tan, Weihong
2015-01-01
Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment), have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.
Molecular Studies of HTLV-1 Infection in Newly Recognized High Risk Population
1993-07-10
showing similar sequence to African Isolates. 14. SUBJECT TERMS 15. NUMBER OF PAGES HTLV-I, Epidemiology , Polymerase, Virus, Aids, Biotechnology, RAD... Epidemiologic and molecular studies of both viruses have identified several themes underlying the leukemogenic process. Leukemia is a rare consequence...form. Key words EPIDEMIOLOGIC AND MOLECULAR CIARACTERIZATION 1st OF HTLV-I INFEXTION IN ISRAEL SYehuda L. Danon, el Kilim, and Joseph Rosenblatt
Ahlers, Laura R H; Goodman, Alan G
2016-09-01
Innate immunity refers to the body's initial response to curb infection upon exposure to invading organisms. While the detection of pathogen-associated molecules is an ancient form of host defense, if dysfunctional, autoimmune disease may result. The innate immune response during pathogenic infection is initiated through the activation of receptors recognizing conserved molecular patterns, such as nucleic acids from a virus' genome or replicative cycle. Additionally, the host's own nucleic acids are capable of activating an immune response. Therefore, it follows that the nucleic acid-sensing pathways must be tightly controlled to avoid an autoimmune response from recognition of self, yet still be unimpeded to respond to viral infections. In this review, we will describe the nucleic acid sensing pathways and how they respond to virus infection. Moreover, we will discuss autoimmune diseases that develop when these pathways fail to signal properly and identify knowledge gaps that are prime for interrogation.
Wüthrich, Marcel; Deepe, George S.; Klein, Bruce
2013-01-01
Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue. PMID:22224780
Scabies in animals and humans: history, evolutionary perspectives, and modern clinical management.
Currier, Russell W; Walton, Shelley F; Currie, Bart J
2011-08-01
Scabies, a mite infestation frequently sexually transmitted, dates back to antiquity but remains a challenging parasite for study in clinical practice and community settings. Its history is one of centuries of slow progress to recognize the mite and to finally establish its nexus to the clinical syndrome of pruritis with several protean manifestations and different epidemiological patterns. Contemporary methods of management are briefly reviewed, with the future promise of improved evolutionary knowledge associated with the advent of molecular and genetic technology. Current information indicates that humans and earlier protohumans were most likely the source of animal scabies, first of dogs, and later of other species with subsequent spread to wildlife. Morphologically identical variants of Sarcoptes scabiei are nonetheless host specific, as determined by recent DNA studies, and invite future investigations into the dynamics of this troublesome sexually transmissible agent, with the goal of improved recognition and control. © 2012 New York Academy of Sciences.
Dynamically correlated mutations drive human Influenza A evolution.
Tria, F; Pompei, S; Loreto, V
2013-01-01
Human Influenza A virus undergoes recurrent changes in the hemagglutinin (HA) surface protein, primarily involved in the human antibody recognition. Relevant antigenic changes, enabling the virus to evade host immune response, have been recognized to occur in parallel to multiple mutations at antigenic sites in HA. Yet, the role of correlated mutations (epistasis) in driving the molecular evolution of the virus still represents a challenging puzzle. Further, though circulation at a global geographic level is key for the survival of Influenza A, its role in shaping the viral phylodynamics remains largely unexplored. Here we show, through a sequence based epidemiological model, that epistatic effects between amino acids substitutions, coupled with a reservoir that mimics worldwide circulating viruses, are key determinants that drive human Influenza A evolution. Our approach explains all the up-to-date observations characterizing the evolution of H3N2 subtype, including phylogenetic properties, nucleotide fixation patterns, and composition of antigenic clusters.
Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases
Mohammad Hosseini, Akbar; Majidi, Jafar; Baradaran, Behzad; Yousefi, Mehdi
2015-01-01
Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application. PMID:26793605
Learning through ferroelectric domain dynamics in solid-state synapses
NASA Astrophysics Data System (ADS)
Boyn, Sören; Grollier, Julie; Lecerf, Gwendal; Xu, Bin; Locatelli, Nicolas; Fusil, Stéphane; Girod, Stéphanie; Carrétéro, Cécile; Garcia, Karin; Xavier, Stéphane; Tomas, Jean; Bellaiche, Laurent; Bibes, Manuel; Barthélémy, Agnès; Saïghi, Sylvain; Garcia, Vincent
2017-04-01
In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.
Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections.
Taghavi, Mehdi; Khosravi, Alireza; Mortaz, Esmaeil; Nikaein, Donya; Athari, Seyyed Shamsadin
2017-08-05
Recent years have seen the rise of invasive fungal infections, which are mostly due to the increase in patients. Three major opportunistic fungal species in human are Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans that pose the biggest concern for these immunocompromised patients' mortality. The growing occurrence of opportunistic fungal infections has sparked the interest to understand defense mechanisms against pathogenic fungi. Toll-like receptors (TLRs), as a part of innate immune system, play an important role for recognizing the invading microorganisms and initiating sufficient immune responses. Recent studies have revealed an integrated role for TLR, signaling inactivating immune defense mechanisms against exact fungi. Among TLRs, TLR2 and TLR4 are the major participants in fungi recognition. The present paper highlights the role of TLR participants in fungal recognition as well as their mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier
2006-07-26
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.
Lu, Yuan-Ping; Chen, Ren-Liang; Long, Ying; Li, Xiao; Jiang, Yu-Ji; Xie, Bao-Gui
2016-01-01
Flammulina velutipes, one of the most popular mushroom species in the world, has been recognized as a useful model system to study the biochemical and physiological aspects of the formation and elongation of fruit body. However, few reports have been published on the regulation of fruiting body formation in F. velutipes at the molecular level. In this study, a jacalin-related lectin gene from F. velutipes was characterized. The phylogenetic tree revealed that Fv-JRL1 clustered with other basidiomycete jacalin-like lectins. Moreover, the transcriptional pattern of the Fv-JRL1 gene in different developmental stages of F. velutipes implied that Fv-JRL1 could be important for formation of fruit body. Additionally, RNA interference (RNAi) and overexpression analyses provided powerful evidence that the lectin gene Fv-JRL1 from F. velutipes plays important roles in fruiting body formation. PMID:27916794
Langer, Marybeth; Girton, Alanson W.; Popescu, Narcis I.; Burgett, Tarea; Metcalf, Jordan P.
2018-01-01
Peptidoglycan (PGN), a major component of bacterial cell walls, is a pathogen-associated molecular pattern (PAMP) that causes innate immune cells to produce inflammatory cytokines that escalate the host response during infection. In order to better understand the role of PGN in infection, we wanted to gain insight into the cellular receptor for PGN. Although the receptor was initially identified as Toll-like receptor 2 (TLR2), this receptor has remained controversial and other PGN receptors have been reported. We produced PGN from live cultures of Bacillus anthracis and Staphylococcus aureus and tested samples of PGN isolated during the purification process to determine at what point TLR2 activity was removed, if at all. Our results indicate that although live B. anthracis and S. aureus express abundant TLR2 ligands, highly-purified PGN from either bacterial source is not recognized by TLR2. PMID:29474374
Ashida, Hiroshi; Nakano, Hiroyasu; Sasakawa, Chihiro
2013-01-01
NF-κB plays a central role in modulating innate immune responses to bacterial infections. Therefore, many bacterial pathogens deploy multiple mechanisms to counteract NF-κB activation. The invasion of and subsequent replication of Shigella within epithelial cells is recognized by various pathogen recognition receptors as pathogen-associated molecular patterns. These receptors trigger innate defense mechanisms via the activation of the NF-κB signaling pathway. Here, we show the inhibition of the NF-κB activation by the delivery of the IpaH E3 ubiquitin ligase family member IpaH0722 using Shigella's type III secretion system. IpaH0722 dampens the acute inflammatory response by preferentially inhibiting the PKC-mediated activation of NF-κB by ubiquitinating TRAF2, a molecule downstream of PKC, and by promoting its proteasome-dependent degradation. PMID:23754945
Muwonge, Apollo; Nanyunja, Miriam; Bwogi, Josephine; Lowe, Luis; Liffick, Stephanie L.; Bellini, William J.; Sylvester, Sempala
2005-01-01
We report the first genetic characterization of wildtype measles viruses from Uganda. Thirty-six virus isolates from outbreaks in 6 districts were analyzed from 2000 to 2002. Analyses of sequences of the nucleoprotein (N) and hemagglutinin (H) genes showed that the Ugandan isolates were all closely related, and phylogenetic analysis indicated that these viruses were members of a unique group within clade D. Sequences of the Ugandan viruses were not closely related to any of the World Health Organization reference sequences representing the 22 currently recognized genotypes. The minimum nucleotide divergence between the Ugandan viruses and the most closely related reference strain, genotype D2, was 3.1% for the N gene and 2.6% for the H gene. Therefore, Ugandan viruses should be considered a new, proposed genotype (d10). This new sequence information will expand the utility of molecular epidemiologic techniques for describing measles transmission patterns in eastern Africa. PMID:16318690
Molecular data reveal complex hybridization and a cryptic species of neotropical wild cat.
Trigo, Tatiane C; Schneider, Alexsandra; de Oliveira, Tadeu G; Lehugeur, Livia M; Silveira, Leandro; Freitas, Thales R O; Eizirik, Eduardo
2013-12-16
Hybridization among animal species has recently become more recognized as an important phenomenon, especially in the context of recent radiations. Here we show that complex hybridization has led to contrasting patterns of genomic composition among closely related species of the Neotropical cat genus Leopardus. We show strong evidence of ancient hybridization and introgression between the pampas cat (L. colocolo) and northeastern populations of tigrina (L. tigrinus), leading to remarkable cytonuclear discordance in the latter. In contrast, southern tigrina populations show recent and continuing hybridization with Geoffroy's cat (L. geoffroyi), leading to extreme levels of interspecific admixture at their contact zone. Finally, we demonstrate that two seemingly continuous Brazilian tigrina populations show no evidence of ongoing gene flow between them, leading us to support their formal recognition as distinct species, namely L. tigrinus in the northeast and L. guttulus in the south. Copyright © 2013 Elsevier Ltd. All rights reserved.
Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays.
Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando
2014-06-24
The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.
Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays
NASA Astrophysics Data System (ADS)
Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando
2014-06-01
The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.
Perception of animacy in dogs and humans.
Abdai, Judit; Ferdinandy, Bence; Terencio, Cristina Baño; Pogány, Ákos; Miklósi, Ádám
2017-06-01
Humans have a tendency to perceive inanimate objects as animate based on simple motion cues. Although animacy is considered as a complex cognitive property, this recognition seems to be spontaneous. Researchers have found that young human infants discriminate between dependent and independent movement patterns. However, quick visual perception of animate entities may be crucial to non-human species as well. Based on general mammalian homology, dogs may possess similar skills to humans. Here, we investigated whether dogs and humans discriminate similarly between dependent and independent motion patterns performed by geometric shapes. We projected a side-by-side video display of the two patterns and measured looking times towards each side, in two trials. We found that in Trial 1, both dogs and humans were equally interested in the two patterns, but in Trial 2 of both species, looking times towards the dependent pattern decreased, whereas they increased towards the independent pattern. We argue that dogs and humans spontaneously recognized the specific pattern and habituated to it rapidly, but continued to show interest in the 'puzzling' pattern. This suggests that both species tend to recognize inanimate agents as animate relying solely on their motions. © 2017 The Author(s).
Wheat differential gene expression induced by different races of Puccinia triticina.
Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P
2018-01-01
Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.
Singh, Manvender; Brahma, Biswajit; Maharana, Jitendra; Patra, Mahesh Chandra; Kumar, Sushil; Mishra, Purusottam; Saini, Megha; De, Bidhan Chandra; Mahanty, Sourav; Datta, Tirtha Kumar; De, Sachinandan
2014-01-01
RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo. PMID:24587036
Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE.
Petrelli, Berardino; Weinberg, Joanne; Hicks, Geoffrey G
2018-04-01
The potential impact of prenatal alcohol exposure (PAE) varies considerably among exposed individuals, with some displaying serious alcohol-related effects and many others showing few or no overt signs of fetal alcohol spectrum disorder (FASD). In animal models, variables such as nutrition, genetic background, health, other drugs, and stress, as well as dosage, duration, and gestational timing of exposure to alcohol can all be controlled in a way that is not possible in a clinical situation. In this review we examine mouse models of PAE and focus on those with demonstrated craniofacial malformations, abnormal brain development, or behavioral phenotypes that may be considered FASD-like outcomes. Analysis of these data should provide a valuable tool for researchers wishing to choose the PAE model best suited to their research questions or to investigate established PAE models for FASD comorbidities. It should also allow recognition of patterns linking gestational timing, dosage, and duration of PAE, such as recognizing that binge alcohol exposure(s) during early gestation can lead to severe FASD outcomes. Identified patterns could be particularly insightful and lead to a better understanding of the molecular mechanisms underlying FASD.
Insect immunology and hematopoiesis.
Hillyer, Julián F
2016-05-01
Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation of Biomimetic Recognition between Polymers and Surfaces
NASA Astrophysics Data System (ADS)
Golumbfskie, Aaron J.; Pande, Vijay S.; Chakraborty, Arup K.
1999-10-01
Many biological processes, such as transmembrane signaling and pathogen-host interactions, are initiated by a protein recognizing a specific pattern of binding sites on part of a membrane or cell surface. By recognition, we imply that the polymer quickly finds and then adsorbs strongly on the pattern-matched region and not on others. The development of synthetic systems that can mimic such recognition between polymers and surfaces could have significant impact on advanced applications such as the development of sensors, molecular-scale separation processes, and synthetic viral inhibition agents. Attempting to affect recognition in synthetic systems by copying the detailed chemistries to which nature has been led over millenia of evolution does not seem practical for most applications. This leads us to the following question: Are there any universal strategies that can affect recognition between polymers and surfaces? Such generic strategies may be easier to implement in abiotic applications. We describe results that suggest that biomimetic recognition between synthetic polymers and surfaces is possible by exploiting certain generic strategies, and we elucidate the kinetic mechanisms by which this occurs. Our results suggest convenient model systems for experimental studies of dynamics in free energy landscapes characteristic of frustrated systems.
Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou
2017-04-01
This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns. .
NASA Astrophysics Data System (ADS)
Afrillia, Yesy; Mawengkang, Herman; Ramli, Marwan; Fadlisyah; Putra Fhonna, Rizky
2017-12-01
Most of research have used signal and speech processing in order to recognize makhraj pattern and tajwid reading in Al-Quran by exploring the mel frequency ceptral coefficient (MFCC). However, to our knowledge so far there is no research has been conducted to recognize the chanting of Al-Quran verse using MFCC. This term is also well-known as nagham Al-Quran. The characteristics of nagham Al-Quran pattern is much more complex then makhraj and tajwid pattern. In nagham the wave of the sound has more variation which implies the level of noice is much higher and has sound duration longer. The data testing in this research was taken term by real-time recording. The evaluation measurement in the system performance of nagham Al-Quran pattern is based on true and false detection parameter with accuracy 80%. To measure this accuracy it is necessary to modify the MFCC or to give more data learning process with more variation.
Non-linear molecular pattern classification using molecular beacons with multiple targets.
Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak
2013-12-01
In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The effects of monitoring environment on problem-solving performance.
Laird, Brian K; Bailey, Charles D; Hester, Kim
2018-01-01
While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.
Chang, Chia-Ching; Sun, Kien Wen; Lee, Shang-Fan; Kan, Lou-Sing
2007-04-01
The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (001) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three-dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.
The science and fiction of emerging rickettsioses.
Paddock, Christopher D
2009-05-01
As newly recognized rickettsial diseases and rickettsial pathogens increase in scope and magnitude, several elements related to the concept of emerging rickettsioses deserve consideration. Newly identified rickettsiae may be mildly pathogenic, or perhaps even nonpathogenic, and have little direct impact on human or animal health, yet nonetheless wield considerable influence on the epidemiology and ecology of historically recognized diseases. In this context "new" rickettsioses provide a lens through which "old" rickettsioses are more accurately represented. Predicting pathogen from nonpathogen is not an exact science, particularly as so few rickettsiae have been broadly accepted as nonpathogenic by contemporary rickettsiologists. However, various factors relating to specific physiologic requirements and molecular machinery of the particular rickettsia, as well as characteristics of its invertebrate host that either position or exclude the rickettsia from infecting a human host, must be considered. Close inspection of mild or atypical forms of historically recognized rickettsioses and a greater emphasis on culture- and molecular-based diagnostic techniques are the keys to identifying future rickettsial agents of disease.
O’Connor, Jingmai K.; Chiappe, Luis M.; Chuong, Cheng-ming; Bottjer, David J.; You, Hailu
2013-01-01
At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds. PMID:24003379
Wang, Quan; Zheng, Qing-Chuan; Zhang, Hong-Xing
2016-11-01
Histone acetylation is a very important regulatory mechanism in gene expression in the chromatin context. A new protein family-YEATS domains have been found as a novel histone acetylation reader, which could specific recognize the histone lysine acetylation. AF9 is an important one in the YEATS family. Focused on the AF9-H3K9ac (K9 acetylation) complex (ALY) (PDB code: 4TMP) and a serials of mutants, MUT (the acetyllsine of H3K9ac was mutated to lysine), F59A, G77A, and D103A, we applied molecular dynamics simulation and molecular mechanics Poisson-Boltzmann (MM-PBSA) free energy calculations to examine the role of AF9 protein in recognition interaction. The simulation results and analysis indicate that some residues of the protein have significant influence on recognition and binding to H3K9ac peptides and hydrophobic surface show the hydrophobic interactions play an important role in the binding. Our work can give important information to understand how the protein AF9 recognizes the peptides H3K9ac. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 779-786, 2016. © 2016 Wiley Periodicals, Inc.
Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)
D. Jean Lodge; Mahajabeen Padamsee; P. Brandon Matheny; M. Catherine Aime; Sharon A. Cantrell; David Boertmann; Alexander Kovalenko; Alfredo Vizzini; Bryn T.M. Dentinger; Paul M. Kirk; A. Martin Ainsworth; Jean-Marc Moncalvo; Rytas Vilgalys; Ellen Larsson; Robert Lucking; Gareth W. Griffith; Matthew E. Smith; Lorilei L. Norvell; Dennis E. Desjardin; Scott A. Redhead; Clark L. Ovrebo; Edgar B. Lickey; Enrico Ercole; Karen W. Hughes; Regis Courtecuisse; Anthony Young; Manfred Binder; Andrew M. Minnis; Daniel L. Lindner; Beatriz Ortiz-Santana; John Haight; Thomas Laessoe; Timothy J. Baroni; Jozsef Geml; Tsutomu Hattori
2013-01-01
Molecular phylogenies using 1â4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygrophoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe,...
Direct mapping of electrical noise sources in molecular wire-based devices
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-01-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821
Direct mapping of electrical noise sources in molecular wire-based devices
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-02-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.
Male tawny dragons use throat patterns to recognize rivals.
Osborne, Louise; Umbers, Kate D L; Backwell, Patricia R Y; Keogh, J Scott
2012-10-01
The ability to distinguish between familiar and unfamiliar conspecifics is important for many animals, especially territorial species since it allows them to avoid unnecessary interactions with individuals that pose little threat. There are very few studies, however, that identify the proximate cues that facilitate such recognition in visual systems. Here, we show that in tawny dragons (Ctenophorus decresii), males can recognize familiar and unfamiliar conspecific males based on morphological features alone, without the aid of chemical or behavioural cues. We further show that it is the colour pattern of the throat patches (gular) that facilitates this recognition.
Defining a "Zone of Impact": Transport Processes and Patterns for Small-Scale Land Runoff.
NASA Astrophysics Data System (ADS)
Largier, J. L.; Basdurak, B.
2016-12-01
Nearshore pollution is a well-recognized environmental problem, yet the pattern of this pollution is not well studied and it is little recognized in policy. Whether nutrients, pathogens or toxins, the highest concentrations of pollutants in the nearfield are controlled by transport and mixing, rather than decay of the constituent. Thus, this becomes a challenge to determine patterns of runoff (and tidal outflow) and to account for the dominant processes that control these patterns. Salinity and fecal indicator bacteria data exhibit coherent space-time patterns, indicating that a coherent "zone of impact" can be determined, i.e., a time-varying spatial zone in which the constituent of concern exceeds a reference concentration (level of concern). To explain field observations, modeling of small-scale runoff plumes and wave-driven transport can be used. In contrast to larger river plumes, wind forcing is a critical factor in plume behavior and the resultant pattern of pollution. This preliminary work suggests that coherent spatio-temporal patterns can explain the apparently not-so-well-behaved patterns of pollution that are reported when concentrations are under-sampled. And it throws out a challenge to nearshore oceanographers to better explain transport and mixing patterns for the benefit of reducing coastal pollution and its impacts.
Self-organizing neural network models for visual pattern recognition.
Fukushima, K
1987-01-01
Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.
Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2010-03-02
Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.
Optical Pattern Recognition With Self-Amplification
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1994-01-01
In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.
Van Vaerenbergh, J; Vranken, R; Briers, L; Briers, H
2001-11-01
A data glove is a typical input device to control a virtual environment. At the same time it measures movements of wrist and fingers. The purposes of this investigation were to assess the ability of BrainMaker, a neural network, to recognize movement patterns during an opposition task that consisted of repetitive self-paced movements of the fingers in opposition to the thumb. The neural network contained 56 inputs, 3 hidden layers of 20 neurons, and one output. The 5th glove '95 (5DT), a commercial glove especially designed for virtual reality games, was used for finger motion capture. The training of the neural network was successful for recognizing the thumb, the index finger and the ring finger movements during the repetitive self-paced movements and neural network performed well during testing.
ERIC Educational Resources Information Center
Terrell, Cassidy R.; Listenberger, Laura L.
2017-01-01
Recognizing that undergraduate students can benefit from analysis of 3D protein structure and function, we have developed a multiweek, inquiry-based molecular visualization project for Biochemistry I students. This project uses a virtual model of cyclooxygenase-1 (COX-1) to guide students through multiple levels of protein structure analysis. The…
USDA-ARS?s Scientific Manuscript database
Molecular methods are now more commonly used for identification of the aspergilli and their teleomorphs and have led to reports of species not previously recognized as causing human disease. We report the first case of cerebral aspergillosis in a compromised patient caused by Emericella echinulata,...
Joshi, Raj Kumar; Nanda, Satyabrata; Rout, Ellojita; Kar, Basudeba; Naik, Pradeep Kumar; Nayak, Sanghamitra
2013-01-01
Plant NBS-LRR R-genes recognizes several pathogen associated molecular patterns (PAMPs) and limit pathogen infection through a multifaceted defense response. CzR1, a coiled-coil-nucleotide-binding-site-leucine-rich repeat R-gene isolated from Curcuma zedoaria L exhibit constitutive resistance to different strains of P. aphanidermatum. Majority of the necrotrophic oomycetes are characterized by the presence of carbohydrate PAMPs β-glucans in their cell walls which intercat with R-genes. In the present study, we predicted the 3D (three dimensional) structure of CzR1 based on homology modeling using the homology module of Prime through the Maestro interface of Schrodinger package ver 2.5. The docking investigation of CzR1 with β-glucan using the Glide software suggests that six amino acid residues, Ser186, Glu187, Ser263, Asp264, Asp355 and Tyr425 act as catalytic residues and are involved in hydrogen bonding with ligand β-(1,3)-D-Glucan. The calculated distance between the carboxylic oxygen atoms of Glu187–Asp355 pair is well within the distance of 5Å suggesting a positive glucanase activity of CzR1. Elucidation of these molecular characteristics will help in in silico screening and understanding the structural basis of ligand binding to CzR1 protein and pave new ways towards a broad spectrum rhizome rot resistance development in the cultivated turmeric. PMID:23888096
Tan, Shuai; Wang, Zhihong; Jiang, Lichun; Peng, Rui; Zhang, Tao; Peng, Quekun; Zou, Fangdong
2017-09-01
Blue sheep, Pseudois nayaur , is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest-elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis . However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois . Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.
Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI.
Chao, Ying; Karmali, Priya P; Mukthavaram, Rajesh; Kesari, Santosh; Kouznetsova, Valentina L; Tsigelny, Igor F; Simberg, Dmitri
2013-05-28
Scavenger receptors (SRs) are molecular pattern recognition receptors that have been shown to mediate opsonin-independent uptake of therapeutic and imaging nanoparticles, underlying the importance of SRs in nanomedicine. Unlike pathogens, engineered nanomaterials offer great flexibility in control of surface properties, allowing addressing specific questions regarding the molecular mechanisms of nanoparticle recognition. Recently, we showed that SR-type AI/II mediates opsonin-independent internalization of dextran superparamagnetic iron oxide (SPIO) nanoparticles via positively charged extracellular collagen-like domain. To understand the mechanism of opsonin-independent SPIO recognition, we tested the binding and uptake of nanoparticles with different surface coatings by SR-AI. SPIO coated with 10 kDa dextran was efficiently recognized and taken up by SR-AI transfected cells and J774 macrophages, while SPIO with 20 kDa dextran coating or cross-linked dextran hydrogel avoided the binding and uptake. Nanoparticle negative charge density and zeta-potential did not correlate with SR-AI binding/uptake efficiency. Additional experiments and computer modeling revealed that recognition of the iron oxide crystalline core by the positively charged collagen-like domain of SR-AI is sterically hindered by surface polymer coating. Importantly, the modeling revealed a strong complementarity between the surface Fe-OH groups of the magnetite crystal and the charged lysines of the collagen-like domain of SR-AI, suggesting a specific recognition of SPIO crystalline surface. These data provide an insight into the molecular recognition of nanocrystals by innate immunity receptors and the mechanisms whereby polymer coatings promote immune evasion.
Is colour polymorphism advantageous to populations and species?
Forsman, Anders
2016-06-01
I am writing in response to an article by Bolton, Rollins and Griffith (2015) entitled 'The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species' that was recently published as an Opinion under the NEWS AND VIEWS section in Molecular Ecology. Bolton et al. (Molecular Ecology, 2015, 24, 2907) argue that colour polymorphism may reduce population fitness and increase extinction risk and emphasize that this is contrary to predictions put forward by Forsman et al. (Ecology, 89, 2008, 34) and Wennersten & Forsman (Biological Reviews 87, 2012, 756) that the existence of multiple colour morphs with co-adapted gene complexes and associated trait values may increase the ecological and evolutionary success of polymorphic populations and species. Bolton et al. (Molecular Ecology, 2015, 24, 2907) further state that there is no clear evidence from studies of 'true polymorphic species' that polymorphism promotes population persistence. In response, I (i) challenge their classifications of polymorphisms and revisit the traditional definitions recognizing the dynamic nature of polymorphisms, (ii) review empirical studies that have examined whether and how polymorphism is associated with extinction risk, (iii) discuss the roles of trait correlations between colour pattern and other phenotypic dimensions for population fitness and (iv) highlight that the causes and mechanisms that influence the composition and maintenance of polymorphisms are different from the consequences of the polymorphic condition and how it may impact on aspects of ecological success and long-term persistence of populations and species. © 2016 John Wiley & Sons Ltd.
Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Adamek, Dariusz; Korbut, Ryszard
2017-02-17
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer's disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE -/- ) mice upon treatment with Alda-1-a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE -/- mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE -/- mice. Importantly, prolonged treatment of apoE -/- mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
NASA Astrophysics Data System (ADS)
He, Xianjin; Zhang, Xinchang; Xin, Qinchuan
2018-02-01
Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.
Antiviral RNA Recognition and Assembly by RLR Family Innate Immune Sensors
Bruns, Annie M.; Horvath, Curt M.
2014-01-01
Virus-encoded molecular signatures, such as cytosolic double-stranded or otherwise biochemically distinct RNA species, trigger cellular antiviral signaling. Cytoplasmic proteins recognize these non-self RNAs and activate signal transduction pathways that drive the expression of virus-induced genes, including the primary antiviral cytokine, IFNβ, and diverse direct and indirect antiviral effectors [1–4]. One important group of cytosolic RNA sensors known as the RIG-I like receptors (RLRs) is comprised of three proteins that are similar in structure and function. The RLR proteins, RIG-I, MDA5, and LGP2, share the ability to recognize nucleic acid signatures produced by virus infections and activate antiviral signaling. Emerging evidence indicates that RNA detection by RLRs culminates in the assembly of dynamic multimeric ribonucleoprotein (RNP) complexes. These RNPs can act as signaling platforms that are capable of propagating and amplifying antiviral signaling responses. Despite their common domain structures and similar abilities to induce antiviral responses, the RLRs differ in their enzymatic properties, their intrinsic abilities to recognize RNA, and their ability to assemble into filamentous complexes. This molecular specialization has enabled the RLRs to recognize and respond to diverse virus infections, and to mediate both unique and overlapping functions in immune regulation [5, 6]. PMID:25081315
Association between a social-business eating pattern and early asymptomatic atherosclerosis
USDA-ARS?s Scientific Manuscript database
BACKGROUND: The importance of a healthy diet in relation to cardiovascular health promotion is widely recognized. Identifying specific dietary patterns related to early atherosclerosis would contribute greatly to inform effective primary prevention strategies. OBJECTIVES: This study sought to quanti...
Zand, Sarvenaz; Buzney, Elizabeth; Duncan, Lyn M; Dadras, Soheil S
2016-09-01
Histologic and molecular heterogeneity is well recognized in malignant melanoma; however, the diversity of expression of new and classic melanoma markers has not been correlated in serial sections of metastases. We examined and correlated the expression of microphthalmia transcription factor (MITF) with its transcriptional targets, including melastatin (MLSN1/TRPM1), pigment epithelium-derived factor (SERPINF1/PEDF), SILV/PMEL17/GP100 (human melanoma black 45 [HMB-45]), and melanoma antigen recognized by T cells 1 (MART-1)/MLANA, in 13 melanoma metastases in lymph nodes of 13 patients. The expression levels and patterns of marker expression were recorded by a semiquantitative, 4-point ordinal reactivity method. Our results showed a consistently robust and diffuse expression of MITF protein in 12 (92%) of 13 metastatic tumors compared with variable expression of MLSN1 (46%) messenger RNA or PEDF (75%), HMB-45 (54%), and MART-1 (46%) proteins. Overall, in melanoma lymph node metastases, MITF protein expression was not tightly correlated with its gene targets. Moreover, the immunoreactivity for MITF, compared with MART-1 and HMB-45, was retained, supporting immunohistochemical detection of MITF as a more sensitive method of detecting metastatic melanoma. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Brown-Elliott, Barbara A.; Wallace, Richard J.
2002-01-01
The history, taxonomy, geographic distribution, clinical disease, and therapy of the pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria (RGM) are reviewed. Community-acquired disease and health care-associated disease are highlighted for each species. The latter grouping includes health care-associated outbreaks and pseudo-outbreaks as well as sporadic disease cases. Treatment recommendations for each species and type of disease are also described. Special emphasis is on the Mycobacterium fortuitum group, including M. fortuitum, M. peregrinum, and the unnamed third biovariant complex with its recent taxonomic changes and newly recognized species (including M. septicum, M. mageritense, and proposed species M. houstonense and M. bonickei). The clinical and taxonomic status of M. chelonae, M. abscessus, and M. mucogenicum is also detailed, along with that of the closely related new species, M. immunogenum. Additionally, newly recognized species, M. wolinskyi and M. goodii, as well as M. smegmatis sensu stricto, are included in a discussion of the M. smegmatis group. Laboratory diagnosis of RGM using phenotypic methods such as biochemical testing and high-performance liquid chromatography and molecular methods of diagnosis are also discussed. The latter includes PCR-restriction fragment length polymorphism analysis, hybridization, ribotyping, and sequence analysis. Susceptibility testing and antibiotic susceptibility patterns of the RGM are also annotated, along with the current recommendations from the National Committee for Clinical Laboratory Standards (NCCLS) for mycobacterial susceptibility testing. PMID:12364376
Brown-Elliott, Barbara A; Wallace, Richard J
2002-10-01
The history, taxonomy, geographic distribution, clinical disease, and therapy of the pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria (RGM) are reviewed. Community-acquired disease and health care-associated disease are highlighted for each species. The latter grouping includes health care-associated outbreaks and pseudo-outbreaks as well as sporadic disease cases. Treatment recommendations for each species and type of disease are also described. Special emphasis is on the Mycobacterium fortuitum group, including M. fortuitum, M. peregrinum, and the unnamed third biovariant complex with its recent taxonomic changes and newly recognized species (including M. septicum, M. mageritense, and proposed species M. houstonense and M. bonickei). The clinical and taxonomic status of M. chelonae, M. abscessus, and M. mucogenicum is also detailed, along with that of the closely related new species, M. immunogenum. Additionally, newly recognized species, M. wolinskyi and M. goodii, as well as M. smegmatis sensu stricto, are included in a discussion of the M. smegmatis group. Laboratory diagnosis of RGM using phenotypic methods such as biochemical testing and high-performance liquid chromatography and molecular methods of diagnosis are also discussed. The latter includes PCR-restriction fragment length polymorphism analysis, hybridization, ribotyping, and sequence analysis. Susceptibility testing and antibiotic susceptibility patterns of the RGM are also annotated, along with the current recommendations from the National Committee for Clinical Laboratory Standards (NCCLS) for mycobacterial susceptibility testing.
Measles outbreak in Venezuela: a new challenge to postelimination surveillance and control?
Sarmiento, Héctor; Cobo, Oswaldo Barrezueta; Morice, Ana; Zapata, Roger; Benitez, María Victoria; Castillo-Solórzano, Carlos
2011-09-01
The circulation of wild measles virus was interrupted in Venezuela in February 2007 after the catch-up vaccination (1994) and monitoring (1998) and in response to the measles outbreak in 2001. Traditionally, the routine coverage with measles-mumps-rubella vaccine does not exceed 85%. In February 2006, a measles outbreak started by importation in the State Miranda; this extended to 7 states and lasted 50 weeks with an intermediate period of 17 weeks without reported cases. New cases were reported in the States Guarico and Amazon. The pattern of circulation of the silent period was determined through the use of retrospective search for measles; this showed that 57% of suspected cases did not enter the surveillance system. Molecular epidemiology made it possible to identify B3 as only genotype, which also circulated in Spain. The epidemiological and clinical characteristics of measles have been modified; these determine outbreaks identified late, of slow expansion, silent, and with limited case-fatality, compared with classical outbreaks. The outbreak spread by that behavior was not recognized and the classical control measures did not result. The beginning of a broader and intense vaccination was delayed, partly by weaknesses in the sensitivity of the system. It is crucial to recognize the new behavior of measles and the effectiveness of the classical control measures, and especially to establish criteria for interruption of the circulation to control an outbreak in this stage of elimination.
Bergante, Sonia; Torretta, Enrica; Creo, Pasquale; Sessarego, Nadia; Papini, Nadia; Piccoli, Marco; Fania, Chiara; Cirillo, Federica; Conforti, Erika; Ghiroldi, Andrea; Tringali, Cristina; Venerando, Bruno; Ibatici, Adalberto; Gelfi, Cecilia; Tettamanti, Guido; Anastasia, Luigi
2014-03-01
Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically (3)H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.
Azmi, Nur Sabrina Ahmad; Singkaravanit-Ogawa, Suthitar; Ikeda, Kyoko; Kitakura, Saeko; Inoue, Yoshihiro; Narusaka, Yoshihiro; Shirasu, Ken; Kaido, Masanori; Mise, Kazuyuki; Takano, Yoshitaka
2018-01-01
The hemibiotrophic pathogen Colletotrichum orbiculare preferentially expresses a necrosis and ethylene-inducing peptide 1 (Nep1)-like protein named NLP1 during the switch to necrotrophy. Here, we report that the constitutive expression of NLP1 in C. orbiculare blocks pathogen infection in multiple Cucurbitaceae cultivars via their enhanced defense responses. NLP1 has a cytotoxic activity that induces cell death in Nicotiana benthamiana. However, C. orbiculare transgenic lines constitutively expressing a mutant NLP1 lacking the cytotoxic activity still failed to infect cucumber, indicating no clear relationship between cytotoxic activity and the NLP1-dependent enhanced defense. NLP1 also possesses the microbe-associated molecular pattern (MAMP) sequence called nlp24, recognized by Arabidopsis thaliana at its central region, similar to NLPs of other pathogens. Surprisingly, inappropriate expression of a mutant NLP1 lacking the MAMP signature is also effective for blocking pathogen infection, uncoupling the infection block from the corresponding MAMP. Notably, the deletion analyses of NLP1 suggested that the C-terminal region of NLP1 is critical to enhance defense in cucumber. The expression of mCherry fused with the C-terminal 32 amino acids of NLP1 was enough to trigger the defense of cucurbits, revealing that the C-terminal region of the NLP1 protein is recognized by cucurbits and, then, terminates C. orbiculare infection.
Morcillo, Felipe; Ornelas-García, Claudia Patricia; Alcaraz, Lourdes; Matamoros, Wilfredo A; Doadrio, Ignacio
2016-01-01
Freshwater fishes of Profundulidae, which until now was composed of two subgenera, represent one of the few extant fish families endemic to Mesoamerica. In this study we investigated the phylogenetic relationships and evolutionary history of the eight recognized extant species (from 37 populations) of Profundulidae using three mitochondrial and one nuclear gene markers (∼2.9 Kbp). We applied a Bayesian species delimitation method as a first approach to resolving speciation patterns within Profundulidae considering two different scenarios, eight-species and twelve-species models, obtained in a previous phylogenetic analysis. Based on our results, each of the two subgenera was resolved as monophyletic, with a remarkable molecular divergence of 24.5% for mtDNA and 7.8% for nDNA uncorrected p distances, and thus we propose that they correspond to separate genera. Moreover, we propose a conservative taxonomic hypothesis with five species within Profundulus and three within Tlaloc, although both eight-species and twelve-species models were highly supported by the bayesian species delimitation analysis, providing additional evidence of higher taxonomic diversity than currently recognized in this family. According to our divergence time estimates, the family originated during the Upper Oligocene 26 Mya, and Profundulus and Tlaloc diverged in the Upper Oligocene or Lower Miocene about 20 Mya. Copyright © 2015 Elsevier Inc. All rights reserved.
Kovacs, Gabor G; Xie, Sharon X; Robinson, John L; Lee, Edward B; Smith, Douglas H; Schuck, Theresa; Lee, Virginia M-Y; Trojanowski, John Q
2018-06-11
Aging-related tau astrogliopathy (ARTAG) describes tau pathology in astrocytes in different locations and anatomical regions. In the present study we addressed the question of whether sequential distribution patterns can be recognized for ARTAG or astroglial tau pathologies in both primary FTLD-tauopathies and non-FTLD-tauopathy cases. By evaluating 687 postmortem brains with diverse disorders we identified ARTAG in 455. We evaluated frequencies and hierarchical clustering of anatomical involvement and used conditional probability and logistic regression to model the sequential distribution of ARTAG and astroglial tau pathologies across different brain regions. For subpial and white matter ARTAG we recognize three and two patterns, respectively, each with three stages initiated or ending in the amygdala. Subependymal ARTAG does not show a clear sequential pattern. For grey matter (GM) ARTAG we recognize four stages including a striatal pathway of spreading towards the cortex and/or amygdala, and the brainstem, and an amygdala pathway, which precedes the involvement of the striatum and/or cortex and proceeds towards the brainstem. GM ARTAG and astrocytic plaque pathology in corticobasal degeneration follows a predominantly frontal-parietal cortical to temporal-occipital cortical, to subcortical, to brainstem pathway (four stages). GM ARTAG and tufted astrocyte pathology in progressive supranuclear palsy shows a striatum to frontal-parietal cortical to temporal to occipital, to amygdala, and to brainstem sequence (four stages). In Pick's disease cases with astroglial tau pathology an overlapping pattern with PSP can be appreciated. We conclude that tau-astrogliopathy type-specific sequential patterns cannot be simplified as neuron-based staging systems. The proposed cytopathological and hierarchical stages provide a conceptual approach to identify the initial steps of the pathogenesis of tau pathologies in ARTAG and primary FTLD-tauopathies.
Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.
Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng
2017-09-01
Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).
Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons.
Zhao, Xiaohui; Fan, Fuqiang; Zhou, Huaidong; Zhang, Panwei; Zhao, Gaofeng
2018-06-01
In-depth understanding of indigenous microbial assemblages resulted from aged contamination by polycyclic aromatic hydrocarbons (PAHs) is of vital importance in successful in situ bioremediation treatments. Soil samples of three boreholes were collected at 12 different vertical depths. Overall, the dominating three-ring PAHs (76.2%) were closely related to distribution patterns of soil dehydrogenase activity, microbial cell numbers, and Shannon biodiversity index (H') of indigenous microorganisms. High-molecular-weight PAHs tend to yield more diverse communities. Results from 16S rRNA analysis indicated that possible functional groups of PAH degradation include three species in Bacillus cereus group, Bacillus sp. SA Ant14, Nocardioides sp., and Ralstonia pickettii. Principal component analysis indicates significant positive correlations between the content of high-molecular-weight PAHs and the distribution of Bacillus weihenstephanensis KBAB4 and Nocardioides sp. The species B. cereus 03BB102, Bacillus thuringiensis, B. weihenstephanensis KBAB4, and Nocardioides sp. were recognized as main PAH degraders and thus recommended to be utilized in further bioremediation applications. The vertical distribution characteristics of PAHs in soil profiles (1-12 m) and the internal relationship between the transport mechanisms of PAHs and the response of soil biological properties help further understand the microbial diversity and activity in an aged site.
Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E
2013-10-01
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.
Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation.
Bonaventura, Rosa; Matranga, Valeria
2017-07-01
The sea urchin embryo is a well-recognized developmental biology model and its use in toxicological studies has been widely appreciated. Many studies have focused on the evaluation of the effects of chemical stressors and their mixture in marine ecosystems using sea urchin embryos. These are well equipped with defense genes used to cope with chemical stressors. Recently, ultraviolet radiation (UVR), particularly UVB (280-315 nm), received more attention as a physical stressor. Mainly in the Polar Regions, but also at temperate latitudes, the penetration of UVB into the oceans increases as a consequence of the reduction of the Earth's ozone layer. In general, UVR induces oxidative stress in marine organisms affecting molecular targets such as DNA, proteins, and lipids. Depending on the UVR dose, developing sea urchin embryos show morphological perturbations affecting mainly the skeleton formation and patterning. Nevertheless, embryos are able to protect themselves against excessive UVR, using mechanisms acting at different levels: transcriptional, translational and post-translational. In this review, we recommend the sea urchin embryo as a suitable model for testing physical stressors such as UVR and summarize the mechanisms adopted to deal with UVR. Moreover, we review UV-induced apoptotic events and the combined effects of UVR and other stressors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular evidence for species-level distinctions in clouded leopards.
Buckley-Beason, Valerie A; Johnson, Warren E; Nash, Willliam G; Stanyon, Roscoe; Menninger, Joan C; Driscoll, Carlos A; Howard, JoGayle; Bush, Mitch; Page, John E; Roelke, Melody E; Stone, Gary; Martelli, Paolo P; Wen, Ci; Ling, Lin; Duraisingam, Ratna K; Lam, Phan V; O'Brien, Stephen J
2006-12-05
Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats. This secretive, mid-sized (16-23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A). We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known geographic origin (Figure 1A, Tables S1 ans S2 in the Supplemental Data available online). We found strong phylogeographic monophyly and large genetic distances between N. n. nebulosa (mainland) and N. n. diardi (Borneo; n = 3 individuals) with mtDNA (771 bp), nuclear DNA (3100 bp), and 51 microsatellite loci. Thirty-six fixed mitochondrial and nuclear nucleotide differences and 20 microsatellite loci with nonoverlapping allele-size ranges distinguished N. n. nebulosa from N. n. diardi. Along with fixed subspecies-specific chromosomal differences, this degree of differentiation is equivalent to, or greater than, comparable measures among five recognized Panthera species (lion, tiger, leopard, jaguar, and snow leopard). These distinctions increase the urgency of clouded leopard conservation efforts, and if affirmed by morphological analysis and wider sampling of N. n. diardi in Borneo and Sumatra, would support reclassification of N. n. diardi as a new species (Neofelis diardi).
Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria
2018-06-14
Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.
Luo, Qiaohui; Yu, Neng; Shi, Chunfei; Wang, Xiaoping; Wu, Jianmin
2016-12-01
A surface plasmon resonance (SPR) sensor combined with nanoscale molecularly imprinted polymer (MIP) film as recognition element was developed for selective detection of the antibiotic ciprofloxacin (CIP). The MIP film on SPR sensor chip was prepared by in situ photo-initiated polymerization method which has the advantages of short polymerization time, controllable thickness and good uniformity. The surface wettability and thickness of MIP film on SPR sensor chip were characterized by static contact angle measurement and stylus profiler. The MIP-SPR sensor exhibited high selectivity, sensitivity and good stability for ciprofloxacin. The imprinting factors of the MIP-SPR sensor to ciprofloxacin and its structural analogue ofloxacin were 2.63 and 3.80, which is much higher than those to azithromycin, dopamine and penicillin. The SPR response had good linear relation with CIP concentration over the range 10 -11 -10 -7 molL -1 . The MIP-SPR sensor also showed good repeatability and stability during cyclic detections. On the basis of the photo-initiated polymerization method, a surface plasmon resonance imaging (SPRi) chip modified with three types of MIP sensing spots was fabricated. The MIPs-SPRi sensor shows different response patterns to ciprofloxacin and azithromycin, revealing the ability to recognize different antibiotic molecules. Copyright © 2016 Elsevier B.V. All rights reserved.
Salazar, C; Haussmann, D; Kausel, G; Figueroa, J
2016-02-01
In fish, the innate immune system is the primary response against infection. Toll-like receptors (TLRs) recognize pathogens through pathogen-associated molecular patterns (PAMPs), and some target molecules of TLRs are homologous between fish and mammals. Piscirickettsia salmonis is one of the main pathogens affecting the salmon industry in Chile. Better knowledge of mechanisms underlying its invasive capacity and recognition of target cells is crucial for vaccine development. Therefore, Salmo salar L. TLR1, TLR22, membrane TLR5M and soluble TLR5S sequences were cloned, and expression kinetics were analysed by RT-qPCR in salmon head kidney cells (SHK-1) infected with three different P. salmonis preparations: alive, formaldehyde treated, extract. Clearly, all analysed TLRs were expressed and transcription level changes were revealed at 2 hpi, 12 or 16 hpi and 24 hpi depending on P. salmonis infection scheme. Increased IL1-beta expression confirmed TLR pathway response. Furthermore, significant expression modulations of several members of the TLR pathway in this in vitro model suggest that P. salmonis extract rather than formaldehyde-inactivated bacteria might strengthen the salmon immune system. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi
2017-01-01
Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.
A view of Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
Pentti Kanerva is working on a new class of computers, which are called pattern computers. Pattern computers may close the gap between capabilities of biological organisms to recognize and act on patterns (visual, auditory, tactile, or olfactory) and capabilities of modern computers. Combinations of numeric, symbolic, and pattern computers may one day be capable of sustaining robots. The overview of the requirements for a pattern computer, a summary of Kanerva's Sparse Distributed Memory (SDM), and examples of tasks this computer can be expected to perform well are given.
Toursel, C; Dzierszinski, F; Bernigaud, A; Mortuaire, M; Tomavo, S
2000-12-01
The obligate intracellular protozoan parasite Toxoplasma gondii has a single tubular mitochondrion. During infection, it recruits the host cell's mitochondria abutting to the intracellular vacuole, that contains the parasites. The respective contribution of host and parasitic mitochondria in the intracellular growth of T. gondii remains unknown. Heat shock protein, HSP60 has been reported in all eukaryotes examined, as an essential chaperone required for the folding and multimeric complex assembly of mitochondrial proteins. Here, we report the isolation and molecular characterization of two cDNAs corresponding to a single T. gondii gene coding for HSP60. Using a model fusion protein, preHSP60-chloramphenicol acetyl transferase (CAT), we demonstrate that the classical 22 amino acid mitochondrial presequence and the adjacent 32 amino acids of the mature protein are both required for the in vivo import into T. gondii mitochondria. The T. gondii HSP60 gene composed of five introns and six exons is transcribed into two related but differently spliced transcripts. Whereas the two transcripts can be detected in both developmental stages within the intermediate host, their levels are significantly increased in bradyzoites when compared to tachyzoites. By immunoblot analysis, the predicted 60-kDa protien corresponding to HSP60 was detected in both tachyzoite and bradyzoite forms. Using immunofluorescence assays. the polyclonal antibodies specific to T. gondii HSP60 recognized the mitochondrion in tachyzoites, as expected. In contrast, these antibodies reacted against two unknown vesicular bodies which are distinct from the classical mitochondrial pattern in bradyzoites. Taken together. these expression patterns of mitochondrial chaperone HSP60 suggests stage-specific induction of the respiratory pathway in the protozoan parasite T. gondii.
Alwan, Nisreen; Esmaeili, Hamid-Reza; Krupp, Friedhelm
2016-01-01
Capoeta damascina was earlier considered by many authors as one of the most common freshwater fish species found throughout the Levant, Mesopotamia, Turkey, and Iran. However, owing to a high variation in morphological characters among and within its various populations, 17 nominal species were described, several of which were regarded as valid by subsequent revising authors. Capoeta damascina proved to be a complex of closely related species, which had been poorly studied. The current study aims at defining C. damascina and the C. damascina species complex. It investigates phylogenetic relationships among the various members of the C. damascina complex, based on mitochondrial and nuclear DNA sequences. Phylogenetic relationships were projected against paleogeographical events to interpret the geographic distribution of the taxa under consideration in relation to the area's geological history. Samples were obtained from throughout the geographic range and were subjected to genetic analyses, using two molecular markers targeting the mitochondrial cytochrome oxidase I (n = 103) and the two adjacent divergence regions (D1-D2) of the nuclear 28S rRNA genes (n = 65). Six closely related species were recognized within the C. damascina complex, constituting two main lineages: A western lineage represented by C. caelestis, C. damascina, and C. umbla and an eastern lineage represented by C. buhsei, C. coadi, and C. saadii. The results indicate that speciation of these taxa is rather a recent event. Dispersal occurred during the Pleistocene, resulting in present-day distribution patterns. A coherent picture of the phylogenetic relationships and evolutionary history of the C. damascina species complex is drawn, explaining the current patterns of distribution as a result of paleogeographic events and ecological adaptations.
Alwan, Nisreen; Esmaeili, Hamid-Reza; Krupp, Friedhelm
2016-01-01
Capoeta damascina was earlier considered by many authors as one of the most common freshwater fish species found throughout the Levant, Mesopotamia, Turkey, and Iran. However, owing to a high variation in morphological characters among and within its various populations, 17 nominal species were described, several of which were regarded as valid by subsequent revising authors. Capoeta damascina proved to be a complex of closely related species, which had been poorly studied. The current study aims at defining C. damascina and the C. damascina species complex. It investigates phylogenetic relationships among the various members of the C. damascina complex, based on mitochondrial and nuclear DNA sequences. Phylogenetic relationships were projected against paleogeographical events to interpret the geographic distribution of the taxa under consideration in relation to the area’s geological history. Samples were obtained from throughout the geographic range and were subjected to genetic analyses, using two molecular markers targeting the mitochondrial cytochrome oxidase I (n = 103) and the two adjacent divergence regions (D1-D2) of the nuclear 28S rRNA genes (n = 65). Six closely related species were recognized within the C. damascina complex, constituting two main lineages: A western lineage represented by C. caelestis, C. damascina, and C. umbla and an eastern lineage represented by C. buhsei, C. coadi, and C. saadii. The results indicate that speciation of these taxa is rather a recent event. Dispersal occurred during the Pleistocene, resulting in present-day distribution patterns. A coherent picture of the phylogenetic relationships and evolutionary history of the C. damascina species complex is drawn, explaining the current patterns of distribution as a result of paleogeographic events and ecological adaptations. PMID:27309854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnur, R.E.; Wick, P.A.; Louis, A.
MLS and FDHG syndromes have overlapping phenotypes, including linear skin defects or erosions that heal in cribiform patterns of atrophy and pigmentary change and asymmetric ocular defects. It has been postulated that MLS and FDHG phenotypes reflect changes in the same gene(s) as well as variable X-inactivation patterns. In order to explore this, we studied one new MLS and 2 FDHG patients at clinical, cytogenetic, and molecular levels. Phenotype comparison: We observed a greater variety and wider distribution of cutaneous lesions in FDHG. Only the MLS patient had microphthalmia and sclerocornea with other ocular changes. Skeletal lesions were seen inmore » only one FDHG patient who also had additional problems. Cytogenetics: The MLS patient demonstrated a 46,XX,del(X)(p22) karyotype. We excluded a cryptic Y-translocation by FISH using a Y-chromosome paint. Both FDHG patients had 46,XX karyotypes. Molecular studies: For deletion analysis, somatic cell hybrids containing separated X homologues were made from EBV-transformed LBL lines of all 3 patients. Of 20 hybrids obtained from the MLS patient, only one contained the deleted X, but we recognize that a culture artifact may have occurred in LBL cells prior to fusion. There was also a suggestion of partial skewing of X-homologue representation in FDHG hybrids. The breakpoint for the MLS deletion, which arose on the paternally-derived homologue (by RFLPs), was between DXS16 and AMG; DXS70 and DXS85 were also deleted. This is consistent with reported breakpoints in other MLS patients. Neither FDHG patient was deleted at any of these loci. Our study provides a basis for additional testing in FDHG patients via somatic cell hybrids with new markers and candidate genes from the MLS critical region to confirm or negate the proposed mapping of FDHG to Xp22.3.« less
Li, Hua; Yang, Guiwen; Ma, Fei; Li, Ting; Yang, Huiting; Rombout, Jan H W M; An, Liguo
2017-04-01
In the host innate immune system, various pattern recognition receptors (PRRs) recognize conserved pathogens-associated molecular patterns (PAMPs), and represent an efficient first line of defense against invading pathogens. TLR22 is one of the fish-specific Toll-like receptors (TLRs), identified in a variety of fish species. In this study, we report the cloning and identification of a TLR22 cDNA from the gills of common carp (Cyprinus carpio L.). The full-length CcTLR22 cDNA was 3301 bp long, including a 32 bp 5'-untranslated region (UTR), an open reading frame (ORF) of 2838 bp and a 432 bp 3'-UTR.The CcTLR22 protein was found to comprise a signal peptide, 16 LRR domains, a LRRCT domain in the extracellular region and a TIR domain in the cytoplasmic region, which fits with the characteristic TLR domain architecture. The genomic organization of CcTLR22 was identified, which was encoded by an uninterrupted exon. Sequence alignment and phylogenetic analysis showed that all known teleost TLR22 members were clustered into an independent clade of the TLR22 family, and showed high amino acid identities with other fish TLRs. Real-time PCR assay showed that CcTLR22 mRNA was expressed in almost all tissues examined, while the levels obviously varied among different tissues. When challenged with poly(I:C) (a viral model) or A. hydrophila bacteria, the expression level of CcTLR22 was up-regulated in a variety of common carp tissues. These results indicate that CcTLR22 plays a significant role in systemic as well as mucosal defence after viral or bacterial stimulation or infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Artificial Immune System for Recognizing Patterns
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2005-01-01
A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.
Silveira, Rosana Beatriz; Siccha-Ramirez, Raquel; Silva, José Rodrigo Santos; Oliveira, Claudio
2014-09-16
For many decades only two species of seahorses were recognized from Brazil: Hippocampus reidi Ginsburg, 1933, the long snout seahorse, and H. erectus Perry, 1810, the lined seahorse. The presence of a possible third species, recognized in 2002, brought about the need for a broad revision of the genus in Brazilian waters. A total of 335 specimens of seahorses, obtained from Brazilian and other collections, representing the three putative species from Brazil were analyzed: H. reidi, the species of greatest abundance and occurs in estuaries and the sea; H. erectus, which occurs only in the sea, and Hippocampus patagonicus was also determined to be present based on multiple specimens. Our morphometric / numerical and molecular analysis showed that the species currently identified as H. erectus in Brazil is actually H. patagonicus Piacentino & Luzatto, 2004. The existence of a possible third species, was instead based on the true H. erectus, as confirmed in the present study by the study of classical systematic and mitochondrial analysis. Thus, we recognize three species of seahorses in Brazil: H. erectus, H. reidi and H. patagonicus.
Combustibility Tests of 1,1,1,2-tetrafluoroethane in a Simulated Compressor Cylinder
NASA Technical Reports Server (NTRS)
Babcock, Dale A.; Bruce, Robert A.
1997-01-01
The advantages of high-molecular-weight gas (heavy gas) as a wind-tunnel medium have been recognized for some time. The current heavy gas of choice chlorofluorocarbon-12(CFC-12) (refrigerant R12) for the Transonic Dynamics Tunnel(TDT) must be replaced because manufacture of this gas ceased in 1995. An attractive replacement is 1,1,1,2-tetrafluoroethane (refrigerant R134a). Acceptable properties of this gas include molecular weight and speed of sound. Its vapor pressure allows simplified reclamation from mixtures with air. However, it is recognized that R134a is combustible under certain conditions of temperature, pressure, and concentration. A comprehensive study was conducted to identify those conditions and the influence of various parameters on the combustibility of the gas-air mixture.
A Monograph of Conostegia (Melastomataceae, Miconieae).
Kriebel, Ricardo
2016-01-01
A recent molecular phylogenetic analysis identified a clade containing all species of Conostegia, but that also included species of Clidemia and Miconia nested inside. A taxonomic revision of a more broadly circumscribed Conostegia is presented here. In total, 77 species of Conostegia are recognized. One species from Ecuador, Conostegia ortizae is described as new. Twenty-nine new combinations are proposed for the species of Clidemia and Miconia that fall inside Conostegia. Two new names are proposed for the two species for which the epithet was previously occupied in Conostegia. An infrageneric classification of Conostegia is proposed recognizing three sections based on the results of the molecular phylogeny. This taxonomic revision includes ample documentation of the anatomy and morphology of most species in the genus, taxonomic descriptions, a dichotomous key, and distribution maps for all species.
Fully Exploiting The Potential Of The Periodic Table Through Pattern Recognition.
ERIC Educational Resources Information Center
Schultz, Emeric
2005-01-01
An approach to learning chemical facts that starts with the periodic table and depends primarily on recognizing and completing patterns and following a few simple rules is described. This approach exploits the exceptions that arise and uses them as opportunities for further concept development.
ERIC Educational Resources Information Center
Eoyang, Glenda H.
2007-01-01
Complex human interactions involve more than just performance toward pre-determined goals. For this reason, systems that measure and seek to improve performance must adapt to a wide range of ever-changing patterns of individual and group behavior. Historically, HPT professionals have recognized these complexities and responded in a variety of…
Eckert, Andrew J; Tearse, Brandon R; Hall, Benjamin D
2008-04-01
Biogeographical patterns within the California Floristic Province have been greatly affected by geological and climatic events. Here, we investigate the phylogeography of foxtail pine (Pinus balfouriana) in an effort to date its range disjunction using molecular data and to further our understanding of phylogeographical patterns for plants within the California Floristic Province. The distribution of foxtail pine is characterized by a 500-km disjunction separating populations located in the Klamath Mountains from those in the southern Sierra Nevada. Previous authors suggested that this disjunction occurred approximately 4000-8000 years ago during the Holocene Xerotherm when western North America became warmer and drier. Those dates, however, are inconsistent with the morphological differences that separate regional populations into formally recognized subspecies. Using the coalescent-based isolation with migration model and DNA sequence data from the chloroplast, mitochondrial, and nuclear genomes, we evaluate several hypotheses addressing the timing of this range disjunction and its effects on subsequent patterns of gene flow. Results from all three genomes are largely consistent with Middle to Early Pleistocene divergence dates. Those dates correspond to the Sherwin glaciation, which was the largest Pleistocene glacial episode in the Sierra Nevada. Gene flow, moreover, was only documented using data from the chloroplast genome, suggesting that low levels of long-distance pollen dispersal (N(e)m < 0.5) have occurred since this divergence event. These results are extended to a discussion of the biogeographical development of subalpine forests in California.
Characterisation of monoclonal antibodies specific for hamster leukocyte differentiation molecules.
Rees, Jennifer; Haig, David; Mack, Victoria; Davis, William C
2017-01-01
Flow cytometry was used to identify mAbs that recognize conserved epitopes on hamster leukocyte differentiation molecules (hLDM) and also to characterize mAbs developed against hLDM. Initial screening of mAbs developed against LDMs in other species yielded mAbs specific for the major histocompatibility (MHC) II molecule, CD4 and CD18. Screening of sets of mAbs developed against hLDM yielded 22 new mAbs, including additional mAbs to MHC II molecules and mAbs that recognize LDMs expressed on all leukocytes, granulocytes, all lymphocytes, all T cells, a subset of T cells, or on all B cells. Based on comparison of the pattern of expression of LDMs expressed on all hamster leukocytes with the patterns of expression of known LDMs in other species, as detected by flow cytometry (FC), four mAbs are predicted to recognize CD11a, CD44, and CD45. Cross comparison of mAbs specific for a subset of hamster T cells with a cross reactive mAb known to recognize CD4 in mice and one recognising CD8 revealed they recognize CD4. The characterization of these mAbs expands opportunities to use hamsters as an additional model species to investigate the mechanisms of immunopathogenesis of infectious diseases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
A fluorescence spotlight on the clockwork development and metabolism of bone.
Iimura, Tadahiro; Nakane, Ayako; Sugiyama, Mayu; Sato, Hiroki; Makino, Yuji; Watanabe, Takashi; Takagi, Yuzo; Numano, Rika; Yamaguchi, Akira
2012-05-01
Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.
Anuran radiations and the evolution of tadpole morphospace
Roelants, Kim; Haas, Alexander; Bossuyt, Franky
2011-01-01
Anurans (frogs and toads) are unique among land vertebrates in possessing a free-living larval stage that, parallel to adult frogs, diversified into an impressive range of ecomorphs. The tempo and mode at which tadpole morphology evolved through anuran history as well as its relationship to lineage diversification remain elusive. We used a molecular phylogenetic framework to examine patterns of morphological evolution in tadpoles in light of observed episodes of accelerated lineage diversification. Our reconstructions show that the expansion of tadpole morphospace during the basal anuran radiation in the Triassic/Early Jurassic was unparalleled by the basal neobatrachian radiation in the Late Jurassic/Early Cretaceous or any subsequent radiation in the Late Cretaceous/Early Tertiary. Comparative analyses of radiation episodes indicate that the slowdown of morphospace expansion was caused not only by a drop in evolutionary rate after the basal anuran radiation but also by an overall increase in homoplasy in the characters that did evolve during later radiations. The overlapping sets of evolving characters among more recent radiations may have enhanced tadpole diversity by creating unique combinations of homoplastic traits, but the lack of innovative character changes prevented the exploration of fundamental regions in morphospace. These complex patterns transcend the four traditionally recognized tadpole morphotypes and apply to most tissue types and body parts. PMID:21555583
Gene expression characterizes different nutritional strategies among three mixotrophic protists.
Liu, Zhenfeng; Campbell, Victoria; Heidelberg, Karla B; Caron, David A
2016-07-01
Mixotrophic protists, i.e. protists that can carry out both phototrophy and heterotrophy, are a group of organisms with a wide range of nutritional strategies. The ecological and biogeochemical importance of these species has recently been recognized. In this study, we investigated and compared the gene expression of three mixotrophic protists, Prymnesium parvum, Dinobyron sp. and Ochromonas sp. under light and dark conditions in the presence of prey using RNA-Seq. Gene expression of the obligately phototrophic P. parvum and Dinobryon sp. changed significantly between light and dark treatments, while that of primarily heterotrophic Ochromonas sp. was largely unchanged. Gene expression of P. parvum and Dinobryon sp. shared many similarities, especially in the expression patterns of genes related to reproduction. However, key genes involved in central carbon metabolism and phagotrophy had different expression patterns between these two species, suggesting differences in prey consumption and heterotrophic nutrition in the dark. Transcriptomic data also offered clues to other physiological traits of these organisms such as preference of nitrogen sources and photo-oxidative stress. These results provide potential target genes for further exploration of the mechanisms of mixotrophic physiology and demonstrate the potential usefulness of molecular approaches in characterizing the nutritional modes of mixotrophic protists. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.
Iwabuchi, Kazuhisa
2015-01-01
Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.
Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.
Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J
2015-04-01
Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Self/nonself perception in plants in innate immunity and defense
Sanabria, Natasha M; Huang, Ju-Chi
2010-01-01
The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism. PMID:21559176
The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function.
Sina, Christian; Kemper, Claudia; Derer, Stefanie
2018-06-01
The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function. Appropriate activation of the intestinal complement system seems to play an important role in the resolution of chronic intestinal inflammation, while over-activation and/or dysregulation may worsen intestinal inflammation. Mice deficient for single complement components suffer from enhanced intestinal inflammation mimicking the phenotype of patients with chronic inflammatory bowel disease (IBD) such as Crohn's disease (CD) or ulcerative colitis (UC). However, the mechanisms leading to complement expression in IECs seem to differ markedly between UC and CD patients. Hence, how IECs, intestinal bacteria and epithelial cell expressed complement components interact in the course of IBD still remains to be mostly elucidated to define potential unique patterns contributing to the distinct subtypes of intestinal inflammation observed in CD and UC. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.
2011-09-01
We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.
Autoinflammation Around AES Total Ankle Replacement Implants.
Koivu, Helka; Takakubo, Yuya; Mackiewicz, Zygmunt; Al-Samadi, Ahmed; Soininen, Antti; Peled, Nitai; Kukis, Modestas; Trokovic, Nina; Konttinen, Yrjö T
2015-12-01
Failure of total ankle replacement (TAR) can be characterized by early peri-implant osteolysis even in the presence of very modest numbers of wear particles. The hypothesis of the study was that this reaction is in part mediated by autoinflammatory responses mediated via damage-associated molecular patterns (DAMPs, danger signals) and pattern-recognizing danger signal receptors (PRRs). Peri-implant tissue and control samples from 10 patients with AES implants were immunostained for hypoxia inducible factor-1α (HIF-1α), activated caspase-3, high-mobility group box 1 (HMGB1), receptor for advanced glycation end product (RAGE), and toll-like receptors TLR2 and TLR4. Results were evaluated on a 0 to 4 scale (from 0% to >50% stained area). Peri-implant tissue around failed TAR implants had a relatively high mean HIF-1α score of 3 on a scale, which however was similar in control samples. HMGB1 (a DAMP) was seen to be mobilized from nuclei to cellular cytoplasm, and the active caspase-3(+) cells were increased. All PRRs were increased in revision samples. Increased expression of HMGB1 and other danger signals together with increased PRR-dependent responsiveness could contribute to autoinflammatory peri-implantitis, multilocular cyst formation, and osteolysis in failed TAR implants. Level IV, case series. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Zaremotlagh, S.; Hezarkhani, A.
2017-04-01
Some evidences of rare earth elements (REE) concentrations are found in iron oxide-apatite (IOA) deposits which are located in Central Iranian microcontinent. There are many unsolved problems about the origin and metallogenesis of IOA deposits in this district. Although it is considered that felsic magmatism and mineralization were simultaneous in the district, interaction of multi-stage hydrothermal-magmatic processes within the Early Cambrian volcano-sedimentary sequence probably caused some epigenetic mineralizations. Secondary geological processes (e.g., multi-stage mineralization, alteration, and weathering) have affected on variations of major elements and possible redistribution of REE in IOA deposits. Hence, the geochemical behaviors and distribution patterns of REE are expected to be complicated in different zones of these deposits. The aim of this paper is recognizing LREE distribution patterns based on whole-rock chemical compositions and automatic discovery of their geochemical rules. For this purpose, the pattern recognition techniques including decision tree and neural network were applied on a high-dimensional geochemical dataset from Choghart IOA deposit. Because some data features were irrelevant or redundant in recognizing the distribution patterns of each LREE, a greedy attribute subset selection technique was employed to select the best subset of predictors used in classification tasks. The decision trees (CART algorithm) were pruned optimally to more accurately categorize independent test data than unpruned ones. The most effective classification rules were extracted from the pruned tree to describe the meaningful relationships between the predictors and different concentrations of LREE. A feed-forward artificial neural network was also applied to reliably predict the influence of various rock compositions on the spatial distribution patterns of LREE with a better performance than the decision tree induction. The findings of this study could be effectively used to visualize the LREE distribution patterns as geochemical maps.
Is pigment patterning in fish skin determined by the Turing mechanism?
Watanabe, Masakatsu; Kondo, Shigeru
2015-02-01
More than half a century ago, Alan Turing postulated that pigment patterns may arise from a mechanism that could be mathematically modeled based on the diffusion of two substances that interact with each other. Over the past 15 years, the molecular and genetic tools to verify this prediction have become available. Here, we review experimental studies aimed at identifying the mechanism underlying pigment pattern formation in zebrafish. Extensive molecular genetic studies in this model organism have revealed the interactions between the pigment cells that are responsible for the patterns. The mechanism discovered is substantially different from that predicted by the mathematical model, but it retains the property of 'local activation and long-range inhibition', a necessary condition for Turing pattern formation. Although some of the molecular details of pattern formation remain to be elucidated, current evidence confirms that the underlying mechanism is mathematically equivalent to the Turing mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Young Mee; Baranska, Malgorzata
2018-05-01
This special issue of the Spectrochimica Acta A is dedicated to the retirement of Professor Yukihiro Ozaki of Kwansei Gakuin University, Japan as an internationally well recognized scientist in molecular spectroscopy studies including vibrational and electronic spectroscopy.
ERIC Educational Resources Information Center
James, Alan Russell
2000-01-01
Using music in the classroom enhances learning. Music and dance provide an opportunity for positive social interaction. Singing fosters understanding of the sound and rhythm of language. Exposing children to the patterns of different kinds of music helps them to recognize patterns in mathematics. Background music in the classroom reduces stress…
Pattern Recognition by Retina-Like Devices.
ERIC Educational Resources Information Center
Weiman, Carl F. R.; Rothstein, Jerome
This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…
Estimation, modeling, and simulation of patterned growth in extreme environments.
Strader, B; Schubert, K E; Quintana, M; Gomez, E; Curnutt, J; Boston, P
2011-01-01
In the search for life on Mars and other extraterrestrial bodies or in our attempts to identify biological traces in the most ancient rock record of Earth, one of the biggest problems facing us is how to recognize life or the remains of ancient life in a context very different from our planet's modern biological examples. Specific chemistries or biological properties may well be inapplicable to extraterrestrial conditions or ancient Earth environments. Thus, we need to develop an arsenal of techniques that are of broader applicability. The notion of patterning created in some fashion by biological processes and properties may provide such a generalized property of biological systems no matter what the incidentals of chemistry or environmental conditions. One approach to recognizing these kinds of patterns is to look at apparently organized arrangements created and left by life in extreme environments here on Earth, especially at various spatial scales, different geologies, and biogeochemical circumstances.
An, Miao; Deng, Min; Zheng, Si-Si; Jiang, Xiao-Long; Song, Yi-Gang
2017-01-01
Natural introgression can cause negative effects where rare species experience genetic assimilation and invade by their abundant congeners. Quercus austrocochinchinensis and Q. kerrii (subgenus Cyclobalanopsis) are a pair of closely related species in the Indo-China area. Morphological intermediates of the two species have been reported in this region. In this study, we used AFLP, SSR and two key leaf morphological diagnostic traits to study the two Q. austrocochinchinensis populations, two pure Q. kerrii and two putative hybrid populations in China. Rates of individual admixture were examined using the Bayesian clustering programs STRUCTURE and NewHybrids, with no a priori species assignment. In total, we obtained 151 SSR alleles and 781 polymorphic loci of AFLP markers. Population differentiation inferred by SSR and AFLP was incoherent with recognized species boundaries. Bayesian admixture analyses and principal coordinate analysis identified more hybrids and backcrossed individuals than morphological intermediates in the populations. SSR inferred a wide genetic assimilation in Q. austrocochinchinensis, except for subpopulation D2 in the core area of Xi-Shuang-Ban-Na Nature Reserve (XSBN). However, AFLP recognized more Q. austrocochinchinensis purebreds than SSR. Analysis using NewHybrids on AFLP data indicated that these hybridized individuals were few F2 and predominantly backcrosses with both parental species. All these evidences indicate the formation of a hybrid swarm at XSBN where the two species co-exist. Both AFLP and SSR recognized that the core protected area of XSBN (D2) has a high percentage of Q. austrocochinchinensis purebreds and a unique germplasm. The Hainan population and the other subpopulations of XSBN of the species might have lost their genetic integrity. Our results revealed a clear genetic differentiation in the populations and subpopulations of Q. austrocochinchinensis and ongoing introgression between Q. austrocochinchinensis and Q. kerrii at the disturbed contact areas. Combining the results from genetic and morphological analyses, the conservation of subpopulation D2 should be prioritized. Conservation and restoration of the integrity of tropical ravine rainforest is an important long-term goal for the successful conservation of Q. austrocochinchinensis. The fine-scale landscape might play an essential role in shaping the spatial patterns of hybridization. Further studies are needed to evaluate these patterns and dynamics. PMID:28270827
NFAT Signaling and the Tumorigenic Microenvironment of the Prostate
2017-12-01
ABSTRACT Although the importance of microenvironment in prostate cancer is widely recognized, the molecular and cellular processes leading from genetic ...non-invasive clinical tests. Second, the illustration of the main cellular and molecular components in the tumorigenic microenvironment provides new...potential of NFATc1 as a novel biomarker for prostate cancer diagnosis/prognosis. We will take advantage of the cellular precision, genetic manipulability
Kentaro Hosaka; Scott T. Bates; Ross E. Beever; Michael A. Castellano; Wesley Colgan; Laura S. Dominguez; Eduardo R. Nouhra; Jozsef Geml; Admir J. Giachini; S. Ray Kenney; Nicholas B. Simpson; Joseph W. Spatafora; James M. Trappe
2006-01-01
Molecular phylogenetic analyses for the gomphoid-phalloid fungi were conducted based on the five gene dataset with extensive taxon sampling. The monophyly of the gomphoid-phalloid clade was strongly supported, and four well supported major subclades were recognized. Three of the four subclades were represented entirely by gastroid taxa, and only Gomphales contained...
Exploiting a Molecular Gleason Grade for Prostate Cancer Therapy
2008-03-01
influenced by epigenetic events. Through comprehensive studies of genome and gene expression alterations, it is clear that prostate cancers are...recognizing grade-determinant proteins (months 1-12). To date, we have purchased (or acquired) antibodies recognizing; TMPRSS2, MAOA , DAD1, ERG, Jagged...and neoplastic prostate cases: TMPRSS2, MAOA , DAD1, ERG, Jagged, p63, AMACR, MUC1, FLNA, ALSCR2, CCNG2, FLH2, GSTMU1, PC4, RSK2, and SMS—see reportable
Magnocellular pathway for rotation invariant Neocognitron.
Ting, C H
1993-03-01
In the mammalian visual system, magnocellular pathway and parvocellular pathway cooperatively process visual information in parallel. The magnocellular pathway is more global and less particular about the details while the parvocellular pathway recognizes objects based on the local features. In many aspects, Neocognitron may be regarded as the artificial analogue of the parvocellular pathway. It is interesting then to model the magnocellular pathway. In order to achieve "rotation invariance" for Neocognitron, we propose a neural network model after the magnocellular pathway and expand its roles to include surmising the orientation of the input pattern prior to recognition. With the incorporation of the magnocellular pathway, a basic shift in the original paradigm has taken place. A pattern is now said to be recognized when and only when one of the winners of the magnocellular pathway is validified by the parvocellular pathway. We have implemented the magnocellular pathway coupled with Neocognitron parallel on transputers; our simulation programme is now able to recognize numerals in arbitrary orientation.
Spatial acoustic radiation of respiratory sounds for sleep evaluation.
Shabtai, Noam R; Zigel, Yaniv
2017-09-01
Body posture has an effect on sleeping quality and breathing disorders and therefore it is important to be recognized for the completion of the sleep evaluation process. Since humans have a directional acoustic radiation pattern, it is hypothesized that microphone arrays can be used to recognize different body postures, which is highly practical for sleep evaluation applications that already measure respiratory sounds using distant microphones. Furthermore, body posture may have an effect on distant microphone measurement; hence, the measurement can be compensated if the body posture is correctly recognized. A spherical harmonics decomposition approach to the spatial acoustic radiation is presented, assuming an array of eight microphones in a medium-sized audiology booth. The spatial sampling and reconstruction of the radiation pattern is discussed, and a final setup for the microphone array is recommended. A case study is shown using recorded segments of snoring and breathing sounds of three human subjects in three body postures in a silent but not anechoic audiology booth.
Nonaccidental head injury in children. Historical vignette.
Al-Holou, Wajd N; O'Hara, Edward A; Cohen-Gadol, Aaron A; Maher, Cormac O
2009-06-01
Our current understanding of nonaccidental head injury in children is the result of decades of effort and the tireless work of numerous physicians. In 1860 Auguste Ambroise Tardieu, a French forensics expert, recognized important patterns of injury in children and identified nonaccidental trauma as the cause of these injuries. His work was ignored. In the years that followed, physicians continued to report these patterns of injury but were unable to identify the etiology. A fundamental misunderstanding of the usual cause of subdural hematoma (SDH) contributed to the confusion at that time. Early in the 20th century, neurosurgeons such as Wilfred Trotter recognized that SDHs were traumatic in origin. However, even Trotter's efforts to expose faults in the theories that SDHs primarily resulted from inflammatory or infectious processes were not accepted immediately. Eventually, the pattern of injuries in children was again recognized both by neurosurgeons, who began to identify an association between trauma-induced SDHs and retinal hemorrhages, and by radiologists, who began to note SDHs in conjunction with osseous lesions. Not until the 1950s and 1960s, however, did physicians begin to routinely identify nonaccidental trauma as the cause of these injuries. Following the recognition of child abuse, a pattern of injuries in conjunction with shaking was identified and is currently known as shaken baby syndrome. Since its identification, our understanding of this syndrome has been modified as a result of new medical research, legal challenges, and popular media forces.
Legey, Ana Paula; Pinho, Ana Paula; Xavier, Samanta C C; Marchevsky, Renato; Carreira, João Carlos; Leon, Leonor L; Jansen, Ana Maria
2003-01-01
Philander frenata and Didelphis marsupialis harbor parasitism by Trypanosoma cruzi without developing any apparent disease and on the contrary to D. marsupialis, P. frenata maintains parasitism by T. cruzi II subpopulations. Here we compared the humoral immune response of the two didelphids naturally and experimentally infected with T. cruzi II group, employing SDS-PAGE/Western blot techniques and by an Indirect immunofluorescence assay. We also studied the histopathological pattern of naturally and experimentally infected P. frenata with T. cruzi. P. frenata sera recognized more antigens than D. marsupialis, and the recognition pattern did not show any change over the course of the follow up of both didelphid species. Polypeptides of 66 and 90kDa were the most prominent antigens recognized by both species in the soluble and enriched membrane fractions. P. frenata recognized intensely also a 45kDa antigen. Our findings indicate that: 1) there were no quantitative or qualitative differences in the patent or subpatent phases in the recognition pattern of P. frenata; 2) the significant differences in the recognition pattern of parasitic antigens by P. frenata and D. marsupialis sera suggest that they probably "learned" to live in harmony with T. cruzi by different strategies; 3) although P. frenata do not display apparent disease, tissular lesions tended to be more severe than has been described in D. marsupialis; and 4) Both didelphids probably acquired infection by T. cruzi after their evolutionary divergence.
Clinical and pathological implications of miRNA in bladder cancer.
Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana
2015-01-01
MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20-22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.
Tapping the woodpecker tree for evolutionary insight.
Shakya, Subir B; Fuchs, Jérôme; Pons, Jean-Marc; Sheldon, Frederick H
2017-11-01
Molecular phylogenetic studies of woodpeckers (Picidae) have generally focused on relationships within specific clades or have sampled sparsely across the family. We compared DNA sequences of six loci from 203 of the 217 recognized species of woodpeckers to construct a comprehensive tree of intrafamilial relationships. We recovered many known, but also numerous unknown, relationships among clades and species. We found, for example, that the three picine tribes are related as follows (Picini, (Campephilini, Melanerpini)) and that the genus Dinopium is paraphyletic. We used the tree to analyze rates of diversification and biogeographic patterns within the family. Diversification rate increased on two occasions during woodpecker history. We also tested diversification rates between temperate and tropical species but found no significant difference. Biogeographic analysis supported an Old World origin of the family and identified at least six independent cases of New World-Old World sister relationships. In light of the tree, we discuss how convergence, mimicry, and potential cases of hybridization have complicated woodpecker taxonomy. Copyright © 2017 Elsevier Inc. All rights reserved.
The First Bromeligenous Species of Dendropsophus (Anura: Hylidae) from Brazil's Atlantic Forest.
Ferreira, Rodrigo B; Faivovich, Julián; Beard, Karen H; Pombal, José P
2015-01-01
We describe a new treefrog species of Dendropsophus collected on rocky outcrops in the Brazilian Atlantic Forest. Ecologically, the new species can be distinguished from all known congeners by having a larval phase associated with rainwater accumulated in bromeliad phytotelms instead of temporary or lentic water bodies. Phylogenetic analysis based on molecular data confirms that the new species is a member of Dendropsophus; our analysis does not assign it to any recognized species group in the genus. Morphologically, based on comparison with the 96 known congeners, the new species is diagnosed by its small size, framed dorsal color pattern, and short webbing between toes IV-V. The advertisement call is composed of a moderate-pitched two-note call (~5 kHz). The territorial call contains more notes and pulses than the advertisement call. Field observations suggest that this new bromeligenous species uses a variety of bromeliad species to breed in, and may be both territorial and exhibit male parental care.
Endometrial stromal tumors: the new WHO classification.
Conklin, Christopher M J; Longacre, Teri A
2014-11-01
Endometrial stromal tumors are rare uterine mesenchymal neoplasms that have intrigued pathologists for years, not only because they commonly pose diagnostic dilemmas, but also because the classification and pathogenesis of these tumors has been widely debated. The current World Health Organization recognizes 4 categories of endometrial stromal tumor: endometrial stromal nodule (ESN), low-grade endometrial stromal sarcoma (LG-ESS), high-grade endometrial stromal sarcoma (HG-ESS), and undifferentiated uterine sarcoma (UUS). uterine sarcoma. These categories are defined by the presence of distinct translocations as well as tumor morphology and prognosis. Specifically, the JAZF1-SUZ12 (formerly JAZF1-JJAZ1) fusion identifies a large proportion of ESN and LG-ESSs, whereas the YWHAE-FAM22 translocation identifies HG-ESSs. The latter tumors appear to have a prognosis intermediate between LG-ESS and UUS, which exhibits no specific translocation pattern. This review (1) presents the clinicopathologic features of endometrial stromal tumors; (2) discusses their immunophenotype; and (3) highlights the recent advances in molecular genetics which explain their pathogenesis and lend support for a new classification system.
The First Bromeligenous Species of Dendropsophus (Anura: Hylidae) from Brazil's Atlantic Forest
Ferreira, Rodrigo B.; Faivovich, Julián; Beard, Karen H.; Pombal, José P.
2015-01-01
We describe a new treefrog species of Dendropsophus collected on rocky outcrops in the Brazilian Atlantic Forest. Ecologically, the new species can be distinguished from all known congeners by having a larval phase associated with rainwater accumulated in bromeliad phytotelms instead of temporary or lentic water bodies. Phylogenetic analysis based on molecular data confirms that the new species is a member of Dendropsophus; our analysis does not assign it to any recognized species group in the genus. Morphologically, based on comparison with the 96 known congeners, the new species is diagnosed by its small size, framed dorsal color pattern, and short webbing between toes IV-V. The advertisement call is composed of a moderate-pitched two-note call (~5 kHz). The territorial call contains more notes and pulses than the advertisement call. Field observations suggest that this new bromeligenous species uses a variety of bromeliad species to breed in, and may be both territorial and exhibit male parental care. PMID:26650515
Learning through ferroelectric domain dynamics in solid-state synapses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyn, Soren; Grollier, Julie; Lecerf, Gwendal
In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport andmore » atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Finally, based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.« less
Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells.
Yu, Vionnie W C; Yusuf, Rushdia Z; Oki, Toshihiko; Wu, Juwell; Saez, Borja; Wang, Xin; Cook, Colleen; Baryawno, Ninib; Ziller, Michael J; Lee, Eunjung; Gu, Hongcang; Meissner, Alexander; Lin, Charles P; Kharchenko, Peter V; Scadden, David T
2016-11-17
Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
Systemic inflammatory response following acute myocardial infarction
Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min
2015-01-01
Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork
Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier
2006-01-01
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (∅<120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane. PMID:16858413
Bouvier, Benjamin
2014-01-07
Ubiquitin is a highly conserved, highly represented protein acting as a regulating signal in numerous cellular processes. It leverages a single hydrophobic binding patch to recognize and bind a large variety of protein domains with remarkable specificity, but can also self-assemble into chains of poly-diubiquitin units in which these interfaces are sequestered, profoundly altering the individual monomers' recognition characteristics. Despite numerous studies, the origins of this varied specificity and the competition between substrates for the binding of the ubiquitin interface patch remain under heated debate. This study uses enhanced sampling all-atom molecular dynamics to simulate the unbinding of complexes of mono- or K48-linked diubiquitin bound to several ubiquitin-associated domains, providing insights into the mechanism and free energetics of ubiquitin recognition and binding. The implications for the subtle tradeoff between the stability of the polyubiquitin signal and its easy recognition by target protein assemblies are discussed, as is the enhanced affinity of the latter for long polyubiquitin chains compared to isolated mono- or diubiquitin.
Learning through ferroelectric domain dynamics in solid-state synapses
Boyn, Soren; Grollier, Julie; Lecerf, Gwendal; ...
2017-04-03
In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport andmore » atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Finally, based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.« less
Ofodile, Okom Nkili F C
2007-12-01
Disifin has emerged as a unique and very effective agent used in disinfection of wounds, disinfection of surfaces, materials and water, and other substances contaminated with almost every type of pathogenic microorganism ranging from viruses, bacteria, fungi and yeast, and, very possibly, protozoan parasites, as well. The major active component of Disifin is tosylchloramide sodium (chloramine T). However, the mechanism by which Disifin suppresses the activities of pathogenic microbial agents remains enigmatic. The molecular mechanisms, and the receptors and the signal transducing pathways responsible for the biological effects of Disifin are largely unknown. Despite considerable advances, enormous investigative efforts and large resources invested in the research on infectious diseases, microbial infection still remains a public health problem in many parts of the world. The exact nature of the pathogenic agents responsible for many infectious diseases, and the nature of the receptors mediating the associated inflammatory events are incompletely understood. Recent advances in understanding the molecular basis for mammalian host immune responses to microbial invasion suggest that the first line of defense against microbes is the recognition of pathogen-associated molecular patterns (PAMPs) by a family of transmembrane pattern-recognizing and signal transducing receptor proteins called Toll-like receptors (TLRs). The TLR family plays an instructive role in innate immune responses against microbial pathogens, as well as the subsequent induction of adaptive immune responses. TLRs mediate recognition and inflammatory responses to a wide range of microbial products and are crucial for effective host defense by eradication of the invading pathogens. Now, recent updates demonstrated the ability of Disifin-derived products, Disifin-Animal and Disifin-Pressant to effectively suppress the progression and activities of Chikungunya fever and that of avian influenza A virus [A/cardialis/Germany/72, H7N1: the agent of a highly pathogenic avian influenza (HPAI)] infection, respectively. Overall, the above findings led me to suggest that Disifin and TLRs may mechanistically overlap in the processes of executing their functions against pathogenic microbial organisms. Thus, elucidating and better understanding of the molecular underpinnings responsible for the biochemical effects of Disifin-products, and the nature and mode of the interaction(s) of Disifin with TLRs in the process of exerting their biological effects may open a novel dimension in the research of infectious diseases, which may provide novel therapeutic targets for the prevention and treatment of a wide range of infectious diseases.
Sjöström, K; Ou, J; Whitney, C; Johnson, B; Darveau, R; Engel, D; Page, R C
1994-01-01
Although periodontal treatment by scaling and root planing (SCRP) is known to induce bacteremia, the effect of this procedure on the host immune response is not known. We have determined pre- and post-SCRP immunoglobulin G antibody titers to antigens of Actinobacillus actinomycetemcomitans in the sera of 22 patients with rapidly progressive periodontitis. We also assessed the ability of these sera to enhance phagocytosis and killing of A. actinomycetemcomitans by human polymorphonuclear leukocytes by using a polymorphonuclear leukocyte chemiluminescence (CL) assay. Specific anti-A. actinomycetemcomitans antibody titers were significantly increased at 6 and 12 months after beginning treatment, and CL values were significantly increased at 12 months, whereas mean interproximal pocket depths were significantly decreased at 12 months after beginning treatment. When patients were classified as either seropositive (twice the median titer of control subjects; n = 10) or seronegative (n = 12), both median titers and CL values were significantly increased for the seronegative group at 6 and 12 months after treatment. In the seropositive group, only the median titer was significantly increased at 12 months. Western blot (immunoblot) patterns for six seronegative and six seropositive patients differed remarkably at the baseline. Before treatment, all of the seropositive patients recognized high-molecular-mass lipopolysaccharide (LPS) and a large number of protein components. Patterns were virtually unaffected by therapy. Before treatment, only one of the seronegative patients recognized the LPS smear and none reacted strongly with protein components. Following treatment, slight LPS staining was observed for five of six seronegative patients and detection of protein bands was enhanced in all cases. We conclude that treatment by SCRP induces a humoral immune response, especially in seronegative patients, and that response may play a role in the observed beneficial effects of periodontal treatment. Images PMID:8262620
Liang, Yaosi; Ding, Xu; Yu, Xue; Wang, Yu; Zhou, Ying; He, Jianan; Shi, Yu; Zhang, Yong; Lin, Haoran; Lu, Danqi
2018-03-01
Toll-like receptors (TLRs) are one of the most important innate immune receptors, which recognize various pathogen-associated molecular patterns and activate the downstream immune response. Mouse TLR13 has been found to recognize a highly conserved sequence from bacterial or viral RNA and activate the myeloid differentiation primary response gene 88-dependent signaling response. The function of teleost tlr13 is still not fully understood, especially its relationship with bacterial RNA. In our study, we identified and characterized a tlr13 from Epinephelus coioides (orange-spotted grouper). The full-length cDNA of Eco. tlr13 contained a 2844 bp open reading frame, encoding 947 amino acids. The polypeptide was constitutive of a signal peptide, 13 leucine-rich repeats domains, a C-terminal leucine-rich repeats, a transmembrane domain and a conserved Toll/interleukin (IL)-1 receptor domain, indicating that Eco. Tlr13 exhibited a typical TLR structure. Multiple alignments showed that the Toll/IL-1 receptor domain of Eco. Tlr13 was identical with other homologues, and the phylogenetic tree suggested that Eco. Tlr13 was clustered with other TLR13s and had the closest relationship with predicted Lates calcarifer (sea bass) Tlr13. Subcellular localization analysis revealed that Eco. Tlr13 colocalized with the endoplasmic reticulum and early endosome. Moreover, Eco. tlr13 was broadly observed in all tested tissues with the relatively high expressions in the brain and immune-related tissues. After challenged with 19-mer Staphylococcus aureus 23S ribosomal RNA-derived oligoribonucleotide (ORN Sa19), the expression of Eco. tlr13 was significantly up-regulated in grouper spleen cells. Also, the luciferase assay further revealed that with the overexpression of Eco. Tlr13 in human embryonic kidney 293T cells, ORN Sa19 activated the promoter activity of interferon-β in a dose-dependent pattern. These results indicate that Eco. tlr13 may involve in the recognition of bacterial RNA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neural net target-tracking system using structured laser patterns
NASA Astrophysics Data System (ADS)
Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun
1996-06-01
In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.
Advanced lung adenocarcinomas with ROS1-rearrangement frequently show hepatoid cell
Kong, Mei; Zhou, Jianya; Ding, Wei; Zhou, Jianying
2016-01-01
Defining distinctive histologic characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) may help identify cases that merit molecular testing. However, the majority of previous reports have focused on surgical specimens but only limited studies assessed histomorphology of advanced NSCLCs. In order to identify the clinical and histological characteristics of ROS1-rearranged advanced NSCLCs, we examined five hundred sixteen Chinese patients with advanced NSCLCs using ROS1 fluorescence in situ hybridization and real-time polymerase chain reaction and then analyzed for clinical and pathological features. We performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement. 19 tumors were identified with ROS1 rearrangement (3.7% of adenocarcinomas). 16 ROS1+ and 122 ROS1- samples with available medical records and enough tumor cells were included for histological analysis. Compared with ROS1-negative advanced NSCLCs, ROS1-rearranged advanced NSCLCs were associated with a younger age at presentation. ROS1 rearrangements were not significantly associated with sex, smoking history, drinking history and metastatic sites. The most common histological pattern was solid growth (12/16), followed by acinar (4/16) growth. 66.7% cases with solid growth pattern showed hepatoid cytology (8/12) and 75% cases with acinar growth pattern showed a cribriform structure (3/4). 18.8% cases were found to have abundant extracellular mucus or signet-ring cells (3/16). Only one case with solid growth pattern showed psammomatous calcifications. In conclusion, age, hepatoid cytology and cribriform structure are the independent predictors for ROS1-rearranged advanced NSCLCs, recognizing these may be helpful in finding candidates for genomic alterations, especially when available tissue samples are limited. PMID:27708233
Differential Muc2 and Muc5ac secretion by stimulated guinea pig tracheal epithelial cells in vitro.
Chorley, Brian N; Crews, Anne L; Li, Yuehua; Adler, Kenneth B; Minnicozzi, Michael; Martin, Linda D
2006-02-25
Mucus overproduction is a characteristic of inflammatory pulmonary diseases including asthma, chronic bronchitis, and cystic fibrosis. Expression of two mucin genes, MUC2 and MUC5AC, and their protein products (mucins), is modulated in certain disease states. Understanding the signaling mechanisms that regulate the production and secretion of these major mucus components may contribute significantly to development of effective therapies to modify their expression in inflamed airways. To study the differential expression of Muc2 and Muc5ac, a novel monoclonal antibody recognizing guinea pig Muc2 and a commercially-available antibody against human MUC5AC were optimized for recognition of specific guinea pig mucins by enzyme-linked immunosorbent assay (ELISA), Western blot, and immunohistochemistry (IHC). These antibodies were then used to analyze expression of Muc2 and another mucin subtype (likely Muc5ac) in guinea pig tracheal epithelial (GPTE) cells stimulated with a mixture of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin 1beta (IL-1beta), and interferon- gamma (IFN-gamma)]. The anti-Muc2 (C4) and anti-MUC5AC (45M1) monoclonal antibodies specifically recognized proteins located in Muc2-dominant small intestinal and Muc5ac-dominant stomach mucosae, respectively, in both Western and ELISA experimental protocols. IHC protocols confirmed that C4 recognizes murine small intestine mucosal proteins while 45M1 does not react. C4 and 45M1 also stained specific epithelial cells in guinea pig lung sections. In the resting state, Muc2 was recognized as a highly expressed intracellular mucin in GPTE cells in vitro. Following cytokine exposure, secretion of Muc2, but not the mucin recognized by the 45M1 antibody (likely Muc5ac), was increased from the GPTE cells, with a concomitant increase in intracellular expression of both mucins. Given the tissue specificity in IHC and the differential hybridization to high molecular weight proteins by Western blot, we conclude that the antibodies used in this study can recognize specific mucin subtypes in guinea pig airway epithelium and in proteins from GPTE cells. In addition, Muc2 is highly expressed constitutively, modulated by inflammation, and secreted differentially (as compared to Muc5ac) in GPTE cells. This finding contrasts with expression patterns in the airway epithelium of a variety of mammalian species in which only Muc5ac predominates.
Lun, Z R; Desser, S S
1996-01-01
The patterns of random amplified fragments and molecular karyotypes of 12 isolates of anuran trypanosomes continuously cultured in vitro were compared by random amplified polymorphic DNA (RAPD) analysis and pulsed field gradient gel electrophoresis (PFGE). The time interval between preparation of two series of samples was one year. Changes were not observed in the number and size of sharp, amplified fragments of DNA samples from both series examined with the ten primers used. Likewise, changes in the molecular karyotypes were not detected between the two samples of these isolates. These results suggest that the molecular karyotype and the RAPD patterns of the anuran trypanosomes remain stable after being cultured continuously in vitro for one year.
Do pattern recognition skills transfer across sports? A preliminary analysis.
Smeeton, Nicholas J; Ward, Paul; Williams, A Mark
2004-02-01
The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.
Molecular pathogenesis of emphysema
Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.
2008-01-01
Emphysema is one manifestation of a group of chronic, obstructive, and frequently progressive destructive lung diseases. Cigarette smoking and air pollution are the main causes of emphysema in humans, and cigarette smoking causes emphysema in rodents. This review examines the concept of a homeostatically active lung structure maintenance program that, when attacked by proteases and oxidants, leads to the loss of alveolar septal cells and airspace enlargement. Inflammatory and noninflammatory mechanisms of disease pathogenesis, as well as the role of the innate and adaptive immune systems, are being explored in genetically altered animals and in exposure models of this disease. These recent scientific advances support a model whereby alveolar destruction resulting from a coalescence of mechanical forces, such as hyperinflation, and more recently recognized cellular and molecular events, including apoptosis, cellular senescence, and failed lung tissue repair, produces the clinically recognized syndrome of emphysema. PMID:18246188
A Monograph of Conostegia (Melastomataceae, Miconieae)
Kriebel, Ricardo
2016-01-01
Abstract A recent molecular phylogenetic analysis identified a clade containing all species of Conostegia, but that also included species of Clidemia and Miconia nested inside. A taxonomic revision of a more broadly circumscribed Conostegia is presented here. In total, 77 species of Conostegia are recognized. One species from Ecuador, Conostegia ortizae is described as new. Twenty-nine new combinations are proposed for the species of Clidemia and Miconia that fall inside Conostegia. Two new names are proposed for the two species for which the epithet was previously occupied in Conostegia. An infrageneric classification of Conostegia is proposed recognizing three sections based on the results of the molecular phylogeny. This taxonomic revision includes ample documentation of the anatomy and morphology of most species in the genus, taxonomic descriptions, a dichotomous key, and distribution maps for all species. PMID:27536193
Crisis Communication during Natural Disasters: Meeting Real and Perceived Needs
NASA Astrophysics Data System (ADS)
Jones, L.
2017-12-01
When significant natural disasters strike, our modern information-driven society turns to scientists, demanding information about the event. As part of their civic duty scientists respond, recognizing how the scientific information could be used to improve response to the disaster and reduce losses. However, what we often find is that the demand for information is not for improved response but to satisfy psychological, often subconscious needs. Human beings evolved our larger brains to better survive against larger and stronger predators. Recognizing that a movement of grass and the lack of birdsong means that a predator is hiding would in turn mean a greater likelihood of having progeny. Our ability to theorize comes from the need to create patterns in the face of danger that will keep us safe. From wondering about someone's exercise habits when we hear they have a heart attack, to blaming hurricane victims for not heeding evacuation orders even if they had no means to evacuate, we respond to disasters by trying to make a pattern that means that we will not suffer the same fate. Much of the demand for information after a natural disaster is a search for these patterns. Faced with a random distribution, many people still make patterns that can reduce their anxiety. The result is that meanings are ascribed to the information that is not supported by the data and was not part of the communication as intended by the scientist. The challenge for science communicators is to recognize this need and present the information is a way that both reduces the anxiety that arises from a lack of knowledge or uncertainty while making clear what patterns can or cannot be made about future risks.
Roy, Sobhan; Ly, Dalam; Li, Nan-Sheng; Altman, John D.; Piccirilli, Joseph A.; Moody, D. Branch; Adams, Erin J.
2014-01-01
CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens. PMID:25298532
Gene Discovery in Bladder Cancer Progression using cDNA Microarrays
Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos
2003-01-01
To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971
Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.
Li, Mo; Bian, Chunjing; Yu, Xiaochun
2014-01-01
Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.
Agarwal, Rahul; Cao, Yuan; Hoffmeier, Klaus; Krezdorn, Nicolas; Jost, Lukas; Meisel, Alejandro Rodriguez; Jüngling, Ruth; Dituri, Francesco; Mancarella, Serena; Rotter, Björn; Winter, Peter; Giannelli, Gianluigi
2017-06-08
The aim of this study was to design a road map for personalizing cancer therapy in hepatocellular carcinoma (HCC) by using molecular pattern diagnostics. As an exploratory study, we investigated molecular patterns of tissues of two tumors from individual HCC patients, which in previous experiments had shown contrasting reactions to the phase 2 transforming growth factor beta receptor 1 inhibitor galunisertib. Cancer-driving molecular patterns encompass - inter alias - altered transcription profiles and somatic mutations in coding regions differentiating tumors from their respective peritumoral tissues and from each other. Massive analysis of cDNA ends and all-exome sequencing demonstrate a highly divergent transcriptional and mutational landscape, respectively, for the two tumors, that offers potential explanations for the tumors contrasting responses to galunisertib. Molecular pattern diagnostics (MPDs) suggest alternative, individual-tumor-specific therapies, which in both cases deviate from the standard sorafenib treatment and from each other. Suggested personalized therapies use kinase inhibitors and immune-focused drugs as well as low-toxicity natural compounds identified using an advanced bioinformatics routine included in the MPD protocol. The MPD pipeline we describe here for the prediction of suitable drugs for treatment of two contrasting HCCs may serve as a blueprint for the design of therapies for various types of cancer.
2017 Outstanding Contributions to ISCB Award: Fran Lewitter.
Fogg, Christiana N; Kovats, Diane E; Berger, Bonnie
2017-01-01
The Outstanding Contributions to the International Society for Computational Biology (ISCB) Award was launched in 2015 to recognize individuals who have made lasting and valuable contributions to the Society through their leadership, service, and educational work, or a combination of these areas. Fran Lewitter is the 2017 winner of the Outstanding Contributions to ISCB Award and will be recognized at the 2017 Intelligent Systems for Molecular Biology (ISMB)/European Conference on Computational Biology, meeting in Prague, Czech Republic being held from July 21-25, 2017.
2017 Outstanding Contributions to ISCB Award: Fran Lewitter
Fogg, Christiana N.; Kovats, Diane E.; Berger, Bonnie
2017-01-01
The Outstanding Contributions to the International Society for Computational Biology (ISCB) Award was launched in 2015 to recognize individuals who have made lasting and valuable contributions to the Society through their leadership, service, and educational work, or a combination of these areas. Fran Lewitter is the 2017 winner of the Outstanding Contributions to ISCB Award and will be recognized at the 2017 Intelligent Systems for Molecular Biology (ISMB)/European Conference on Computational Biology, meeting in Prague, Czech Republic being held from July 21-25, 2017. PMID:28713545
Best Practices for Missing Data Management in Counseling Psychology
ERIC Educational Resources Information Center
Schlomer, Gabriel L.; Bauman, Sheri; Card, Noel A.
2010-01-01
This article urges counseling psychology researchers to recognize and report how missing data are handled, because consumers of research cannot accurately interpret findings without knowing the amount and pattern of missing data or the strategies that were used to handle those data. Patterns of missing data are reviewed, and some of the common…
ERIC Educational Resources Information Center
Welk, Dorette Sugg
2002-01-01
Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…
Assessing topographic patterns in moisture use and stress using a water balance approach
James M. Dyer
2009-01-01
Through its control on soil moisture patterns, topography's role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily...
ERIC Educational Resources Information Center
Packer, Arnold
The arts deserve a place in education, provided they are properly taught. Humans need art to make their world sensible, find patterns in their experiences, and gain insights into the future. Art, like life, rewards those who grasp new patterns and act on their interpretation of reality. A good education imparts the ability to recognize patterns…
PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,
A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)
Intramodal and Intermodal Functioning of Normal and LD Children
ERIC Educational Resources Information Center
Heath, Earl J.; Early, George H.
1973-01-01
Assessed were the abilities of 50 normal 5-to 9-year-old children and 30 learning disabled 7-to 9-year-old children to recognize temporal patterns presented visually and auditorially (intramodal abilities) and to vocally produce the patterns whether presentation was visual or auditory (intramodal and cross-modal abilities). (MC)
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-05-21
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.
Perceptual learning in a non-human primate model of artificial vision
Killian, Nathaniel J.; Vurro, Milena; Keith, Sarah B.; Kyada, Margee J.; Pezaris, John S.
2016-01-01
Visual perceptual grouping, the process of forming global percepts from discrete elements, is experience-dependent. Here we show that the learning time course in an animal model of artificial vision is predicted primarily from the density of visual elements. Three naïve adult non-human primates were tasked with recognizing the letters of the Roman alphabet presented at variable size and visualized through patterns of discrete visual elements, specifically, simulated phosphenes mimicking a thalamic visual prosthesis. The animals viewed a spatially static letter using a gaze-contingent pattern and then chose, by gaze fixation, between a matching letter and a non-matching distractor. Months of learning were required for the animals to recognize letters using simulated phosphene vision. Learning rates increased in proportion to the mean density of the phosphenes in each pattern. Furthermore, skill acquisition transferred from trained to untrained patterns, not depending on the precise retinal layout of the simulated phosphenes. Taken together, the findings suggest that learning of perceptual grouping in a gaze-contingent visual prosthesis can be described simply by the density of visual activation. PMID:27874058
Gas Source Molecular Beam Epitaxial Growth of GaN
1992-11-25
identify by block number) FIELW GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and Identify by block number) Aluminum gallium nitride (AlGaN...AND TASK OBJECTIVES Aluminum gallium nitride (AIGaN) has long been recognized as a promising radiation hard optoelectronic material. AIGaN has a wide...Efficient, pure, low temperature sources for the gas source molecular beam epitaxial (GSMBE) growth of aluminum gallium nitride will essentially
Rapid evolution in lekking grouse: Implications for taxonomic definitions
Oyler-McCance, Sara J.; St. John, Judy; Quinn, Thomas W.
2010-01-01
Species and subspecies delineations were traditionally defined by morphological and behavioral traits, as well as by plumage characteristics. Molecular genetic data have more recently been used to assess these classifications and, in many cases, to redefine them. The recent practice of utilizing molecular genetic data to examine taxonomic questions has led some to suggest that molecular genetic methods are more appropriate than traditional methods for addressing taxonomic uncertainty and management units. We compared the North American Tetraoninae—which have been defined using plumage, morphology, and behavior—and considered the effects of redefinition using only neutral molecular genetic data (mitochondrial control region and cytochrome oxidase subunit 1). Using the criterion of reciprocal monophyly, we failed to recognize the five species whose mating system is highly polygynous, with males displaying on leks. In lek-breeding species, sexual selection can act to influence morphological and behavioral traits at a rate much faster than can be tracked genetically. Thus, we suggest that at least for lek-breeding species, it is important to recognize the possibility that morphological and behavioral changes may occur at an accelerated rate compared with the processes that led to reciprocal monophyly of putatively neutral genetic markers. Therefore, it is particularly important to consider the possible disconnect between such lines of evidence when making taxonomic revisions and definitions of management units.
Mura, Marie; Combredet, Chantal; Najburg, Valérie; Sanchez David, Raul Y; Tangy, Frédéric; Komarova, Anastassia V
2017-10-15
Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it an attractive candidate vector for preventing other infectious diseases. Yet the great capacity of this vaccine still needs to be understood at the molecular level. MV vaccine strains have different type I interferon (IFN)-inducing abilities that partially depend on the presence of 5' copy-back defective interfering genomes (DI-RNAs). DI-RNAs are pathogen-associated molecular patterns recognized by RIG-I-like receptors (RLRs) (RIG-I, MDA5, and LGP2) that activate innate immune signaling and shape the adaptive immune response. In this study, we characterized the DI-RNAs produced by various modified recombinant MVs (rMVs), including vaccine candidates, as well as wild-type MV. All tested rMVs produced 5' copy-back DI-RNAs that were different in length and nucleotide sequence but still respected the so-called "rule of six." We correlated the presence of DI-RNAs with a larger stimulation of the IFN-β pathway and compared their immunostimulatory potentials. Importantly, we revealed that encapsidation of DI-RNA molecules within the MV nucleocapsid abolished their immunoactive properties. Furthermore, we identified specific interactions of DI-RNAs with both RIG-I and LGP2 but not MDA5. Our results suggest that DI-RNAs produced by rMV vaccine candidates may indeed strengthen their efficiency by triggering RLR signaling. IMPORTANCE Having been administered to hundreds of millions of children, the live attenuated measles virus (MV) vaccine is the safest and most widely used human vaccine, providing high protection with long-term memory. Additionally, recombinant MVs carrying heterologous antigens are promising vectors for new vaccines. The great capacity of this vaccine still needs to be elucidated at the molecular level. Here we document that recombinant MVs produce defective interfering genomes that have high immunostimulatory properties via their binding to RIG-I and LGP2 proteins, both of which are cytosolic nonself RNA sensors of innate immunity. Defective interfering genome production during viral replication should be considered of great importance due to the immunostimulatory properties of these genomes as intrinsic adjuvants produced by the vector that increase recognition by the innate immune system. Copyright © 2017 American Society for Microbiology.
Rachidi, Saleh M.; Qin, Tingting; Sun, Shaoli; Zheng, W. Jim; Li, Zihai
2013-01-01
Background Immune evasion is one of the recognized hallmarks of cancer. Inflammatory responses to cancer can also contribute directly to oncogenesis. Since the immune system is hardwired to protect the host, there is a possibility that cancers, regardless of their histological origins, endow themselves with a common and shared inflammatory cancer-associated molecular pattern (iCAMP) to promote oncoinflammation. However, the definition of iCAMP has not been conceptually and experimentally investigated. Methods and Findings Genome-wide cDNA expression data was analyzed for 221 normal and 324 cancer specimens from 7 cancer types: breast, prostate, lung, colon, gastric, oral and pancreatic. A total of 96 inflammatory genes with consistent dysregulation were identified, including 44 up-regulated and 52 down-regulated genes. Protein expression was confirmed by immunohistochemistry for some of these genes. The iCAMP contains proteins whose roles in cancer have been implicated and others which are yet to be appreciated. The clinical significance of many iCAMP genes was confirmed in multiple independent cohorts of colon and ovarian cancer patients. In both cases, better prognosis correlated strongly with high CXCL13 and low level of GREM1, LOX, TNFAIP6, CD36, and EDNRA. An “Inflammatory Gene Integrated Score” was further developed from the combination of 18 iCAMP genes in ovarian cancer, which predicted overall survival. Noticeably, as a selective nuclear import protein whose immuno-regulatory function just begins to emerge, karyopherin alpha 2 (KPNA2) is uniformly up-regulated across cancer types. For the first time, the cancer-specific up-regulation of KPNA2 and its clinical significance were verified by tissue microarray analysis in colon and head-neck cancers. Conclusion This work defines an inflammatory signature shared by seven epithelial cancer types and KPNA2 as a consistently up-regulated protein in cancer. Identification of iCAMP may not only serve as a novel biomarker for prognostication and individualized treatment of cancer, but also have significant biological implications. PMID:23536776
Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V
2017-06-01
Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas. Immunohistochemical analysis for BerEP4, EMA, and β-catenin can be helpful in limited biopsy specimens. From a molecular biological prospective, BCC and matrical components appear to share some of the gene mutations but have differences in others, but this observation must be validated in a large series.
Global ensemble texture representations are critical to rapid scene perception.
Brady, Timothy F; Shafer-Skelton, Anna; Alvarez, George A
2017-06-01
Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could be supported by global properties of the scene itself rather than the objects within the scene. Here, we argue for a particular instantiation of this view: That scenes are recognized by treating them as a global texture and processing the pattern of orientations and spatial frequencies across different areas of the scene without recognizing any objects. To test this model, we asked whether there is a link between how proficient individuals are at rapid scene perception and how proficiently they represent simple spatial patterns of orientation information (global ensemble texture). We find a significant and selective correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks but not nonspatial summary statistics In a second and third experiment, we additionally show that global ensemble texture information is not only associated with scene recognition, but that preserving only global ensemble texture information from scenes is sufficient to support rapid scene perception; however, preserving the same information is not sufficient for object recognition. Thus, global ensemble texture alone is sufficient to allow activation of scene representations but not object representations. Together, these results provide evidence for a view of scene recognition based on global ensemble texture rather than a view based purely on objects or on nonspatially localized global properties. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Islamic Headdress Influences How Emotion is Recognized from the Eyes
Kret, Mariska Esther; de Gelder, Beatrice
2012-01-01
Previous research has shown a negative bias in the perception of whole facial expressions from out-group members. Whether or not emotion recognition from the eyes is already sensitive to contextual information is presently a matter of debate. In three experiments we tested whether emotions can be recognized when just the eyes are visible and whether this recognition is affected by context cues, such as various Islamic headdresses vs. a cap or a scarf. Our results indicate that fear is still well recognized from a briefly flashed (100 ms) image of a women wearing a burqa with less than 20% transparency of the eye region. Moreover, the type of headdress influences how emotions are recognized. In a group of participants from non-Islamic background, fear was recognized better from women wearing a niqāb than from women wearing a cap and a shawl, whereas the opposite was observed for happy and sad expressions. The response patterns showed that fearful and anger labels were more often attributed to women with a niqāb vs. a cap and a shawl and again, an opposite pattern was observed for the happy response. However, there was no general response bias: both correct and incorrect responses were influenced by the facial expression as well. Anxiety levels and/or explicit negative associations with the Islam as measured via questionnaires did not mediate the effects. Consistent with the face literature, we conclude that the recognition of emotions from the eyes is also influenced by context. PMID:22557983
Sandstrom, Andrew; Scharf, Louise; McRae, Gabrielle; Hawk, Andrew J; Meredith, Stephen C; Adams, Erin J
2012-02-17
The molecular mechanisms by which γδ T cells recognize ligand remain a mystery. The non-classical MHC molecule T22 represents the best characterized ligand for murine γδ T cells, with a motif (W … EGYEL) present in the γδ T cell receptor complementary-determining region 3δ (CDR3δ) loop mediating γδ T cell recognition of this molecule. Produced through V(D)J recombination, this loop is quite diverse, with different numbers and chemical types of amino acids between Trp and EGYEL, which have unknown functional consequences for T22 recognition. We have investigated the biophysical and structural effects of CDR3δ loop diversity, revealing a range of affinities for T22 but a common thermodynamic pattern. Mutagenesis of these CDR3δ loops defines the key anchor residues involved in T22 recognition as W … EGYEL, similar to those found for the G8 CDR3δ loop, and demonstrates that spacer residues modulate but are not required for T22 recognition. Comparison of the location of these residues in the T22 interface reveals a striking similarity to peptide anchor residues in classically presented MHC peptides, with the key Trp residue of the CDR3δ motif completing the deficient peptide-binding groove of T22. This suggests that γδ T cell recognition of T22 utilizes the conserved ligand-presenting nature of the MHC fold.
Characterization of a new adenovirus isolated from black-tailed deer in California.
Lehmkuhl, H D; Hobbs, L A; Woods, L W
2001-01-01
An adenovirus associated with systemic and localized vascular damage was demonstrated by transmission electron microscopy and immunohistochemistry in a newly recognized epizootic hemorrhagic disease in California black-tailed deer. In this study, we describe the cultural, physicochemical and serological characteristics of a virus isolated from lung using neonatal white-tail deer lung and turbinate cell cultures. The virus had the cultural, morphological and physicochemical characteristics of members of the Adenoviridae family. The virus would not replicate in low passage fetal bovine, caprine or ovine cells. Antiserum to the deer adenovirus, strain D94-2569, neutralized bovine adenovirus type-6 (BAdV-6), BAdV-7, and caprine adenovirus type-1 (GAdV-1). Antiserum to BAdV-6 did not neutralize the deer adenovirus but antiserum to BAdV-7 and GAdV-1 neutralized the deer adenovirus. Cross-neutralization with the other bovine, caprine and ovine adenovirus species was not observed. Restriction endonuclease patterns generated for the deer adenovirus were unique compared to those for the currently recognized bovine, caprine and ovine adenovirus types. Amino acid sequence alignments of the hexon gene from the deer adenovirus strain D94-2569 indicate that it is a member of the proposed new genus (Atadenovirus) of the Adenoviridae family. While closely related antigenically to BAdV-7 and GAdV-1, the deer adenovirus appears sufficiently distinct culturally and molecularly to justify consideration as a new adenovirus type.
Bergante, Sonia; Torretta, Enrica; Creo, Pasquale; Sessarego, Nadia; Papini, Nadia; Piccoli, Marco; Fania, Chiara; Cirillo, Federica; Conforti, Erika; Ghiroldi, Andrea; Tringali, Cristina; Venerando, Bruno; Ibatici, Adalberto; Gelfi, Cecilia; Tettamanti, Guido; Anastasia, Luigi
2014-01-01
Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically 3H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry. PMID:24449473
Pick's disease: a modern approach.
Dickson, D W
1998-04-01
Pick's disease is a rare dementing disorder that is sometimes familial. The cardinal features are circumscribed cortical atrophy most often affecting the frontal and temporal poles and argyrophilic, round intraneuronal inclusions (Pick bodies). Clinical manifestations reflect the distribution of cortical degeneration, and personality deterioration and memory deficits are often more severe than visuospatial and apraxic disorders that are common in Alzheimer's disease, but clinical overlap with other non-Alzheimer degenerative disorders is increasingly recognized. Neuronal loss and degeneration are usually maximal in the limbic system, including hippocampus, entorhinal cortex and amygdala. Numerous Pick bodies are often present in the dentate fascia of the hippocampus. Less specific features include leukoencephalopathy and ballooned cortical neurons (Pick cells). Glial reaction is often pronounced in affected cerebral gray and white matter. Tau-immunoreactive glial inclusions are a recently recognized finding in Pick's disease, and neuritic changes have also recently been described. Variable involvement of the deep gray matter and the brainstem is typical, with a predilection for the monoaminergic nuclei and nuclei of the pontine base. Neurochemical studies demonstrate deficits in intrinsic cortical neurotransmitter systems (e.g., somatostatin), but inconsistent loss of transmitters in systems projecting to the cortex (e.g., cholinergic neurons of the basal nucleus). Biochemical and immunocytochemical studies have demonstrated that abnormal tau proteins are the major structural components of Pick bodies. A specific tau protein immunoblotting pattern different from that seen in Alzheimer's disease and certain other disorders has been suggested in some studies. A specific molecular marker and a genetic locus for familial cases are not known.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2012-05-01
The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.
Molecular Evidence for Species-Level Distinctions in Clouded Leopards
Buckley-Beason, Valerie A.; Johnson, Warren E.; Nash, Willliam G.; Stanyon, Roscoe; Menninger, Joan C.; Driscoll, Carlos A.; Howard, JoGayle; Bush, Mitch; Page, John E.; Roelke, Melody E.; Stone, Gary; Martelli, Paolo P.; Wen, Ci; Ling, Lin; Duraisingam, Ratna K.; Lam, Phan V.
2017-01-01
Summary Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats [1–5]. This secretive, mid-sized (16–23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A) [4–8]. We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known geographic origin (Figure 1A, Tables S1 and S2 in the Supplemental Data available online). We found strong phylogeographic monophyly and large genetic distances between N. n. nebulosa (mainland) and N. n. diardi (Borneo; n = 3 individuals) with mtDNA (771 bp), nuclear DNA (3100 bp), and 51 microsatellite loci. Thirty-six fixed mitochondrial and nuclear nucleotide differences and 20 microsatellite loci with nonoverlapping allele-size ranges distinguished N. n. nebulosa from N. n. diardi. Along with fixed subspecies-specific chromosomal differences, this degree of differentiation is equivalent to, or greater than, comparable measures among five recognized Panthera species (lion, tiger, leopard, jaguar, and snow leopard). These distinctions increase the urgency of clouded leopard conservation efforts, and if affirmed by morphological analysis and wider sampling of N. n. diardi in Borneo and Sumatra, would support reclassification of N. n. diardi as a new species (Neofelis diardi). PMID:17141620
Demirdas, S; Dulfer, E; Robert, L; Kempers, M; van Beek, D; Micha, D; van Engelen, B G; Hamel, B; Schalkwijk, J; Loeys, B; Maugeri, A; Voermans, N C
2017-03-01
The tenascin-X (TNX) deficient type Ehlers-Danlos syndrome (EDS) is similar to the classical type of EDS. Because of the limited awareness among geneticists and the challenge of the molecular analysis of the TNXB gene, the TNX-deficient type EDS is probably to be under diagnosed. We therefore performed an observational, cross-sectional study. History and physical examination were performed. Results of serum TNX measurements were collected and mutation analysis was performed by a combination of next-generation sequencing (NGS), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). Included were 17 patients of 11 families with autosomal recessive inheritance and childhood onset. All patients had hyperextensible skin without atrophic scarring. Hypermobility of the joints was observed in 16 of 17 patients. Deformities of the hands and feet were observed frequently. TNX serum level was tested and absent in 11 patients (seven families). Genetic testing was performed in all families; 12 different mutations were detected, most of which are suspected to lead to non-sense mRNA mediated decay. In short, patients with the TNX-deficient type EDS typically have generalized joint hypermobility, skin hyperextensibility and easy bruising. In contrast to the classical type, the inheritance pattern is autosomal recessive and atrophic scarring is absent. Molecular analysis of TNXB in a diagnostic setting is challenging. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Doszpoly, A; Kalabekov, I M; Breyta, R; Shchelkunov, I S
2017-10-01
Siberian sturgeon herpesvirus (SbSHV) was isolated in Russia for the first time in 2006. Nine SbSHV isolates were recovered from different fish hatcheries producing the same cytopathic effect in cell cultures, the same clinical signs and mortality kinetics in virus-infected fish and the same virus neutralization pattern and shared identical nucleotide sequences. In 2011, a new isolate was recovered from juvenile sturgeon, which caused completely different cytopathic effect. That isolate was not readily neutralized by Siberian sturgeon hyperimmune antisera, and its DNA was not recognized by the routine PCR developed for SbSHV detection. Molecular study of the novel isolate revealed that it was more closely related to North American Acipenserid herpesvirus 2 (AciHV-2) isolates from white sturgeon, while the genome sequences of the former SbSHV isolates showed high similarity to the AciHV-2 isolated from shortnose sturgeon. While clinical signs and mortality caused by the novel isolate in infected Siberian sturgeon were similar to those of the formerly described SbSHV isolates, the incubation period and mean time to death produced by the novel isolate were twice as long. The differences between the former isolates and the recent one suggest that a novel SbSHV strain emerged in Europe and the molecular findings imply its North American origin. © 2017 John Wiley & Sons Ltd.
Wisnewski, Adam V.; Kanyo, Jean; Asher, Jennifer; Goodrich, James A.; Barnett, Grace; Patrylak, Lyn; Liu, Jian; Redlich, Carrie A.; Nassar, Ala F.
2018-01-01
Hexamethylenediisocyanate (HDI) is a widely used aliphatic diisocyanate and a well-recognized cause of occupational asthma.“Self” molecules (peptides/proteins) in the lower airways, susceptible to chemical reactivity with HDI, have been hypothesized to play a role in asthma pathogenesis and/or chemical metabolism, but remain poorly characterized.This study employed unique approaches to identify and characterize “self” targets of HDI reactivity in the lower airways. Anesthetized rabbits free breathed through a tracheostomy tube connected to chambers containing either, O2, or O2 plus ~200 ppb HDI vapors. Following 60 minutes of exposure, the airways were lavaged and the fluid was analyzed by LC-MS and LC-MS/MS.The low-molecular weight (<3 kDa) fraction of HDI exposed, but not control rabbit bronchoalveolar lavage (BAL) fluid identified 783.26 and 476.18 m/z [M+H]+ ions with high energy collision-induced dissociation (HCD) fragmentation patterns consistent with bis glutathione (GSH)-HDI and mono(GSH)-HDI. Proteomic analyses of the high molecular weight (>3 kDa) fraction of exposed rabbit BAL fluid identified HDI modification of specific lysines in uteroglobin (aka clara cell protein) and albumin.In summary, this study utilized a unique approach to chemical vapor exposure in rabbits, to identify HDI reaction products with “self” molecules in the lower airways. PMID:28489470
Preparation and characterization of a monoclonal antibody against mannoprotein of Candida albicans.
Farahnejad, Z; Rasaee, M J; Moghadam, M Frozandeh; Paknejad, M; Kashanian, S; Rajabi, M
2005-06-01
BALB/c mice were immunized via injection with whole cell of Candida albicans serotype A. The spleens were fused with myeloma cells of SP2/0 origin. A mannoprotein-reactive monoclonal antibody (MAb) was selected and characterized by ELISA technique. This MAb reacted with strains of Candida such as C. albicans, C. tropicalis, and C. albicans of the Persian Type Culture Collection (PTCC). However, our antibody did not react with other Candida species such as C. parapsilosis, C. glabrata, C. stellatoidae, C. lusitania, C. krusei, and S. cervisiae. These antibodies also did not recognize extracts of other fungal species such as Aspergillus fumigatus and Aspergillus flavus, and bacterial strains such as Staphylococcus aureus and Pseudomonas aeruginosa. Polyclonal antibody produced in this study could not differentiate the above species and was reactive towards all fungal species mentioned above except bacterial strains of S. aureus and P. aeruginosa. Western blot analysis of ligand affinity-purified mannoproteins of C. albicans wall protein using this MAb showed reactivity toward a single protein band in the region of 55-65 kDa molecular weight. The same antibody, when examined with unpurified C. albicans extract, reacted with a broad band in the region of 55-105 kDa, which we concluded was due to a possible different glycosylation pattern of mannoprotein in crude extract in which the higher molecular weight protein was eliminated by ligand-binding affinity purification.
Hybrid strategies for nanolithography and chemical patterning
NASA Astrophysics Data System (ADS)
Srinivasan, Charan
Remarkable technological advances in photolithography have extended patterning to the sub-50-nm regime. However, because photolithography is a top-down approach, it faces substantial technological and economic challenges in maintaining the downward scaling trends of feature sizes below 30 nm. Concurrently, fundamental research on chemical self-assembly has enabled the path to access molecular length scales. The key to the success of photolithography is its inherent economies of scale, which justify the large capital investment for its implementation. In this thesis research, top-down and bottom-up approaches have been combined synergistically, and these hybrid strategies have been employed in applications that do not have the economies of scale found in semiconductor chip manufacturing. The specific instances of techniques developed here include molecular-ruler lithography and a series of nanoscale chemical patterning methods. Molecular-ruler lithography utilizes self-assembled multilayered films as a sidewall spacer on initial photolithographically patterned gold features (parent) to place a second-generation feature (daughter) in precise proximity to the parent. The parent-daughter separation, which is on the nanometer length scale, is defined by the thickness of the molecular-ruler resist. Analogous to protocols followed in industry to evaluate lithographic performance, electrical test-pad structures were designed to interrogate the nanostructures patterned by molecular-ruler nanolithography, failure modes creating electrical shorts were mapped to each lithographic step, and subsequent lithographic optimization was performed to pattern nanoscale devices with excellent electrical performance. The optimized lithographic processes were applied to generate nanoscale devices such as nanowires and thin-film transistors (TFTs). Metallic nanowires were patterned by depositing a tertiary generation material in the nanogap and surrounding micron-scale regions, and then chemically removing the parent and daughter structures selectively. This processing was also performed on silicon-on-insulator substrates and the metallic nanowires were used as a hard mask to transfer the pattern to the single crystalline silicon epilayer resulting in a quaternary generation structure of single-crystalline silicon nanowire field-effect transistors. Additionally, the proof of concept for patterning nanoscale pentacene TFTs utilizing molecular-rulers was demonstrated. For applications in sub-100-nm lithography, the limitations on the relative heights of parent and daughter structures were overcome and processes to integrate molecular-ruler nanolithography with existing complementary metal-oxide-semiconductor (CMOS) processing were developed. Pattern transfer to underlying SiO2 substrates has opened a new avenue of opportunities to apply these nanostructures in nanofluidics and in non-traditional lithography such as imprint lithography. Additionally, the molecular-ruler process has been shown to increase the spatial density of features created by high-resolution techniques such as electron-beam lithography. A limitation of photolithography is its inability to pattern chemical functionality on surfaces. To overcome this limitation, two techniques were developed to extend nanolithography beyond semiconductors and apply them to patterning of self-assembled monolayers. First, a novel bilayer resist was devised to protect and to pattern chemical functionality on surfaces by being able to withstand conditions necessary for both chemical self-assembly and photooxidation of the Au-S bond while not disrupting the preexisting SAM. In addition to photolithography, soft-lithographic approaches such as microcontact printing are often used to create chemical patterns. In this work, a technique for the creation of chemical patterns of inserted molecules with dilute coverages (≤10%) was implemented. As part of the research in chemical patterning, a method for characterizing chemical patterns using scanning electron microscopy has been developed. These tools are the standard for metrology in nanolithography, and thus are readily accessible as our advances in chemical patterning are adopted and applied by the lithography community.
Morphological and molecular studies on Resinicium s. str.
Karen K. Nakasone
2007-01-01
Resinicium Parmasto is typified by Resinicium bicolor (Alb. & Schwein.: Fr.) Parm., (Hymenochaetales, Basidiomycota), a readily recognized and widely distributed corticioid, lignicolous species in the northern hemisphere. Five new species of Resinicium closely allied to R. bicolor...
2017 ISCB Overton Prize: Christoph Bock
Fogg, Christiana N.; Kovats, Diane E.; Berger, Bonnie
2017-01-01
The International Society for Computational Biology (ISCB) each year recognizes the achievements of an early to mid-career scientist with the Overton Prize. This prize honors the untimely death of Dr. G. Christian Overton, an admired computational biologist and founding ISCB Board member. Winners of the Overton Prize are independent investigators who are in the early to middle phases of their careers and are selected because of their significant contributions to computational biology through research, teaching, and service. ISCB is pleased to recognize Dr. Christoph Bock, Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vienna, Austria, as the 2017 winner of the Overton Prize. Bock will be presenting a keynote presentation at the 2017 International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology (ISMB/ECCB) in Prague, Czech Republic being held during July 21-25, 2017. PMID:28713546
2017 ISCB Overton Prize: Christoph Bock.
Fogg, Christiana N; Kovats, Diane E; Berger, Bonnie
2017-01-01
The International Society for Computational Biology (ISCB) each year recognizes the achievements of an early to mid-career scientist with the Overton Prize. This prize honors the untimely death of Dr. G. Christian Overton, an admired computational biologist and founding ISCB Board member. Winners of the Overton Prize are independent investigators who are in the early to middle phases of their careers and are selected because of their significant contributions to computational biology through research, teaching, and service. ISCB is pleased to recognize Dr. Christoph Bock, Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vienna, Austria, as the 2017 winner of the Overton Prize. Bock will be presenting a keynote presentation at the 2017 International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology (ISMB/ECCB) in Prague, Czech Republic being held during July 21-25, 2017.
Nonlinear Time Series Analysis via Neural Networks
NASA Astrophysics Data System (ADS)
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?
ERIC Educational Resources Information Center
Howe, Christine; Taylor Tavares, Joana; Devine, Amy
2016-01-01
Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…
Jeremy C. Andersen; Nathan P. Havill; Adalgisa Caccone; Joseph S. Elkinton
2017-01-01
Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages...
An Investigation of Palindromes and Their Place in Mathematics
ERIC Educational Resources Information Center
Nivens, Ryan
2013-01-01
Some people recognize a palindrome when they see one, however fewer realize that a palindrome is a special case of a pattern and that these patterns are all around. Palindromes frequently occur in names, both of vehicles and people, and in music. The traditional mathematical curriculum has often left palindromes out of the common vernacular. Where…
Akagi, Takashi; Katayama-Ikegami, Ayako; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo
2012-01-01
Proanthocyanidins (PAs) are secondary metabolites that contribute to plant protection and crop quality. Persimmon (Diospyros kaki) has a unique characteristic of accumulating large amounts of PAs, particularly in its fruit. Normal astringent-type and mutant nonastringent-type fruits show different PA accumulation patterns depending on the seasonal expression patterns of DkMyb4, which is a Myb transcription factor (TF) regulating many PA pathway genes in persimmon. In this study, attempts were made to identify the factors involved in DkMyb4 expression and the resultant PA accumulation in persimmon fruit. Treatment with abscisic acid (ABA) and an ABA biosynthesis inhibitor resulted in differential changes in the expression patterns of DkMyb4 and PA biosynthesis in astringent-type and nonastringent-type fruits depending on the development stage. To obtain an ABA-signaling TF, we isolated a full-length basic leucine zipper (bZIP) TF, DkbZIP5, which is highly expressed in persimmon fruit. We also showed that ectopic DkbZIP5 overexpression in persimmon calluses induced the up-regulation of DkMyb4 and the resultant PA biosynthesis. In addition, a detailed molecular characterization using the electrophoretic mobility shift assay and transient reporter assay indicated that DkbZIP5 recognized ABA-responsive elements in the promoter region of DkMyb4 and acted as a direct regulator of DkMyb4 in an ABA-dependent manner. These results suggest that ABA signals may be involved in PA biosynthesis in persimmon fruit via DkMyb4 activation by DkbZIP5. PMID:22190340
Multimodality Review of Amyloid-related Diseases of the Central Nervous System
Sipe, Adam L.; Benzinger, Tammie L. S.; McConathy, Jonathan; Connolly, Sarah; Schwetye, Katherine E.
2016-01-01
Amyloid-β (Aβ) is ubiquitous in the central nervous system (CNS), but pathologic accumulation of Aβ results in four distinct neurologic disorders that affect middle-aged and elderly adults, with diverse clinical presentations ranging from chronic debilitating dementia to acute life-threatening intracranial hemorrhage. The characteristic imaging patterns of Aβ-related CNS diseases reflect the pathophysiology of Aβ deposition in the CNS. Aβ is recognized as a key component in the neuronal damage that characterizes the pathophysiology of Alzheimer disease, the most common form of dementia. Targeted molecular imaging shows pathologic accumulation of Aβ and tau protein, and fluorine 18 fluorodeoxyglucose positron emission tomography and anatomic imaging allow differentiation of typical patterns of neuronal dysfunction and loss in patients with Alzheimer disease from those seen in patients with other types of dementia. Cerebral amyloid angiopathy (CAA) is an important cause of cognitive impairment and spontaneous intracerebral hemorrhage in the elderly. Hemorrhage and white matter injury seen at imaging reflect vascular damage caused by the accumulation of Aβ in vessel walls. The rare forms of inflammatory angiopathy attributed to Aβ, Aβ-related angiitis and CAA-related inflammation, cause debilitating neurologic symptoms that improve with corticosteroid therapy. Imaging shows marked subcortical and cortical inflammation due to perivascular inflammation, which is incited by vascular Aβ accumulation. In the rarest of the four disorders, cerebral amyloidoma, the macroscopic accumulation of Aβ mimics the imaging appearance of tumors. Knowledge of the imaging patterns and pathophysiology is essential for accurate diagnosis of Aβ-related diseases of the CNS. ©RSNA, 2016 PMID:27399239
Emerging spatial patterns in Antarctic prokaryotes
Chong, Chun-Wie; Pearce, David A.; Convey, Peter
2015-01-01
Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate. Based on our synthesis, it is clear that spatial patterns of Antarctic prokaryotes can be unique at local scales, while the limited evidence available to date supports the group exhibiting overall regional biogeographical patterns similar to the eukaryotes. We further consider the applicability of the concept of “functional redundancy” for the Antarctic microbial community and highlight the requirements for proper consideration of their important and distinctive roles in Antarctic terrestrial ecosystems. PMID:26483777
Influence of cladogenesis on feeding structures in drums (Teleostei: Sciaenidae).
Deary, Alison L; Hilton, Eric J
2017-02-01
Drums (family Sciaenidae) are common in tropical to temperate coastal and estuarine habitats worldwide and present a broad spectrum of morphological diversity. The anatomical variation in this family is particularly evident in their feeding apparatus, which may reflect the partitioning of adult foraging habitats. Adult and early life history stage sciaenids may display ecomorphological patterns in oral and pharyngeal jaw elements but because sciaenids are hierarchically related, the morphological variation of the feeding apparatus cannot be analyzed as independent data. Morphological patterns have been identified in three sciaenid genera from the Chesapeake Bay but it is not known if these patterns are present in other genera of the family and if such patterns are constrained by phylogenetic history. In this study, phylogenetic comparative methods were applied to two sets of oral jaw data obtained from growth series of 11 species of cleared and double-stained Chesapeake Bay sciaenids and alcohol-preserved museum specimens representing 65 of the 66 recognized genera to determine the magnitude of phylogenetic dependence present in the structure of the oral jaws using a recent molecular phylogeny of the family. Pagel's lambda, a measure of phylogenetic signal, was low for pelagic sciaenids in premaxilla, lower jaw, and ascending process lengths, indicating influence of selective forces on the condition of these traits. Conversely, for benthic sciaenids, phylogenetic signal was high for lower jaw and ascending process lengths, indicating significant phylogenetic constraint for their condition in these taxa. Pagel's lambda was intermediate for premaxilla length in benthic sciaenids, suggesting that the length of the premaxilla is influenced by a mix of selective forces and phylogenetic constraint. Although the ecomorphological patterns identified in the oral jaws of scaienids are not entirely free of phylogenetic dependence, selective forces related to foraging are likely driving the evolution of these structures. Copyright © 2016 Elsevier GmbH. All rights reserved.
The molecular biology in wound healing & non-healing wound.
Qing, Chun
2017-08-01
The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul
2009-01-01
Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.
Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization.
Haginaka, Jun; Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami
2012-01-01
A monodispersed molecularly imprinted polymer (MIP) for creatinine was prepared by modified precipitation polymerization. The retention and molecular-recognition properties of the prepared MIP were evaluated by the hydrophilic interaction chromatography mode using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase in liquid chromatography. The MIP had a specific recognition ability for creatinine, while other structurally related compounds, such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine, could not be recognized on the MIP. In addition to shape recognition, hydrophilic interactions could work for the recognition of creatinine on the MIP.
NASA Astrophysics Data System (ADS)
Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong
2018-06-01
The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.
Bio-Inspired Microsystem for Robust Genetic Assay Recognition
Lue, Jaw-Chyng; Fang, Wai-Chi
2008-01-01
A compact integrated system-on-chip (SoC) architecture solution for robust, real-time, and on-site genetic analysis has been proposed. This microsystem solution is noise-tolerable and suitable for analyzing the weak fluorescence patterns from a PCR prepared dual-labeled DNA microchip assay. In the architecture, a preceding VLSI differential logarithm microchip is designed for effectively computing the logarithm of the normalized input fluorescence signals. A posterior VLSI artificial neural network (ANN) processor chip is used for analyzing the processed signals from the differential logarithm stage. A single-channel logarithmic circuit was fabricated and characterized. A prototype ANN chip with unsupervised winner-take-all (WTA) function was designed, fabricated, and tested. An ANN learning algorithm using a novel sigmoid-logarithmic transfer function based on the supervised backpropagation (BP) algorithm is proposed for robustly recognizing low-intensity patterns. Our results show that the trained new ANN can recognize low-fluorescence patterns better than an ANN using the conventional sigmoid function. PMID:18566679
Sediment distribution and coastal processes in Cook Inlet, Alaska
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Gatto, L. W.; Mckim, H. L.; Petrone, A.
1973-01-01
Regional hydrologic and oceanographic relationships in Cook Inlet, Alaska have been recognized from sequential ERTS-1 MSS imagery. Current patterns are visible in the inlet because of differential concentrations of suspended sediment. The circulation patterns within Cook Inlet are controlled primarily by the interaction between the semi-diurnal tides and the counter clockwise Alaska current. In general, heavily sediment laden water is seen to be confined to portions of the inlet north of the Forelands and west of Kalgin Island. Tongues of clear oceanic water are observed to enter the inlet through Kennedy Channel along the east shoreline in the vicinity of Cape Elizabeth. A recurring counterclockwise circulation pattern observed around Kalgin Island seems to result from the interplay of the northerly moving water along the east shore and the southerly moving, sediment laden, water along the west side of the inlet. Prominent, fresh water plumes, heavily laden with sediment are visible at the mouths of all major rivers. Relect plumes from as many as three tidal stages have been recognized.
Ye, Nong; Li, Xiangyang; Farley, Toni
2003-01-15
Hand signs are considered as one of the important ways to enter information into computers for certain tasks. Computers receive sensor data of hand signs for recognition. When using hand signs as computer inputs, we need to (1) train computer users in the sign language so that their hand signs can be easily recognized by computers, and (2) design the computer interface to avoid the use of confusing signs for improving user input performance and user satisfaction. For user training and computer interface design, it is important to have a knowledge of which signs can be easily recognized by computers and which signs are not distinguishable by computers. This paper presents a data mining technique to discover distinct patterns of hand signs from sensor data. Based on these patterns, we derive a group of indistinguishable signs by computers. Such information can in turn assist in user training and computer interface design.
Neural networks: Alternatives to conventional techniques for automatic docking
NASA Technical Reports Server (NTRS)
Vinz, Bradley L.
1994-01-01
Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.
Jaross, Werner
2018-01-01
The molecular vibration patterns of structure-forming macromolecules in the living cell create very specific electromagnetic frequency patterns which might be used for information on spatial position in the three-dimensional structure as well as the chemical characteristics. Chemical change of a molecule results in a change of the vibration pattern and thus in a change of the emitted electromagnetic frequency pattern. These patterns have to be received by proteins responsible for the necessary interactions and functions. Proteins can function as resonators for frequencies in the range of 1013-1015 Hz. The individual frequency pattern is defined by the amino acid sequence and the polarity of every amino acid caused by their functional groups. If the arriving electromagnetic signal pattern and the emitted pattern of the absorbing protein are matched in relevant parts and in opposite phase, photon energy in the characteristic frequencies can be transferred resulting in a conformational change of that molecule and respectively in an increase of its specific activity. The electromagnetic radiation is very weak. The possibilities to overcome intracellular distances are shown. The motor-driven directed transport of macromolecules starts in the Golgi apparatus. The relevance of molecular interactions based on this signaling for the induction and navigation in the intracellular transport is discussed.
NASA Astrophysics Data System (ADS)
Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.
2013-06-01
In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.
Zhang, Chi; Zhang, Ge; Chen, Ke-ji; Lu, Ai-ping
2016-04-01
The development of an effective classification method for human health conditions is essential for precise diagnosis and delivery of tailored therapy to individuals. Contemporary classification of disease systems has properties that limit its information content and usability. Chinese medicine pattern classification has been incorporated with disease classification, and this integrated classification method became more precise because of the increased understanding of the molecular mechanisms. However, we are still facing the complexity of diseases and patterns in the classification of health conditions. With continuing advances in omics methodologies and instrumentation, we are proposing a new classification approach: molecular module classification, which is applying molecular modules to classifying human health status. The initiative would be precisely defining the health status, providing accurate diagnoses, optimizing the therapeutics and improving new drug discovery strategy. Therefore, there would be no current disease diagnosis, no disease pattern classification, and in the future, a new medicine based on this classification, molecular module medicine, could redefine health statuses and reshape the clinical practice.
Asthma as a disruption in iron homeostasis
Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam’s razor to ...
Linking Arsenic Metabolism and Toxic Effects
Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...
Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.
Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C
2017-02-01
Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.
Comprehensive Characterization of Molecular Differences in Cancer between Male and Female Patients
Yuan, Yuan; Liu, Lingxiang; Chen, Hu; Wang, Yumeng; Xu, Yanxun; Mao, Huzhang; Li, Jun; Mills, Gordon B.; Shu, Yongqian; Li, Liang; Liang, Han
2016-01-01
Summary An individual’s sex has been long recognized as a key factor affecting cancer incidence, prognosis and treatment responses. However, the molecular basis for sex disparities in cancer remains poorly understood. We performed a comprehensive analysis of molecular differences between male and female patients in 13 cancer types of The Cancer Genome Atlas and revealed two sex-effect groups associated with distinct incidence and mortality profiles. One group contains a small number of sex-affected genes, whereas the other shows much more extensive sex-biased molecular signatures. Importantly, 53% of clinically actionable genes (60/114) show sex-biased signatures. Our study provides a systematic molecular-level understanding of sex effects in diverse cancers and suggests a pressing need to develop sex-specific therapeutic strategies in certain cancer types. PMID:27165743
GSL-enriched membrane microdomains in innate immune responses.
Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa
2013-06-01
Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.
Toll-Like Receptor Pathways in Autoimmune Diseases.
Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit
2016-02-01
Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis.
Chang, Ming Xian; Zhang, Jie
2017-07-15
Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.
Glover, J C
2009-11-10
The first Kavli Prize in Neuroscience recognizes a confluence of career achievements that together provide a fundamental understanding of how brain and spinal cord circuits are assembled during development and function in the adult. The members of the Kavli Neuroscience Prize Committee have decided to reward three scientists (Sten Grillner, Thomas Jessell, and Pasko Rakic) jointly "for discoveries on the developmental and functional logic of neuronal circuits". Pasko Rakic performed groundbreaking studies of the developing cerebral cortex, including the discovery of how radial glia guide the neuronal migration that establishes cortical layers and for the radial unit hypothesis and its implications for cortical connectivity and evolution. Thomas Jessell discovered molecular principles governing the specification and patterning of different neuron types and the development of their synaptic interconnection into sensorimotor circuits. Sten Grillner elucidated principles of network organization in the vertebrate locomotor central pattern generator, along with its command systems and sensory and higher order control. The discoveries of Rakic, Jessell and Grillner provide a framework for how neurons obtain their identities and ultimate locations, establish appropriate connections with each other, and how the resultant neuronal networks operate. Their work has significantly advanced our understanding of brain development and function and created new opportunities for the treatment of neurological disorders. Each has pioneered an important area of neuroscience research and left a legacy of exceptional scientific achievement, insight, communication, mentoring and leadership.
Liang, Di; Wang, Tianfang; Rotgans, Bronwyn A.; McManus, Donald P.; Cummins, Scott F.
2016-01-01
Biomphalaria glabrata (B. glabrata) is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs), a variant family of the ionotropic glutamate receptors (iGluR), have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing. PMID:27253696
Chauveau, Olivier; Eggers, Lilian; Raquin, Christian; Silvério, Adriano; Brown, Spencer; Couloux, Arnaud; Cruaud, Corine; Kaltchuk-Santos, Eliane; Yockteng, Roxana; Souza-Chies, Tatiana T.; Nadot, Sophie
2011-01-01
Background and Aims Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined. Methods Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species. Key Results and Conclusions Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing. PMID:21527419
A phylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences
van den Berg, Cássio; Higgins, Wesley E.; Dressler, Robert L.; Whitten, W. Mark; Soto-Arenas, Miguel A.; Chase, Mark W.
2009-01-01
Background and Aims Laeliinae are a neotropical orchid subtribe with approx. 1500 species in 50 genera. In this study, an attempt is made to assess generic alliances based on molecular phylogenetic analysis of DNA sequence data. Methods Six DNA datasets were gathered: plastid trnL intron, trnL-F spacer, matK gene and trnK introns upstream and dowstream from matK and nuclear ITS rDNA. Data were analysed with maximum parsimony (MP) and Bayesian analysis with mixed models (BA). Key Results Although relationships between Laeliinae and outgroups are well supported, within the subtribe sequence variation is low considering the broad taxonomic range covered. Localized incongruence between the ITS and plastid trees was found. A combined tree followed the ITS trees more closely, but the levels of support obtained with MP were low. The Bayesian analysis recovered more well-supported nodes. The trees from combined MP and BA allowed eight generic alliances to be recognized within Laeliinae, all of which show trends in morphological characters but lack unambiguous synapomorphies. Conclusions By using combined plastid and nuclear DNA data in conjunction with mixed-models Bayesian inference, it is possible to delimit smaller groups within Laeliinae and discuss general patterns of pollination and hybridization compatibility. Furthermore, these small groups can now be used for further detailed studies to explain morphological evolution and diversification patterns within the subtribe. PMID:19423551
Mark, Tomer; Jayabalan, David; Coleman, Morton; Pearse, Roger N; Wang, Y Lynn; Lent, Richard; Christos, Paul J; Lee, Joong W; Agrawal, Yash P; Matthew, Susan; Ely, Scott; Mazumdar, Madhu; Cesarman, Ethel; Leonard, John P; Furman, Richard R; Chen-Kiang, Selina; Niesvizky, Ruben
2008-12-01
The M-protein is the major reference measure for response in multiple myeloma (MM) and its correct interpretation is key to clinical management. The emergence of oligoclonal banding is recognized as a benign finding in the postautologous stem cell transplantation setting (ASCT) for MM but its significance during non-myeloablative therapy is unknown. In a study of the immunomodulatory combination BiRD, (lenalidomide and dexamethasone with clarithromycin), we frequently detected the emergence of mono- and oligo-clonal immunoglobulins unrelated to the baseline diagnostic M-protein. The new M-proteins seen on serum immunofixation electrophoresis were clearly different in either heavy or light chain component(s) from the original M-spike protein and were termed atypical serum immunofixation patterns (ASIPs). Overall, 24/72 (33%) patients treated with BiRD developed ASIPs. Patients who developed ASIPs compared with patients treated with BiRD without ASIPs, had a significantly greater overall response (100% vs. 85%) and complete response rates (71% vs. 23%). ASIPs were not associated with new clonal plasma cells or other lymphoproliferative processes, and molecular remissions were documented. This is the first time this phenomenon has been seen with regularity in non-myeloablative therapy for MM. Analogous to the ASCT experience, ASIPs do not signal incipient disease progression, but rather herald robust response.
Liang, Di; Wang, Tianfang; Rotgans, Bronwyn A; McManus, Donald P; Cummins, Scott F
2016-01-01
Biomphalaria glabrata (B. glabrata) is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs), a variant family of the ionotropic glutamate receptors (iGluR), have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing.
NASA Astrophysics Data System (ADS)
Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru
2005-08-01
Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage.
Parker, Mark; Cunningham, Stuart; Enderby, Pam; Hawley, Mark; Green, Phil
2006-01-01
The STARDUST project developed robust computer speech recognizers for use by eight people with severe dysarthria and concomitant physical disability to access assistive technologies. Independent computer speech recognizers trained with normal speech are of limited functional use by those with severe dysarthria due to limited and inconsistent proximity to "normal" articulatory patterns. Severe dysarthric output may also be characterized by a small mass of distinguishable phonetic tokens making the acoustic differentiation of target words difficult. Speaker dependent computer speech recognition using Hidden Markov Models was achieved by the identification of robust phonetic elements within the individual speaker output patterns. A new system of speech training using computer generated visual and auditory feedback reduced the inconsistent production of key phonetic tokens over time.
Palmer, J E; Whitlock, R H; Benson, C E
1986-07-15
Equine ehrlichial colitis (Potomac horse fever), a newly identified colitis of the horse, was first recognized in Maryland. In this report, we document occurrence of the disease in Pennsylvania, New Jersey, New York, Ohio, Idaho, and Connecticut. Enzootic areas were recognized by a characteristic pattern. Frequently there was a seasonal pattern and high prevalence of sporadic colitis in unstressed horses. The attack rate per farm generally was low. Horses on pasture, as well as those stabled, were affected. Clinical signs varied from fever and depression to severe diarrhea and laminitis. Occasionally horses developed profound ileus and severe colic. Diagnosis was based on detection of an increase or decrease in serum antibody titers to Ehrlichia risticii, using an indirect fluorescent antibody technique.
Catenacci, Daniel V T
2015-05-01
The promise of 'personalized cancer care' with therapies toward specific molecular aberrations has potential to improve outcomes. However, there is recognized heterogeneity within any given tumor-type from patient to patient (inter-patient heterogeneity), and within an individual (intra-patient heterogeneity) as demonstrated by molecular evolution through space (primary tumor to metastasis) and time (after therapy). These issues have become hurdles to advancing cancer treatment outcomes with novel molecularly targeted agents. Classic trial design paradigms are challenged by heterogeneity, as they are unable to test targeted therapeutics against low frequency genomic 'oncogenic driver' aberrations with adequate power. Usual accrual difficulties to clinical trials are exacerbated by low frequencies of any given molecular driver. To address these challenges, there is need for innovative clinical trial designs and strategies implementing novel diagnostic biomarker technologies to account for inter-patient molecular diversity and scarce tissue for analysis. Importantly, there is also need for pre-defined treatment priority algorithms given numerous aberrations commonly observed within any one individual sample. Access to multiple available therapeutic agents simultaneously is crucial. Finally intra-patient heterogeneity through time may be addressed by serial biomarker assessment at the time of tumor progression. This report discusses various 'next-generation' biomarker-driven trial designs and their potentials and limitations to tackle these recognized molecular heterogeneity challenges. Regulatory hurdles, with respect to drug and companion diagnostic development and approval, are considered. Focus is on the 'Expansion Platform Design Types I and II', the latter demonstrated with a first example, 'PANGEA: Personalized Anti-Neoplastics for Gastro-Esophageal Adenocarcinoma'. Applying integral medium-throughput genomic and proteomic assays along with a practical biomarker assessment and treatment algorithm, 'PANGEA' attempts to address the problem of heterogeneity towards successful implementation of molecularly targeted therapies. Copyright © 2014 The Author. Published by Elsevier B.V. All rights reserved.
Cervantes-Landín, Alejandra Yunuen; Martínez, Ignacio; Schabib, Muslim; Espinoza, Bertha
2014-01-01
Chagas disease is caused by the parasite Trypanosoma cruzi. Because of its distribution throughout Latin America, sometimes it can overlap with other parasitic diseases, such as leishmaniasis, caused by Leishmania spp. This might represent a problem when performing serological diagnosis, because both parasites share antigens, resulting in cross-reactions. In the present work we evaluated Mexican sera samples: 83.8% of chagasic patients recognized at least one antigen of high molecular weight (>95 kDa) when evaluated by Western blot. Proteins of 130 kDa and 160 kDa are predominantly being recognized by asymptomatic chagasic patients. When the proteins were extracted using Triton X-100 detergent, a larger number of specific T. cruzi proteins were obtained. This protein fraction can be used to increase specificity to 100% in Western blot assays without losing sensitivity of the test. High molecular weight proteins of T. cruzi include glycoproteins with a great amount of αMan (α-mannose), αGlc (α-glucose), GlcNAc (N-acetylglucosamine), and αGal (α-galactose) content and these structures play an essential role in antigens recognition by antibodies present in patients' sera. PMID:25136581
Molecular chaperones: functional mechanisms and nanotechnological applications
NASA Astrophysics Data System (ADS)
Rosario Fernández-Fernández, M.; Sot, Begoña; María Valpuesta, José
2016-08-01
Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.
[Molecular mechanisms of thymocyte differentiation].
Kuklina, E M
2003-01-01
A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.
The Monoceros R2 Molecular Cloud
NASA Astrophysics Data System (ADS)
Carpenter, J. M.; Hodapp, K. W.
2008-12-01
The Monoceros R2 region was first recognized as a chain of reflection nebulae illuminated by A- and B-type stars. These nebulae are associated with a giant molecular cloud that is one of the closest massive star forming regions to the Sun. This chapter reviews the properties of the Mon R2 region, including the namesake reflection nebulae, the large scale molecula= r cloud, global star formation activity, and properties of prominent star forming regions in the cloud.
Molecular Elucidation of Disease Biomarkers at the Interface of Chemistry and Biology.
Zhang, Liqin; Wan, Shuo; Jiang, Ying; Wang, Yanyue; Fu, Ting; Liu, Qiaoling; Cao, Zhijuan; Qiu, Liping; Tan, Weihong
2017-02-22
Disease-related biomarkers are objectively measurable molecular signatures of physiological status that can serve as disease indicators or drug targets in clinical diagnosis and therapy, thus acting as a tool in support of personalized medicine. For example, the prostate-specific antigen (PSA) biomarker is now widely used to screen patients for prostate cancer. However, few such biomarkers are currently available, and the process of biomarker identification and validation is prolonged and complicated by inefficient methods of discovery and few reliable analytical platforms. Therefore, in this Perspective, we look at the advanced chemistry of aptamer molecules and their significant role as molecular probes in biomarker studies. As a special class of functional nucleic acids evolved from an iterative technology termed Systematic Evolution of Ligands by Exponential Enrichment (SELEX), these single-stranded oligonucleotides can recognize their respective targets with selectivity and affinity comparable to those of protein antibodies. Because of their fast turnaround time and exceptional chemical properties, aptamer probes can serve as novel molecular tools for biomarker investigations, particularly in assisting identification of new disease-related biomarkers. More importantly, aptamers are able to recognize biomarkers from complex biological environments such as blood serum and cell surfaces, which can provide direct evidence for further clinical applications. This Perspective highlights several major advancements of aptamer-based biomarker discovery strategies and their potential contribution to the practice of precision medicine.
Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy
Mallikaratchy, Prabodhika; Tang, Zhiwen
2010-01-01
This paper describes the application of a molecular construct of a photosensitizer and an aptamer for photo-therapeutically targeting tumor cells. The key step in increasing selectivity in chemotherapeutic drugs is to create effective molecular platforms that could target cancer cells but not normal cells. Recently, we have developed a strategy via cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) to obtain cell specific aptamers using intact viable cells as targets to select aptamers that can recognize cell membrane proteins with high selectivity and excellent affinity. We have identified an aptamer TD05 that only recognizes Ramos cells, a Burkitt’s lymphoma cell line. Here, the high specificity of aptamers in target cell binding and an efficient phototherapy reagent, Ce6, are molecularly engineered to construct a highly selective Aptamer-photosensitizer conjugates (APS) to effectively destroy target cancer cells. Introduction of the APS conjugates followed by irradiation of light selectively destroyed target Ramos cells but not acute lymphoblastic leukemia and myeloid leukemia cell lines. This study demonstrates that the use of cancer specific aptamers conjugated to a photosensitizer will enhance the selectivity of photodynamic therapy. Coupled with the advantages of the cell-SELEX in generating multiple effective aptamers for diseased cell recognition, we will be able to develop highly efficient photosensitizer based therapeutical reagents for clinical applications. PMID:18058891
Participation Patterns of School-Aged Children with and without DCD
ERIC Educational Resources Information Center
Jarus, Tal; Lourie-Gelberg, Yael; Engel-Yeger, Batya; Bart, Orit
2011-01-01
Participation is recognized as a key to one's health and well-being and is considered to be a vital part of the development of children and youth. The purpose of this study was to examine the participation patterns of children with and without Developmental Coordination Disorder (DCD) in their out-of-school-time (OST) activities, and to see…
Using a Design Pattern Approach to Structure Online Course Content: Two Design Cases
ERIC Educational Resources Information Center
Norton, Priscilla; Hathaway, Dawn
2017-01-01
Despite the central role that well organized and structured course content plays in engaging learners, the authors point to the absence of guidelines for organizing content in ways that meet course learning goals. Recognizing the need for a design solution and, perhaps, the need for a new design framework, design patterns are proposed as an…
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
Pedretti, G; Milo, V; Ambrogio, S; Carboni, R; Bianchi, S; Calderoni, A; Ramaswamy, N; Spinelli, A S; Ielmini, D
2017-07-13
Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~10 4 ) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.
A Precious Diagnostic "Pearl": The Necklace Pattern in Germ Cell Tumors of the Testis.
Snow, Justin; Mosquera, Juan Miguel; Scognamiglio, Theresa; Robinson, Brian D; Khani, Francesca
2018-04-01
Diffuse embryoma is a rare pattern of nonseminomatous germ cell tumor of the testis originally described in 1983. We report a case with this predominant pattern in an 18-year-old male with a painless palpable testicular mass. Although it is relatively common to see a diffuse embryoma pattern focally in mixed nonseminomatous germ cell tumors of the testis, it is rarely the predominant pattern and can represent a diagnostic pitfall on routine hematoxylin and eosin stain. We emphasize the importance of recognizing the individual components within the diffuse embryoma pattern, review the literature, and briefly discuss the ancillary immunohistochemical stains that may be utilized to help support the diagnosis.
Dos Santos Passos, Carolina; Simões-Pires, Claudia A; Carrupt, Pierre-Alain; Nurisso, Alessandra
2016-12-01
HDAC6 is a unique cytoplasmic histone deacetylase characterized by two deacetylase domains, and by a zinc-finger ubiquitin binding domain (ZnF-UBP) able to recognize ubiquitin (Ub). The latter has recently been demonstrated to be involved in the progression of neurodegenerative diseases and in mediating infection by the influenza A virus. Nowadays, understanding the dynamic and energetic features of HDAC6 ZnF-UBP-Ub recognition is considered as a crucial step for the conception of HDAC6 potential modulators. In this study, the atomic, solvent-related, and thermodynamic features behind HDAC6 ZnF-UBP-Ub recognition have been analyzed through molecular dynamics simulations. The behavior was then compared to the prototypical ZnF-UBP from ubiquitin-specific protease 5 (USP5) in order to spot relevant differences useful for selective drug design. Principal component analysis highlighted flapping motions of the L2A loop which were lowered down upon Ub binding in both systems. While polar and nonpolar interactions involving Ub G75 and G76 residues were also common features stabilizing both complexes, salt bridges showed a different pattern, more significant in HDAC6 ZnF-UBP-Ub, whose energetic contribution in USP5 ZnF-UBP-Ub was compensated by the presence of a more stable bridging water molecule. Whereas molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) free energies of binding were comparable for both systems, in agreement with experiments, computational alanine scanning and free energy decomposition data revealed that HDAC6 E1141 and D1178 are potential hotspots for the design of selective HDAC6 modulators.
Sundberg, C.; Ljungström, M.; Lindmark, G.; Gerdin, B.; Rubin, K.
1993-01-01
The expression of platelet-derived growth factor- beta (PDGF-beta) receptors in the microvasculature of human healing wounds and colorectal adenocarcinoma was investigated. Frozen sections were subjected to double immunofluorescence staining using monoclonal antibodies (MAbs) specific for pericytes (MAb 225.28 recognizing the high-molecular weight-melanoma-associated antigen, expressed by activated pericytes during angiogenesis), endothelial cells (MAb PAL-E), laminin, as well as PDGF-beta receptors (MAb PDGFR-B2) and its ligand PDGF-B chain (MAb PDGF 007). Stained sections were analyzed by computer-aided imaging processing that allowed for a numerical quantification of the degree of colocalization of the investigated antigens. An apparent background colocalization, varying between 23 and 35%, between markers for cells not expected to co-localize was recorded. This background could be due to limitations of camera resolution, to out-of-focus fluorescence, and to interdigitations of the investigated structures. In all six tumor specimens, co-localization of PDGF-beta receptors and PAL-E was not different from the background co-localization, whereas that of PDGF-beta receptors and high-molecular weight-melanoma-associated antigen was significantly higher with mean values between 57 and 71%. Qualitatively, the same pattern was obtained in the two investigated healing wounds. PDGF-B chain did not co-localize with either PAL-E or high-molecular weight-melanoma-associated antigen, but PDGF-B chain-expressing cells were, however, frequently found juxtaposed to the microvasculature. The expression of PDGF-beta receptors on pericytes in activated microvessels and the presence of PDGF-B chain-expressing cells in close proximity to the microvasculature of healing wounds and colorectal adenocarcinoma is compatible with a role for PDGF in the physiology of the microvasculature in these conditions. Images Figure 1 p1381-a Figure 3 Figure 4 PMID:8238254
Molecular characterization of measles viruses that circulated in Cameroon between 2010 and 2011.
Demanou, Maurice; Ratsitoharana, Rajhonson; Yonga, Martial; Dosseh, Annick; Anya, Blanche; Kobela, Marie; Njouom, Richard
2013-03-04
Measles virus (MeV) is monotypic, but genetic variation in the hemagglutinin H and nucleoprotein N genes can be analyzed by molecular epidemiologic techniques and used to study virus transmission patterns. The World Health Organization currently recognizes 8 clades (A-H) within which are 24 genotypes of MeV and one provisional genotype, d11. Genotype B3 is clearly the endemic genotype in most of African continent where it is widely distributed. We provide an update on the molecular characterization of wild-type MeVs that circulated in Cameroon between 2010 and 2011. Viral RNA was extracted directly from samples obtained from clinically diagnosed measles patients using QIAamp viral RNA Mini Kit. Reverse transcription and PCR amplification of 634 nucleotides of the N gene was performed using the SuperScript™ III One-Step. Sequence analysis of 450 of the 634 nucleotides using Clustal X 2.0 program for multiple alignments and Mega version 5 for phylogenic analysis indicated that all the viruses belonged to genotype B3 with two distinct clusters. Twenty three (77%) belonged to subgroup B3.1 and the other 7 (23%) belonged to B3.3 a recently described subtype. Circulation of cluster 3 was detected in the Far-North Region (5/7) particularly along the Chad-Cameroon border in 2010 and later in Yaounde (2/7 in Biyem-assi Health District) the capital city of Cameroon in 2011. This study highlights the endemic circulation in Cameroon of MeV B3 subtype 1, which probably has its source in the neighboring Nigeria, and the presence of the new subtype B3.3, suggesting a possible importation from Northern Africa where it was first described between 2008 and 2009.
1997-05-15
Quantum Box/Dot, Strained Epitaxy , 3D islands, Patterned Substrates, Molecular Beam Epitaxy Focused Ion Beam , In-Situ Processing, Quantum Box Lasers...Grown on Planar and Patterned GaAs(100) Substrates by Molecular Beam Epitaxy ", J. Vac. Sei. Technol. B13, 642(1995) 5. A. Madhukar, P. Chen, Q. Xie...Formation and Vertical Self-Organization on GaAs(lOO) via Molecular Beam Epitaxy ", Paper presented at MRS Spring Meeting (Apr. 17-21, 1995, San
Setting the stage to advance the adverse outcome pathway (AOP) framework through horizon scanning
Recognizing the international interest surrounding the adverse outcome pathway framework, which captures existing information describing causal linkages between a molecular initiating event through levels of biological organization to an adverse outcome of regulatory significance...
Pinus ponderosa : A checkered past obscured four species
Ann Willyard; David S. Gernandt; Kevin Potter; Valerie Hipkins; Paula E. Marquardt; Mary Frances Mahalovich; Stephen K. Langer; Frank W. Telewski; Blake Cooper; Connor Douglas; Kristen Finch; Hassani H. Karemera; Julia Lefler; Payton Lea; Austin Wofford
2016-01-01
PREMISE OF THE STUDY: Molecular genetic evidence can help delineate taxa in species complexes that lack diagnostic morphological characters. Pinus ponderosa (Pinaceae; subsection Ponderosae ) is recognized as a problematic taxon: plastid phylogenies of exemplars were paraphyletic, and mitochondrial phylogeography suggested at...
ExpoCast: Exposure Science for Prioritization and Toxicity Testing (T)
The US EPA National Center for Computational Toxicology (NCCT) has a mission to integrate modern computing and information technology with molecular biology to improve Agency prioritization of data requirements and risk assessment of chemicals. Recognizing the critical need for ...
Chromosomal duplications in bacteria, fruit flies, and humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupski, J.R.; Weinstock, G.M.; Roth, J.R.
1996-01-01
Tandem duplication of chromosomal segments has been recognized as a frequent mutational mechanism in several genetic model systems. In bacteria, fruit flies, and humans, duplications form by similar molecular mechanisms and appear to be important in genome evolution. 80 refs.
Infections Caused by Scedosporium spp.
Cortez, Karoll J.; Roilides, Emmanuel; Quiroz-Telles, Flavio; Meletiadis, Joseph; Antachopoulos, Charalampos; Knudsen, Tena; Buchanan, Wendy; Milanovich, Jeffrey; Sutton, Deanna A.; Fothergill, Annette; Rinaldi, Michael G.; Shea, Yvonne R.; Zaoutis, Theoklis; Kottilil, Shyam; Walsh, Thomas J.
2008-01-01
Scedosporium spp. are increasingly recognized as causes of resistant life-threatening infections in immunocompromised patients. Scedosporium spp. also cause a wide spectrum of conditions, including mycetoma, saprobic involvement and colonization of the airways, sinopulmonary infections, extrapulmonary localized infections, and disseminated infections. Invasive scedosporium infections are also associated with central nervous infection following near-drowning accidents. The most common sites of infection are the lungs, sinuses, bones, joints, eyes, and brain. Scedosporium apiospermum and Scedosporium prolificans are the two principal medically important species of this genus. Pseudallescheria boydii, the teleomorph of S. apiospermum, is recognized by the presence of cleistothecia. Recent advances in molecular taxonomy have advanced the understanding of the genus Scedosporium and have demonstrated a wider range of species than heretofore recognized. Studies of the pathogenesis of and immune response to Scedosporium spp. underscore the importance of innate host defenses in protection against these organisms. Microbiological diagnosis of Scedosporium spp. currently depends upon culture and morphological characterization. Molecular tools for clinical microbiological detection of Scedosporium spp. are currently investigational. Infections caused by S. apiospermum and P. boydii in patients and animals may respond to antifungal triazoles. By comparison, infections caused by S. prolificans seldom respond to medical therapy alone. Surgery and reversal of immunosuppression may be the only effective therapeutic options for infections caused by S. prolificans. PMID:18202441
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N; Klassen, John S; Ng, Kenneth K S
2014-01-24
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N.; Klassen, John S.; Ng, Kenneth K. S.
2014-01-01
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents. PMID:24311789
Infections caused by Scedosporium spp.
Cortez, Karoll J; Roilides, Emmanuel; Quiroz-Telles, Flavio; Meletiadis, Joseph; Antachopoulos, Charalampos; Knudsen, Tena; Buchanan, Wendy; Milanovich, Jeffrey; Sutton, Deanna A; Fothergill, Annette; Rinaldi, Michael G; Shea, Yvonne R; Zaoutis, Theoklis; Kottilil, Shyam; Walsh, Thomas J
2008-01-01
Scedosporium spp. are increasingly recognized as causes of resistant life-threatening infections in immunocompromised patients. Scedosporium spp. also cause a wide spectrum of conditions, including mycetoma, saprobic involvement and colonization of the airways, sinopulmonary infections, extrapulmonary localized infections, and disseminated infections. Invasive scedosporium infections are also associated with central nervous infection following near-drowning accidents. The most common sites of infection are the lungs, sinuses, bones, joints, eyes, and brain. Scedosporium apiospermum and Scedosporium prolificans are the two principal medically important species of this genus. Pseudallescheria boydii, the teleomorph of S. apiospermum, is recognized by the presence of cleistothecia. Recent advances in molecular taxonomy have advanced the understanding of the genus Scedosporium and have demonstrated a wider range of species than heretofore recognized. Studies of the pathogenesis of and immune response to Scedosporium spp. underscore the importance of innate host defenses in protection against these organisms. Microbiological diagnosis of Scedosporium spp. currently depends upon culture and morphological characterization. Molecular tools for clinical microbiological detection of Scedosporium spp. are currently investigational. Infections caused by S. apiospermum and P. boydii in patients and animals may respond to antifungal triazoles. By comparison, infections caused by S. prolificans seldom respond to medical therapy alone. Surgery and reversal of immunosuppression may be the only effective therapeutic options for infections caused by S. prolificans.
Rhabdomyosarcomas: an overview on the experimental animal models.
Zanola, Alessandra; Rossi, Stefania; Faggi, Fiorella; Monti, Eugenio; Fanzani, Alessandro
2012-07-01
Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Apparatus for detecting and recognizing analytes based on their crystallization patterns
Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam
2010-12-14
The invention contemplates apparatuses for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization patterns") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. Changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. Also, changes in the crystallization patterns, as well as the character of such changes, can be used as recognition elements in analysis of protein molecules.
Two-center interference effects in (e, 2e) ionization of H2 and CO2 at large momentum transfer
NASA Astrophysics Data System (ADS)
Yamazaki, Masakazu; Nakajima, Isao; Satoh, Hironori; Watanabe, Noboru; Jones, Darryl; Takahashi, Masahiko
2015-09-01
In recent years, there has been considerable interest in understanding quantum mechanical interference effects in molecular ionization. Since this interference appears as a consequence of coherent electron emission from the different molecular centers, it should depend strongly on the nature of the ionized molecular orbital. Such molecular orbital patterns can be investigated by means of binary (e, 2e) spectroscopy, which is a kinematically-complete electron-impact ionization experiment performed under the high-energy Bethe ridge conditions. In this study, two-center interference effects in the (e, 2e) cross sections of H2 and CO2 at large momentum transfer are demonstrated with a high-statistics experiment, in order to elucidate the relationship between molecular orbital patterns and the interference structure. It is shown that the two-center interference is highly sensitive to the phase, spatial pattern, symmetry of constituent atomic orbital, and chemical bonding nature of the molecular orbital. This work was partially supported by Grant-in-Aids for Scientific Research (S) (No. 20225001) and for Young Scientists (B) (No. 21750005) from the Ministry of Education, Culture, Sports, Science and Technology.
Bai, W L; Yang, R J; Yin, R H; Jiang, W Q; Luo, G B; Yin, R L; Zhao, S J; Li, C; Zhao, Z H
2012-04-01
Osteopontin (OPN) is a secreted phosphorylated glycoprotein. It has an important role in mammary gland development and lactation, as well as, is thought to be a potential candidate gene for lactation traits. In the present work, we isolated and characterized a full-length open reading frame (ORF) of yak OPN cDNA from lactating mammary tissue, and examined its expression pattern in mammary gland during different stages of lactation, as well as, the recombinant OPN protein of yak was expressed successfully in E. coli. The sequencing results indicated that the isolated cDNA was 1132-bp in length containing a complete ORF of 837-bp. It encoded a precursor protein of yak OPN consisting of 278 amino acid with a signal peptide of 16 amino acids. Yak OPN has a predicted molecular mass of 29285.975 Da and an isoelectric point of 4.245. It had an identity of 65.50-99.16% in cDNA, identity of 52.06-98.56% and similarity of 65.40-98.56% in deduced amino acids with the corresponding sequences of cattle, buffalo, sheep, goat, pig, human, and rabbit. The phylogenetic analysis indicated that yak OPN had the closest evolutionary relationship with that of cattle, and next buffalo. In mammary gland, yak OPN was generally transcribed in a declining pattern from colostrum period to dry period with an apparent increase of OPN expression being present in the late period of lactation compared with peak period of lactation. Western blot analysis indicated that His-tagged yak OPN protein expressed in E. coli could be recognized not only by an anti-His-tag antibody but also by an anti-human OPN antibody. These results from the present work provided a foundation for further insight into the role of OPN gene in yak lactation.
Structural modifications of human beta 2 microglobulin treated with oxygen-derived radicals.
Capeillere-Blandin, C; Delaveau, T; Descamps-Latscha, B
1991-01-01
Treatment of human beta 2 microglobulin (beta 2m) with defined oxygen-derived species generated by treatment with gamma-radiation was studied. As assessed by SDS/PAGE, the hydroxyl radicals (.OH) caused the disappearance of the protein band at 12 kDa that represents beta 2m, and cross-linked the protein into protein bands stable to both SDS and reducing conditions. However, when .OH was generated under oxygen in equimolar combination with the superoxide anion radical (O2.-), the high-molecular-mass protein products were less represented, and fragmented derivatives were not obviously detectable. Exposure to .OH alone, or to .OH + O2.- in the presence of O2, induced the formation of beta 2m protein derivatives with a more acidic net electrical charge than the parent molecule. In contrast, O2.- alone had virtually no effect on molecular mass or pI. Changes in u.v. fluorescence during .OH attack indicated changes in conformation, as confirmed by c.d. spectrometry. A high concentration of radicals caused the disappearance of the beta-pleated sheet structure and the formation of a random coil structure. Loss of tryptophan and significant production of dityrosine (2,2'-biphenol type) were noted, exhibiting a clear dose-dependence with .OH alone or with .OH + O2.-. The combination of .OH + O2.- induced a pattern of changes similar to that with .OH alone, but more extensive for c.d. and tryptophan oxidation (2 Trp/beta 2m molecule), and more limited for dityrosine formation. Lower levels of these oxidative agents caused the reproducible formation of species at 18 and 25 kDa which were recognized by antibodies against native beta 2m. These findings provide a model for the protein pattern observed in beta 2m amyloidosis described in the literature. Images Fig. 4. Fig. 5. PMID:1649598
Heme as a danger molecule in pathogen recognition.
Wegiel, Barbara; Hauser, Carl J; Otterbein, Leo E
2015-12-01
Appropriate control of redox mechanisms are critical for and effective innate immune response, which employs multiple cell types, receptors and molecules that recognize danger signals when they reach the host. Recognition of pathogen-associated pattern molecules (PAMPs) is a fundamental host survival mechanism for efficient elimination of invading pathogens and resolution of the infection and inflammation. In addition to PAMPs, eukaryotic cells contain a plethora of intracellular molecules that are normally secured within the confines of the plasma membrane, but if liberated and encountered in the extracellular milieu can provoke rapid cell activation. These are known as Alarmins or Danger-Associated Molecular Patterns (DAMPs) and can be released actively by cells or passively as a result of sterile cellular injury after trauma, ischemia, or toxin-induced cell rupture. Both PAMPs and DAMPs are recognized by a series of cognate receptors that increase the generation of free radicals and activate specific signaling pathways that result in regulation of a variety of stress response, redox sensitive genes. Multiple mediators released, as cells die include, but are not limited to ATP, hydrogen peroxide, heme, formyl peptides, DNA or mitochondria provide the second signal to amplify immune responses. In this review, we will focus on how sterile and infective stimuli activate the stress response gene heme oxygenase-1 (Hmox1, HO-1), a master gene critical to an appropriate host response that is now recognized as one with enormous therapeutic potential. HO-1 gene expression is regulated in large part by redox-sensitive proteins including but not limited to nrf2. Both PAMPs and DAMPs increase the activation of nrf2 and HO-1. Heme is a powerful pro-oxidant and as such should be qualified as a DAMP. With its degradation by HO-1a molecule of carbon monoxide (CO) is generated that in turn serves as a bioactive signaling molecule. PAMPs such as bacterial endotoxin activate HO-1, and the CO that is generated diffuses into the extracellular milieu where it interacts with bacteria, altering their behavior to increase production of ATP, which then functions as a second signal danger molecule. This two-hit cycle scenario results in efficient and effective activation of host leukocytes to attack and clear bacteria in part via enhanced reactive oxygen species generation. We discuss this intimate communication that occurs between host and bacteria and how these molecules serve as critical regulators of the acute inflammatory response, the overall redox status of the cell, and survival of the host. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Fischbach, Soren; Kopec, Ashley M.; Carew, Thomas J.
2014-01-01
Mechanistically distinct forms of long-lasting plasticity and memory can be induced by a variety of different training patterns. Although several studies have identified distinct molecular pathways that are engaged during these different training patterns, relatively little work has explored potential interactions between pathways when they are…
Soy protein diet inhibits zymosan induced monocyte migration
USDA-ARS?s Scientific Manuscript database
Atherosclerosis has been recognized as a chronic inflammatory disease. Recently, we showed reduced atherosclerotic lesions in a hyperlipidemic mouse model fed isoflavone-free soy protein diet (SPI) compared to casein (CAS)-fed mice, despite unchanged serum lipid levels. However, the molecular mechan...
DOT National Transportation Integrated Search
2007-05-01
Both Blomquist and Gaddy recognized a group of eight Hexastylis (commonly known as Wild Gingers or Little Brown : Jugs) that are referred to as the Virginica Group. This group was further subdivided into the three Subgroups: Virginica, : ...
Liu, Yi; Tsao, Chen-Yu; Kim, Eunkyoung; Tschirhart, Tanya; Terrell, Jessica L; Bentley, William E; Payne, Gregory F
2017-01-01
A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Squires, Katie E.; Wolter, Julie A.
2016-01-01
Although the orthographic processing skill of recognizing and producing letters and letter patterns has been established as an important skill for developing spelling, a majority of the research focus has been on early orthographic intervention that did not progress beyond the unit of the letter. The purpose of this article is to provide a best…
Increasing elevation of fire in the Sierra Nevada and implications for forest change
Mark W. Schwartz; Nathalie Butt; Christopher R. Dolanc; Andrew Holguin; Max A. Moritz; Malcolm P. North; Hugh D. Safford; Nathan L. Stephenson; James H. Thorne; Phillip J. van Mantgem
2015-01-01
Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we...
Clinical and pathological implications of miRNA in bladder cancer
Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana
2015-01-01
MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer. PMID:25653521
Effect of rottlerin, a PKC-{delta} inhibitor, on TLR-4-dependent activation of murine microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Chan; Division of Research and Development, Neuronex, Inc., San31, Hyoja-dong, Nam-gu, Pohang 790-784; Kim, Sun-Hee
2005-11-11
In microglia, Toll-like receptors have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. The effect of rottlerin, a PKC-{delta} specific inhibitor, on TLR-4-mediated signaling was investigated in murine microglia stimulated with lipopolysaccharide and taxol. Pretreatment of microglia cells with rottlerin decreased LPS- and taxol-induced nitric oxide production in a concentration-dependent manner (IC{sub 50} = 99.1 {+-} 1.5 nM). Through MTT and FACS analysis, we found that the inhibition effect of rottlerin was not due to microglial cell death. Rottlerin pretreatment also attenuated LPS-induced phosphorylation of I{kappa}B-{alpha}, nuclear translocation of NF-{kappa}B, andmore » expression of type II nitric oxide synthase. In addition, microglial phagocytosis in response to TLR-4 activation was diminished in which rottlerin was pretreated. Together, these data raise the possibility that certain PKC-{delta} specific inhibitors can modulate TLR-4-derived signaling and inflammatory target gene expression, and can alter susceptibility to microbial infection and chronic inflammatory diseases in central nervous system.« less
Deng, Tao; Zhang, Xiao-Shuang; Kim, Changkyun; Zhang, Jian-Wen; Zhang, Dai-Gui; Volis, Sergei
2016-01-01
Mazus sunhangii, a new species of Mazaceae from central China is described and illustrated based on evidence from morphology and molecular phylogeny. This new species is morphologically similar to M. puchellus and M. omeiensis but differs in erect habit, inflorescence position, leaf pattern and corolla color. Phylogenetic analysis based on four chloroplast DNA regions (rbcL, rps16, trnL-F, and psbA-trnH) identified the new species as the independent lineage sister to the other East Asian Mazus species. The new species is known only from a single location in Mt. Shennongjia area in northwest Hubei province, at the elevation of 760 m. The species grows on the limestone cliff, and, because a tourist arterial highway is located along this cliff, its habitat can be easily disturbed or destroyed. We propose that the only known species location is recognized as critical habitat (i.e., as the habitat required to ensure the persistence of a species) and the species listed as Critically Endangered based on the International Union for Conservation of Nature Red List Categories and Criteria B2a.
Education: DNA replication using microscale natural convection.
Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M
2012-12-07
There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.
Complement factor H in host defense and immune evasion.
Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J
2017-05-01
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Lamb, Trip; Bauer, Aaron M
2006-04-07
Many desert organisms exhibit convergence, and certain physical factors such as windblown sands have generated remarkably similar ecomorphs across divergent lineages. The burrowing geckos Colopus, Chondrodactylus and Palmatogecko occupy dune ecosystems in the Namib and Kalahari deserts of southwest Africa. Considered closely related, they share several putative synapomorphies, including reduced subdigital pads (toe pads) and spinose digital scales. Though recognized as part of Africa's ecologically diverse Pachydactylus Group, the burrowing geckos' precise phylogenetic affinities remain elusive. Convergent pedal modification provides a tenable alternative explaining the geckos' derived terrestriality and adaptation to Namib and Kalahari sands. We generated a molecular phylogeny for the Pachydactylus Group to examine evolutionary relationships among the burrowing geckos and infer historical patterns of pedal character change. Bayesian and parsimony analyses revealed all three burrowing genera to be deeply nested within Pachydactylus, each genus belonging to a separate clade. Strong support for these distinct clades indicates ecomorphological adaptations for burrowing have evolved independently three times in the southern Pachydactylus Group. We argue that the physical properties of Namib and Kalahari sands played a principal role in selecting for pedal similarity.
Yonezawa, Yasushige
2014-05-01
The carboxyl-terminal domain (CTD) of RNA polymerase II in eukaryotes regulates mRNA processing processes by recruiting various regulation factors. A main function of the CTD relies on the heptad consensus sequence (YSPTSPS). The CTD dynamically changes its conformational state to recognize and bind different regulation factors. The dynamical conformation changes are caused by modifications, mainly phosphorylation and dephosphorylation, to the serine residues. In this study, we investigate the conformational states of the unit consensus CTD peptide with various phosphorylation patterns of the serine residues by extended ensemble simulations. The results show that the CTD without phosphorylation has a flexible disordered structure distributed between twisted and extended states, but phosphorylation tends to reduce the conformational space. It was found that phosphorylation induces a β-turn around the phosphorylated serine residue and the cis conformation of the proline residue significantly inhibits the β-turn formation. The β-turn should contribute to specific CTD binding of the different regulation factors by changing the conformation propensity combined with induced fit.
Membrane repair and immunological danger
Andrews, Norma W.
2005-01-01
Antigens are able to elicit productive immune responses only when second signals are provided by adjuvant molecules. It is well established that exogenously acquired, pathogen-associated molecular patterns fulfil this adjuvant role when recognized by specific receptors on antigen-presenting cells. Recent evidence points to the existence of another class of adjuvant, which is apparently released from injured cells. Such endogenous adjuvants, referred to as 'danger' signals, could alert the immune system to situations that cause cell damage, but not necessarily those that involve infections. Endogenous adjuvants provide a good explanation for immune responses generated against tumours and autologous tissues, but it has been difficult to explain how a constant activation of the immune system is avoided, considering the frequency at which cells are injured in vivo. Here, we suggest that the efficiency with which cells reseal wounds in their plasma membrane might be an important factor in the balance between tolerance and autoimmunity. Recent observations in synaptotagmin-VII-deficient mice suggest that defective membrane repair could lead to autoimmunity in tissues that are more susceptible to mechanical injury. PMID:16138093
MUC4 as a diagnostic marker in cancer.
Chakraborty, Subhankar; Jain, Maneesh; Sasson, Aaron R; Batra, Surinder K
2008-08-01
Mucins are high molecular mass glycoproteins whose role in diagnosis, prognosis and therapy is being increasingly recognized owing to their altered expression in a variety of carcinomas. MUC4, a membrane-bound mucin encoded by a gene located on chromosome locus 3q29, is aberrantly expressed in several cancers including those of the bile duct, breast, colon, esophagus, ovary, lung, prostate, stomach and pancreas. This review considers the potential use of the MUC4 expression pattern in the diagnosis and prognosis of various cancers. MUC4 expression is a specific marker of epithelial tumors and its expression correlates positively with the degree of differentiation in several cancers. Importantly, MUC4 has emerged as a specific marker of dysplasia, being expressed in the earliest dysplastic lesions preceding several malignancies, including lethal pancreatic cancer. The presence of MUC4-specific antibodies in the serum and of the transcript in peripheral blood mononuclear cells of cancer patients raises the possibility of it emerging as a new diagnostic biomarker for bedside application in high-risk individuals and those with established cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensel-Bielowka, Stella; Wojnarowska, Zaneta; Dzida, Marzena
2015-08-11
Dynamic crossover above T g has been recognized as a characteristic feature of molecular dynamics of liquids approaching glass transition. Experimentally, it is manifested as a change in Vogel–Fulcher–Tammann dependence or a breakdown of the Stokes–Einstein and related relations. In this study, we report the exception from this rather general pattern of behavior. By means of dielectric, ultrasonic, rheological, and calorimetric methods, dynamics of two good ionic conductors (BMIm) 2[Co(NCS) 4] and (EMIm) 2[Co(NCS) 4] of less common stoichiometry (2:1) was studied in a very broad temperature range. However, none of the mentioned dynamic changes was observed in the entiremore » studied temperature range. On the contrary, the single VFT and the same fractional Walden coefficient were found for conductivity and viscosity changes over 12 decades. Finally and moreover, ultrasonic studies revealed that the data at temperatures which cover the normal liquid region cannot be fitted by a single exponential decay, and the Cole–Cole function should be used instead.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensel-Bielowka, Stella; Wojnarowska, Zaneta E.; Dzida, Marzena
2015-08-11
Dynamic crossover above T g has been recognized as a characteristic feature of molecular dynamics of liquids approaching glass transition. Experimentally, it is manifested as a change in Vogel Fulcher Tammann dependence or a breakdown of the Stokes Einstein and related relations. In this paper, we report the exception from this rather general pattern of behavior. By means of dielectric, ultrasonic, rheological, and calorimetric methods, dynamics of two good ionic conductors (BMIm) 2[Co(NCS) 4] and (EMIm) 2[Co(NCS) 4] of less common stoichiometry (2:1) was studied in a very broad temperature range. However, none of the mentioned dynamic changes was observedmore » in the entire studied temperature range. On the contrary, the single VFT and the same fractional Walden coefficient were found for conductivity and viscosity changes over 12 decades. Furthermore, ultrasonic studies revealed that the data at temperatures which cover the normal liquid region cannot be fitted by a single exponential decay, and the Cole Cole function should be used instead.« less
Kelly, E A; Fudge, J L
2018-07-01
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Changkyun; Zhang, Jian-Wen; Zhang, Dai-Gui; Volis, Sergei
2016-01-01
Mazus sunhangii, a new species of Mazaceae from central China is described and illustrated based on evidence from morphology and molecular phylogeny. This new species is morphologically similar to M. puchellus and M. omeiensis but differs in erect habit, inflorescence position, leaf pattern and corolla color. Phylogenetic analysis based on four chloroplast DNA regions (rbcL, rps16, trnL-F, and psbA-trnH) identified the new species as the independent lineage sister to the other East Asian Mazus species. The new species is known only from a single location in Mt. Shennongjia area in northwest Hubei province, at the elevation of 760 m. The species grows on the limestone cliff, and, because a tourist arterial highway is located along this cliff, its habitat can be easily disturbed or destroyed. We propose that the only known species location is recognized as critical habitat (i.e., as the habitat required to ensure the persistence of a species) and the species listed as Critically Endangered based on the International Union for Conservation of Nature Red List Categories and Criteria B2a. PMID:27783628
Ortiz, V; Isibasi, A; García-Ortigoza, E; Kumate, J
1989-01-01
The studies reported here were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce a humoral immune response in humans with typhoid fever. OMPs were isolated with the nonionic detergent Triton X-100 and were found to be contaminated with approximately 4% lipopolysaccharide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns showed protein bands with molecular size ranges from 17 to 70 kilodaltons; the major groups of proteins were those that correspond to the porins and OmpA of gram-negative bacteria. Rabbit antiserum to OMPs or to S. typhi recognized OMPs after absorption with lipopolysaccharide. Sera from patients with typhoid fever contained immunoglobulin M antibodies which reacted with a protein of 28 kilodaltons and immunoglobulin G antibodies which reacted mainly with the porins, as determined by immunoblotting. These results indicate that the porins are the major immunogenic OMPs from S. typhi and that the immune response induced in the infection could be related to the protective status. Images PMID:2768450
F4/80: the macrophage-specific adhesion-GPCR and its role in immunoregulation.
Lin, Hsi-Hsien; Stacey, Martin; Stein-Streilein, Joan; Gordon, Siamon
2010-01-01
As a macrophage-restricted reagent, the generation and application of the F4/80 mAb has greatly benefited the phenotypic characterization of mouse tissue macrophages for three decades. Following the molecular identification of the F4/80 antigen as an EGF-TM7 member of the adhesion-GPCR family, great interest was ignited to understand its cell type-specific expression pattern as well as its functional role in macrophage biology. Recent studies have shown that the F4/80 gene is regulated by a novel set of transcription factors that recognized a unique promoter sequence. Gene targeting experiments have produced two F4/80 knock out animal models and showed that F4/80 is not required for normal macrophage development. Nevertheless, the F4/80 receptor was found to be necessary for the induction of efferent CD8+ regulatory T cells responsible for peripheral immune tolerance. The identification of cellular ligands for F4/80 and delineation of its signaling pathway remain elusive but are critical to understand the in vivo role of this macrophage-specific adhesion-GPCR.
Can 5-methylcytosine analogues with extended alkyl side chains guide DNA methylation?
Kotandeniya, D; Seiler, C L; Fernandez, J; Pujari, S S; Curwick, L; Murphy, K; Wickramaratne, S; Yan, S; Murphy, D; Sham, Yuk Y; Tretyakova, N Y
2018-01-25
5-Methylcytosine ( Me C) is an endogenous modification of DNA that plays a crucial role in DNA-protein interactions, chromatin structure, epigenetic regulation, and DNA repair. Me C is produced via enzymatic methylation of the C-5 position of cytosine by DNA-methyltransferases (DNMT) which use S-adenosylmethionine (SAM) as a cofactor. Hemimethylated CG dinucleotides generated as a result of DNA replication are specifically recognized and methylated by maintenance DNA methyltransferase 1 (DNMT1). The accuracy of DNMT1-mediated methylation is essential for preserving tissue-specific DNA methylation and thus gene expression patterns. In the present study, we synthesized DNA duplexes containing MeC analogues with modified C-5 side chains and examined their ability to guide cytosine methylation by the human DNMT1 protein. We found that the ability of 5-alkylcytosines to direct cytosine methylation decreased with increased alkyl chain length and rigidity (methyl > ethyl > propyl ∼ vinyl). Molecular modeling studies indicated that this loss of activity may be caused by the distorted geometry of the DNA-protein complex in the presence of unnatural alkylcytosines.
Role of scavenger receptors in the pathophysiology of chronic liver diseases.
Armengol, Carolina; Bartolí, Ramon; Sanjurjo, Lucía; Serra, Isabel; Amézaga, Núria; Sala, Margarita; Sarrias, Maria-Rosa
2013-01-01
Scavenger receptors comprise a large family of structurally diverse proteins that are involved in many homeostatic functions. They recognize a wide range of ligands, from pathogen-associated molecular patterns (PAMPs) to endogenous, as well as modified host-derived molecules (DAMPs). The liver deals with blood micro-organisms and DAMPs released from injured organs, thus performing vital metabolic and clearance functions that require the uptake of nutrients and toxins. Many liver cell types, including hepatocytes and Kupffer cells, express scavenger receptors that play key roles in hepatitis C virus entry, lipid uptake, and macrophage activation, among others. Chronic liver disease causes high morbidity and mortality worldwide. Hepatitis virus infection, alcohol abuse, and non-alcoholic fatty liver are the main etiologies associated with this disease. In this context, continuous inflammation as a result of liver damage leads to hepatic fibrosis, which frequently brings about cirrhosis and ultimately hepatocellular carcinoma. In this review, we will summarize the role of scavenger receptors in the pathophysiology of chronic liver diseases. We will also emphasize their potential as biomarkers of advanced liver disease, including cirrhosis and cancer.
Okura, Hiromichi; Mihara, Hisakazu; Takahashi, Tsuyoshi
2013-10-01
The molecular recognition ability of proteins is essential in biological systems, and therefore a considerable amount of effort has been devoted to constructing desired target-binding proteins using a variety of naturally occurring proteins as scaffolds. However, since generating a binding site in a native protein can often affect its structural properties, highly stable de novo protein scaffolds may be more amenable than the native proteins. We previously reported the generation of de novo proteins comprising three α-helices and three β-strands (α3β3) from a genetic library coding simplified amino acid sets. Two α3β3 de novo proteins, vTAJ13 and vTAJ36, fold into a native-like stable and molten globule-like structures, respectively, even though the proteins have similar amino acid compositions. Here, we attempted to create binding sites for the vTAJ13 and vTAJ36 proteins to prove the utility of de novo designed artificial proteins as a molecular recognition tool. Randomization of six amino acids at two linker sites of vTAJ13 and vTAJ36 followed by biopanning generated binding proteins that recognize the target molecules, fluorescein and green fluorescent protein, with affinities of 10(-7)-10(-8) M. Of note, the selected proteins from the vTAJ13-based library tended to recognize the target molecules with high specificity, probably due to the native-like stable structure of vTAJ13. Our studies provide an example of the potential of de novo protein scaffolds, which are composed of a simplified amino acid set, to recognize a variety of target compounds.
Evidence for functional heterogeneity of circulating B-type natriuretic peptide.
Liang, Faquan; O'Rear, Jessica; Schellenberger, Ute; Tai, Lungkuo; Lasecki, Michael; Schreiner, George F; Apple, Fred S; Maisel, Alan S; Pollitt, N Stephen; Protter, Andrew A
2007-03-13
These studies describe molecular forms of circulating B-type natriuretic peptide (BNP) as well as their biological activity. Increased circulating levels of immunoreactive BNP correlate with the severity of heart failure and are considered a sensitive biomarker. However, little is known about the molecular forms of circulating BNP and their biological activity. Western blot analysis was used to characterize immunoreactive BNP species in heart failure plasma. Recombinant proBNP was assessed for reactivity in commercially available BNP assays and cell activity by cyclic guanosine monophosphate production in vascular cells. Heart failure plasma contained both low- (LMW-BNP) and high-molecular-weight (HMW-BNP) forms. The LMW-BNP migrated similarly to a 32-amino acid BNP standard, whereas HMW-BNP, when deglycosylated, was similar to deglycosylated recombinant proBNP. Recombinant proBNP and BNP were equally recognized by the Triage BNP assay (Biosite, San Diego, California). Furthermore, recombinant proBNP and BNP were both recognized by the Advia Centaur BNP test (Bayer Diagnostics, Tarrytown, New York), but only recombinant proBNP was recognized by the Elecsys NTproBNP assay (Roche Diagnostics, Indianapolis, Indiana). Recombinant proBNP exerted significantly less biological activity than BNP on human endothelial and vascular smooth muscle cells. Comparison of effective concentration (50%) values indicates that proBNP is 6- to 8-fold less potent than BNP in these human cells. This study demonstrates that proBNP, constituting a substantial portion of immunoreactive BNP in heart failure plasma, possesses significantly lower biological activity than the processed 32-amino acid hormone. These results implicate a discordance in heart failure between the high circulating levels of immunoreactive BNP and hormone activity, suggesting that some patients may be in a state of natriuretic peptide deficiency.
Al Qaraghuli, Mohammed M; Ferro, Valerie A
2017-04-01
Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single-domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes. Copyright © 2016 John Wiley & Sons, Ltd.
Neural Network Back-Propagation Algorithm for Sensing Hypergols
NASA Technical Reports Server (NTRS)
Perotti, Jose; Lewis, Mark; Medelius, Pedro; Bastin, Gary
2013-01-01
Fast, continuous detection of a wide range of hazardous substances simultaneously is needed to achieve improved safety for personnel working with hypergolic fuels and oxidizers, as well as other hazardous substances, with a requirement for such detection systems to warn personnel immediately upon the sudden advent of hazardous conditions, with a high probability of detection and a low false alarm rate. The primary purpose of this software is to read the voltage outputs from voltage dividers containing carbon nano - tube sensors as a variable resistance leg, and to recognize quickly when a leak has occurred through recognizing that a generalized pattern change in resistivity of a carbon nanotube sensor has occurred upon exposure to dangerous substances, and, further, to identify quickly just what substance is present through detailed pattern recognition of the shape of the response provided by the carbon nanotube sensor.
Quantum neural network based machine translator for Hindi to English.
Narayan, Ravi; Singh, V P; Chakraverty, S
2014-01-01
This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation.
Upregulation of toll-like receptors in chronic enteropathies in dogs.
Burgener, I A; König, A; Allenspach, K; Sauter, S N; Boisclair, J; Doherr, M G; Jungi, T W
2008-01-01
Inflammatory bowel disease (IBD) is thought to result from a dysregulated interaction between the host immune system and commensal microflora. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs), but their role in enteropathies in dogs is unknown. That there is a dysregulation of TLRs recognizing bacterial MAMPs in dogs with IBD. Sixteen healthy beagles and 12 dogs with steroid-treated (ST) and 23 dogs with food-responsive (FR) diarrhea. Prospective, observational study. mRNA expression of canine TLR2, 4, and 9 was evaluated by quantitative real-time RT-PCR in duodenal and colonic biopsies obtained before and after standard therapy. Samples from control dogs were taken at necropsy, with additional biopsies of stomach, jejunum, ileum, and mesenteric lymph node in 6 dogs. There were significant differences (P< or = .017) in expression of TLR2, 4, and 9 between the 6 sampled locations in healthy control dogs (lymph node > small intestine > or = colon). Before therapy, ST expressed more mRNA than control dogs for all 3 receptors (P < .05). There were no significant differences between pretreatment and posttreatment values, even though 32/35 dogs improved clinically. No associations were found when comparing receptor mRNA expression with either histology or clinical activity scores. Bacteria-responsive TLR2, 4, and 9 are upregulated in duodenal and colonic mucosa in IBD. This might lead to increased inflammation through interaction with the commensal flora. The absence of significant changes after therapy despite clinical improvement might point toward the existence of a genetic predisposition to IBD as described in human IBD.
Temporal synthesis of proteins and RNAs during human astrovirus infection of cultured cells.
Monroe, S S; Stine, S E; Gorelkin, L; Herrmann, J E; Blacklow, N R; Glass, R I
1991-01-01
Astroviruses are nonenveloped particles with a distinctive star-shaped surface structure that have been detected by electron microscopy in stool samples from humans and animals with gastroenteritis. We examined the patterns of macromolecular synthesis in astrovirus-infected cells with a goal of establishing a molecular basis for taxonomic classification. Trypsin is required for continuous replication of astrovirus in cultured cells; however, during a single cycle of infection, astrovirus antigen was synthesized earlier and at higher levels when serum, rather than trypsin, was included in the growth medium. This enhanced production of antigen, as measured by enzyme immunoassay, was accompanied by the appearance of aggregates of virus particles in the cytoplasm of infected cells. During astrovirus replication in cells cultured in the presence of serum, we detected a single infection-specific protein (90 kDa) beginning at 12 h postinfection. This protein was recognized by antiastrovirus rabbit serum and was sensitive to trypsin digestion in vitro, with the concomitant appearance of three smaller immunoreactive proteins (31, 29, and 20 kDa). We also detected two dactinomycin-resistant RNAs (7.2 and 2.8 kb), both of which were polyadenylated, in the cytoplasm of astrovirus-infected cells. The larger of these two RNAs is presumably the viral genome, whereas the smaller species may be a subgenomic messenger. Comparison of the proteins and RNAs synthesized in astrovirus-infected cells with those of the recognized families of nonenveloped single-stranded RNA animal viruses suggests that astroviruses should not be classified as members of either Caliciviridae or Picornaviridae. Images PMID:1987373
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Wren; Watson, Jonathan S.; Sephton, Mark A., E-mail: w.montgomery@imperial.ac.uk
2014-04-01
There are a number of key structures that can be used to reveal the formation and modification history of organic matter in the cosmos. For instance, the susceptibility of organic matter to heat is well documented and the relative thermal stabilities of different isomers can be used as cosmothermometers. Yet despite being an important variable, no previously recognized organic marker of pressure exists. The absence of a pressure marker is unfortunate considering our ability to effectively recognize extraterrestrial organic structures both remotely and in the laboratory. There are a wide variety of pressures in cosmic settings that could potentially bemore » reflected by organic structures. Therefore, to develop an organic cosmic pressure marker, we have used state-of-the-art diamond anvil cell (DAC) and synchrotron-source Fourier transform infrared (FTIR) spectroscopy to reveal the effects of pressure on the substitution patterns for representatives of the commonly encountered methyl substituted naphthalenes, specifically the dimethylnaphthalenes. Interestingly, although temperature and pressure effects are concordant for many isomers, pressure appears to have the opposite effect to heat on the final molecular architecture of the 1,5-dimethylnaphthalene isomer. Our data suggest the possibility of the first pressure parameter or 'cosmo-barometer' (1,5-dimethylnaphthalene/total dimethylnaphthalenes) that can distinguish pressure from thermal effects. Information can be obtained from the new pressure marker either remotely by instrumentation on landers or rovers or directly by laboratory measurement, and its use has relevance for all cases where organic matter, temperature, and pressure interplay in the cosmos.« less
Boudin, H; Grauz-Guyon, A; Faure, M P; Forgez, P; Lhiaubet, A M; Dennis, M; Beaudet, A; Rostene, W; Pelaprat, D
1995-01-01
In this work, the molecular forms of the rat neurotensin receptor (NTR) expressed in transfected Chinese hamster ovary (CHO) cells, in infected Sf9 insect cells and in rat cerebral cortex were immunologically detected by means of an anti-peptide antibody raised against a fragment of the third intracellular loop of the receptor. Immunoblot experiments against a fusion protein indicated that the anti-peptide antibody recognized, under denaturing conditions, the corresponding amino acid sequence within the NTR. In immunoblot analysis of membranes from NTR-transfected CHO cells, high levels of immunoreactivity were observed between 60 and 72 kDa, while only a faint labelling was observed at 47 kDa, the molecular mass deduced for the rat NTR cDNA. The bands of high molecular mass were no longer observed after deglycosylation of membrane proteins by peptide N-glycosidase F, indicating that they represented glycosylated forms of the receptor. Extracts of membranes derived from baculovirus-infected Sf9 insect-cells expressing the NTR provided a quite different immunoblot pattern, since the major band detected in that case was at 47 kDa, the molecular size of the non-glycosylated receptor. Taken together, these data show that, while most of the NTR protein was glycosylated in CHO cells, it was unglycosylated in Sf9 insect-cells. In addition, molecular sizes of the receptor proteins observed in these two cell lines differed from those obtained for the NTR endogenously expressed in the rat cerebral cortex of 7 day-old rats, where bands at 56 and 54 kDa were detected. Binding experiments carried out on membrane preparations obtained from baculovirus-infected Sf9 cells demonstrated that the immunogenic sequence was still accessible to the antibody when the receptor was embedded in the cell membrane. Immunohistochemical studies carried out on both transfected CHO cells and infected Sf9 cells confirmed this interpretation and further indicated that the antibody could be applied in the visualization of the receptor. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7826341
Effect of synapse dilution on the memory retrieval in structured attractor neural networks
NASA Astrophysics Data System (ADS)
Brunel, N.
1993-08-01
We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.
Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record
Fleming, Michael D.; Chapin, F. Stuart; Cramer, W.; Hufford, Gary L.; Serreze, Mark C.
2000-01-01
Data from a sparse network of climate stations in Alaska were interpolated to provide 1-km resolution maps of mean monthly temperature and precipitation-variables that are required at high spatial resolution for input into regional models of ecological processes and resource management. The interpolation model is based on thin-plate smoothing splines, which uses the spatial data along with a digital elevation model to incorporate local topography. The model provides maps that are consistent with regional climatology and with patterns recognized by experienced weather forecasters. The broad patterns of Alaskan climate are well represented and include latitudinal and altitudinal trends in temperature and precipitation and gradients in continentality. Variations within these broad patterns reflect both the weakening and reduction in frequency of low-pressure centres in their eastward movement across southern Alaska during the summer, and the shift of the storm tracks into central and northern Alaska in late summer. Not surprisingly, apparent artifacts of the interpolated climate occur primarily in regions with few or no stations. The interpolation model did not accurately represent low-level winter temperature inversions that occur within large valleys and basins. Along with well-recognized climate patterns, the model captures local topographic effects that would not be depicted using standard interpolation techniques. This suggests that similar procedures could be used to generate high-resolution maps for other high-latitude regions with a sparse density of data.
Can mechanics control pattern formation in plants?
Dumais, Jacques
2007-02-01
Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.
Molecular toxicity of nanomaterials.
Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei
2014-10-01
With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.
Effective Spine Triage: Patterns of Pain
Hall, Hamilton
2014-01-01
Background The most common cause of recurring lost time from work, low back pain is a huge burden on society. Medical training dictates that we must establish a cause for pain before we can treat it and then base our treatment on a recognized and agreed-upon pathology. But in the overwhelming majority of low back pain cases, the issue is nothing more than a minor mechanical malfunction, the inevitable consequence of normal wear and tear. The severity of the pain does not reflect the benign nature of the underlying problem and its limited extent makes a definitive diagnosis impossible. One important component of the solution is improved spinal triage. Using patterns or syndromes in the initial assessment of low back pain is gaining renewed interest and clinical acceptance. Methods Identifying a patient's pain pattern is achieved primarily through an assessment of the patient's history. The patient interview begins with a series of questions to determine the specific syndrome. A subsequent physical examination supports or refutes the findings in history. Combining information from the history with the findings of the physical examination, the clinician has the ability to rule out a number of potentially grim diagnoses. Results More than 90% of back pain patients have benign mechanical problems and their pain can be classified into 4 distinct patterns: 2 back-dominant patterns and 2 leg-dominant patterns. Conclusion A clinical perspective capable of recognizing a defined syndrome at first contact will lead to a better outcome. Most patients with low back pain can be treated successfully with simple, pattern-specific, noninvasive primary management. Patients without a pattern and those who do not respond as anticipated require further investigation and specialized care. PMID:24688339
Effective spine triage: patterns of pain.
Hall, Hamilton
2014-01-01
The most common cause of recurring lost time from work, low back pain is a huge burden on society. Medical training dictates that we must establish a cause for pain before we can treat it and then base our treatment on a recognized and agreed-upon pathology. But in the overwhelming majority of low back pain cases, the issue is nothing more than a minor mechanical malfunction, the inevitable consequence of normal wear and tear. The severity of the pain does not reflect the benign nature of the underlying problem and its limited extent makes a definitive diagnosis impossible. One important component of the solution is improved spinal triage. Using patterns or syndromes in the initial assessment of low back pain is gaining renewed interest and clinical acceptance. Identifying a patient's pain pattern is achieved primarily through an assessment of the patient's history. The patient interview begins with a series of questions to determine the specific syndrome. A subsequent physical examination supports or refutes the findings in history. Combining information from the history with the findings of the physical examination, the clinician has the ability to rule out a number of potentially grim diagnoses. More than 90% of back pain patients have benign mechanical problems and their pain can be classified into 4 distinct patterns: 2 back-dominant patterns and 2 leg-dominant patterns. A clinical perspective capable of recognizing a defined syndrome at first contact will lead to a better outcome. Most patients with low back pain can be treated successfully with simple, pattern-specific, noninvasive primary management. Patients without a pattern and those who do not respond as anticipated require further investigation and specialized care.
Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.
Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung
2007-05-01
This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.
MOLECULAR EPIDEMIOLOGICAL INVESTIGATION OF 2 CYCLOSPORIASIS OUTBREAKS IN VANCOUVER, BRITISH COLUMBIA
Introduction: Cyclospora cayentanensis is a waterborne apicocomplexan protozoan that has been recognized as an emerging parasite. This parasite is the cause of severe diarrhea, which can only be treated with sulfa drugs. Cyclospora caytentanensis is endemic in some parts of the...
Stasis and convergence characterize morphological evolution in eupolypod II ferns.
Sundue, Michael A; Rothfels, Carl J
2014-01-01
Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional 'athyrioid' ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae - a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.
Stasis and convergence characterize morphological evolution in eupolypod II ferns
Sundue, Michael A.; Rothfels, Carl J.
2014-01-01
Background and Aims Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Methods Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. Key Results The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. Conclusions The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae – a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation. PMID:24197753
Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta,Y.; Nair, D.; Wharton, R.
2008-01-01
Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, inmore » effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.« less
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-01
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-18
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.
Comparing the visual spans for faces and letters
He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.
2015-01-01
The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858
Aging and visual 3-D shape recognition from motion.
Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Shain, Lindsey M; Pedersen, Lauren E; Kinnard, Jonathan D; Higginbotham, Alexia J; Gilliam, Ashley N
2017-11-01
Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).
Durant, Fallon; Lobo, Daniel; Hammelman, Jennifer
2016-01-01
Abstract Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large‐scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi‐scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering. PMID:27499881
Scuotto, Angelo; Djorie, Serge; Colavizza, Michel; Romond, Pierre-Charles; Romond, Marie-Bénédicte
2014-12-01
Extracellular components secreted by Bifidobacterium breve C50 can induce maturation, high IL-10 production and prolonged survival of dendritic cells via a TLR2 pathway. In this study, the components were isolated from the supernatant by gel filtration chromatography. Antibodies raised against the major compounds with molecular weight above 600 kDa (Bb C50BC) also recognized compounds of lower molecular weight (200–600 kDa). TLR2 and TLR6 bound to the components already recognized by the antibodies. Trypsin digestion of Bb C50BC released three major peptides whose sequences displayed close similarities to a putative secreted protein with a CHAP amidase domain from B. breve. The 1300-bp genomic region corresponding to the hypothetical protein was amplified by PCR. The deduced polypeptide started with an N-terminal signal sequence of 45 amino acids, containing the lipobox motif (LAAC) with the cysteine in position 25, and 2 positively charged residues within the first 14 residues of the signal sequence. Lipid detection in Bb C50BC by GC/MS further supported the implication of a lipoprotein. Sugars were also detected in Bb C50BC. Close similarity with the glucan-binding protein B from Bifidobacterium animalis of two released peptides from Bb C50BC protein suggested that glucose moieties, possibly in glucan form, could be bound to the lipoprotein. Finally, heating at 100 °C for 5 min led to the breakdown of Bb C50BC in compounds of molecular weight below 67 kDa, which suggested that Bb C50BC was an aggregate. One might assume that a basic unit was formed by the lipoprotein bound putatively to glucan. Besides the other sugars and hexosamines recognized by galectin 1 were localized at the surface of the Bb C50BC aggregate. In conclusion, the extracellular components secreted by B. breve C50 were constituted of a lipoprotein putatively associated with glucose moieties and acting in an aggregating form as an agonist of TLR2/TLR6.
Copilaș-Ciocianu, Denis; Grabowski, Michał; Pârvulescu, Lucian; Petrusek, Adam
2014-12-08
Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa. Gammarus species display substantial altitudinal variability and patchy, fragmented distribution patterns. They occur abundantly, particularly in springs and streams, from lowlands to sub-mountainous and mountainous regions. In the light of recent molecular research, we hypothesize that the complex geomorphological dynamics of the Carpathian region during the Late Tertiary probably contributed to their allopatric distribution pattern. Contrasting with Gammarus, the genera Niphargus and Synurella exhibit low altitudinal variability, broad ecological valences and overlapping distributions, being widespread throughout the lowlands. The current distribution of N. hrabei and N. valachicus seems to be linked to the extent of the Paratethys during the Early Pliocene or Pleistocene. We further discuss the taxonomic validity of two synonymized and one apparently undescribed taxon, and provide an updated pictorial identification key that includes all taxa and forms discussed in our study. The mosaic distribution of epigean freshwater amphipod species in Romania shows that this region is particularly suitable for phylo- and biogeographical analyses of this group.
Spiers Memorial Lecture. Molecular mechanics and molecular electronics.
Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R
2006-01-01
We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.
Patra, Mahesh Chandra; Kwon, Hyuk-Kwon; Batool, Maria; Choi, Sangdun
2018-01-01
Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4—a widely studied member of the interleukin-1 receptor/TLR superfamily—using homology modeling, protein–protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment. Results showed that each functional domain of the membrane-bound TLR4 displayed several structural transitions that are biophysically essential for plasma membrane integration. Specifically, the extracellular and cytoplasmic domains were partially immersed in the upper and lower leaflets of the membrane bilayer. Meanwhile, TM domains tilted considerably to overcome the hydrophobic mismatch with the bilayer core. Our analysis indicates an alternate dimerization or a potential oligomerization interface of TLR4-TM. Moreover, the helical properties of an isolated TM dimer partly agree with that of the full-length receptor. Furthermore, membrane-absorbed or solvent-exposed surfaces of the toll/interleukin-1 receptor domain are consistent with previous X-ray crystallography and biochemical studies. Collectively, we provided a complete structural model of membrane-bound TLR4 that strengthens our current understanding of the complex mechanism of receptor activation and adaptor recruitment in the innate immune signaling pathway. PMID:29593733
Globally intertwined evolutionary history of giant barrel sponges
NASA Astrophysics Data System (ADS)
Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.
2017-09-01
Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.
Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan
2014-02-01
The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The role of necroptosis in pulmonary diseases.
Mizumura, Kenji; Maruoka, Shuichiro; Gon, Yasuhiro; Choi, Augustine M K; Hashimoto, Shu
2016-11-01
By regulating the cell number and eliminating harmful cells, programmed cell death plays a critical role in development, homeostasis, and disease. While apoptosis is a recognized form of programmed cell death, necrosis was considered a type of uncontrolled cell death induced by extreme physical or chemical stress. However, recent studies have revealed the existence of a genetically programmed and regulated form of necrosis, termed necroptosis. Necroptosis is defined as necrotic cell death that is dependent on receptor-interacting protein kinase 3 (RIPK3). RIPK3, receptor-interacting protein kinase 1 (RIPK1), and a mixed-lineage kinase domain-like protein (MLKL) form a multiprotein complex called a necrosome. Although necroptosis generally provides a cell-autonomous host defense, on the other hand, cell rupture caused by necroptosis induces inflammation through the release of damage-associated molecular patterns, such as mitochondrial DNA, HMGB1, and IL-1. Previously, necroptosis was considered an alternative to apoptosis, but it is becoming increasingly clear that necroptosis itself is relevant to clinical disease, independent of apoptosis. According to some recent studies, autophagy, a cellular process for organelle and protein turnover, regulates necroptosis. This review outlines the principal components of necroptosis and provides an overview of the emerging importance of necroptosis in the pathogenesis of pulmonary disease, including chronic obstructive pulmonary disease, lung cancer, infection, and sepsis. We also discuss the molecular relationship between necroptosis and autophagy. Strategies targeting necroptosis may yield novel therapies for pulmonary diseases. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Unmack, Peter J.; Dowling, Thomas E.; Laitinen, Nina J.; Secor, Carol L.; Mayden, Richard L.; Shiozawa, Dennis K.; Smith, Gerald R.
2014-01-01
Intense geological activity caused major topographic changes in Western North America over the past 15 million years. Major rivers here are composites of different ancient rivers, resulting in isolation and mixing episodes between river basins over time. This history influenced the diversification of most of the aquatic fauna. The genus Pantosteus is one of several clades centered in this tectonically active region. The eight recognized Pantosteus species are widespread and common across southwestern Canada, western USA and into northern Mexico. They are typically found in medium gradient, middle-elevation reaches of rivers over rocky substrates. This study (1) compares molecular data with morphological and paleontological data for proposed species of Pantosteus, (2) tests hypotheses of their monophyly, (3) uses these data for phylogenetic inferences of sister-group relationships, and (4) estimates timing of divergence events of identified lineages. Using 8055 base pairs from mitochondrial DNA protein coding genes, Pantosteus and Catostomus are reciprocally monophyletic, in contrast with morphological data. The only exception to a monophyletic Pantosteus is P. columbianus whose mtDNA is closely aligned with C. tahoensis because of introgression. Within Pantosteus, several species have deep genetic divergences among allopatric sister lineages, several of which are diagnosed and elevated to species, bringing the total diversity in the group to 11 species. Conflicting molecular and morphological data may be resolved when patterns of divergence are shown to be correlated with sympatry and evidence of introgression. PMID:24619087
Key binding and susceptibility of NS3/4A serine protease inhibitors against hepatitis C virus.
Meeprasert, Arthitaya; Hannongbua, Supot; Rungrotmongkol, Thanyada
2014-04-28
Hepatitis C virus (HCV) causes an infectious disease that manifests itself as liver inflammation, cirrhosis, and can lead to the development of liver cancer. Its NS3/4A serine protease is a potent target for drug design and development since it is responsible for cleavage of the scissile peptide bonds in the polyprotein important for the HCV life cycle. Herein, the ligand-target interactions and the binding free energy of the four current NS3/4A inhibitors (boceprevir, telaprevir, danoprevir, and BI201335) were investigated by all-atom molecular dynamics simulations with three different initial atomic velocities. The per-residue free energy decomposition suggests that the key residues involved in inhibitor binding were residues 41-43, 57, 81, 136-139, 155-159, and 168 in the NS3 domain. The van der Waals interactions yielded the main driving force for inhibitor binding at the protease active site for the cleavage reaction. In addition, the highest number of hydrogen bonds was formed at the reactive P1 site of the four studied inhibitors. Although the hydrogen bond patterns of these inhibitors were different, their P3 site was most likely to be recognized by the A157 backbone. Both molecular mechanic (MM)/Poisson-Boltzmann surface area and MM/generalized Born surface area approaches predicted the relative binding affinities of the four inhibitors in a somewhat similar trend to their experimentally derived biological activities.
The role of fire in riparian zones of the Northern Rocky Mountains
Elaine K. Sutherland; Kevin McKelvey
2002-01-01
While the importance of riparian systems in the northern Rocky Mountains as sources of productivity and diversity is recognized, there is little information about the interaction between pattern and process.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1992-01-01
Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.