Science.gov

Sample records for recoil energy relevant

  1. Measurement of Low Energy Electronic Recoil Response and Electronic/Nuclear Recoils Discrimination in XENON100

    NASA Astrophysics Data System (ADS)

    Ye, Jingqiang; Xenon Collaboration

    2017-01-01

    The XENON100 detector uses liquid xenon time projection chamber to search for nuclear recoils(NR) caused by hypothetical Weakly Interacting Massive Particles (WIMPs). The backgrounds are mostly electronic recoils(ER), thus it's crucial to distinguish NR from ER. Using high statistical calibration data from tritiated methane, AmBe and other sources in XENON100, the ER/NR discrimination under different electric fields are measured. The Photon yield and recombination fluctuation of low energy electronic recoils under different fields will also be presented and compared to results from NEST and other experiments, which is crucial to understanding the response of liquid xenon detectors in the energy regime of searching dark matter.

  2. Energy acceptance of the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Z.; Moran, M. T.; Gilardy, G.; Schmitt, J.; Seymour, C.; Couder, M.

    2017-04-01

    Radiative alpha-capture, (α , γ) , reactions play a critical role in nucleosynthesis and nuclear energy generation in a variety of astrophysical environments. The St. George recoil separator at the University of Notre Dame's Nuclear Science Laboratory was developed to measure (α , γ) reactions in inverse kinematics via recoil detection in order to obtain nuclear reaction cross sections at the low energies of astrophysical interest, while avoiding the γ-background that plagues traditional measurement techniques. Due to the γ ray produced by the nuclear reaction at the target location, recoil nuclei are produced with a variety of energies and angles, all of which must be accepted by St. George in order to accurately determine the reaction cross section. We demonstrate the energy acceptance of the St. George recoil separator using primary beams of helium, hydrogen, neon, and oxygen, spanning the magnetic and electric rigidity phase space populated by recoils of anticipated (α , γ) reaction measurements. We find the performance of St. George meets the design specifications, demonstrating its suitability for (α , γ) reaction measurements of astrophysical interest.

  3. Simulations of the nuclear recoil head-tail signature in gases relevant to directional dark matter searches

    NASA Astrophysics Data System (ADS)

    Spooner, N. J. C.; Majewski, P.; Muna, D.; Snowden-Ifft, D. P.

    2010-12-01

    We present the first detailed simulations of the so-called head-tail effect of nuclear recoils in gas, the presence of which is vital to directional WIMP dark matter searches. We include comparison simulations of the range and straggling of carbon, sulphur and fluorine recoils in low pressure gas. However, the prime focus is a detailed investigation of carbon and sulphur recoils in 40 Torr negative ion carbon disulfide, a gas proposed for use in large scale directional detectors. The focus is to determine whether the location of the majority of the ionization charge released and observed from a recoil track in carbon disulfide is at the beginning (tail) of the track, at the end (head) or evenly distributed. We used the SRIM simulation program, together with a purpose-written Monte Carlo generator to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results indicate the likely existence of a head-tail track asymmetry but with a magnitude critically influenced by several competing factors, notably the W-value assumed, the drift distance and diffusion, and the recoil energy.

  4. Inelastic frontier: Discovering dark matter at high recoil energy

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; ...

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelasticmore » dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an

  5. Inelastic frontier: Discovering dark matter at high recoil energy

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; Martin, Adam

    2016-12-01

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelastic dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ ≲160 keV ), iodine at PICO (when 160 ≲δ ≲300 keV ), and tungsten at CRESST (when δ ≳300 keV ). Amusingly, once δ ≳200 keV , weak scale (and larger) dark matter-nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20-500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45-100 keV that, if interpreted as dark matter scattering, is compatible with δ ˜200 keV and an

  6. Inelastic frontier: Discovering dark matter at high recoil energy

    SciTech Connect

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; Martin, Adam

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelastic dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an

  7. Evidence for mirror dark matter from the CDMS low energy electron recoil spectrum

    SciTech Connect

    Foot, R.

    2009-11-01

    We point out that mirror dark matter predicts low-energy (E{sub R} < or approx. 2 keV) electron recoils from mirror electron scattering as well as nuclear recoils from mirror ion scattering. The former effect is examined and applied to the recently released low-energy electron recoil data from the CDMS Collaboration. We speculate that the sharp rise in electron recoils seen in CDMS below 2 keV might be due to mirror electron scattering and show that the parameters suggested by the data are roughly consistent with the mirror dark matter explanation of the annual modulation signal observed in the DAMA/Libra and DAMA/NaI experiments. Thus, the CDMS data offer tentative evidence supporting the mirror dark matter explanation of the DAMA experiments, which can be more rigorously checked by future low-energy electron recoil measurements.

  8. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  9. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    NASA Astrophysics Data System (ADS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-03-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  10. MIMAC low energy electron-recoil discrimination measured with fast neutrons

    NASA Astrophysics Data System (ADS)

    Riffard, Q.; Santos, D.; Guillaudin, O.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Muraz, J.-F.; Lebreton, L.; Maire, D.; Colas, P.; Giomataris, I.; Busto, J.; Fouchez, D.; Brunner, J.; Tao, C.

    2016-08-01

    MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. This analysis shows that a 105 rejection power is reachable for electron/recoil discrimination. Moreover, the efficiency was estimated by a Monte-Carlo simulation showing that a 105 electron rejection power is reached with a 86.49 ± 0.17% nuclear recoil efficiency considering the full energy range and 94.67 ± 0.19% considering a 5 keV lower threshold.

  11. Scintillation efficiency for low energy nuclear recoils in liquid xenon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Xiong, Xiaonu; Ji, Xiangdong

    2015-02-01

    We perform a theoretical study of the scintillation efficiency of the low energy region crucial for liquid xenon dark matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from experimental data to the low energy region, and take into account the effects of electron escape from electron-ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoil energy drops below 3 keV.

  12. H + D2 Reaction Dynamics in the Limit of Low Product Recoil Energy.

    PubMed

    Aldegunde, J; Herráez-Aguilar, D; Jambrina, P G; Aoiz, F J; Jankunas, J; Zare, R N

    2012-10-18

    Both experiment and theory recently showed that the H + D2(v = 0, j = 0) → HD(v' = 4, j') + D reactions at a collision energy of 1.97 eV display a seemingly anomalous HD product angular distribution that moves in the backward direction as the value of j' increases and the corresponding energy available for product recoil decreases. This behavior was attributed to the presence of a centrifugal barrier along the reaction path. Here, we show, using fully quantum mechanical calculations, that for low recoil energies, the collision mechanism is nearly independent of the HD internal state and the HD product becomes aligned, with its rotational angular momentum j' pointing perpendicular to the recoil momentum k'. As the kinetic energy to overcome this barrier becomes limited, the three atoms adopt a nearly collinear configuration in the transition-state region to permit reaction, which strongly polarizes the resulting HD product. These results are expected to be general for any chemical reaction in the low recoil energy limit.

  13. Recoil implantation of boron into silicon by high energy silicon ions

    NASA Astrophysics Data System (ADS)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  14. Low-energy recoils and energy scale in liquid xenon detector for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-04-01

    Liquid xenon has been proven to be a great detector medium for the direct search of dark matter. However, in the energy region of below 10 keV, the light yield and charge production are not fully understood due to the convolution of excitation, recombination and quenching. We have already studied a recombination model to explain the physics processes involved in liquid xenon. Work is continued on the average energy expended per electron-ion pair as a function of energy based on the cross sections for different type of scattering processes. In this paper, the results will be discussed in comparison with available experimental data using Birk's Law to understand how scintillation quenching contributes to the non-linear light yield for electron recoils with energy below 10 keV in liquid xenon. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.

  15. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  16. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (∼<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  17. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    X. Jiang; J. Arrington; F. Benmokhtar; A. Camsonne; J. P. Chen; S. Choi; E. Chudakov; F. Cusanno; A. Deur; D. Dutta; F. Garibaldi; D. Gaskell; O. Gayou; R. Gilman; C. Glashauser; D. Hamilton; O. Hansen; D. W. Higinbotham; R. J. Holt; C. W. de Jager; M. K. Jones; L. J. Kaufman; E. R. Kinney; K. Kramer; L. Lagamba; R. de Leo; J. Lerose; D. Lhuillier; R. Lindgren; N. Liyanage; K. McCormick; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; S. Nanda; K. D. Paschke; C. F. Perdrisat; V. Punjabi; I. A. Qattan; R. D. Ransome; P. E. Reimer; B. Reitz; A. Saha; E. C. Schulte; R. Sheyor; K. Slifer; P. Solvignon; V. Sulkosky; G. M. Urciuoli; E. Voutier; K. Wang; K. Wijesooriya; B. Wojtsekhowski; and L. Zhu

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  18. Recoil-proton polarization in high-energy deuteron photodisintegration with circularly plarized photons.

    SciTech Connect

    Jiang, X.; Arrington, J.; Benmokhtar, F.; Camsonne, A.; Chen, J. P.; Holt, R. J.; Qattan, I. A.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Physics; Rutgers Univ.; Univ. Blaise Pascal; Thomas Jefferson National Accelerator Facility

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  19. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    Jiang, X.; Benmokhtar, F.; Glashauser, C.; McCormick, K.; Ransome, R. D.; Arrington, J.; Holt, R. J.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Camsonne, A.

    2007-05-04

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  20. Recoil saturation of the self-energy in atomic systems

    SciTech Connect

    Manson, J.R.; Ritchie, R.H.

    1988-01-01

    Within the framework of the general self-energy problem for the interaction of a projectile with a many-body system, we consider the dispersion force between two atoms or between a charge and an atom. Since the Born-Oppenheimer approximation is not made, this is a useful approach for exhibiting non-adiabatic effects. We find compact expressions in terms of matrix elements of operators in the atomic displacement which are not limited by multipole expansions. 7 refs.

  1. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    SciTech Connect

    Bolte, W.J.; Collar, Juan I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.; /Chicago U., EFI /KICP, Chicago /Fermilab

    2005-03-01

    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF{sub 3}I chamber.

  2. Low energy electron/recoil discrimination for directional Dark Matter detection

    SciTech Connect

    Billard, J.; Mayet, F.; Santos, D. E-mail: mayet@lpsc.in2p3.fr

    2012-07-01

    Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about ∼ 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.

  3. A velocity map ion imaging study of difluorobenzene-water complexes: binding energies and recoil distributions.

    PubMed

    Bellm, Susan M; Moulds, Rebecca J; van Leeuwen, Matthew P; Lawrance, Warren D

    2008-03-21

    The binding energies of the p-, m-, and o-difluorobenzene-H(2)O complexes have been measured by velocity map ion imaging to be 922+/-10, 945+/-10, and 891+/-4 cm(-1), respectively. The lack of variation provides circumstantial evidence for water binding to the three isomers via the same interaction, viz. an in-plane O-H...F hydrogen bond to one of the fluorine atoms on the ring, with a second, weaker interaction of the water O atom with an ortho hydrogen, as determined previously for the p-difluorobenzene-H(2)O complex [Kang et al., J. Phys. Chem. A 109, 767 (2005)]. The ground state binding energies for the difluorobenzene-H(2)O complexes are approximately 5%-11% larger than that for benzene-H(2)O, where binding occurs to the pi electrons out-of-plane. However, in the S(1) state the binding energies of the o- and p-difluorobenzene-H(2)O complexes are smaller than the benzene-H(2)O value, raising an interesting question about whether the geometry at the global energy minimum remains in-plane in the excited electronic states of these two complexes. Recoil energy distributions for dissociation of p-difluorobenzene-H(2)O have been measured from the 3(1), 5(2), and 3(1)5(1) levels of the excited electronic state. These levels are 490, 880, and 1304 cm(-1), respectively, above the dissociation threshold. Within the experimental uncertainty, the recoil energy distributions are the same for dissociation from these three states, with average recoil energies of approximately 100 cm(-1). These recoil energies are 60% larger than was observed for the dissociation of p-difluorobenzene-Ar, which is a substantially smaller increase than the 400% seen in a comparable study of dissociation within the triplet state for pyrazine-Ar, -H(2)O complexes. The majority of the available energy is partitioned into vibration and rotation of the fragments.

  4. Store and recoil of elastic energy in slow and fast types of human skeletal muscles.

    PubMed

    Bosco, C; Tihanyi, J; Komi, P V; Fekete, G; Apor, P

    1982-12-01

    Stretch-shortening cycle refers to the mechanical condition in which store and recoil of elastic energy occur in the skeletal muscle. This leads to a greater work output when compared to a simple shortening contraction. The subjects performed vertical jumps with and without preliminary counter-movement and with small and large knee angular displacement. The results indicated that those subjects who had more fast twitch (FT) fibers benefited more from the stretching phase performed with high speed and short angular displacement. The amounts of elastic energy stored in this phase were 30 and 26 N X kgBW-1, respectively, for FT and slow twitch (ST) type subjects. The recoil of elastic energy was proportional to the amount of energy storage. In large amplitude jumps where transient period between stretch and shortening is long the both types of subjects demonstrated similar amount of storage of elastic energy (17 and 16 N X kgBW-1, respectively). However, the re-use of this elastic energy was greater in ST group (24%) as compared to the FT group (17%). The results can be interpreted through differences in sarcomere crossbridge life times between fast and slow muscle fibers. The slow type muscle may be able to retain the cross-bridge attachment for a longer period of time and therefore it may utilize elastic energy better in a slow type ballistic motion.

  5. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    NASA Astrophysics Data System (ADS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Zhang, Y.

    2017-04-01

    Low-energy recoil events in MgO are studied using ab intio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. There is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  6. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    DOE PAGES

    Petersen, B. A.; Liu, B.; Weber, W. J.; ...

    2017-01-11

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for Omore » along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.« less

  7. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  8. Scintillation Efficiency Measurement of Na Recoils in NaI(Tl) Below the DAMA/LIBRA Energy Threshold

    SciTech Connect

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-30

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  9. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    SciTech Connect

    Jastram, Andrew

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  10. Exact calculations of nuclear-recoil energies from prompt gamma decays resulting from neutron capture

    SciTech Connect

    Kinney, J.H.

    1981-07-20

    The results of an accurate determination of the recoil spectrum from (n, ..gamma..) reactions in molybdenum are presented. The recoil spectrum has been calculated from nuclear level structure data and measured branching ratios. Angular correlations between successive gammas have been accounted for using the standard theoretical techniques of Racah algebra and the density matrix formalism.

  11. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    SciTech Connect

    Lebreton, Lena; Bachaalany, Mario

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  12. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    NASA Astrophysics Data System (ADS)

    Wojcik, M.

    2016-02-01

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei.

  13. Elastic Recoil after Balloon Angioplasty in Hemodialysis Accesses: Does It Actually Occur and Is It Clinically Relevant?

    PubMed

    Rajan, Dheeraj K; Sidhu, Arshdeep; Noel-Lamy, Maxime; Mahajan, Ashish; Simons, Martin E; Sniderman, Kenneth W; Jaskolka, Jeffrey; Tan, Kong Teng

    2016-06-01

    Purpose To qualify and quantify elastic recoil and determine its effect on access patency. Materials and Methods Research ethics board approval was obtained and all patients signed an informed consent form. This was a prospective, nonrandomized study of mature accesses that underwent balloon percutaneous transluminal angioplasty (PTA) between January 2009 and December 2012. After PTA, completion fistulography was performed at 0-, 5-, 10-, and 15-minute intervals. From Digital Imaging and Communications in Medicine images, percentage of lesion stenosis before and after PTA was measured at each time point. A total of 76 patients (44 men, 32 women; mean age, 59.6 years) were enrolled and underwent 154 PTAs in 56 grafts and 98 fistulas. Venous elastic recoil was defined as recurrent luminal narrowing greater than 50% within 15 minutes after full effacement of the stenosis by the angioplasty balloon. Data collected included sex, age, access type and location, lesion location, length, and time to next intervention. Access patency was estimated by using Kaplan-Meier survival method, association of variables with the risk of loss of patency was assessed by using a Cox proportional hazards model, and a multiple variable model was examined by considering all variables. Results Technical success of PTA with less than 30% residual stenosis was 78%. By 15 minutes, 15.6% (24 of 154) of treated lesions recurrently narrowed by more than 50%, with a majority observed at 5 minutes (15 of 24). Technical failure of PTA was predictive of elastic recoil (P < .001), as was cephalic arch stenosis in fistulas (P = .047) and autogenous fistulas (P = .04). Elastic recoil, when it did occur, did not influence patency. Six-month primary patency was 34.8% in grafts and 47.1% in fistulas. Conclusion Venous elastic recoil after PTA of stenoses in hemodialysis access circuits is common, but its occurrence does not influence access primary patency after PTA. (©) RSNA, 2015.

  14. Scintillation and ionization responses of liquid xenon to low energy electronic and nuclear recoils at drift fields from 236 V /cm to 3.93 kV /cm

    NASA Astrophysics Data System (ADS)

    Lin, Qing; Fei, Jialing; Gao, Fei; Hu, Jie; Wei, Yuehuan; Xiao, Xiang; Wang, Hongwei; Ni, Kaixuan

    2015-08-01

    We present new measurements of the scintillation and ionization yields in liquid xenon for low energy electronic (about 3 - 7 keVe e ) and nuclear recoils (about 8 - 20 keVn r ) at different drift fields from 236 V /cm to 3.93 kV /cm , using a three-dimensional sensitive liquid xenon time projection chamber with high energy and position resolutions. Our measurement of signal responses to nuclear recoils agrees with predictions from the NEST model. However, our measured ionization (scintillation) yields for electronic recoils are consistently higher (lower) than those from the NEST model by about 5 e-/keVe e (ph /keVe e) at all scanned drift fields. New recombination parameters based on the Thomas-Imel box model are derived from our data. Given the lack of precise measurement of scintillation and ionization yields for low energy electronic recoils in liquid xenon previously, our new measurement provides so far the best available data covering low energy regions at different drift fields for liquid xenon detectors relevant to dark matter searches.

  15. A Variable Energy, Redshifted, Iron Absorption Line in a recoiling Black Hole

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    The aim of this proposal is to maximize the scientific return of a medium deep (123 ksec) XMM-Newton observation, awarded during the AO10 call for proposal, to obtain a high quality X-ray spectrum of CID-42, a very peculiar source discovered in the COSMOS survey. CID-42 is exceptional in many respects showing a redshifted, variable energy absorption line plus an emission line at ~ 6 keV forming an inverted P-Cygni profile. These features were never observed before in the X-rays. The peculiar nature of CID-42 extends well beyond the X-ray spectrum. First, two optical sources in a common envelope are clearly seen in the HST data. They are separated by about 2.45 kpc. Thanks to the unrivaled Chandra HRC resolution it was possible to unambiguously associate the X-ray emission to only one of the two optical sources. Second, a high velocity (1100 km/s) offset, between the broad and narrow component of the H-beta line is measured in the VLT/Magellan/Keck optical spectra. The velocity offset observed is unlikely to be due to a ongoing merger because too high. Third, the above mentioned inverted P-Cygni profile in the hard X-ray spectrum would be naturally explained by an high velocity (v~0.02-0.14c) gas infall in the innermost region of the accreting Black Hole. All together the observed properties support the interpretation of a Black Hole kicked from the center of the galaxy by asymmetric emission of gravitational waves produced during a major merger. The Black Hole is caught while still active, at ~10^6 yrs after the kick and at a substantial distance from the center of the galaxy. The theoretical expectations suggest that they are extremely rare and just 1 or 2 gravitational wave recoiling Black Holes are expected in a survey like COSMOS. CID- 42 thus represents a ``Rosetta stone'' for the study of SMBH mergers that are believed to occur during galaxy-galaxy mergers, and their fate after the merging. The detailed study of the hard X-ray XMM-Newton spectrum, in the

  16. Shoulder-Fired Weapons with High Recoil Energy: Quantifying Injury and Shooting Performance

    DTIC Science & Technology

    2004-05-01

    and clinical measurements............................................................................. 30 16 Accuracy statistics...decreased immediately post-firing and returned to baseline at all sites before the end of the testing week. Statistically, but not clinically significant...performance as measured by the total number of targets hit during the 40-target qualification exercise . Despite the high recoil of the M16A2 and M4

  17. Development of a gaseous proton-recoil detector for fission cross section measurements below 1 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2016-03-01

    The elastic H(n,p) reaction is sometimes used to measure neutron flux, in order to produce high precision measurements. The use of this technique is not straightforward to use below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments have been carried out at the AIFIRA facility to investigate such background and determine its origin and components. Based on these investigations, a gaseous proton-recoil detector has been designed, with a reduced low energy background.

  18. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGES

    Liu, Bin; Yuan, Fenglin; Jin, Ke; ...

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  19. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    SciTech Connect

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.

  20. Measurements of neutron energy using a recoil-proton telescope and a high-pressure ionization chamber.

    PubMed

    Folkard, M; Makrigiorgos, G; Roper, M J; Waker, A J; Michael, B D

    1989-04-01

    Two very different techniques for measuring the energy of neutrons in the energy range 0.1-10 MeV are presented and compared. A recoil-proton spectrometer is used to determine the energy spectra of neutrons produced by the d(4)-Be and p(4)-Be reactions down to the low-energy threshold of 0.7 MeV. The same radiation fields are also measured with a recently developed method using a high-pressure ionization chamber that can be used to determine the mean energy of the neutrons in a mixed neutron-gamma radiation field provided the gamma-ray absorbed dose fraction is determined independently. An intercomparison of the two methods shows that the high-pressure ionization chamber compares well and supplements the established recoil-proton spectrometer technique. The almost isotropic response of the chamber has enabled measurements to be made of the variation of mean neutron energy with depth in water for the two radiation fields.

  1. Low energy electron and nuclear recoil thresholds in the DRIFT-II negative ion TPC for dark matter searches

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Daw, E.; Forbes, J.; Ghag, C.; Gold, M.; Hagemann, C.; Kudryavtsev, V. A.; Lawson, T. B.; Loomba, D.; Majewski, P.; Muna, D.; Murphy, A. St. J.; Paling, S. M.; Petkov, A.; Plank, S. J. S.; Robinson, M.; Sanghi, N.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Turk, J.; Tziaferi, E.

    2009-04-01

    Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV respectively, and 1.2 keV for electron induced events. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. The effect of a lower energy sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion searches.

  2. Inelastic processes in ion/surface collisions: Direct recoil ion fractions as a function of kinetic energy

    NASA Astrophysics Data System (ADS)

    Rabalais, J. Wayne; Chen, Jie-Nan

    1986-09-01

    Time-of-flight (TOF) spectra of the scattered and recoiled particles resulting from 1-10 keV Ar+ ions impingent on surfaces of MgO, Mg(OH)2, graphite, Si, and SiO2 have been obtained. Measurements of directly recoiled (DR) neutrals plus ions and neutrals only are used to calculate positive and negative ion fractions Y+,- from DR events. These positive and negative ion yields observed for DR of H, C, O, and Si have distinctly different behavior as a function of ion kinetic energy. The Y+ values exhibit a ``threshold-type'' behavior with a steep rise followed by a slowly rising or plateau region at higher energy. The Y- values exhibit a maximum in the low energy region followed by a decreasing yield as energy increases. The Y-/Y+ ratio for C and O is very sensitive to the amount of hydrogen present, with the Y+ yields dropping as hydrogen concentration increases. The recently developed model for electronic transitions in keV ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasidiatomic molecule of the close atomic encounter is extended to include DR events. Analytical expressions for Y+,- are derived for the case of surface atoms in positive, neutral, and negative bonding environments. These model expressions are fitted to the experimental data, allowing determination of the probabilities of ionization in the close atomic encounter and of electron capture along the outgoing trajectory.

  3. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    SciTech Connect

    Joshi, Tenzing Henry Yatish

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  4. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  5. COSY Simulations to Guide Commissioning of the St. George Recoil Mass Separator

    NASA Astrophysics Data System (ADS)

    Schmitt, Jaclyn; Moran, Michael; Seymour, Christopher; Gilardy, Gwenaelle; Meisel, Zach; Couder, Manoel

    2015-10-01

    The goal of St. George (STrong Gradient Electromagnetic Online Recoil separator for capture Gamma ray Experiments) is to measure (α, γ) cross sections relevant to stellar helium burning. Recoil separators such as St. George are able to more closely approach the low astrophysical energies of interest because they collect reaction recoils rather than γ-rays, and thus are not limited by room background. In order to obtain an accurate cross section measurement, a recoil separator must be able to collect all recoils over their full range of expected energy and angular spread. The energy acceptance of St. George is currently being measured, and the angular acceptance will be measured soon. Here we present the results of COSY ion optics simulations and magnetic field analyses which were performed to help guide the commissioning measurements and diagnostic upgrades required to complete those measurements. National Science Foundation Research Experiences for Undergraduates program.

  6. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  7. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  8. The photodissociation dynamics of OClO between 306 and 370 nm: Fragment translational energy release and recoil anisotropy

    NASA Astrophysics Data System (ADS)

    Furlan, Alan; Scheld, Heiner A.; Huber, J. Robert

    1997-04-01

    The photodissociation OClO(à 2A2)→ClO(X˜ 2Π)+O(3P) was studied at wavelengths between 306 and 370 nm using photofragment translational energy spectroscopy. The flight time distributions and anisotropies of the recoiling fragments were measured with the photolysis wavelength tuned to 10 maxima of the structured absorption spectrum, corresponding to a vibronic excitation of the parent molecule with 9-18 quanta in the symmetric stretching coordinate on the à 2A2 surface. The translational energy distributions show that the ClO fragments are created in highly inverted vibrational state distributions which become extremely broad [v(Cl-O)˜1-15] with increasing excitation energy. The large fraction of vibrationally hot ClO fragments produced-particularly at λ<325 nm-could enhance various thermodynamically unfavorable atmospheric reactions in connection with ozone depletion. The main mechanistic features of the dissociation process, which account for the almost constant average translational energy and linearly increasing vibrational energy of ClO as a function of the excitation energy, can be interpreted, to a first approximation, as vibrational predissociation on the à 2A2 potential energy surface involving a relatively late exit barrier. From the measured translational energies the barrier height is estimated to be about 48 kJ/mol.

  9. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-12-01

    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be < 1.4 ×10-7 (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag. The combined data set contains 1.23 × 108 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is < 2.7 ×10-8 (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 10-10 for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.

  10. Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang., Y.; Farmer, B.; Xenon Collaboration

    2017-08-01

    We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg ×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6 -240 ) keVnr . The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.

  11. Measurement of the beam-recoil polarization in low-energy virtual Compton scattering from the proton

    NASA Astrophysics Data System (ADS)

    Doria, L.; Janssens, P.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Bensafa, I.; Benali, M.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Correa, L.; D'Hose, N.; Defaÿ, X.; Ding, M.; Distler, M. O.; Fonvieille, H.; Friedrich, J.; Friedrich, J. M.; Laveissière, G.; Makek, M.; Marroncle, J.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nungesser, L.; Pasquini, B.; Pochodzalla, J.; Postavaru, O.; Potokar, M.; Ryckbosch, D.; Sánchez Majos, S.; Schlimme, B. S.; Seimetz, M.; Širca, S.; Tamas, G.; Van de Vyver, R.; Van Hoorebeke, L.; Van Overloop, A.; Walcher, Th.; Weinriefer, M.; A1 Collaboration

    2015-11-01

    Double-polarization observables in the reaction e ⃗p →e'p ⃗'γ have been measured at Q2=0.33 (GeV/c ) 2 . The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function PLT ⊥ is extracted for the first time, with the value (-15.4 ±3 .3(stat .)-2.4+1.5(syst.)) GeV-2 , using the low-energy theorem for virtual Compton scattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  12. Rupture and recoil of bent-core liquid crystal filaments.

    PubMed

    Salili, S M; Ostapenko, T; Kress, O; Bailey, C; Weissflog, W; Harth, K; Eremin, A; Stannarius, R; Jákli, A

    2016-05-25

    The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments.

  13. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    SciTech Connect

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O’Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-09-17

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10-8 between 43-86 keVee and that the discrimination parameter agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10-10 for an electron-equivalent energy threshold of 20 keVee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2.

  14. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    DOE PAGES

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.; ...

    2016-09-17

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10-8 between 43-86 keVee and that the discrimination parameter agrees with amore » simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10-10 for an electron-equivalent energy threshold of 20 keVee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2.« less

  15. Ab Initio Molecular Dynamics Simulations of Low-Energy Recoil Events in ThO2, CeO2, and ZrO2

    SciTech Connect

    Xiao, Haiyan Y.; Zhang, Yanwen; Weber, William J.

    2012-08-13

    Ab initio molecular dynamics simulations of low-energy recoil events in ThO2, CeO2, and ZrO2 have been carried out to determine the threshold displacement energies, resulting defect configurations, dynamics of defect generation, and role of charge transfer during the process. The results reveal that, in most cases, these fluorite structure oxides exhibit a similar response to low-energy recoils. A variety of different defect configurations are created, consisting mainly of vacancies and interstitials. Charge transfer occurs during the dynamic displacement process. Local charge redistribution leads to cation and O vacancies being negatively and positively charged, respectively. Likewise, due to charge redistribution, the cation and O interstitials are less positively and negatively charged, respectively, than the ions on lattice sites in perfect MO2.

  16. Ab initio molecular dynamics simulations of low energy recoil events in ThO2, CeO2 and ZrO2

    SciTech Connect

    Xiao, Haiyan; Zhang, Yanwen; Weber, William J

    2012-01-01

    Ab initio molecular dynamics simulations of low energy recoil events in ThO2, CeO2 and ZrO2 have been carried out to determine the threshold displacement energies, resulting defect configurations, dynamics of defect generation, and role of charge transfer during the process. The results reveal that, in most cases, these fluorite structure oxides exhibit a similar response to low-energy recoils. A variety of different defect configurations are created, consisting mainly of vacancies and interstitials. Charge transfer occurs during the dynamic displacement process. Local charge redistribution leads to cation and O vacancies being negatively and positively charged, respectively. Likewise, due to charge redistribution, the cation and O interstitials are less positively and negatively charged, respectively, than the ions on lattice sites in perfect MO2.

  17. Recoil Redsfhit with Coherence

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.

    2009-05-01

    ``Recoil Redshift'' is due to the elastic interaction of photons/light with any individual electron, proton, ion, atom or molecule. This generalized Compton effect describes an individual photon-particle interaction where Energy, Linear Momentum and Angular Momentum are conserved, with NO change in the internal energy of the particle. Per Compton, the lost photon energy is zero in the forward photon propagation direction, and the energy loss increases with scattering angle. This is an INDIVIDUAL INcoherent process. To describe collective coherent effects, add/include Huygens forward reconstruction from multiple photon/particle redshifted scatterings. A coherent redshift will occur if the scattered photons' energies are WITHIN the initial linewidth. This yields an asymmetrically broadened redshifted line in the forward coherent direction with clear imaging properties. This is a coherent redshifted version of Rayleigh scattering which assumes identical non-redshifted photons. BUT the Compton Conservation energy-loss process must occur. The search for this small Recoil redshift is a good research project for ultra- precise ``frequency combs'' in gases (atomic and molecular), plasmas and combinations.

  18. Recoil energy distributions for dissociation of the van der Waals molecule p-difluorobenzene-Ar with 450-3000 cm(-1) excess energy.

    PubMed

    Bellm, Susan M; Lawrance, Warren D

    2005-03-08

    Velocity map imaging has been used to measure the distributions of translational energy released in the dissociation of p-difluorobenzene-Ar van der Waals complexes from the 5(1), 3(1), 5(2), 3(1)5(1), 5(3), 3(2), and 3(2)5(1) states. These states span 818-3317 cm(-1) of vibrational energy and correspond to a range of energies above dissociation of 451-2950 cm(-1). The translational energy release (recoil energy) distributions are remarkably similar, peaking at very low energy (10-20 cm(-1)) and decaying in an exponential fashion to approach zero near 300 cm(-1). The average translational energy released is small, shows no dependence on the initial vibrational energy, and spans the range 58-72 cm(-1) for the vibrational levels probed. The average value for the seven levels studied is 63 cm(-1). The low fraction of transfer to translation is qualitatively in accord with Ewing's momentum gap model [G. E. Ewing, Faraday Discuss. 73, 325 (1982)]. No evidence is found in the distributions for a high energy tail, although it is likely that the experiment is not sufficiently sensitive to detect a low fraction of transfer at high translational energies. The average translational energy released is lower than has been seen in comparable systems dissociating from triplet and cation states.

  19. Measurement and model prediction of proton-recoil track length distributions in NTA film dosimeters for neutron energy spectroscopy and retrospective dose assessment

    NASA Astrophysics Data System (ADS)

    Taulbee, Timothy D.

    The goal of this research was to determine whether neutron dose reconstruction could be improved through re-analysis of historic NTA films worn by workers in the 1950 through the 1970s. To improve neutron dose reconstruction, the underlying neutron energy spectra is critical in determining the organ dose due to energy dependence of the dose conversion factor as well as the application of radiation weighting factors used in epidemiology and probability of causation calculations. Monte Carlo models of proton-recoil track length distributions were developed and benchmarked against measurement data for both NTA and Ilford films. These models, when applied to several NTA film dosimeter configurations, demonstrated that proton-recoil track length distributions change based upon incident neutron energy. The neutron energy spectra changes that result from the general work environment such as source term and shielding can subsequently be modeled to predict the response of the NTA film dosimeter. An Automatic NTA Film Analyzer has been designed and developed to determine if the difference in proton-recoil track length distributions predicted by the Monte Carlo models could be measured and whether these differences could be correlated to the incident neutron energy spectra. The design required the development of a 2D-3D hybrid track recognition algorithm for a three dimensional analysis of the NTA film in order to accurately determine the proton-recoil track length for subsequent neutron energy determination. NTA films exposed to a plutonium fluoride (PuF4) and polonium boron (PoB) calibration sources were measured and compared. The proton-recoil track lengths were used to reconstruct the incident neutron energy spectra demonstrating the functionality of the analyzer and that reconstruction of the neutron energy spectra from NTA films is feasible. These measurements were compared to the Monte Carlo models and confirmed the applicability of using models to determine the NTA

  20. Development of a gaseous recoil-proton detector for neutron flux measurements between 0.2 and 2 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Aiche, M.; Cheron, T.; Hellmuth, P.; Pedroza, J. L.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-09-01

    Absolute measurements of neutron fluence are an essential prerequisite of neutron-induced cross section measurements, neutron beam lines characterisation and dosimetric investigations. Precise neutron flux measurements can be performed with respect to the H(n,p) elastic cross section. The use of this technique, with silicon proton recoil detectors, is not straightforward below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments carried out at the AIFIRA facility identified its origin. Based on these investigations, a gaseous recoil-proton detector has been designed, with a reduced low energy background. Preliminary results of the first tests of the developed detector are discussed here.

  1. Molecular dynamics simulation of low-energy recoil events in titanate pyrochlores

    SciTech Connect

    Dong, Liyuan; Setyawan, Wahyu; Li, Yuhong; Devanathan, Ram; Gao, Fei

    2017-01-01

    Molecular dynamics simulations of low-energy displacements in titanate pyrochlores have been carried out along three main directions, to determineEdfor A, Ti and O, corresponding defect configurations, and defect formation dynamics.

  2. Effects of primary recoil energy on the production rate of mobile defects during elevated temperature irradiation

    SciTech Connect

    Okamoto, P.R.; Rehn, L.E.; Averback, R.S.

    1984-11-01

    Radiation-induced segregation rates in a Ni-12.7 at.% Si alloy have been measured as a function of temperature using ions of various masses and energies. An analysis of the segregation kinetics using a simple analytical model yielded the relative efficiency of each of the ions for producing mobile defects directly from ratios of their measured segregation rates. In this paper, we also show that the relative efficiencies can also be determined from measured shifts in the peak segregation temperature. Both methods yield a strong decrease in efficiency with increasing ion mass. The reduction in efficiency for the heavior ions was found to be significantly larger than that measured at very low temperatures by resistivity techniques. The latter are often used as a basis for correlating damage structures produced at elevated temperatures. Differences between the low and high temperature measurements indicate that relative efficiencies determined from segregation measurements are more reliable for correlating microstructural changes that are produced in different irradiation environments at high temperatures.

  3. Towards increased policy relevance in energy modeling

    SciTech Connect

    Worrell, Ernst; Ramesohl, Stephan; Boyd, Gale

    2003-07-29

    Historically, most energy models were reasonably equipped to assess the impact of a subsidy or change in taxation, but are often insufficient to assess the impact of more innovative policy instruments. We evaluate the models used to assess future energy use, focusing on industrial energy use. We explore approaches to engineering-economic analysis that could help improve the realism and policy relevance of engineering-economic modeling frameworks. We also explore solutions to strengthen the policy usefulness of engineering-economic analysis that can be built from a framework of multi-disciplinary cooperation. We focus on the so-called ''engineering-economic'' (or ''bottom-up'') models, as they include the amount of detail that is commonly needed to model policy scenarios. We identify research priorities for the modeling framework, technology representation in models, policy evaluation and modeling of decision-making behavior.

  4. Nuclear recoil measurements with the ARIS experiment

    NASA Astrophysics Data System (ADS)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  5. Studies of electrochemical oxidation of Zircaloy nuclear reactor fuel cladding using time-of-flight-energy elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.

    2000-03-01

    The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the

  6. Nuclear Recoil Identification in CDMS Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Gensheng; Akerib, Dan

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) experiment achieves high sensitivity for WIMP dark matter particles recoiling from nuclei because of the rejection of predominant electromagnetic backgrounds. The measured charge energy and phonon energy ratio, or ionization yield, is a powerful tool for discrimination between nuclear recoil and electron recoil in CDMS experiment. However, since events occurring within a thin surface layer, notably low-energy background beta particles, suffer a loss in ionization charge collection, other method of surface--event rejection becomes important. I will describe the CDMS detector ionization measurement and ballistic phonon readout, with an emphasis on detector phenomenology. In particular, I will describe the primary CDMS detector quantities--ionization yield, phonon risetime, event location information and phonon energy partition distribution. The application of these parameters in nuclear recoil identification and in surface event rejection in CDMS experiment will be summarized.

  7. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    NASA Astrophysics Data System (ADS)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  8. Precompound emission in low-energy heavy-ion interactions from recoil range and spin distributions of heavy residues: A new experimental method

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Singh, Pushpendra P.; Sharma, Vijay Raj; Shuaib, Mohd.; Singh, Devendra P.; Yadav, Abhishek; Unnati, Kumar, R.; Singh, B. P.; Prasad, R.

    2016-10-01

    Recent investigations of heavy-ion reactions at low incident energies have indicated the presence of precompound emission component in considerable strength. In most cases the strength of the precompound component is estimated from the difference in forward-backward distributions of emitted light fast particles and also from the analysis of the measured excitation functions. This paper reports a new method of deciphering the relative contributions of compound and precompound components associated with fusion of 16O with 159Tb,169Tm, and 181Ta targets by measuring the recoil ranges of heavy residues in an absorbing medium along with the online measurement of the spin distributions in reaction residues produced in the fusion 16O beam with 159Tb and 169Tm targets. Analysis of recoil range and spin distributions of the residues shows two distinct linear momentum-transfer components corresponding to precompound and compound nucleus processes. The input angular momentum associated with precompound products is found to be relatively lower than that associated with compound nucleus process. The precompound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  9. Biological Effect of Lead-212 Localized in the Nucleus of Mammalian Cells: Role of Recoil Energy in the Radiotoxicity of Internal Alpha-Particle Emitters1

    PubMed Central

    Azure, Michael T.; Archer, Ronald D.; Sastry, Kandula S. R.; Rao, Dandamudi V.; Howell, Roger W.

    2012-01-01

    The radiochemical dipyrrolidinedithiocarbamato-212Pb(II) [212Pb(PDC)2] is synthesized and its effects on colony formation in cultured Chinese hamster V79 cells are investigated. The cellular uptake, biological retention, subcellular distribution and cytotoxicity of the radiocompound are determined. The 212Pb is taken up quickly by the cells, reaching saturation levels in 1.25 h. When the cells are washed, the intracellular activity is retained with a biological half-life of 11.6 h. Gamma-ray spectroscopy indicates that the 212Pb daughters (212Bi, 212Po and 208Tl) are in secular equilibrium within the cell. About 72% of the cellular activity localizes in the cell nucleus, of which 35% is bound specifically to nuclear DNA. The mean cellular uptake required to achieve 37% survival is 0.35 mBq of 212Pb per cell, which delivers a dose of 1.0 Gy to the cell nucleus when the recoil energy of 212Bi and 212Po decays is ignored and 1.7 Gy when recoil is included. The corresponding RBE values compared to acute external 137Cs γ rays at 37% survival are 4.0 and 2.3, respectively. The chemical Pb(PDC)2 is not chemotoxic at the concentrations used in this study. Because the β-particle emitter 212Pb decays to the α-particle-emitting daughters 212Bi and 212Po, these studies provide information on the biological effects of α-particle decays that occur in the cell nucleus. Our earlier studies with cells of the same cell line using 210Po (emits 5.3 MeV α particle) localized predominantly in the cytoplasm resulted in an RBE of 6. These earlier results for 210Po, along with the present results for 212Pb, suggest that the recoil energy associated with the 212Bi and 212Po daughter nuclei plays little or no role in imparting biological damage to critical targets in the cell nucleus. PMID:7938477

  10. Characterisation of ferromagnetic magnetic storage media surfaces by complementary particle induced X-ray analysis and time of flight-energy dispersive elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Elfman, Mikael; Winzell, Thomas; Whitlow, Harry J.

    1999-04-01

    Thin (10 nm-1 μm) films of ferromagnetic material constitute an important class of materials that are difficult to analyse by conventional ion beam analytical (IBA) techniques because they are based on the ferromagnetic elements (Co, Fe, Mn, Ni, and Cr). The similar or overlapping isotope masses makes it difficult to separate the elemental signals using time of flight and energy dispersive elastic recoil detection (ToF-E ERD). In this exploratory study we have investigated the use of Particle Induced X-ray Emission (PIXE) measurements to refine the mass dispersive depth profile information from ToF-E ERD. The surfaces of two commercial magnetic media were investigated. One sample was a 3 {1}/{2}'' double density diskette with a coating of ferrite particles in an organic binder. The other sample was a complex C/Co/Cr/Ni-P/Al multilayer structure taken from a standard hard disc. The Lund nuclear microprobe with a 2.55 MeV proton beam was used for PIXE analysis. ToF-ERD measurements were carried out using a 55 MeV 127I 10+ ion beam incident at 67.5° to the surface normal. The time of flight and kinetic energy of recoils ejected at 45° to the ion beam direction was measured in a detector telescope. The findings demonstrate that by detailed analysis of the PIXE spectra it is possible to remove the ambiguities in mass assignment of the ToF-ERD data associated with the ferromagnetic elements.

  11. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    NASA Astrophysics Data System (ADS)

    Chavarria, A. E.; Collar, J. I.; Peña, J. R.; Privitera, P.; Robinson, A. E.; Scholz, B.; Sengul, C.; Zhou, J.; Estrada, J.; Izraelevitch, F.; Tiffenberg, J.; de Mello Neto, J. R. T.; Torres Machado, D.

    2016-10-01

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons (<24 keV ) from a 124Sb-9Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. This measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.

  12. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    DOE PAGES

    Chavarria, A. E.; Collar, J. I.; Peña, J. R.; ...

    2016-10-15

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons (<24 keV) from a 124Sb–9Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. Furthermore, this measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a darkmore » matter direct detection experiment located in the SNOLAB underground laboratory.« less

  13. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    SciTech Connect

    Chavarria, A. E.; Collar, J. I.; Peña, J. R.; Privitera, P.; Robinson, A. E.; Scholz, B.; Sengul, C.; Zhou, J.; Estrada, J.; Izraelevitch, F.; Tiffenberg, J.; de Mello Neto, J. R. T.; Machado, D. Torres

    2016-10-15

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons (<24 keV) from a 124Sb–9Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. Furthermore, this measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.

  14. Thermal recoil force, telemetry, and the Pioneer anomaly

    SciTech Connect

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-15

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  15. Measurement of the ionization yield of nuclear recoils in liquid argon using a two-phase detector with electroluminescence gap

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Grishnyaev, E.; Nosov, V.; Oleynikov, V.; Polosatkin, S.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2017-05-01

    A measurement of ionization yields in noble-gas liquids is relevant to the energy calibration of nuclear recoil detectors for dark matter search and coherent neutrino-nucleus scattering experiments. In this work we further study the ionization yield of nuclear recoils in liquid Ar, using a two-phase detector with an electroluminescence gap and DD neutron generator. The ionization yields of nuclear recoils in liquid Ar were measured at 233 keV and electric fields of 0.56 and 0.62 kV/cm; their values amounted to 5.9 ± 0.8 and 7.4 ± 1 e-/keV, respectively. The characteristic dependences of the ionization yield on energy and electric field were determined, while comparing the results obtained to those at lower energies and higher fields.

  16. Heavy ion recoil spectrometry of barium strontium titanate films

    NASA Astrophysics Data System (ADS)

    Stannard, W. B.; Johnston, P. N.; Walker, S. R.; Bubb, I. F.; Scott, J. F.; Cohen, D. D.; Dytlewski, N.; Martin, J. W.

    1995-05-01

    Thin films of barium strontium titanate have been analysed using heavy ion recoil spectrometry with 77 and 98 MeV 127I ions at the new heavy ion recoil facility at ANSTO, Lucas Heights. New calibration procedures have been developed for quantitative analysis. Energy spectra for each of the elements present reveal interdiffusion that was not previously known.

  17. Relevance of the second law of thermodynamics to energy conservation

    SciTech Connect

    Not Available

    1980-01-01

    An analysis is presented of the potential relevance of the use of analytical tools based on the Second Law of thermodynamics to existing federal programs for energy conservation in the industrial, transportation, buildings, and utility sectors in the US. (LCL)

  18. Effect of temperature and recoil-energy spectra on irradiation-induced amorphization in Ca{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2}

    SciTech Connect

    Weber, W.J.; Wang, L.M.

    1993-09-01

    Single crystals of Ca{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2} have been irradiated with different ions/energies in an in situ study of the effects of temperature and recoil-energy spectra on irradiation-induced amorphization. The dose for complete amorphization increases with temperature in two stages. The low-temperature stage (below 250 K) has an activation energy of 0.01 {plus_minus} 0.003 eV and is believed to be associated with simultaneous close-pair recombination. The high-temperature stage (above 250 K) has an activation energy of 0.13 {plus_minus} 0.02 eV and may be associated with irradiation-enhanced defect mobility. The critical temperature for amorphization increases from {approximately}360 K for 0.8 MeV Ne{sup +} to {approximately}710 K for 1.5 MeV Kr{sup +}. At 15 K, the amorphization dose is {approximately}0.36 dpa and is independent of recoil-energy spectra. The amorphization dose increases more rapidly with temperature for Ne{sup +} due to the larger fraction of mobile defects produced by the low energy recoils. The temperature dependence is similar for 1.0 MeV Ar{sup +}, 1.5 MeV Kr{sup +}, and 1.5 MeV Xe{sup +}.

  19. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    SciTech Connect

    Maire, D.; Lebreton, L.; Querre, Ph.; Bosson, G.; Guillaudin, O.; Muraz, J.F.; Riffard, Q.; Santos, D.

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work

  20. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    SciTech Connect

    Maire, D.; Lebreton, L.; Richer, J.P.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Riffard, Q.; Santos, D.

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  1. The XENON100 Dark Matter Experiment: Design, Construction, Calibration and 2010 Search Results with Improved Measurement of the Scintillation Response of Liquid Xenon to Low-Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Plante, Guillaume

    An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to

  2. Recoil polarization measurements

    NASA Astrophysics Data System (ADS)

    Brinkmann, Kai-Thomas

    2017-01-01

    Polarization observables in photon-induced meson production off nucleons have long been recognized to hold the promise of a detailed understanding of the excited states in the excitation spectrum of the nucleon. Photon beam and proton target polarization are routinely used at the ELSA facility in the Crystal Barrel/TAPS experiment and have yielded a wealth of data on contributing partial waves and nucleon resonances. A detector study on how to complement these ongoing studies by recoil polarization measurements that offer an orthogonal approach with otherwise unmeasurable observables in the field of non-strange meson photoproduction has been performed. Building on experience with silicon detectors operated in the photon beamline environment, first possible layouts of Si detector telescopes for recoil protons were developed. Various geometries, e.g. Archimedean spiral design of annular sensors, sector shapes and rectangular sensors were studied and have been used during test measurements. A prototype for the recoil polarimeter was built and subjected to performance tests in protonproton scattering at the COSY-accelerator in Jülich.

  3. Measurement of the 17 O(p,γ)18F reaction rate at astrophysically relevant energies

    NASA Astrophysics Data System (ADS)

    Hager, U.; Buchmann, L.; Davids, B.; Fallis, J.; Fulton, B. R.; Galinski, N.; Greife, U.; Hutcheon, D. A.; Ottewell, D.; Rojas, A.; Ruiz, C.; Setoodehnia, K.

    2012-03-01

    The 17O(p,γ)18F reaction plays an important role in hydrogen-burning nucleosynthesis. Conflicting values for the low-energy behavior of its cross section exist in the literature. We present direct measurements of the astrophysical S factor of the 17O(p,γ)18F reaction at center-of-mass energies between 250 and 500 keV. These measurements were conducted in inverse kinematics at the DRAGON recoil separator.

  4. Development of highly efficient proton recoil counter telescope for absolute measurement of neutron fluences in quasi-monoenergetic neutron calibration fields of high energy

    NASA Astrophysics Data System (ADS)

    Shikaze, Yoshiaki; Tanimura, Yoshihiko; Saegusa, Jun; Tsutsumi, Masahiro

    2010-04-01

    Precise calibration of monitors and dosimeters for use with high energy neutrons necessitates reliable and accurate neutron fluences being evaluated with use of a reference point. A highly efficient Proton Recoil counter Telescope (PRT) to make absolute measurements with use of a reference point was developed to evaluate neutron fluences in quasi-monoenergetic neutron fields. The relatively large design of the PRT componentry and relatively thick, approximately 2 mm, polyethylene converter contributed to high detection efficiency at the reference point over a large irradiation area at a long distance from the target. The polyethylene converter thickness was adjusted to maintain the same carbon density per unit area as the graphite converter for easy background subtraction. The high detection efficiency and thickness adjustment resulted in efficient absolute measurements being made of the neutron fluences of sufficient statistical precision over a short period of time. The neutron detection efficiencies of the PRT were evaluated using MCNPX code at 2.61×10-6, 2.16×10-6 and 1.14×10-6 for the respective neutron peak energies of 45, 60 and 75 MeV. The neutron fluences were determined to have been evaluated at an uncertainty of within 6.5% using analysis of measured data and the detection efficiencies. The PRT was also designed so as to be capable of simultaneously obtaining TOF data. The TOF data also increased the reliability of neutron fluence measurements and provided useful information for use in interpreting the source of proton events.

  5. Skyrmion recoil in pion-nucleon scattering

    SciTech Connect

    Hughes, J. Physics Department, University of California at Davis, Davis, California 95616 ); Mathews, G.J. )

    1992-08-01

    We calculate the lowest-order recoil corrections to the pion-nucleon scattering matrix in the SU(2) Skyrme model. The corrections result from a direct semiclassical evaluation of path-integral expressions for relevant finite-time transition amplitudes. The {ital S} matrix for pion-nucleon scattering is extracted from these amplitudes by using a configuration-space representation for the asymptotic nucleons; the quanta are treated just as in the vacuum sector. The recoil corrections result from the Skyrmion freely translating between initial and final positions, and are relevant to a kinematical regime opposite to that where the impulse approximation is valid. The form of the corrections is model independent, unchanged for any chiral model with hedgehog solitary wave solutions. Remarkably, new lowest-lying resonances emerge in the {ital p} channels, whereas the {ital s} and {ital d} waves are not noticeably improved.

  6. Relevant energy scale of color confinement from lattice QCD

    SciTech Connect

    Yamamoto, Arata; Suganuma, Hideo

    2009-03-01

    We propose a new lattice framework to extract the relevant gluonic energy scale of QCD phenomena which is based on a 'cut' on link variables in momentum space. This framework is expected to be broadly applicable to all lattice QCD calculations. Using this framework, we quantitatively determine the relevant energy scale of color confinement, through the analyses of the quark-antiquark potential and meson masses. The relevant energy scale of color confinement is found to be below 1.5 GeV in the Landau gauge. In fact, the string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. When the relevant low-energy region is cut, the quark-antiquark potential is approximately reduced to a Coulomb-like potential, and each meson becomes a quasifree quark pair. As an analytical model calculation, we also investigate the dependence of the Richardson potential on the cut, and find the consistent behavior with the lattice result.

  7. Shooter-System Performance Variability as a Function of Recoil Dynamics.

    PubMed

    Morelli, Frank; Neugebauer, Jennifer M; Haynes, Courtney A; Fry, Thomas C; Ortega, Samson V; Struve, Douglas J; LaFiandra, Michael E; Larkin, Gabriella B

    2017-09-01

    The goal of this study was to quantify shooter performance relative to subtle variations in recoil energy. Marksmanship performance remains undefined for subtle distinctions in weapon recoil energy across common small-arms platforms. Weapons were customized using multiple components and ammunition types. Firing scenarios were designed to examine the effect of recoil energy on shooter timing and accuracy. The results suggest that recoil condition does not affect timing during firing sequences designed to elicit differences in timed-fire performance. Recoil condition did, however, influence shot placement, with accuracy decreasing as the energy associated with firing increased. Subjective recoil estimations were quantified according to relative magnitude and spatial distribution of perceived energy transferred at shooter-weapon surface contact locations. The absence of differences in time to engage may be reflective of resistance to recoil-induced point-of-aim deviation based on experience. Distinctions in performance were revealed despite subtle differences in recoil energy between conditions. An instrument that may be sensitive to shooter perception of subtle differences in recoil energy during firing was also developed. The findings inform performance expectations for small-arms systems relative to recoil energy levels transferred to the shooter during dynamic firing events.

  8. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  9. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  10. Interpreting Recoil for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Elsayed, Tarek A.

    2012-04-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is closely related to Newton's third law. Since the actual microscopic causes of recoil differ from one problem to another, some students (and teachers) may not be satisfied with understanding recoil through the principles of conservation of linear momentum and Newton's third law. For these students, the origin of the recoil motion should be presented in more depth.

  11. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  12. Ionization yield from nuclear recoils in liquid-xenon dark matter detection

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Ji, Xiangdong

    2015-03-01

    The ionization yield in a two-phase liquid xenon dark-matter detector has been studied in keV nuclear recoil energy region. The newly obtained nuclear quenching as well as the average energy required to produce an electron-ion pair from the measurement in Seguinot (1992) are used to calculate the total electric charges produced. To estimate the fraction of the electron charges collected, the Thomas-Imel model is generalized to describe the field dependence for nuclear recoils in liquid xenon. With free parameters fitted to experimentally measured 56.5 keV nuclear recoils, the energy dependence of ionization yield for nuclear recoils is predicted, which increases as recoil energy decreases and reaches the maximum value at 2∼3 keV. This prediction agrees well with existing data and may help to lower the energy detection threshold for nuclear recoils to ∼1 keV.

  13. Neutrino-recoil induced desorption

    SciTech Connect

    Zhu, L.; Avci, R.; Lapeyre, G.J. ); Hindi, M.M.; Kozub, R.L.; Robinson, S.J. )

    1994-07-01

    Nuclear decay induced [sup 37]Cl ion desorption from the electron capture decay [sup 37]Ar[r arrow][sup 37]Cl+[nu] is reported for the first time. A mixture of one part [sup 36]Ar and [similar to]5[times]10[sup [minus]5] parts [sup 37]Ar ([sup 36/37]Ar) is physisorbed on a gold-plated Si wafer kept at 16 K under ultrahigh vacuum conditions. The time of flight (TOF) of recoiled [sup 37]Cl ions is measured using coincidence techniques. The observed kinetic energy distribution of the [sup 37]Cl ions is approximately Gaussian in shape, with a maximum at [approx]9.0 eV and a full width at half-maximum of [similar to]3 eV. Considering the binding energy of physisorbed [sup 37]Ar is [similar to]80 meV, the 9-eV peak energy compares well with that of the gas-phase value, where conservation of the energy and momentum fixes the kinetic energy of [sup 37]Cl ions at 9.54 eV. Using a combination of TOF and retarding field energy analysis, the charge states of detected ions for 1 ML (monolayer) of [sup 36/37]Ar are determined as 53%+1[ital e], 21%+2[ital e], and 26%+[ital ne], where [ital n][ge]3. The fraction of decaying [sup 37]Ar atoms which emerge from the surface as positive [sup 37]Cl ions is found to be 10%. Finally, a strong charge exchange reaction between a [sup 37]Cl ion and near-neighbor atoms causes a Coulomb explosion within the multilayers, increasing the kinetic energy of desorbing ions by as much as [similar to]7 eV.

  14. Australian Science and Technology with Relevance to Beamed Energy Propulsion

    SciTech Connect

    Froning, H. David Jr

    2008-04-28

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.

  15. Australian Science and Technology with Relevance to Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Froning, H. David

    2008-04-01

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.

  16. Gravitational recoil from binary black hole mergers: The close-limit approximation

    SciTech Connect

    Sopuerta, Carlos F.; Yunes, Nicolas; Laguna, Pablo

    2006-12-15

    The coalescence of a binary black hole system is one of the main sources of gravitational waves that present and future detectors will study. Apart from the energy and angular momentum that these waves carry, for unequal-mass binaries there is also a net flux of linear momentum that implies a recoil velocity of the resulting final black hole in the opposite direction. Due to the relevance of this phenomenon in astrophysics, in particular, for galaxy merger scenarios, there have been several attempts to estimate the magnitude of this velocity. Since the main contribution to the recoil comes from the last orbit and plunge, an approximation valid at the last stage of coalescence is well motivated for this type of calculation. In this paper, we present a computation of the recoil velocity based on the close-limit approximation scheme, which gives excellent results for head-on and grazing collisions of black holes when compared to full numerical relativistic calculations. We obtain a maximum recoil velocity of {approx}57 km/s for a symmetric mass ratio {eta}=M{sub 1}M{sub 2}/(M{sub 1}+M{sub 2}){sup 2}{approx}0.19 and an initial proper separation of 4M, where M is the total Arnowitt-Deser-Misner (ADM) mass of the system. This separation is the maximum at which the close-limit approximation is expected to provide accurate results. Therefore, it cannot account for the contributions due to inspiral and initial merger. If we supplement this estimate with post-Newtonian (PN) calculations up to the innermost stable circular orbit, we obtain a lower bound for the recoil velocity, with a maximum around 80 km/s. This is a lower bound because it neglects the initial merger phase. We can however obtain a rough estimate by using PN methods or the close-limit approximation. Since both methods are known to overestimate the amount of radiation, we obtain in this way an upper bound for the recoil with maxima in the range of 214-240 km/s. We also provide nonlinear fits to these estimated

  17. Cavity cooling below the recoil limit.

    PubMed

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-06

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.

  18. Recoil Based Fuel Breeding Fuel Structure

    SciTech Connect

    Popa-Simil, Liviu

    2008-07-01

    Nuclear transmutation reactions are based on the absorption of a smaller particle as neutron, proton, deuteron, alpha, etc. The resulting compound nucleus gets out of its initial lattice mainly by taking the recoil, also with help from its sudden change in chemical properties. The recoil implantation is used in correlation with thin and ultra thin materials mainly for producing radiopharmaceuticals and ultra-thin layer radioactive tracers. In nuclear reactors, the use of nano-particulate pellets could facilitate the recoil implantation for breeding, transmutation and partitioning purposes. Using enriched {sup 238}U or {sup 232}Th leads to {sup 239}Pu and {sup 233}U production while using other actinides as {sup 240}Pu, {sup 241}Am etc. leads to actinide burning. When such a lattice is immersed into a radiation resistant fluid (water, methanol, etc.), the recoiled product is transferred into the flowing fluid and removed from the hot area using a concentrator/purifier, preventing the occurrence of secondary transmutation reactions. The simulation of nuclear collision and energy transfer shows that the impacted nucleus recoils in the interstitial space creating a defect or lives small lattices. The defect diffuses, and if no recombination occurs it stops at the lattices boundaries. The nano-grains are coated in thin layer to get a hydrophilic shell to be washed by the collection liquid the particle is immersed in. The efficiency of collection depends on particle magnitude and nuclear reaction channel parameters. For {sup 239}Pu the direct recoil extraction rate is about 70% for {sup 238}UO{sub 2} grains of 5 nm diameters and is brought up to 95% by diffusion due to {sup 239}Neptunium incompatibility with Uranium dioxide lattice. Particles of 5 nm are hard to produce so a structure using particles of 100 nm have been tested. The particles were obtained by plasma sputtering in oxygen atmosphere. A novel effect as nano-cluster radiation damage robustness and cluster

  19. Inverse Kinematics Studies of Intermediate-Energy Reactions Relevant for SEE and Medical Problems

    SciTech Connect

    Aichelin, J.; Bargholtz, Ch.; Geren, L.; Tegner, P.-E.; Zartova, I.; Blomgren, J.; Olsson, N.; Budzanowski, A.; Czech, B.; Skwirczynska, I.; Chubarov, M.; Lozhkin, O.; Murin, Yu.; Pljuschev, V.; Zubkov, M.; Ekstroem, C.; Kolozhvari, A.; Persson, H.; Westerberg, L.; Jakobsson, B.

    2005-05-24

    The lack of systematic experimental checks on the intermediate-energy nuclear model simulations of heavily ionizing recoils from nucleon-nucleus collisions -- critical inputs for the Single Event Effect analysis of microelectronics and dosimetry calculations including high-LET components in the cancer tumor radiation therapy -- has been a primary motivation for a new experiment planned at the CELSIUS nuclear storage ring of The Svedberg Laboratory, Uppsala, Sweden. Details of the experiment and the first results from a feasibility study are presented here.

  20. The Electron Recoil Response of the XENON1T Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Shockley, Evan; Xenon1T Collaboration

    2017-01-01

    XENON1T employs a two-phase xenon TPC to search for dark matter by detecting scintillation light produced by nuclear recoils in a 2 ton active volume of liquid xenon. However, nuclear recoils are not the only recoils that can occur since radiogenic electronic recoils are possible. Our only way of differentiating nuclear and electronic recoils is by comparing the relative fraction of scintillation (S1) and ionization (S2) signals. For the first Science Run of XENON1T, we must understand the response of our detector to S1 and S2 signals at the low keV energies where dark matter will present itself. Therefore, I will be discussing the current understanding of our signal and detection mechanisms at these energies. This work includes work using sources such as the Rn220 technique developed by XENON collaborators for understanding our rejection of electronic recoils.

  1. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  2. Stopping Power of Au for Ti Using Elastic Recoil Technique

    SciTech Connect

    Linares, R.; Freire, J. A.; Ribas, R. V.; Medina, N. H.; Oliveira, J. R. B.; Seale, W. A.; Cybulska, E. W.; Wiedemann, K. T.; Allegro, P. R.; Toufen, D. L.

    2009-06-03

    The slowing down of heavy ions in matter is still not well understood especially at low energies (<0.5 MeV/u). In this contribution we present new experimental data for the stopping power of Au for Ti ions using an elastic recoil technique where a heavy-ion beam at low energies is produced by elastic scattering of an energetic primary beam imping on a thin target. Atoms from the target recoil at low energies. We compare our experimental data with previous data and with semi-empirical and theoretical models.

  3. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  4. Force optimized recoil control system

    NASA Astrophysics Data System (ADS)

    Townsend, P. E.; Radkiewicz, R. J.; Gartner, R. F.

    1982-05-01

    Reduction of the recoil force of high rate of fire automatic guns was proven effective. This system will allow consideration of more powerful guns for use in both helicopter and armored personnel carrier applications. By substituting the large shock loads of firing guns with a nearly constant force, both vibration and fatigue problems that prevent mounting of powerful automatic guns is eliminated.

  5. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  6. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  7. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  8. Nuclear Recoil Calibration of DarkSide-50

    NASA Astrophysics Data System (ADS)

    Edkins, Erin; DarkSide Collaboration

    2016-03-01

    DarkSide-50 dark matter experiment is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator active neutron veto, designed for the direct detection of Weakly Interacting Massive Particles (WIMPs). The success of such an experiment is dependent upon a detailed understanding of both the expected signal and backgrounds, achieved using radioactive calibration sources of known energies. Nuclear recoils provide a measurement of both the expected signal and the most dangerous background, as nuclear recoils from neutrons cannot be distinguished from a dark matter signal on an event-by-event basis in the TPC. In this talk, I will present the DS-50 calibration system, and analysis of the results of the calibration of DarkSide-50 to nuclear recoils using radioactive neutron sources. See also the DS-50 presentations by X. Xiang and G. Koh.

  9. Energy efficiency in waste-to-energy and its relevance with regard to climate control.

    PubMed

    Ragossnig, Arne M; Wartha, Christian; Kirchner, Andreas

    2008-02-01

    This article focuses on systematically highlighting the ways to optimize waste-to-energy plants in terms of their energy efficiency as an indicator of the positive effect with regard to climate control. Potentials for increasing energy efficiency are identified and grouped into categories. The measures mentioned are illustrated by real-world examples. As an example, district cooling as a means for increasing energy efficiency in the district heating network of Vienna is described. Furthermore a scenario analysis shows the relevance of energy efficiency in waste management scenarios based on thermal treatment of waste with regard to climate control. The description is based on a model that comprises all relevant processes from the collection and transportation up to the thermal treatment of waste. The model has been applied for household-like commercial waste. The alternatives compared are a combined heat and power incinerator, which is being introduced in many places as an industrial utility boiler or in metropolitan areas where there is a demand for district heating and a classical municipal solid waste incinerator producing solely electrical power. For comparative purposes a direct landfilling scenario has been included in the scenario analysis. It is shown that the energy efficiency of thermal treatment facilities is crucial to the quantity of greenhouse gases emitted.

  10. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  11. Studies of Energy-Relevant Materials by Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Cui, Jinfang

    In this thesis, we have used nuclear magnetic resonance (NMR) as a local probe to microscopically study three different families of energy-relevant complex materials, namely the 122 Fe-based superconductors Ca(Fe1-xCox)2As2, GeTe-based thermoelectric tellurides GeTe and detonation nanodiamond. In Chapter 3 and Chapter 4, we investigated the Co substitution effects on static and dynamic magnetic properties of the single-crystalline Ca(Fe 1-xCox)2As2 (x = 0, 0.023, 0.028, 0.033, 0.059) via 75As NMR and resistivity measurements. Robustness of the Fe magnetic moments was evidenced by only slight decreases of Hint, although T N is strongly suppressed with Co substitution in antiferromagnetic (AFM) state. In the paramagnetic (PM) state, the temperature dependence of Knight shift K for all crystals shows similar T-dependence of magnetic susceptibility chi. The spin fluctuations with the q = 0 components are suppressed with Delta/k B. On the other hand, the growth of the stripe-type AFM fluctuations with q = (pi, 0) or (0, pi) upon cooling in the PM state for all samples is evidenced by the T-dependence of (1/ T1Tchi). A pseudogap-like phenomenon, i.e., suppression of the AFM spin fluctuations, was discovered with decreasing temperature below a x-independent characteristic temperature T* ( 100 K) in samples with x ≥ 0.028. In addition, clear evidence for the coexistence and competition of the stripe-type antiferromagnetic and ferromagnetic (FM) spin correlations was given by modified Korringa ratio analysis in Chapter 4. In Chapter 5, we have carried out 125Te NMR measurements to study the electronic properties of Ge50Te50, Ag 2Ge48Te50 and Sb2Ge48Te 50. NMR shift K and 1/T1T of Ge50Te50 are nearly temperature independent at T < 50 K and both increase slightly with increasing temperature at high temperatures. A two-band model, where one band overlaps the Fermi level and the other band is separated from the Fermi level by an energy gap, has been used to explain these

  12. Recoil-decay tagging spectroscopy of 74162W88

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Cederwall, B.; Bäck, T.; Qi, C.; Doncel, M.; Jakobsson, U.; Auranen, K.; Bönig, S.; Drummond, M. C.; Grahn, T.; Greenlees, P.; HerzáÅ, A.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Leino, M.; McPeake, C.; O'Donnell, D.; Page, R. D.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayǧı, B.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.; Uusitalo, J.; Xiao, Z. G.

    2015-07-01

    Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo (78Kr,2α ) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α -decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, which suggest an axially symmetric ground-state shape with a γ -soft minimum at β2≈0.15 . Quasiparticle alignment effects are discussed based on cranked shell model calculations. New measurements of the 162W ground-state α -decay energy and half-life were also performed. The observed α -decay energy agrees with previous measurements. The half-life of 162W was determined to be t1 /2=990 (30 ) ms. This value deviates significantly from the currently adopted value of t1 /2=1360 (70 ) ms. In addition, the α -decay energy and half-life of 166Os were measured and found to agree with the adopted values.

  13. Resonant recoil in extreme mass ratio binary black hole mergers

    SciTech Connect

    Hirata, Christopher M.

    2011-05-15

    The inspiral and merger of a binary black hole system generally leads to an asymmetric distribution of emitted radiation, and hence a recoil of the remnant black hole directed opposite to the net linear momentum radiated. The recoil velocity is generally largest for comparable mass black holes and particular spin configurations, and approaches zero in the extreme mass ratio limit. It is generally believed that for extreme mass ratios {eta}<<1, the scaling of the recoil velocity is |V|{proportional_to}{eta}{sup 2}, where the proportionality coefficient depends on the spin of the larger hole and the geometry of the system (e.g. orbital inclination). The small recoil velocity is due to cancellations; while the fraction of the total binary mass radiated away in gravitational waves is O({eta}), most of this energy is emitted during the inspiral phase where the momentum radiated integrates to zero over an orbit. Here, we show that for low but nonzero inclination prograde orbits and very rapidly spinning large holes (spin parameter a{sub *}>0.9678) the inspiralling binary can pass through resonances where the orbit-averaged radiation-reaction force is nonzero. These resonance crossings lead to a new contribution to the kick, |V|{proportional_to}{eta}{sup 3/2}. For these configurations and sufficiently extreme mass ratios, this resonant recoil is dominant. While it seems doubtful that the resonant recoil will be astrophysically significant, its existence suggests caution when extrapolating the results of numerical kick results to extreme mass ratios and near-maximal spins.

  14. The shape effect of space debris on recoil impulse by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Wang, Chenglin; Zhang, Yan; Wang, Kunpeng

    2016-10-01

    Removing space debris by high-energy pulsed laser may be the most effective way to mitigate the threat posed by the increasing space debris. Laser ablation of a thin surface layer causes recoil impulse, which will lower the orbit perigee of space debris and accelerate the atmospheric capture. When the laser beam vertically irradiates a flat debris, it requires a certain laser fluence to reach the optimal impulse coupling, and the recoil impulse is parallel to the laser beam. However, the incident laser fluence varies in different parts of a non-flat surface. We have taken the shape effect into account to propose a numerical method of calculating the recoil impulse. Taking cylinder debris as the target, we have compared the recoil impulse in different laser fluences through simulation experiments, which implies that a higher laser fluence than the optimal one is needed to obtain a larger recoil impulse for irregularly shaped space debris.

  15. Plasma Time in Discriminating Nuclear Recoils in Germanium Detector for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Mei, Dongming; Barker, D'ann

    2012-10-01

    In the detection of WIMP-induced nuclear recoils with high-purity germanium detectors, CDMS-type bolometers are often used in measuring the ionization yield. For this technology, the detector is operated in the milli-Kelvin temperature range, which requires high priced detectors. Alternative electron/nuclear recoil discrimination using pulse shape has been widely utilized in the energy range of MeV in neutrinoless double-beta decay experiments with germanium detectors. However, the nuclear recoils induced by WIMPs are in the energy range of keV, and their pulse shape difference with electronic recoils in the same energy range has not proven to be visible in a commercially available germanium detector. This paper presents a new idea of using plasma time difference in pulse shape to discriminate nuclear recoils from electronic recoils. We show the plasma time difference as a function of nuclear recoil energy. The technique using plasma time will be discussed with a generic germanium detector.

  16. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    PubMed

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac.

  17. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  18. Effect of medium recoil and pT broadening on single inclusive jet suppression in high-energy heavy-ion collisions in the high-twist approach

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Nian; Wei, Shu-Yi; Zhang, Han-Zhong

    2017-09-01

    Jet energy loss and single inclusive jet suppression in high-energy heavy-ion collisions are studied within a pQCD parton model that includes both elastic and radiative interactions between jet shower and medium partons as they propagate through the quark-gluon plasma. The collisional energy loss of jets with a given cone size is found to be relatively small comparing with the radiative energy loss. However, the effect of transverse momentum broadening due to elastic scattering is significant in the calculation of radiative energy loss within the high-twist formalism. The nuclear modification factors for single inclusive jets with different cone sizes are calculated and compared to experimental data as measured by ALICE and ATLAS experiments in Pb+Pb collisions at √{sNN}=2.76 TeV. Results on jet suppression in Pb+Pb collisions at √{sNN}=5.02 TeV are also presented.

  19. Bioinspired catalytic materials for energy-relevant conversions

    NASA Astrophysics Data System (ADS)

    Artero, Vincent

    2017-09-01

    The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.

  20. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  1. First detection of radon progeny recoil tracks by MIMAC

    NASA Astrophysics Data System (ADS)

    Riffard, Q.; Santos, D.; Guillaudin, O.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Fourel, C.; Muraz, J.-F.; Lebreton, L.; Maire, D.; Colas, P.; Ferrer-Ribas, E.; Giomataris, I.; Busto, J.; Fouchez, D.; Brunner, J.; Tao, C.

    2017-06-01

    The MIMAC experiment is a μ-TPC project for directional dark matter search. Directional detection strategy is based on the measurement of the WIMP flux anisotropy due to the solar system motion with respect to the dark matter halo. The main purpose of MIMAC project is the measurement of nuclear recoil energy and 3D direction from the WIMP elastic scattering on target nuclei. Since June 2012 a bi-chamber prototype is operating at the Modane underground laboratory. In this paper, we report the first ionization energy and 3D track observations of NRs produced by the radon progeny. This measurement shows the capability of the MIMAC detector and opens the possibility to explore the low energy recoil directionality signature.

  2. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2017-01-03

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided by a cavitating venturi that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated.

  3. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  4. Detailed Kinetic Modeling of Processes Relevant To Fusion Energy

    NASA Astrophysics Data System (ADS)

    Mehl, Marco; Armstrong, Michael; Zaug, Joseph; Crowhurst, Jonathan; Radousky, Harry; Stavrou, Elissaios

    2016-10-01

    Carbon based materials have been proposed as candidates for the fabrication of plasma-facing components in the design of fusion energy devices. Although these components are not supposed to be in direct contact with the core fusion plasma, plasma instabilities and the harsh environment they are exposed to can cause the degradation of plasma-exposed components and the transfer of contaminants into the plasma followed by deposition of byproducts. In order to investigate the chemistry involved in these processes and to assist the development of models suitable to understand the long term consequences of the carbon ablation/deposition cycle, an inductively coupled plasma flow reactor (ICPFR) has been developed. The ICPFR allows the atomization of carbon containing precursors to high temperatures (in the order of 10000K) and the characterization of the gas and solid species formed downsteam from the plasma source through spectroscopic techniques. In parallel to the experimental analysis a comprehensive set of fluid dynamic and detailed kinetic simulations are used to analyze the data. The combination of these two approaches resulted in a validated and comprehensive chemical model for the formation of carbon deposits in carbon contaminated cooling plasmas. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Hands-on-Entropy, Energy Balance with Biological Relevance

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  6. Relevance of axionlike particles for very-high-energy astrophysics

    NASA Astrophysics Data System (ADS)

    de Angelis, Alessandro; Galanti, Giorgio; Roncadelli, Marco

    2011-11-01

    Several extensions of the standard model and, in particular, superstring theories suggest the existence of axionlike particles (ALPs), which are very light spin-zero bosons with a two-photon coupling. As a consequence, photon-ALP oscillations occur in the presence of an external magnetic field, and ALPs can lead to observable effects on the measured photon spectrum of astrophysical sources. An intriguing situation arises when blazars are observed in the very-high-energy (VHE) band—namely, above 100 GeV—as it is the case with the presently operating Imaging Atmospheric Cherenkov Telescopes H.E.S.S, Major Atmospheric Gamma Imaging Cherenkov telescope, Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback III, and VERITAS. The extragalactic background light produced by galaxies during cosmic evolution gives rise to a source dimming which becomes important in the VHE band and increases with energy, since hard photons from a blazar scatter off soft extragalactic background light photons thereby disappearing into e+e- pairs. This dimming can be considerably reduced by photon-ALP oscillations, and since they are energy independent the resulting blazar spectra become harder than expected. We consider throughout a scenario first proposed by De Angelis, Roncadelli, and Mansutti in which the above strategy is implemented with photon-ALP oscillations triggered by large-scale magnetic fields, and we systematically investigate its implications for VHE blazars. We find that for ALPs lighter than 5·10-10eV the photon survival probability is larger than predicted by conventional physics above a few hundred GeV. Specifically, a boost factor of 10 can easily occur for sources at large distance and large energy, e.g. at 8 TeV for the blazar 1ES 0347-121 at redshift z=0.188. This is a clear-cut prediction which can be tested with the planned Cherenkov Telescope Array and the High Altitude Water Cherenkov Experiment (HAWC) water Cherenkov

  7. The mechanics of elastic loading and recoil in anuran jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2014-12-15

    Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch.

  8. EMMA, the Proposed Recoil Separator for ISAC-II

    NASA Astrophysics Data System (ADS)

    Davids, Barry

    2004-10-01

    Design work has begun on EMMA, an electromagnetic mass analyzer for ISAC-II at TRIUMF. EMMA is a recoil mass spectrometer that will be used to separate the recoils of nuclear reactions from the beam, and to disperse them according to mass/charge. ISAC-II will provide intense, low-emittance beams of unstable nuclei with masses up to 150 u and maximum energies of at least 6.5 MeV/u. EMMA will be used in many different types of experiments with radioactive beams, especially those involving fusion-evaporation and transfer reactions. As such, it must be both efficient and selective, possessing large acceptances in angle, mass, and energy without sacrificing the necessary beam suppression and mass resolution.

  9. First measurement of the ionization yield of nuclear recoils in liquid argon

    SciTech Connect

    Joshi, T.; Sangiorgio, Samuele; Bernstein, A.; Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Kazkaz, K.; Mozin, Vladimir V.; Norman, E. B.; Pereverzev, S. V.; Rebassoo, Finn O.; Sorensen, Peter F.

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  10. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  11. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for 72Ge, 75As, 89Y, and 109Ag in the ENDF/B-VII.1 library, and for 90Zr and 55Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  12. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  13. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  14. A Proton Recoil Telescope for Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cinausero, M.; Barbui, M.; Prete, G.; Rizzi, V.; Andrighetto, A.; Pesente, S.; Fabris, D.; Lunardon, M.; Nebbia, G.; Viesti, G.; Moretto, S.; Morando, M.; Zenoni, A.; Bocci, F.; Donzella, A.; Bonomi, G.; Fontana, A.

    2006-05-01

    The N2P research program funded by the INFN committee for Experimental Nuclear Physics (CSNIII) has among his goals the construction of a Proton Recoil Telescope (PRT), a detector to measure neutron energy spectra. The interest in such a detector is primarily related to the SPES project for rare beams production at the Laboratori Nazionali di Legnaro. For the SPES project it is, in fact, of fundamental importance to have reliable information about energy spectra and yield for neutrons produced by d or p projectiles on thick light targets to model the ''conversion target'' in which the p or d are converted in neutrons. These neutrons, in a second stage, will induce the Uranium fission in the ''production target''. The fission products are subsequently extracted, selected and re-accelerated to produce the exotic beam. The neutron spectra and angular distribution are important parameters to define the final production of fission fragments. In addition, this detector can be used to measure neutron spectra in the field of cancer therapy (this topic is nowadays of particular interest to INFN, for the National Centre for Hadron therapy (CNAO) in Pavia) and space applications.

  15. A measurement of the ionization efficiency of nuclear recoils in silicon

    NASA Astrophysics Data System (ADS)

    Izraelevitch, F.; Amidei, D.; Aprahamian, A.; Arcos-Olalla, R.; Cancelo, G.; Casarella, C.; Chavarria, A. E.; Collon, P.; Estrada, J.; Fernández Moroni, G.; Guardincerri, Y.; Gutiérrez, G.; Gyurjinyan, A.; Kavner, A.; Kilminster, B.; Liao, J.; Liu, Q.; López, M.; Molina, J.; Privitera, P.; Reyes, M. A.; Scarpine, V.; Siegl, K.; Smith, M.; Strauss, S.; Tan, W.; Tiffenberg, J.; Villanueva, L.

    2017-06-01

    We have measured the ionization efficiency of silicon nuclear recoils with kinetic energy between 1.8 and 20 keV . We bombarded a silicon-drift diode with a neutron beam to perform an elastic-scattering experiment. A broad-energy neutron spectrum was used and the nuclear recoil energy was reconstructed using a measurement of the time of flight and scattering angle of the scattered neutron. The overall trend of the results of this work is well described by the theory of Lindhard et al. above 4 keV of recoil energy. Below this energy, the presented data shows a deviation from the model. The data indicates a faster drop than the theory prediction at low energies.

  16. Relevancy of the Massive Open Online Course (MOOC) about Sustainable Energy for Adolescents

    ERIC Educational Resources Information Center

    Aksela, Maija; Wu, Xiaomeng; Halonen, Julia

    2016-01-01

    Sustainable energy is one of the biggest global challenges today. This paper discusses how we can promote adolescents' learning of sustainable energy with the help of an international massive open online course (MOOC). The aim of this case study is to understand: (1) What do the adolescents find relevant in the MOOC course about sustainable…

  17. Sub-recoil laser cooling of metastable helium

    NASA Astrophysics Data System (ADS)

    Liu, Liang

    2000-08-01

    This work presents the results of several experiments in sub-recoil laser cooling of metastable Helium (He*) on the 23S1 --> 23P0,1,2 transitions at λ = 1.083 μm and on the 23S1 --> 33P0,1,2 transitions at λ = 389 nm in a magnetic field. The idea is to combine the principle of sub-recoil cooling based on VSCPT (Velocity Selective Coherent Population Trapping) with the VSR (Velocity Selective Resonance) produced by an applied magnetic field. We first review the works on Doppler and sub-Doppler cooling, and point out that the sub-recoil cooling is possible when the atom is dark to the laser field. When the kinetic energy term is considered in the Hamiltonian, the dark state has a distribution over detuning and laser intensity. Thus for limited interaction time for blue detuning, the trapped state leads a single sub-recoil peak, and for red detuning, it leads a single sub-recoil dip. W present a semiclassical description of VSCPT in a magnetic field. In this description, two terms are added to the Hamiltonian simultaneously, that is the kinetic energy term and Zeeman shift term. With the kinetic energy term, the dependence of the dark state on laser parameters can be understood, and with the Zeeman term, VSCPT phenomena can be controlled by the applied magnetic field. We present an experiment on the He* J = 1 --> 1 transition driven by σ+ - σ- counter-propagating fields in a magnetic field parallel to the k-vector of the lasers, which produces a standard A system. We first apply a magnetic field parallel to the k-vector of laser beams, and observe the change of VSCPT vs the magnetic field. Then we study VSCPT behaviour in zero magnetic field for different detuning, intensity and interaction time. The configuration is then changed to a σ+ standing wave in a magnetic field perpendicular to the k-vector of the laser beams. For the J = 1 --> 0 transition, besides the dark state similar to 1 --> 1 transition, there is a leak from J = 0, mJ = 0 of the excited state

  18. Detection Efficiency of the Clover Array for Recoil Decay Spectroscopy

    NASA Astrophysics Data System (ADS)

    Engel, John; Al-Shudifat, Mahammad; Paulauskas, S. V.; Madurga, Miguel; Grzywacz, Robert

    2011-10-01

    The Clover Array for Recoil Decay Spectroscopy (CARDS) has been implemented in the newly commissioned facility Low-energy Radioactive Ion Beam Spectroscopy Station at Oak Ridge National Laboratory. Challenging experiments with very neutron rich isotopes near doubly magic 78Ni has been performed. Quantitative analysis of the new data required a thorough measurement of the detection efficiency of the CARDS array using variety of the standard calibration sources. Of particular importance is observed high detection efficiency for gamma rays with energies in the range of 50-200 keV which has been achieved due to implementation of digital electronics. Examples of data from on-line experiments will be presented.

  19. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  20. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  1. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  2. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    SciTech Connect

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; DeJongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V / cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V / cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83 m Kr internal conversion electrons is comparable to that from 207 Bi conversion electrons, we obtained the numbers of excitons ( N ex ) and ion pairs ( N i ) and their ratio ( N ex / N i ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  3. A Double Scattering Analytical Model For Elastic Recoil Detection Analysis

    SciTech Connect

    Barradas, N. P.; Lorenz, K.; Alves, E.; Darakchieva, V.

    2011-06-01

    We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.

  4. Recoil and power corrections in high-xT direct photon production

    NASA Astrophysics Data System (ADS)

    Sterman, George; Vogelsang, Werner

    2005-01-01

    We study a class of nonperturbative corrections to single-inclusive photon cross sections at measured transverse momentum pT, in the large-xT limit. We develop an extension of the joint (threshold and transverse momentum) resummation formalism, appropriate for large xT, in which there are no kinematic singularities associated with recoil, and for which matching to fixed-order and to threshold resummation at next-to-leading logarithm (NLL) is straightforward. Beyond NLL, we find contributions that can be attributed to recoil from initial-state radiation. Associated power corrections occur as inverse powers of p2T and are identified from the infrared structure of integrals over the running coupling. They have significant energy-dependence and decrease from typical fixed-target to collider energies. Energy conservation, which is incorporated into joint resummation, moderates the effects of perturbative recoil and power corrections for large xT.

  5. On calibration of the response of liquid argon detectors to nuclear recoils using inelastic neutron scattering on 40Ar

    NASA Astrophysics Data System (ADS)

    Polosatkin, S.; Grishnyaev, E.; Dolgov, A.

    2014-10-01

    A method for measuring of ionization and scintillation yields in liquid argon from recoils with particular energy—8.2 keV—is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering result in a sufficient (fifteen times) increase in count rate of useful events relative to a traditional scheme using elastic scattering with the same recoil energy and comparable energy resolution.

  6. (7)Be-recoil radiolabelling of industrially manufactured silica nanoparticles.

    PubMed

    Holzwarth, Uwe; Bellido, Elena; Dalmiglio, Matteo; Kozempel, Jan; Cotogno, Giulio; Gibson, Neil

    2014-01-01

    Radiolabelling of industrially manufactured nanoparticles is useful for nanoparticle dosimetry in biodistribution or cellular uptake studies for hazard and risk assessment. Ideally for such purposes, any chemical processing post production should be avoided as it may change the physico-chemical characteristics of the industrially manufactured species. In many cases, proton irradiation of nanoparticles allows radiolabelling by transmutation of a tiny fraction of their constituent atoms into radionuclides. However, not all types of nanoparticles offer nuclear reactions leading to radionuclides with adequate radiotracer properties. We describe here a process whereby in such cases nanoparticles can be labelled with (7)Be, which exhibits a physical half-life of 53.29 days and emits γ-rays of 478 keV energy, and is suitable for most radiotracer studies. (7)Be is produced via the proton-induced nuclear reaction (7)Li(p,n)(7)Be in a fine-grained lithium compound with which the nanoparticles are mixed. The high recoil energy of (7)Be atoms gives them a range that allows the (7)Be-recoils to be transferred from the lithium compound into the nanoparticles by recoil implantation. The nanoparticles can be recovered from the mixture by dissolving the lithium compound and subsequent filtration or centrifugation. The method has been applied to radiolabel industrially manufactured SiO2 nanoparticles. The process can be controlled in such a way that no alterations of the (7)Be-labelled nanoparticles are detectable by dynamic light scattering, X-ray diffraction and electron microscopy. Moreover, cyclotrons with maximum proton energies of 17-18 MeV that are available in most medical research centres could be used for this purpose.

  7. Potential energy surfaces for ground and excited electronic states of the CF3I molecule and their relevance to its A-band photodissociation.

    PubMed

    Alekseyev, Aleksey B; Liebermann, Heinz-Peter; Buenker, Robert J

    2013-05-14

    The multireference spin-orbit (SO) configuration interaction (CI) method in its Λ-S contracted SO-CI version is employed to calculate two-dimensional potential energy surfaces for the ground and low-lying excited states of CF3I relevant to its photodissociation in the lowest absorption band (A band). The computed equilibrium geometry for the X̃A1 ground state and vibrational frequency ν3 for the C-I stretch mode agree well with available experimental data. The (3)Q0(+) state dissociating to the excited I((2)P1/2) limit is found to have a minimum of 1570 cm(-1) significantly shifted to larger internuclear distances (RC-I = 5.3 a0) relative to the ground state. Similar to the CH3I case, this makes a single-exponent approximation commonly employed for analysis of the CF3I recoil dynamics unsuitable. The 4E((3)A1) state possessing an allowed transition from the ground state and converging to the same atomic limit as (3)Q0(+) is calculated to lie too high in the Franck-Condon region to have any significant impact on the A-band absorption. The computed vertical excitation energies for the (3)Q1, (3)Q0(+), and (1)Q states indicate that the A-band spectrum must lie approximately between 31,300 and 45,200 cm(-1), i.e., between 220 and 320 nm. This result is in very good agreement with the measured absorption spectrum.

  8. Primary ion dependence of LiF direct recoil intensities and ion fractions

    NASA Astrophysics Data System (ADS)

    Chen, J. N.; Shi, M.; Rabalais, J. W.

    1987-02-01

    Time-of-flight (TOF) spectra of the scattered and recoiled particles resulting from 1-10 keV He+, Ne+, Ar+, Kr+, and Xe+ ions impingent on surfaces of LiF thin films have been obtained. Measurements of directly recoiled (DR) neutrals plus ions and neutrals alone are used to calculate positive and negative ion fractions Y+,- from DR events. The oppositely charged ion fractions have a distinctly different behavior as a function of kinetic energy. The Y+ values exhibit a threshold at low energy followed by a plateau region at higher energy while the Y- values are maximum in the low energy region followed by a decreasing yield as energy increases. The energy dependence of Y+,- is interpreted in terms of the recently developed model [J. Chem. Phys. 85, 3615 (1986)] for electronic charge exchange in keV ion/surface collisions which considers electron promotions in the close atomic encounter and resonant and Auger transitions along the outgoing trajectory. The ionization potential of the primary ion relative to the energy levels of the target atom is shown to have a large influence on charge exchange in the close encounter. The ratio of direct recoil to scattering particle flux increases by a factor of >102 from He to Xe; scattering and recoil cross sections are used to model this process.

  9. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  10. Optical recoil of asymmetric nano-optical antenna.

    PubMed

    Song, Jung-Hwan; Shin, Jonghwa; Lim, Hee-Jin; Lee, Yong-Hee

    2011-08-01

    We propose nano-optical antennas with asymmetric radiation patterns as light-driven mechanical recoil force generators. Directional antennas are found to generate recoil force efficiently when driven in the spectral proximity of their resonances. It is also shown that the recoil force is equivalent to the Poynting vector integrated over a closed sphere containing the antenna structures.

  11. Experimental status of 7Be production and destruction at astrophysical relevant energies

    NASA Astrophysics Data System (ADS)

    Di Leva, A.; Gialanella, L.; Strieder, F.

    2016-01-01

    The production and destruction of 7Be plays a significant role in the Big Bang Nucleosynthesis as well as in the framework of the solar neutrino. The 3He(α, γ)7Be reaction cross sections has been measured several times in the last decades, but the precision achieved on reaction rate determinations at the relevant astrophysical energies is not yet satisfactory. The experimental status of this reaction will be critically reviewed, and the theoretical descriptions available will be discussed.

  12. Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2009-12-21

    We examine the sensitivity of nuclear recoil cross sections produced by two-photon double ionization of helium to the underlying triple differential cross sections (TDCS) used in their computation. We show that this sensitivity is greatest in the energy region just below the threshold for sequential double ionization. Accurate TDCS, extracted from non-perturbative solutions of the time-dependent Schroedinger equation, are used here in new computations of the nuclear recoil cross section.

  13. Revealing compressed stops using high-momentum recoils

    DOE PAGES

    Macaluso, Sebastian; Park, Michael; Shih, David; ...

    2016-03-22

    In this study, searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5σ.more » The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a ET, but also leads to a distinctive anti-correlation between the ET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in ET measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb–1. By 300 fb–1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the “stealth” point at mt¯ = mt and potentially overlapping with limits from tt¯ cross section and spin correlation measurements.« less

  14. Revealing compressed stops using high-momentum recoils

    SciTech Connect

    Macaluso, Sebastian; Park, Michael; Shih, David; Tweedie, Brock

    2016-03-22

    In this study, searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5σ. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a ET, but also leads to a distinctive anti-correlation between the ET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in ET measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb–1. By 300 fb–1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the “stealth” point at m = mt and potentially overlapping with limits from tt¯ cross section and spin correlation measurements.

  15. Revealing compressed stops using high-momentum recoils

    NASA Astrophysics Data System (ADS)

    Macaluso, Sebastian; Park, Michael; Shih, David; Tweedie, Brock

    2016-03-01

    Searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ˜ 1 and significances often well beyond 5 σ. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a [InlineMediaObject not available: see fulltext.] signature, but also leads to a distinctive anti-correlation between the [InlineMediaObject not available: see fulltext.] and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in [InlineMediaObject not available: see fulltext.] measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb-1. By 300 fb-1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the "stealth" point at {m}_{overline{t}}={m}_t and potentially overlapping with limits from toverline{t} cross section and spin correlation measurements.

  16. First measurement of surface nuclear recoil background for argon dark matter searches

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Stanford, Chris; Westerdale, Shawn; Calaprice, Frank; Wright, Alexander; Shi, Zhiming

    2017-09-01

    One major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ˜5 keV (30 keV) electron recoil (40Ar recoil). In addition, we demonstrate that this dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ˜100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. We also discuss the impact on other low background experiments.

  17. Sub-barrier reactions measured using a recoil mass separator

    SciTech Connect

    Betts, R.R.

    1988-01-01

    Few data exist in the sub-barrier region for reaction channels other than fusion. In particular, our experimental knowledge of quasi-elastic transfer reactions is sparse, despite the belief that this particular channel may be dominant in determining some features of the sub-barrier fusion enhancement. Transfer reactions are governed primarily by the closet approach of the colliding nuclei which, at low energies, results in a strong backward peaking of the angular distribution in the center-of-mass frame. For situations where the projectile has a significant fraction of the target mass, as is so in most cases of interest, the backscattered projectile-like fragment has such low energy that the usual techniques of measurement and identification become invalid. Here, we report on a solution to this problem which allows a systematic study of many aspects of transfer reactions in the energy regime of interest. We exploit the fact that associated with the low-energy backscattered projectile-like fragment is a complementary target-like fragment which recoils to forward angles with a large fraction of the incident beam energy. These target-like fragments were detected and identified using the Daresbury Recoil Mass Separator thus allowing the measurement of quasi-elastic transfer over hitherto inaccessible energy range from the vicinity of the barrier to several tens of MeV below. The experiments described here used VYNi beams of energies ranging from 180 to 260 MeV provided by the Daresbury Laboratory Nuclear Structure Facility tandem accelerator. Data on sub-barrier transfer for targets of /sup 116,118,120,122,124/Sn and /sup 144,148,150,152,154/Sm were obtained. 16 refs., 10 figs., 2 tabs.

  18. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    NASA Astrophysics Data System (ADS)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  19. Doping silicon with erbium by recoil implantation

    NASA Astrophysics Data System (ADS)

    Feklistov, K. V.; Abramkin, D. S.; Obodnikov, V. I.; Popov, V. P.

    2015-08-01

    In attempt to achieve strong surface doping of silicon with erbium, silicon was implanted with 250-keV argon ions through a thin erbium film deposited on the target surface. As a result, erbium recoil atoms were knocked out of the film and incorporated into the silicon substrate. In this way, silicon was doped with erbium atoms to a concentration of 5 × 1020 cm-3 within a depth slightly above 10 nm. For the formation of stable optically active ErO n complexes, oxygen recoil atoms were also incorporated into silicon. During the subsequent heat treatment, about half of the implanted erbium atoms segregated in the surface SiO2 layer. The main fraction of erbium retained in silicon after heat treatments is optically inactive.

  20. Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements

    SciTech Connect

    Guillemin, Renaud; Bomme, Cedric; Marin, Thierry; Journel, Loic; Marchenko, Tatiana; Kushawaha, Rajesh K.; Piancastelli, Maria Novella; Simon, Marc; Trcera, Nicolas

    2011-12-15

    Following core 1s ionization and resonant excitation of argon atoms, we measure the recoil energy of the ions due to momentum conservation during the emission of Auger electrons. We show that such ion momentum spectroscopy can be used to disentangle to some degree complex decay patterns, involving both radiative and nonradiative decays.

  1. Polarization effects in recoil-induced resonances

    NASA Astrophysics Data System (ADS)

    Lazebnyi, D. B.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.

    2017-01-01

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  2. Binding energies of nucleobase complexes: Relevance to homology recognition of DNA

    NASA Astrophysics Data System (ADS)

    León, Sergio Cruz; Prentiss, Mara; Fyta, Maria

    2016-06-01

    The binding energies of complexes of DNA nucleobase pairs are evaluated using quantum mechanical calculations at the level of dispersion corrected density functional theory. We begin with Watson-Crick base pairs of singlets, duplets, and triplets and calculate their binding energies. At a second step, mismatches are incorporated into the Watson-Crick complexes in order to evaluate the variation in the binding energy with respect to the canonical Watson-Crick pairs. A linear variation of this binding energy with the degree of mismatching is observed. The binding energies for the duplets and triplets containing mismatches are further compared to the energies of the respective singlets in order to assess the degree of collectivity in these complexes. This study also suggests that mismatches do not considerably affect the energetics of canonical base pairs. Our work is highly relevant to the recognition process in DNA promoted through the RecA protein and suggests a clear distinction between recognition in singlets, and recognition in duplets or triplets. Our work assesses the importance of collectivity in the homology recognition of DNA.

  3. Medium modifications with recoil polarization

    SciTech Connect

    Brand, J.F.J. van den; Ent, R.

    1994-04-01

    The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He({rvec e},e{prime},{rvec p}){sup 3}H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium.

  4. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  5. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    SciTech Connect

    McAleer, Simeon B.

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  6. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.

    PubMed

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin

    2014-01-01

    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  7. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  8. Blood lactate concentration after exposure to conducted energy weapons (including TASER® devices): is it clinically relevant?

    PubMed

    Jauchem, James R

    2013-09-01

    In previous studies, blood lactate concentration (BLac) consistently increased in anesthetized animals and in human subjects after exposures to TASER(®) conducted energy weapons (CEWs). Some have suggested the increased BLac would have detrimental consequences. In the current review, the following are evaluated: (a) the nature of muscle contractions due to CEWs, (b) general aspects of increased BLac, (c) previous studies of conventional neuromuscular electrical stimulation and CEW exposures, and (d) BLac in disease states. On the basis of these analyses, one can conclude that BLac, per se (independent of acidemia), would not be clinically relevant immediately after short-duration CEW applications, due to the short time course of any increase.

  9. Study of hot electron spatial energy deposition in spherical targets relevant to shock ignition

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Wei, M. S.; Krauland, C.; Reynolds, H.; Hoppe, M.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Li, J.; Ren, C.; Stoeckl, C.; Seka, W.; Betti, R.; Campbell, M.

    2016-10-01

    Understanding hot electron generation and coupling is important for the high-intensity shock ignition (SI) inertial confinement fusion concept. Recent hard x-ray experimental data from a SI-relevant platform on OMEGA-60 suggest that <100 keV hot electrons may augment shock pressure by depositing their energy in the solid density region behind the ablation front. These results deduced from simulation are convincing support for electron assisted SI. To further investigate beneficial hot electron characteristics from both high intensity UV and IR lasers in this relevant regime, we performed a joint OMEGA-60/OMEGA EP experiment in the spherical geometry. 60 UV laser beams (18 kJ, 1.8 ns, up to 1015 W/cm2) irradiated a low-density Cu foam ball target with a CH ablator followed by a single IR short pulse laser (2.6 kJ, 100 ps, 1017 W/cm2) at various delays. The electron spatial energy deposition was diagnosed via imaging Cu K α emission with a spherical crystal imager; total K α photon yield and bremsstrahlung radiation were also measured to infer electron spectra. Experimental results are compared with radiation hydrodynamic modeling and will be presented at the meeting. Work supported by the U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666.

  10. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and

  11. Alpha and recoil track detection in poly(methyl methacrylate) (PMMA)—Towards a method for in vitro assessment of radiopharmaceuticals internalized in cancer cells

    SciTech Connect

    Myhra, S. Chakalova, R.; Falzone, N.

    2014-03-15

    A method for detection and characterization of single MeV α-particle and recoil tracks in PMMA photoresist by atomic force microscopy (AFM) analysis has been demonstrated. The energy deposition along the track is shown to lead to a latent pattern in the resist due to contrast reversal. It has been shown that the pattern, consisting of conical spikes, can be developed by conventional processing as a result of the dissolution rate of poly(methyl methacrylate) (PMMA) being greater than that for the modified material in the cylindrical volume of the track core. The spikes can be imaged and counted by routine AFM analysis. Investigations by angular-resolved near-grazing incidence reveal additional tracks that correspond to recoil tracks. The observations have been correlated with modelling, and shown to be in qualitative agreement with prevailing descriptions of collision cascades. The results may be relevant to technologies that are based on detection and characterization of single energetic ions. In particular, the direct visualization of the collision cascade may allow more accurate estimates of the actual interaction volume, which in turn will permit more precise assessment of dose distribution of α-emitting radionuclides used for targeted radiotherapy. The results could also be relevant to other diagnostic or process technologies based on interaction of energetic ions with matter.

  12. Alpha and recoil track detection in poly(methyl methacrylate) (PMMA)—Towards a method for in vitro assessment of radiopharmaceuticals internalized in cancer cells

    NASA Astrophysics Data System (ADS)

    Myhra, S.; Falzone, N.; Chakalova, R.

    2014-03-01

    A method for detection and characterization of single MeV α-particle and recoil tracks in PMMA photoresist by atomic force microscopy (AFM) analysis has been demonstrated. The energy deposition along the track is shown to lead to a latent pattern in the resist due to contrast reversal. It has been shown that the pattern, consisting of conical spikes, can be developed by conventional processing as a result of the dissolution rate of poly(methyl methacrylate) (PMMA) being greater than that for the modified material in the cylindrical volume of the track core. The spikes can be imaged and counted by routine AFM analysis. Investigations by angular-resolved near-grazing incidence reveal additional tracks that correspond to recoil tracks. The observations have been correlated with modelling, and shown to be in qualitative agreement with prevailing descriptions of collision cascades. The results may be relevant to technologies that are based on detection and characterization of single energetic ions. In particular, the direct visualization of the collision cascade may allow more accurate estimates of the actual interaction volume, which in turn will permit more precise assessment of dose distribution of α-emitting radionuclides used for targeted radiotherapy. The results could also be relevant to other diagnostic or process technologies based on interaction of energetic ions with matter.

  13. Neutron electric form factor via recoil polarimetry

    SciTech Connect

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  14. Recoil Considerations for Shoulder-Fired Weapons

    DTIC Science & Technology

    2012-05-01

    2012) Steyr 15.2 mm 35 g 1450 m/s 39.6 lb 11.4 Burns (2012) Type 97 (Japanese) 20 mm 162 g 790 m/s 130 lb 28.7 Burns (2012) 12HB00 ( Remington ...shotgun 0.727 in 807 gr (12 × 00) 1225 ft/s 7.0 lb 4.37 Remington (2011) Remington Express 12B0 shotgun 0.727 in 580 gr (12 × 0) 1275 ft/s...7.0 lb 3.28 Remington 5 Table 3. Recoil-related characteristics of selected shoulder-fired weapons cited in table 1. Nomenclature

  15. Optimal Control of Active Recoil Mechanisms

    DTIC Science & Technology

    1977-02-01

    forces from 25 to 2.5% for lower zones and cavitation was avoided for zone 8. Tachometer feedback was shown to be effective for low zones. The...concept of feedback control system coupled with optimization procedure to design recoil mechanisms was demonstrated to be an efficient and very effective ...122o •nl260 .01300 .01340 .01380 • ouzo #01460 •01500 •01540 •01580 •0162" .0166 i 309o,6 504P.6 9964.5 10075,9 39121.5 75397.3

  16. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    SciTech Connect

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  17. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis.

    PubMed

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-01

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si3N4 membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  18. Rejection of Electronic Recoils with the DMTPC Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Lopez, J. P.; Ahlen, S.; Battat, J.; Caldwell, T.; Chernicoff, M.; Deaconu, C.; Dujmic, D.; Dushkin, A.; Fedus, W.; Fisher, P.; Golub, F.; Henderson, S.; Inglis, A.; Kaboth, A.; Kohse, G.; Kirsch, L.; Lanza, R.; Lee, A.; Monroe, J.; Ouyang, H.; Sahin, T.; Sciolla, G.; Skvorodnev, N.; Tomita, H.; Wellenstein, H.; Wolfe, I.; Yamamoto, R.; Yegoryan, H.

    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing a low-pressure gas TPC for detecting WIMP-nucleon interactions. DMTPC detectors use optical readout with CCD cameras to search for the daily modulation of the directional signal of the dark matter wind. An analysis of several charge readout channels has been developed to obtain additional information about ionization events in the detector. In order to reach sensitivities required for the WIMP detection, the detector needs to minimize backgrounds from electron recoils. This article shows that by using the readout of charge signals in addition to CCD readout, a preliminary statistics-limited 90% C.L. upper limit on the γ and e- rejection factor of 5.6 × 10-6 is obtained for energies between 40 keVee and 200 keVee.

  19. A Recoil Mass Spectrometer for the HHIRF facility

    SciTech Connect

    Cole, J.D. ); Cormier, T.M. ); Hamilton, J.H. . Dept. of Physics and Astronomy)

    1989-01-01

    A Recoil Mass Spectrometer (RMS) is to be built that will carry out a broad research program in heavy-ion science. The RMS will make possible the study of otherwise inaccessible exotic nuclei. Careful attention has been given to match the RMS to all the beams available from the HHIRF accelerators, including those beams with the highest energy, as well as massive particles for use in inverse reactions. The RMS is to be a momentum achromat followed by a split electric-dipole mass spectrometer of the type operating at NSRL at the University of Rochester. The RMS is essential for many of the proposed experiments on short-lived and/or low cross-section products. The spectrometer design is discussed, with examples and comparisons with other spectrometers given. Detector arrays to be used with the RMS are also discussed. 21 refs., 4 figs., 1 tab.

  20. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  1. Research on noneconomic factors relevant to the diffusion of solar total energy systems

    NASA Astrophysics Data System (ADS)

    Berry, L. G.; Bronfman, L. M.

    1980-08-01

    The policy uses of some of the concepts and models found in diffusion of innovation literatures other than those of economics and marketing were reviewed and evaluated. The results of this review were applied to the specific case of a Solar Total Energy System (STES). The research effort had three parts. The first part was to identify and obtain an overview of the noneconomics social science literature relevant to the problem of forecasting and accelerating adoption rates. After the first part was completed and the principal research perspectives and researchers in the field were identified, a workshop of experts was organized to address the problem of predicting and accelerating diffusion rates for STESs. Finally, the results of the literature review and the workshop are summarized, and a number of approaches suggested by the diffusion literature are used to obtain an evaluation of the adoption potential of STES.

  2. Constraints on the nature of CID-42: recoil kick or supermassive black hole pair?

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2013-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. As an apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsec-scale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity of ≳ 1300 km s-1. Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk ≳ 2000 km s-1). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially resolved spectra that can pinpoint the origin of the broad-line and narrow-line features will be critical for determining the nature of this unique source.

  3. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    NASA Technical Reports Server (NTRS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  4. The relevance of rooftops: Analyzing the microscale surface energy balance in the Chicago region

    NASA Astrophysics Data System (ADS)

    Khosla, Radhika

    interior through the roof, and the physical properties of the surface. These results hold particular relevance for urban heat island mitigation strategies. Based on the results of this work, recommendations are proposed for widespread adoption of various techniques that enhance building energy efficiency (particularly targeting rooftops), mitigate the negative impacts of the urban heat island, and overcome the current barriers to transforming the market.

  5. Recoil Polarization and Beam-Recoil Double Polarization Measurement of η Electroproduction on the Proton in the Region of the S11(1535) Resonance

    NASA Astrophysics Data System (ADS)

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Cheymol, B.; Distler, M. O.; Doria, L.; Fonvieille, H.; Friedrich, J.; Janssens, P.; Makek, M.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Potokar, M.; Sánchez Majos, S.; Schlimme, B. S.; Širca, S.; Tiator, L.; Walcher, Th.; Weinriefer, M.

    2007-09-01

    The beam-recoil double polarization Px'h and Pz'h and the recoil polarization Py' were measured for the first time for the p(e→,e'p→)η reaction at a four-momentum transfer of Q2=0.1GeV2/c2 and a center of mass production angle of θ=120° at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500MeV

  6. The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation.

    PubMed

    Roth, Timothy C; Rattenborg, Niels C; Pravosudov, Vladimir V

    2010-03-27

    All animals in which sleep has been studied express signs of sleep-like behaviour, suggesting that sleep must have some fundamental functions that are sustained by natural selection. Those functions, however, are still not clear. Here, we examine the ecological relevance of sleep from the perspective of behavioural trade-offs that might affect fitness. Specifically, we highlight the advantage of using food-caching animals as a system in which a conflict might occur between engaging in sleep for memory/learning and hypothermia/torpor to conserve energy. We briefly review the evidence for the importance of sleep for memory, the importance of memory for food-caching animals and the conflicts that might occur between sleep and energy conservation in these animals. We suggest that the food-caching paradigm represents a naturalistic and experimentally practical system that provides the opportunity for a new direction in sleep research that will expand our understanding of sleep, especially within the context of ecological and evolutionary processes.

  7. (Bio)Chemical Tailoring of Biogenic 3-D Nanopatterned Templates with Energy-Relevant Functionalities

    SciTech Connect

    Sandhage, Kenneth H; Kroger, Nils

    2014-09-08

    The overall aim of this research has been to obtain fundamental understanding of (bio)chemical methodologies that will enable utilization of the unique 3-D nanopatterned architectures naturally produced by diatoms for the syntheses of advanced functional materials attractive for applications in energy harvesting/conversion and storage. This research has been conducted in three thrusts: Thrust 1 (In vivo immobilization of proteins in diatom biosilica) is directed towards elucidating the fundamental mechanism(s) underlying the cellular processes of in vivo immobilization of proteins in diatom silica. Thrust 2 (Shape-preserving reactive conversion of diatom biosilica into porous, high-surface area inorganic replicas) is aimed at understanding the fundamental mechanisms of shape preservation and nanostructural evolution associated with the reactive conversion and/or coating-based conversion of diatom biosilica templates into porous inorganic replicas. Thrust 3 (Immobilization of energy-relevant enzymes in diatom biosilica and onto diatom biosilica-derived inorganic replicas) involves use of the results from both Thrust 1 and 2 to develop strategies for in vivo and in vitro immobilization of enzymes in/on diatom biosilica and diatom biosilica-derived inorganic replicas, respectively. This Final Report describes progress achieved in all 3 of these thrusts.

  8. Modeling the Observability of Recoiling Black Holes as Offset Quasars

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Torrey, Paul; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Sijacki, Debora; Snyder, Gregory; Bird, Simeon; Nelson, Dylan; Xu, Dandan; Hernquist, Lars

    The merger of two supermassive black holes (SMBHs) imparts a gravitational-wave (GW) recoil kick to the remnant SMBH, which can even eject the SMBH from its host galaxy. An actively-accreting, recoiling SMBH may be observable as an offset quasar. Prior to the advent of a space-based GW observatory, detections of these offset quasars may offer the best chance for identifying recent SMBH mergers. Indeed, observational searches for recoiling quasars have already identified several promising candidates. However, systematic searches for recoils are currently hampered by large uncertainties regarding how often offset quasars should be observable and where they are most likely to be found. Motivated by this, we have developed a model for recoiling quasars in a cosmological framework, utilizing information about the progenitor galaxies from the Illustris cosmological hydrodynamic simulations. For the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas-richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. The rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. Nonetheless, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  9. α -decay chains of recoiled superheavy nuclei: A theoretical study

    NASA Astrophysics Data System (ADS)

    Niyti, Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2015-05-01

    A systematic theoretical study of α -decay half-lives in the superheavy mass region of the periodic table of elements is carried out by extending the quantum-mechanical fragmentation theory based on the preformed cluster model (PCM) to include temperature (T ) dependence in its built-in preformation and penetration probabilities of decay fragments. Earlier, the α -decay chains of the isotopes of Z =115 were investigated by using the standard PCM for spontaneous decays, with"hot-optimum" orientation effects included, which required a constant scaling factor of 104 to approach the available experimental data. In the present approach of the PCM (T ≠0 ), the temperature effects are included via the recoil energy of the residual superheavy nucleus (SHN) left after x -neutron emission from the superheavy compound nucleus. The important result is that the α -decay half-lives calculated by the PCM (T ≠0 ) match the experimental data nearly exactly, without using any scaling factor of the type used in the PCM. Note that the PCM (T ≠0 ) is an equivalent of the dynamical cluster-decay model for heavy-ion collisions at angular momentum ℓ =0 . The only parameter of model is the neck-length parameter Δ R , which for the calculated half-lives of α -decay chains of various isotopes of Z =113 to 118 nuclei formed in "hot-fusion" reactions is found to be nearly constant, i.e., Δ R ≈0.95 ±0.05 fm for all the α -decay chains studied. The use of recoiled residue nucleus as a secondary heavy-ion beam for nuclear reactions has also been suggested in the past.

  10. Recoil Experiments Using a Compressed Air Cannon

    NASA Astrophysics Data System (ADS)

    Taylor, Brett

    2006-12-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab.1-3 Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of momentum, and kinematics. It is possible to use the cannon, along with the output from an electronic force plate, as the basis for many other experiments in the laboratory. In this paper, we will discuss the recoil experiment done by our students in the lab and also mention a few other possibilities that this apparatus could be used for.

  11. Alpha Recoil Flux of Radon in Groundwater and its Experimental Measurement

    NASA Astrophysics Data System (ADS)

    Mehta, N.; Harvey, C. F.; Kocar, B. D.

    2016-12-01

    Groundwater Radon (Rn222) activity is primarily controlled by alpha recoil process (radioactive decay), however, evaluating the rate and extent of this process, and its impact on porewater radioactivity, remains uncertain. Numerous factors contribute to this uncertainty, including the spatial distribution of parent radionuclides (e.g. U238, Th232 , Ra226 and Ra228) within native materials, differences in nuclide recoil length in host matrix and the physical structure of the rock strata (pore size distribution and porosity). Here, we experimentally measure Radon activities within porewater contributed through alpha recoil, and analyze its variations as a function of pore structure and parent nuclide distribution within host matrices, including Marcellus shale rock and Serrie-Copper Pegmatite. The shale cores originate from the Marcellus formation in Mckean, Pennsylvania collected at depths ranging from 1000-7000 feet, and the U-Th-rich Pegmatite is obtained from South Platte District, Colorado. Columns are packed with granulated rock of varying surface area (30,000-60,000 cm2/g) and subjected to low salinity sodium chloride solution in a close loop configuration. The activity of Radon (Rn222) and radium (Ra226) in the saline fluid is measured over time to determine recoil supply rates. Mineralogical and trace element data for rock specimens are characterized using XRD and XRF, and detailed geochemical profiles are constructed through total dissolution and analysis using ICP-MS and ICP-OES. Naturally occurring Radium nuclides and its daughters are quantified using a low-energy Germanium detector. The parent nuclide (U238 and Th232) distribution in the host rock is studied using X-Ray Absorption Spectroscopy (XAS). Our study elucidates the contribution of alpha recoil on the appearance and distribution of Radon (Rn222) within porewater of representative rock matrices. Further, we illustrate the effects of chemical and physical heterogeneity on the rate of this process

  12. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

    SciTech Connect

    Herrmannsfeldt, W.B.; Bangerter, R.O.; Fessenden, T.J.; Lee, E.P.; Yu, S.S.; Olson, C.L.; Welch, D.R.; Barnard, J.J.; Friedman, A.; Logan, B.G.; Moir, R.W.; Haber, I.; Ottinger, P.F.; Young, F.C.; Peterson, R.R.; Briggs, R.J.

    1998-02-06

    An attractive feature of the inertial fusion energy (IFE) approach to commercial energy production is that the fusion driver is well separated from the fusion confinement chamber. This ''standoff'' feature means the driver is largely isolated from fusion reaction products. Further, inertial confinement fusion (ICF) target ignition (with modest gain) is now scheduled to be demonstrated at the National Ignition Facility (NIF) using a laser driver system. The NIF program will, to a considerable extent, validate indirectly-driven heavy-ion fusion (HIF) target designs for IFE. However, it remains that HIF standoff between the final focus system and the fusion target needs to be seriously addressed. In fact, there now exists a timely opportunity for the Office of Fusion Energy Science (OFES) to experimentally explore the feasibility of one of the attractive final transport options in the fusion chamber: the self-pinched transport mode. Presently, there are several mainline approaches for HIF beam transport and neutralization in the fusion chamber. These range from the (conservative) vacuum ballistic focus, for which there is much experience from high energy research accelerators, to highly neutralized ballistic focus, which matches well to lower voltage acceleration with resulting lower driver costs. Alternatively, Z-discharge channel transport and self-pinched transport in gas-filled chambers may relax requirements on beam quality and final focusing systems, leading to even lower driver cost. In any case, these alternative methods of transport, especially self-pinched transport, are unusually attractive from the standpoint of chamber design and neutronics. There is no requirement for low chamber pressure. Moreover, only a minuscule fraction of the fusion neutrons can escape from the chamber. Therefore, it is relatively easy to shield sensitive components, e-g., superconducting magnets from any significant neutron flux. Indeed, self-pinched transport and liquid wall

  13. Modeling nuclear and electronic recoils in noble gas detectors with NEST

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy; NEST Collaboration

    2015-10-01

    Noble gases such as xenon and argon are used as targets in single and dual phased rare event detectors like those used in the search for dark matter. Such experiments require an understanding of the behavior of the target material in the presence of low-energy ionizing radiation. This understanding allows an exploration of detector effects such as threshold, energy and position reconstruction, and pulse shape discrimination. The Noble Element Simulation Technique (NEST) package is a comprehensive code base that models the scintillation and ionization yields from liquid and gaseous xenon and argon in the energy regimes of interest to many types of experiments, like dark matter and neutrino detectors. NEST is built on multiple physics models, which are constrained by available data for both electronic and nuclear recoils. A substantial body of data exists in the literature, and we are reaching an era in which sub-keV yields can be explored experimentally. Here we present a new global analysis of all available nuclear recoil data, and the latest updates to the electronic recoil model, in light of recent low-energy measurements and an improved understanding of detector systematics.

  14. Black hole as a point radiator and recoil effect on the brane world.

    PubMed

    Frolov, Valeri; Stojković, Dejan

    2002-10-07

    A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.

  15. ArII - ArXVI produced in slow recoil collisions

    SciTech Connect

    Gould, H.

    1983-07-01

    An atom in a gaseous target may be highly ionized in a single collision with a (very fast) very highly ionized projectile. A feature of the kinematics of the collision is that very little kinetic energy is imparted to the target atom. The ion is produced as a slow recoil. Typical recoil energies are 1 eV and change little with the degree of ionization produced in the target. This has several very attractive features as a spectroscopic source. First, the spectra are free from Doppler shifts which depend upon the degree of ionization of the atom, and, second, all of the ionization states produced in the target have the same spatial distribution. This allows reference lines from low ionization states to be reliably used to calibrate the spectra from high ionization states.

  16. A predictive theory for elastic scattering and recoil of protons from 4He

    SciTech Connect

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  17. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGES

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  18. EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF

    NASA Astrophysics Data System (ADS)

    Davids, Barry; Davids, Cary N.

    2005-06-01

    Design work has begun on EMMA, an electromagnetic mass analyzer for ISAC-II at TRIUMF. EMMA is a recoil mass spectrometer that will be used to separate the recoils of nuclear reactions from the beam, and to disperse them according to mass/charge. ISAC-II will provide intense, low-emittance beams of unstable nuclei with masses up to 150 u and maximum energies of at least 6.5 MeV/nucleon. EMMA will be used in many different types of experiments with radioactive beams, especially those involving fusion-evaporation and transfer reactions. As such, it must be both efficient and selective, possessing large acceptances in angle, mass, and energy without sacrificing the necessary beam suppression and mass resolution.

  19. Measurement of the scintillation light quenching at room temperature of sodium recoils in NaI(Tl) and hydrogen recoils in NE 213 by the scattering of neutrons

    NASA Astrophysics Data System (ADS)

    Jagemann, Th.; Feilitzsch, F. v.; Jochum, J.

    2006-08-01

    At the newly installed neutron scattering facility for the calibration of Dark Matter (DM) detectors we have measured quenching factors (QFs) at room temperature in NE 213 and NaI(Tl). For proton energies Ep between 1 and 3.5 MeV we found the electron-equivalent energy Eee to obey the relation Eee=(0.23±0.03)Ep+(0.02±0.01)Ep2. The QF of the light output from Na recoils in NaI(Tl) at 850 keV was measured to be Q=0.21±0.04.

  20. First Measurement of Beam-Recoil Observables Cx and Cz

    SciTech Connect

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  1. A gun recoil system employing a magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Li, Z. C.; Wang, J.

    2012-10-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.

  2. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    NASA Astrophysics Data System (ADS)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  3. The exergy of thermal radiation and its relevance in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Wright, Sean Edward

    Driven by the importance of optimizing energy systems and technologies, the field of exergy analysis was developed to better illuminate process inefficiencies and evaluate performance. Exergy analysis provides important information and understanding that cannot be obtained from energy analysis. The field of exergy analysis is well formulated and understood except for thermal radiation (TR) heat transfer. The exergy flux, or maximum work obtainable, from TR has not been unambiguously determined. Moreover, many thermodynamic textbooks are misleading by incorrectly implying that the entropy and exergy transport with TR is calculated by using the same expressions that apply to heat conduction. Research on the exergy of TR was carried out by Petela. However, many researchers have considered Petela's analysis of the exergy of TR to be irrelevant to the conversion of TR fluxes. Petela's thermodynamic approach is considered irrelevant because, others argue, that it neglects fundamental issues that are specific to the conversion of fluxes, issues that are unusual in the context of exergy analysis. The purpose of the research in this thesis is to determine, using fundamental thermodynamic principles, the exergy flux of TR with an arbitrary spectrum and its relevance to solar radiation (SR) conversion. In this thesis it is shown that Petela's result can be used for the exergy flux of blackbody radiation (BR) and represents the upper limit to the conversion of SR approximated as BR. The thesis shows this by resolving a number of fundamental issues: (1)Inherent Irreversibility; (2)Definition of the Environment; (3)Inherent Emission; (4)Threshold Behaviour; (5)Effect of Concentrating TR. This thesis also provides a new expression, based on inherent irreversibility, for the exergy flux of TR with an arbitrary spectrum. Previous analysis by Karlsson assumes that reversible conversion of non-blackbody radiation (NBR) is theoretically possible, whereas this thesis presents evidence

  4. Role of the recoil ion in single-electron capture and single-ionization processes for collisions of protons with He and Ar atoms

    NASA Astrophysics Data System (ADS)

    Focke, P.; Olson, R. E.; Cariatore, N. D.; Alessi, M.; Otranto, S.

    2017-05-01

    In this work the single-electron capture and single-ionization processes are studied for proton collisions with He and Ar atoms at impact energies in the range 25-100 keV. Classical trajectory Monte Carlo simulations are benchmarked against experimental data obtained at the reaction microscope in Bariloche, Argentina, which employs the cold target recoil-ion momentum spectroscopy technique. Special emphasis is placed on describing the momentum transfer to the recoil ion for these collision systems.

  5. Difference between a Photon's Momentum and an Atom's Recoil

    SciTech Connect

    Gibble, Kurt

    2006-08-18

    When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom's recoil is less than ({Dirac_h}/2{pi})k in the propagation direction. We show that the recoils in the transverse directions produce a lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive recoil shift for the transverse wave vector of the photons.

  6. The Hubble diagram for a system within dark energy: influence of some relevant quantities

    NASA Astrophysics Data System (ADS)

    Saarinen, J.; Teerikorpi, P.

    2014-08-01

    Aims: We study the influence of relevant quantities, including the density of dark energy (DE), to the predicted Hubble outflow around a system of galaxies. In particular, we are interested in the difference between two models: 1) the standard ΛCDM model, with the everywhere constant DE density, and 2) the "Swiss cheese model", where the Universe is as old as the standard model and the DE density is zero on short scales, including the environment of the system. Methods: We calculated the current predicted outflow patterns of dwarf galaxies around the Local Group-like system, using different values for the mass of the group, the local DE density, and the time of ejection of the dwarf galaxies, which are treated as test particles. These results are compared with the observed Hubble flow around the Local Group. Results: The predicted distance-velocity relations around galaxy groups are not very sensitive indicators of the DE density, owing to the observational scatter and the uncertainties caused by the mass used for the group and a range in the ejection times. In general, the Local Group outflow data agree with the local DE density being equal to the global one, if the Local Group mass is about 4 × 1012 M⊙; a lower mass ≲ 2 × 1012 M⊙ could suggest a zero local DE density. The dependence of the inferred DE density on the mass is a handicap in this and other common dynamical methods. This emphasizes the need to use different approaches together, for constraining the local DE density.

  7. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    NASA Astrophysics Data System (ADS)

    Kozlovski, V. V.; Lebedev, A. A.; Emtsev, V. V.; Oganesyan, G. A.

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6-9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the ;source; of silicon ions generating these ions uniformly across the sample thickness.

  8. Nitrogen depth profiling using recoil-nucleus time-of-flight spectrometry

    SciTech Connect

    Welsh, J.F. Jr.; Schweikert, E.A.

    1994-12-31

    Neutron depth profiling (NDP) has been shown to be an effective research tool for the profiling of light elements. Significant increases in sensitivity like those realized at the cold neutron NDP facility at the National Institute of Standards and Technology (NIST) reactor continue to advance the technique. Previous work has also shown that the depth resolution of NDP could be improved by measuring (via time of flight) the kinetic energies of recoil nuclei emitted during (n,p) and (n, {alpha}) reactions. The purpose of this work was to extend the technique of recoil-nucleus time-of-flight (TOF) NDP (RN-TOF-NDP) to the profiling of nitrogen in silicon nitride using the {sup 14}N(n,p) {sup 14}C reaction.

  9. A Recoil-Beta Tagging Study of N = Z nucleus {sup 66}As

    SciTech Connect

    Ruotsalainen, P.; Scholey, C.; Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nieminen, P.; Nyman, M.; Peura, P.; Rahkila, P.; Saren, J.; Sorri, J.; Uusitalo, J.; Wadsworth, R.; Jenkins, D. G.; Singh, B. S. Nara; Brock, T. S.

    2011-10-28

    A Recoil-Beta Tagging (RBT) experiment was recently performed at the accelerator laboratory at the University of Jyvaeskylae in order to identify T = 1 excited states in the medium-heavy N = Z = 33 nucleus {sup 66}As. The fusion-evaporation reaction {sup 28}Si({sup 40}Ca,pn){sup 66}As was employed at a beam energy of 75 MeV. The experiment was carried out utilising the JUROGAM II {gamma}-ray spectrometer in conjunction with the gas-filled recoil separator RITU and the GREAT focal plane spectrometer system. The half-lives and ordering of the two known isomeric states in {sup 66}As have been determined. In addition, several new prompt {gamma}-ray transitions from excited states both bypassing and decaying to the isomeric states in {sup 66}As have been observed.

  10. A focal-plane detector for the recoil-mass spectrometer of LNL

    NASA Astrophysics Data System (ADS)

    Guerrieri, A.; Maron, G.; Montagnoli, G.; Napoli, D. R.; Prete, G.

    1990-12-01

    A focal-plane detector for a recoil-mass spectrometer has been developed. It consists of a 14 × 14 cm 2 position-sensitive parallel-plate avalanche counter backed by a 43 cm long Bragg chamber. Both detectors work in the same gas volume thus reducing the dead layers. The intrinsic resolution of the position detector is ±0.5 mm, and an overall timing resolution of 660 ps FWHM was measured with 5.5 MeV α-particles. The Bragg chamber allows the identification of elements with energy high enough to overcome the Bragg peak: in all cases it allows the separation between the reaction channels and the beam scattering. The detector has already been used with a good reliability in a variety of transfer and fusion experiments at the LNL Recoil Mass Spectrometer.

  11. Exerpts from the history of alpha recoils.

    PubMed

    Samuelsson, Christer

    2011-05-01

    Any confined air volume holding radon ((222)Rn) gas bears a memory of past radon concentrations due to (210)Pb (T(1/2) = 22 y) and its progenies entrapped in all solid objects in the volume. The efforts of quantifying past radon exposures by means of the left-behind long-lived radon progenies started in 1987 with this author's unsuccessful trials of removing (214)Po from radon exposed glass objects. In this contribution the history and different techniques of assessing radon exposure to man in retrospect will be overviewed. The main focus will be on the implantation of alpha recoils into glass surfaces, but also potential traps in radon dwellings will be discussed. It is concluded that for a successful retrospective application, three crucial imperatives must be met, i.e. firstly, the object must persistently store a certain fraction of the created (210)Pb atoms, secondly, be resistant over decades towards disturbances from the outside and thirdly, all (210)Pb atoms analysed must originate from airborne radon only. For large-scale radon epidemiological studies, non-destructive and inexpensive measurement techniques are essential. Large-scale studies cannot be based on objects rarely found in dwellings or not available for measurements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  13. An Experimental Study of Electromagnetic Lorentz Force and Rail Recoil

    DTIC Science & Technology

    2009-12-01

    MOTIVATION For over 200 years, electromagnetic forces have been extensively researched. During 1802 , Gian Domenico Romagnosi noticed that a magnetic...C. Woods, “Comment: Origin, location, magnitude and consequences of recoil in the plasma armature railgun,” Inst. Elect. Eng. Proc. Sci. Meas...22, pp. 849-850, 1989. [26] A. E. Witalis, “Origin, location, magnitude and consequences of recoil in the plasma armature railgun,” Inst. Elect

  14. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  15. In situ and ex situ studies of materials with relevance to electrochemical energy storage and energy generation

    NASA Astrophysics Data System (ADS)

    Luo, Yu

    Surface analytical techniques have been employed for the preparation and characterization of modified surfaces of relevance to electrochemical energy storage and generation in ultrahigh vacuum environments. Complementary in situ spectroscopic studies were also performed using Raman microscopy for monitoring static and dynamic aspects of Li intercalation and deintercalation into transition metal oxides and graphitic materials. The most important conclusions emerging from this investigation can be summarized as follows: (i) Ruthenium-modified Pt(100) surfaces of very high purity and controlled stoichiometry were prepared in ultrahigh vacuum (UHV) by irradiating Ru3(CO)12 films condensed on cold Pt substrates at 150 K with X-rays, and subsequent annealing at ca. 620 K. Exposure of non-annealed Ru(thetaRu ≥0.22)/Pt(100) to large exposures of CO at ca. 200 K, yielded smaller theta CO, and temperature programmed desorption peaks ca. 50 K lower than those observed for bare Pt(100). (ii) Raman spectra of isolated single particles of technical grade LiMn2O4 embedded in Au foils were recorded in situ in 1M LiPF6 in EC/DMC solutions in real time during a voltammetric scan using a Raman microscope. Similar experiments involving single KS-44 carbon particles (8--50 mum in diameter) embedded into thermally annealed Ni foils in 1M LiClO4, ethylene carbonate (EC) diethyl carbonate (DEC) solutions allowed the average concentration of Li+ within the volume of the particle probed by the laser beam following application of a potential step to be monitored spectroscopically in real time. Analysis of these transient data yielded deintercalation time constants for Li+ for dilute stage 1 phase consistent with reported values of Li+ diffusion coefficients within graphitic materials. A new Raman band ascribed to bounding graphite layers was found upon continuous cycling of single KS-44 particles deep into the Li+-intercalation region. This feature was attributed to chemical modifications

  16. Electron-recoil ion and recoil ion-projectile coincidence techniques applied to obtain absolute partial collision cross sections.

    PubMed

    Wolff, W; de Souza, Ihani J; Tavares, André C; de Oliveira, G F S; Luna, H

    2012-12-01

    We present in detail an alternative experimental set-up and data analysis, based on the electron-recoil ion and recoil ion-projectile coincidence techniques, that enable the measurement of partial pure ionization and partial charge exchange cross sections for an effusive gas jet set-up, where the absolute target density and recoil ion efficiency cannot be measured directly. The method is applied to the ionization of helium atoms due to collision with partially stripped C(3 +) projectiles. In order to check the method, the results are compared to data available in the literature where the target density and recoil ion detection efficiency were measured directly. The pure ionization channel is compared to the electron capture channel.

  17. Measurement of the ionization yield of nuclear recoils in liquid argon at 80 and 233 keV

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Grishnyaev, E.; Polosatkin, S.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2014-10-01

    The energy calibration of nuclear recoil detectors is of primary importance to rare-event experiments such as those of direct dark matter search and coherent neutrino-nucleus scattering. In particular, such a calibration is performed by measuring the ionization yield of nuclear recoils in liquid Ar and Xe detection media, using neutron elastic scattering off nuclei. In the present work, the ionization yield for nuclear recoils in liquid Ar has for the first time been measured in the higher energy range, at 80 and 233 keV, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The ionization yield in liquid Ar at an electric field of 2.3 kV/cm amounted to 7.8+/-1.1 and 9.7+/-1.3 \\text{e}^-/\\text{keV} at 80 and 233 keV, respectively. The Jaffe model for nuclear recoil-induced ionization, in contrast to that of Thomas-Imel, can probably consistently describe the energy dependence of the ionization yield.

  18. Assessing Secondary School Students' Understanding of the Relevance of Energy in Their Daily Lives

    ERIC Educational Resources Information Center

    Lay, Yoon-Fah; Khoo, Chwee-Hoon; Treagust, David F.; Chandrasegaran, A. L.

    2013-01-01

    The purpose of this study was to investigate the levels of energy literacy among 276 Form 2 (Grade 8) Malaysian students as no similar study has been previously conducted in the country, as well as the contribution of students' energy-related knowledge and attitudes on their energy-related behaviors. This was a non-experimental quantitative…

  19. Moving towards first science with the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  20. Sub-recoil Cooling with Velocity-Selective Resonances

    NASA Astrophysics Data System (ADS)

    Bellanca, M. J.; Liu, L.; Cashen, M.; Metcalf, H.

    2000-04-01

    We have observed atomic velocity distributions with rms widths below the recoil velocity vr ≡ hbar k/M. This was done using velocity selective resonances(S-Q. Shang et al., Phys. Rev. Lett. 65), 317 (1990) (vsr) on both J = 1 arrow 1 and J = 1 arrow 2 transitions of metastable He at λ = 1.083 μm. They are produced by laser cooling in a magnetic field B, and are centered at a velocity v_vsr=μB g B /hbar k instead of v=0, where v_vsr is typically several times larger than v_r. Such narrow widths cannot derive from any optical cooling process(H. Metcalf and P. van der Straten, \\underlineLaser Cooling and Trapping), Springer, 1999 and therefore must arise another way. We attribute them to population of a quasi-dark state that is related to VSCPT. A classical model of this phenomenon is associated with Larmor precession that is both velocity-matched to the Doppler shifted laser light and phase-matched to atomic precession in the B-field and the optical standing wave. A quantum mechanical description in terms of the eigenstates of the full Hamiltonian, including the kinetic energy, will be given. Numerical calculations, the quantum mechanical dark state model, and the measurements are all self-consistent.

  1. Sub-recoil Cooling with Velocity-Selective Resonances

    NASA Astrophysics Data System (ADS)

    Liu, L.; Bellanca, M. J.; Cashen, M.; Metcalf, H.

    2000-06-01

    We have observed atomic velocity distributions with rms widths below the recoil velocity vr ≡ hbar k/M. This was done using velocity selective resonances(S-Q. Shang et al., Phys. Rev. Lett. 65), 317 (1990) (vsr) on both J = 1 arrow 1 and J = 1 arrow 2 transitions of metastable He at λ = 1.083 μm. The vsr are produced by laser cooling in a magnetic field B, and are centered at a velocity v_vsr=μB g B /hbar k instead of v=0, where v_vsr is typically several times larger than v_r. Such narrow widths cannot derive from any optical cooling process(H. Metcalf and P. van der Straten, \\underlineLaser Cooling and Trapping), Springer, 1999 and therefore must arise another way. We attribute them to population of a family of quasi-dark states that are each related to VSCPT states. A quantum mechanical description in terms of the eigenstates of the full Hamiltonian, including the kinetic energy, will be given. A classical model of this phenomenon is associated with Larmor precession that is both velocity-matched to the Doppler shifted laser light and phase-matched to atomic precession in the B-field and the optical standing wave. Our numerical calculations, the dark state description, and the measurements are all self-consistent.

  2. Estimtion of the Energy Release of Coal Seam Fires and its Relevance for CDM

    NASA Astrophysics Data System (ADS)

    Rueter, Horst; Meyer, Uwe; Chen-Brauchler, Dai

    2010-05-01

    Spontaneous coal seam fires contribute significant to the CO2 emissions world wide. As the coal fires are complicated regarding structure and dynamics it is not trivial to fins out how much CO2 is released by an individual fire. This value is basic also for a possible certificate trading in connection with the extinction of those fires in the context of CDM. Three basic methods were proposed to estimate the amount of CO2 emitted. 1. Direct gas measurements (direct approach) 2. Estimation of the coal burned (volume approach) 3. Energy releases (energy approach) The energy approach turned out to be the only practical solution. The energy balance of the fire is a composition of the components 1. Radiation 2. Energy release from subsurface to air 3. Energy transported by hot exhaust gases 4. Energy transported by matrix diffusion Those components are explained and a field case from a fire zone in China is presented.

  3. Measurement of the W boson mass and width using a novel recoil model

    SciTech Connect

    Wetstein, Matthew J.

    2009-01-01

    This dissertation presents a direct measurement of the W boson mass (MW) and decay width (ΓW) in 1 fb-1 of W → ev collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass MT, pT(e), and ET distributions. The width is extracted from fits to the tail of the MT distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the pT and direction of each generated W boson. We measure the the W boson mass to be MW = 80.4035 ± 0.024(stat) ± 0.039(syst) from the MT, MW = 80.4165 ± 0.027(stat) ± 0.038(syst) from the pT(e), and MW = 80.4025 ± 0.023(stat) ± 0.043(syst) from the ET distributions. ΓW is measured to be ΓW = 2.025 ± 0.038(stat) ± 0.061(syst) GeV.

  4. First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Daw, E.; Ezeribe, A. C.; Gauvreau, J.-L.; Harton, J. L.; Lafler, R.; Lee, E. R.; Loomba, D.; Lumnah, A.; Miller, E. H.; Mouton, F.; Murphy, A. StJ.; Paling, S. M.; Phan, N. S.; Robinson, M.; Sadler, S. W.; Scarff, A.; Schuckman, F. G., II; Snowden-Ifft, D. P.; Spooner, N. J. C.

    2016-10-01

    Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the readout plane is determined by the measurement of minority carriers produced by adding a small amount of oxygen to the nominal CS2+CF4 target gas mixture. The CS2+CF4+O2 mixture has been shown to enable background-free operation at current sensitivities. Sulfur, fluorine, and carbon recoils were generated using neutrons emitted from a 252Cf source positioned at different locations around the detector. Measurement of the relative energy loss along the recoil tracks allowed the track vector sense, or the so-called head-tail asymmetry parameter, to be deduced. Results show that the previously reported observation of head-tail sensitivity in pure CS2 is well retained after the addition of oxygen to the gas mixture.

  5. Angle-energy distributions of Penning ions in crossed molecular beams. II. Effect of Penning electron recoil in Ne*(3 s sup 3 P sub 2 )+H,D r arrow Ne+H sup + ,D sup + + e sup minus

    SciTech Connect

    Khan, A.; Siddiqui, H.R.; Siska, P.E. )

    1991-09-01

    Relative doubly differential cross sections for Penning ionization in the title systems are reported at a mean collision energy of 10.4 kcal/mol in a crossed supersonic beams experiment. As in paper I of this series on He*(2{sup 1}{ital S})+H,D, the H{sup +},D{sup +} products are scattered sharply forward with respect to the incident H,D in the center-of-mass frame, but with the release of an additional 30 kcal/mol into translational energy at the peak of the distribution. Unlike the results of paper I, we find that a single optical potential, corresponding to an autoionizing state of NeH of assumed {sup 2}{Sigma}{sup +} symmetry, consistently represents the main features of both previously reported low-energy Penning ionization electron spectroscopy (PIES) data and the present results. Agreement between theory and experiment in the angular distributions is improved by including coupling between the angular momenta of the Penning electron and the atoms after ionization. The resonance width for PI is found to be nonexponential, showing a saturation'' effect at small distance. This is interpreted in terms of the ionic (charge transfer) character of the bonding in NeH*.

  6. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we

  7. Cars and Kinetic Energy--Some Simple Physics with Real-World Relevance

    ERIC Educational Resources Information Center

    Parthasarathy, Raghuveer

    2012-01-01

    Understanding energy usage is crucial to understanding modern civilization, as well as many of the challenges it faces. Energy-related issues also offer real-world examples of important physical concepts, and as such have been the focus of several articles in "The Physics Teacher" in the past few decades (e.g., Refs. 1-5, noted further below).…

  8. Cars and Kinetic Energy--Some Simple Physics with Real-World Relevance

    ERIC Educational Resources Information Center

    Parthasarathy, Raghuveer

    2012-01-01

    Understanding energy usage is crucial to understanding modern civilization, as well as many of the challenges it faces. Energy-related issues also offer real-world examples of important physical concepts, and as such have been the focus of several articles in "The Physics Teacher" in the past few decades (e.g., Refs. 1-5, noted further below).…

  9. Energy issues relevant to domed cities. Winooski, Vermont: A case study

    NASA Astrophysics Data System (ADS)

    Gant, R. E.

    1980-09-01

    Enclosing all or a significant portion of a small urban community within a large secondary building envelope (dome) was examined as a potential alternative energy strategy. The concept of secondary envelopes as a community level energy strategy is discussed. Five alternative energy strategies are presented which might be less costly and technically complex than an urban envelope. The alternatives focused upon local options and resources to affect reductions in total energy consumption and scarce fuels. Insulation and use of efficient appliances, hydroelectric development, installation of cogeneration/district heating systems, use of solar technologies, and combinations of technologies are discussed. The alternatives represent examples of the opportunities available to local governments to exercise a degree of control over the community's energy future.

  10. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics.

    PubMed

    Manohara, S R; Hanagodimath, S M; Gerward, L

    2011-11-15

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Z(eff). These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues. With the proper knowledge of buildup factors of human organs and tissues, energy absorption in the human body can be carefully controlled. The present results will help in estimating safe dose levels for radiotherapy patients and also useful in diagnostics and dosimetry. The tissue-equivalent materials for skeletal muscle, adipose tissue, cortical bone, and lung tissue are also discussed. It is observed that water and MS20 are good tissue equivalent materials for skeletal muscle in the extended energy range.

  11. Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis

    SciTech Connect

    Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane; Muehleisen, Ralph T.; Guzowski, Leah

    2015-05-01

    The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustrates both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.

  12. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  13. A theoretical analysis of reflection of X-rays from water at energies relevant for diagnostics

    SciTech Connect

    Arsenovic, Dusan; Davidovic, Dragomir M.; Vukanic, Jovan

    2003-01-24

    The reflection of X-rays from a semi-infinite water target, for energies used in X-ray diagnostics, is treated by the analog Monte Carlo simulation. In the developed procedure it was possible to calculate separately contributions of photons scattered, before reflection, fixed number of times with target electrons. It turned out that multiple collision type of reflection dominates at all energies investigated, whenever the absorption is small. The same process was also treated analytically as the classical albedo problem for isotropic scattering without energy loss. Very good agreement of results of the two approaches is obtained.

  14. Low-energy nitrogen-ion implantation: relevance to reactive compound sputtering

    SciTech Connect

    Springer, R.W.; Hosford, C.D.; Rachocki, K.D.

    1982-01-01

    Reactive sputtering is a tool widely used to produce compound coatings. The details of the target physics and compound formation are not well understood. Among several factors, the low-energy ion-implant range in a target could well affect the stoichiometry of the resultant film. Thin films of aluminum, chromium, and tantalum were bombarded with low-energy nitrogen (approx. .5 - approx. .5 keV) and the subsequent implant profiles analyzed. Low-energy-argon depth profiling combined with Auger Electron Spectroscopy was employed to obtain the profiles. The profiles are compared with the computed range distribution obtained from low-energy LSS theory. The agreement between the computed and measured distributions is very good. Comparisons between sputtered-film stoichiometry and range profiles are made.

  15. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  16. Relevance of the second law of thermodynamics to energy conservation, volume 2

    NASA Astrophysics Data System (ADS)

    1980-01-01

    The 2nd law of thermodynamics (and the entropy concept) distinguishes a grade or quality of the energy being considered as well as quantity. From this distinction flow two important considerations: the losses at each point in a system can be assessed and measured in units that are directly proportional to input or purchased fuel energy; and the minimum energy required to perform a given function or process is ascertainable as well as the maximum energy available from a given source. The explicit use of 2nd law concepts is examined for: (1) energy monitoring; (2) process and system design and modification; (3) component design and modification. The use of the law in evaluating industrial processes, transportation systems, energy conversion systems, and HVAC systems is discussed as well as the design of heat exchangers, petroleum heaters, multieffect evaporators, and distillation equipment. Particular emphasis is given to the Kraft process, production of ethylene, the manufacture of Portland cement, the melting and casting of aluminum, and the determining of automobile efficiency.

  17. A new setup for elastic recoil analysis using ion induced electron emission for particle identification

    NASA Astrophysics Data System (ADS)

    Steinbauer, E.; Benka, O.; Steinbatz, M.

    1998-03-01

    We describe a new setup for elastic recoil detection analysis (ERDA) using our recently developed particle identification method. Before the ions and elastic recoil atoms from the target reach a silicon surface barrier detector for energy analysis, they penetrate a set of thin foils (e.g. carbon). The ion induced electron emission yield from the foils depends on the nuclear charge of the penetrating ion and it is roughly proportional to the energy loss in the foil. The emitted electrons are accelerated towards a microchannel plate (MCP), which gives a signal amplitude proportional to the number of emitted electrons. This signal is measured in coincidence with the energy signal from the surface barrier detector using our dual-parameter multichannel analyzer system M2D. Since the energy resolution is not measurably deteriorated by the particle identification our setup offers optimum depth resolution for light elements. Due to the compact design large solid angles for high sensitivity can be achieved. A new measuring chamber has been built which offers considerable improvements. The ERDA scattering angle (30° or 45°) and the target orientation can be selected for optimum depth resolution or sensitivity. Element separation for light elements has been enhanced by several improvements: A new geometry of the foil setup improves the collection efficiency for ion induced electrons onto the MCP, coating of the carbon foils with insulators enhances the electron emission yield. Finally, a new data evaluation procedure has been developed in which the pulse height spectrum of the MCP is considered to be a linear combination of individual spectra from the incident ion and of the recoil atoms. The normalized shapes of these spectra are taken from calibration measurements, the intensities are then calculated using a linear fitting algorithm and finally give the depth profiles of the elements in the target. For hydrogen in near surface layers even isotopic separation is possible

  18. Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy

    SciTech Connect

    Adolfsson, Emelie; Alm Carlsson, Gudrun; Grindborg, Jan-Erik; Gustafsson, Haakan; Lund, Eva; Carlsson Tedgren, Aasa

    2010-09-15

    Purpose: To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at {sup 60}Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions. Methods: Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in {sup 137}Cs and {sup 60}Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for {sup 60}Co was determined for each beam quality. Results: Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages {<=}180 kV. No significant reduction in the relative response was seen for {sup 137}Cs and 250 kV x rays. Conclusions: When calibrated in {sup 60}Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy

  19. Recoil-Sensitive Lithium Interferometer without a Subrecoil Sample.

    PubMed

    Cassella, Kayleigh; Copenhaver, Eric; Estey, Brian; Feng, Yanying; Lai, Chen; Müller, Holger

    2017-06-09

    We report simultaneous conjugate Ramsey-Bordé interferometers with a sample of low-mass (lithium-7) atoms at 50 times the recoil temperature. We optically pump the atoms to a magnetically insensitive state using the 2S_{1/2}-2P_{1/2} line. Fast stimulated Raman beam splitters address a broad velocity class and unavoidably drive two conjugate interferometers that overlap spatially. We show that detecting the summed interference signals of both interferometers, using state labeling, allows recoil measurements and suppression of phase noise from vibrations. The use of "warm" atoms allows for simple, efficient, and high-flux atom sources and broadens the applicability of recoil-sensitive interferometry to particles that remain difficult to trap and cool.

  20. Recoil-Sensitive Lithium Interferometer without a Subrecoil Sample

    NASA Astrophysics Data System (ADS)

    Cassella, Kayleigh; Copenhaver, Eric; Estey, Brian; Feng, Yanying; Lai, Chen; Müller, Holger

    2017-06-01

    We report simultaneous conjugate Ramsey-Bordé interferometers with a sample of low-mass (lithium-7) atoms at 50 times the recoil temperature. We optically pump the atoms to a magnetically insensitive state using the 2 S1 /2-2 P1 /2 line. Fast stimulated Raman beam splitters address a broad velocity class and unavoidably drive two conjugate interferometers that overlap spatially. We show that detecting the summed interference signals of both interferometers, using state labeling, allows recoil measurements and suppression of phase noise from vibrations. The use of "warm" atoms allows for simple, efficient, and high-flux atom sources and broadens the applicability of recoil-sensitive interferometry to particles that remain difficult to trap and cool.

  1. Low momentum recoil detectors in CLAS12 at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Charles, Gabriel; CLAS Collaboration Collaboration

    2017-01-01

    Part of the experimental program in Hall B of the Jefferson Lab is dedicated to studying nucleon structure using DIS on nuclei and detecting low-momentum recoil particles in coincidence with the scattered electron. For this purpose, specially designed central detectors are required in place of the inner tracker of CLAS12 to detect particles with momenta below 100 MeV/c. We will present the status of the BONuS12 RTPC detector that will take data within the next 2 years. We will detail the main improvements made from the previous BONuS RTPC. In a second part, we will discuss another recoil experiment, called ALERT, that has been proposed to run in Hall B. The constraints being different, the recoil detector is based on a drift chamber and an array of scintillators. We will present the main differences between the two detectors and summarize the R&D performed to develop the ALERT detector.

  2. Computing at the Dubna gas-filled recoil separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yuri S.; Polyakov, Alexandr N.

    2006-03-01

    Simulation codes for the spectra of heavy implanted nuclei, applications for online data visualization and real time PC-based algorithms are considered. Special attention is paid to the application of real time techniques for radical suppression of background products in heavy-ion-induced nuclear reactions at the U-400 cyclotron of the Flerov Laboratory of Nuclear Reactions. The detection system of the Dubna gas-filled recoil separator (DGFRS) is also briefly described. Calculated heavy recoil spectra are compared with those measured in heavy-ion-induced nuclear reactions.

  3. Relevance of behavioral and social models to the study of consumer energy decision making and behavior

    SciTech Connect

    Burns, B.A.

    1980-11-01

    This report reviews social and behavioral science models and techniques for their possible use in understanding and predicting consumer energy decision making and behaviors. A number of models and techniques have been developed that address different aspects of the decision process, use different theoretical bases and approaches, and have been aimed at different audiences. Three major areas of discussion were selected: (1) models of adaptation to social change, (2) decision making and choice, and (3) diffusion of innovation. Within these three areas, the contributions of psychologists, sociologists, economists, marketing researchers, and others were reviewed. Five primary components of the models were identified and compared. The components are: (1) situational characteristics, (2) product characteristics, (3) individual characteristics, (4) social influences, and (5) the interaction or decision rules. The explicit use of behavioral and social science models in energy decision-making and behavior studies has been limited. Examples are given of a small number of energy studies which applied and tested existing models in studying the adoption of energy conservation behaviors and technologies, and solar technology.

  4. Mass discrimination in elastic recoil detection analysis and its application to Al2O3 on MoS2

    NASA Astrophysics Data System (ADS)

    Laricchiuta, G.; Vandervorst, W.; Meersschaut, J.

    2017-09-01

    A time of flight-energy (TOF-E) telescope is often used to detect the scattered and recoiled atoms in elastic recoil detection analysis. The experimental two-dimensional TOF-E histogram may be numerically transformed into a time of flight-mass (TOF-M) histogram. The limited mass resolution in the TOF-M histogram, which results from the limited energy resolution of the energy detector, makes it sometimes difficult to discriminate elements with a small difference in atomic mass. We describe a mass discrimination procedure to numerically discriminate the elements in the TOF-M histogram. The procedure is illustrated on a sample consisting of an Al and a Si layer deposited on a MgO substrate. Besides, we apply the procedure to discriminate Al and Si in a sample consisting of Al2O3 deposited on MoS2/SiO2/Si.

  5. Order-of-Magnitude Estimate of Fast Neutron Recoil Rates in Proposed Neutrino Detector at SNS

    SciTech Connect

    Iverson, Erik B.

    2006-02-01

    Yuri Efremenko (UT-K) and Kate Scholberg (Duke) indicated, during discussions on 12 January 2006 with the SNS Neutronics Team, interest in a new type of neutrino detector to be placed within the proposed neutrino bunker at SNS, near beam-line 18, against the RTBT. The successful operation of this detector and its associated experiments would require fast-neutron recoil rates of approximately one event per day of operation or less. To this end, the author has attempted the following order-of-magnitude estimate of this recoil rate in order to judge whether or not a full calculation effort is needed or justified. For the purposes of this estimate, the author considers a one-dimensional slab geometry, in which fast and high-energy neutrons making up the general background in the target building are incident upon one side of an irbon slab. This iron slab represents the neutrino bunker walls. If we assume that a significant fraction of the dose rate throughout the target building is due to fast or high-energy neutrons, we can estimate the flux of such neutrons based upon existing shielding calculations performed for radiation protection purposes. In general, the dose rates within the target building are controlled to be less than 0.25 mrem per hour. A variety of calculations have indicated that these dose rates have significant fast and high-energy neutron components. Thus they can estimate the fast neutron flux incident on the neutrino bunker, and thereby the fast neutron flux inside that bunker. Finally, they can estimate the neutron recoil rate within a nominal detector volume. Such an estimate is outlined in Table 1.

  6. Some Simple Arguments about Cost Externalization and its Relevance to the Price of Fusion Energy

    SciTech Connect

    Budny, R.; Winfree, R.

    1999-09-27

    The primary goal of fusion energy research is to develop a source of energy that is less harmful to the environment than are the present sources. A concern often expressed by critics of fusion research is that fusion energy will never be economically competitive with fossil fuels, which in 1997 provided 75% of the world's energy. And in fact, studies of projected fusion electricity generation generally project fusion costs to be higher than those of conventional methods. Yet it is widely agreed that the environmental costs of fossil fuel use are high. Because these costs aren't included in the market price, and furthermore because many governments subsidize fossil fuel production, fossil fuels seem less expensive than they really are. Here we review some simple arguments about cost externalization which provide a useful background for discussion of energy prices. The collectively self-destructive behavior that is the root of many environmental problems, including fossil fuel use, was termed ''the tragedy of the commons'' by the biologist G. Hardin. Hardin's metaphor is that of a grazing commons that is open to all. Each herdsman, in deciding whether to add a cow to his herd, compares the benefit of doing so, which accrues to him alone, to the cost, which is shared by all the herdsmen using the commons, and therefore adds his cow. In this way individually rational behavior leads to the collective destruction of the shared resource. As Hardin pointed out, pollution is one kind of tragedy of the commons. CO{sub 2} emissions and global warming are in this sense classic tragedies.

  7. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    SciTech Connect

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J. C.; Boehm, R.; Distler, M. O.; Doria, L.; Friedrich, J.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanchez Majos, S.; Schlimme, B. S.; Tiator, L.; Walcher, Th.; Weinriefer, M.; Bosnar, D.; Makek, M.; Cheymol, B.; Fonvieille, H.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  8. Cars and Kinetic Energy -- Some Simple Physics with Real-World Relevance

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Understanding energy usage is crucial to understanding modern civilization, as well as many of the challenges it faces. Energy-related issues also offer real-world examples of important physical concepts, and as such have been the focus of several articles in The Physics Teacher in the past few decades (e.g., Refs. 1-5, noted further below). Here, I illustrate how a basic understanding of kinetic energy—a topic encountered early in any introductory physics course—enables significant insights into the nature of automobile transportation. Specifically, we can accurately predict how much power the average driver in the United States uses, and explain what determines this, without needing to consider any aspects of mechanical engineering or engine design.

  9. Underground Cross Section Measurements of Stellar Reactions at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Formicola, A.; Gugliemetti, A.

    Accurate knowledge of thermonuclear reaction rates is important to understand the generation of energy, the luminosity of neutrinos, and the synthesis of elements in stars and in the primordial nucleosynthesis. An innovative experimental approach for the study of nuclear fusion reactions based on an accelerator installed in a low background underground laboratory (the LUNA experiment at the Gran Sasso Laboratory) was able to give breaktrough results in this field over the last 25 years. By going underground and by using the typical techniques of low background physics, it is possible to measure nuclear cross sections down to the energy of stellar interest. In this proceeding, the experimental techniques adopted in underground nuclear astrophysics and an overwiev of present and proposed future facilities and of their major scientific drivers are reported.

  10. Recoil effects of a motional scatterer on single-photon scattering in one dimension

    PubMed Central

    Li, Qiong; Xu, D. Z.; Cai, C. Y.; Sun, C. P.

    2013-01-01

    The scattering of a single photon with sufficiently high energy can cause a recoil of a motional scatterer. We study its backaction on the photon's coherent transport in one dimension by modeling the motional scatterer as a two-level system, which is trapped in a harmonic potential. While the reflection spectrum is of a single peak in the Lamb-Dicke limit, multi-peaks due to phonon excitations can be observed in the reflection spectrum as the trap becomes looser or the mass of the two-level system becomes smaller. PMID:24220217

  11. Lifetime measurement of the 41+ state of 58Ni with the recoil distance method

    NASA Astrophysics Data System (ADS)

    Loelius, C.; Iwasaki, H.; Brown, B. A.; Honma, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Braunroth, T.; Campbell, C. M.; Dewald, A.; Gade, A.; Kobayashi, N.; Langer, C.; Lee, I. Y.; Lemasson, A.; Lunderberg, E.; Morse, C.; Recchia, F.; Smalley, D.; Stroberg, S. R.; Wadsworth, R.; Walz, C.; Weisshaar, D.; Westerberg, A.; Whitmore, K.; Wimmer, K.

    2016-08-01

    The quadrupole transition rate for the 41+→21+ transition of 58Ni was determined from an application of the recoil distance method with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA). The present result of the B (E 2 ;41+→21+) was found to be 50-6+11e2fm4 , which is about three times smaller than the literature value, indicating substantially less collectivity than previously believed. Shell model calculations performed with the GXPF1A effective interaction agree with the present data and the validity of the standard effective charges in understanding collectivity in the nickel isotopes is discussed.

  12. Recoiled ions from polyatomic cluster impacts on organic and inorganic targets

    NASA Astrophysics Data System (ADS)

    Diehnelt, C. W.; Van Stipdonk, M. J.; Schweikert, E. A.

    1998-08-01

    We report the observation of a polyatomic cluster constituent, fluorine in this case, recoiling from the projectile upon impact with a surface. The clusters (NaF) nNa + ( n=1, 2, and 4), PF 6-, BF 4-, and SiF 5-, with incident kinetic energies of 12-28 keV, were impacted on Au, SiO 2, and α-cyano-4-hydroxycinnamic acid targets. The Au surface gave the highest F - yield when compared to the "light" SiO 2 surface, for the same incident cluster. This supports previous MD predications of polyatomic cluster constituents "splashing" upon impact with a surface.

  13. Warm target recoil ion momentum spectroscopy for fragmentation of molecular hydrogen by ultrashort laser pulses.

    PubMed

    Liu, Jia; Wu, Jian; Czasch, Achim; Zeng, Heping

    2009-07-20

    We demonstrate warm target recoil ion momentum spectroscopy for the fragmentation dynamics of the warm hydrogen molecules at room temperature. The thermal movement effect of the warm molecule is removed by using a correction algorithm in the momentum space. Based on the reconstructed three-dimensional momentum vectors as well as the kinetic energy release spectra, different vibrational states of the H(2)(+) ground state are clearly visible and the internuclear separation for charge resonance enhanced ionization of the second electron is identified. The results show adequate accordance with the former experiments using other techniques.

  14. Theory and High-Energy-Density Laser Experiments Relevant to Accretion Processes in Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R.; Loupias, B.; Falize, E.; Busschaert, C.; Ravasio, A.; Yurchak, R.; Pelka, A.; Koenig, M.; Kuranz, C. C.; Plewa, T.; Huntington, C. M.; Kaczala, D. N.; Klein, S.; Sweeney, R.; Villete, B.; Young, R.; Keiter, P. A.

    2012-05-01

    We present results from high-energy-density (HED) laboratory experiments that explore the contribution of radiative shock waves to the evolving dynamics of the cataclysmic variable (CV) systems in which they reside. CVs can be classified under two main categories, non-magnetic and magnetic. In the process of accretion, both types involve strongly radiating shocks that provide the main source of radiation in the binary systems. This radiation can cause varying structure to develop depending on the optical properties of the material on either side of the shock. The ability of high-intensity lasers to create large energy densities in targets of millimeter-scale volume makes it feasible to create similar radiative shocks in the laboratory. We provide an overview of both CV systems and their connection to the designed and executed laboratory experiments preformed on two laser facilities. Available data and accompanying simulations will likewise be shown. Funded by the NNSA-DS and SC-OFES Joint Prog. in High-Energy-Density Lab. Plasmas, by the Nat. Laser User Facility Prog. in NNSA-DS and by the Predictive Sci. Acad. Alliances Prog. in NNSA-ASC, under grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  15. Measurement of the ^7Li(d,n)^8Be Reaction at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Sabourov, A.; Ahmed, M.; Crowell, A.; Howell, C.; Joshi, K.; Nelson, S.; Perdue, B.; Sabourov, K.; Tonchev, A.; Weller, H. R.; Prior, R.; Spraker, M.; Kalantar, N.

    2003-10-01

    We have measured the differential cross section and the polarization observables T_20(θ), T_21(θ), T_22(θ), and iT_11(θ) for the ^7Li(d,n)^8Be reaction at low energies. Polarized deuterons of Ed = 160 keV to 80 keV were stopped in an evaporated lithium target. Nine liquid scintillation detectors were used to detect the emitted neutrons. The present experimental results are being compared to theoretical calculations performed with the DWUCK4 (P.D. Kunz, http://spot.colorado.edu/ ˜kunz/DWBA.html) code. Due to the very low energies of the present experiment, only s- and p-waves are likely to contribute in the entrance channel, limiting the number of transition matrix elements (TMEs) contributing to the reaction. Detailed information on the amplitudes and phases of these TMEs will be obtained by performing a simultaneous fit to the cross section and polarization observables. These results should provide new insight into the dynamics of this reaction at low energies.

  16. Collisions of ions with surfaces at chemically relevant energies: Instrumentation and phenomena

    NASA Astrophysics Data System (ADS)

    Grill, Verena; Shen, Jianwei; Evans, Chris; Cooks, R. Graham

    2001-08-01

    An overview of gaseous ion/surface collisions is presented, with special emphasis on the behavior of polyatomic projectile ions at hyperthermal collision energies (1-100 eV) and the instrumentation needed for such studies. The inelastic and reactive processes occurring during ion/surface collisions are described in terms of several archetypes, viz., elastic and quasielastic scattering, chemical sputtering leading to release of surface material, inelastic scattering leading to surface-induced dissociation (SID) of the projectile, ion/surface reactions, and soft landing. Parameters that are important in ion/surface interactions are discussed, including the interaction time, the conversion of translational to internal energy, the translational energies of the scattered ions, the effects of scattering angle, and the influence of the nature of the surface. Different types of tandem mass spectrometers, built specifically to study ion/surface collision phenomena, are discussed and the advantages and disadvantages of the individual designs are compared. The role of SID as a technique in bioanalytical mass spectrometry is illustrated and this inelastic collision experiment is compared and contrasted with gas-phase collision-induced dissociation, the standard method of tandem mass spectrometry. Special emphasis is placed on reactive scattering including the use of ion/surface reactions for surface chemical analysis and for surface chemical modification.

  17. Measurement of ionization and phonon production by nuclear recoils in a 60 g crystal of germanium at 25 mK

    SciTech Connect

    Shutt, T.; Ellman, B.; Barnes, P.D. Jr.; Cummings, A.; Da Silva, A.; Emes, J.; Giraud-Heraud, Y.; Haller, E.E.; Lange, A.E.; Ross, R.R.; Rich, J.; Sadoulet, B.; Smith, G.; Stockwell, W.; Stubbs, C.; Wang, N.; White, S.; Young, B.A.; Yvon, D. Department of Physics, University of California at Berkeley, Berkeley, California 94720 Department of Material Science Mineral Engineering, University of California at Berkeley, Berkeley, California 94720 Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California, 94720 Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106 Department d'Astrophysique, de Physique des Particules, de Physique Nucleaire et de l'Instrumentation Associee-Service Physique des Particles Centre d'Etudes de Saclay, 91191 Gif-Sur-Yvette, CEDEX (

    1992-12-14

    We report on the first measurement of the absolute phonon energy and the amount of ionization produced by the recoil of nuclei and electrons in a 60 g germanium cyrstal at a temperature of [approx]25 mK. We find good agreement between our results and previous measurements of ionization yield from nuclear recoils in germanium. Our device achieves 10:1 discrimination between neutrons and photons in the few keV energy range, demonstrating the feasibility of this technique for large reductions of background in searches for direct interactions of weakly interacting massive particle dark matter.

  18. Collisions between low-energy electrons and small polyatomic targets of biological relevance

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-05-01

    Over the last decade, cross section measurements and calculations for DNA prototype molecules have received significant attention from the collisions community, due to the potential applications of this data in modelling electron transport through biological matter with a view to improving radiation dosimetry. Such data are additionally interesting from a fundamental aspect, as small carbon-based molecules are ideal targets for considering effects including target conformation, long-range dynamical interactions and coupling effects between the various degrees of freedom on the scattering properties of the target. At the California State University Fullerton, we have made a series of measurements of the elastic, vibrationally inelastic and electronically inelastic cross sections for a variety of small polyatomic targets, including water and the basic alcohols, ethylene, toluene and several fluorinated alkanes. These processes are important in a range of applications, primarily for modelling electron transport and thermalization, and energy deposition to a biological media. The data were obtained using a high resolution electron energy-loss spectrometer, operating in a crossed beam configuration with a moveable aperture gas source. The gas source design facilitates both an expedient and highly accurate method of removing background signal, and removes uncertainties from the data due to uncertainties in the beam profile. We have also performed scattering calculations employing the Schwinger Multichannel method, in collaboration with the California institute of technology, to compare with our measurements. In this talk, I will present an overview of our recent data and future research plans.

  19. Using Inertial Fusion Implosions to Measure the T+^{3}He Fusion Cross Section at Nucleosynthesis-Relevant Energies.

    PubMed

    Zylstra, A B; Herrmann, H W; Johnson, M Gatu; Kim, Y H; Frenje, J A; Hale, G; Li, C K; Rubery, M; Paris, M; Bacher, A; Brune, C R; Forrest, C; Glebov, V Yu; Janezic, R; McNabb, D; Nikroo, A; Pino, J; Sangster, T C; Séguin, F H; Seka, W; Sio, H; Stoeckl, C; Petrasso, R D

    2016-07-15

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  20. Using inertial fusion implosions to measure the T+He3 fusion cross section at nucleosynthesis-relevant energies

    DOE PAGES

    Zylstra, A. B.; Herrmann, H. W.; Johnson, M. Gatu; ...

    2016-07-11

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of 6Li in low-metallicity stars. Using high energy-density plasmas we measure the T(3He,γ)6Li reaction rate, a candidate for anomalously high 6Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. In conclusion, this is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  1. Using Inertial Fusion Implosions to Measure the T + 3He Fusion Cross Section at Nucleosynthesis-Relevant Energies

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Herrmann, H. W.; Johnson, M. Gatu; Kim, Y. H.; Frenje, J. A.; Hale, G.; Li, C. K.; Rubery, M.; Paris, M.; Bacher, A.; Brune, C. R.; Forrest, C.; Glebov, V. Yu.; Janezic, R.; McNabb, D.; Nikroo, A.; Pino, J.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Sio, H.; Stoeckl, C.; Petrasso, R. D.

    2016-07-01

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of 6Li in in low-metallicity stars. Using high-energy-density plasmas we measure the T (3He, ,γ )6Li reaction rate, a candidate for anomalously high 6Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  2. X-ray spectroscopy of a recoiling SMBH candidate

    NASA Astrophysics Data System (ADS)

    Predehl, Peter

    2008-09-01

    Recent numerical relativity simulations of coalescencing supermassive black hole (SMBH) binaries predict that SMBHs can receive kicks with velocities up to several thousand km/s due to anisotropic emission of gravitational waves. We have recently found the best candidate todate for such a recoiling SMBH (Komossa et al. 2008). We apply for a 25 ks ACIS-S exposure of this exceptional source.

  3. Elastic recoil detection (ERD) with extremely heavy ions

    NASA Astrophysics Data System (ADS)

    Forster, J. S.; Currie, P. J.; Davies, J. A.; Siegele, R.; Wallace, S. G.; Zelenitsky, D.

    1996-06-01

    Extremely heavy-ion beams such as 209Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass ≤ 100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors.

  4. Epitaxial silicide formation on recoil-implanted substrates

    SciTech Connect

    Hashimoto, Shin; Egashira, Kyoko; Tanaka, Tomoya; Etoh, Ryuji; Hata, Yoshifumi; Tung, R. T.

    2005-01-15

    An epitaxy-on-recoil-implanted-substrate (ERIS) technique is presented. A disordered surface layer, generated by forward recoil implantation of {approx}0.7-3x10{sup 15} cm{sup -2} of oxygen during Ar plasma etching of surface oxide, is shown to facilitate the subsequent epitaxial growth of {approx}25-35-nm-thick CoSi{sub 2} layers on Si(100). The dependence of the epitaxial fraction of the silicide on the recoil-implantation parameters is studied in detail. A reduction in the silicide reaction rate due to recoil-implanted oxygen is shown to be responsible for the observed epitaxial formation, similar to mechanisms previously observed for interlayer-mediated growth techniques. Oxygen is found to remain inside the fully reacted CoSi{sub 2} layer, likely in the form of oxide precipitates. The presence of these oxide precipitates, with only a minor effect on the sheet resistance of the silicide layer, has a surprisingly beneficial effect on the thermal stability of the silicide layers. The agglomeration of ERIS-grown silicide layers on polycrystalline Si is significantly suppressed, likely from a reduced diffusivity due to oxygen in the grain boundaries. The implications of the present technique for the processing of deep submicron devices are discussed.

  5. Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion

    SciTech Connect

    Michael J. Therien

    2012-06-01

    This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

  6. 23Na (α,p )26Mg Reaction Rate at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Munch, M.; Fynbo, H. O. U.; Kirsebom, O. S.; Laursen, K. L.; Diget, C. Aa.; Hubbard, N. J.

    2015-07-01

    The production of 26Al in massive stars is sensitive to the 23Na (α,p )26Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of ˜40 . We present here differential cross sections for the 23Na (α,p )26Mg reaction measured in the energy range Ec .m .=1.7 - 2.5 MeV . Concurrent measurements of Rutherford scattering provide absolute normalizations that are independent of variations in target properties. Angular distributions are measured for both p0 and p1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates by a factor of 40, impacting the 26Al yield from massive stars by more than a factor of 3.

  7. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures

    PubMed Central

    2011-01-01

    With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set. PMID:21836824

  8. Beyond H₂: exploiting 2-hydroxypyridine as a design element from [Fe]-hydrogenase for energy-relevant catalysis.

    PubMed

    Moore, Cameron M; Dahl, Eric W; Szymczak, Nathaniel K

    2015-04-01

    The unique primary and secondary coordination environments surrounding the active site of hydrogenase enzymes play a crucial role in H2 activation and transfer reactions. [Fe]-hydrogenase contains a 2-hydroxypyridine ligand motif, and many researchers have incorporated this design element into synthetic catalysts. Transition metal complexes supported by 2-hydroxypyridine scaffolds are catalysts for chemical conversion schemes relevant to alternative energy applications and, in addition to hydrogenase-type reactivity, find new uses in other chemical domains. In this review, the current status of 2-hydroxypyridine-derived catalysts is described with an emphasis on design features that lead to lower energy catalytic pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids.

    PubMed

    Lehr, C M; Bouwstra, J A; Boddé, H E; Junginger, H E

    1992-01-01

    The possible role of surface energy thermodynamics in mucoadhesion was investigated with Polycarbophil and pig intestinal mucosa. In separate experiments, the surface energy parameters of the substrate (mucosa) and the adhesive (polymer film) were determined by contact angle measurements on captive air/octane bubbles in three physiologically relevant test fluids (isotonic saline, artificial gastric fluid, and artificial intestinal fluid). Whereas the swollen Polycarbophil films were relatively hydrophilic as indicated by small water contact angles (22, 23, and 16 degrees), the water contact angles measured on mucosal tissue were significantly larger (61, 48, and 57 degrees). Hence, mucus was found to possess an appreciable hydrophobicity. The measured adhesive performance (force of detachment) between Polycarbophil and pig small intestinal mucosa was highest in nonbuffered saline medium, intermediate in gastric fluid, and minimal in intestinal fluid. In agreement with this trend, the mismatch in surface polarities between substrate and adhesive, calculated from the contact angle data, increased in the same order.

  10. Modelling magnetic reconnection events relevant for solar physics with the new Energy Conserving Moment Implicit Method

    NASA Astrophysics Data System (ADS)

    Boella, Elisabetta; Herrero-Gonzalez, Diego; Innocenti, Maria Elena; Bemporad, Alessandro; Lapenta, Giovanni

    2017-04-01

    Fully kinetic simulations of magnetic reconnection events in the solar environment are especially challenging due to the extreme range of spatial and temporal scales that characterises them. As one moves from the photosphere to the chromosphere and the corona, the temperature increases from sub eV to 10-100 eV, while the mass density decreases from 10-4 to 10-12 kg/m3 and further. The intrinsic scales of kinetic reconnection (inertial length and gyroradius) are tremendously smaller than the maximum resolution available in observations. Furthermore, no direct information is available on the size of reconnection regions, plasmoids and reconnection fronts, while observations suggest that the process can cascade down to very small scale te{Bemporad}. Resolving the electron and ion scales while simulating a sufficiently large domain is a great challenge facing solar modelling. An especially challenging aspect is the need to consider the Debye length. The very low temperature of the electrons and the large spatial and temporal scales make these simulations hard to implement within existing Particle in Cell (PIC) methods. The limit is the ratio of the grid spacing to the Debye length. PIC methods show good stability and energy conservation when the grid does not exceed the Debye length too much. Semi-implicit methods te{Brackbill, Langdon} improve on this point. Only the recently developed fully energy conserving implicit methods have solved the problem te{Markidis, Chen}, but at a high computational cost. Very recently, we have developed an efficient new semi-implicit algorithm, which has been proven to conserve energy exactly to machine precision te{Lapenta}. In this work, we illustrate the main steps that enabled this great breakthrough and report the implementation on a new massively parallel three dimensional PIC code, called ECsim te{Lapenta2}. The new approach is applied to the problem of reconnection in the solar environment. We compare results of a simple 2D

  11. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  12. Oregon OCS seafloor mapping: Selected lease blocks relevant to renewable energy

    USGS Publications Warehouse

    Cochrane, Guy R.; Hemery, Lenaïg G.; Henkel, Sarah K.

    2017-05-23

    In 2014 the U.S. Geological Survey (USGS) and the Bureau of Ocean Energy Management (BOEM) entered into Intra-agency agreement M13PG00037 to map an area of the Oregon Outer Continental Shelf (OCS) off of Coos Bay, Oregon, under consideration for development of a floating wind energy farm. The BOEM requires seafloor mapping and site characterization studies in order to evaluate the impact of seafloor and sub-seafloor conditions on the installation, operation, and structural integrity of proposed renewable energy projects, as well as to assess the potential effects of construction and operations on archaeological resources. The mission of the USGS is to provide geologic, topographic, and hydrologic information that contributes to the wise management of the Nation's natural resources and that promotes the health, safety, and well being of the people. This information consists of maps, databases, and descriptions and analyses of the water, energy, and mineral resources, land surface, underlying geologic structure, and dynamic processes of the earth.For the Oregon OCS study, the USGS acquired multibeam echo sounder and seafloor video data surrounding the proposed development site, which is 95 km2 in area and 15 miles offshore from Coos Bay. The development site had been surveyed by Solmar Hydro Inc. in 2013 under a contract with WindFloat Pacific. The USGS subsequently produced a bathymetry digital elevation model and a backscatter intensity grid that were merged with existing data collected by the contractor. The merged grids were published along with visual observations of benthic geo-habitat from the video data in an associated USGS data release (Cochrane and others, 2015).This report includes the results of analysis of the video data conducted by Oregon State University and the geo-habitat interpretation of the multibeam echo sounder (MBES) data conducted by the USGS. MBES data was published in Cochrane and others (2015). Interpretive data associated with this

  13. New Scalings of Energy Confinement Time of RFP Plasmas and the Extrapolation to Reactor Relevant Region

    NASA Astrophysics Data System (ADS)

    Miyamoto, Kenro

    Data bases of reversed field pinch (RFP) plasma have been gradually accumulated by recent experiments of several RFP devices. New confinement scalings τX(X=RFPs1)E=0.024Aa2IP/P1/2heat, τX(X=RFPs2)E=0.04s(IN)Aa2I1.25P/P1/2heat which are consistent to the recent data are presented, where units are in [s], [m], [MA] and [MW] respectively and s(IN) is a correction function of IN≡IP/πa2‹ne›20). From the standpoint of new scalings, dependences among parameters of possible RFP reactors are analyzed to find the conditions for RFP reactors. Hs1 Hs2 are defined by the ratios of necessary energy confinement time for RFP reactors for burning against τX(X=RFPs1) and τX(X=RFPs2) respectively. When confinement time follows τX(X=RFPs1)E scaling, confinement enhancement factor of at least Hs1=23 is necessary for RFP reactors to be realistic. When confinement time follows τX(X=RFPs2)E scaling, data points in IP-a space of RFP reactors are within the region of target.

  14. Nanopore Confinement of C-O-H Fluids Relevant to Subsurface Energy Systems

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2016-12-01

    Complex intermolecular interactions of C-O-H fluids (e.g., H2O, CO2, CH4) result in their unique thermophysical properties, including large deviations in the volumetric properties from ideality, vapor-liquid equilibria, and critical phenomena as these fluids encounter different pressure-temperature-pore network conditions in the crust. Development of a comprehensive understanding of the structures, dynamics, and reactivity at multiple length scales (molecular to macroscopic) over wide ranges of state conditions and composition is foundational to advances in quantifying geochemical processes involving mineral-fluid interfaces. The size, distribution and connectivity of these confined geometries dictate how fluids migrate into and through these micro- and nano-environments, wet and react with the solid. This presentation will provide an overview of the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of different mixtures of C-O-H fluids in nanpores. Key results include: (1) The addition of a second carbon-bearing phase or water has a profound effect on the competition for sorption sites, phase chemistry and the dynamical properties of all phases present in the pore. (2) Low solubility phases such as methane may exhibit profound increases in concentration in nanopores in the presence of water at elevated pressures and ambient temperature compared to bulk values. (3) Methane permeability through the hydrated pores is strongly dependent on the solid substrate and local properties of confined water, including its structure and, more importantly, evolution of solvation free energy and hydrogen bond structure. (4) Under certain conditions preferential adsorption of the fluids in the

  15. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, {delta}E{sub rr} = ({alpha}({Zeta}{alpha})/{pi}{sup 2})(m/M)E{sub F}(6{zeta}(3) + 3{pi}{sup 2} In 2 + {pi}{sup 2}/2 + 17/8), are also presented.

  16. On the Mössbauer Effect and the Rigid Recoil Question

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    2017-03-01

    The rigid recoil of a crystal is the accepted mechanism for the Mössbauer effect. It's at odds with the special theory of relativity which does not allow perfectly rigid bodies. The standard model of particle physics which includes QED should not allow any signals to be transmitted faster than the speed of light. If perturbation theory can be used, then the X-ray emitted in a Mössbauer decay must come from a single nuclear decay vertex at which the 4-momentum is exactly conserved in a Feynman diagram. Then the 4-momentum of the final state Mössbauer nucleus must be slightly off the mass shell. This off-shell behavior would be followed by subsequent diffusion of momentum throughout the crystal to bring the nucleus back onto the mass shell and the crystal to a final relaxed state in which it moves rigidly with the appropriate recoil velocity. This mechanism explains the Mössbauer effect at the microscopic level and reconciles it with relativity. Because off-mass-shell quantum mechanics is required, the on-mass-shell theories developed originally for the Mössbauer effect are inadequate. Another possibility is that that the recoil response involves a non-perturbative effect in the standard model which could allow for a non-local instantaneous momentum transfer between the crystal and the decay (or absorption), as proposed for example by Preparata and others in super-radiance theory. The recoil time of the crystal is probably not instantaneous, and if it could be measured, one could distinguish between various theories. An experiment is proposed in this paper to measure this time. The idea is to measure the total energy radiated due to bremsstrahlung from a charged Mössbauer crystal which has experienced a recoil. Using Larmor's formula, along with corrections to it, allows one to design an experiment. The favored idea is to use many small nano-spheres of Mössbauer-active metals, whose outer surfaces are charged. The energy radiated then varies as the charge

  17. Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data.

    PubMed

    Aprile, E; Aalbers, J; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arneodo, F; Barrow, P; Baudis, L; Bauermeister, B; Benabderrahmane, M L; Berger, T; Breur, P A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Calvén, J; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Diglio, S; Eurin, G; Fei, J; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Gallo Rosso, A; Galloway, M; Gao, F; Garbini, M; Geis, C; Goetzke, L W; Greene, Z; Grignon, C; Hasterok, C; Hogenbirk, E; Itay, R; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Lin, Q; Lindemann, S; Lindner, M; Lopes, J A M; Manfredini, A; Maris, I; Marrodán Undagoitia, T; Masbou, J; Massoli, F V; Masson, D; Mayani, D; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Pizzella, V; Piro, M-C; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Dos Santos, J M F; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Scotto Lavina, L; Selvi, M; Shagin, P; Silva, M; Simgen, H; Sivers, M V; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; Wang, H; Wei, Y; Weinheimer, C; Wulf, J; Ye, J; Zhang, Y

    2017-03-10

    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431_{-14}^{+16} day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9σ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8σ, from a previous analysis of a subset of this data, to 1.8σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7σ.

  18. Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-03-01

    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 43 1-14+16 day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 σ ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 σ , from a previous analysis of a subset of this data, to 1.8 σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 σ .

  19. Measurement and calculation of recoil pressure produced during CO{sub 2} laser interaction with ice

    SciTech Connect

    Semak, V.V.; Knorovsky, G.A.; Maccallum, D.O.; Noble, D.R.; Kanouff, M.P.

    1999-12-09

    Evaporation is a classical physics problem which, because of its significant importance for many engineering applications, has drawn considerable attention by previous researchers. Classical theoretical models [Ta. I. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, 1946] represent evaporation in a simplistic way as the escape of atoms with highest velocities from a potential well with the depth determined by the atomic binding energy. The processes taking place in the gas phase above the rapidly evaporating surface have also been studied in great detail [S.I.Anisimov and V. A. Khokhlov, Instabilities in Lasser-Matter Interaction, CRC Press, Boca Raton, 1995]. The description of evaporation utilizing these models is known to adequately characterize drilling with high beam intensity, e.g., >10{sup 7} W/cm{sup 2}. However, the interaction regimes when beam intensity is relatively low, such as during welding or cutting, lack both theoretical and experimental consideration of the evaporation. It was shown recently that if the evaporation is treated in accordance with Anisimov et.al.'s approach, then predicted evaporation recoil should be a substantial factor influencing melt flow and related heat transfer during laser beam welding and cutting. To verify the applicability of this model for low beam intensity interaction, the authors compared the results of measurements and calculations of recoil pressure generated during laser beam irradiation of a target. The target material used was water ice at {minus}10 C. The displacement of a target supported in a nearly frictionless air bearing under irradiation by a defocused laser beam from a 14 kW CO{sub 2} laser was recorded and Newton's laws of motion used to derive the recoil pressure.

  20. A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2017-09-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  1. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  2. Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading.

    PubMed

    Richards, Christopher T; Sawicki, Gregory S

    2012-11-21

    Frog jumps exceed muscle power limits. To achieve this, a muscle may store elastic energy in tendon before it is released rapidly, producing 'power amplification' as tendon recoil assists the muscle to accelerate the load. Do the musculoskeletal modifications conferring power amplification help or hinder frog swimming? We used a Hill-type mathematical model of a muscle-tendon (MT) with contractile element (CE) and series elastic element (SEE) properties of frogs. We varied limb masses from 0.3 to 30 g, foot-fin areas from 0.005 to 50 cm(2) and effective mechanical advantage (EMA=in-lever/out-lever) from 0.025 to 0.1. 'Optimal' conditions produced power amplification of ~19% greater than the CE limit. Yet, other conditions caused ~80% reduction of MT power (power attenuation) due to SEE recoil absorbing power from (rather than adding to) the CE. The tendency for elastic recoil to cause power amplification vs. attenuation was load dependent: low fluid drag loads, high limb mass and EMA=0.1 caused power amplification whereas high drag, low mass and low EMA (=0.025) caused attenuation. Power amplification emerged when: (1) CE shortening velocity is 1/3V(max), (2) elastic energy storage is neither too high nor too low, and (3). peak inertial-drag force ratio ≥ ~1.5. Excessive elastic energy storage delayed the timing of recoil, causing power attenuation. Thus our model predicts that for fluid loads, the benefit from a compliant tendon is modest, and when the system is 'poorly tuned' (i.e., inappropriate EMA), MT power attenuation can be severe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  4. Spallation recoil II: Xenon evidence for young SiC grains

    NASA Astrophysics Data System (ADS)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  5. Direct recoil oxygen ion fractions resulting from Ar + collisions

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Nan; Rabalais, J. Wayne

    1986-03-01

    Direct recoil of oxygen from oxidized and hydroxylated magnesium surfaces as a result of 6 keV Ar + collisions produces O -, O +, and O species. The total ion fraction at a recoil angle of 22° is ~33.5%, of which O - is 23.7% and O + is 9.8% for the oxidized surface. The O -/O + intensity ratio is extremely sensitive to the amount of hydrogen present, with the O + yield dropping to ~1% on the hydroxylated surface. These results are considered within a model for electronic transitions in ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasi-diatomic molecule of the close encounter.

  6. The new vacuum-mode recoil separator MARA at JYFL

    NASA Astrophysics Data System (ADS)

    Sarén, J.; Uusitalo, J.; Leino, M.; Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Nyman, M.; Peura, P.; Rahkila, P.; Scholey, C.; Sorri, J.

    2008-10-01

    A new vacuum-mode recoil separator MARA (Mass Analysing Recoil Apparatus) is under design and construction at the Department of Physics in the University of Jyväskylä. The separator is intended to separate reaction products from the primary beam in mass region below A = 150 . The ion-optical configuration of the separator will be QQQDEDM, where a magnetic quadrupole (Q) triplet is followed by an electrostatic deflector (DE) and a magnetic dipole (DM). The total length of MARA will be less than 7.0 m and the first order resolving power more than 250 for a beam spot size of 2 mm. In this contribution the main properties of MARA are given and results from simulations are shown.

  7. Recoil detection of the lightest neutralino in MSSM singlet extensions

    SciTech Connect

    Barger, Vernon; Lewis, Ian; McCaskey, Mat; Shaughnessy, Gabe; Yencho, Brian; Langacker, Paul

    2007-06-01

    We investigate the correlated predictions of singlet extended MSSM models for direct detection and the cosmological relic density of the lightest neutralino. To illustrate the general effects of the singlet, we take heavy sleptons and squarks. We apply CERN LEP (g-2){sub {mu}}, and perturbativity constraints. We find that the WMAP upper bound on the cold dark matter density limits much of the parameter space to regions where the lightest neutralino can be discovered in recoil experiments. The results for the next-to-minimal supersymmetric standard model and U(1){sup '}-extended minimal supersymmetric standard model are typically similar to the MSSM since their light neutralinos have similar compositions and masses. In the nearly minimal supersymmetric standard model the neutralino is often very light and its recoil detection is within the reach of the CDMS II experiment. In general, most points in the parameter spaces of the singlet models we consider are accessible to the WARP experiment.

  8. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    SciTech Connect

    Hall, G. N. Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V.; Lee, J. J.; Romano, E.

    2016-11-15

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  9. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    NASA Astrophysics Data System (ADS)

    Hall, G. N.; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Lee, J. J.; Romano, E.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V.

    2016-11-01

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40-200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  10. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt).

    PubMed

    Hilsabeck, T J; Frenje, J A; Hares, J D; Wink, C W

    2016-11-01

    A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  11. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE PAGES

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; ...

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  12. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    SciTech Connect

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  13. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    NASA Astrophysics Data System (ADS)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-11-01

    A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  14. Measurement of the Electron Recoil Band of the LUX Dark Matter Detector With a Tritium Calibration Source

    NASA Astrophysics Data System (ADS)

    Dobi, Attila

    The Large Underground Xenon (LUX) experiment has recently placed the most stringent limit for the spin-independent WIMP-nucleon scattering cross-section. The WIMP search limit was aided by an internal tritium source resulting in an unprecedented calibration and understanding of the electronic recoil background. Here we discuss corrections to the signals in LUX, the energy scale calibration and present the methodology for extracting fundamental properties of electron recoils in liquid xenon. The tritium calibration is used to measure the ionization and scintillation yield of xenon down to 1 keV, the results is compared to other experiments. Recombination probability and its fluctuation is measured from 1 to 1000 keV, using betas from tritium and Compton scatters from an external 137Cs source. Finally, the tritium source is described and the most recent results for ER discrimination in LUX is presented.

  15. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    SciTech Connect

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  16. Beam-Recoil Polarization Measurement of π0 Electroproduction on the Proton in the Region of the Roper Resonance

    NASA Astrophysics Data System (ADS)

    Štajner, S.; Achenbach, P.; Beranek, T.; Beričič, J.; Bernauer, J. C.; Bosnar, D.; Böhm, R.; Correa, L.; Denig, A.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friedrich, J. M.; Friščić, I.; Kegel, S.; Kohl, Y.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Thiel, M.; Tiator, L.; Tyukin, A.; Weber, A.; Yaron, I.; A1 Collaboration

    2017-07-01

    The helicity-dependent recoil proton polarizations Px' and Pz' as well as the helicity-independent component Py have been measured in the p (e →,e'p →)π0 reaction at four-momentum transfer Q2≃0.1 GeV2, center-of-mass proton emission angle θp*≃9 0 ° , and invariant mass W ≃1440 MeV . This first precise measurement of double-polarization observables in the energy domain of the Roper resonance P11(1440 ) by exploiting recoil polarimetry has allowed for the extraction of its scalar electroexcitation amplitude at an unprecedentedly low value of Q2, establishing a powerful instrument for probing the interplay of quark and meson degrees of freedom in the nucleon.

  17. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  18. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  19. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  20. Recoiling Supermassive Black Holes: a search in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Marconi, Alessandro; Axon, David; Capetti, Alessandro; Merritt, David; Batcheldor, Daniel

    2015-01-01

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed HST archival images of 14 nearby core ellipticals, finding evidence for small (<=10 pc) displacements between the AGN (locating the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. 2010. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few Gyr. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kpc-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  1. Recoiling Supermassive Black Holes: A Search in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Lena, D.; Robinson, A.; Marconi, A.; Axon, D. J.; Capetti, A.; Merritt, D.; Batcheldor, D.

    2014-11-01

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (lsim 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  2. New Improved Indirect Measurement of the 19F(p, α)16O Reaction at Energies of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Indelicato, I.; La Cognata, M.; Spitaleri, C.; Burjan, V.; Cherubini, S.; Gulino, M.; Hayakawa, S.; Hons, Z.; Kroha, V.; Lamia, L.; Mazzocco, M.; Mrazek, J.; Pizzone, R. G.; Romano, S.; Strano, E.; Torresi, D.; Tumino, A.

    2017-08-01

    Fluorine abundance determination is of great importance in stellar physics to understand s-elements production and mixing processes in asymptotic giant branch (AGB) stars. Up to now, theoretical models overproduce F abundances in AGB stars with respect to the observed values, thus calling for further investigation of the reactions involving fluorine. In particular, the 19F(p, α)16O reaction is the main destruction channel of fluorine at the bottom of the convective envelope in AGB stars, an H-rich environment where it can experience temperatures high enough to determine its destruction, owing to additional mixing processes. In this paper the Trojan horse method (THM) was used to extract the 19F(p, α 0)16O S-factor in the energy range of astrophysical interest (E cm ≈ 0-1 MeV). This is the most relevant channel at the low temperatures (few 107 K) characterizing the bottom of the convective envelope, according to current knowledge. A previous indirect experiment using the THM has observed three resonances in the energy regions below E cm ≈ 450 keV. These energies correspond to typical AGB temperatures, thus implying a significant increase in the reaction rate. Statistics are scarce for performing an accurate separation between resonances, preventing one from drawing a quantitative conclusion about their total widths and spin parities. Before THM measurement, only extrapolations were available below about 500 keV, showing a non-resonant behavior that sharply contradicts the trend of the astrophysical factor at higher energies. A new experiment has been performed to verify the measured TH astrophysical factor and to perform more accurate spectroscopy of the involved resonances.

  3. Passive mechanism of pitch recoil in flapping insect wings.

    PubMed

    Ishihara, D; Horie, T

    2016-12-20

    The high torsional flexibility of insect wings allows for elastic recoil after the rotation of the wing during stroke reversal. However, the underlying mechanism of this recoil remains unclear because of the dynamic process of transitioning from the wing rotation during stroke reversal to the maintenance of a high angle of attack during the middle of each half-stroke, when the inertial, elastic, and aerodynamic effects all have a significant impact. Therefore, the interaction between the flapping wing and the surrounding air was directly simulated by simultaneously solving the incompressible Navier-Stokes equations, the equation of motion for an elastic body, and the fluid-structure interface conditions using the three-dimensional finite element method. This direct numerical simulation controlling the aerodynamic effect revealed that the recoil is the residual of the free pitch vibration induced by the flapping acceleration during stroke reversal in the transient response very close to critical damping due to the dynamic pressure resistance of the surrounding air. This understanding will enable the control of the leading-edge vortex and lift generation, the reduction of the work performed by flapping wings, and the interpretation of the underlying necessity for the kinematic characteristics of the flapping motion.

  4. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  5. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  6. Recoil-induced Resonances as All-optical Switches

    NASA Astrophysics Data System (ADS)

    Narducci, F. A.; Desavage, S. A.; Gordon, K. H.; Duncan, D. L.; Welch, G. R.; Davis, J. P.

    2010-03-01

    We have measured recoil-induced resonances (RIR) [1,2] in our system of laser-cooled 85Rb atoms. Although this technique has been demonstrated to be useful for the purpose of extracting the cloud temperature [3], our aim was to demonstrate an all optical switch based on recoil-induced resonances. In addition to a very narrow ``free-space'' recoil-induced resonance of approximately 15 kHz, we also discovered a much broader resonance (˜30 MHz), caused by standing waves established by our trapping fields. We compare and contrast the switching dynamics of these two resonances and demonstrate optical switching using both resonances. Finally, we consider the applicability of the narrow, free-space resonance to the slowing of a weak probe field. [1] J. Guo, P.R. Berman, B. Dubetsky and G. Grynberg PRA, 46, 1426 (1992). [2] (a) P. Verkerk, B. Loumis, C. Salomon, C. Cohen-Tannoudji, J. Courtois PRL, 68, 3861 (1992). (b) G. Grynberg, J-Y Courtois, B. Lounis, P. Verkerk PRL, 72, 3017 (1994). [3] (a) T. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik PRA, 71, 013401 (2005). (b) M. Brzozowska, T. Brzozowski J. Zachorowski, W. Gawlik PRA, 72, 061401(R), (2005).

  7. The recoil proton polarization in. pi. p elastic scattering

    SciTech Connect

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  8. Total recoil: perch compliance alters jumping performance and kinematics in green anole lizards (Anolis carolinensis).

    PubMed

    Gilman, Casey A; Bartlett, Michael D; Gillis, Gary B; Irschick, Duncan J

    2012-01-15

    Jumping is a common form of locomotion for many arboreal animals. Many species of the arboreal lizard genus Anolis occupy habitats in which they must jump to and from unsteady perches, e.g. narrow branches, vines, grass and leaves. Anoles therefore often use compliant perches that could alter jump performance. In this study we conducted a small survey of the compliance of perches used by the arboreal green anole Anolis carolinensis in the wild (N=54 perches) and then, using perches within the range of compliances used by this species, investigated how perch compliance (flexibility) affects the key jumping variables jump distance, takeoff duration, takeoff angle, takeoff speed and landing angle in A. carolinensis in the laboratory (N=11). We observed that lizards lost contact with compliant horizontal perches prior to perch recoil, and increased perch compliance resulted in decreased jump distance and takeoff speed, likely because of the loss of kinetic energy to the flexion of the perch. However, the most striking effect of perch compliance was an unexpected one; perch recoil following takeoff resulted in the lizards being struck on the tail by the perch, even on the narrowest perches. This interaction between the perch and the tail significantly altered body positioning during flight and landing. These results suggest that although the use of compliant perches in the wild is common for this species, jumping from these perches is potentially costly and may affect survival and behavior, particularly in the largest individuals.

  9. A search of an ɛ dependence of the proton form factor ratio using recoil polarization technique

    NASA Astrophysics Data System (ADS)

    Meziane, Mehdi

    2010-11-01

    Intensive theoretical and experimental efforts have been made over the past decade aiming at explaining the discrepancy between the data for the proton form factor ratio, GEp/GMp, obtained at Jefferson Lab using polarization transfer technique, and the world data obtained by the Rosenbluth method based on cross section measurements. One possible explanation for this difference is a two-photon exchange contribution, where both photons share the momentum transfer about equally. In the Born approximation for a fixed Q^2, the form factors do not depend upon the energy of the incident electron. We will report the results of the Jlab Hall-C GEp-2γ experiment which was designed to measure a possible kinematical variation of the ratio GEp/GMp with statistical uncertainties of ±0.01 at Q^2=2.5 GeV^2, using the recoil polarization technique. Three kinematics were chosen, corresponding to values of the kinematic factor ɛ=0.15, 0.63 and 0.77. We will describe the new detectors built for both GEp-2γ and GEp-III experiments, the electromagnetic calorimeter BigCal which detected the scattered electron, and the focal plane polarimeter (FPP) which measured the polarization of the recoil proton.

  10. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  11. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  12. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2010-03-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z > 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts. This research is supported in part by NASA grant 06-BEFS06-19 to Goddard Space Flight Center.

  13. Search for the admixture of heavy neutrinos in the recoil spectra of {sup 37}Ar decay

    SciTech Connect

    Hindi, M.M.; Kozub, R.L.; Miocinovic, P.; Avci, R.; Zhu, L.; Hussein, A.H.

    1998-10-01

    Neutrino-induced recoil spectra of {sup 37}Cl ions produced in the electron capture (EC) decay of {sup 37}Ar were measured and searched for the presence of massive neutrinos admixed to the dominant electron neutrino. Fractions of a monolayer of {sup 37}Ar were physisorbed on Au and on several underlayers of {sup 40}Ar adsorbed on both Au and graphite substrates cooled to {le}20 K under ultrahigh vacuum conditions. Time-of-flight spectra of the recoiling ions were recorded in coincidence with x rays and Auger electrons emitted following the EC decay. By searching these spectra for peaks with energies between 7.6 eV and 3.6 eV upper limits were placed on the mixing probability of the electron neutrino with heavy neutrinos in the 370{endash}640 keV mass range. These limits vary from 1 to 4{percent}, at the 90{percent} confidence level. {copyright} {ital 1998} {ital The American Physical Society}

  14. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  15. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  16. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment

  17. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving

  18. A study of nuclear recoil backgrounds in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  19. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    SciTech Connect

    Westerdale, Shawn S.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  20. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Acosta, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  1. Relevance of blood-brain barrier disruption after endovascular treatment of ischemic stroke: dual-energy computed tomographic study.

    PubMed

    Renú, Arturo; Amaro, Sergio; Laredo, Carlos; Román, Luis San; Llull, Laura; Lopez, Antonio; Urra, Xabier; Blasco, Jordi; Oleaga, Laura; Chamorro, Ángel

    2015-03-01

    Computed tomographic (CT) high attenuation (HA) areas after endovascular therapy for acute ischemic stroke are a common finding indicative of blood-brain barrier disruption. Dual-energy CT allows an accurate differentiation between HA areas related to contrast staining (CS) or to brain hemorrhage (BH). We sought to evaluate the prognostic significance of the presence of CS and BH after endovascular therapy. A prospective cohort of 132 patients treated with endovascular therapy was analyzed. According to dual-energy CT findings, patients were classified into 3 groups: no HA areas (n=53), CS (n=32), and BH (n=47). The rate of new hemorrhagic transformations was recorded at follow-up neuroimaging. Clinical outcome was evaluated at 90 days with the modified Rankin Scale (poor outcome, 3-6). Poor outcome was associated with the presence of CS (odds ratio [OR], 11.3; 95% confidence interval, 3.34-38.95) and BH (OR, 10.4; 95% confidence interval, 3.42-31.68). The rate of poor outcome despite complete recanalization was also significantly higher in CS (OR, 9.7; 95% confidence interval, 2.55-37.18) and BH (OR, 15.1; 95% confidence interval, 3.85-59.35) groups, compared with the no-HA group. Patients with CS disclosed a higher incidence of delayed hemorrhagic transformation at follow-up (OR, 4.5; 95% confidence interval, 1.22-16.37) compared with no-HA patients. Blood-brain barrier disruption, defined as CS and BH on dual-energy CT, was associated with poor clinical outcomes in patients with stroke treated with endovascular therapies. Moreover, isolated CS was associated with delayed hemorrhagic transformation. These results support the clinical relevance of blood-brain barrier disruption in acute stroke. © 2015 American Heart Association, Inc.

  2. Elastic recoil detection analysis using ion-induced electron emission for particle identification

    NASA Astrophysics Data System (ADS)

    Benka, O.; Brandstötter, A.; Steinbauer, E.

    1994-03-01

    We propose a new method to identify particles in ERD analysis, using their electron emission yield from a thin carbon foil. Before the particles reach a silicon surface barrier detector (SB) they penetrate a set of thin foils (typically 6 foils) with a thickness of 3 {μg}/{cm 2} each). The emission yield depends on the nuclear charge of the penetrating ion and it is roughly proportional to the energy loss in the foil. The emitted electrons are accelerated to a muchannel plate (MCP) by a voltage of 300 V. The electron signal from the MCP is proportional to the number of emitted electrons and it occurs in coincidence with the energy signal from the energy detector. For data acquisition we developed a dual parameter multichannel analyzer (M2D) as an add on board for an industry standard personal computer. The two-dimensional spectrum of coincidences and the one-dimensional spectra from both detectors are recorded simultaneously. The M2D has 256K channels which can be freely configured as a two-dimensional matrix. For example a resolution of 1024 × 256 channels is possible. For optimum suppression of random coincidences the coincidence time window can be set from 0.125 μs up to 32 μs. For this new setup the ability for particle identification is discussed for different projectiles (He, C, O, Cl) and targets. H recoil ions can be well separated from He projectiles so that for H analysis the H recoil spectrum and the He forward energy spectrum can be measured simultaneously. An example for depth-profiling of 100 keV H implantations in silicon is given.

  3. What is the Clinically Relevant Relative Biologic Effectiveness? A Warning for Fractionated Treatments With High Linear Energy Transfer Radiation

    SciTech Connect

    Dasu, Alexandru Toma-Dasu, Iuliana

    2008-03-01

    Purpose: To study the clinically relevant relative biologic effectiveness (RBE) of fractionated treatments with high linear energy transfer (LET) radiation and to identify the important factors that might influence the transfer of tolerance and curative levels from low LET radiation. These are important questions in the light of the growing interest for the therapeutic use of radiation with higher LET than electrons or photons. Methods and Materials: The RBE of various fractionated schedules was analyzed with theoretical models for radiation effect, and the resulting predictions were compared with the published clinical and experimental data regarding fractionated irradiation with high LET radiation. Results: The clinically relevant RBE increased for greater doses per fraction, in contrast to the predictions from single-dose experiments. Furthermore, the RBE for late-reacting tissues appeared to modify more quickly than that for early-reacting tissues. These aspects have quite important clinical implications, because the increased biologic effectiveness reported for this type of radiation would otherwise support the use of hypofractionation. Thus, the differential between acute and late-reacting tissues could put the late-reacting normal tissues at more risk from high LET irradiation; however, at the same time, it could increase the therapeutic window for slow-growing tumors. Conclusions: The modification of the RBE with the dose per fraction must be carefully taken into consideration when devising fractionated treatments with high LET radiation. Neglecting to do so might result in an avalanche of complications that could obscure the potential advantages of the therapeutic use of this type of radiation.

  4. Alpha decay studies of {sup 189}Bi{sup m}, {sup 190}Po and {sup 180 }Pb using a rapidly rotating recoil catcher wheel system

    SciTech Connect

    Batchelder, J.C.; Toth, K.S.; Moltz, D.M.

    1996-09-01

    The {alpha} decays of very neutron deficient nuclei near the Z = 82 closed proton shell are of interest because they provide us with structure information that is relevant with regard to the shell model. We used a rapidly rotating recoil catcher wheel system to study the {alpha} decays of {sup 189}Bi{sup {ital m}}, {sup 190}Po, and {sup 180}Pb. The system works as follows. Recoils from the back of the target, after passing through an Al degrader placed behind the target, are stopped in 300-{mu}g/cm{sup 2} Al catcher foils fixed at the edges of the wheel. These are inclined at an angle of 20 degrees with respect to the beam to maximize the catcher efficiency while keeping the thickness that {alpha} particles must travel in order to emerge of the Al foil to a minimum. This arrangement results in an effective thickness of {approx} 900 {mu}g/cm{sup 2} for recoils, but only 150 {mu}g/cm{sup 2} for the emitted {alpha} particles. Stopped recoils are then rotated between an array of 6 Si detectors in series (solid angle of 8% of 4{pi}). Half-life information can be obtained by determining the difference in counts between the detectors. This instrument has proven to be an effective tool for the study of nuclei far from stability with half-lives in the range of 1-50 ms.

  5. The Differential Cross Section and Lambda Recoil Polarization From gamma d to K0 Lambda( p)

    NASA Astrophysics Data System (ADS)

    Compton, Nicholas

    Presented is the analysis of the differential cross section and Lambda recoil polarization from the reaction gammad → K0Lambda(p). This work measured these observables over beam energies from 0.90 GeV to 3.0 GeV. These measurements are the first in this channel to cover such a wide range of energies. The data were taken using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory (JLAB) along with a tagged photon beam. This analysis was completed by identifying events of interest that decayed into the final state topology of pi-pi+pi- p(p). Through conservation of energy and momentum, the K0, Lambda, and missing mass of the spectator proton were reconstructed. Utilizing the same analysis techniques, the observables were measured on two different experiments with good agreement. Photoproduction of strange mesons from the neutron are difficult to measure, consequently there are only a few measurements of this kind. Despite that, these reactions supply essential complementary data to those on the proton. The differential cross sections and the recoil polarization extracted, span the region where new nucleon resonances have been found from studies of the reaction gammap → K +Lambda. Comparisons between the K+Lambda and K0Lambda cross section demonstrate that possible interference terms near 1900 MeV are less pronounced in the latter. This unexpected result inspired a partial wave analyses (PWA) to be fitted to the data. The fit solution shows that this measurement fostered an improvement on the knowledge of observed resonance parameters, necessary to understanding these excited states. The study of nucleon resonances is a key motivating factor since the resonance masses can be calculated from the theory of the strong nuclear force, called quantum chromodynamics, or QCD.

  6. Relevance of Morning and Evening Energy and Macronutrient Intake during Childhood for Body Composition in Early Adolescence

    PubMed Central

    Diederichs, Tanja; Roßbach, Sarah; Herder, Christian; Alexy, Ute; Buyken, Anette E.

    2016-01-01

    (1) Background: This study investigated the relevance of morning and evening energy and macronutrient intake during childhood for body composition in early adolescence; (2) Methods: Analyses were based on data from 372 DONALD (DOrtmund Nutritional and Anthropometric Longitudinally Designed study) participants. Explorative life-course plots were performed to examine whether morning or evening energy and macronutrient intake at 3/4 years, 5/6 years, or 7/8 years is critical for fat mass index (FMI [kg/m2]) and fat free mass index (FFMI [kg/m2]) in early adolescence (10/11 years). Subsequently, exposures in periods identified as consistently critical were examined in depth using adjusted regression models; (3) Results: Life-course plots identified morning fat and carbohydrate (CHO) intake at 3/4 years and 7/8 years as well as changes in these intakes between 3/4 years and 7/8 years as potentially critical for FMI at 10/11 years. Adjusted regression models corroborated higher FMI values at 10/11 years among those who had consumed less fat (p = 0.01) and more CHO (p = 0.01) in the morning at 7/8 years as well as among those who had decreased their morning fat intake (p = 0.02) and increased their morning CHO intake (p = 0.05) between 3/4 years and 7/8 years; (4) Conclusion: During childhood, adherence to a low fat, high CHO intake in the morning may have unfavorable consequences for FMI in early adolescence. PMID:27834901

  7. Delayed autoionization of recoil ions by the decay of high-spin isomeric states

    NASA Astrophysics Data System (ADS)

    Maidikov, V. Z.

    1985-12-01

    The time dependence of the ionization for isotopically different heavy ion fusion recoil ions has been observed. Delayed nuclear-induced autoionization of recoil ions caused by the decay of high-spin nuclear isomeric states by internal conversion was established. Internal conversion in isolated recoil atoms results in a drastic rearrangement in the atomic cloud with a loss of a great number of orbital electrons. Possibilities for the use of the observed phenomena in atomic and nuclear physics are discussed.

  8. Direct Measurement of Recoil Effects on Ar-Ar Standards

    NASA Astrophysics Data System (ADS)

    Hall, C. M.

    2011-12-01

    Advances in the precision possible with the Ar-Ar method using new techniques and equipment have led to considerable effort to improve the accuracy of the calibration of interlaboratory standards. However, ultimately the accuracy of the method relies on the measurement of 40Ar*/39ArK ratios on primary standards that have been calibrated with the K-Ar method and, in turn, on secondary standards that are calibrated against primary standards. It is usually assumed that an Ar-Ar total gas age is equivalent to a K-Ar age, but this assumes that there is zero loss of Ar due to recoil. Instead, traditional Ar-Ar total gas ages are in fact Ar retention ages [1] and not, strictly speaking, comparable to K-Ar ages. There have been efforts to estimate the importance of this effect on standards along with prescriptions for minimizing recoil effects [2,3], but these studies have relied on indirect evidence for 39Ar recoil. We report direct measurements of 39Ar recoil for a set of primary and secondary standards using the vacuum encapsulation techniques of [1] and show that significant adjustments to ages assigned to some standards may be needed. The fraction f of 39Ar lost due to recoil for primary standards MMhb-1 hornblende and GA-1550 biotite are 0.00367 and 0.00314 respectively. It is possible to modify the assumed K-Ar ages of these standards so that when using their measured Ar retention 40Ar*/39ArK ratios, one obtains a correct K-Ar age for an unknown, assuming that the unknown sample has zero loss of 39Ar due to recoil. Assuming a primary K-Ar age for MMhb-1 of 520.4 Ma, the modified age would be 522.1 Ma and assuming a primary K-Ar age for GA-1550 of 98.79 Ma [4] yields a modified effective age of 99.09 Ma. Measured f values for secondary standards FCT-3 biotite, FCT-2 sanidine and TCR-2 sanidine are 0.00932, 0.00182 and 0.00039 respectively. Using an R value for FCT-3 biotite relative to MMhb-1 [5], the K-Ar age for this standard would be 27.83 Ma and using R values

  9. Projectile paths corrected for recoil and air resistance

    NASA Astrophysics Data System (ADS)

    Kemp, H. R.

    1986-01-01

    The angle of projection of a bullet is not the same as the angle of the bore of the firearm just before firing. This is because recoil alters the direction of the barrel as the bullet moves along the barrel. Neither is the angle of projection of an arrow the same as the direction of the arrow just before it is projected. The difficulty in obtaining the angle of projection limits the value of the standard equation for trajectories relative to a horizontal plane. Furthermore, air resistance makes this equation unrealistic for all but short ranges.

  10. Measurement of the Ca40(α,γ)Ti44 reaction relevant for supernova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Ouellet, C. O.; The, L.-S.; Buchmann, L.; Caggiano, J.; Chen, A. A.; Crawford, H.; D'Auria, J. M.; Davids, B.; Fogarty, L.; Frekers, D.; Hussein, A.; Hutcheon, D. A.; Kutschera, W.; Laird, A. M.; Lewis, R.; O'Connor, E.; Ottewell, D.; Paul, M.; Pavan, M. M.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Wales, B.; Wallner, A.

    2007-09-01

    The short-lived nuclide Ti44 is an important nuclide for the understanding of explosive nucleosynthesis. The main production reaction, Ca40(α,γ)Ti44, has been studied in inverse kinematics with the recoil mass spectrometer DRAGON located at the TRIUMF-ISAC facility in Vancouver, Canada. The temperature range relevant for α-rich freeze-out during a core-collapse supernova has been covered entirely with a Ca40 beam of 0.60 to 1.15 MeV/nucleon. All relevant quantities for the calculation of the astrophysical reaction rate have been measured directly. Because of many previously undiscovered resonances, the reaction rate derived from the energy dependent Ti44 yield is higher than the one based on previous prompt γ-ray studies commonly used in supernova models. The presented new rate results in an increased Ti44 production in supernovae.

  11. Search for Event Rate Modulation in XENON100 Electronic Recoil Data

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Anthony, M.; Arazi, L.; Arisaka, K.; Arneodo, F.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Cardoso, J. M. R.; Cervantes, M.; Coderre, D.; Colijn, A. P.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Giovanni, A.; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grignon, C.; Gross, E.; Hampel, W.; Hasterok, C.; Itay, R.; Kaether, F.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Le Calloch, M.; Lellouch, D.; Levinson, L.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Macmullin, S.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Wall, R.; Wang, H.; Weber, M.; Weinheimer, C.; Zhang, Y.; Xenon Collaboration

    2015-08-01

    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 σ for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 σ , the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8 σ .

  12. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  13. Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics

    SciTech Connect

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas

    2009-01-28

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  14. Recoil Inversion in the Photodissociation of Carbonyl Sulfide near 234 nm

    NASA Astrophysics Data System (ADS)

    Sofikitis, Dimitris; Suarez, Jaime; Schmidt, Johan A.; Rakitzis, T. Peter; Farantos, Stavros C.; Janssen, Maurice H. M.

    2017-06-01

    We report the observation of recoil inversion of the CO (v =0 , JCO=66 ) state in the UV dissociation of lab-frame oriented carbonyl sulfide (OCS). This state is ejected in the opposite direction with respect to all other (>30 ) states and in absence of any OCS rotation, thus resulting in spatial filtering of this particular high-J rovibrational state. This inversion is caused by resonances occurring in shallow local minima of the molecular potential, which bring the sulfur closer to the oxygen than the carbon atom, and is a striking example where such subtleties severely modify the photofragment trajectories. The resonant behavior is observed only in the photofragment trajectories and not in their population, showing that stereodynamic measurements from oriented molecules offer an indispensable probe for exploring energy landscapes.

  15. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons.

  16. Double and single ionization of He and other targets studied using cold target recoil momentum spectroscopy

    SciTech Connect

    Doerner, R.; Feagin, J. M.; Brauning, H.; Jagutzki, O.; Jung, M.; Kanter, E. P.; Khemliche, H.; Kravis, S.; Mergel, V.; Prior, M. H.; Schmidt-Boeking, H.; Spielberger, L.; Ullrich, J.; Unverzagt, M.; Vogt, T.

    1997-04-01

    Double ionization of an atom by a single photon is the simplest and most fundamental many-electron process. The ejection of two electrons following the absorption of one photon is strictly prohibited in an independent electron approximation. Thus determining the probability of double photoionization alone is already a challenging test of the understanding of electron-electron correlation. Furthermore, in the slow breakup of a bound system into three charged particles, the final state wave function must represent a high degree of few-body Coulomb correlation involving the simultaneous interaction of all three particles. The case of double photoionization is again particularly well suited to study this problem as the energy and the angular momentum delivered to the system can be very well controlled. Helium, as the most basic three body system, has been the target of extensive studies over the past decades. The purpose of this project has been to study double and single ionization using cold target recoil ion momentum spectroscopy (COLTRIMS). This technique has been widely applied within the area of ion-atom collisions to study the dynamics of energy and momentum transfer in collisions between few-electron systems, and the entire technical machinery has been transferred to photon-atom collisions. The technique uses space- and time-imaging of He{sup +} and He{sup ++} recoil ions created in photon-He collisions to measure the full momentum vector of each ion produced. Event-mode recording is used and a solid angle of nearly 4{pi} is realized, allowing an extremely high data-collection efficiency. In order to reduce the initial momentum spread of the He target a precooled supersonic He jet is used.

  17. Electron Recoil rejection by decay time measurement in large liquid Xenon detectors

    NASA Astrophysics Data System (ADS)

    Namwongsa, P.; Banjongkan, A.; Chen, X.; Giboni, K. L.; Ji, X.; Kobdaj, C.; Kusano, H.; Yupeng, Y.

    2017-04-01

    Very large Liquid Xenon (LXe) Time Projection Chambers (TPC) are employed to search for Dark Matter (DM). The DM particles are supposed to interact with the whole nucleus, compared to background of γ-rays, which interact with the electrons. Therefore, DM signals are caused by Nuclear Recoil (NR) instead of the Electron Recoils (ER). In ER and NR events differ in pulse shape since the ratios of light from direct scintillation and recombination are different. To discriminate against residual ER events would be possible if one can distinguish the differences in decay times. This method can be successfully applied in Liquid Argon TPCs. In LXe, however, it is generally assumed that these differences are too small to be distinguished at low energies. The easiest algorithm of Pulse Shape Discrimination (PSD) distinguishes the event type based on the number of photons emitted much later than the longest decay time. At low energies too much of the timing information is lost, and this method does not perform well. However, the timing of all photons does contain sufficient information. If we use sufficiently fast PMTs, have a large enough bandwidth in the Front End electronics, and avoid reflections then we should reach a background rejection better than 10-2 even at 2 keVee. In our Decay Time Measurement (DTM) method the decay curves are compared with a model on an event by event basis. Statistically this is independent from the charge over light (`S2/S1') cut normally applied in Dual Phase detectors. Applying both rejection mechanisms a LXeTPC can become `quasi background free'.

  18. Computerized measurement of pulmonary conductance and elastic recoil.

    PubMed

    Colebatch, H J; Nail, B S; Ng, C K

    1978-04-01

    A system devloped for on-line measurement of transpulmonary pressure, gas flow at the mouth, change in expired volume and plethysmograph volume uses a minicomputer to control a multiplexed analog to digital converter. The computer identified samples as static or dynamic values by monitoring a voltage activating a solenoid valve, used to close the airway. Analysis of these samples by other task-specific programs yielded the static deflation pressure-volume (PV) curve, the conductance-recoil pressure, GL-Pst(L), relationship and the maximum expiratory flow-volume (MEFV) curve; the MEF-Pst(L) curve and conductance upstream from the equal pressure point were derived. The PV relationship was represented by a fourth-order polynomial and the GL-Pst(L) relationship by linear regression. In 11 subjects the results obtained using on-line data collection, compared with manual analysis of oscillograph recordings, showed small differences in static compliance and in the maximum Pst(L); but overall the two methods showed excellent agreement. Besides advantages of speed and objectivity, this system facilitates a more rigorous analytical treatment of elastic recoil and conductance.

  19. Improvements of the DRAGON recoil separator at ISAC

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Buchmann, L.; Caggiano, J.; Chen, A. A.; D'Auria, J. M.; Davis, C. A.; Greife, U.; Hussein, A.; Hutcheon, D. A.; Ottewell, D.; Ouellet, C. O.; Parikh, A.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Zylberberg, J.

    2008-10-01

    The DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) is used to measure radiative proton and alpha capture reaction rates involving both stable and radioactive, heavy-ion reactants at the TRIUMF-ISAC high intensity radioactive beam facility. Completed in 2001 it has been used for several challenging studies for nuclear astrophysics, e.g. 12C(α, γ)16O, 21Na(p, γ)22Mg, 26gAl(p, γ)27Si and 40Ca(α, γ)44Ti. Since initial operation, a number of improvements have been incorporated which are described here. These include a beam centering monitor based on a CCD camera, a mechanical iris to skim of beam halo, a solid state stripper acting as a charge state booster for beams with A ≳ 30, beta and gamma detectors to monitor beam intensity and to determine beam contamination in experiments with radioactive beam and the ionization chamber for both recoil identification and isobar separation.

  20. Technique for measuring atomic recoil frequency using coherence functions

    NASA Astrophysics Data System (ADS)

    Beattie, S.; Barrett, B.; Chan, I.; Mok, C.; Yavin, I.; Kumarakrishnan, A.

    2009-02-01

    We have developed a technique for measuring the atomic recoil frequency using a single-state echo-type atom interferometer that manipulates laser-cooled atoms in the ground state. The interferometer relies on momentum-state interference due to two standing-wave pulses that produce density gratings. The interference is modified by applying a third standing-wave pulse during the interferometer pulse sequence. As a result, the grating contrast exhibits periodic revivals at the atomic recoil frequency ωr as a function of the time at which the third pulse is applied, allowing ωr to be measured easily and precisely. The contrast is accurately described by a coherence function, which is the Fourier transform of the momentum distribution, produced by the third pulse and by the theory of echo formation. If the third pulse is a traveling wave, loss of grating contrast is observed, an effect also described by a coherence function. The decay of the grating contrast as a function of continuous-wave light intensity is used to infer the cross section for photon absorption.

  1. Contribution of recoil atoms to irradiation damage in absorber materials

    NASA Astrophysics Data System (ADS)

    Simeone, D.; Hablot, O.; Micalet, V.; Bellon, P.; Serruys, Y.

    1997-08-01

    Absorbing materials are used to control the reactivity of nuclear reactors by taking advantage of nuclear reactions (e.g., 10B(n,α) 7Li) where neutrons are absorbed. During such reactions, energetic recoils are produced. As a result, radiation damage in absorbing materials originates both from these nuclear reactions and from elastic collisions between neutrons and atoms. This damage eventually leads to a partial destruction of the materials, and this is the main limitation on their lifetime in nuclear reactors. Using a formalism developed to calculate displacements per atoms (dpa) in a multi atomic target, we have calculated damages in terms of displacements per atom in a (n,α) absorbing material taking into account geometrical effects of 10 boron self shielding and transmutation reactions induced by neutrons inside the absorber. Radiation damage is calculated for boron carbide and hafnium diboride ceramics in a Pressurized Water Reactor environment. It is shown that recoils produced by nuclear reactions account for the main part of the radiation damage created in these ceramics. Damages are calculated as a function of the distance from the center of an absorber pellet. Due to the self-shielding effect, these damage curves exhibit sharp maxima, the position of which changes in time.

  2. Silicon shallow doping by erbium and oxygen recoils implantation

    NASA Astrophysics Data System (ADS)

    Feklistov, K. V.; Cherkov, A. G.; Popov, V. P.

    2016-09-01

    In order to get shallow high doping of Si with optically active complexes ErOn, Er followed by O recoils implantation was realized by means of subsequent Ar+ 250-290 keV implantation with doses 2×1015-1×1016 cm-2 through 50-nm deposited films of Er and then SiO2, accordingly. High Er concentration up to 5×1020 cm-3 to the depth of 10 nm was obtained after implantation. However, about a half of the Er implanted atoms become part of surface SiO2 during post-implantation annealing at 950 °C for 1 h in the N2 ambient under a SiO2 cap. The mechanism of Er segregation into the cap oxide following the moving amorphous-crystalline interface during recrystallization was rejected by the transmission electron microscopy (TEM) analysis. Instead, the other mechanism of immobile Er atoms and redistribution of recoil-implanted O atoms toward cap oxide was proposed. It explains the observed formation of two Er containing phases: Er-Si-O phase with a high O content adjacent to the cap oxide and deeper O depleted Er-Si phase. The correction of heat treatments is proposed in order to avoid the above-mentioned problems.

  3. Recoil velocities from equal-mass binary black-hole mergers: A systematic investigation of spin-orbit aligned configurations

    SciTech Connect

    Pollney, Denis; Reisswig, Christian; Szilagyi, Bela; Ansorg, Marcus; Dorband, Ernst Nils; Koppitz, Michael; Rezzolla, Luciano; Deris, Barrett; Diener, Peter; Schnetter, Erik; Nagar, Alessandro

    2007-12-15

    Binary black-hole systems with spins aligned with the orbital angular momentum are of special interest, as studies indicate that this configuration is preferred in nature due to non-vacuum environmental interactions, as well as post-Newtonian (PN) spin-orbit couplings. If the spins of the two bodies differ, there can be a prominent beaming of the gravitational radiation during the late plunge, causing a recoil of the final merged black hole. In this paper we perform an accurate and systematic study of recoil velocities from a sequence of equal-mass black holes whose spins are aligned with the orbital angular momentum, and whose individual spins range from a=+0.584 to -0.584. In this way we extend and refine the results of a previous study which concentrated on the antialigned portion of this sequence, to arrive at a consistent maximum recoil of 448{+-}5 km/s for antialigned models as well as to a phenomenological expression for the recoil velocity as a function of spin ratio. Quite surprisingly, this relation highlights a nonlinear behavior, not predicted by the PN estimates, and can be readily employed in astrophysical studies on the evolution of binary black holes in massive galaxies. An essential result of our analysis, without which no systematic behavior can be found, is the identification of different stages in the waveform, including a transient due to lack of an initial linear momentum in the initial data. Furthermore, by decomposing the recoil computation into coupled modes, we are able to identify a pair of terms which are largely responsible for the kick, indicating that an accurate computation can be obtained from modes up to l=3. Finally, we provide accurate measures of the radiated energy and angular momentum, finding these to increase linearly with the spin ratio, and derive simple expressions for the final spin and the radiated angular momentum which can be easily implemented in N-body simulations of compact stellar systems. Our code is calibrated

  4. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    SciTech Connect

    Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Jahnke, K.; Zamorani, G.; Comastri, A.; Bolzonella, M.; Blecha, L.; Loeb, A.; Bongiorno, A.; Brusa, M.; Leauthaud, A.; Mainieri, V.; Piconcelli, E.; Salvato, M.; Scoville, N.; Trump, J.; Vignali, C.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.

  5. Pulse Shape Discrimination of Nuclear Recoil and Electron Recoil Events With a NaI(Tl) Crystal for Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Kim, K. W.; Adhikari, G.; Adhikari, P.; Choi, S.; Ha, C.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, H. J.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, H. S.; Lee, M. H.; Leonard, D. S.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.; Yoon, Y. S.

    2016-04-01

    In order to investigate discrimination between nuclear recoil and electron recoil events for the KIMS-NaI dark matter search experiment, we measured the pulse shapes produced by neutrons and gamma rays in a NaI(Tl) crystal. Relatively good pulse shape discrimination (PSD) power due to high light output of recently developed crystals makes it possible to test whether the annual modulation signal observed by the DAMA/LIBRA experiment is caused by nuclear recoil events. We applied the PSD to underground data taken with a 9.15 kg low-background and high-light-output NaI(Tl) crystal for 134 days. Good agreement between underground data and electron recoil events was observed.

  6. Time of flight assisted ΔE - E method for enhanced isotope separation capabilities in heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Eschbaumer, S.; Bergmaier, A.; Seiler, D.; Dollinger, G.

    2017-09-01

    The time of flight energy (TOF-E) setup installed at the scattering chamber of the Q3D magnetic spectrograph to perform heavy ion elastic recoil detection (ERD) analysis at the 14 MV Munich Tandem Accelerator has recently been upgraded. Now, the energy detector of the TOF-E setup is additionally capable of performing ΔE - E measurements for high energy recoil ions obtained from e.g. a 170 MeV 127 I projectile beam. Time of flight information is simultaneously acquired with the ΔE - E data for each detected ion. The combination of the TOF-E and the ΔE - E data gives the opportunity to set effective filter conditions to select for both, the elemental and the mass of the detected ion. As an example a boron doped carbon layer is analyzed and 10B and 11B is separated with the help of the combination of both methods.

  7. Analytical calculation of radiative-recoil corrections to muonium hyperfine splitting: Muon-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    Analytic expression for radiative-recoil corrections to muonium ground-state hyperfine splitting induced by muon-line radiative insertions is obtained. This result completes the program of analytic calculation of all radiative-recoil corrections. The perspectives of further muonium hyperfine splitting investigations are also discussed.

  8. Beam suppression of the DRAGON recoil separator for 3He(α,γ)7Be

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Nara Singh, B. S.; Adsley, P.; Buchmann, L.; Carmona-Gallardo, M.; Davids, B.; Fallis, J.; Fulton, B. R.; Galinski, N.; Hager, U.; Hass, M.; Howell, D.; Hutcheon, D. A.; Laird, A. M.; Martin, L.; Ottewell, D.; Reeve, S.; Ruiz, C.; Ruprecht, G.; Triambak, S.

    2013-02-01

    Preliminary studies in preparation for an absolute cross-section measurement of the radiative capture reaction 3He(α,γ)7Be with the DRAGON recoil separator have demonstrated beam suppression >1014 at the 90% confidence level. A measurement of this cross section by observation of 7Be recoils at the focal plane of the separator should be virtually background free.

  9. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  10. Differential cross sections and recoil polarizations for the reaction γp→K+Σ0

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; ...

    2010-08-06

    Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less

  11. A review of the characteristics of dietary fibers relevant to appetite and energy intake outcomes in human intervention trials.

    PubMed

    Poutanen, Kaisa S; Dussort, Pierre; Erkner, Alfrun; Fiszman, Susana; Karnik, Kavita; Kristensen, Mette; Marsaux, Cyril Fm; Miquel-Kergoat, Sophie; Pentikäinen, Saara P; Putz, Peter; Slavin, Joanne L; Steinert, Robert E; Mela, David J

    2017-09-01

    Background: Many intervention studies have tested the effect of dietary fibers (DFs) on appetite-related outcomes, with inconsistent results. However, DFs comprise a wide range of compounds with diverse properties, and the specific contribution of these to appetite control is not well characterized.Objective: The influence of specific DF characteristics [i.e., viscosity, gel-forming capacity, fermentability, or molecular weight (MW)] on appetite-related outcomes was assessed in healthy humans.Design: Controlled human intervention trials that tested the effects of well-characterized DFs on appetite ratings or energy intake were identified from a systematic search of literature. Studies were included only if they reported 1) DF name and origin and 2) data on viscosity, gelling properties, fermentability, or MW of the DF materials or DF-containing matrixes.Results: A high proportion of the potentially relevant literature was excluded because of lack of adequate DF characterization. In total, 49 articles that met these criteria were identified, which reported 90 comparisons of various DFs in foods, beverages, or supplements in acute or sustained-exposure trials. In 51 of the 90 comparisons, the DF-containing material of interest was efficacious for ≥1 appetite-related outcome. Reported differences in material viscosity, MW, or fermentability did not clearly correspond to differences in efficacy, whereas gel-forming DF sources were consistently efficacious (but with very few comparisons).Conclusions: The overall inconsistent relations of DF properties with respect to efficacy may reflect variation in measurement methodology, nature of the DF preparation and matrix, and study designs. Methods of DF characterization, incorporation, and study design are too inconsistent to allow generalized conclusions about the effects of DF properties on appetite and preclude the development of reliable, predictive, structure-function relations. Improved standards for characterization

  12. Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection

    SciTech Connect

    Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G.; Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F.; Fernandez Niello, J. O.

    2010-08-04

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of {sup 7}Li, {sup 16}O, {sup 32}S and {sup 35}Cl to study the mass region of interest for its application to measurements fusion cross sections in the {sup 6,7}Li+{sup 27}Al systems at energies around and above the Coulomb barrier (0.8V{sub B{<=}}E{<=}2.0V{sub B}). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

  13. B{yields}D* at zero recoil revisited

    SciTech Connect

    Gambino, Paolo; Mannel, Thomas; Uraltsev, Nikolai

    2010-06-01

    We examine the B{yields}D* form factor at zero recoil using a continuum QCD approach rooted in the heavy quark sum rules framework. A refined evaluation of the radiative corrections as well as the most recent estimates of higher-order power terms together with more careful continuum calculation are included. An upper bound on the form factor of F(1) < or approx. 0.93 is derived, based on just the positivity of inelastic contributions. A model-independent estimate of the inelastic contributions shows they are quite significant, lowering the form factor by about 6% or more. This results in an unbiased estimate F(1){approx_equal}0.86 with about 3% uncertainty in the central value.

  14. Dielectric barrier structure with hollow electrodes and its recoil effect

    SciTech Connect

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  15. Kicked waveforms: prospects for direct detection of black hole recoils

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Moore, Christopher

    2017-01-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as 500 km/s, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy. Einstein Fellow.

  16. Molecular Dynamics Simulation of Energetic Uranium Recoil Damage in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-10-11

    Defect production and amorphization due to energetic uranium recoils in zircon (ZrSiO4), which is a promising ceramic nuclear waste form, is studied using molecular dynamics simulations with a partial charge model. An algorithm that distinguishes between undamaged crystal, crystalline defects and amorphous regions is used to develop a fundamental understanding of the primary damage state. The amorphous cascade core is separated from the surrounding crystal by a defect-rich region. Small, chemically inhomogeneous amorphous clusters are also produced around the core. The amorphous regions consist of under-coordinated Zr and polymerized Si leading to amorphization and phase separation on a nanometer scale into Zr- and Si-rich regions. This separation could play an important role in the experimentally observed formation of nanoscale ZrO2 in ZrSiO4 irradiated at elevated temperatures.

  17. Elastic recoil detection analysis on the ANSTO heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, R.; Orlic, I.; Cohen, David D.

    2002-05-01

    The heavy ion microprobe at the Australian Nuclear Science and Technology Organisation is capable of focussing heavy ions with an ME/ q2 of up to 100 amu MeV. This makes the microprobe ideally suited for heavy ion elastic recoil detection analysis (ERDA). However, beam currents on a microprobe are usually very small, which requires a detection system with a large solid angle. We apply microbeam heavy ion ERDA using a large solid angle ΔE- E telescope with a gas ΔE detector to layered structures. We demonstrate the capability to measure oxygen and carbon with a lateral resolution of 20 μm, together with determination of the depth of the contamination in thin deposited layers.

  18. Recoil Polarization for Delta Excitation in Pion Electroproduction

    SciTech Connect

    J. J. Kelly; R. E. Roche; Z. Chai; M. K. Jones; O. Gayou; A. J. Sarty; S. Frullani; K. Aniol; E. J. Beise; F. Benmokhtar; W. Bertozzi; W. U. Boeglin; T. Botto; E. J. Brash; H. Breuer; E. Brown; E. Burtin; J. R. Calarco; C. Cavata; C. C. Chang; N. S. Chant; J.-P. Chen; M. Coman; D. Crovelli; R. De Leo; S. Dieterich; S. Escoffier; K. G. Fissum; V. Garde; F. Garibaldi; S. Georgakopoulus; S. Gilad; R. Gilman; C. Glashausser; J.-O. Hansen; D. W. Higinbotham; A. Hotta; G. M. Huber; H. Ibrahim; M. Iodice; C. W. de Jager; X. Jiang; A. Klimenko; A. Kozlov; G. Kumbartzki; M. Kuss; L. Lagamba; G. Laveissiere; J. J. LeRose; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; D. J. Margaziotis; F. Marie; P. Markowitz; S. McAleer; D. Meekins; R. Michaels; B. D. Milbrath; J. Mitchell; J. Nappa; D. Neyret; C. F. Perdrisat; M. Potokar; V. A. Punjabi; T. Pussieux; R. D. Ransome; P. G. Roos; M. Rvachev; A. Saha; S. Sirca; R. Suleiman; S. Strauch; J. A. Templon; L. Todor; P. E. Ulmer; G. M. Urciuoli; L. B. Weinstein; K. Wijesooriya; B. Wojtsekhowski; X. Zheng; and L. Zhu

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q{sup 2}=1.0 (GeV/c){sup 2}, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.

  19. A Monte Carlo C-code for calculating transmission efficiency of recoil separators and viewing residue trajectories

    NASA Astrophysics Data System (ADS)

    Nath, S.

    2008-10-01

    We present a semimicroscopic Monte Carlo code for calculating absolute transmission efficiency of recoil separators for heavy ion-induced complete fusion reactions. The code generates realistic distributions for energy, charge state and angle of evaporation residues. Residue trajectories are calculated using first order ion optical transfer matrices. Trajectory plots in the dispersive and the non-dispersive planes are generated. Using this code, we have obtained good agreement between calculated and measured transmission efficiencies for the Heavy Ion Reaction Analyzer at IUAC. The code can be adapted easily to any other electromagnetic recoil separator. Program summaryProgram title: TERS Catalogue identifier: AEBD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6818 No. of bytes in distributed program, including test data, etc.: 1 216 097 Distribution format: tar.gz Programming language: C Computer: The code has been developed and tested on a PC with Intel Pentium IV processor Operating system: Linux RAM: About 8 Mbytes Classification: 17.7 External routines: pgplot graphics subroutine library [1] should be installed in the system for generating residue trajectory plots. Nature of problem: Recoil separators are employed to select and identify nuclei of interest, produced in a nuclear reaction, rejecting unreacted beam and other undesired reaction products. It is important to know what fraction of the selected nuclei, leaving the target, reaches the detection system. This information is crucial for determining absolute cross section of the studied reaction. Solution method:Interaction of projectiles with target nuclei is treated event by event, semimicroscopically. Position and angle (with respect to beam

  20. Expansion of Bound-State Energies in Powers of m/M

    SciTech Connect

    Melnikov, Kirill

    2001-07-25

    We describe a new approach to computing energy levels of a non-relativistic bound-state of two constituents with masses M and m, by a systematic expansion in powers of m/M. After discussing the method, we demonstrate its potential with an example of the radiative recoil corrections to the Lamb shift and hyperfine splitting relevant for the hydrogen, muonic hydrogen, and muonium. A discrepancy between two previous calculations of O({alpha}(Z{alpha}){sup 5} m{sup 2}/M) radiative recoil corrections to the Lamb shift is resolved and several new terms of O({alpha}(Z{alpha}){sup 5} m{sup 4}/M{sup 3}) and higher are obtained.

  1. Expansion of Bound-State Energies in Powers of m/M

    SciTech Connect

    Czarnecki, Andrzej; Melnikov, Kirill

    2001-07-02

    We describe a new approach to computing energy levels of a nonrelativistic bound state of two constituents with masses M and m , by a systematic expansion in powers of m/M . After discussing the method, we demonstrate its potential with an example of the radiative recoil corrections to the Lamb shift and hyperfine splitting relevant for the hydrogen, muonic hydrogen, and muonium. A discrepancy between two previous calculations of O({alpha}(Z{alpha} ){sup 5}m{sup 2}/M) radiative recoil corrections to the Lamb shift is resolved and several new terms of O({alpha}(Z{alpha} ){sup 5}m{sup 4}/M{sup 3}) and higher are obtained.

  2. Atomistic simulation of track formation by energetic recoils in zircon.

    PubMed

    Moreira, Pedro A F P; Devanathan, Ram; Weber, William J

    2010-10-06

    We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5-12.8 keV nm( - 1) and a radius of 3 nm. At a low dE/dx of 2.55 keV nm( - 1), the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission track formation in zircon that is relevant to thermochronology and nuclear waste immobilization.

  3. The remarkable influence of an ``insignificant'' quantity: How recoil orbital angular momentum determines product j distributions and (v;j) correlation in H+LH reactions

    NASA Astrophysics Data System (ADS)

    McCaffery, Anthony J.

    2008-12-01

    Reactions for which the reactant (r)-to-product (p) mass ratio (μr/μp) is high, the well-known H +LH→HH+L processes, convert most of available energy to product rotation, while that disposed as recoil is often regarded as negligible. In angular momentum (AM) terms, however, this recoil orbital AM (lp) is shown to be a critical component of the overall AM balance. For products of light μp, the maximum value of lp is energy limited and as a result the formation of products in low rotational (jp) states is severely restricted. Here energy constraints on recoil orbital AM and the consequent restrictions on jp-state populations are quantified using novel diagrammatic methods that illustrate how constraints on lp determine the jp states that are allowed or forbidden by the need to conserve energy and AM for each state-to-state transition. The method accurately predicts jBaIj (v =0,1,2) peaks from crossed-beam Ba +HI experiments, providing a quantitative and physically transparent rationale for the observed BaI rotational distributions. Extension to a wider range of reactions having μr/μp>1 shows that at least some jp are formally forbidden for each given reactant relative velocity or, more accurately, lr. The fraction of inaccessible product states for a given initial velocity rises rapidly with μr/μp (>96% in Ba +HI). The method is also used to demonstrate that recoil orbital AM will be strongly aligned parallel to product rotational AM for high μr/μp, although this correlation is generally lost in the low jp region as the parallel vector requirement is relaxed.

  4. A Novel method for modeling the recoil in W boson events at hadron collider

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  5. Photon recoil momentum in a Bose-Einstein condensate of a dilute gas

    NASA Astrophysics Data System (ADS)

    Avetisyan, Yu A.; Malyshev, V. A.; Trifonov, E. D.

    2017-04-01

    We develop a ‘minimal’ microscopic model to describe a two-pulse-Ramsey-interferometer-based scheme of measurement of the photon recoil momentum in a Bose-Einstein condensate of a dilute gas (Campbell et al 2005 Phys. Rev. Lett. 94 170403). We exploit the truncated coupled Maxwell-Schrödinger equations to elaborate the problem. Our approach provides a theoretical tool to reproduce essential features of the experimental results. Additionally, we calculate the quantum-mechanical mean value of the recoil momentum and its statistical distribution that provides a detailed information about the recoil event.

  6. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    NASA Astrophysics Data System (ADS)

    Ali, Sabir; Ahmad, Tauseeef; Kumar, Kamal; Rizvi, I. A.; Agarwal, Avinash; Ghugre, S. S.; Sinha, A. K.; Chaubey, A. K.

    2015-01-01

    Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs) populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  7. The quasielastic 2H(e,e'p)n reaction at high recoil momenta

    SciTech Connect

    D. Crovelli; Konrad Aniol; Javier Gomez; John LeRose; Arunava Saha; Paul Ulmer; Vina Punjabi; Richard Lindgren; Charles Perdrisat; David Meekins; Joseph Mitchell; Mark Jones; Robert Michaels; Bogdan Wojtsekhowski; Hartmuth Arenhoevel; Michael Finn; Jens-Ole Hansen; Riad Suleiman; Kevin Fissum; Sergey Malov; Cornelis De Jager; Cornelis de Jager; Rikki Roche; Michael Kuss; Eugene Chudakov; Sabine Jeschonnek; Franck Sabatie; Luminita Todor; Meihua Liang; Olivier Gayou; Jian-Ping Chen

    2001-11-01

    The 2H(e,e'p)n cross section was measured in Hall A of the Thomas Jefferson National Accelerator Facility (JLab) in quasielastic kinematics (x=0.96) at a four-momentum transfer squared, Q{sup 2}=0.67 (GeV/c){sup 2}. The experiment was performed in fixed electron kinematics for recoil momenta from zero to 550 MeV/c. Though the measured cross section deviates by 1-2 sigma from a state-of-the-art calculation at low recoil momenta, it agrees at high recoil momenta where final state interactions (FSI) are predicted to be large.

  8. Investigation of photoneutron reactions on {sup 192}Os and {sup 191,193}Ir at energies of relevance for the astrophysical p process

    SciTech Connect

    Hasper, J.; Zilges, A.; Galaviz, D.; Mueller, S.; Sauerwein, A.; Savran, D.; Schnorrenberger, L.; Sonnabend, K.

    2009-05-15

    We have investigated the photoneutron reactions on the isotopes {sup 192}Os and {sup 191,193}Ir for astrophysically relevant photon energies just above the neutron separation energy. The experiments were performed using the photoactivation technique at the superconducting Darmstadt linear electron accelerator (S-DALINAC). The measurements extend the existing experimental database on photoneutron reactions in this mass region and serve as an important test for the state-of-the-art statistical model calculations commonly used for the prediction of stellar reaction rates.

  9. [Technical aspects and relevance of energy expenditure and physical activity assessment in clinical research for cystic fibrosis patients].

    PubMed

    Béghin, L; Michaud, L; Turck, D; Gottrand, F

    2005-07-01

    Cystic fibrosis (CF) is characterized by deteriorating lung function and mal-digestion, which result in growth failure and/or under-nutrition. Several factors, alone or combined, contribute to malnutrition in CF: poor energy intake, elevation of energy loss as a result of malabsorption, increasing resting energy expenditure due to genetic mutation and/or pulmonary exacerbation. Several techniques have been used to assess energy expenditure and physical activity in order to better understand mechanisms of malnutrition in CF and follow therapeutic interventions. Indirect calorimetry (IC) studies have shown that resting energy expenditure (REE) was 10-22% higher than predictive values. This increase could be attributed to chronic inflammation as a result of Pseudomonas aeruginosa (PA) infection. Indeed, intravenous antibiotic therapy decreases REE. Doubly labelled water technique and heart rate monitoring calibrated against IC techniques shows that total energy expenditure (TEE) was not different than in healthy children. Physical activity level assessed by the ratio TEE-REE is also not different between CF of healthy children. Recently, new accelerometry technics, easier to use and less invasive have been successfully used in order to assess physical activity level in CF. Precise and ambulatory assessment of energy expenditure and physical activity permit to check and adapt dietary allowances in CF. These techniques could be simultaneously used and be helpful to assess efficacy of intervention studies.

  10. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  11. Development and evaluation of a collection apparatus for recoil products for study of the deexcitation process of {sup 235m}U

    SciTech Connect

    Shigekawa, Y. Kasamatsu, Y.; Shinohara, A.

    2016-05-15

    The nucleus {sup 235m}U is an isomer with extremely low excitation energy (76.8 eV) and decays dominantly through the internal conversion (IC) process. Because outer-shell electrons are involved in the IC process, the decay constant of {sup 235m}U depends on its chemical environment. We plan to study the deexcitation process of {sup 235m}U by measuring the energy spectra of IC electrons in addition to the decay constants for various chemical forms. In this paper, the preparation method of {sup 235m}U samples from {sup 239}Pu by using alpha-recoil energy is reported. A Collection Apparatus for Recoil Products was fabricated, and then collection efficiencies under various conditions were determined by collecting {sup 224}Ra recoiling out of {sup 228}Th electrodeposited and precipitated sources. The pressure in the apparatus (vacuum or 1 atm of N{sub 2} gas) affected the variations of the collection efficiencies depending on the negative voltage applied to the collector. The maximum values of the collection efficiencies were mainly affected by the thickness of the {sup 228}Th sources. From these results, the suitable conditions of the {sup 239}Pu sources for preparation of {sup 235m}U were determined. In addition, dissolution efficiencies were determined by washing collected {sup 224}Ra with solutions. When {sup 224}Ra was collected in 1 atm of N{sub 2} gas and dissolved with polar solutions such as water, the dissolution efficiencies were nearly 100%. The method of rapid dissolution of recoil products would be applicable to rapid preparation of short-lived {sup 235m}U samples for various chemical forms.

  12. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGES

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  13. Detailed investigation of the low energy secondary electron yield of technical Cu and its relevance for the LHC

    NASA Astrophysics Data System (ADS)

    Cimino, R.; Gonzalez, L. A.; Larciprete, R.; Di Gaspare, A.; Iadarola, G.; Rumolo, G.

    2015-05-01

    The detailed study of the low energy secondary electron yield (LE-SEY) of technical Cu for low electron energies (from 0 to 20 eV) is very important for electron cloud build up in high intensity accelerators and in many other fields of research. Different devices base their functionalities on the number of electrons produced by a surface when hit by other electrons, namely its SEY, and, in most cases, on its very low energy behavior. However, LE-SEY has been rarely addressed due to the intrinsic experimental complexity to control very low energy electrons. Furthermore, several results published in the past have been recently questioned, allegedly suffering from experimental systematics. Here, we critically review the experimental method used to study LE-SEY and precisely define the energy region in which the experimental data can be considered valid. By analyzing the significantly different behavior of LE-SEY in clean polycrystalline Cu (going toward zero at zero impinging energies) and in its as received technical counterpart (maintaining a significant value in the entire region), we solve most, if not all, of the apparent controversy present in the literature, producing important inputs for better understanding the device performances related to their LE-SEY. Simulations are then performed to address the impact of such results on electron cloud predictions in the LHC.

  14. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    DOE PAGES

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; ...

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, wemore » find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less

  15. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    SciTech Connect

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-04-15

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  16. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    NASA Astrophysics Data System (ADS)

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-04-01

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  17. A highly sensitive nuclear recoil detector based on superfluid3He-B

    NASA Astrophysics Data System (ADS)

    Bradley, D. I.; Bunkov, Yu. M.; Cousins, D. J.; Enrico, M. P.; Fisher, S. N.; Follows, M. R.; Guénault, A. M.; Hayes, W. M.; Pickett, G. R.; Sloan, T.

    1995-10-01

    The excitations in superfluid3He have a dispersion curve in which the energy minimum does not coincide with the momentum minimum. As a result, when a mechanical resonator moves through a gas of such excitations, normal and Andreev scattering processes introduce a large asymmetry into the momentum exchange and the mechanical resonator experiences a very large drag force. A gas of such excitations is thus very easy to detect even at very low densities. We have exploited this effect to monitor the increase in excitation density in a small volume caused by a particle interaction. The working volume is filled with superfluid3He-B at around 100 μK. A particle undergoing an interaction in the volume releases a shower of quasiparticle excitations which can be detected by the increase in damping on a vibrating wire resonator. A small hole in the container allows the excitations to leak out into the outside colder liquid to reset the working liquid to the resting state. Using an existing experiment we can detect nuclear recoil interactions depositing energies as low as 500 eV. Two simple modifications should allow us to detect interactions in the 10 eV range.

  18. Potku - New analysis software for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Arstila, K.; Julin, J.; Laitinen, M. I.; Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T.; Sajavaara, T.

    2014-07-01

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight-energy (ToF-E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF-E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments.

  19. Hangup Kicks: Still Larger Recoils by Partial Spin/Orbit Alignment of Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos; Zlochower, Yosef

    2012-03-01

    We revisit the scenario of the gravitational radiation recoil acquired by the final remnant of a black-hole-binary merger by studying a set of configurations that have components of the spin both aligned with the orbital angular momentum and in the orbital plane. We perform a series of 42 new full numerical simulations for equal-mass and equal-spin-magnitude binaries. We extend previous recoil fitting formulas to include nonlinear terms in the spins and successfully include both the new and known results. The new predicted maximum velocity approaches 5000km/s for spins partially aligned with the orbital angular momentum, which leads to an important increase of the probabilities of large recoils in generic astrophysical mergers. We find non-negligible probabilities for recoils of several thousand km/s from accretion-aligned binaries.

  20. Hangup Kicks: Still Larger Recoils by Partial Spin-Orbit Alignment of Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Zlochower, Yosef

    2011-12-01

    We revisit the scenario of the gravitational radiation recoil acquired by the final remnant of a black-hole-binary merger by studying a set of configurations that have components of the spin both aligned with the orbital angular momentum and in the orbital plane. We perform a series of 42 new full numerical simulations for equal-mass and equal-spin-magnitude binaries. We extend previous recoil fitting formulas to include nonlinear terms in the spins and successfully include both the new and known results. The new predicted maximum velocity approaches 5000km/s for spins partially aligned with the orbital angular momentum, which leads to an important increase of the probabilities of large recoils in generic astrophysical mergers. We find non-negligible probabilities for recoils of several thousand km/s from accretion-aligned binaries.

  1. Elastic recoil of coronary stents: a comparative analysis.

    PubMed

    Barragan, P; Rieu, R; Garitey, V; Roquebert, P O; Sainsous, J; Silvestri, M; Bayet, G

    2000-05-01

    Minimum elastic recoil (ER) has became an essential feature of new coronary stents when deployed in artheromatous lesions of various morphologies. The ER of coronary stent might be an important component of 6-month restenosis rate by minimizing the luminal loss. We evaluated the intrinsic ER of 23 coronary stents with a mechanical test bench. The amount of ER for one size of stent (3.0 mm) was quantified using a 3D optical contactless machine (Smartscope MVP, Rochester, NY). The stents were expanded on their own balloon for the precrimped stents; the uncrimped stents were expended using identical 3.0-mm balloons. Two types of measurements were done without exterior stress and with a 0.2-bar exterior stress, directly on the stent at the end of balloon expansion, immediately after balloon deflation, and then 30 min, 60 min, and 120 min after. ER ranged from 1.54%+/-0.81% (Bestent BES 15) to 16.51%+/-2.89% (Paragon stent) without stress (P<0.01) and from 2.35%+/-1.14% (Bestent BES 15) to 18.34%+/-2.41% (Cook GR2) under 0.2-bar pressure (P<0.0001). Furthermore, there was a significant reduction between the mean result of tubular stents (TS) and coil stents (CS). The results of in vitro mechanical tests may confirm strongly the interest of a minimum ER in the prevention of the 6-month restenosis.

  2. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  3. The realities of recoil - Ar-39 recoil out of small grains and anomalous age patterns in Ar-39-Ar-40 dating. [lunar rock ages

    NASA Technical Reports Server (NTRS)

    Huneke, J. C.; Smith, S. P.

    1976-01-01

    Excess Ar-39 in olivine from neutron-irradiated mixtures of olivine and K-rich glass was measured to determine the amount of Ar-39 transferred by recoil out of the glass and into the surrounding olivine grains. It was found that a total of 9.0% of the total Ar-39 recoiled out of the 3-micron glass grains and 2.45% out of the 15-micron glass grains. The mean depth of Ar-39 depletion of the surface of the glass grains was 0.1 micron.

  4. Investigation on modeling and controability of a magnetorheological gun recoil damper

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Wang, Juan; Wang, Jiong; Qian, Suxiang; Li, Yancheng

    2009-07-01

    Magnetorheological (MR) fluid as a new smart material has done well in the vibration and impact control engineering fields because of its good electromechanical coupling characteristics, preferable dynamic performance and higher sensitivity. And success of MRF has been apparent in many engineering applied fields, such as semi-active suspension, civil engineering, etc. So far, little research has been done about MR damper applied into the weapon system. Its primary purpose of this study is to identify its dynamic performance and controability of the artillery recoil mechanism equipped with MR damper. Firstly, based on the traditional artillery recoil mechanism, a recoil dynamic model is developed in order to obtain an ideal rule between recoil force and its stroke. Then, its effects of recoil resistance on the stability and firing accuracy of artillery are explored. Because MR gun recoil damper under high impact load shows a typical nonlinear character and there exists a shear-thinning phenomenon, to establish an accurate dynamic model has been a seeking aim of its design and application for MR damper under high impact load. Secondly, in this paper, considering its actual bearing load, an inertia factor was introduced to Herschel-Bulkley model, and some factor's effect on damping force are simulated and analyzed by using numerical simulation, including its dynamic performance under different flow coefficients and input currents. Finally, both of tests with the fixed current and different On-Off control algorithms have been done to confirm its controability of MR gun recoil damper under high impact load. Experimental results show its dynamic performances of the large-scale single-ended MR gun recoil damper can be changed by altering the applied currents and it has a good controllability.

  5. Immediate stent recoil in an anastomotic vein graft lesion treated by cutting balloon angioplasty.

    PubMed

    Akkus, Nuri Ilker; Budeepalli, Jagan; Cilingiroglu, Mehmet

    2013-11-01

    Saphenous vein graft (SVG) anastomotic lesions can have significant fibromuscular hyperplasia and may be resistant to balloon angioplasty alone. Stents have been used successfully to treat these lesions. There are no reports of immediate stent recoil following such treatment in the literature. We describe immediate and persistent stent recoil in an anastomotic SVG lesion even after initial and post-deployment complete balloon dilatation of the stent and its successful treatment by cutting balloon angioplasty.

  6. Radiative-recoil corrections to hyperfine splitting: Polarization insertions in the muon factor

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-01

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium due to insertions of a one-loop polarization operator in the muon factor. The contribution produced by electron polarization insertions is enhanced by the large logarithm of the electron-muon mass ratio. We obtained all single-logarithmic and nonlogarithmic radiative-recoil corrections of order {alpha}{sup 3}(m/M)E{sub F} generated by the diagrams with electron and muon polarization insertions.

  7. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping

    PubMed Central

    Friedland, W.; Schmitt, E.; Kundrát, P.; Dingfelder, M.; Baiocco, G.; Barbieri, S.; Ottolenghi, A.

    2017-01-01

    Track structures and resulting DNA damage in human cells have been simulated for hydrogen, helium, carbon, nitrogen, oxygen and neon ions with 0.25–256 MeV/u energy. The needed ion interaction cross sections have been scaled from those of hydrogen; Barkas scaling formula has been refined, extending its applicability down to about 10 keV/u, and validated against established stopping power data. Linear energy transfer (LET) has been scored from energy deposits in a cell nucleus; for very low-energy ions, it has been defined locally within thin slabs. The simulations show that protons and helium ions induce more DNA damage than heavier ions do at the same LET. With increasing LET, less DNA strand breaks are formed per unit dose, but due to their clustering the yields of double-strand breaks (DSB) increase, up to saturation around 300 keV/μm. Also individual DSB tend to cluster; DSB clusters peak around 500 keV/μm, while DSB multiplicities per cluster steadily increase with LET. Remarkably similar to patterns known from cell survival studies, LET-dependencies with pronounced maxima around 100–200 keV/μm occur on nanometre scale for sites that contain one or more DSB, and on micrometre scale for megabasepair-sized DNA fragments. PMID:28345622

  8. Yield and recoil properties of iodine isotopes from the interaction of 240 MeV 12C with 238U

    NASA Astrophysics Data System (ADS)

    Yu, Y. W.; Lee, C. H.; Moody, K. J.; Kudo, H.; Lee, D.; Seaborg, G. T.

    1987-12-01

    The independent yields, recoil properties, and forward-to-backward ratios (F/B) of iodine isotopes from the interaction of 240 MeV 12C with 238U have been measured radiochemically by the thick-target/thick-catcher method. The isotopic yield distribution curve has been constructed and is found to consist of two overlapping Gaussians, peaking at A=126.5 and 133.8 with width parameters of 2.29 and 2.04 mass units, respectively. All the measured iodine isotopes had ranges of 7.7+/-0.4 mg/cm2. The neutron-deficient products have F/B of 1.76+/-0.14, but the neutron-excessive products have F/B of only 1.09+/-0.06. The yield curve was analyzed with the liquid drop model and the recoil curve was analyzed by the standard two-step vector model; the results show that the neutron-deficient products are formed from nonequilibrium processes and the neutron-excessive products are formed from the normal low-energy fission process.

  9. Atomistic Simulation of Track Formation by Energetic Recoils in Zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Weber, William J.

    2010-09-17

    We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5 to 12.8 keV/nm and radius of 3 nm. At a low dE/dx of 2.55 keV/nm, the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission-track formation in zircon that is relevant to thermo-chronology and nuclear waste immobilization.

  10. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    SciTech Connect

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~1016. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.

  11. Detector Calibration to Spontaneous Fission for the Study of Superheavy Elements Using Gas-Filled Recoil Ion Separator

    NASA Astrophysics Data System (ADS)

    Takeyama, Mirei; Kaji, Daiya; Morimoto, Kouji; Wakabayashi, Yasuo; Tokanai, Fuyuki; Morita, Kosuke

    Detector response to spontaneous fission (SF) of heavy nuclides produced in the 206Pb(48Ca,2n)252No reaction was investigated using a gas-filled recoil ion separator (GARIS). Kinetic energy distributions of the SF originating from 252No were observed by tuning implantation depth of evaporation residue (ER) to the detector. The focal plane detector used in the GARIS experiments was well calibrated by comparing with the known total kinetic energy (TKE) of SF due to 252No. The correction value for the TKE calculation was deduced as a function of the implantation depth of 252No to the detector. Furthermore, we have investigated the results by comparing with those obtained by a computer simulation using the particle and heavy ion transport code system (PHITS).

  12. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF).

    PubMed

    Frenje, J A; Hilsabeck, T J; Wink, C W; Bell, P; Bionta, R; Cerjan, C; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10(16). At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  13. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ˜20 ps and energy resolution of ˜100 keV for total neutron yields above ˜1016. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ˜20 ps.

  14. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    SciTech Connect

    Frenje, J. A. Wink, C. W.; Gatu Johnson, M.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bell, P.; Bionta, R.; Cerjan, C.

    2016-11-15

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T{sub i}), yield (Y{sub n}), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10{sup 16}. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  15. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    SciTech Connect

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~1016. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.

  16. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE PAGES

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; ...

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with amore » time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~1016. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.« less

  17. {phi} decay: A relevant source for K{sup -} production at energies available at the GSI Schwerionen-Synchrotron (SIS)?

    SciTech Connect

    Agakishiev, G.; Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J. S.; Metag, V.; Mishra, D.; Pechenov, V.; Pechenova, O.; Cavalcanti, T. Perez; Spataro, S.; Spruck, B.; Balanda, A.; Dybczak, A.; Michalska, B.; Otwinowski, J.; Przygoda, W.; Salabura, P.; Trebacz, R.

    2009-08-15

    We present phase space distributions and multiplicities of K{sup +}, K{sup -}, and {phi} mesons produced in Ar+KCl reactions at a kinetic beam energy of 1.756 GeV/nucleon and measured with the HADES spectrometer. The inverse slope parameters and yields of kaons supplement the systematics of previous measurements. The percentage of K{sup -} mesons coming from {phi} decay is found to be 18{+-}7%.

  18. First Measurement of the 19F(α, p)22Ne Reaction at Energies of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; D’Agata, G.; La Cognata, M.; Indelicato, I.; Spitaleri, C.; Blagus, S.; Cherubini, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Kshetri, R.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanić D., Đ.; Prepolec, L.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Skukan, N.; Soić, N.; Tokić, V.; Tumino, A.; Uroić, M.

    2017-02-01

    The observational 19F abundance in stellar environments systematically exceeds the predicted one, thus representing one of the unsolved challenges for stellar modeling. It is therefore clear that further investigation is needed in this field. In this work, we focus our attention on the measurement of the {}19{{F}}{(α ,p)}22{Ne} reaction in the astrophysical energy range, between 0.2 and 0.8 MeV (far below the Coulomb barrier, 3.8 MeV), as it represents the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct measurements is ∼0.66 MeV, covering only the upper tail of the Gamow window, causing the reaction-rate evaluation to be based on extrapolation. To investigate lower energies, the {}19{{F}}{(α ,p)}22{Ne} reaction has been studied by means of the Trojan horse method, applied to the quasi-free {}6{Li}{{(}19{{F}},{p}22{Ne})}2{{H}} reaction at E beam = 6 MeV. The indirect cross section of the {}19{{F}}{(α ,p)}22{Ne} reaction at energies ≲1 MeV was extracted, fully covering the astrophysical region of interest and overlapping existing direct data for normalization. Several resonances have been detected for the first time inside the Gamow window. The reaction rate has been calculated, showing an increase up to a factor of 4 with respect to the literature at astrophysical temperatures. This might lead to potential major astrophysical implications.

  19. Proton recoil telescope based on diamond detectors for measurement of fusion neutrons

    SciTech Connect

    Caiffi, Barbara; Taiuti, Mauro; Osipenko, Mikhail; Ripani, Marco; Pillon, Mario

    2015-07-01

    Diamonds are very promising candidates for the neutron diagnostics in harsh environments such as fusion reactor. In the first place this is because of their radiation hardness, exceeding that of Silicon by an order of magnitude. Also, in comparison to the standard on-line neutron diagnostics (fission chambers, silicon based detectors, scintillators), diamonds are less sensitive to γ rays, which represent a huge background in fusion devices. Finally, their low leakage current at high temperature suppresses the detector intrinsic noise. In this talk a CVD diamond based detector has been proposed for the measurement of the 14 MeV neutrons from D-T fusion reaction. The detector was arranged in a proton recoil telescope configuration, featuring a plastic converter in front of the sensitive volume in order to induce the (n,p) reaction. The segmentation of the sensitive volume, achieved by using two crystals, allowed to perform measurements in coincidence, which suppressed the neutron elastic scattering background. A preliminary prototype was assembled and tested at FNG (Frascati Neutron Generator, ENEA), showing promising results regarding efficiency and energy resolution. (authors)

  20. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters?

    PubMed Central

    de Kruijff, Robin M.; Wolterbeek, Hubert T.; Denkova, Antonia G.

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  1. Recoil Distance Method Lifetime Measurements in 107Cd and 103Pd

    NASA Astrophysics Data System (ADS)

    Andgren, K.; Ashley, S. F.; Regan, P. H.; McCutchan, E. A.; Zamfir, N. V.; Amon, L.; Cakirli, R. B.; Casten, R. F.; Clark, R. M.; Erduran, M. N.; Gürdal, G.; Keyes, K. L.; Meyer, D. A.; Papenberg, A.; Pietralla, N.; Plettner, C.; Rainovski, G.; Ribas, R. V.; Thomas, N. J.; Vinson, J.; Warner, D. D.; Werner, V.; Williams, E.

    2006-04-01

    Preliminary lifetime values have been measured for a number of near-yrast states in the odd-A transitional nuclei 107Cd and 103Pd. The reaction used to populate the nuclei of interest was 98Mo(12C,3nxα)107Cd, 103Pd, with the beam delivered by the tandem accelerator of the Wright Nuclear Structure Laboratory at an incident beam energy of 60 MeV. Our experiment was aimed at the investigation of collective excitations built on the unnatural parity, ν h11/2 orbital, specifically by measuring the B(E2) values of decays from the excited levels built on this intrinsic structure, using the Doppler Recoil Distance Method. We report lifetimes and associated transition probabilities for decays from the 15/2- and the 19/2- states in 107Cd and the first measurement of the 15/2- state in 103Pd. These results suggest that neither a simple rotational or vibrational interpretation is sufficient to explain the observed structures.

  2. Collaborative Research: Nanopore Confinement of C-H-O Mixed Volatile Fluids Relevant to Subsurface Energy Systems

    SciTech Connect

    Grady, Brian P.

    2015-03-11

    The scientific objective of this proposal was to obtain a fundamental atomic- to macro-scale understanding of the sorptivity, structure and dynamics of simple and complex hydrocarbon (HC) fluids at mineral surfaces or within nanoporous matrices over temperatures, pressures and compositions encountered in near-surface and shallow crustal environments. The research supported by this award was complementary to that conducted by the group of Prof. David cole at Ohio State University. The scope of the present award was to utilize molecular-level modeling to provide critically important insights into the interfacial properties of mineral-volatile systems, assist in the interpretation of experimental data and predict fluid behavior beyond the limits of current experimental capability. During the past three years the effort has focused primarily on the behavior of C-H volatiles including methane (CH4) and propane (C3H8), mixed-volatile systems including hydrocarbon - CO2 with and without H2O present. The long-range goal is to quantitatively link structure, dynamics and reactivity in complex mineral-/C-H-O systems from the atomic to the molecular to the macroscopic levels. The results are relevant to areas of growing importance such as gas shale, HC-bearing hydrothermal systems, and CO2 storage.

  3. Reply to ``Comment on `Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids' '' [J. Chem. Phys. 118, 5263 (2002)

    NASA Astrophysics Data System (ADS)

    Angelani, L.; Di Leonardo, R.; Ruocco, G.; Scala, A.; Sciortino, F.

    2003-03-01

    We reply to the Comment on the paper "Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids" [J. Chem. Phys. 116, 10297 (2002)]. While we agree with J. P. K. Doye and D. J. Wales on their improved enumeration of zero curvature directions at quasisaddle points, we criticize their statement that this has important implications for the interpretation of our results. Indeed, we show here that the temperature dependence of the order of quasisaddles and true saddles are numerically coincident, providing a strong support to our previous interpretation.

  4. Relevancy 101

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Newman, Doug

    2016-01-01

    Where we present an overview on why relevancy is a problem, how important it is and how we can improve it. The topic of relevancy is becoming increasingly important in earth data discovery as our audience is tuned to the accuracy of standard search engines like Google.

  5. Clinically relevant HOCl concentrations reduce clot retraction rate via the inhibition of energy production in platelet mitochondria.

    PubMed

    Misztal, T; Rusak, T; Tomasiak, M

    2014-12-01

    Using porcine blood, we examined the impact of hypochlorite, product of activated inflammatory cells, on clot retraction (CR), an important step of hemostasis. We found that, in vitro, HOCl is able to reduce CR rate and enlarge final clot size in whole blood (t.c. 100 μM), platelet-rich plasma (PRP) threshold concentration (t.c. 50 μM), and an artificial system (washed platelets and fibrinogen) (t.c. 25 nM). Combination of low HOCl and peroxynitrite concentrations resulted in synergistic inhibition of CR by these stressors. Concentrations of HOCl completely inhibiting CR failed to affect the kinetics of coagulation measured in PRP and in platelet-free plasma. Concentrations of HOCl reducing CR rate in PRP augmented production of lactate, inhibited consumption of oxygen by platelets, and decreased total adenosine triphosphate (ATP) content in PRP-derived clots. In an artificial system, concentrations of HOCl resulting in inhibition of CR (25-100 nM) reduced mitochondrial transmembrane potential and did not affect actin polymerization in thrombin-stimulated platelets. These concentrations of HOCl failed to affect the adhesion of washed platelets to fibrinogen and to evoke sustained calcium signal, thus excluding stressor action on glycoprotein IIb/IIIa receptors. Exogenously added Mg-ATP almost completely recovered HOCl-mediated retardation of CR. Concentrations of HOCl higher than those affecting CR reduced thromboelastometric variables (maximum clot firmness and α angle). We conclude that low clinically relevant HOCl concentrations may evoke the inhibition of CR via the reduction of platelet contractility resulted from malfunction of platelet mitochondria. At the inflammatory conditions, CR may be the predominant HOCl target.

  6. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency

    SciTech Connect

    Hanada, M. Kojima, A.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-15

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  7. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    PubMed

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  8. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the γ process

    NASA Astrophysics Data System (ADS)

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Käppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-01

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of Ep=2.75-9 MeV, close to the upper end of the respective Gamow window of the γ process. We have determined cross sections for 102Pd(p,γ)103Ag, 104Pd(p,γ)105Ag, and 105Pd(p,n)105Ag, as well as partial cross sections of 104Pd(p,n)104Agg, 105Pd(p,γ)106Agm, 106Pd(p,n)106Agm, and 110Pd(p,n)110Agm with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in γ-process calculations.

  9. Investigating the Nexus of Climate, Energy, Water, and Land at Decision-Relevant Scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA)

    SciTech Connect

    Kraucunas, Ian P.; Clarke, Leon E.; Dirks, James A.; Hathaway, John E.; Hejazi, Mohamad I.; Hibbard, Kathleen A.; Huang, Maoyi; Jin, Chunlian; Kintner-Meyer, Michael C.W.; Kleese van Dam, Kerstin; Leung, Lai-Yung R.; Li, Hongyi; Moss, Richard H.; Peterson, Marty J.; Rice, Jennie S.; Scott, Michael J.; Thomson, Allison M.; Voisin, Nathalie; West, Tristram O.

    2015-04-01

    The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture, socioeconomics, and energy systems using a flexible coupling approach. The platform can be customized to inform a variety of complex questions and decisions, such as the integrated evaluation of mitigation and adaptation options across a range of sectors. Research into stakeholder decision support needs underpins the platform's application to regional issues, including uncertainty characterization. Ongoing numerical experiments are yielding new insights into the interactions among human and natural systems on regional scales with an initial focus on the energy-land-water nexus in the upper U.S. Midwest. This paper focuses on PRIMA’s functional capabilities and describes some lessons learned to date about integrated regional modeling.

  10. An image-based skeletal model for the ICRP reference adult male-specific absorbed fractions for neutron-generated recoil protons.

    PubMed

    Jokisch, D W; Rajon, D A; Bahadori, A A; Bolch, W E

    2011-11-07

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  11. An image-based skeletal model for the ICRP reference adult male—specific absorbed fractions for neutron-generated recoil protons

    NASA Astrophysics Data System (ADS)

    Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.

    2011-11-01

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  12. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Recoil momentum at a solid surface during developed laser ablation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, L. I.

    1993-12-01

    The recoil momentum from a laser light pulse in the intensity range 105-107 W/cm2 is experimentally investigated for dielectric and metallic targets as a function of the pressure of the surrounding medium and angle of illumination. An equation with empirical coefficients is obtained for the recoil momentum of illuminated targets. Effects of the screening properties of the erosion jet and the back pressure on the recoil momentum are analyzed as the external pressure is varied.

  13. Quantifying the Mechanism of Phosphate Monoester Hydrolysis in Aqueous Solution by Evaluating the Relevant ab initio QM/MM Free Energy Surfaces

    PubMed Central

    Plotnikov, Nikolay V.; Prasad, B. Ram; Chakrabarty, Suman; Chu, Zhen T.; Warshel, Arieh

    2013-01-01

    Understanding the nature of the free energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free energy surface for the hydrolysis of phosphate monoesters, paying a special attention to the comparison between the one water (1W) and two water (2W) paths for the proton transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by non-systematic QM/MM energy minimization, as well as by non-systematic free energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces which are necessary for reaching concrete conclusions. Our study generated in a systematic way the 2D (3D) free energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provides an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of methyl diphosphate (MDP) trianion is 6–9 kcal/mol higher than the 2W path. This difference becomes slightly larger in the presence of Mg2+ ion, since this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth to point out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic models are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic models

  14. Quantifying the mechanism of phosphate monoester hydrolysis in aqueous solution by evaluating the relevant ab initio QM/MM free-energy surfaces.

    PubMed

    Plotnikov, Nikolay V; Prasad, B Ram; Chakrabarty, Suman; Chu, Zhen T; Warshel, Arieh

    2013-10-24

    Understanding the nature of the free-energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here, the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free-energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free-energy surface for the hydrolysis of phosphate monoesters, paying special attention to the comparison between the one water (1W) and two water (2W) paths for the proton-transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by nonsystematic QM/MM energy minimization, as well as by nonsystematic free-energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces that are necessary for reaching concrete conclusions. Here we report a systematic evaluation of the 2D (3D) free-energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provide an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of the methyl diphosphate (MDP) trianion is 6-9 kcal/mol higher than that the 2W path. This difference becomes slightly larger in the presence of the Mg(2+) ion because this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives a much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth pointing out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic model are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic

  15. Measurement of 23Na(α,p)26Mg at Energies Relevant to 26Al Production in Massive Stars.

    PubMed

    Tomlinson, J R; Fallis, J; Laird, A M; Fox, S P; Akers, C; Alcorta, M; Bentley, M A; Christian, G; Davids, B; Davinson, T; Fulton, B R; Galinski, N; Rojas, A; Ruiz, C; de Séréville, N; Shen, M; Shotter, A C

    2015-07-31

    26Al is an important radioisotope in astrophysics that provides evidence of ongoing nucleosynthesis in the Galaxy. The 23Na(α, p)26Mg reaction has been identified by a sensitivity study as being one of the most important reactions for the production of 26Al in the convective C/Ne burning shell of massive stars. Owing to large uncertainties in previous experimental data, model calculations are used for the reaction rate of 23Na(α, p)26Mg in this sensitivity study. Current experimental data suggest a reaction rate a factor of ∼40 higher than model calculations. However, a new measurement of this reaction cross section has been made in inverse kinematics in the energy range E(c.m.)=1.28-3.15  MeV at TRIUMF, and found to be in reasonable agreement with the model calculation. A new reaction rate is calculated and tight constraints on the uncertainty in the production of 26Al, due to this reaction, are determined.

  16. High-Intensity Scattering Processes of Relativistic Electrons in Vacuum and Their Relevance to High-Energy Astrophysics

    SciTech Connect

    Hartemann, Frederic V.; Troha, Anthony L.; Baldis, Hector A.; Gupta, Atul; Kerman, Arthur K.; Landahl, Eric C.; Luhmann, Neville C. Jr.; Van Meter, James R.

    2000-04-01

    The recent advent of ultra-short pulse, high-intensity lasers, together with advances in other novel technologies, such as high-gradient radiofrequency photoinjectors, have afforded researchers the possibility to simulate astrophysical conditions in the laboratory. Laser-produced plasmas have been successfully used to simulate astrophysical plasmas and supernovae in the laboratory for several years. Now, femtosecond laser systems operating in the terawatt to petawatt range are available, as are synchronized relativistic electron bunches with subpicosecond durations and terahertz bandwidths. With these tools, experiments have been conducted to study phenomena related to supernova explosions, stellar winds, solar coronae, cosmic rays, planetary and celestial matter, and interstellar plasmas. Other experiments have been proposed to investigate Unruh radiation, as well as ponderomotive scattering, which can accelerate electrons in vacuum to relativistic energies using the extremely high gradients in a three-dimensional laser focus. The nonlinear Doppler shift induced by ultrarelativistic radiation pressure is shown to yield complex nonlinear Compton backscattered spectra. Finally, strong radiative corrections are expected when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high-field classical electrodynamics, a new discipline borne out of the aforementioned innovations. (c) 2000 The American Astronomical Society.

  17. Free-energy patterns in inclusion complexes: the relevance of non-included moieties in the stability constants.

    PubMed

    Cova, Tânia F G G; Nunes, Sandra C C; Pais, Alberto A C C

    2017-02-15

    Inclusion complexes play a definite role in a variety of applications, ranging from drug solubilization to smart materials. This work presents a series of studies based on molecular dynamics, including potential of mean force calculations, and aiming at understanding the factors that govern inclusion. Naphthalene and its derivatives are used as guests for a common host, β-cyclodextrin. It is observed that the substitution of naphthalene promotes an increase in the complexation constant (up to 100-fold), irrespective of the nature of the substituent, the latter comprising small hydrophobic and hydrophilic (including charged) groups. It is also seen that entropy does not favor inclusion, the order of magnitude of the binding free energy being given by the enthalpic component, with a dominating guest-host interaction contribution. Desolvation penalizes the inclusion process, and is not observed in the vicinity of the hydrophilic and charged groups, which remain exposed to the solvent. Results suggest that substantial modulation of the inclusion complexes can be achieved imposing different substituents, with direct transposition for the modulation of properties in supramolecular structures based on these complexes.

  18. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the {gamma} process

    SciTech Connect

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kaeppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-15

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E{sub p}=2.75-9 MeV, close to the upper end of the respective Gamow window of the {gamma} process. We have determined cross sections for {sup 102}Pd(p, {gamma}){sup 103}Ag, {sup 104}Pd(p, {gamma}){sup 105}Ag, and {sup 105}Pd(p, n){sup 105}Ag, as well as partial cross sections of {sup 104}Pd(p, n){sup 104}Ag{sup g}, {sup 105}Pd(p, {gamma}){sup 106}Ag{sup m}, {sup 106}Pd(p, n){sup 106}Ag{sup m}, and {sup 110}Pd(p, n){sup 110}Ag{sup m} with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in {gamma}-process calculations.

  19. Fluence measurement of fast neutron fields with a highly efficient recoil proton telescope using active pixel sensors.

    PubMed

    Taforeau, J; Higueret, S; Husson, D; Kachel, M; Lebreton, L

    2014-10-01

    The spectrometer ATHENA (Accurate Telescope for High-Energy Neutron metrology Applications) is being developed at the LNE-IRSN and aims at characterising energy and fluence of fast neutron fields. The detector is a recoil proton telescope and measures neutron fields in the range of 5-20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50-µm-thick silicon sensors that use CMOS technology for proton tracking and a 3-mm-thick silicon diode to measure the residual proton energy. The use of CMOS sensors and silicon diode, owing to a large detection solid angle, increases the intrinsic efficiency of the detector by a factor of 10 compared with conventional designs. The ability of the spectrometer to determine the neutron energy was demonstrated and reported elsewhere. This paper focuses on the fluence measurement of monoenergetic neutron fields in the range of 5-20 MeV. Experimental investigations, performed at the AMANDE facility, indicate a good estimation of neutron fluence at various energies. In addition, a complete description of uncertainties budget is presented in this paper and a Monte Carlo propagation of uncertainty sources leads to a fluence measurement with a precision ∼3-5 % depending on the neutron energy. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  1. Relevant Links

    Atmospheric Science Data Center

    2016-11-02

    ... SRB SRB Home Page SSE American Solar Energy Society (ASES)  - A national organization dedicated to advancing the use of solar energy for the benefit of U.S. citizens and the global environment ...

  2. Effect of a target size on the recoil momentum upon laser irradiation of absorbing materials

    SciTech Connect

    Chumakou, A N; Petrenko, A M; Bosak, N A

    2004-10-31

    The dependence of a recoil momentum on the radius of a target irradiated by a single-pulse Nd{sup 3+}:YAG laser ({lambda}=1.064 {mu}m, {tau}=20 ns, E{<=}300 mJ) in the air is studied. The recoil momentum decreases three-fold with increasing the relative target radius from 0.3 to 5 and tends to saturation for r>3. The calculation of the recoil momentum on the basis of the Euler and Navier-Stokes equations gave understated values for r>1, which lowered to negative values. The reasons for the qualitative discrepancy between the experimental and calculated data is discussed. (interaction of laser radiation with matter)

  3. Recoiling black holes: prospects for detection and implications of spin alignment

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Sijacki, Debora; Kelley, Luke Zoltan; Torrey, Paul; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, Lars

    2016-02-01

    Supermassive black hole (BH) mergers produce powerful gravitational wave emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly oriented spins, ≲ 10 spatially offset AGN may be detectable in Hubble Space Telescope-Cosmological Evolution Survey, and >103 could be found with the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the Large Synoptic Survey Telescope (LSST), Euclid, and the Wide-Field Infrared Survey Telescope (WFIRST). Nearly a thousand velocity offset AGN are predicted within the Sloan Digital Sky Survey (SDSS) footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. None the less, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  4. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  5. Radiation Recoil Effects on the Dynamical Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desiree

    The Yarkovsky effect is a radiation recoil force that results in a semimajor axis drift in the orbit that can cause Main Belt asteroids to be delivered to powerful resonances from which they could be transported to Earth-crossing orbits. This force depends on the spin state of the object, which is modified by the YORP effect, a variation of the Yarkovsky effect that results in a torque that changes the spin rate and the obliquity. Extensive analyses of the basic behavior of the YORP effect have been previously conducted in the context of the classical spin state evolution of rigid bodies (YORP cycle). However, the YORP effect has an extreme sensitivity to the topography of the asteroids and a minor change in the shape of an aggregate asteroid can stochastically change the YORP torques. Here we present the results of the first simulations that self-consistently model the YORP effect on the spin states of dynamically evolving aggregates. For these simulations we have developed several algorithms and combined them with two codes, TACO and pkdgrav. TACO is a thermophysical asteroid code that models the surface of an asteroid using a triangular facet representation and which can compute the YORP torques. The code pkdgrav is a cosmological N-body tree code modified to simulate the dynamical evolution of asteroids represented as aggregates of spheres using gravity and collisions. The continuous changes in the shape of an aggregate result in a different evolution of the YORP torques and therefore aggregates do not evolve through the YORP cycle as a rigid body would. Instead of having a spin evolution ruled by long periods of rotational acceleration and deceleration as predicted by the classical YORP cycle, the YORP effect is self-limiting and stochastic on aggregate asteroids. We provide a statistical description of the spin state evolution which lays out the foundation for new simulations of a coupled Yarkovsky/YORP evolution. Both self-limiting YORP and to a lesser

  6. Radiative recoil corrections to hyperfine splitting: Polarization insertions in the electron factor

    SciTech Connect

    Eides, M. I.; Shelyuto, V. A.

    2010-01-15

    We consider three-loop radiative recoil corrections to hyperfine splitting in muonium due to insertions of the one-loop polarization operator in the electron factor. The contribution generated by electron polarization insertions is a cubic polynomial in the large logarithm of the electron-muon mass ratio. The leading logarithm cubed and logarithm squared terms are well known for some time. We calculate all single-logarithmic and nonlogarithmic radiative recoil corrections of the order {alpha}{sup 3}(m/M)E{sub F} generated by diagrams with the electron and muon polarization insertions.

  7. Reliability, detection limit and depth resolution of the elastic recoil measurement of hydrogen

    NASA Astrophysics Data System (ADS)

    Hisao, Nagai; Shigeki, Hayashi; Michi, Aratani; Tadashi, Nozaki; Minoru, Yanokura; Isao, Kohno; Osamu, Kuboi; Yoshifumi, Yatsurugi

    1987-08-01

    Reliability, detection limit and depth resolution were studied in the elastic recoil measurement of hydrogen mainly in silicon compounds by bombardment with argon ions accelerated up to 50 MeV. For the quantitative determination of hydrogen, recoil silicon atoms proved to serve satisfactorily as an internal monitor. The detection limit was shown to be about 1 to 2×10 12 (atoms/cm 2 for hydrogen on surface and about 1 wt. ppm for hydrogen in bulk. The depth resolution was found to be about 50 nm in most silicon compounds.

  8. Bose-Einstein condensates in an optical cavity with sub-recoil bandwidth

    NASA Astrophysics Data System (ADS)

    Klinder, J.; Keßler, H.; Georges, Ch.; Vargas, J.; Hemmerich, A.

    2016-12-01

    This article provides a brief synopsis of our recent work on the interaction of Bose-Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

  9. Observation of collective atomic recoil motion in a degenerate fermion gas.

    PubMed

    Wang, Pengjun; Deng, L; Hagley, E W; Fu, Zhengkun; Chai, Shijie; Zhang, Jing

    2011-05-27

    We demonstrate collective atomic recoil motion with a dilute, ultracold, degenerate fermion gas in a single spin state. By utilizing an adiabatically decompressed magnetic trap with an aspect ratio different from that of the initial trap, a momentum-squeezed fermion cloud is achieved. With a single pump pulse of the proper polarization, we observe, for the first time, multiple wave-mixing processes that result in distinct collective atomic recoil motion modes in a degenerate fermion cloud. Contrary to the case with Bose condensates, no pump-laser detuning asymmetry is present.

  10. Site-specific recoil-induced effects on inner-shell photoionization of linear triatomic molecules: N 1 s photoelectron spectra of N2 O

    NASA Astrophysics Data System (ADS)

    Krivosenko, Yu. S.; Pavlychev, A. A.

    2016-11-01

    We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.

  11. Effects of molecular rotation after ionization and prior to fragmentation on observed recoil-frame photoelectron angular distributions in the dissociative photoionization of nonlinear molecules

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.

    2016-03-01

    Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.

  12. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    SciTech Connect

    Fallows, Scott Mathew

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  13. Late Paravalvular Aortic Regurgitation: Migration of the Valve or Late Recoil?

    PubMed

    Karimi, Ashkan; Pourafshar, Negiin; Park, Ki E; Choi, Calvin Y; Mogali, Kiran; Stinson, Wade W; Manning, Eddie W; Bavry, Anthony A

    2017-01-02

    A 79-year-old man underwent trans-catheter aortic valve replacement for symptomatic severe aortic stenosis with a 26-mm Edwards SAPIEN XT valve. Immediately after valve deployment there was moderate amount of paravalvular leak. Post-dilation was performed with an additional 2 cc of volume, and the paravalvular leak was reduced to trace. Nine months later, trans-thoracic echocardiography revealed moderate to severe paravalvular leak and possible aortic migration of the valve. The patient was brought back for the treatment of the paravalvular leak which was suspected to be due to valve migration. However, fluoroscopy and trans-esophageal echocardiography showed good valve position. Measurement of late valve recoil in the Coplanar view using cine-angiographic analysis software showed that the lower third of the valve had the greatest late recoil (-1.74 mm, 6.55%), which presumably accounted for the progression of the paravalvular leak. Valve-in-valve trans-catheter aortic valve replacement was performed with a 26-mm SAPIEN 3 valve and the paravalvular leak was reduced to trace. This case displays late recoil as a likely mechanism for development of paravalvular leak after SAPIEN XT valve implantation. Our case illustrates that late recoil needs to be systematically evaluated in future studies, especially when trans-catheter aortic valve replacement is being expanded to lower risk and younger patients for whom the longevity and long-term performance of these valves is of critical importance.

  14. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    NASA Astrophysics Data System (ADS)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  15. Nuclear radiative recoil corrections to the hyperfine structure of S-states in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-09-01

    Nuclear radiative recoil corrections of order α( Zα)5 to the hyperfine splitting of S-states in muonic hydrogen are calculated on the basis of quasipotential method in quantum electrodynamics. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the proton form factors are used.

  16. Interfacial stability and self-similar rupture of evaporating liquid layers under vapor recoil

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Duan, Fei

    2016-12-01

    We investigate interfacial stability of an evaporating viscous liquid layer above/below a horizontal heated substrate in the framework of a long-wave model that accounts for surface tension, positive/negative gravity, and evaporation effects of mass loss and vapor recoil. With the time-dependent linear stability analysis, it is found that the interface instability is enhanced by vapor recoil with time using an effective growth rate. The destabilizing mechanism of vapor thrust competes with the stabilizing surface tension, and the effects of the latter are not asymptotically negligible near rupture, reflected by a rescaled effective interfacial pressure. A two-dimensional nonlinear evolution is investigated for the quasi-equilibrium evaporating layers with different evaporative conditions for Rayleigh-Taylor unstable and sessile layers. For weak mass loss and strong vapor recoil, the well-defined capillary ridges emerge around a deepening narrow valley with increasing wavelength under a positive gravity, while, on the basis of initial condition, main and secondary droplets are either coalesced partially or separated by a sharp dry-out point under a negative gravity. The rupture location depends strongly on the characteristics of a given initial condition, except for the random perturbation. For both the cases, an increase in the modified evaporation number tends to reduce the rupture time tr and droplet thickness remarkably. Similarity analysis along with numerical strategy is presented for the final stage of touch-down dynamics, determined by a physical balance between the vapor recoil and capillary force. The evaporation-driven rupture with a significant vapor recoil and negligible mass loss is shown to contain a countably infinite number of similarity solutions whose horizontal and vertical length scales behave as (tr - t)1/2 and (tr - t)1/3. The first similarity solution represents a stable single-point rupture.

  17. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  18. Simulating Makrofol as a detector for neutron-induced recoils.

    PubMed

    Zhang, G; Becker, F; Urban, M; Xuan, Y

    2011-03-01

    The response of solid-state nuclear track detector is extremely dependent on incident angles of neutrons, which determine the angular distribution of secondary particles. In this paper, the authors present a method to investigate the angular response of Makrofol detectors. Using the C++-based Monte-Carlo tool-kit Geant4 in combination with SRIM and our MATLAB codes, we simulated the angular response of Makrofol. The simulations were based on the restricted energy loss model, and the concept of energy threshold and critical angle. Experiments were carried out with (252)Cf neutrons to verify the simulation results.

  19. Design of athermal phonon light detector for reducing alpha recoil background of next-gen CUORE 0 νββ experiment

    NASA Astrophysics Data System (ADS)

    Camilleri, Joseph; Pyle, Matt; Kolomensky, Yury; Cuore Collaboration; Cdms Collaboration

    2017-01-01

    The current generation of bolometric 0 νββ experiments, including CUORE, expect degraded alpha recoils to be the dominant background restricting experimental sensitivity. The CUPID project will aim to improve the sensitivity of CUORE by over an order of magnitude, and search for 0 νββ in the entire region of parameter space consistent with the inverted neutrino mass hierarchy. Surface contamination of Cu support structures for CUORE's 130Te crystal bolometers is primarily responsible for these unwanted alpha recoils. Electronic signals produced near Qββ (2.53 MeV) have been shown to produce Cherenkov radiation on the order of 100 eV in 130Te crystals. The heavier and slower alpha particles of comparable energy in the region of interest do not produce a Cherenkov signal, allowing for discrimination via a high-resolution cryogenic light detector. A photon detector with energy resolution <10 eV is necessary. We will discuss how athermal phonon collection calorimeter technology developed by the CDMS collaboration over the past decade can be scaled to produce such a sensitive detector, while also satisfying requirements for scintillating crystal alternatives. We will also present the current status of the detector development. NSF: NSF PHY-1314881.

  20. Modeling and Measurement of 39Ar Recoil Loss From Biotite as a Function of Grain Dimensions

    NASA Astrophysics Data System (ADS)

    Paine, J. H.; Nomade, S.; Renne, P. R.

    2004-12-01

    The call for age measurements with less than 1 per mil error puts a demand upon geochronologists to be aware of and quantify a number of problems which were previously negligible. One such factor is 39Ar recoil loss during sample irradiation, a phenomenon which is widely assumed to affect only unusually small crystals having exceptionally high surface/volume ratios. This phenomenon has important implications for thermochronologic studies seeking to exploit a range of closure temperatures arising from variable diffusion radii. Our study focuses on biotite, in which spatial isotope distributions cannot be reliably recovered by stepwise heating and which therefore lack recoil-diagnostic age spectrum behavior. Previous work by Renne et al. [Application of a deuteron-deuteron (D-D) neutron generator to 40Ar/39Ar geochronology, Applied Radiation and Isotopes, in press] used the SRIM code to calculate a ˜20% 39Ar recoil loss from the outermost 0.25 μ m of an infinite slab of phyllosillicate. This result is applied to measured grains of the biotite standard GA1550, a hypabyssal granite from the Mount Dromedary Complex, Australia. We measure the thickness and surface area of 166 grains and approximate the shape of each grain as a cylinder. Grain thickness ranges from 3 to 210 μ m, with an average grain radius of 350 μ m. We predict the amount of 39Ar recoil loss from each grain, finding an expected age error >0.1 % for grains thinner than 150 μ m, a >1% error for grain less than 10 μ m thick, and up to a 3% error for grains less than 3 μ m thick. These modeling results will be tested by analysis of the measured grains after irradiation in the Oregon State University TRIGA reactor. It is important to either account for 39Ar loss in thin biotite grains, or use sufficiently thick ones so that recoil loss is negligible. Our results indicate that only biotite grains thicker than 150 μ m should be used for neutron fluence monitoring in order to avoid bias greater than the

  1. Implications from clean observables for the binned analysis of B → K ∗ μ + μ - at large recoil

    NASA Astrophysics Data System (ADS)

    Descotes-Genon, Sébastien; Matias, Joaquim; Ramon, Marc; Virto, Javier

    2013-01-01

    We perform a frequentist analysis of q 2-dependent B → K ∗(→ Kπ) ℓ + ℓ - angular observables at large recoil, aiming at bridging the gap between current theoretical analyses and the actual experimental measurements. We focus on the most appropriate set of observables to measure and on the role of the q 2-binning. We highlight the importance of the observables P i exhibiting a limited sensitivity to soft form factors for the search for New Physics contributions. We compute predictions for these binned observables in the Standard Model, and we compare them with their experimental determination extracted from recent LHCb data. Analysing b → s and b → sℓ + ℓ - transitions within four different New Physics scenarios, we identify several New Physics benchmark points which can be discriminated through the measurement of P i observables with a fine q 2-binning. We emphasise the importance (and risks) of using observables with (un)suppressed dependence on soft form factors for the search of New Physics, which we illustrate by the different size of hadronic uncertainties attached to two related observables ( P 1 and S 3). We illustrate how the q 2-dependent angular observables measured in several bins can help to unravel New Physics contributions to B → K ∗(→ Kπ) ℓ + ℓ -, and show the extraordinary constraining power that the clean observables will have in the near future. We provide semi-numerical expressions for these observables as functions of the relevant Wilson coefficients at the low scale.

  2. A description of NUEXS, an upgrade of the code FCUP used to compute proton recoil current from CH{sub 2} foils

    SciTech Connect

    Stelts, M.L.; Wood, B.E.

    1982-08-01

    A computer code, FCUP, developed by A. Craft computes currents of recoil protons from a time- and energy-dependent neutron flux striking a CH{sub 2} foil. Three problem areas need to be addressed to extend the code`s usefulness. First, FCUP computes a response that is not time dependent; that is, only the input time bin is broadened to account for the finite time distribution of protons from a single neutron energy; second, the time coordinate of the signal predicted is translated arbitrarily rather than absolutely relative to the time of maximum neutron production in the source; and third, the code does not account for electron pickup by protons at low proton energies in the target and absorber foils. This report describes the changes in calculational method used to overcome these problems.

  3. Reaction Mechanisms in 12C+93Nb System:. Excitation Functions and Recoil Range Distributions Below 7 MeV/u

    NASA Astrophysics Data System (ADS)

    Ahmad, Tauseef; Rizvi, I. A.; Agarwal, Avinash; Kumar, Rakesh; Golda, K. S.; Chaubey, A. K.

    The experiments were performed to study excitation functions (EFs) of evaporation residues (ERs), i.e. 103,102,101Ag, 101,100,99Pd, 101,100Rh, 97Ru, 96Tc, 95Tc, 94Tc, 93Mom, 92Nbm populated in the reactions induced by 12C on 93Nb for exploring the reaction dynamics involved at energies ≈ 47-75 MeV. The activation technique followed by offline γ-ray spectrometry has been employed to measure EFs. These measurements were simulated with other reported values available in literature as well as with theoretical predictions based on computer code PACE-2. The effect of variation of level density parameter involved in this code has also been studied. An excellent agreement was found between theoretical and experimental values in some of the fusion evaporation channels. However, significant enhancement of cross-section as observed in α-emission channels may be due to incomplete fusion (ICF) process and/or direct reaction process. To confirm the aforesaid reaction mechanism, Recoil Range Distributions (RRDs) of various ERs have been measured at ≈ 80 MeV. Moreover, an attempt is made to separate the percentage relative contributions of complete and incomplete fusion components from the analysis of the measured RRDs data. Further, the relative percentage ICF fraction, also estimated from EFs data, was found to be sensitive with the projectile energy.

  4. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    NASA Astrophysics Data System (ADS)

    Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2017-01-01

    Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self

  5. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms.

    PubMed

    Yerokhin, V A; Shabaev, V M

    2015-12-04

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Zα. The results are in excellent agreement with the known terms of the Zα expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Zα-expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1S and 2S states.

  6. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-12-01

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z α . The results are in excellent agreement with the known terms of the Z α expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Z α -expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1 S and 2 S states.

  7. Time of flight elastic recoil detection analysis with a position sensitive detector

    SciTech Connect

    Siketic, Zdravko; Radovic, Iva Bogdanovic; Jaksic, Milko; Skukan, Natko

    2010-03-15

    A position sensitive detection system based on the microchannel plate detector has been constructed and installed at the existing time of flight (TOF) spectrometer in order to perform a kinematic correction and improve the surface time/depth resolution of elastic recoil detection analysis (ERDA) system. The position resolution of the detector has been tested for different types of ions and anode voltages. TOF spectra of recoiled O ions from SiO{sub 2} and F from CaF{sub 2} were collected in coincidence with position sensitive detector signal. Kinematic correction of TOF spectra improved surface time/depth resolution by {approx}20% for our system; however even higher improvements could be obtained in larger solid angle TOF-ERDA systems.

  8. An algorithm for unfolding neutron dose and dose equivalent from digitized recoil-particle tracks

    SciTech Connect

    Bolch, W.E.; Turner, J.E.; Hamm, R.N.

    1986-10-01

    Previous work had demonstrated the feasibility of a digital approach to neutron dosimetry. A Monte Carlo simulation code of one detector design utilizing the operating principles of time-projection chambers was completed. This thesis presents and verifies one version of the dosimeter's computer algorithm. This algorithm processes the output of the ORNL simulation code, but is applicable to all detectors capable of digitizing recoil-particle tracks. Key features include direct measurement of track lengths and identification of particle type for each registered event. The resulting dosimeter should allow more accurate determinations of neutron dose and dose equivalent compared with conventional dosimeters, which cannot measure these quantities directly. Verification of the algorithm was accomplished by running a variety of recoil particles through the simulated detector volume and comparing the resulting absorbed dose and dose equivalent to those unfolded by the algorithm.

  9. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  10. First identification of excited states in Ba117 using the recoil- β -delayed proton tagging technique

    DOE PAGES

    Ding, B.; Liu, Z.; Seweryniak, D.; ...

    2017-02-01

    Excited states have been observed for the first time in the neutron-deficient nucleus 117Ba using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction 64Zn(58Ni, 2p3n)117Ba. Prompt γ rays have been assigned to 117Ba through correlations with β-delayed protons following the decay of A = 117 recoils. Through the analysis of the γ–γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in 117Ba. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have νh11/2[532]5/2– and νd5/2[413]5/2+ configurations, respectively. Lastly, the observed band-crossing properties are interpretedmore » in the framework of cranked shell model.« less

  11. Nuclear recoil corrections to the Lamb shift of hydrogen and light hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Shabaev, V. M.

    2016-06-01

    Accurate calculations of the nuclear recoil effect on the Lamb shift of hydrogenlike atoms are presented. Numerical results are reported for the n s states with n ≤5 and for the 2 p1 /2 and 2 p3 /2 states. The calculations are performed to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z α (where Z is the nuclear charge number and α is the fine structure constant). The obtained results provide accurate predictions for the higher-order remainder beyond the known Z α -expansion terms. In the case of hydrogen, the remainder was found to be much larger than anticipated. This result resolves the previously reported disagreement between the numerical all-order and the analytical Z α -expansion approaches for the nuclear recoil effect on the hydrogen Lamb shift.

  12. Zooming in on B→ K^*ℓ ℓ decays at low recoil

    NASA Astrophysics Data System (ADS)

    Braß, Simon; Hiller, Gudrun; Nišandžić, Ivan

    2017-01-01

    We analyse B→ K^*ℓ ℓ decays in the region of low hadronic recoil, where an operator product expansion (OPE) in 1/m_b applies. Using a local model for charm contributions based on e^+ e^- → hadrons against the OPE provides a data-driven method to access the limitations to the OPE's accuracy related to binnings in the dilepton mass. Model-independent fits to B→ K^*μ μ low recoil angular observables exhibit presently only small sensitivity to different charm models. They give similar results to the fits based on the OPE and are in agreement with the standard model, but leave also room for new physics. Measurements with resolution small enough to probe charm resonances would be desirable.

  13. EMMA, a Recoil Mass Spectrometer for TRIUMF's ISAC-II Facility

    NASA Astrophysics Data System (ADS)

    Davids, Barry; EMMA Collaboration

    2016-09-01

    EMMA is a recoil mass spectrometer for TRIUMF's ISAC-II facility in the final stages of installation and commissioning. In this talk I will briefly review the spectrometer's design capabilities, describe recent progress in its installation and commissioning, and discuss plans for its initial experimental program. This work was supported by the Natural Sciences and Engineering Council of Canada. TRIUMF receives federal funds through a contribution agreement with the National Research Council of Canada.

  14. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  15. Kinematically Identified Recoiling Supermassive Black Hole Candidates in SDSS QSOs with z > 0.25

    NASA Astrophysics Data System (ADS)

    Kim, D.-C.; Evans, A. S.; Stierwalt, S.; Privon, G. C.

    2016-06-01

    We have performed a spectral decomposition to search for recoiling supermassive black holes (rSMBHs) in Sloan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with z < 0.25. Out of 1271 QSOs, we have identified 26 rSMBH candidates that are recoiling toward us. The projected recoil velocities range from -76 to -307 km s-1 with a mean of -149 ± 58 km s-1. Most of the rSMBH candidates are hosted by gas-rich luminous infrared galaxies (LIRGs)/ultra-luminous infrared galaxies (ULIRGs), but only 23% of them show signs of tidal features, which suggests that a majority of them are advanced mergers. We find that the black hole masses M BH of the rSMBH candidates are on average ˜5 times smaller than those of their stationary counterparts and cause a scatter in the {M}{BH}-{σ }\\ast relation. The Eddington ratios of all of the rSMBH candidates are larger than 0.1, with a mean of 0.52 ± 0.27, suggesting that they are actively accreting mass. Velocity shifts in high-excitation coronal lines suggest that the rSMBH candidates are recoiling with an average velocity of about -265 km s-1. The electron density in the narrow line region of the H ii rSMBH candidates is about 1/10 of that in active galactic nucleus (AGN) rSMBH candidates, probably because the AGN in the former was more spatially offset than that in the latter. The estimated spatial offsets between the rSMBH candidate and the center of the host galaxy range from 0.″21 to 1.″97 and need to be confirmed spatially with high-resolution adaptive optics imaging observations.

  16. Production of soft X-ray emitting slow multiply charged ions - Recoil ion spectroscopy

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.; Elston, S. B.; Forester, J. P.; Griffin, P. M.; Pegg, D. J.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Wright, J. J.; Groeneveld, K.-O.

    1977-01-01

    S ions with a mean charge state of about 14+ and Cl ions with a mean charge state of 12+ were used to study Ne L-shell vacancy production. The ions caused copious production of NeII-NeVIII excited states with approximately 10 to the minus 18 sq cm cross sections. The induced recoil velocities might have application to a significantly higher resolution spectroscopy than is possible with beam-foil methods.

  17. Wave-induced vortex recoil and nonlinear refraction

    NASA Astrophysics Data System (ADS)

    Humbert, Thomas; Aumaître, Sébastien; Gallet, Basile

    2017-09-01

    When a vortex refracts surface waves, the momentum flux carried by the waves changes direction and the waves induce a reaction force on the vortex. We study experimentally the resulting vortex distortion. Incoming surface gravity waves impinge on a steady vortex of velocity U0 driven magnetohydrodynamically at the bottom of a fluid layer. The waves induce a shift of the vortex center in the direction transverse to wave propagation, together with a decrease in surface vorticity. We interpret these two phenomena in the framework introduced by Craik and Leibovich [A. D. D. Craik and S. Leibovich, J. Fluid Mech. 73, 401 (1976), 10.1017/S0022112076001420]: We identify the dimensionless Stokes drift S =Us/U0 as the relevant control parameter, Us being the Stokes drift velocity of the waves. We propose a simple vortex line model that indicates that the shift of the vortex center originates from a balance between vorticity advection by the Stokes drift and self-advection of the vortex. The decrease in surface vorticity is interpreted as a consequence of vorticity expulsion by the fast Stokes drift, which confines it at depth. This purely hydrodynamic process is analogous to the magnetohydrodynamic expulsion of a magnetic field by a rapidly moving conductor through the electromagnetic skin effect. We study vorticity expulsion in the limit of fast Stokes drift and deduce that the surface vorticity decreases as 1 /S , a prediction that is compatible with the experimental data. Such wave-induced vortex distortions have important consequences for the nonlinear regime of wave refraction: The refraction angle rapidly decreases with wave intensity.

  18. Recoil polarization observables in the electroproduction of K mesons and Λ's from the proton

    NASA Astrophysics Data System (ADS)

    Maxwell, Oren V.

    2014-09-01

    A model developed previously to investigate the electromagnetic production of strangeness from the proton is used to investigate single and double recoil polarization observables in the reaction ep →e'K+Λ in the relativistic impulse approximation. The formalism is based on a tree-level, effective Lagrangian model, which incorporates a variety of baryon resonances with spins up to 5/2 and the two kaon resonances, K(892) and K1(1270). The parameters of the model were fit to a large pool of photoproduction data from the CLAS, GRAAL, SAPHIR, and LEPS collaborations and to CLAS data for the virtual photoproduction structure functions σU,σT,σL,σTT,σLT, and σLT'. Using two different versions of this model, results are presented for three recoil polarization asymmetries that have been measured recently at CLAS. A new fit is then presented which incorporates the new polarization data in the fitted data set. Results obtained with this new fit are presented for six recoil polarization asymmetries and compared with results from one of the previous fits.

  19. Stability branching induced by collective atomic recoil in an optomechanical ring cavity

    NASA Astrophysics Data System (ADS)

    Ian, Hou

    2017-02-01

    In a ring cavity filled with an atomic condensate, self-bunching of atoms due to the cavity pump mode produce an inversion that re-emits into the cavity probe mode with an exponential gain, forming atomic recoil lasing. An optomechanical ring cavity is formed when one of the reflective mirrors is mounted on a mechanical vibrating beam. In this paper, we extend studies on the stability of linear optomechanical cavities to such ring cavities with two counter-propagating cavity modes, especially when the forward propagating pump mode is taken to its weak coupling limit. We find that when the atomic recoil is in action, stable states of the mechanical mode of the mirror converge into branch cuts, where the gain produced by the recoiling strikes balance with the multiple decay sources, such as cavity leakage in the optomechanical system. This balance is obtained when the propagation delay in the dispersive atomic medium matches in a periodic pattern to the frequencies and linewidths of the cavity mode and the collective bosonic mode of the atoms. We show an input-output hysteresis cycle between the atomic mode and the cavity mode to verify the multi-valuation of the stable states after branching at the weak coupling limit.

  20. Exploring relativistic many-body recoil effects in highly charged ions.

    PubMed

    Orts, R Soria; Harman, Z; López-Urrutia, J R Crespo; Artemyev, A N; Bruhns, H; Martínez, A J González; Jentschura, U D; Keitel, C H; Lapierre, A; Mironov, V; Shabaev, V M; Tawara, H; Tupitsyn, I I; Ullrich, J; Volotka, A V

    2006-09-08

    The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s(2)2s(2)2p 2P(1/2) - 2P(3/2) transition in Ar13+ and the 1s(2)2s2p 3P1-3P2 transition in Ar14+. The experimental isotope shifts of 0.00123(6) nm (Ar13+) and 0.00120(10) nm (Ar14+) are in agreement with our present predictions of 0.00123(5) nm (Ar13+) and 0.00122(5) nm (Ar14+) based on the total relativistic recoil operator, confirming that a thorough understanding of correlated relativistic electron dynamics is necessary even in a region of intermediate nuclear charges.

  1. Recoil-range studies of heavy products of multinucleon transfer from /sup 18/O to /sup 245/Cm and /sup 249/Cf

    SciTech Connect

    McFarland, R.M.

    1982-09-01

    Recoil range distributions were measured for alpha and spontaneous fission activities made in the bombardment of /sup 245/Cm and /sup 249/Cf with /sup 18/O from 6.20 MeV/nucleon down to the interaction barrier. The shape of the distributions indicates tht transfers of up to four protons take place via a combination of quasi-elastic (QET) and deep inelastic (DIT) mechanisms, rather than complete fusion-de-excitation (CF) or massive transfer (MT). Angular distributions constructed from recoil range distributions, assuming QET/DIT, indicate that the QET component contributes more significantly to the heavy product residue cross section than the DIT, even though primary cross sections are expected to be higher for DIT than for QET. This may be explained qualitatively as a result of the high excitation energies associated with DIT; the very negative Q/sub gg/ of projectile stripping for these systems combined with the lower expected optimal Q/sub rxn/ of QET compared to DIT can give QET products comparatively low excitation.

  2. Measurement of 1323 and 1487 keV resonances in 15N(α ,γ )19F with the recoil separator ERNA

    NASA Astrophysics Data System (ADS)

    Di Leva, A.; Imbriani, G.; Buompane, R.; Gialanella, L.; Best, A.; Cristallo, S.; De Cesare, M.; D'Onofrio, A.; Duarte, J. G.; Gasques, L. R.; Morales-Gallegos, L.; Pezzella, A.; Porzio, G.; Rapagnani, D.; Roca, V.; Romoli, M.; Schürmann, D.; Straniero, O.; Terrasi, F.; ERNA Collaboration

    2017-04-01

    Background: The origin of fluorine is a widely debated issue. Nevertheless, the 15N(α ,γ )19F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the direct capture and the tails of the two broad resonances at Ec .m .=1323 and 1487 keV. Purpose: The broad resonances widths, Γγ and Γα, have to be measured with adequate precision in order to better determine their contribution to the 15N(α ,γ )19F stellar reaction rate. Methods: Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec .m .=1323 and 1487 keV is used to determine their widths in the α and γ channels. Results: We show that a direct measurement of the cross section of the 15N(α ,γ )19F reaction can be successfully obtained with the recoil separator ERNA, and the widths Γγ and Γα of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance Γα. Conclusions: The revision of the widths of the two more relevant broad resonances in the 15N(α ,γ )19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the 19F stellar nucleosynthesis is dominated by the uncertainties affecting the direct capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.

  3. Recoil- α -fission and recoil- α – α -fission events observed in the reaction 48 Ca + 243 Am

    SciTech Connect

    Forsberg, U.; Rudolph, D.; Andersson, L. -L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R. -D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    A recent high-resolution α, X-ray, and γ-ray coincidence-spectroscopy experiment at GSI offered the first glimpse of excitation schemes of isotopes along α-decay chains of Z=115. To understand these observations and to make predictions about shell structure of superheavy nuclei below 288115, we employed nuclear DFT. We find that the presence and nature of low-energy E1 transitions in well-deformed nuclei around Z=110, N=168 strongly depends on the strength of the spin-orbit coupling; hence, it provides an excellent constraint on theoretical models of superheavy nuclei.

  4. Effects of the primary recoil spectrum on microstructural evolution

    SciTech Connect

    Wiedersich, H.

    1989-11-01

    For quantitative predictions and comparisons of microstructures that evolve during exposure to different radiation environments at elevated temperature one needs to develop methods that go beyond those based on the number of displacements per atom. The number of freely migrating defects that contribute to the microstructural development is far less than the total number of defects produced, as has been recognized for some time from measurements of radiation-induced segregation and of radiation-enhanced diffusion. One major reason for the small amount of defects available for long range migration is the high concentration and close spatial correlation of vacancies and, to a somewhat lesser degree, of interstitials in cascades produced by high energy knock-ons. As a consequence, many defects either recombine or form immobile defect clusters during the defect formation and cooling phases of the cascades. After doses exceeding a few tenths of a displacement per atom, the residue of small clusters and dislocation loops of vacancy type remaining in the central portions of energetic cascades and subscascades, is the second major reason for the reduction of the mean free path of defects between creation and annihilation. Defect production in various neutron and ion irradiation environments is discussed in light of these facts. A method to calculate the fraction of freely migrating defects from the cluster size distribution of defects produced in cascades is suggested. The results are in good agreement with available data. 22 refs., 5 figs.

  5. Production and Recoil Loss of Cosmogenic Nuclides in Presolar Grains

    NASA Astrophysics Data System (ADS)

    Trappitsch, Reto; Leya, Ingo

    2016-05-01

    Presolar grains are small particles that condensed in the vicinity of dying stars. Some of these grains survived the voyage through the interstellar medium (ISM) and were incorporated into meteorite parent bodies at the formation of the Solar System. An important question is when these stellar processes happened, i.e., how long presolar grains were drifting through the ISM. While conventional radiometric dating of such small grains is very difficult, presolar grains are irradiated with galactic cosmic rays (GCRs) in the ISM, which induce the production of cosmogenic nuclides. This opens the possibility to determine cosmic-ray exposure (CRE) ages, i.e., how long presolar grains were irradiated in the ISM. Here, we present a new model for the production and loss of cosmogenic 3He, 6,7Li, and 21,22Ne in presolar SiC grains. The cosmogenic production rates are calculated using a state-of-the-art nuclear cross-section database and a GCR spectrum in the ISM consistent with recent Voyager data. Our findings are that previously measured 3He and 21Ne CRE ages agree within the (sometimes large) 2σ uncertainties and that the CRE ages for most presolar grains are smaller than the predicted survival times. The obtained results are relatively robust since interferences from implanted low-energy GCRs into the presolar SiC grains and/or from cosmogenic production within the meteoroid can be neglected.

  6. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    SciTech Connect

    Gatu Johnson, M. Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Kilkenny, J. D.

    2014-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80–140 mg/cm{sup 2} and CH-ablator ρR's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  7. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Kilkenny, J. D.

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm2 and CH-ablator ρR's of 400-680 mg/cm2 are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  8. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility.

    PubMed

    Gatu Johnson, M; Frenje, J A; Li, C K; Séguin, F H; Petrasso, R D; Bionta, R M; Casey, D T; Caggiano, J A; Hatarik, R; Khater, H Y; Sayre, D B; Knauer, J P; Sangster, T C; Herrmann, H W; Kilkenny, J D

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm(2) and CH-ablator ρR's of 400-680 mg/cm(2) are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  9. The uncertainty analysis on energy scale due to the variation of W value for liquid xenon dark matter detector

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2016-03-01

    The average energy expended per electron-ion pair, W value, is critical in understanding a liquid xenon detector energy response to low energy recoils. The reduction of scintillation and ionization yield for electronic recoils and nuclear recoils are explained using the scintillation quenching mechanism due to the variation of the average energy expended per electron hole pair, W value, which includes the energy lost to scintillation and phonon generation. We show the theoretical calculation of scintillation efficiency with W value in comparison with experimental data. The impact of variation of W value on the analysis of energy scale is discussed in detail. We conclude that the W value determined with experimental data depends on recoil energy and particle type. This work is supported by NSF in part by the NSF OIA 1434142, DOE Grant DE-FG02-10ER46709, and the State of South Dakota.

  10. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  11. FastPixN, a new integrated pixel chip for a future fast version of the IRSN - recoil proton telescope.

    PubMed

    Kachel, M; Husson, D; Higueret, S; Taforeau, J; Lebreton, L

    2014-10-01

    A first prototype of recoil proton telescope (RPT) is currently working at the AMANDE facility, being developed as a collaboration between IPHC Strasbourg and the LNE-IRSN. The device, able to measure both energy and fluence of neutron fields in the range of 5-20 MeV, has to be improved further, in order to reduce the considerable inelastic background generated by the neutrons inside the RPT itself. To achieve faster running cycles, the present complementary metal-oxide-semiconductor pixels used for proton tracking are to be replaced by a new integrated chip, specially developed for this application. The authors present a first version of this new element, with individual pixels readout at a 200-MHz frequency, with a fast 4-bit ADC for each column of 64 pixels. The measured performances point to a complete frame treatment in only 12.6 µs. With a readout speed multiplied by a factor 400 over the existing device, the authors expect a considerable improvement of the telescope at AMANDE, with the potential to reach neutron fluence rates up to 10(7) n cm(-2) s(-1) or more. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    DOE PAGES

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; ...

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated.more » Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.« less

  13. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    SciTech Connect

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  14. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    SciTech Connect

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  15. Progress towards a precision measurement of atomic recoil frequency using an echo interferometer

    NASA Astrophysics Data System (ADS)

    Barrett, B.; Carew, A.; Beattie, S.; Chan, I.; Mok, C.; Berthiaume, R.; Kumarakrishnan, A.

    2010-03-01

    We discuss progress toward a precision measurement of the atomic recoil frequency in ^85Rb using an echo-type atom interferometer and a new technique [Phys. Rev. A 79, 021605(R) (2009)]. At time t = 0, a standing wave pulse (swp) creates a superposition of momentum states. The coherence of these p-states decays quickly due to the velocity distribution of the laser cooled sample. At t = T, a 2nd swp diffracts the p-states again and a density grating associated with the interference of p-states differing by multiples of the 2-photon recoil momentum (n q = 2 n k) is formed in the vicinity of t = 2T. A traveling wave readout pulse Bragg scatters light only from the grating with spatial periodicity λ/2 (associated with interfering p-states differing by q). The backscatterd light is detected as the signal. A 3rd swp (applied at t = 2T - δT) converts the difference between interfering p-states from nq to q. All interfering orders of p-states contribute to the signal at t = 2T. As a function of δT, the signal shape exhibits narrow fringes that revive periodically at the 2-photon recoil period, π/φq. We have achieved a single measurement precision of ˜500 ppb on a timescale of 2T ˜48 ms. Further improvements are anticipated by extending the timescale and narrowing the fringe width. This work is supported by CFI, OIT, NSERC, OCE, and York University.

  16. PPARγ deficiency results in reduced lung elastic recoil and abnormalities in airspace distribution

    PubMed Central

    2010-01-01

    Background Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear hormone receptor that regulates gene expression, cell proliferation and differentiation. We previously described airway epithelial cell PPARγ deficient mice that develop airspace enlargement with decreased tissue resistance and increased lung volumes. We sought to understand the impact of airspace enlargement in conditionally targeted mice upon the physio-mechanical properties of the lung. Methods We measured elastic recoil and its determinants, including tissue structure and surface forces. We measured alveolar number using radial alveolar counts, and airspace sizes and their distribution using computer-assisted morphometry. Results Air vs. saline-filled pressure volume profiles demonstrated loss of lung elastic recoil in targeted mice that was contributed by both tissue components and surface tension, but was proportional to lung volume. There were no significant differences in surfactant quantity/function nor in elastin and collagen content between targeted animals and littermate controls. Importantly, radial alveolar counts were significantly reduced in the targeted animals and at 8 weeks of age there were 18% fewer alveoli with 32% more alveolar ducts. Additionally, the alveolar ducts were 19% larger in the targeted animals. Conclusions Our data suggest that the functional abnormalities, including loss of recoil are secondary to altered force transmission due to differences in the structure of alveolar ducts, rather than changes in surfactant function or elastin or collagen content. These data further define the nature of abnormal lung maturation in the absence of airway epithelial cell PPARγ and identify a putative genetic determinant of dysanapsis, which may serve as a precursor to chronic lung disease. PMID:20525205

  17. Recoil polarization measurements of the proton electromagnetic form factor ratio at high momentum transfer

    SciTech Connect

    Andrew Puckett

    2009-12-01

    Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.

  18. Calculated yield of isomer depletion due to NEEC for 93 m Mo recoils

    NASA Astrophysics Data System (ADS)

    Karamian, S. A.; Carroll, J. J.

    2012-11-01

    In the present work, quantitative calculations were carried out for production and depletion of the 93 m Mo isomer in a relatively simple experiment using 91Zr beam ions. Such studies could be arranged at existing and operating accelerator facilities, e.g. at GSI or in JINR. The 93 m Mo nuclei produced in a He gas target due to the 4He(91Zr, 2 n) reaction will recoil into a gas stopper with a high velocity, being then depleted due to NEEC in highly-ionized species.

  19. Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime.

    PubMed

    Ido, Tetsuya; Katori, Hidetoshi

    2003-08-01

    Recoil-free as well as Doppler-free spectroscopy was demonstrated on the 1S0-3P1 transition of Sr atoms confined in a one-dimensional optical lattice. By investigating the wavelength and polarization dependence of the ac Stark shift acting on the 1S0 and 3P1(m(J)=0) states, we determined the wavelength where the Stark shifts for both states coincide. This Stark-free optical lattice, allowing the purturbation-free spectroscopy of trapped atoms, may keep neutral-atom based optical standards competitive with single-ion standards.

  20. Automation of experiments at the Dubna gas-filled separator of recoil nuclei: Part II

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2015-03-01

    An application developed in Builder C++ (Windows) for the offline analysis of experimental data from the spectrometer of the gas-filled separator of recoil nuclei (Flerov Laboratory of Nuclear Reactions) based on the double-sided silicon strip detector is discussed. The automatic express method developed for calibrating 48 strips of the silicon position-sensitive detector based on the three most energetic spectral lines from the natYb + 48Ca▭*Th reaction is compared to the results produced by more rigorous calibration methods. The examples of spectra for this reaction and the results of filtering for the proposed calibration algorithm are given.

  1. Study of ion-crystal interaction using the blocking technique for scattered recoils

    NASA Astrophysics Data System (ADS)

    Karamyan, S. A.

    1990-10-01

    Experimental data are presented on orientation effects observed in swift heavy-ion exposures of diamond. Si and Ge crystals by recording recoil nuclei. The volume capture of medium-weight nuclei to channeling has been revealed and studied. The ion damaging power is systematized and the anomalously low damaging power of Xe ions is established. The crystal-media response to the passage of highly ionizing particles is discussed. On the basis of the crystal-blocking technique, a variant of the experimental estimate of the de-excitation time for inelastic nuclear collision products is described.

  2. Calculated yield of isomer depletion due to NEEC for {sup 93m}Mo recoils

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2012-11-15

    In the present work, quantitative calculations were carried out for production and depletion of the {sup 93m}Mo isomer in a relatively simple experiment using {sup 91}Zr beam ions. Such studies could be arranged at existing and operating accelerator facilities, e.g. at GSI or in JINR. The {sup 93m}Mo nuclei produced in a He gas target due to the {sup 4}He({sup 91}Zr, 2n) reaction will recoil into a gas stopper with a high velocity, being then depleted due to NEEC in highly-ionized species.

  3. A possible in vivo generator 103Pd/103mRh--recoil considerations.

    PubMed

    van Rooyen, Johann; Szucs, Zoltan; Rijn Zeevaart, Jan

    2008-10-01

    The use of Auger emitters as potential radiopharmaceuticals is increasingly investigated. One such radionuclide of interest is (103m)Rh. This can be produced from (103)Ru or from (103)Pd in an in vivo generator. A potential problem with this concept is the recoil of the (103m)Rh out of the carrier molecule and even out of the target cell. In order to determine whether this would happen in the (103)Pd/(103m)Rh case calculations were done to prove that this does not happen. From theoretical considerations it seems that the (103)Pd/(103m)Rh in vivo generator system would be possible.

  4. Direct recoil radon emanation from crystalline phases. Influence of moisture content

    NASA Astrophysics Data System (ADS)

    Barillon, Rémi; Özgümüs, Ahmet; Chambaudet, Alain

    2005-06-01

    This paper is devoted to the study of the radon emanation coefficient vs. water mass fraction for mineral samples. Modeling is performed considering only the direct recoil phenomena and assuming planar pores with high lengths-to-width aspect ratios. Water is assumed either to fill the pore alternatively with air or to form a continuous film on the pore surface. This modeling is applied to uranium mine tailings for which the pore size distribution was experimentally measured. It enables a good description of the change of the experimental radon emanation coefficients with the moisture content of the studied samples.

  5. Experimental evidence of the vapor recoil mechanism in the boiling crisis.

    PubMed

    Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D

    2006-11-03

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  6. Symmetry Relations for Heavy-to-Light Meson Form Factors at Large Recoil

    SciTech Connect

    Hill, R.

    2004-11-10

    The description of large-recoil heavy-to-light meson form factors is reviewed in the framework of soft-collinear effective theory. At leading power in the heavy-quark expansion, three classes of approximate symmetry relations arise. The relations are compared to experimental data for D {yields} K* and D{sub s} {yields} {phi} form factors, and to light-cone QCD sum rule predictions for B {yields} {pi} and B {yields} {rho} form factors. Implications for the extraction of |V{sub ub}| from semileptonic B {yields} {rho} decays are discussed.

  7. Off-resonance photoemission dynamics studied by recoil frame F1s and C1s photoelectron angular distributions of CH{sub 3}F

    SciTech Connect

    Stener, M. Decleva, P.; Mizuno, T.; Yagishita, A.; Yoshida, H.

    2014-01-28

    F1s and C1s photoelectron angular distributions are considered for CH{sub 3}F, a molecule which does not support any shape resonance. In spite of the absence of features in the photoionization cross section profile, the recoil frame photoelectron angular distributions (RFPADs) exhibits dramatic changes depending on both the photoelectron energy and polarization geometry. Time-dependent density functional theory calculations are also given to rationalize the photoionization dynamics. The RFPADs have been compared with the theoretical calculations, in order to assess the accuracy of the theoretical method and rationalize the experimental findings. The effect of finite acceptance angles for both ionic fragments and photoelectrons has been included in the calculations, as well as the effect of rotational averaging around the fragmentation axis. Excellent agreement between theory and experiment is obtained, confirming the good quality of the calculated dynamical quantities (dipole moments and phase shifts)

  8. Characterization of Hundreds of MeV 7Li(p,n) Quasi-Monoenergetic Neutron Source at RCNP Using a Proton Recoil Telescope and TOF Technique

    NASA Astrophysics Data System (ADS)

    Hagiwara, Masayuki; Iwamoto, Yosuke; Iwase, Hiroshi; Yashima, Hiroshi; Satoh, Daiki; Matsumoto, Tetsuro; Masuda, Akihiko; Nakane, Yoshihiro; Tamii, Atsushi; Shima, Tatsushi; Hatanaka, Kichiji; Nakamura, Takashi

    The peak neutron fluence of a quasi-monoenergetic 7Li(p,n) neutron source at RCNP of Osaka University have been measured for four incident proton energies between 100 and 300 MeV, using a proton recoil telescope (PRT) with event selection by a time-of-flight technique. We deduced the cross section of the peak neutron production reaction, 7Li(p,n0,1)7Be, at 0° and compared with that previously obtained with a time-of-flight (TOF) method employing an organic liquid scintillator. The results obtained with different methods are in agreement within their uncertainties and generally consistent with the other experimental data in several hundreds of MeV region.

  9. Studies of metallic species incorporation during growth of SrBi{sub 2}Ta{sub 2}O{sub 9} films on YBa{sub 2}Cu{sub 3}O{sub 7-x} substrates using mass spectroscopy of recoiled ions.

    SciTech Connect

    Dhote, A. M.

    1999-01-13

    The incorporation of metallic species (Bi, Sr and Ta) during the growth of layered perovskite SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) on a-axis oriented YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) conducting oxide substrates has been investigated using in situ low energy mass spectroscopy of recoiled ions (MSRI). This technique is capable of providing monolayer-specific surface information relevant to the growth of single and multi-component thin films and layered heterostructures. The data show a temperature dependence of metallic species incorporation during co-deposition of Sr, Bi and Ta on YBCO surfaces. At high temperatures (400 < T {le} 700 C), negligible incorporation of Bi is observed as compared to Ta and Sr. At low temperatures ({le} 400 C), there is a substantial incorporation of Bi, Sr and Ta on the surface of YBCO, and the MSRI signal intensities for Sr, Bi and Ta are nearly independent of substrate temperature. According to thermodynamic calculations, the presence of Ba and Y on the YBCO surface inhibit the incorporation of Bi due to competition for oxygen required to establish bonding of metallic species to the surface. This may be the explanation for the observed Bi deficiency in films grown on YBCO surfaces at temperatures >400 C. SBT films grown at temperatures {le} 400 C and annealed in oxygen or air at 800 C exhibit a polycrystalline structure with partial a-axis orientation.

  10. Recoil effects due to electron shake-off following the beta decay of 6 He

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.; Schulhoff, Eva

    2016-05-01

    There are currently several experiments in progress to search for new physics beyond the Standard Model by high precision studies of angular correlations in the β decay of the helium isotope 6He to form 6Li +e- +νe. After the β decay process, the atomic electrons of 6 Li+ adjust to the sudden change of nuclear charge from 2 to 3. We calculate the probabilities for electron shake-up and shake-off, including recoil effects, by the use of a Stieltjes imaging representation of the final states. A variety of sum rules provides tight consistency checks on the accuracy of the results. Results obtained previously indicate that there is a 7 σ disagreement between theory and experiment for the additional nuclear recoil induced by the emission of atomic shake-off electrons. This disagreement will be further studied, and the results extended to the 1 s 2 p3 P and metastable 1 s 2 s3 S states as initial states of 6 He before β-decay. Research supported by the Natural Sciences and Engineering Research Council of Canada.

  11. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.

    2015-08-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  12. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  13. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  14. An energy spread correction for ERDA hydrogen depth profiling

    SciTech Connect

    Verda, R. D.; Nastasi, Michael Anthony,

    2002-01-01

    A technique for hydrogen depth profiling by reflection elastic recoil detection analysis called the channel-depth conversion was introduced by Verda, et al.' However, the energy spread in elastic recoil detection analysis spectra, which causes a broadening in the energy range and leads to errors in depth profiling, was not addressed by this technique. Here we introduce a technique to addresses this problem, called the energy spread correction. Together, the energy spread correction and the channel-depth conversion techniques comprise the depth profiling method presented in this work.

  15. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    SciTech Connect

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems.

  16. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  17. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  18. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  19. Relative optically stimulated luminescence and thermoluminescence efficiencies of Al{sub 2}O{sub 3}:C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry

    SciTech Connect

    Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.

    2008-12-15

    This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al{sub 2}O{sub 3}:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al{sub 2}O{sub 3}:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al{sub 2}O{sub 3}:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al{sub 2}O{sub 3}:C.

  20. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV)

    SciTech Connect

    Tedgren, Aasa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm

    2011-10-15

    Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to {sup 60}Co and to address discrepancies between the results found in recent publications of detector response. Methods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in {sup 137}Cs- and {sup 60}Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for {sup 60}Co was determined at each beam quality. Results: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and {sup 137}Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the