Science.gov

Sample records for recoil mass separator

  1. Sub-barrier reactions measured using a recoil mass separator

    SciTech Connect

    Betts, R.R.

    1988-01-01

    Few data exist in the sub-barrier region for reaction channels other than fusion. In particular, our experimental knowledge of quasi-elastic transfer reactions is sparse, despite the belief that this particular channel may be dominant in determining some features of the sub-barrier fusion enhancement. Transfer reactions are governed primarily by the closet approach of the colliding nuclei which, at low energies, results in a strong backward peaking of the angular distribution in the center-of-mass frame. For situations where the projectile has a significant fraction of the target mass, as is so in most cases of interest, the backscattered projectile-like fragment has such low energy that the usual techniques of measurement and identification become invalid. Here, we report on a solution to this problem which allows a systematic study of many aspects of transfer reactions in the energy regime of interest. We exploit the fact that associated with the low-energy backscattered projectile-like fragment is a complementary target-like fragment which recoils to forward angles with a large fraction of the incident beam energy. These target-like fragments were detected and identified using the Daresbury Recoil Mass Separator thus allowing the measurement of quasi-elastic transfer over hitherto inaccessible energy range from the vicinity of the barrier to several tens of MeV below. The experiments described here used VYNi beams of energies ranging from 180 to 260 MeV provided by the Daresbury Laboratory Nuclear Structure Facility tandem accelerator. Data on sub-barrier transfer for targets of /sup 116,118,120,122,124/Sn and /sup 144,148,150,152,154/Sm were obtained. 16 refs., 10 figs., 2 tabs.

  2. COSY Simulations to Guide Commissioning of the St. George Recoil Mass Separator

    NASA Astrophysics Data System (ADS)

    Schmitt, Jaclyn; Moran, Michael; Seymour, Christopher; Gilardy, Gwenaelle; Meisel, Zach; Couder, Manoel

    2015-10-01

    The goal of St. George (STrong Gradient Electromagnetic Online Recoil separator for capture Gamma ray Experiments) is to measure (α, γ) cross sections relevant to stellar helium burning. Recoil separators such as St. George are able to more closely approach the low astrophysical energies of interest because they collect reaction recoils rather than γ-rays, and thus are not limited by room background. In order to obtain an accurate cross section measurement, a recoil separator must be able to collect all recoils over their full range of expected energy and angular spread. The energy acceptance of St. George is currently being measured, and the angular acceptance will be measured soon. Here we present the results of COSY ion optics simulations and magnetic field analyses which were performed to help guide the commissioning measurements and diagnostic upgrades required to complete those measurements. National Science Foundation Research Experiences for Undergraduates program.

  3. The study of exotic N approx equal 82 nuclei using the Daresbury recoil mass separator

    SciTech Connect

    McNeill, J.H.; Chishti, A.A.; Gelletly, W.; Hotchkis, M.A.C.; Varley, B.J.; Blomqvist, J.; Daly, P.J.; Piiparinen, M.; Woods, P.J.; Manchester Univ. . Schuster Lab.; Manne Siegbahn Inst.; Purdue Univ., Lafayette, IN . Dept. of Chemistry; Jyvaeskylae Univ. . Dept. of Physics; Edinburgh Univ. . Dept. of Physics)

    1989-01-01

    Experiments using the Daresbury Recoil Mass Separator have identified microsecond isomers in the exotic N {equals} 82, 83 nuclei {sup 153}Yb, {sup 153}Lu, {sup 154}Hf, and have established their decay schemes. The results for {sup 153}Lu and {sup 154}Hf, together with those for lighter N {equals} 82 isotones, provide an outstanding illustration of the dependence of E2 transition rates between J{sup n} states on the subshell occupation, and demonstrate that half-filling of the {pi}h{sub 11/2} subshell in the N {equals} 82 series occurs just below Z {equals} 71 {sup 153}Lu. The result of the isomer in the even-odd N {equals} 83 nucleus {sup 153}Yb shows that the isomerism is due to a low-energy E2 transition rather than an E3 transition as in lighter N {equals} 83 even-odd isotones, which is another consequence of the {pi}h{sub 11/2} subshell being about half-filled. Furthermore, the long-lived isomer observed in the odd-odd N {equals} 83 nucleus {sup 154}Lu also reflects that the {pi}h{sub 11/2} subshell is close to being half-filled. 23 refs., 12 figs., 4 tabs.

  4. Advances in the helium-jet coupled on-line mass separator RAMA. [Recoil Atom Mass Analyzer

    SciTech Connect

    Moltz, D M; Aysto, J; Cable, M D; Parry, R F; Haustein, P E; Wouters, J M; Cerny, J

    1980-01-01

    General improvements to the on-line mass separator RAMA (Recoil Atom Mass Analyzer) have yielded a greater reliability and efficiency for some elements. A new utilitarian helium-jet chamber has been installed to facilitate quick target and degrader foil changes in addition to a new ion source holder. A higher efficiency hollow-cathode, cathode-extraction ion source, for lower melting point elements (< 1200/sup 0/C) has also been designed. Tests with the beta-delayed proton emitter /sup 37/Ca showed a factor of five increase in yield over the old hollow-cathode, anode-extraction source. A differentially-pumped-tape drive system compatible with both ..gamma..-..gamma.. and ..beta..-..gamma.. experiments has been incorporated into the general detection system. All major operating parameters will soon be monitored by a complete stand-alone microprocessor system which will eventually be upgraded to a closed-loop control system.

  5. Recoil Separators for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Blackmon, J. C.

    2004-10-01

    Hydrogen and helium capture reactions are important in many astrophysical environments. Measurements in inverse kinematics using recoil separators have demonstrated a particularly sensitive technique for studying low-yield capture reactions.(M. S. Smith, C. E. Rolfs, and C. A. Barnes, Nucl. Instrum. Meth. Phys. Res. A306) (1991) 233. This approach allows a low background rate to be achieved with a high detection efficiency (about 50%) for the particles of interest using a device with only modest acceptance. Recoil separators using a variety of ion-optic configurations have been installed at numerous accelerator facilities in the past decade and have been used to measure, for example, alpha capture reactions using stable beams(D. Rogalla et al.), Eur. Phys. J. 6 (1999) 471. and proton capture reactions using radioactive ion beams.(S. Bishop et al.), Phys. Rev. Lett. 90 (2003) 162501. Measurements in inverse kinematics are the only viable means for studying reactions on short-lived nuclei that are crucial for understanding stellar explosions, and a recoil separator optimized for the measurement of capture reactions with radioactive ion beams figures prominently into the design of the low energy experimental area at the Rare Isotope Accelerator (RIA). The operational requirements for such a device will be outlined, and recoil separator designs and characteristics will be presented.

  6. A recoil separator for nuclear astrophysics SECAR

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Bardayan, D. W.; Blackmon, J. C.; Chipps, K. A.; Couder, M.; Greife, U.; Hager, U.; Montes, F.; Rehm, K. E.; Schatz, H.; Smith, M. S.; Wiescher, M.; Wrede, C.; Zeller, A.

    2016-06-01

    A recoil separator SECAR has been designed to study radiative capture reactions relevant for the astrophysical rp-process in inverse kinematics for the Facility for Rare Isotope Beams (FRIB). We describe the design, layout, and ion optics of the recoil separator and present the status of the project.

  7. Recoil separator ERNA: ion beam specifications

    NASA Astrophysics Data System (ADS)

    Rogalla, D.; Aliotta, M.; Barnes, C. A.; Campajola, L.; D'Onofrio, A.; Fritz, E.; Gialanella, L.; Greife, U.; Imbriani, G.; Ordine, A.; Ossmann, J.; Roca, V.; Rolfs, C.; Romano, M.; Sabbarese, C.; Schürmann, D.; Schümann, F.; Strieder, F.; Theis, S.; Terrasi, F.; Trautvetter, H. P.

    For improved measurements of the key astrophysical reaction 12C(α,γ)16O in inverted kinematics, a recoil separator ERNA is being developed at the 4 MV Dynamitron tandem accelerator in Bochum to detect directly the 16O recoils with about 50% efficiency. Calculations of the ion beam optics including all filtering and focusing elements of ERNA are presented. Since the 12C projectiles and the 16O recoils have essentially the same momentum, and since the 12C ion beam emerging from the accelerator passes through a momentum filter (analysing magnet), the 12C ion beam must be as free as possible from 16O contamination for ERNA to succeed. In the present work, the 16O contamination was reduced from a level of 1 × 10-11 to a level below 2 × 10-29 by the installation of Wien filters both before and after the analysing magnet. The measurement of these and other beam specifications involved other parts of the final ERNA layout - sequentially a Wien filter, a 60˚ dipole magnet, another Wien filter, and a ΔE-E telescope. The setup led to a measured suppression factor of 5 × 10-18 for the 12C ion beam. The experiments also indicate that an almost free choice of the charge state for the 16O recoils is possible in the separator.

  8. Recoil separator ERNA: gas target and beam suppression

    NASA Astrophysics Data System (ADS)

    Gialanella, L.; Schürmann, D.; Strieder, F.; Di Leva, A.; De Cesare, N.; D'Onofrio, A.; Imbriani, G.; Klug, J.; Lubritto, C.; Ordine, A.; Roca, V.; Röcken, H.; Rolfs, C.; Rogalla, D.; Romano, M.; Schümann, F.; Terrasi, F.; Trautvetter, H. P.

    2004-04-01

    For improved cross-section measurements of the reaction 12C(α,γ) 16O in inverted kinematics, a recoil separator ERNA is developed at the 4 MV Dynamitron tandem accelerator in Bochum to detect directly the 16O recoils with high efficiency. The 16O recoils are produced by the 12C projectiles in a windowless 4He gas target. We report on the pressure profile of the gas target, the beam suppression by the separator, and the first observation of the 16O recoils at selected energies.

  9. Missing Mass Recoiling Against the Charged D

    SciTech Connect

    Cain, Hillary

    2003-09-05

    This paper chronicles the investigation of a peak in the BaBar mass data set of mass recoiling against charged D*s. Our hypothesis is that the peak at 2620 MeV is a reflection of the D{sub s}* and {pi} system. Specifically, we explored the idea that the peak might be a reflection from the decay B {yields} D**{sup -} D*{sub s}{sup +} with the D**{sup -} {yields} D*{sup -} {pi}. Theoretically, when the D**{sup -} decays, the trajectory of the resulting {pi} will form an angle with the D*{sub s}{sup +}, and different angles impart difference masses to the system over a range of a GeV or so. If quantum mechanics dictates that their paths will form a particular angle more often than others, a peak would appear in the histogram of their collective mass. Using the Monte Carlo model of particle collision events, Anders Ryd's EVTGEN program, C++ code derived from GeneratorsQA, and PAW, we tested the hypothesis that the peak might be a reflection of the system, but found that this possible explanation could not account for the peak. No 2620 MeV peak appears in the histogram of the system mass. We therefore discount the hypothesis and conclude that some other reflection, statistical fluctuation, or particle is causing the peak.

  10. Recoil separator ERNA: acceptances in angle and energy

    NASA Astrophysics Data System (ADS)

    Rogalla, D.; Schürmann, D.; Strieder, F.; Aliotta, M.; DeCesare, N.; DiLeva, A.; Lubritto, C.; D'Onofrio, A.; Gialanella, L.; Imbriani, G.; Kluge, J.; Ordine, A.; Roca, V.; Röcken, H.; Rolfs, C.; Romano, M.; Schümann, F.; Terrasi, F.; Trautvetter, H. P.

    2003-11-01

    For improved cross-section measurements of the reaction 12C(α,γ) 16O in inverted kinematics, a recoil separator ERNA is developed at the 4 MV Dynamitron tandem accelerator in Bochum to detect directly the 16O recoils with high efficiency. Due to the emission of the capture γ-rays, the kinematically forward directed 16O recoils are described by an angle and energy spread. Thus, the acceptances in angle and energy of ERNA must cover these spreads in order to extract reliable cross-section values. We report on such acceptance measurements over the energy range Ecm=0.7-5.0 MeV, using an 16O pilot beam.

  11. Beam suppression of the DRAGON recoil separator for 3He(α,γ)7Be

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Nara Singh, B. S.; Adsley, P.; Buchmann, L.; Carmona-Gallardo, M.; Davids, B.; Fallis, J.; Fulton, B. R.; Galinski, N.; Hager, U.; Hass, M.; Howell, D.; Hutcheon, D. A.; Laird, A. M.; Martin, L.; Ottewell, D.; Reeve, S.; Ruiz, C.; Ruprecht, G.; Triambak, S.

    2013-02-01

    Preliminary studies in preparation for an absolute cross-section measurement of the radiative capture reaction 3He(α,γ)7Be with the DRAGON recoil separator have demonstrated beam suppression >1014 at the 90% confidence level. A measurement of this cross section by observation of 7Be recoils at the focal plane of the separator should be virtually background free.

  12. Recoil separator ERNA: charge state distribution, target density, beam heating, and longitudinal acceptance

    NASA Astrophysics Data System (ADS)

    Schürmann, D.; Strieder, F.; Di Leva, A.; Gialanella, L.; De Cesare, N.; D'Onofrio, A.; Imbriani, G.; Klug, J.; Lubritto, C.; Ordine, A.; Roca, V.; Röcken, H.; Rolfs, C.; Rogalla, D.; Romano, M.; Schümann, F.; Terrasi, F.; Trautvetter, H. P.

    2004-10-01

    For improved cross section measurements of the reaction 12C(α,γ)16O in inverted kinematics, a recoil separator ERNA is developed at the 4 MV Dynamitron tandem accelerator in Bochum to detect directly the 16O recoils with high efficiency. The 16O recoils are produced by the 12C projectiles in a windowless 4He gas target. We report on the charge state distribution of the 16O recoils, the gas target density, the beam heating of the gas target, and the acceptance of the separator along the extended gas target.

  13. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  14. Initial results of the commissioning of the HRIBF recoil mass spectrometer

    SciTech Connect

    Gross, C.J.; Akovali, Y.A.; Brinkman, M.J.; Mas, J.; McConnell, J.W.; Milner, W.T.; Shapira, D.; Ginter, T.N.; James, A.N.

    1996-10-01

    The recoil mass spectrometer at the Holifield Radioactive Ion Beam Facility is currently undergoing commissioning tests. This new spectrometer is designed to transmit ions with rigidities of K = 100 resulting from fusion-evaporation reactions using inverse-kinematics. The device consists of two sections: a momentum separator to provide beam rejection and a mass separator for product identification. Using normal-kinematic and symmetric reactions, the commissioning tests have shown that the A/Q acceptance is almost {+-}5%, the energy acceptance is approximately {+-}12%, and there has been little, if any, primary beam observed on the focal plane. Commissioning tests are presently underway with reactions using inverse-kinematics.

  15. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  16. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  17. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  18. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-25

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  19. Mass calibration of the energy axis in ToF-E elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Meersschaut, J.; Laricchiuta, G.; Sajavaara, T.; Vandervorst, W.

    2016-03-01

    We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.

  20. Experimental Concept for a Precision Measurement of Nuclear Recoil Ionization Yields for Low Mass WIMP Searches

    NASA Astrophysics Data System (ADS)

    Saab, T.; Figueroa-Feliciano, E.

    2016-07-01

    Understanding the response of dark matter detectors at the lowest recoil energies is important for correctly interpreting data from current experiments or predicting the sensitivity of future experiments to low mass weakly interacting massive particles. In particular, the ionization yield is essential for determining the correct recoil energy of candidate nuclear recoil events; however, few measurements in cryogenic crystals exist below 1 keV. Using the voltage-assisted calorimetric ionization detection technique with a mono-energetic neutron source, we show that it is possible to determine the ionization yield in cryogenic crystals down to an energy to 100 eV. This measurement will also determine the statistics of ionization production at these low energies.

  1. Measurement of the W boson mass and width using a novel recoil model

    SciTech Connect

    Wetstein, Matthew J.

    2009-01-01

    This dissertation presents a direct measurement of the W boson mass (MW) and decay width (ΓW) in 1 fb-1 of W → ev collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass MT, pT(e), and ET distributions. The width is extracted from fits to the tail of the MT distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the pT and direction of each generated W boson. We measure the the W boson mass to be MW = 80.4035 ± 0.024(stat) ± 0.039(syst) from the MT, MW = 80.4165 ± 0.027(stat) ± 0.038(syst) from the pT(e), and MW = 80.4025 ± 0.023(stat) ± 0.043(syst) from the ET distributions. ΓW is measured to be ΓW = 2.025 ± 0.038(stat) ± 0.061(syst) GeV.

  2. Direct measurements of (p, γ) cross-sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.; Chipps, K. A.; Fitzgerald, R. P.; Blackmon, J. C.; Chae, K. Y.; Champagne, A. E.; Greife, U.; Hatarik, R.; Kozub, R. L.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Shriner, J. F.; Smith, M. S.

    2009-12-01

    There are a number of astrophysical environments in which the path of nucleosynthesis proceeds through proton-rich nuclei. These nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of ( p, γ) cross-sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. First data from 17F ( p, γ 18Ne and 7Be ( p, γ 8B measurements are presented.

  3. Direct Measurements of (p,gamma) Cross Sections at Astrophysical Energies using Radioactive Beams and the Daresbury Recoil Separator

    SciTech Connect

    Bardayan, Daniel W; Chipps, K.; Fitzgerald, R. P.; Blackmon, Jeff C; Chae, K. Y.; Champagne, A. E.; Greife, U.; Hatarik, Robert; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Peters, W. A.; Pittman, S. T.; ShrinerJr., J. F.; Smith, Michael Scott

    2009-01-01

    There are a number of astrophysical environments in which the path of nucleosynthesis leads through proton-rich nuclei. These nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of (p,gamma) cross sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. First data from 17F(p,gamma)18Ne and 7B(p,gamma)8B measurements are presented.

  4. Direct measurments of (p,gamma) cross sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

    SciTech Connect

    Bardayan, Daniel W; Chipps, K.; Fitzgerald, R. P.; Blackmon, Jeff C; Chae, Kyung Yuk; Champagne, A. E.; Greife, Uwe; Hatarik, Robert; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Peters, W. A.; Pittman, S. T.; ShrinerJr., J. F.; Smith, Michael Scott

    2009-01-01

    There are a number of astrophysical environments in which the path of nucleosynthesis proceeds through proton-rich nuclei. Radioactive nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of (p,g ) cross sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. Data from 17F(p,g )18Ne and 7Be(p,g )8B measurements are presented.

  5. Recent Results from the Commissioning of the HRIBF Recoil Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Ginter, T. N.; Hamilton, J. H.; Ramayya, A. V.; Gross, C. J.; Johnson, J. W.; Shapira, D.; Akovali, Y. A.; Brinkman, M. J.; Mas, J.; McConnell, J. W.; Milner, W. T.; James, A. N.

    1997-04-01

    The Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (Managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy.) is designed (Cole, J. D., et al.) al., Nucl. Instrum. Methods B70 (1992), 343. to transmit ions with rigidities of up to K = 100 resulting from fusion-evaporation and other nuclear reactions. Commissioning tests (We would like to acknowledge the work performed by P. F. Mantica, J. J. Das, and R. L. Auble on the installation of the RMS.) have been under way on the RMS and auxiliary detectors at its target position and focal plane. These tests, performed using normal and symmetric kinematic reactions, have shown that the RMS has an A/Q acceptance of ± 5% and an energy acceptance of ± 10%. A mass resolution M/ΔM of 470 was obtained using a ^58Ni beam on a ^60Ni target, with little primary beam observed at the focal plane. Recent results from these tests will be presented.

  6. Spectroscopy of transfermium nuclei using the GABRIELA set up at the focal plane of the VASSILISSA recoil separator

    SciTech Connect

    Hauschild, K.; Lopez-Martens, A.; Dorvaux, O.; Piot, J.; Curien, D.; Gall, B.; Yeremin, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Isaev, A. V.; Izosimov, I. N.; Kabachenko, A. P.; Katrasev, D. E.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Sokol, E. A.; Svirikhin, A. I.; Wiborg-Hagen, T.; Nyhus, H. T

    2010-06-01

    An IN2P3-JINR collaboration has launched a project called GABRIELA at the Flerov Laboratory for Nuclear Reactions (FLNR) within the Joint Institute for Nuclear Research (JINR) in Dubna (Russia). The goal of the project is to perform gamma-ray and internal conversion electron spectroscopy of heavy nuclei produced in fusion-evaporation reactions and transported to the focal plane of the recoil separator VASSILISSA. During five experimental campaigns of GABRIELA, the detection system has gained in sensitivity and new spectroscopic information has been obtained for {sup 249}Fm, {sup 251}Fm, {sup 253}No and {sup 255}Lr. In this contribution new results for {sup 253}No will be discussed.

  7. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOEpatents

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  8. Mass transfer for baromembrane separation of solutions

    NASA Astrophysics Data System (ADS)

    Beloborodov, V. V.; Konstantinova, O. V.; Rusar, É. F.

    1991-12-01

    A mathematical model is obtained for transient mass transfer during the baromem-brane separation of liquids for a flat channel with a semipermeable wall. Hydrated sunflower oil is used as an example to show that the theoretical and experimental time-dependences for the content of the retained material in the concentrate differ insignificantly.

  9. Electromagnetic Mass--Separation and Its Applications

    SciTech Connect

    Maoczka, D.; Turek, M.; Latuszynski, A.; Yushkevich, Yu. V.

    2009-03-31

    The article describes the electromagnetic mass-separation method and its application in nuclear and solid state physics. The limited review of the results in these fields, obtained by scientific groups at the Physics Institute, Maria Curie Sklodowska University, Lublin, Poland and the Joint Institute for Nuclear Research, Dubna, Russia is presented.

  10. Alpha spectrometry applications with mass separated samples.

    PubMed

    Dion, M P; Eiden, Gregory C; Farmer, Orville T; Liezers, Martin; Robinson, John W

    2016-01-01

    (241)Am has been deposited using a novel technique that employs a commercial inductively coupled plasma mass spectrometer. This work presents results of high-resolution alpha spectrometry on the (241)Am samples using a small area passivated implanted planar silicon detector. We have also investigated the mass-based separation capability by developing a (238)Pu sample, present as a minor constituent in a (244)Pu standard, and performed subsequent radiometric counting. With this new sample development method, the (241)Am samples achieved the intrinsic energy resolution of the detector used for these measurements. There was no detectable trace of any other isotopes contained in the (238)Pu implant demonstrating the mass-based separation (or enhancement) attainable with this technique. PMID:26583262

  11. RELATIVISTIC SUPPRESSION OF BLACK HOLE RECOILS

    SciTech Connect

    Kesden, Michael; Sperhake, Ulrich; Berti, Emanuele

    2010-06-01

    Numerical-relativity simulations indicate that the black hole produced in a binary merger can recoil with a velocity up to v {sub max} {approx_equal} 4000 km s{sup -1} with respect to the center of mass of the initial binary. This challenges the paradigm that most galaxies form through hierarchical mergers, yet retain supermassive black holes (SBHs) at their centers despite having escape velocities much less than v {sub max}. Interaction with a circumbinary disk can align the binary black hole spins with their orbital angular momentum, reducing the recoil velocity of the final black hole produced in the subsequent merger. However, the effectiveness of this alignment depends on highly uncertain accretion flows near the binary black holes. In this paper, we show that if the spin S {sub 1} of the more massive binary black hole is even partially aligned with the orbital angular momentum L, relativistic spin precession on sub-parsec scales can align the binary black hole spins with each other. This alignment significantly reduces the recoil velocity even in the absence of gas. For example, if the angle between S {sub 1} and L at large separations is 10{sup 0} while the second spin S {sub 2} is isotropically distributed, the spin alignment discussed in this paper reduces the median recoil from 864 km s{sup -1} to 273 km s{sup -1} for maximally spinning black holes with a mass ratio of 9/11. This reduction will greatly increase the fraction of galaxies retaining their SBHs.

  12. Preparation of targets for the gas-filled recoil separator TASCA by electrochemical deposition and design of the TASCA target wheel assembly

    NASA Astrophysics Data System (ADS)

    Eberhardt, K.; Brüchle, W.; Düllmann, Ch. E.; Gregorich, K. E.; Hartmann, W.; Hübner, A.; Jäger, E.; Kindler, B.; Kratz, J. V.; Liebe, D.; Lommel, B.; Maier, H.-J.; Schädel, M.; Schausten, B.; Schimpf, E.; Semchenkov, A.; Steiner, J.; Szerypo, J.; Thörle, P.; Türler, A.; Yakushev, A.

    2008-06-01

    The Transactinide Separator and Chemistry Apparatus (TASCA) is a recoil separator with maximized transmission designed for performing advanced chemical studies as well as nuclear reaction and structure investigations of the transactinide elements ( Z>103) on a one-atom-at-a-time basis. TASCA will provide a very clean transactinide fraction with negligible contamination of lighter elements from nuclear side reactions in the target. For TASCA a new target chamber was designed and built at GSI including the rotating target wheel assembly ARTESIA for beam intensities up to 2 μA (particle). For the production of longer-lived isotopes of neutron-rich heavier actinide and transactinide elements, hot fusion reactions with actinide targets are required. Here, possible target materials range from thorium up to curium or even heavier elements. For the deposition of lanthanide and actinide elements on thin aluminum and titanium backings by means of Molecular Plating (MP), a new deposition cell has been constructed that allows precise temperature control of the organic solvent and stirring of the solution. The electrode geometry ensures homogeneity of the electric field inside the cell. With the new set-up, holmium and gadolinium layers (500 μg/cm 2) on 2-5 μm thin titanium backings have been produced with deposition yields of the order of 90%. Systematic investigations are under way to further optimize the deposition conditions for other lanthanide and actinide elements including uranium and plutonium on different backing materials.

  13. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  14. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  15. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements

    NASA Astrophysics Data System (ADS)

    Sigaud, L.; de Jesus, V. L. B.; Ferreira, Natalia; Montenegro, E. C.

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  16. CHARGE BOTTLE FOR A MASS SEPARATOR

    DOEpatents

    Davidson, P.H.

    1959-07-01

    Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.

  17. Advances and problems in plasma-optical mass-separation

    SciTech Connect

    Bardakov, V. M.; Ivanov, S. D.; Strokin, N. A.

    2014-03-15

    This paper presents a short review of plasma-optical mass-separation and defines the fields for its possible application. During theoretical studies, numerical simulations, and experiments, the effect of the azimuthator finite size and of the vacuum conditions on the mass separator characteristics was revealed, as well as the quality of different-mass ion separation. The problems, solving which may lead to a successful end of the mass-separation plasma-optical technique implementation, were specified.

  18. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  19. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  20. Plasma mass filtering for separation of actinides from lanthanides

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Fisch, N. J.

    2014-06-01

    Separating lanthanides from actinides is a key process in reprocessing nuclear spent fuel. Plasma mass filters, which operate on dissociated elements, offer conceptual advantages for such a task as compared with conventional chemical methods. The capabilities of a specific plasma mass filter concept, called the magnetic centrifugal mass filter, are analyzed within this particular context. Numerical simulations indicate separation of americium ions from a mixture of lanthanides ions for plasma densities of the order of 1012 cm-3, and ion temperatures of about 10 eV. In light of collision considerations, separating small fractions of heavy elements from a larger volume of lighter ones is shown to enhance the separation capabilities.

  1. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  2. First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element 114 in the {sup 244}Pu({sup 48}Ca,3-4n) reaction

    SciTech Connect

    Gates, J. M.; Duellmann, Ch. E.; Schaedel, M.; Ackermann, D.; Block, M.; Bruechle, W.; Essel, H. G.; Hartmann, W.; Hessberger, F. P.; Huebner, A.; Jaeger, E.; Khuyagbaatar, J.; Kindler, B.; Krier, J.; Kurz, N.; Lommel, B.; Schaffner, H.; Schausten, B.; Schimpf, E.; Steiner, J.

    2011-05-15

    Experiments with the new recoil separator, Transactinide Separator and Chemistry Apparatus (TASCA), at the GSI were performed by using beams of {sup 48}Ca to irradiate targets of {sup 206-208}Pb, which led to the production of {sup 252-254}No isotopes. These studies allowed for evaluation of the performance of TASCA when coupled to a new detector and electronics system. By following these studies, the isotopes of element 114 ({sup 288-291}114) were produced in irradiations of {sup 244}Pu targets with {sup 48}Ca beams at compound nucleus excitation energies around 41.7 and 37.5 MeV, demonstrating TASCA's ability to perform experiments with picobarn-level cross sections. A total of 15 decay chains were observed and were assigned to the decay of {sup 288-291}114. A new {alpha}-decay branch in {sup 281}Ds was observed, leading to the new nucleus {sup 277}Hs.

  3. Compact ExB mass separator for heavy ion beams

    SciTech Connect

    Wada, M.; Hashino, T.; Hirata, F.; Kasuya, T.; Sakamoto, Y.; Nishiura, M.

    2008-02-15

    A compact ExB mass separator that deflects beam by 30 deg. has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.

  4. Elastic recoil detection

    NASA Astrophysics Data System (ADS)

    Bik, W. M. A.; Habraken, F. H. P. M.

    1993-07-01

    In elastic recoil detection (ERD) one determines the yield and energy of particles ejected out of the surface region of samples under MeV ion bombardment. By application of this surface and thin film analysis technique one can obtain quantitative information concerning the depth distribution of light elements in a sample to be analysed. The quantitativity and the depth resolving power are based on knowledge of the recoil cross section and the stopping power of high-energy ions in matter. This paper reviews the fundamentals of this technique and the various experimental methods for recoil identification. Furthermore, important features for material analysis, such as detection limits, depth resolution and elemental range are discussed. Some emphasis is put on the conversion of the spectral contribution of the elements to atomic concentrations in the films for several representative cases. Throughout the review numerous examples are given to illustrate the features of ERD and to demonstrate empirically the accuracy of the quantification method.

  5. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  6. Hybrid ion mobility and mass spectrometry as a separation tool.

    PubMed

    Ewing, Michael A; Glover, Matthew S; Clemmer, David E

    2016-03-25

    Ion mobility spectrometry (IMS) coupled to mass spectrometry (MS) has seen spectacular growth over the last two decades. Increasing IMS sensitivity and capacity with improvements in MS instrumentation have driven this growth. As a result, a diverse new set of techniques for separating ions by their mobility have arisen, each with characteristics that make them favorable for some experiments and some mass spectrometers. Ion mobility techniques can be broken down into dispersive and selective techniques based upon whether they pass through all mobilities for later analysis by mass spectrometry or select ions by mobility or a related characteristic. How ion mobility techniques fit within a more complicated separation including mass spectrometry and other techniques such as liquid chromatography is of fundamental interest to separations scientists. In this review we explore the multitude of ion mobility techniques hybridized to different mass spectrometers, detailing current challenges and opportunities for each ion mobility technique and for what experiments one technique might be chosen over another. The underlying principles of ion mobility separations, including: considerations regarding separation capabilities, ion transmission, signal intensity and sensitivity, and the impact that the separation has upon the ion structure (i.e., the possibility of configurational changes due to ion heating) are discussed.

  7. Mass transfer apparatus and method for separation of gases

    SciTech Connect

    Blount, Gerald C.

    2015-10-13

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  8. Combined heat and mass transfer device for improving separation process

    SciTech Connect

    Tran, Thanh Nhon

    1997-12-01

    A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

  9. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  10. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  11. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  12. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  13. Transient Ion-Pair Separations for Electrospray Mass Spectrometry.

    PubMed

    Liu, Hanghui; Lam, Lily; Chi, Bert; Kadjo, Akinde F; Dasgupta, Purnendu K

    2016-02-16

    We report a novel ion-pair chromatography (IPC) approach for liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), where the eluent does not contain any ion-pairing reagent (IPR). The IPR is injected on the column, much like the sample, and moves down the column. Significant amounts of a high retention factor IPR is injected, resulting in a transient but reproducible regional coating that progresses along the column. The sample is injected after a brief interval. The sample components interact with the IPR coated region during their passage; the chosen eluent gradient elutes the analytes of interest into the mass spectrometer before the IPR. Following analyte elution, the gradient is steeply raised, the IPR is washed out, and the effluent is sent to waste via a diverter valve until it is fully removed. As the nature of the analyte retention continuously changes along the column and with time, we call this transient ion-pair separation (TIPS). As the IPR never enters the MS, TIPS addresses two major drawbacks of IPC for ESI-MS: it avoids both ion suppression and ion source contamination. The potential of the generic approach for other modes of separation is discussed. An illustrative separation of two small inorganic ions, iodate and nitrate, is demonstrated on a reverse phase column by a transient prior injection of hexadecyltrimethylammonium chloride as IPR. PMID:26765166

  14. Interpreting Recoil for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Elsayed, Tarek A.

    2012-04-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is closely related to Newton's third law. Since the actual microscopic causes of recoil differ from one problem to another, some students (and teachers) may not be satisfied with understanding recoil through the principles of conservation of linear momentum and Newton's third law. For these students, the origin of the recoil motion should be presented in more depth.

  15. Attomole quantitation of protein separations with accelerator mass spectrometry

    SciTech Connect

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  16. Chemical separations by bubble-assisted interphase mass-transfer.

    PubMed

    Boyd, David A; Adleman, James R; Goodwin, David G; Psaltis, Demetri

    2008-04-01

    We show that when a small amount of heat is added close to a liquid-vapor interface of a captive gas bubble in a microchannel, interphase mass-transfer through the bubble can occur in a controlled manner with only a slight change in the temperature of the fluid. We demonstrate that this method, which we refer to as bubble-assisted interphase mass-transfer (BAIM), can be applied to interphase chemical separations, e.g., simple distillation, without the need for high temperatures, vacuum, or active cooling. Although any source of localized heating could be used, we illustrate BAIM with an all-optical technique that makes use of the plasmon resonance in an array of nanoscale metal structures that are incorporated into the channel to produce localized heating of the fluid when illuminated by a stationary low-power laser.

  17. Widest Separation and the Lowest Mass Objects among Planetary-mass Companion Candidates around Young Stars

    NASA Astrophysics Data System (ADS)

    Oh, D.

    2014-08-01

    Two substellar companion candidates with planetary mass, around a T-Tauri star in the ρ Ophiuchi star-forming region, are discovered by results of near-infrared imaging. Candidates are separated by 1454AU, candi 1 for short, and 542AU, candi 2 for short. There are high possibilities that both candidates are physically related to its primary star from their common proper motions, colors and statistics of YSOs in star forming region. candi 2 is identified as an extremely low-mass object, 0.0070.002 ⊙, and this is the lowest mass among planetary-mass companion(PMC) candidates imaged to date. In addition, separation from its primary star of candi 1, 0.014 ± 0.002 ⊙, is the widest among PMC candidates imaged to date. Formation of these extremely wide separated, > 100AU, PMCs, like candi 1 and c, is not fully explained by current planet formation theories, core accretion or gravitational instability. This discovery may suggest that PMCs separated by > 100AU form via extreme mass ratio case of cloud core fragmentation for multiple stars. Apologies : Because of our team policy, we cannot present the name and details of this target currently.

  18. Recoil Based Fuel Breeding Fuel Structure

    SciTech Connect

    Popa-Simil, Liviu

    2008-07-01

    Nuclear transmutation reactions are based on the absorption of a smaller particle as neutron, proton, deuteron, alpha, etc. The resulting compound nucleus gets out of its initial lattice mainly by taking the recoil, also with help from its sudden change in chemical properties. The recoil implantation is used in correlation with thin and ultra thin materials mainly for producing radiopharmaceuticals and ultra-thin layer radioactive tracers. In nuclear reactors, the use of nano-particulate pellets could facilitate the recoil implantation for breeding, transmutation and partitioning purposes. Using enriched {sup 238}U or {sup 232}Th leads to {sup 239}Pu and {sup 233}U production while using other actinides as {sup 240}Pu, {sup 241}Am etc. leads to actinide burning. When such a lattice is immersed into a radiation resistant fluid (water, methanol, etc.), the recoiled product is transferred into the flowing fluid and removed from the hot area using a concentrator/purifier, preventing the occurrence of secondary transmutation reactions. The simulation of nuclear collision and energy transfer shows that the impacted nucleus recoils in the interstitial space creating a defect or lives small lattices. The defect diffuses, and if no recombination occurs it stops at the lattices boundaries. The nano-grains are coated in thin layer to get a hydrophilic shell to be washed by the collection liquid the particle is immersed in. The efficiency of collection depends on particle magnitude and nuclear reaction channel parameters. For {sup 239}Pu the direct recoil extraction rate is about 70% for {sup 238}UO{sub 2} grains of 5 nm diameters and is brought up to 95% by diffusion due to {sup 239}Neptunium incompatibility with Uranium dioxide lattice. Particles of 5 nm are hard to produce so a structure using particles of 100 nm have been tested. The particles were obtained by plasma sputtering in oxygen atmosphere. A novel effect as nano-cluster radiation damage robustness and cluster

  19. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  20. Force optimized recoil control system

    NASA Astrophysics Data System (ADS)

    Townsend, P. E.; Radkiewicz, R. J.; Gartner, R. F.

    1982-05-01

    Reduction of the recoil force of high rate of fire automatic guns was proven effective. This system will allow consideration of more powerful guns for use in both helicopter and armored personnel carrier applications. By substituting the large shock loads of firing guns with a nearly constant force, both vibration and fatigue problems that prevent mounting of powerful automatic guns is eliminated.

  1. Radio-frequency ion deflector for mass separation

    SciTech Connect

    Schlösser, Magnus Rudnev, Vitaly; Ureña, Ángel González

    2015-10-15

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated.

  2. Radio-frequency ion deflector for mass separation.

    PubMed

    Schlösser, Magnus; Rudnev, Vitaly; González Ureña, Ángel

    2015-10-01

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated. PMID:26520948

  3. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  4. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  5. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  6. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  7. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  8. Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Mustafa, Omar

    2010-10-01

    The kinetic energy operator with position-dependent-mass in plane polar coordinates is obtained. The separability of the corresponding Schrödinger equation is discussed. A hypothetical toy model is reported and two exactly solvable examples are studied.

  9. Two-dimensional liquid chromatography/mass spectrometry/mass spectrometry separation of water-soluble metabolites.

    PubMed

    Fairchild, Jacob N; Horvath, Krisztian; Gooding, Jessica R; Campagna, Shawn R; Guiochon, Georges

    2010-12-24

    Off-line two-dimensional liquid chromatography with tandem mass spectrometry detection (2D-LC/MS-MS) was used to separate a set of metabolomic species. Water-soluble metabolites were extracted from Escherichia coli and Saccharomyces cerevisae cultures and were immediately analyzed using strong cation exchange (SCX)-hydrophilic interaction chromatography (HILIC). Metabolite mixtures are well-suited for multidimensional chromatography as the range of components varies widely with respect to polarity and chemical makeup. Some currently used methods employ two different separations for the detection of positively and negatively ionized metabolites by mass spectrometry. Here we developed a single set of chromatographic conditions for both ionization modes and were able to detect a total of 141 extracted metabolite species, with an overall peak capacity of ca. 2500. We show that a single two-dimensional separation method is sufficient and practical when a pair or more of unidimensional separations are used in metabolomics. PMID:21094946

  10. Radiative-recoil corrections to hyperfine splitting: Polarization insertions in the muon factor

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-01

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium due to insertions of a one-loop polarization operator in the muon factor. The contribution produced by electron polarization insertions is enhanced by the large logarithm of the electron-muon mass ratio. We obtained all single-logarithmic and nonlogarithmic radiative-recoil corrections of order {alpha}{sup 3}(m/M)E{sub F} generated by the diagrams with electron and muon polarization insertions.

  11. First operation and mass separation with the CARIBU MR-TOF

    NASA Astrophysics Data System (ADS)

    Hirsh, Tsviki Y.; Paul, Nancy; Burkey, Mary; Aprahamian, Ani; Buchinger, Fritz; Caldwell, Shane; Clark, Jason A.; Levand, Anthony F.; Ying, Lin Ling; Marley, Scott T.; Morgan, Graeme E.; Nystrom, Andrew; Orford, Rodney; Galván, Adrian Pérez; Rohrer, John; Savard, Guy; Sharma, Kumar S.; Siegl, Kevin

    2016-06-01

    The recent installation of a Multi-Reflection Time-of-Flight (MR-TOF) isobar separator at the CARIBU facility has the promising potential to significantly improve the mass separation and selection of short-lived neutron-rich beams. Ions cycled in the km-long isochronous trajectories between two electrostatic mirrors can be separated to high levels of mass-resolving power within a short time (tens of ms). The installation process is described and results from the first operation are discussed. Following an optimization of the mirror voltages a mass-resolving power of 6.8 ·104 was achieved and a separation of isobars was demonstrated. The higher purity beams provided by the MR-TOF and delivered to the Canadian Penning Trap (CPT) will provide access to further measurements of neutron-rich nuclei along the astrophysical r-process path.

  12. A Novel method for modeling the recoil in W boson events at hadron collider

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  13. Delayed bunching for multi-reflection time-of-flight mass separation

    SciTech Connect

    Rosenbusch, M.; Marx, G.; Schweikhard, L.; Wienholtz, F.; Chauveau, P.; Delahaye, P.

    2015-06-29

    Many experiments are handicapped when the ion sources do not only deliver the ions of interest but also contaminations, i.e., unwanted ions of similar mass. In the recent years, multi-reflection time-of-flight mass separation has become a promising method to isolate the ions of interest from the contaminants, in particular for measurements with low-energy short-lived nuclides. To further improve the performance of multi-reflection mass separators with respect to the limitations by space-charge effects, the simultaneously trapped ions are spatially widely distributed in the apparatus. Thus, the ions can propagate with reduced Coulomb interactions until, finally, they are bunched by a change in the trapping conditions for high-resolution mass separation. Proof-of-principle measurements are presented.

  14. MASS SEPARATORS

    DOEpatents

    Oppenheimer, F.; Bell, J.W.

    1959-02-17

    An improvement in the mounting arrangement for the ion source within the vacuum tank of a calutron is presented. The entire source is supported by the vacuum envelope through the medium of a bracket secured to a removable face plate. The bracket forms a supporting platform that is generally transverse to the magnetic field. The ion generator is mounted on a pedestal-type insulator supported on the bracket, and the hot leads are brought into the vacuum envelope through a tubular elbow connected to the vacuum envelope, having the axis of its outer opening aligned with the magnetic field at which point a bushing-type insulator is employed. With this arrangement thc ion source is maintained at a positive potential with respect to the vacuum tank and the problem of electron bombardment of the insulator is considerably reduced.

  15. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  16. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  17. Photon Recoil Momentum in Dispersive Media

    SciTech Connect

    Campbell, Gretchen K.; Leanhardt, Aaron E.; Mun, Jongchul; Boyd, Micah; Streed, Erik W.; Ketterle, Wolfgang; Pritchard, David E.

    2005-05-06

    A systematic shift of the photon recoil momentum due to the index of refraction of a dilute gas of atoms has been observed. The recoil frequency was determined with a two-pulse light grating interferometer using near-resonant laser light. The results show that the recoil momentum of atoms caused by the absorption of a photon is n({Dirac_h}/2{pi})k, where n is the index of refraction of the gas and k is the vacuum wave vector of the photon. This systematic effect must be accounted for in high-precision atom interferometry with light gratings.

  18. A membrane-separator interface for mass-spectrometric analysis of blood plasma

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Gerasimov, D. G.

    2014-09-01

    We demonstrate the possibility of rapid mass-spectrometric determination of the content of anesthetic agents in blood plasma with the aid of a membrane-separator interface. The interface employs a hydrophobic selective membrane that is capable of separating various anesthetic drugs (including inhalation anesthetic sevofluran, noninhalation anesthetic thiopental, hypnotic propofol, and opioid analgesic fentanyl) from the blood plasma and introducing samples into a mass spectrometer. Analysis of the blood plasma was not accompanied by the memory effect and did not lead to membrane degradation. Results of clinical investigation of the concentration of anesthetics in the blood plasma of patients are presented.

  19. Precision lifetime measurements using the recoil distance method

    SciTech Connect

    Kruecken, R.

    2000-02-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1,000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed.

  20. The impact of separated flow on heat and mass transfer. Final report

    SciTech Connect

    Goldstein, R.J.

    1998-08-01

    An investigation of the effect of flow separation on heat and mass transfer has been completed. This research provided enhanced understanding of fundamental mechanisms governing important heat and mass transfer flow processes. This report summarizes the work conducted under the project. This research has provided considerable new knowledge on flow and heat transfer situations of great interest in a number of energy conversion devices, including heat exchangers, gas turbines, solar energy systems and general heat transfer systems.

  1. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  2. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Peterson, Dominic S; Montoya, Velma M

    2009-08-01

    Trace levels of actinides have been separated on capillary extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer, which was coupled with the extraction chromatography system. In this study, we compare 30-cm long, 4.6 mm i.d. columns to capillary columns (750 microm i.d.) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ((232)Th, (238)U, (237)Np, (239)Pu, and (241)Am). This work has application to rapid bioassay as well as automated separations of actinide materials.

  3. Rapid separation of phosphopeptides by microchip electrophoresis-electrospray ionization mass spectrometry.

    PubMed

    Ollikainen, Elisa; Bonabi, Ashkan; Nordman, Nina; Jokinen, Ville; Kotiaho, Tapio; Kostiainen, Risto; Sikanen, Tiina

    2016-04-01

    Protein phosphorylation is a significant biological process, but separation of phosphorylated peptide isomers is often challenging for many analytical techniques. We developed a microchip electrophoresis (MCE) method for rapid separation of phosphopeptides with on-chip electrospray ionization (ESI) facilitating online sample introduction to the mass spectrometer (MS). With the method, two monophosphorylated positional isomers of insulin receptor peptide (IR1A and IR1B) and a triply phosphorylated insulin receptor peptide (IR3), all with the same amino acid sequence, were separated from the nonphosphorylated peptide (IR0) in less than one minute. For efficient separation of the positional peptide isomers from each other derivatization with 9-fluorenylmethyl reagents (either chloroformate, Fmoc-Cl, or N-succinimidyl carbonate, Fmoc-OSu) was required before the analysis. The derivatization improved not only the separation of the monophosphorylated positional peptide isomers in MCE, but also identification of the phosphorylation site based on MS/MS. PMID:26931427

  4. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  5. Spallation recoil and age of presolar grains in meteorites

    NASA Astrophysics Data System (ADS)

    Ott, U.; Begemann, F.

    2000-01-01

    We have determined the recoil losses from silicon carbide grain size fractions of spallation neon produced by irradiation with 1.6 GeV protons. During the irradiation the SiC grains were dispersed in paraffin wax in order to avoid re-implantation into neighboring grains. Analysis for spallogenic 21Ne of grain size separates in the size range 0.3 μm to 6 μm and comparison with the 22Na activity of the SiC+paraffin mixture indicates an effective recoil range of 2-3 μm with no apparent effect from acid treatments such as routinely used in the isolation of meteoritic SiC grains. Our results indicate that the majority of presolar SiC grains in primitive meteorites, which are ~μm-sized, will have lost essentially all spallogenic Ne produced by cosmic ray interaction in the interstellar medium. This argues against the validity of previously published presolar ages of Murchison SiC (~10 to ~130 Ma; increasing with grain size; Lewis et al., 1994), where recoil losses had been based on calculated recoil energies. It is argued that the observed variations in meteoritic SiC grain size fractions of 21Ne/22Ne ratios are more likely due to the effects of nucleosynthesis in the He burning shell of the parent AGB stars which imposes new boundary conditions on nuclear parameters and stellar models. It is suggested that spallation-Xe produced on the abundant Ba and REE in presolar SiC, rather than spallogenic Ne, may be a promising approach to the presolar age problem. There is a hint in the currently available Xe data (Lewis et al., 1994) that the large (>1 μm) grains may be younger than the smaller (<1 μm) ones.

  6. Usage of the Upgraded Vassilissa Separator for Synthesis of Super-Heavy Elements

    NASA Astrophysics Data System (ADS)

    Yeremin, A. V.; Malyshev, O. N.; Popeko, A. G.; Sagaidak, R. N.; Chepigin, V. I.; Kabachenko, A. P.; Belozerov, A. V.; Chelnokov, M. L.; Gorshkov, V. A.; Svirikhin, A. I.; Korotkov, S. P.; Rohach, J.; Brida, I.; Berek, G.

    2002-12-01

    Electrostatic separator VASSILISSA is used for exploring complete fussion nuclear reactions. The magnetic analyzer, based on D37 dipole magnet, was installed after the second triplet of quadrupole lenses of the separator for the mass identification of evaporation residues. Mass identification is an powerful tool for identification of recoil atoms of super-heavy elements. The new detection system consisting of the time-of-fiight system and 32-strips position-sensitive detector array was installed in the focal plane of the separator. The mass resolution of the separator after upgrade was found to be about 2.5 %.

  7. Recoil by Auger electrons: Theory and application

    SciTech Connect

    Demekhin, Ph. V.; Scheit, S.; Cederbaum, L. S.

    2009-10-28

    General equations accounting for the molecular dynamics induced by the recoil of a fast Auger electron are presented. The implications of the degree of localization of the molecular orbitals of diatomic molecules involved in the Auger decay are analyzed. It is shown that the direct and exchange terms of the Auger transition matrix element may give rise to opposite signs and hence to opposite directions of the recoil momenta transferred to the nuclear vibrational motion. Consequently, these terms have a different impact on the recoil-induced nuclear dynamics in the final Auger decay state. The developed theory is applied to study the influence of the recoil on the interatomic Coulombic decay (ICD) following the K-LL Auger decay of the Ne dimer. Our calculations illustrate a significant effect of the recoil of nuclei on the computed wave packets propagating on the potential energy curve populated by the Auger decay. The corresponding final states of the Auger process decay further by ICD. We show that the recoil momentum imparted onto the nuclei modifies the computed ICD spectra considerably.

  8. Application of a Plasma Mass Separator to Advanced LWR Spent Fuel Reprocessing

    SciTech Connect

    Freeman, Richard; Miller, Robert; Papay, Larry; Wagoner, John; Ahlfeld, Charles; Czerwinski, Ken

    2006-07-01

    The US Department of Energy (DOE) is investigating spent fuel reprocessing for the purposes of increasing the effective capacity of a deep geological repository, reducing the radiotoxicity of waste placed in the repository and conserving nuclear fuel resources. DOE is considering hydro-chemical processing of the spent fuel after cutting the fuel cladding and fuel dissolution in nitric acid. The front end process, known as UREX, is largely based on the PUREX process and extracts U, Tc as well as fission product gases. A number of additional processing steps have become known as UREX+. One of the steps includes a further chemical treatment of remove Cs and Sr to reduce repository heat load. Other steps include successive extraction of the actinides from residual fission products, including the lanthanides. The additional UREX+ processing renders the actinides suitable for burning as reactor fuel in an advanced reactor to convert actinides to shorter-lived fission products and to produce power. New methods for separating groups of elements by their atomic mass have been developed and can be exploited to enhance spent fuel reprocessing. These physical processes dry the waste streams so that they can be vaporized and singly ionized in plasma that is contained in longitudinal magnetic and perpendicular electric fields. Proper configuration of the fields causes the plasma to rapidly rotate and expel heavier mass ions at the center of the machine. Lower mass ions form closed orbits within the cylindrical plasma column and are transported to either end of the machine. This plasma mass separator was originally developed to reduce the mass of material that must be immobilized in borosilicate glass from DOE defense waste at former weapons production facilities. The plasma mass separator appears to be well-suited for processing the UREX raffinate and solids streams by exploiting the large atomic mass gap that exists between lanthanides (< {approx}180 amu) and actinides

  9. Revealing compressed stops using high-momentum recoils

    DOE PAGES

    Macaluso, Sebastian; Park, Michael; Shih, David; Tweedie, Brock

    2016-03-22

    In this study, searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5σ.more » The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a ET, but also leads to a distinctive anti-correlation between the ET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in ET measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb–1. By 300 fb–1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the “stealth” point at mt¯ = mt and potentially overlapping with limits from tt¯ cross section and spin correlation measurements.« less

  10. Revealing compressed stops using high-momentum recoils

    NASA Astrophysics Data System (ADS)

    Macaluso, Sebastian; Park, Michael; Shih, David; Tweedie, Brock

    2016-03-01

    Searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ˜ 1 and significances often well beyond 5 σ. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a [InlineMediaObject not available: see fulltext.] signature, but also leads to a distinctive anti-correlation between the [InlineMediaObject not available: see fulltext.] and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in [InlineMediaObject not available: see fulltext.] measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb-1. By 300 fb-1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the "stealth" point at {m}_{overline{t}}={m}_t and potentially overlapping with limits from toverline{t} cross section and spin correlation measurements.

  11. The outcome of supernovae in massive binaries; removed mass, and its separation dependence

    SciTech Connect

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (∼10 M {sub ☉}) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M {sub ub}∝a {sup –4.3} with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as M{sub ub}∝ρ{sub ej}{sup 1.4}. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  12. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    NASA Astrophysics Data System (ADS)

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ˜0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10-6-5.0 × 10-2 Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (PD2) and helium partial pressure (PHe) could be obtained. The result shows that deuterium partial pressure could be measured if PD2 > 10-6 Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if PHe/PD2 > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  13. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy.

    PubMed

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ∼0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10(-6)-5.0 × 10(-2) Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (P(D2)) and helium partial pressure (P(He)) could be obtained. The result shows that deuterium partial pressure could be measured if P(D2) > 10(-6) Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if P(He)/P(D2) > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  14. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    SciTech Connect

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D. E-mail: heb11@psu.edu

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  16. A Double Scattering Analytical Model For Elastic Recoil Detection Analysis

    SciTech Connect

    Barradas, N. P.; Lorenz, K.; Alves, E.; Darakchieva, V.

    2011-06-01

    We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.

  17. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    SciTech Connect

    Ognibene, T.J.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of {sup 31}Cl, {sup 27}P and {sup 28}P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas {Delta}E-gas {Delta}E-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in {sup 31}Cl and {sub 27}P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of {sup 31}Cl were shown to be from the decay of {sup 25}Si. In {sup 27}P, two proton groups at 459 {+-} 14 keV and 610 {+-} 11 keV, with intensities of 7 {+-} 3% and 92 {+-} 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the {beta}-decay of {sup 28}P, at 1,444 {+-} 12 keV with a 1.7 {+-} 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, {sup 17}Ne and {sup 33}Ar, were studied. A new proton group with energy 729 {+-} 15 keV was observed following the beta-decay of {sup 17}Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from {sup 17}Ne and {sup 33}Ar were resolved.

  18. Molecular Dynamics Simulation of Energetic Uranium Recoil Damage in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-10-11

    Defect production and amorphization due to energetic uranium recoils in zircon (ZrSiO4), which is a promising ceramic nuclear waste form, is studied using molecular dynamics simulations with a partial charge model. An algorithm that distinguishes between undamaged crystal, crystalline defects and amorphous regions is used to develop a fundamental understanding of the primary damage state. The amorphous cascade core is separated from the surrounding crystal by a defect-rich region. Small, chemically inhomogeneous amorphous clusters are also produced around the core. The amorphous regions consist of under-coordinated Zr and polymerized Si leading to amorphization and phase separation on a nanometer scale into Zr- and Si-rich regions. This separation could play an important role in the experimentally observed formation of nanoscale ZrO2 in ZrSiO4 irradiated at elevated temperatures.

  19. Star-galaxy separation strategies for WISE-2MASS all-sky infrared galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Kovács, András; Szapudi, István

    2015-04-01

    We combine photometric information of the Wide-Field Infrared Survey Explorer (WISE) and Two Micron All Sky Survey (2MASS) all-sky infrared data bases, and demonstrate how to produce clean and complete galaxy catalogues for future analyses. Adding 2MASS colours to WISE photometry improves star-galaxy separation efficiency substantially at the expense of losing a small fraction of the galaxies. We find that 93 per cent of the WISE objects within W1 < 15.2 mag have a 2MASS match, and that a class of supervised machine learning algorithms, support vector machines (SVM), are efficient classifiers of objects in our multicolour data set. We constructed a training set from the Sloan Digital Sky Survey PhotoObj table with known star-galaxy separation, and determined redshift distribution of our sample from the Galaxy and Mass Assembly spectroscopic survey. Varying the combination of photometric parameters input into our algorithm we show that W1WISE - J2MASS is a simple and effective star-galaxy separator, capable of producing results comparable to the multidimensional SVM classification. We present a detailed description of our star-galaxy separation methods, and characterize the robustness of our tools in terms of contamination, completeness, and accuracy. We explore systematics of the full sky WISE-2MASS galaxy map, such as contamination from moon glow. We show that the homogeneity of the full sky galaxy map is improved by an additional J2MASS < 16.5 mag flux limit. The all-sky galaxy catalogue we present in this paper covers 21 200 deg2 with dusty regions masked out, and has an estimated stellar contamination of 1.2 per cent and completeness of 70.1 per cent among 2.4 million galaxies with zmed ≈ 0.14. WISE-2MASS galaxy maps with well controlled stellar contamination will be useful for spatial statistical analyses, including cross-correlations with other cosmological random fields, such as the cosmic microwave background. The same techniques also yield a

  20. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  1. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F; Hill, Herbert H

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ. PMID:26914233

  2. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F; Hill, Herbert H

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ.

  3. Signal separation: the quest for independent mass flux patterns in geodetic observations

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Rietbroek, R.; Forootan, E.

    2010-12-01

    Today, the analysis of the Earth’s time-variable gravity field and land and ocean surface plays a key role in geodetic Earth system research. The GRACE and GPS observables provide, together with satellite altimetry, an almost direct measurement of the amount of mass that is redistributed at or near the surface of the planet by oceanic and atmospheric circulation and through the hydrological cycle. With reprocessed data sets, it is now widely accepted that GRACE gravimetry and GPS loading inversion see the same mass flux signals, although at different spatial and temporal scales. The same goes for GRACE and ocean altimetry, when steric effects in the sea level are taken into account. This has lead to promising approaches that combine these techniques, e.g. in order to improve geocenter estimates or to estimate ocean heat storage. However, in the view of the authors, the biggest challenge in data analysis is the problem of signal separation. This problem is three-fold: 1) separation of signal and noise stemming from the measurement systems, 2) separation of mass flux patterns originating from different compartments of the Earth system (trends in continental hydrology vs. GIA, the leakage problem in ice sheet mass balance from GRACE), 3) identification of physically dependent and independent signals within the same compartment (sea level contributors, teleconnections in the hydrological cycle). In this contribution we will first review different techniques that have been suggested for signal separation using multi-sensor data, including the joint spherical harmonic analysis, the ‘fingerprint’ inversion method and various methods rooted in the assumption that physically independent processes generate uncorrelated or statistically independent observations. The, results obtained by our group in jointly analysing global GRACE, GPS and altimetry data sets will be presented.

  4. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  5. Elastic recoil detection analysis for large recoil angles (LA-ERDA)

    NASA Astrophysics Data System (ADS)

    Bogdanović Radović, I.; Steinbauer, E.; Benka, O.

    2000-09-01

    In this paper, elastic recoil detection (ERD) measurements at recoil angle of 60° using ion-induced electron emission (IEE) for particle identification are presented. In our IEE system for particle identification, recoiled target atoms and scattered projectiles penetrate a set of thin carbon foils before their energy is analyzed in a solid state detector. Particle identification is based on the fact that the total number of electrons emitted from the foils depends on the particle nuclear charge. This method is characterized by its low minimum detectable energy, which stimulated us to study ERDA at 60°. Due to collision kinematics and due to the angular dependence of the scattering cross-sections, it is expected that the sensitivity can be significantly improved. In this work, the detection efficiency of the IEE particle identification system for H recoils at energies below 1 MeV was determined. LA-ERDA measurements were performed with 4He and 12C projectiles using two different types of samples with a well-known amount and depth distribution of H atoms near the surface. Sample 1 consisted of a 50 μg/cm 2 melamine layer evaporated on a flat Si substrate, sample 2 was a Si wafer with implanted H. Sensitivity and depth resolution were measured using LA-ERDA with a recoil angle of 60° and ERDA with recoil angles of 30° and 45°. The results for different recoil geometries and projectiles are discussed and compared with theoretical predictions.

  6. Analysis of hemodynamic fluid phase mass transport in a separated flow region.

    PubMed

    Lutostansky, Elizabeth M; Karner, Gerhard; Rappitsch, Gerhard; Ku, David N; Perktold, Karl

    2003-04-01

    The mass transfer behavior in the recirculation region downstream of an axisymmetric sudden expansion was examined. The Reynolds number, 500, and Schmidt number, 3200, were selected to model the mass transfer of molecules, such as ADP, in the arterial system. In a first step the transient mass transport applying zero diffusive flux at the wall was analyzed using experiments and two computational codes. The two codes were FLUENT, a commercially available finite volume method, and FTSP, a finite element code developed at Graz University of Technology. The comparison of the transient wall concentration values determined by the three methods was excellent and provides a measure of confidence for computational mass transfer calculations in convection dominated, separated flows. In a second step the effect of the flow separation on the stationary mass transport applying a permeability boundary condition at the water-permeable wall was analyzed using the finite element code FTSP. The results show an increase of luminal ADP surface concentration in the upstream and in the downstream tube of the sudden expansion geometry in the range of six and twelve percent of the bulk flow concentration. The effect of flow separation in the downstream tube on the wall concentration is a decrease of about ten percent of the difference between wall concentration and bulk concentration occurring at nearly fully developed flow at the downstream region at a distance of 66 downstream tube diameters from the expansion. The decrease of ADP flux into the wall is in the range of three percent of the flux at the downstream region. PMID:12751280

  7. Accelerator mass spectrometry at the 4 MV Dynamitron Tandem in Bochum

    NASA Astrophysics Data System (ADS)

    Lubritto, C.; Rogalla, D.; Rubino, M.; Marzaioli, F.; Passariello, I.; Romano, M.; Spadaccini, G.; Casa, G.; Di Leva, A.; De Cesare, N.; D'Onofrio, A.; Gialanella, L.; Imbriani, G.; Palmieri, A.; Roca, V.; Rolfs, C.; Sabbarese, C.; Strieder, F.; Schüermann, D.; Terrasi, F.

    2004-07-01

    A feasibility test for Accelerator Mass Spectrometry has been carried out successfully at the 4 MV Dynamitron Tandem Laboratory in Bochum in conjunction with a new recoil separator. We describe the facility as well as results concerning the reproducibility and accuracy of 14C content measurements of several standard samples.

  8. Electrochemically-Modulated Separation and Mass Spectrometric Analysis of Actinides in Difficult Matrices

    SciTech Connect

    Duckworth, Douglas C.; Liezers, Martin; Lehn, Scott A.; Douglas, Matthew

    2009-01-01

    Electrochemically-modulated separations (EMS) are a straightforward means of isolating and pre-concentrating elements for on-line mass spectrometric analysis. Elements are accumulated at electrochemical working electrodes and subsequently released into a clean carrier solution for spectroscopic analysis. EMS can employ solely aqueous chemistry and uses electrochemical redox adjustment of oxidation state to “trigger” reversible chelation / complexation. Less tractable elements (e.g., uranium and plutonium), based on redox potentials, can therefore be extracted from difficult matrices following redox adjustment and chelation with electrode chelation sites. Simply put, separation is achieved by a small voltage step that is applied to the target electrode to turn “on” or “off” the specific actinide affinity of an electrode. This separation technology employs both redox and chelation chemistry to effect highly selective accumulation of target actinides, and results in element separation, matrix elimination and analyte preconcentration. Prior studies have developed protocols and preliminary insight into EMS processes for U and Pu. U and Pu are released upon oxidation and reduction, respectively, allowing complete separation due to widely divergent redox potentials. T The coupling of EMS on-line with ICP-MS for elemental and isotopic analysis of uranium and plutonium is presented, with a focus on analytical performance metrics and applicability to safeguards and process monitoring via nondestructive analyses.

  9. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  10. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    NASA Astrophysics Data System (ADS)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  11. Radiative recoil corrections to hyperfine splitting: Polarization insertions in the electron factor

    SciTech Connect

    Eides, M. I.; Shelyuto, V. A.

    2010-01-15

    We consider three-loop radiative recoil corrections to hyperfine splitting in muonium due to insertions of the one-loop polarization operator in the electron factor. The contribution generated by electron polarization insertions is a cubic polynomial in the large logarithm of the electron-muon mass ratio. The leading logarithm cubed and logarithm squared terms are well known for some time. We calculate all single-logarithmic and nonlogarithmic radiative recoil corrections of the order {alpha}{sup 3}(m/M)E{sub F} generated by diagrams with the electron and muon polarization insertions.

  12. Imprints of recoiling massive black holes on the hot gas of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Devecchi, B.; Rasia, E.; Dotti, M.; Volonteri, M.; Colpi, M.

    2009-04-01

    Anisotropic gravitational radiation from a coalescing black hole (BH) binary is known to impart recoil velocities of up to ~1000kms-1 to the remnant BH. In this context, we study the motion of a recoiling BH inside a galaxy modelled as a Hernquist sphere, and the signature that the hole imprints on the hot gas, using N-body/smoothed particle hydrodynamics simulations. Ejection of the BH results in a sudden expansion of the gas ending with the formation of a gaseous core, similarly to what is seen for the stars. A cometary tail of particles bound to the BH is initially released along its trail. As the BH moves on a return orbit, a nearly spherical swarm of hot gaseous particles forms at every apocentre: this feature can live up to ~108 years. If the recoil velocity exceeds the sound speed initially, the BH shocks the gas in the form of a Mach cone in density near each supersonic pericentric passage. We find that the X-ray fingerprint of a recoiling BH can be detected in Chandra X-ray maps out to a distance of Virgo. For exceptionally massive BHs, the Mach cone and the wakes can be observed out to a few hundred of milliparsec. The detection of the Mach cone is of twofold importance as it can be a probe of high-velocity recoils, and an assessment of the scatter of the MBH - Mbulge relation at large BH masses.

  13. Improving sensitivity for microchip electrophoresis interfaced with inductively coupled plasma mass spectrometry using parallel multichannel separation.

    PubMed

    Cheng, Heyong; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao; Ye, Meiying

    2016-08-26

    We reported sensitivity enhancement using multichannel parallel separation for microchip electrophoresis hyphenated with inductively coupled plasma mass spectrometry (MCE-ICP-MS) in this study. By using 2-20 array lanes for parallel separation, the sensitivity of the MCE-ICP-MS system was proportionally improved by 2-20 folds. No significantly adverse effect of parallel separation on column efficiency and resolution was observed. Rapid separation of Hg(2+) and methylmercuric (MeHg) ion within 36s under an electric field of 800Vcm(-1) was achieved in the 2-cm twenty-channels with a background electrolyte of 5mmolL(-1) borate buffer (pH 9.2). Detection limits of Hg(2+) and MeHg by the proposed system were decreased to 6.8-7.1ngL(-1). Good agreement between determined values and certified values of a certified reference fish was obtained with recoveries ranged between 94-98%. All results prove its advantages including high sensitivity, high efficiency and low operation cost, which are beneficial to routine analysis of metal speciation in environmental, biological and food fields. PMID:27488720

  14. Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

    PubMed

    Fitz, Brian D; Mannion, Brandyn C; To, Khang; Hoac, Trinh; Synovec, Robert E

    2015-05-01

    Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace.

  15. Separation and analysis of dimethylaniline isomers by supercritical fluid chromatography--electrospray ionization tandem mass spectrometry.

    PubMed

    Strife, Robert J; Mangels, Michele L; Skare, Julie A

    2009-10-01

    The assessment of human exposure to specific isomers of dimethylanilines (DMA's) is of interest for the evaluation of potential exposure-health outcome relationships. Improved analytical methods will help in identifying the environmental sources of such exposures. The separation of all six DMA isomers by supercritical fluid chromatography (SFC), without derivatization, is reported within. Further, the combination of SFC with electrospray ionization/tandem mass spectrometry provides selective detection in crude extracts of spiked (40 ppb of 3,5-dimethylaniline) raw materials. The raw materials chosen for analysis are commonly used in the manufacture of consumer hair-dye products.

  16. Decay data measurements on 213Bi using recoil atoms.

    PubMed

    Marouli, M; Suliman, G; Pommé, S; Ammel, R Van; Jobbágy, V; Stroh, H; Dikmen, H; Paepen, J; Dirican, A; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2013-04-01

    In this work, (213)Bi has been separated from an open (225)Ac source by collecting recoil atoms onto a glass plate in vacuum. The activity of such recoil sources has been measured as a function of time, using an ion-implanted planar Si detector in quasi-2π geometry. From these measurements, a new half-life value of T1/2((213)Bi)=45.62 (6)min was derived. Additionally, high-resolution alpha-spectrometry measurements were performed at a solid angle of 0.4% of 4πsr, to verify the energies and emission probabilities of the α-emissions from (213)Bi. Using (225)Ac, (221)Fr, (217)At and (213)Po peaks as reference peaks, the measured (213)Bi α-peak energies at Eα,0=5878 (4)keV and Eα,1=5560 (4)keV were about 10keV higher than validated data. The relative α-particle emission probabilities of (213)Bi, Pα,0=0.9155 (11) and Pα,1=0.0845 (11), and the (213)Bi alpha branching factor, Pα=1-Pβ=2.140 (10)%, are compatible with recommended values, but have a higher accuracy.

  17. Medium modifications with recoil polarization

    SciTech Connect

    Brand, J.F.J. van den; Ent, R.

    1994-04-01

    The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He({rvec e},e{prime},{rvec p}){sup 3}H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium.

  18. Base flow separation: A comparison of analytical and mass balance methods

    NASA Astrophysics Data System (ADS)

    Lott, Darline A.; Stewart, Mark T.

    2016-04-01

    Base flow is the ground water contribution to stream flow. Many activities, such as water resource management, calibrating hydrological and climate models, and studies of basin hydrology, require good estimates of base flow. The base flow component of stream flow is usually determined by separating a stream hydrograph into two components, base flow and runoff. Analytical methods, mathematical functions or algorithms used to calculate base flow directly from discharge, are the most widely used base flow separation methods and are often used without calibration to basin or gage-specific parameters other than basin area. In this study, six analytical methods are compared to a mass balance method, the conductivity mass-balance (CMB) method. The base flow index (BFI) values for 35 stream gages are obtained from each of the seven methods with each gage having at least two consecutive years of specific conductance data and 30 years of continuous discharge data. BFI is cumulative base flow divided by cumulative total discharge over the period of record of analysis. The BFI value is dimensionless, and always varies from 0 to 1. Areas of basins used in this study range from 27 km2 to 68,117 km2. BFI was first determined for the uncalibrated analytical methods. The parameters of each analytical method were then calibrated to produce BFI values as close to the CMB derived BFI values as possible. One of the methods, the power function (aQb + cQ) method, is inherently calibrated and was not recalibrated. The uncalibrated analytical methods have an average correlation coefficient of 0.43 when compared to CMB-derived values, and an average correlation coefficient of 0.93 when calibrated with the CMB method. Once calibrated, the analytical methods can closely reproduce the base flow values of a mass balance method. Therefore, it is recommended that analytical methods be calibrated against tracer or mass balance methods.

  19. Extension of the two-dimensional mass channel cluster plot method to fast separations utilizing low thermal mass gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Fitz, Brian D; Synovec, Robert E

    2016-03-24

    Implementation of a data reduction and visualization method for use with high-speed gas chromatography and time-of-flight mass spectrometry (GC-TOFMS) is reported. The method, called the "2D m/z cluster method" facilitates analyte detection, deconvolution, and identification, by accurately measuring peak widths and retention times using a fast TOFMS sampling frequency (500 Hz). Characteristics and requirements for high speed GC are taken into consideration: fast separations with narrow peak widths and high peak capacity, rapid data collection rate, and effective peak deconvolution. Transitioning from standard GC (10-60+ minute separations) to fast GC (1-10 min separations) required consideration of how to properly analyze the data. This report validates use of the 2D m/z cluster method with newly developed GC technology that produces ultra-fast separations (∼1 min) with narrow analyte peak widths. Low thermal mass gas chromatography (LTM-GC) operated at a heating rate of 250 °C/min coupled to a LECO Pegasus III TOFMS analyzed a 115 component test mixture in 120 s with peak widths-at-base, wb (4σ), of 350 ms (average) to produce a separation with a high peak capacity, nc ∼ 340 (at unit resolution Rs = 1). The 2D m/z cluster method is shown to separate overlapped analytes to a limiting Rs ∼ 0.03, so the effective peak capacity was increased nearly 30-fold to nc ∼10,000 in the 120 s separation. The method, when coupled with LTM-GC-TOFMS, is demonstrated to provide unambiguous peak rank (i.e. the number of analytes per overlapped peak in the total ion current (TIC)), by visualizing locations of pure and chromatographically overlapped m/z. Hence, peak deconvolution and identification using MCR-ALS (multivariate curve resolution - alternating least squares) is demonstrated.

  20. A Measurement of the Recoil Polarization of Electroproduced {Lambda}(1116)

    SciTech Connect

    Simeon McAleer

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p {yields} e{prime} + K{sup +} + {Lambda}(1116) for events where {Lambda}(1116) subsequently decayed via the channel {Lambda}(1116) {yields} p + {pi}{sup -}. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q{sup 2} range from 0.5 to 2.8 GeV{sup 2} and nearly the entire range in the center of mass angles. The proton angular distribution in the {Lambda}(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos {theta}{sub cm}{sup K+} dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the {Lambda}(1116) as a function of both cos {theta}{sub cm}{sup K+} and W.

  1. Separation and identification of oligomeric vinylmethoxysiloxanes by gradient elution chromatography coupled with electrospray ionization mass spectrometry.

    PubMed

    Jia, Guiying; Wan, Qian-Hong

    2015-05-22

    A high-performance liquid chromatography with online electrospray ionization mass spectrometry (HPLC-ESI-MS) has been used to separate and identify the reaction products resulting from controlled acid-catalyzed hydrolytic polycondensation of vinyltrimethoxysilane (VMS). The reaction products were prepared in the molar ratio of water to VMS (r1) ranging from 0.6 to 1.2, characterized by standard spectroscopic techniques, and subsequently analyzed by HPLC-UV absorbance detection and HPLC-ESI-MS. Linear vinylmethoxysiloxane oligomers with the number of repeat units (n) ranging from 3 to 11 are predominant species at the beginning of the reaction (for r1=0.6). Then they transform into monocyclic (for r1=1.0) and bicyclic (for r1=1.2) species with gradually increasing amount of water in the reaction mixture. The oligomer conversions suggest that structure growth of vinylmetoxysiloxanes proceeds by nonrandom cyclization reactions, which are favored over chain extension under the chosen reaction conditions. Direct ESI-MS, HPLC-ESI-MS and HPLC-UV were used to determine the molar mass distributions for the vinylmethoxysiloxane oligomers prepared in three different values of r1. The molar mass averages increase slightly with the amount of water in the reaction mixture and vary somewhat with the method used. Our results indicate that with the combined capability of separation, sensitivity and identification, HPLC-ESI-MS is especially useful to study highly complex silicon-based compounds with hyperbranched, caged or cubic structures as building blocks for hybrid materials. PMID:25890439

  2. Wave-driven rotation and mass separation in rotating magnetic mirrors

    NASA Astrophysics Data System (ADS)

    Fetterman, Abraham J.

    Axisymmetric mirrors are attractive for fusion because of their simplicity, high plasma pressure at a given magnetic pressure, and steady state operation. Their subclass, rotating mirrors, are particularly interesting because they have increased parallel confinement, magnetohydrodynamic stability, and a natural heating mechanism. This thesis finds and explores an unusual effect in supersonically rotating plasmas: particles are diffused by waves in both potential energy and kinetic energy. Extending the alpha channeling concept to rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A high azimuthal mode number perturbation on the magnetic field is a particularly simple way to achieve the latter effect. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particles total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. In the same way, rotation can be produced in non-fusion plasmas. Waves are identified to produce rotation in plasma centrifuges, which separate isotopes based on their mass difference. Finally, a new high throughput mass filter which is well suited to separating nuclear waste is presented. The new filter, the magnetic centrifugal mass filter (MCMF), has well confined output streams and less potential for nuclear proliferation than competing technologies. To assess the usefulness of the

  3. Recoil Polarization for Delta Excitation in Pion Electroproduction

    SciTech Connect

    J. J. Kelly; R. E. Roche; Z. Chai; M. K. Jones; O. Gayou; A. J. Sarty; S. Frullani; K. Aniol; E. J. Beise; F. Benmokhtar; W. Bertozzi; W. U. Boeglin; T. Botto; E. J. Brash; H. Breuer; E. Brown; E. Burtin; J. R. Calarco; C. Cavata; C. C. Chang; N. S. Chant; J.-P. Chen; M. Coman; D. Crovelli; R. De Leo; S. Dieterich; S. Escoffier; K. G. Fissum; V. Garde; F. Garibaldi; S. Georgakopoulus; S. Gilad; R. Gilman; C. Glashausser; J.-O. Hansen; D. W. Higinbotham; A. Hotta; G. M. Huber; H. Ibrahim; M. Iodice; C. W. de Jager; X. Jiang; A. Klimenko; A. Kozlov; G. Kumbartzki; M. Kuss; L. Lagamba; G. Laveissiere; J. J. LeRose; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; D. J. Margaziotis; F. Marie; P. Markowitz; S. McAleer; D. Meekins; R. Michaels; B. D. Milbrath; J. Mitchell; J. Nappa; D. Neyret; C. F. Perdrisat; M. Potokar; V. A. Punjabi; T. Pussieux; R. D. Ransome; P. G. Roos; M. Rvachev; A. Saha; S. Sirca; R. Suleiman; S. Strauch; J. A. Templon; L. Todor; P. E. Ulmer; G. M. Urciuoli; L. B. Weinstein; K. Wijesooriya; B. Wojtsekhowski; X. Zheng; and L. Zhu

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q{sup 2}=1.0 (GeV/c){sup 2}, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.

  4. Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Hirt, Christian; Novák, Pavel; Pitoňák, Martin; Šprlák, Michal

    2016-01-01

    The geoid-to-quasigeoid separation is often computed only approximately as a function of the simple planar Bouguer gravity anomaly and the height of the computation point while disregarding the contributions of terrain geometry and anomalous topographic density as well as the sub-geoid masses. In this study we demonstrate that these contributions are significant and, therefore, should be taken into consideration when investigating the relation between the normal and orthometric heights particularly in the mountainous, polar and geologically complex regions. These contributions are evaluated by applying the spectral expressions for gravimetric forward modelling and using the EIGEN-6C4 gravity model, the Earth2014 datasets of terrain, ice thickness and inland bathymetry and the CRUST1.0 sediment and (consolidated) crustal density data. Since the global crustal density models currently available (e.g. CRUST1.0) have a limited accuracy and resolution, the comparison of individual density contributions is—for consistency—realized with a limited spectral resolution up to a spherical harmonic degree 360 (or 180). The results reveal that the topographic contribution globally varies between -0.33 and 0.57 m, with maxima in Himalaya and Tibet. The contribution of ice considerably modifies the geoid-to-quasigeoid separation over large parts of Antarctica and Greenland, where it reaches ˜ 0.2 m. The contributions of sediments and bedrock are less pronounced, with the values typically varying only within a few centimetres. These results, however, have still possibly large uncertainties due to the lack of information on the actual sediment and bedrock density. The contribution of lakes is mostly negligible; its maxima over the Laurentian Great Lakes and the Baikal Lake reach only several millimetres. The contribution of the sub-geoid masses is significant. It is everywhere negative and reaches extreme values of -4.43 m. According to our estimates, the geoid

  5. COMMERCIAL APPLICATION OF PLASMA MASS SEPARATION IN THE ARCHIMEDES FILTER PLANT

    SciTech Connect

    Ahlfeld, C.E.; Gilleland, J.G.; Wagoner, J.D.

    2003-02-27

    This paper describes the commercial application of an innovative plasma mass separator called the Archimedes Filter to a pre-treatment plant that can be integrated into the U.S. Department of Energy (DOE) Hanford and Savannah River Sites to significantly enhance the treatment of radioactive high-level waste. The output of the Archimedes Filter is completely compatible with existing waste immobilization processes such as vitrification and requires no new waste form to be developed. A full-geometric-scale Demonstration Filter Unit (DEMO) has been constructed and is undergoing initial testing at the Archimedes Technology Group Development Facilities in San Diego. Some of the technology and engineering development is being performed by other organizations in collaboration with Archimedes. The Commissariat a l'Energie Atomique (CEA) is developing the plasma calcination technology and all of the associated systems for AFP feed preparation. Two Russian institutes are involved in the development of the ICP torch and injector system. The Remote System Group (UT-Battelle) at ORNL is developing the remote maintenance system for the filter units. Conceptual design of the Archimedes Filter Plant (AFP) is being developed concurrently with the DEMO testing program. The AFP mission is to significantly reduce the cost and accelerate the rate of vitrification of high-level waste by separating low activity waste from the sludge removed from underground storage tanks. Mass separation is accomplished by vaporizing the sludge feed and injecting it into a partially ionized, neutral plasma. In a single pass, heavy ions are deposited near the center of the filter and light mass ions are transported by the plasma to the ends of the cylindrically-shaped vacuum vessel. Responding to the DOE programs for cost reduction and cleanup acceleration, the AFP Project is planned on an expeditious schedule that executes all phases of the project with private sector funding. The initial AFP

  6. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  7. Identifying Gel-Separated Proteins Using In-Gel Digestion, Mass Spectrometry, and Database Searching: Consider the Chemistry

    ERIC Educational Resources Information Center

    Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.

    2009-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…

  8. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    SciTech Connect

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    2014-06-10

    A hollow fiber device includes a hollow fiber bundle, comprising a plurality of hollow fibers, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fibers. In at least one of the tubesheets, the boreholes are formed radially. The hollow fiber device can be utilized in heat exchange, in gas/gas, liquid/liquid and gas/liquid heat transfer, in combined heat and mass transfer and in fluid separation assemblies and processes. The design disclosed herein is light weight and compact and is particularly advantageous when the pressure of a first fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.

  9. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge.

    PubMed

    May, Jody C; McLean, John A

    2016-06-12

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) is becoming the preferred technique for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements used to infer systems-level information. In this article, we describe multidimensional MS configurations as technologies that are big data drivers and review some new and emerging strategies for mining information from large-scale datasets. We discuss the information content that can be obtained from individual dimensions, as well as the unique information that can be derived by comparing different levels of data. Finally, we summarize some emerging data visualization strategies that seek to make highly dimensional datasets both accessible and comprehensible. PMID:27306312

  10. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge

    NASA Astrophysics Data System (ADS)

    May, Jody C.; McLean, John A.

    2016-06-01

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) is becoming the preferred technique for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements used to infer systems-level information. In this article, we describe multidimensional MS configurations as technologies that are big data drivers and review some new and emerging strategies for mining information from large-scale datasets. We discuss the information content that can be obtained from individual dimensions, as well as the unique information that can be derived by comparing different levels of data. Finally, we summarize some emerging data visualization strategies that seek to make highly dimensional datasets both accessible and comprehensible.

  11. PSEUDOSTREAMERS AS THE SOURCE OF A SEPARATE CLASS OF SOLAR CORONAL MASS EJECTIONS

    SciTech Connect

    Wang, Y.-M.

    2015-04-10

    Using white-light and extreme-ultraviolet imaging observations, we confirm that pseudostreamers (streamers that separate coronal holes of the same polarity) give rise to a different type of coronal mass ejection (CME) from that associated with helmet streamers (defined as separating coronal holes of opposite polarity). Whereas helmet streamers are the source of the familiar bubble-shaped CMEs characterized by gradual acceleration and a three-part structure, pseudostreamers produce narrower, fanlike ejections with roughly constant speeds. These ejections, which are typically triggered by underlying filament eruptions or small, flaring active regions, are confined laterally and channeled outward by the like-polarity open flux that converges onto the pseudostreamer plasma sheet from both sides. In contrast, helmet streamer CMEs are centered on the relatively weak field around the heliospheric current sheet and thus undergo greater lateral expansion. Pseudostreamer ejections have a morphological resemblance to white-light jets from coronal holes; however, unlike the latter, they are not primarily driven by interchange reconnection, and tend to have larger widths (∼20°–30°), lower speeds (∼250–700 km s{sup −1}), and more complex internal structure.

  12. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry.

    PubMed

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  13. Separation and characterization of oxidized isomeric lipid-peptide adducts by ion mobility mass spectrometry.

    PubMed

    Milic, Ivana; Kipping, Marc; Hoffmann, Ralf; Fedorova, Maria

    2015-12-01

    Phospholipids are major components of cell membranes and lipoprotein complexes. They are prone to oxidation by endogenous and exogenous reactive oxygen species yielding a large variety of modified lipids including small aliphatic and phospholipid bound aldehydes and ketones. These carbonyls are strong electrophiles that can modify proteins and, thereby, alter their structures and functions triggering various pathophysiological conditions. The analysis of lipid-protein adducts by liquid chromatography-MS is challenged by their mixed chemical nature (polar peptide and hydrophobic lipid), low abundance in biological samples, and formation of multiple isomers. Thus, we investigated traveling wave ion mobility mass spectrometry (TWIMS) to analyze lipid-peptide adducts generated by incubating model peptides corresponding to the amphipathic β1 sheet sequence of apolipoprotein B-100 with 1-palmitoyl-2-(oxo-nonanoyl)-sn-glycerophosphatidylcholine (PONPC). The complex mixture of peptides, lipids, and peptide-lipid adducts was separated by TWIMS, which was especially important for the identification of two mono-PONPC-peptide isomers containing Schiff bases at different lysine residues. Moreover, TWIMS separated structural conformers of one peptide-lipid adduct possessing most likely different orientations of the hydrophobic sn-1 fatty acyl residue and head group of PONPC, relative to the peptide backbone. PMID:26634972

  14. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel

    SciTech Connect

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie; Satake, Akira; Yoshie, Ryuichiro; Mitamura, Tiruaki; Baba, Seizo

    2010-07-15

    The experimental evaluation of the separated and coupled rotating desiccant wheel and heat wheel is reported. The study aims to investigate the performance of the desiccant wheel and of the heat wheel both when operated separately and jointly. The performance evaluation of the desiccant wheel is based on its moisture removal capacity (MRC), moisture removal regeneration (MRR), and moisture mass balance (MMB). In addition, the study used the total energy balance (TEB), sensible coefficient of performance (COP{sub Sensible}), latent coefficient of performance (COP{sub Latent}) and, total coefficient of performance (COP{sub Total}). The performance of the heat wheel is based on its effectiveness. The COP{sub Sensible}, COP{sub Latent} and, COP{sub Total} are used in the performance evaluation of the coupled desiccant wheel and heat wheel. The general results of the study show that the MRC, MRR and MMB coupled with the TEB, COP{sub Latent}, COP{sub Sensible} and COP{sub Total} predict adequately the performance of the desiccant wheel. In addition, the coupled operation of the desiccant wheel and heat wheel, contributed to the reduction of the external thermal energy requirement for the regeneration of the desiccant wheel. This study can be applied in other researches seeking evaluation of the desiccant wheel, heat wheel, and their combined operation. Moreover, the data presented here are significant for the desiccant wheel benchmarking and for evaluation of the desiccant wheel models. (author)

  15. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  16. Analysis of proteins by direct-scanning infrared-MALDI mass spectrometry after 2D-PAGE separation and electroblotting.

    PubMed

    Eckerskorn, C; Strupat, K; Schleuder, D; Hochstrasser, D; Sanchez, J C; Lottspeich, F; Hillenkamp, F

    1997-08-01

    A novel approach is reported for the analysis and identification of proteins separated by 2D-PAGE with scanning infrared matrix-assisted laser desorption/ionization mass spectrometry (scanning IR-MALDI-MS). The proteins of human blood plasma were separated by 2D-PAGE, electroblotted onto PVDF membranes, incubated in matrix solution, and then scanned by IR-MALDI-MS. Mass contour plots of selected spots were obtained. Protein separation is shown to be conserved by comparison with silver-stained gels. The sensitivity for the protein detection is comparable if not better than that of silver-stained gels. Posttranslational modifications were identified by comparing the measured mass to the one calculated from the known DNA sequence. Adduct formation to unprotected cysteine residues during gel separation is demonstrated for selected proteins. PMID:9253242

  17. Chromatographic separation of low-molecular-mass recombinant proteins and peptides on Superdex 30 prep grade.

    PubMed

    Joyce, J G; Cook, J C; Przysiecki, C T; Lehman, E D

    1994-12-01

    The chromatographic properties of Superdex 30 prep grade medium have been investigated in non-denaturing and denaturing mobile phases using commercially available proteins and peptides as well as low-molecular-mass (M(r)) recombinant polypeptides. The medium is a macroreticular gel composed of crosslinked agarose beads to which dextran has been covalently bound. The mean particle size is approximately 34 microns. Experimental results show a linear relation between the distribution coefficient (KD) and the log10 M(r) in the fractionation range 24,000-3000. The relationships between resolution and flow-rate or load volume were investigated and shown to be comparable with those of Superdex 75 and 200 prep grade media. Minimal loss of resolution occurred in the flow-range from 30-60 cm/h. Load volumes of up to 5% total column volume could be applied while maintaining baseline resolution of polypeptide mixtures. Non-specific interactions between the matrix and certain samples were characterized. The predominant interactions with the resin appear to be hydrophobic in nature rather than ionic. Hydrogen bonding may also play a role in the retardation of certain small molecules. The applicability of the resin for separating dimeric and oligomeric forms of low-molecular-mass recombinant proteins was shown.

  18. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  19. Proteomic profiling of intact proteins using WAX-RPLC 2-D separations and FTICR mass spectrometry

    SciTech Connect

    Sharma, Seema; Simpson, David C.; Tolic, Nikola; Jaitly, Navdeep; Mayampurath, Anoop M.; Smith, Richard D.; Pasa-Tolic, Liljiana

    2007-02-01

    We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. 715 intact proteins were detected and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post translational modifications were assigned for ~10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction. Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C, 15N depleted media under aerobic and sub-oxic conditions. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification complement. The strategy can be readily applied for measuring differential protein abundances, and provides a platform for high-throughput selection of biologically relevant targets for further characterization.

  20. Mass-Transfer-Induced Multistep Phase Separation in Emulsion Droplets: Toward Self-Assembly Multilayered Emulsions and Onionlike Microspheres.

    PubMed

    Liang, Shuaishuai; Li, Jiang; Man, Jia; Chen, Haosheng

    2016-08-01

    Mass-transfer-induced multistep phase separation was found in emulsion droplets. The agent system consists of a monomer (ethoxylated trimethylolpropane triacrylate, ETPTA), an oligomer (polyethylene glycol diacrylate, PEGDA 700), and water. The PEGDA in the separated layers offered partial miscibility of all the components throughout the multistep phase-separation procedure, which was terminated by the depletion of PEGDA in the outermost layer. The number of separated portions was determined by the initial PEGDA content, and the initial droplet size influenced the mass-transfer process and consequently determined the sizes of the separated layers. The resultant multilayered emulsions were demonstrated to offer an orderly temperature-responsive release of the inner cores. Moreover, the emulsion droplets can be readily solidified into onionlike microspheres by ultraviolet light curing, providing a new strategy in designing particle structures.

  1. Mass-Transfer-Induced Multistep Phase Separation in Emulsion Droplets: Toward Self-Assembly Multilayered Emulsions and Onionlike Microspheres.

    PubMed

    Liang, Shuaishuai; Li, Jiang; Man, Jia; Chen, Haosheng

    2016-08-01

    Mass-transfer-induced multistep phase separation was found in emulsion droplets. The agent system consists of a monomer (ethoxylated trimethylolpropane triacrylate, ETPTA), an oligomer (polyethylene glycol diacrylate, PEGDA 700), and water. The PEGDA in the separated layers offered partial miscibility of all the components throughout the multistep phase-separation procedure, which was terminated by the depletion of PEGDA in the outermost layer. The number of separated portions was determined by the initial PEGDA content, and the initial droplet size influenced the mass-transfer process and consequently determined the sizes of the separated layers. The resultant multilayered emulsions were demonstrated to offer an orderly temperature-responsive release of the inner cores. Moreover, the emulsion droplets can be readily solidified into onionlike microspheres by ultraviolet light curing, providing a new strategy in designing particle structures. PMID:27427849

  2. Sound production by a recoiling system in the pempheridae and terapontidae.

    PubMed

    Parmentier, Eric; Fine, Michael L; Mok, Hin-Kiu

    2016-06-01

    Sound-producing mechanisms in fishes are extraordinarily diversified. We report here original mechanisms of three species from two families: the pempherid Pempheris oualensis, and the terapontids Terapon jarbua and Pelates quadrilineatus. All sonic mechanisms are built on the same structures. The rostral part of the swimbladder is connected to a pair of large sonic muscles from the head whereas the posterior part is fused with bony widenings of vertebral bodies. Two bladder regions are separated by a stretchable fenestra that allows forward extension of the anterior bladder during muscle contraction. A recoiling apparatus runs between the inner face of the anterior swimbladder and a vertebral body expansion. The elastic nature of the recoiling apparatus supports its role in helping the swimbladder to recover its initial position during sonic muscle relaxation. This system should aid fast contraction (between 100 and 250Hz) of sonic muscles. There are many differences between species in terms of the swimbladder and its attachments to the vertebral column, muscle origins, and morphology of the recoiling apparatus. The recoiling apparatus found in the phylogenetically-related families (Glaucosomatidae, Pempheridae, Terapontidae) could indicate a new character within the Percomorpharia. J. Morphol. 277:717-724, 2016. © 2016 Wiley Periodicals, Inc.

  3. Neutron electric form factor via recoil polarimetry

    SciTech Connect

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  4. Thermal recoil force, telemetry, and the Pioneer anomaly

    SciTech Connect

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-15

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  5. Gravitational Recoil of Inspiraling Black Hole Binaries to Second Post-Newtonian Order

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Qusailah, Moh'd. S. S.; Will, Clifford M.

    2005-12-01

    The loss of linear momentum by gravitational radiation and the resulting gravitational recoil of black hole binary systems may play an important role in the growth of massive black holes in early galaxies. We calculate the gravitational recoil of nonspinning black hole binaries at the second post-Newtonian order (2 PN) beyond the dominant effect, obtaining, for the first time, the 1.5 PN correction term due to tails of waves and the next 2 PN term. We find that the maximum value of the net recoil experienced by the binary due to the inspiral phase up to the innermost stable circular orbit (ISCO) is of the order of 22 km s-1. We then estimate the kick velocity accumulated during the plunge from the ISCO up to the horizon by integrating the momentum flux using the 2 PN formula along a plunge geodesic of the Schwarzschild metric. We find that the contribution of the plunge dominates over that of the inspiral. For a mass ratio m2/m1=1/8, we estimate a total recoil velocity (due to both adiabatic and plunge phases) of 100+/-20 km s-1. For a ratio of 0.38, the recoil is maximum, and we estimate it to be 250+/-50 km s-1. In the limit of small mass ratio, we estimate V/c~0.043(+/-20%)(m2/m1)2. Our estimates are consistent with, but span a substantially narrower range than, those of Favata and coworkers.

  6. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-10-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  7. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-08-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  8. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    SciTech Connect

    Fallows, Scott Mathew

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  9. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  10. α -decay chains of recoiled superheavy nuclei: A theoretical study

    NASA Astrophysics Data System (ADS)

    Niyti, Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2015-05-01

    A systematic theoretical study of α -decay half-lives in the superheavy mass region of the periodic table of elements is carried out by extending the quantum-mechanical fragmentation theory based on the preformed cluster model (PCM) to include temperature (T ) dependence in its built-in preformation and penetration probabilities of decay fragments. Earlier, the α -decay chains of the isotopes of Z =115 were investigated by using the standard PCM for spontaneous decays, with"hot-optimum" orientation effects included, which required a constant scaling factor of 104 to approach the available experimental data. In the present approach of the PCM (T ≠0 ), the temperature effects are included via the recoil energy of the residual superheavy nucleus (SHN) left after x -neutron emission from the superheavy compound nucleus. The important result is that the α -decay half-lives calculated by the PCM (T ≠0 ) match the experimental data nearly exactly, without using any scaling factor of the type used in the PCM. Note that the PCM (T ≠0 ) is an equivalent of the dynamical cluster-decay model for heavy-ion collisions at angular momentum ℓ =0 . The only parameter of model is the neck-length parameter Δ R , which for the calculated half-lives of α -decay chains of various isotopes of Z =113 to 118 nuclei formed in "hot-fusion" reactions is found to be nearly constant, i.e., Δ R ≈0.95 ±0.05 fm for all the α -decay chains studied. The use of recoiled residue nucleus as a secondary heavy-ion beam for nuclear reactions has also been suggested in the past.

  11. Separation and characterization of oxaliplatin dinucleotides from DNA using HPLC-ESI ion trap mass spectrometry.

    PubMed

    Mowaka, Shereen; Linscheid, Michael

    2008-11-01

    Oxaliplatin is a third-generation platinum complex, and has a broad spectrum of antitumor activity. Such platinum complexes with the DACH carrier ligand have recently received increasing attention since they show efficacy against cisplatin-resistant cell lines. As the foremost indication of antitumor activity of platinum drugs is the formation of adducts with genomic DNA, calf thymus DNA-oxaliplatin adducts were the major target in this study. Calf thymus DNA was incubated with oxaliplatin, resulting in the formation of a large number of platinum-DNA adducts. Treated DNA was digested into the dinucleotides with a combination of enzymes, namely, benzonase, alkaline phosphatase, and nuclease S1. Using a high-performance liquid chromatography, we carried out the separation of individual platinum-DNA adducts which were concurrently identified using electrospray ionization ion trap mass spectrometry (MS). Both 1,2-intrastrand and 1,2-interstrand cross-linked adducts were found; however, those of the intrastrand nature have a considerably higher abundance than those of the interstrand cross-links. Among them, d(GpG)-oxaliplatin was the most abundant bifuctional adduct. To a lesser extent, a few monofunctional adducts were detected as well. MS(n) experiments served to ascertain the detailed structures of oxaliplatin adducts of dinucleoside monophosphates and of dinucleotides.

  12. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    NASA Technical Reports Server (NTRS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  13. Reaction mechanisms in the system {sup 20}Ne+{sup 165}Ho: Measurement and analysis of forward recoil range distributions

    SciTech Connect

    Singh, D.; Ali, R.; Ansari, M. Afzal; Rashid, M. H.; Guin, R.; Das, S. K.

    2009-05-15

    Keeping in view the study of complete and incomplete fusion of heavy ions with a target, the forward recoil range distributions of several evaporation residues produced at 164 MeV {sup 20}Ne-ion beam energy have been measured for the system {sup 20}Ne+{sup 165}Ho. The recoil catcher activation technique followed by off-line gamma spectroscopy has been employed. Measured forward recoil range distributions of these evaporation residues show evidence of several incomplete fusion channels in addition to complete fusion. The entire and partial linear momentum transfers inferred from these recoil range distributions were used to identify the evaporation residues formed by complete and incomplete fusion mechanisms. The results indicate the occurrence of incomplete fusion involving the breakup of {sup 20}Ne into {sup 4}He+{sup 16}O and/or {sup 8}Be+{sup 12}C followed by fusion of one of the fragments with target nucleus {sup 165}Ho. Complete and incomplete fusion reaction channels have been identified in the production of various evaporation residues and an attempt has been made to separate out relative contributions of complete and incomplete fusion components from the analysis of the measured recoil range distribution data. The total contribution of complete and incomplete fusion channels has also been estimated.

  14. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis.

    PubMed

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-01

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si3N4 membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  15. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    SciTech Connect

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  16. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-01

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si3N4 membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  17. Two-dimensional separation of ionic species by hyphenation of capillary ion chromatography × capillary electrophoresis-mass spectrometry.

    PubMed

    Beutner, Andrea; Kochmann, Sven; Mark, Jonas Josef Peter; Matysik, Frank-Michael

    2015-03-17

    The separation of complex mixtures such as biological or environmental samples requires high peak capacities, which cannot be established with a single separation technique. Therefore, multidimensional systems are in demand. In this work, we present the hyphenation of the two most important (orthogonal) techniques in ion analysis, namely, ion chromatography (IC) and capillary electrophoresis (CE), in combination with mass spectrometry. A modulator was developed ensuring a well-controlled coupling of IC and CE separations. Proof-of-concept measurements were performed using a model system consisting of nucleotides and cyclic nucleotides. The data are presented in a multidimensional contour plot. Analyte stacking in the CE separation could be exploited on the basis of the fact that the suppressed IC effluent is pure water.

  18. Two-dimensional separation of ionic species by hyphenation of capillary ion chromatography × capillary electrophoresis-mass spectrometry.

    PubMed

    Beutner, Andrea; Kochmann, Sven; Mark, Jonas Josef Peter; Matysik, Frank-Michael

    2015-03-17

    The separation of complex mixtures such as biological or environmental samples requires high peak capacities, which cannot be established with a single separation technique. Therefore, multidimensional systems are in demand. In this work, we present the hyphenation of the two most important (orthogonal) techniques in ion analysis, namely, ion chromatography (IC) and capillary electrophoresis (CE), in combination with mass spectrometry. A modulator was developed ensuring a well-controlled coupling of IC and CE separations. Proof-of-concept measurements were performed using a model system consisting of nucleotides and cyclic nucleotides. The data are presented in a multidimensional contour plot. Analyte stacking in the CE separation could be exploited on the basis of the fact that the suppressed IC effluent is pure water. PMID:25708415

  19. A gun recoil system employing a magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Li, Z. C.; Wang, J.

    2012-10-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.

  20. Nuclear recoil corrections to the Lamb shift of hydrogen and light hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Shabaev, V. M.

    2016-06-01

    Accurate calculations of the nuclear recoil effect on the Lamb shift of hydrogenlike atoms are presented. Numerical results are reported for the n s states with n ≤5 and for the 2 p1 /2 and 2 p3 /2 states. The calculations are performed to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z α (where Z is the nuclear charge number and α is the fine structure constant). The obtained results provide accurate predictions for the higher-order remainder beyond the known Z α -expansion terms. In the case of hydrogen, the remainder was found to be much larger than anticipated. This result resolves the previously reported disagreement between the numerical all-order and the analytical Z α -expansion approaches for the nuclear recoil effect on the hydrogen Lamb shift.

  1. Modeling the Observability of Recoiling Black Holes as Offset Quasars

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Torrey, Paul; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Sijacki, Debora; Snyder, Gregory; Bird, Simeon; Nelson, Dylan; Xu, Dandan; Hernquist, Lars

    2015-08-01

    The merger of two supermassive black holes (SMBHs) imparts a gravitational-wave (GW) recoil kick to the remnant SMBH. In extreme cases these kicks may be thousands of km/s -- enough to easily eject them from their host galaxies. Moderate recoil kicks may also cause substantial displacements of the SMBH, however. An actively-accreting, recoiling SMBH may be observable as an offset quasar. Prior to the advent of a space-based GW observatory, detections of these offset quasars may offer the best chance for identifying recent SMBH mergers. Indeed, observational searches for recoiling quasars have already identified several promising candidates. However, systematic searches for recoils are currently hampered by large uncertainties regarding how often offset quasars should be observable, where they are most likely to be found, and whether BH spin alignment prior to merger is efficient at suppressing large recoils. Motivated by this, we have developed a model for the observable population of recoiling quasars in a cosmological framework, utilizing detailed information about the progenitor galaxies from state-of-the-art cosmological hydrodynamic simulations (the Illustris Project). The model for offset quasar lifetimes includes a physically-motivated, time-dependent model for accretion onto kicked SMBHs, and results are analyzed for a range of possible BH spin alignment models. We find that the observability of offset quasars depends strongly on the efficiency of pre-merger spin alignment, with promising indications that observations of recoils could distinguish between at least the extreme limits of spin alignment models. Our results also suggest that observable offset quasars should inhabit preferred types of host galaxies, where again these populations depend on the degree of pre-merger spin alignment. These findings will be valuable for planned and future dedicated searches for recoiling quasars, and they indicate that such objects might be used to place indirect

  2. Difference between a Photon's Momentum and an Atom's Recoil

    SciTech Connect

    Gibble, Kurt

    2006-08-18

    When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom's recoil is less than ({Dirac_h}/2{pi})k in the propagation direction. We show that the recoils in the transverse directions produce a lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive recoil shift for the transverse wave vector of the photons.

  3. Possibilities of research for on-line mass separator with heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Siváček, I.; Kliman, J.; Rodin, A. M.; Krupa, L'; Belozerov, A. V.; Podshibyakin, A. V.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu

    2014-09-01

    Mass Analyser of Superheavy Atoms is ISOL - type setup created for direct mass measurement heavy ions. Hot catcher and ECR ion source combination allows effective formation of secondary beams of volatile elements. Powerful magnetic analysing system offers possibility to achieve mass resolution M/ΔM > 1000 in the focal plane silicon strip detector. The efficiency, time characteristics and detection system properties are described. Two applications of setup in different fields of research are presented together with methodology of experiments and data analysis.

  4. Protein separation and characterization by np-RP-HPLC followed by intact MALDI-TOF mass spectrometry and peptide mass mapping analyses.

    PubMed

    Dauly, Claire; Perlman, David H; Costello, Catherine E; McComb, Mark E

    2006-07-01

    Because of their complexity, the separation of intact proteins from complex mixtures is an important step to comparative proteomics and the identification and characterization of the proteins by mass spectrometry (MS). In the study reported, we evaluated the use of nonporous-reversed-phase (np-RP)-HPLC for intact protein separation prior to MS analyses. The separation system was characterized and compared to 1D-SDS-PAGE electrophoresis in terms of resolution and sensitivity. We demonstrate that np-RP-HPLC protein separation is highly reproducible and provides intact protein fractions which can be directly analyzed by MALDI-TOF-MS for intact molecular weight determination. An in-well digestion protocol was developed, allowing for rapid protein identification by peptide mass fingerprinting (PMF) and resulted in comparable or improved peptide recovery compared with in-gel digestion. The np-RP sensitivity of detection by UV absorbance at 214 nm for intact proteins was at the low ng level and the sensitivity of peptide analysis by MALDI-TOF-MS was in the 10-50 fmol level. A membrane protein fraction was characterized to demonstrate application of this methodology. Among the identified proteins, multiple forms of vimentin were observed. Overall, we demonstrate that np-RP-HPLC followed by MALDI-TOF-MS allows for rapid, sensitive, and reproducible protein fractionation and very specific protein characterization by integration of PMF analysis with MS intact molecular weight information.

  5. Direct analysis of nine pharmaceuticals in culture media by use of cartridge separation with electrospray mass spectrometric detection.

    PubMed

    Li, Xing-Fang; Ma, Mingsheng; Tam, Yun K

    2002-09-01

    A 2-cm cartridge has been used for separation before electrospray mass spectrometric analysis of pharmaceutical compounds in cell culture media, alleviating the need for sample extraction and desalting procedures. Nine representative pharmaceuticals listed in the biopharmaceutical classification system (BCS) were chosen as the candidate compounds and Hank's balanced salt solution with Hepes buffer (HBSS-Hepes buffer) was used as the cell-culture medium in an effort to study permeability of chemicals through cell monolayers. Effects of several conditions, e.g. pH and buffer concentration in the mobile phase, flow rate, and temperature on separation efficiency were examined. The nine pharmaceuticals were separated within 2 min by use of a 2-cm C(8) cartridge. Relative standard deviations (RSD) from repeated analysis within the same day or over five days were 0.03-0.2% for retention times and 0.6-5.3% for peak areas; antipyrine was used as internal standard. Calibration curves based on peak-area measurements were linear over the range 0.1-20 micro mol L(-1). The HBSS-Hepes buffer did not interfere with separation and detection; identical separation and peak intensity were obtained when the samples were separately prepared in distilled water or in the culture medium. PMID:12207243

  6. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  7. HPTLC Plate Blotting for Liquid Microjunction Surface Sampling Probe Mass Spectrometric Analysis of Analytes Separated on a Wettable Phase Plate

    SciTech Connect

    Walworth, Matthew J; Stankovich, Joseph J; Van Berkel, Gary J; Schulz, Michael; Minarik, susanne

    2012-01-01

    A blotting method that transfers analytes separated on wettable HPTLC plates to a hydrophobic reversed-phase C8 HPLTC plate suitable for analysis with a liquid microjunction surface sampling probe electrospray ionization mass spectrometry system was described and demonstrated. The simple blotting procedure transfers the analyte from the wettable plate to the topmost surface of a rigidly backed, easy-to-mount hydrophobic substrate that already has been proven viable for analysis by this sampling probe/mass spectrometry system. The utility of the approach was demonstrated by the analysis of a four-component peptide mixture originally separated on a ProteoChrom HPTLC cellulose sheet and then blotted to the reversed phase HPTLC plate.

  8. First Measurement of Beam-Recoil Observables Cx and Cz

    SciTech Connect

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  9. Recoil splitting of x-ray-induced optical fluorescence

    SciTech Connect

    Gavrilyuk, S.; Aagren, H.; Gel'mukhanov, F.; Sun, Y.-P.; Levin, S.

    2010-03-15

    We show that the anisotropy of the recoil velocity distribution of x-ray-ionized atoms or molecules leads to observable splittings in subsequent optical fluorescence or absorption when the polarization vector of the x rays is parallel to the momentum of the fluorescent photons. The order of the magnitude of the recoil-induced splitting is about 10 {mu}eV, which can be observed using Fourier or laser-absorption spectroscopic techniques.

  10. Resolving Trends in Antarctic Ice Sheet Mass Loss and Glacio-isostatic Adjustment Through Spatio-temporal Source-separation

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Schoen, N.; Zammit-Mangion, A.; Rougier, J.; Flament, T.; Luthcke, S. B.; Petrie, E. J.; Rémy, F.

    2013-12-01

    There remains considerable inconsistency between different methods and approaches for determining ice mass trends for Antarctica from satellite observations. There are three approaches that can provide near global coverage for mass trends: altimetry, gravimetry and mass budget calculations. All three approaches suffer from a source separation problem where other geophysical processes limit the capability of the method to resolve the origin and magnitude of a mass change. A fourth approach, GPS vertical motion, provides localised estimates of mass change due to elastic uplift and an indirect estimate of GIA. Each approach has different source separation issues and different spatio-temporal error characteristics. In principle, it should be possible to combine the data and process covariances to minimize the uncertainty in the solution and to produce robust, posterior errors for the trends. In practice, this is a challenging problem in statistics because of the large number of degrees of freedom, the variable spatial and temporal sampling between the different observations and the fact that some processes remain under-sampled, such as firn compaction. Here, we present a novel solution to this problem using the latest methods in statistical modelling of spatio-temporal processes. We use Bayesian hierarchical modelling and employ stochastic partial differential equations to capture our physical understanding of the key processes that influence our observations. Due to the huge number of observations involved (> 10^8) methods are required to reduce the dimensionality of the problem and care is required in treatment of the observations as they are not independent. Here, we focus mainly on the results rather than the full suite of methods and we present time evolving fields of surface mass balance, ice dynamic-driven mass loss, and firn compaction for the period 2003-2009, derived from a combination of ICESat, ENVISAT, GRACE, InSAR, GPS and regional climate model output

  11. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    NASA Astrophysics Data System (ADS)

    Racine, Étienne; Buonanno, Alessandra; Kidder, Larry

    2009-08-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ˜3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikóczi, Vasúth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  12. Strong Lensing by Subhalos in the Dwarf Galaxy Mass Range. I. Image Separations

    NASA Astrophysics Data System (ADS)

    Zackrisson, E.; Riehm, T.; Möller, O.; Wiik, K.; Nurmi, P.

    2008-09-01

    The cold dark matter scenario predicts that a large number of dark subhalos should be located within the halo of each Milky Way-sized galaxy. One telltale signature of such dark subhalos could be additional milliarcsecond-scale image splitting of quasars previously known to be multiply imaged on arcsecond scales. Here we estimate the image separations for the subhalo density profiles favored by recent N-body simulations and compare these to the angular resolution of both existing and upcoming observational facilities. We find that the image separations produced are very sensitive to the exact subhalo density profile assumed, but in all cases they are considerably smaller than previous estimates based on the premise that subhalos can be approximated by singular isothermal spheres. Only the most optimistic subhalo models produce image separations that would be detectable with current technology, and many models produce image separations that will remain unresolved with all telescopes expected to become available in the foreseeable future. Detections of dark subhalos through image-splitting effects will therefore be far more challenging than currently believed, albeit not necessarily impossible.

  13. On the minimum core mass for giant planet formation at wide separations

    SciTech Connect

    Piso, Ana-Maria A.; Youdin, Andrew N.

    2014-05-01

    In the core accretion hypothesis, giant planets form by gas accretion onto solid protoplanetary cores. The minimum (or critical) core mass to form a gas giant is typically quoted as 10 M {sub ⊕}. The actual value depends on several factors: the location in the protoplanetary disk, atmospheric opacity, and the accretion rate of solids. Motivated by ongoing direct imaging searches for giant planets, this study investigates core mass requirements in the outer disk. To determine the fastest allowed rates of gas accretion, we consider solid cores that no longer accrete planetesimals, as this would heat the gaseous envelope. Our spherical, two-layer atmospheric cooling model includes an inner convective region and an outer radiative zone that matches onto the disk. We determine the minimum core mass for a giant planet to form within a typical disk lifetime of 3 Myr. The minimum core mass declines with disk radius, from ∼8.5 M {sub ⊕} at 5 AU to ∼3.5 M {sub ⊕} at 100 AU, with standard interstellar grain opacities. Lower temperatures in the outer disk explain this trend, while variations in disk density are less influential. At all distances, a lower dust opacity or higher mean molecular weight reduces the critical core mass. Our non-self-gravitating, analytic cooling model reveals that self-gravity significantly affects early atmospheric evolution, starting when the atmosphere is only ∼10% as massive as the core.

  14. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  15. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    SciTech Connect

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J. C.; Boehm, R.; Distler, M. O.; Doria, L.; Friedrich, J.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanchez Majos, S.; Schlimme, B. S.; Tiator, L.; Walcher, Th.; Weinriefer, M.; Bosnar, D.; Makek, M.; Cheymol, B.; Fonvieille, H.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  16. Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System

    PubMed Central

    Schneider, Bradley B.; Covey, Thomas R.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2013-01-01

    In differential mobility spectrometry (DMS, also referred to as high field asymmetric waveform ion mobility spectrometry, FAIMS), ions are separated on the basis of the difference in their mobility under high and low electric fields. The addition of polar modifiers to the gas transporting the ions through a DMS enhances the formation of clusters in a field-dependent way and thus amplifies the high and low field mobility difference resulting in increased peak capacity and separation power. Observations of the increase in mobility field dependence are consistent with a cluster formation model, also referred to as the dynamic cluster-decluster model. The uniqueness of chemical interactions that occur between an ion and cluster-forming neutrals increases the selectivity of the separation and the depression of low-field mobility relative to high-field mobility increases the compensation voltage and peak capacity. The effect of polar modifiers on the peak capacity across a broad range of chemicals has been investigated. We discuss the theoretical underpinnings which explain the observed effects. In contrast to the result from polar modifiers, we find that using mixtures of inert gases as the transport gas improve resolution by reducing peak width but has very little effect on peak capacity or selectivity. Inert gases do not cluster and thus do not reduce low field mobility relative to high-field mobility. The observed changes in the differential mobility α parameter exhibited by different classes of compounds when the transport gas contains polar modifiers or has a significant fraction of inert gas can be explained on the basis of the physical mechanisms involved in the separation processes. PMID:20121077

  17. PLANETS AROUND LOW-MASS STARS (PALMS). II. A LOW-MASS COMPANION TO THE YOUNG M DWARF GJ 3629 SEPARATED BY 0.''2

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2012-09-01

    We present the discovery of a 0.''2 companion to the young M dwarf GJ 3629 as part of our high-contrast adaptive optics imaging search for giant planets around low-mass stars with the Keck-II and Subaru telescopes. Two epochs of imaging confirm that the pair is comoving and reveal signs of orbital motion. The primary exhibits saturated X-ray emission which, together with its UV photometry from GALEX, points to an age younger than {approx}300 Myr. At these ages the companion lies below the hydrogen burning limit with a model-dependent mass of 46 {+-} 16 M{sub Jup} based on the system's photometric distance of 22 {+-} 3 pc. Resolved YJHK photometry of the pair indicates a spectral type of M7 {+-} 2 for GJ 3629 B. With a projected separation of 4.4 {+-} 0.6 AU and an estimated orbital period of 21 {+-} 5 yr, GJ 3629 AB is likely to yield a dynamical mass in the next several years, making it one of only a handful of brown dwarfs to have a measured mass and an age constrained from the stellar primary.

  18. Fast separation and analysis of reduced monoclonal antibodies with capillary zone electrophoresis coupled to mass spectrometry.

    PubMed

    Zhao, Yimeng; Sun, Liangliang; Knierman, Michael D; Dovichi, Norman J

    2016-02-01

    Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) was used for analysis of reduced antibodies. We first developed a simple protocol to condition commercial linear-polyacrylamide coated capillaries for use in top-down proteomics. We then suspended reduced antibodies in a solution of 35% acetic acid, 50% acetonitrile in water. Heavy and light chains were baseline resolved within 10 min and with 3-30 µg/mL detection limits using a 0.1% aqueous formic acid background electrolyte. Quintuplicate runs of a two-antibody mixture produced relative standard deviations of ∼1% in migration time and 10% in peak amplitudes. Resolution was further improved for the two-antibody mixture by using 5% acetic acid as the background electrolyte, highlighting the potential of capillary electrophoresis-mass spectrometry for analysis of antibody mixtures. PMID:26653481

  19. A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations

    PubMed Central

    Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An

    2010-01-01

    We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317

  20. Separation of cis and trans Isomers of Polyproline by FAIMS Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Creese, Andrew J.; Cooper, Helen J.

    2016-10-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS) is well-established as a tool for separating peptide isomers (sequence inversions and post-translationally modified localization variants). Here, we demonstrate the FAIMS is able to differentiate cis and trans isomers of polyproline. Polyproline assumes an all-cis conformation—the PPI helix—in 1-propanol, and an all-trans conformation—the PPII helix—in aqueous solutions. Differentiation of these conformers may be achieved both through use of a cylindrical FAIMS device and a miniaturized ultrahigh field planar FAIMS device.

  1. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics

    PubMed Central

    Yang, Chenxi; Zhong, Xuefei; Li, Lingjun

    2016-01-01

    Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enables comprehensive profiling of the phosphoproteome and facilitates deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009–2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis. PMID:24687451

  2. Median recoil direction as a WIMP directional detection signal

    SciTech Connect

    Green, Anne M.; Morgan, Ben

    2010-03-15

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP 'smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of {approx}2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  3. Stimulated Rayleigh resonances and recoil-induced effects

    SciTech Connect

    Courtois, J.Y.; Grynberg, G.

    1996-12-31

    The organization of this paper is as follows. We present in Section II the basic ideas about stimulated Rayleigh scattering by considering more particularly the situation where it arises from a relaxation process going on in the material system, and we describe a few experimental observations made in atomic and molecular physics. We then consider the case of nonstationary two-level atoms, and we derive the shape and characteristics of the recoil-induced resonances (Section III). In particular, we show that these resonances can be interpreted either as originating from a stimulated Rayleigh effect or as a stimulated Raman phenomena between atomic energy-momentum states having different momenta. Finally, to make a clear distinction between the physical phenomena that pertain directly to recoil-induced processes (i.e., that actually permit the measurement of the photon recoil) and those for which the introduction of the recoil constitutes a mere physical convenience, we review in Section IV some indisputable manifestations of the photon recoil in atomic and molecular physics. 92 refs., 22 figs.

  4. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  5. Rapid chiral separation of racemic cetirizine in human plasma using subcritical fluid chromatography-tandem mass spectrometry.

    PubMed

    Eom, Han Young; Kang, Myunghee; Kang, Seung Woo; Kim, Unyong; Suh, Joon Hyuk; Kim, Junghyun; Cho, Hyun-Deok; Jung, Yura; Yang, Dong-Hyug; Han, Sang Beom

    2016-01-01

    A method for fast chiral separation of cetirizine and quantitation of levocetirizine in human plasma using subcritical fluid chromatography with tandem mass spectrometry was developed and validated. The chromatographic separation was performed using a Chiralpak IE column (2.1 mm×150 mm, 5 μm) with an isocratic elution of CO2/organic modifier (55/45, v/v) at a flow rate of 0.85 mL/min. The organic modifier was composed of water/methanol (5/95, v/v). The makeup flow was optimized at water/methanol (10/90, v/v) and 0.2 mL/min. The most influential parameters on the separation of cetirizine affecting resolution, retention time and sensitivity were selected by fractional factorial design. The 3 selected factors were optimized by response surface methodology. Tandem mass spectrometry was used at electrospray ionization, positive ion mode, and multiple-reaction monitoring mode. Isotope-labeled cetirizine-d4 was used as the internal standard. The sample preparation of human plasma was conducted by solid phase extraction of hydrophilic-lipophilic balance (HLB) type. The developed method was validated for selectivity, linearity, precision, accuracy, recovery, limit of quantitation (LOQ), and limit of detection (LOD). The real human plasma samples were analyzed and the pharmacokinetic results were compared with results of previous research. The developed method was found to be reliable based on the similarity between the results of the current and previous methods. The chiral separation for cetirizine and economic feasibility were compared with those of previous studies using normal phase-HPLC or reversed phase-HPLC. The established analytical method could be successfully applied to pharmacokinetic study with reduction in the analysis time and costs. PMID:26440285

  6. Control of Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System

    PubMed Central

    Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2013-01-01

    Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515

  7. Control of chemical effects in the separation process of a differential mobility mass spectrometer system.

    PubMed

    Schneider, Bradley B; Covey, Thomas R; Coy, Stephen L; Krylov, Evgeny V; Nazarov, Erkinjon G

    2010-01-01

    Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas-phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper, we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure.

  8. Direct recoil radon emanation from crystalline phases. Influence of moisture content

    NASA Astrophysics Data System (ADS)

    Barillon, Rémi; Özgümüs, Ahmet; Chambaudet, Alain

    2005-06-01

    This paper is devoted to the study of the radon emanation coefficient vs. water mass fraction for mineral samples. Modeling is performed considering only the direct recoil phenomena and assuming planar pores with high lengths-to-width aspect ratios. Water is assumed either to fill the pore alternatively with air or to form a continuous film on the pore surface. This modeling is applied to uranium mine tailings for which the pore size distribution was experimentally measured. It enables a good description of the change of the experimental radon emanation coefficients with the moisture content of the studied samples.

  9. The alpha-recoil effects of uranium in the Oklo reactor

    NASA Astrophysics Data System (ADS)

    Sheng, Z. Z.; Kuroda, P. K.

    1984-12-01

    A series of acid-leaching experiments have been carried out on a sample of uranium ore from reactor zone number 10 of the Oklo mines in Gabon. Anomalously high U-234/U-238 ratios were observed accompanied by modestly increased U-235/U-238 ratios in uranium fractions. These results, which can be interpreted as being due to the alpha-recoil effects of U-238 and Pu-239, provide a convenient way of calculating the conversion factor (the fraction of uranium atoms converted to plutonium) of the natural reactors from radiochemical data, obviating the necessity for mass-spectrometric measurements.

  10. Enhancement of biological mass spectrometry by using separations based on changes in ion mobility (FAIMS and DMS).

    PubMed

    Purves, Randy W

    2013-01-01

    Analysis of complex biological samples for low-level analytes by liquid chromatography-tandem mass spectrometry (LC-MS/MS) often requires additional selectivity. Differential mobility techniques (FAIMS and DMS) have been shown to enhance LC-MS/MS analyses by separating ions in the gas-phase on a millisecond timescale by use of a mechanism that is complementary to both liquid chromatography and mass spectrometry. In this overview, a simplified description of the operation of these devices is given and an example presented that illustrates the utility of FAIMS (DMS) for solving a challenging analytical assay. Important recent advances in the field, including work with gas modifiers, are presented, along with an outlook for the technology.

  11. Searching for Scatterers: High-Contrast Imaging of Young Stars Hosting Wide-Separation Planetary-Mass Companions

    NASA Astrophysics Data System (ADS)

    Bryan, Marta L.; Bowler, Brendan P.; Knutson, Heather A.; Kraus, Adam L.; Hinkley, Sasha; Mawet, Dimitri; Nielsen, Eric L.; Blunt, Sarah C.

    2016-08-01

    We have conducted an angular differential imaging survey with NIRC2 at Keck in search of close-in substellar companions to a sample of seven systems with confirmed planetary-mass companions (PMCs) on wide orbits (>50 au). These wide-separation PMCs pose significant challenges to all three possible formation mechanisms: core accretion plus scattering, disk instability, and turbulent fragmentation. We explore the possibility that these companions formed closer in and were scattered out to their present-day locations by searching for other massive bodies at smaller separations. The typical sensitivity for this survey is ΔK ˜ 12.5 at 1″. We identify eight candidate companions, whose masses would reach as low as one Jupiter mass if gravitationally bound. From our multi-epoch astrometry we determine that seven of these are conclusively background objects, while the eighth near DH Tau is ambiguous and requires additional monitoring. We rule out the presence of >7 M Jup bodies in these systems down to 15-50 au that could be responsible for scattering. This result combined with the totality of evidence suggests that dynamical scattering is unlikely to have produced this population of PMCs. We detect orbital motion from the companions ROXs 42B b and ROXs 12 b, and from this determine 95% upper limits on the companions’ eccentricities of 0.58 and 0.83 respectively. Finally, we find that the 95% upper limit on the occurrence rate of additional planets with masses between 5 and 15 M Jup outside of 40 au in systems with PMCs is 54%.

  12. Searching for Scatterers: High-Contrast Imaging of Young Stars Hosting Wide-Separation Planetary-Mass Companions

    NASA Astrophysics Data System (ADS)

    Bryan, Marta L.; Bowler, Brendan P.; Knutson, Heather A.; Kraus, Adam L.; Hinkley, Sasha; Mawet, Dimitri; Nielsen, Eric L.; Blunt, Sarah C.

    2016-08-01

    We have conducted an angular differential imaging survey with NIRC2 at Keck in search of close-in substellar companions to a sample of seven systems with confirmed planetary-mass companions (PMCs) on wide orbits (>50 au). These wide-separation PMCs pose significant challenges to all three possible formation mechanisms: core accretion plus scattering, disk instability, and turbulent fragmentation. We explore the possibility that these companions formed closer in and were scattered out to their present-day locations by searching for other massive bodies at smaller separations. The typical sensitivity for this survey is ΔK ˜ 12.5 at 1″. We identify eight candidate companions, whose masses would reach as low as one Jupiter mass if gravitationally bound. From our multi-epoch astrometry we determine that seven of these are conclusively background objects, while the eighth near DH Tau is ambiguous and requires additional monitoring. We rule out the presence of >7 M Jup bodies in these systems down to 15–50 au that could be responsible for scattering. This result combined with the totality of evidence suggests that dynamical scattering is unlikely to have produced this population of PMCs. We detect orbital motion from the companions ROXs 42B b and ROXs 12 b, and from this determine 95% upper limits on the companions’ eccentricities of 0.58 and 0.83 respectively. Finally, we find that the 95% upper limit on the occurrence rate of additional planets with masses between 5 and 15 M Jup outside of 40 au in systems with PMCs is 54%.

  13. Super-asymmetric fission in the 245Cm(n th, f) reaction at the Lohengrin fission-fragment mass separator

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Tsekhanovich, I.; Gönnenwein, F.; Sokolov, V.; Storrer, F.; Simpson, G.; Serot, O.

    2004-04-01

    Mass, isotopic yields and single-fragment kinetic energy measurements for thermal-neutron induced fission of 245Cm at the Lohengrin fission-product mass separator are described. Using an ionization chamber coupled to the mass separator, we have measured the mass and isotopic yields from fragment mass A=67 up to A=77 over three yield decades. This considerably extends the data set previously known for the light peak. A full set of data is now available for this actinide in the super-asymmetric mass region. The results of mass and isotopic yields are compared with those of other compound nuclei to highlight the shell effect at mass 70 for the 246Cm ★ compound-nucleus system. Also, the present results are compared to the data from the European library JEF2 and the evaluation from Wahl's Zp model.

  14. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data. PMID:24420979

  15. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data.

  16. Accounting for Recoil Effects in Geochronometers: A New Model Approach

    NASA Astrophysics Data System (ADS)

    Lee, V. E.; Huber, C.

    2012-12-01

    A number of geologically important chronometers are affected by, or owe their utility to, the "recoil effect". This effect describes the physical displacement of a nuclide due to energetic nuclear processes such as radioactive alpha decay (as in the case of various parent-daughter pairs in the uranium-series decay chains, and Sm-Nd), as well as neutron irradiation (in the case of the methodology for the 40Ar/39Ar dating method). The broad range of affected geochronometers means that the recoil effect can impact a wide range of dating method applications in the geosciences, including but not limited to: Earth surface processes, paleoclimate, volcanic processes, and cosmochemistry and planetary evolution. In particular, the recoil effect can have a notable impact on the use of fine grains (silt- and clay-sized particles) for geochronometric dating purposes. This is because recoil-induced loss of a nuclide from the surfaces of a grain can create an isotopically-depleted outer rind, and for small grains, this depleted rind can be volumetrically significant. When this recoil loss is measurable and occurs in a known time-dependent fashion, it can usefully serve as the basis for chronometers (such as the U-series comminution age method); in other cases recoil loss from fine particles creates an unwanted deviation from expected isotope values (such as for the Ar-Ar method). To improve both the accuracy and precision of ages inferred from geochronometric systems that involve the recoil of a key nuclide from small domains, it is necessary to quantify the magnitude of the recoil loss of that particular nuclide. It is also necessary to quantitatively describe the effect of geological processes that can alter the outer surface of grains, and hence the isotopically-depleted rind. Here we present a new mathematical and numerical model that includes two main features that enable enhanced accuracy and precision of ages determined from geochronometers. Since the surface area of the

  17. Nuclear Recoil Calibration of DarkSide-50

    NASA Astrophysics Data System (ADS)

    Edkins, Erin; DarkSide Collaboration

    2016-03-01

    DarkSide-50 dark matter experiment is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator active neutron veto, designed for the direct detection of Weakly Interacting Massive Particles (WIMPs). The success of such an experiment is dependent upon a detailed understanding of both the expected signal and backgrounds, achieved using radioactive calibration sources of known energies. Nuclear recoils provide a measurement of both the expected signal and the most dangerous background, as nuclear recoils from neutrons cannot be distinguished from a dark matter signal on an event-by-event basis in the TPC. In this talk, I will present the DS-50 calibration system, and analysis of the results of the calibration of DarkSide-50 to nuclear recoils using radioactive neutron sources. See also the DS-50 presentations by X. Xiang and G. Koh.

  18. Rupture and recoil of bent-core liquid crystal filaments.

    PubMed

    Salili, S M; Ostapenko, T; Kress, O; Bailey, C; Weissflog, W; Harth, K; Eremin, A; Stannarius, R; Jákli, A

    2016-05-25

    The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments. PMID:27140824

  19. Ricin as a weapon of mass terror--separating fact from fiction.

    PubMed

    Schep, Leo J; Temple, Wayne A; Butt, Grant A; Beasley, Michael D

    2009-11-01

    In recent years there has been an increased concern regarding the potential use of chemical and biological weapons for mass urban terror. In particular, there are concerns that ricin could be employed as such an agent. This has been reinforced by recent high profile cases involving ricin, and its use during the cold war to assassinate a high profile communist dissident. Nevertheless, despite these events, does it deserve such a reputation? Ricin is clearly toxic, though its level of risk depends on the route of entry. By ingestion, the pathology of ricin is largely restricted to the gastrointestinal tract where it may cause mucosal injuries; with appropriate treatment, most patients will make a full recovery. As an agent of terror, it could be used to contaminate an urban water supply, with the intent of causing lethality in a large urban population. However, a substantial mass of pure ricin powder would be required. Such an exercise would be impossible to achieve covertly and would not guarantee success due to variables such as reticulation management, chlorination, mixing, bacterial degradation and ultra-violet light. By injection, ricin is lethal; however, while parenteral delivery is an ideal route for assassination, it is not realistic for an urban population. Dermal absorption of ricin has not been demonstrated. Ricin is also lethal by inhalation. Low doses can lead to progressive and diffuse pulmonary oedema with associated inflammation and necrosis of the alveolar pneumocytes. However, the risk of toxicity is dependent on the aerodynamic equivalent diameter (AED) of the ricin particles. The AED, which is an indicator of the aerodynamic behaviour of a particle, must be of sufficiently low micron size as to target the human alveoli and thereby cause major toxic effects. To target a large population would also necessitate a quantity of powder in excess of several metric tons. The technical and logistical skills required to formulate such a mass of powder to

  20. Ricin as a weapon of mass terror--separating fact from fiction.

    PubMed

    Schep, Leo J; Temple, Wayne A; Butt, Grant A; Beasley, Michael D

    2009-11-01

    In recent years there has been an increased concern regarding the potential use of chemical and biological weapons for mass urban terror. In particular, there are concerns that ricin could be employed as such an agent. This has been reinforced by recent high profile cases involving ricin, and its use during the cold war to assassinate a high profile communist dissident. Nevertheless, despite these events, does it deserve such a reputation? Ricin is clearly toxic, though its level of risk depends on the route of entry. By ingestion, the pathology of ricin is largely restricted to the gastrointestinal tract where it may cause mucosal injuries; with appropriate treatment, most patients will make a full recovery. As an agent of terror, it could be used to contaminate an urban water supply, with the intent of causing lethality in a large urban population. However, a substantial mass of pure ricin powder would be required. Such an exercise would be impossible to achieve covertly and would not guarantee success due to variables such as reticulation management, chlorination, mixing, bacterial degradation and ultra-violet light. By injection, ricin is lethal; however, while parenteral delivery is an ideal route for assassination, it is not realistic for an urban population. Dermal absorption of ricin has not been demonstrated. Ricin is also lethal by inhalation. Low doses can lead to progressive and diffuse pulmonary oedema with associated inflammation and necrosis of the alveolar pneumocytes. However, the risk of toxicity is dependent on the aerodynamic equivalent diameter (AED) of the ricin particles. The AED, which is an indicator of the aerodynamic behaviour of a particle, must be of sufficiently low micron size as to target the human alveoli and thereby cause major toxic effects. To target a large population would also necessitate a quantity of powder in excess of several metric tons. The technical and logistical skills required to formulate such a mass of powder to

  1. Separating biogeochemical cycling of neodymium from water mass mixing in the Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Stichel, Torben; Hartman, Alison E.; Duggan, Brian; Goldstein, Steven L.; Scher, Howie; Pahnke, Katharina

    2015-02-01

    The radiogenic neodymium (Nd) isotope ratio 143Nd/144Nd (expressed in εNd) is being used as a tracer in paleo and modern ocean circulation. However, the mechanisms controlling input, distribution, and internal cycling are far from understood. For example, globally, Nd concentration ([Nd]) commonly follows patterns of nutrient tracers, generally increasing with depth below the thermocline, while εNd, tends to reflect the water masses, which has often been referred to as the 'Nd-paradox'. Here we present dissolved Nd isotopes and concentrations at unprecedented vertical and spatial resolution from the eastern part of the US GEOTRACES North Atlantic Zonal Transect (Gulf of Cadiz - Mauritanian Shelf - Cape Verde Islands). The [Nd] of all samples ranges from 12.3 to 36.7 pmol/kg, with lowest [Nd] usually found within the layer of highest chlorophyll-a levels (chl-max), suggesting removal through scavenging. The Nd isotope compositions range between εNd = - 13.4 and -9.9, with lower values at the surface within the extension of the Saharan dust plume and a benthic nepheloid layer (BNL). Less negative values are found in oligotrophic surface waters, Mediterranean Outflow Water (MOW), and near the Cape Verde Islands. Overall, water mass mixing derived from εNd is best visible at the Strait of Gibraltar, where MOW enters the Atlantic Ocean. Most of the sub-thermocline εNd varies within a small range with poor water mass distinction due to the dominance of North Atlantic Deep Water. High surface [Nd] associated with more negative εNd is interpreted to be the result of dust deposition and dissolution. Local [Nd] maxima with no apparent change in εNd compared to ambient seawater, observed within a zone of minimum oxygen concentration (OMZ) at ∼500 m depth off Mauritania, suggest minor input of lithogenic Nd but a rather high contribution through desorption of previously scavenged Nd. That is, Saharan dust in this area has only a minor influence on the isotope

  2. Investigation of mass transfer in the ion-exchange-membrane-partitioned free-flow IEF system for protein separation.

    PubMed

    Cheng, Jiu-Hua; Chung, Tai Shung; Neo, Sok Hong

    2009-08-01

    In this study, novel polysulfone-based cation-exchange membranes with strong mechanical strength have been developed and applied in ion-exchange-membrane-partitioned free-flow IEF (IEM-FFIEF) to replace the conventional immobiline membranes. A fundamental understanding of protein mass transfer in the IEM-FFIEF process has been revealed experimentally with the aid of membrane-based boundary effect model contributed by Ennis et al. we have proven experimentally the existence of a pH gradient across the membrane cross-section when an IEM-FFIEF system is in operation. The boundary effects on particle velocities are calculated based on the IEF assumption and various characterizations, and are compared with the experimental results. In the IEM-FFIEF experiments, a protein mixture (BSA and myoglobin (Mb)) and sulfonated polysulfone membranes with different ion-exchange capacities are applied. Experimental results show that the real velocity and real mobility (of Mb in this study) are comparable with the mathematic model developed by Ennis et al. This suggests that the equation proposed by Ennis et al., is sufficient to capture the mass transfer through membrane in the IEM-FFIEF system after considering the effects of pore size distribution and effects of disturbed electric field. The charge properties of the membrane surface play a dominant role on the separation performance of the membranes. The newly developed porous solid-phase ion-exchange membranes may potentially and effectively replace immobilines to perform the selective function for protein separation.

  3. Design of a single magnet separator with mass resolving power m/Δm ≈ 20, 000

    NASA Astrophysics Data System (ADS)

    Breitenfeldt, Martin; Augustin, Mathieu; Catherall, Richard; Giles, Tim; Schoerling, Daniel; Tveten, Gry M.

    2016-06-01

    ISOLDE at CERN is a leading radioactive ion beam facility. With its upgrade, the HIE-ISOLDE project, an increase in primary beam intensity and energy is envisaged and the aim is a significant increase in intensity of the exotic beams. The high resolution separator (HRS) after the upgrade is required to suppress contaminations almost completely when the masses differ to the beam of interest by Δm / m > 1 / 20, 000 . Here a 120° magnet with a bending radius of 1.25 m has been chosen. The magnetic rigidity is 0.625 Tm (B-field of 0.5 T) to allow for separation of molecules of up to a mass of 300 u. The magnet comprises a yoke in wedged H-type configuration for stability and precision and pole face conductors for focusing and compensation of aberrations. The concept was derived analytically, refined with the OPERA 2D software and tested with the ray-tracing module of OPERA 3D.

  4. Accurate hydrogen depth profiling by reflection elastic recoil detection analysis

    SciTech Connect

    Verda, R. D.; Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W.

    2001-01-01

    A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

  5. Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration

    NASA Astrophysics Data System (ADS)

    Dressler, Valderi L.; Pozebon, Dirce; Curtius, Adilson J.

    1998-10-01

    A method for the determination of Cu, As, Se, Cd, In, Hg, Tl, Pb and Bi in waters and in biological materials by inductively coupled plasma mass spectrometry, after an on-line separation, is described. The matrix separation and analyte preconcentration is accomplished by retention of the analytes complexed with the ammonium salt of O,O-diethyl dithiophosphoric acid in a HNO 3 solution on C 18 immobilized on silica in a minicolumn. Methanol, as eluent, is introduced in the conventional pneumatic nebulizer of the instrument. In order to use the best compromise conditions, concerning the ligand and acid concentrations, the analytes were determined in two separate groups. The enrichment factors were in the range from 5 to 61, depending on the analyte. The limits of detection varied from 0.43 ng L -1 for Bi to 33 ng L -1 for Cu. The sample consumption is only 2.3 mL for each group and the sampling frequency is 21 h -1. The accuracy was tested by analysing five certified reference materials: water, riverine water, urine, bovine muscle and bovine liver. The agreement between obtained and certified concentrations was very good, except for As. The relatively small volume of methanol, used as eluent, minimizes the problems produced by the introduction of organic solvent into the plasma.

  6. Capillary electrochromatography and capillary electrochromatography-electrospray mass spectrometry for the separation of non-steroidal anti-inflammatory drugs.

    PubMed

    Desiderio, C; Fanali, S

    2000-10-20

    In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.

  7. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    PubMed

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection <1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O(+), such as NO(+) and O2 (+), have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research. PMID:26253230

  8. Continuous-flow Electrophoretic Separation of Particles with Dissimilar Charge-to-Mass Ratios via the Wall-induced Non-inertial Lift

    NASA Astrophysics Data System (ADS)

    Thomas, Cory; Todd, Andrew; Lu, Xinyu; Xuan, Xiangchun

    2015-11-01

    Traditional electrophoresis separates particles with dissimilar charge-to-mass ratios along the channel length direction in a batchwise mode. We present in this talk a continuous-flow electrophoretic separation of particles in the transverse direction of a straight microchannel. This separation stems from the particle property-dependent lateral migration due to the wall-induced non-inertial electrical lift force. It is demonstrated through both a binary and a ternary separation of polymer particles based on surface charge and size. A numerical model is also developed to understand this separation and to study the parametric effects.

  9. A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique.

    PubMed

    Li, Xiangtang; Xiao, Dan; Ou, Xiao-Ming; McCullm, Cassandra; Liu, Yi-Ming

    2013-11-29

    A microchip electrophoresis-mass spectrometric (MCE-MS) method was developed for fast chiral analysis. The proposed MCE-MS platform deployed a glass/PDMS hybrid microchip with an easy-to-fabricate monolithic nanoelectrospray emitter. Enantiomeric MCE separation was achieved by means of the partial filling technique. A novel chip design with an arm channel connecting to the middle of the MCE separation channel for delivering the chiral selector was tested and proven valid. Enantiomeric separation of3.4-dihydroxyphenylalanine (DOPA), glutamic acid (Glu), and serine (Ser), the selected test compounds,were achieved within 130 s with resolution values (R(s)) of 2.4, 1.1, and 1.0, respectively. The proposed chiral MCE-MS assay was sensitive and had detection limits of 43 nM for l-DOPA and 47 nM for d-DOPA.The analytical platform was well suited for studies of stereochemical preference in living cells because it integrated cell culture, sample injection, chiral separation, and MS detection into a single platform.Metabolism of DOPA in human SH-SY5Y neuronal cells was studied as a model system. On-chip incubation of SH-SY5Y cells with racemic DOPA was carried out, and the incubation solution was injected and in-line assayed at time intervals. It was found that l-DOPA concentration decreased gradually as incubation time increased while the concentration of coexisting d-DOPA remained constant. The results firmly indicated that SH-SY5Y cells metabolized l-DOPA effectively while left d-DOPA intact.

  10. Enhancing Biological Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low Field Drift Time Ion Mobility and Mass Spectrometry (µFAIMS/IMS-MS) Separations

    SciTech Connect

    Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi; Kyle, Jennifer E.; Norheim, Randolph V.; Monroe, Matthew E.; Smith, Richard D.; Baker, Erin Shammel

    2015-06-30

    We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.

  11. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  12. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  13. Epitaxial silicide formation on recoil-implanted substrates

    SciTech Connect

    Hashimoto, Shin; Egashira, Kyoko; Tanaka, Tomoya; Etoh, Ryuji; Hata, Yoshifumi; Tung, R. T.

    2005-01-15

    An epitaxy-on-recoil-implanted-substrate (ERIS) technique is presented. A disordered surface layer, generated by forward recoil implantation of {approx}0.7-3x10{sup 15} cm{sup -2} of oxygen during Ar plasma etching of surface oxide, is shown to facilitate the subsequent epitaxial growth of {approx}25-35-nm-thick CoSi{sub 2} layers on Si(100). The dependence of the epitaxial fraction of the silicide on the recoil-implantation parameters is studied in detail. A reduction in the silicide reaction rate due to recoil-implanted oxygen is shown to be responsible for the observed epitaxial formation, similar to mechanisms previously observed for interlayer-mediated growth techniques. Oxygen is found to remain inside the fully reacted CoSi{sub 2} layer, likely in the form of oxide precipitates. The presence of these oxide precipitates, with only a minor effect on the sheet resistance of the silicide layer, has a surprisingly beneficial effect on the thermal stability of the silicide layers. The agglomeration of ERIS-grown silicide layers on polycrystalline Si is significantly suppressed, likely from a reduced diffusivity due to oxygen in the grain boundaries. The implications of the present technique for the processing of deep submicron devices are discussed.

  14. Direct Measurement of Photon Recoil from a Levitated Nanoparticle.

    PubMed

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-17

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω_{0}, this measurement backaction adds quanta ℏΩ_{0} to the oscillator's energy at a rate Γ_{recoil}, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γ_{recoil}. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces. PMID:27367388

  15. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites. PMID:19886654

  16. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  17. Introducing the concept of centergram. A new tool to squeeze data from separation techniques-mass spectrometry couplings.

    PubMed

    Erny, Guillaume L; Simó, Carolina; Cifuentes, Alejandro; Esteves, Valdemar I

    2014-02-21

    In separation techniques hyphenated to mass spectrometry (MS) the bulk from the separation step is continuously flowing into the mass spectrometer where the compounds, arriving at each separation time, are ionized and further separated based on their m/z ratio. An MS detector is recognized as being a universal detector, although it can also be a very selective instrument. In spite of these advantages, classical two dimensional representations from these hyphenated systems, such as those based on the base peak of electropherogram/chromatogram or on the total ion of electropherogram/chromatogram, usually hide a large number of features that if correctly assessed will show the presence of co-migrating species and/or the low abundant ones. The uses of peak picking algorithms to detect and measure as many peaks as possible from a dataset allow extracting much more information. However, a single migrating compound usually produces a multiplicity of ions, making difficult to differentiate peaks generated by the same compound from other peaks due e.g., to closely co-migrating/eluting species. In this work, a new representation is proposed and its usefulness demonstrated with experimental data from capillary electrophoresis-hyphenated to a time of flight mass spectrometer via an electrospray interface. This representation, called centergram, is obtained after using a peak picking methodology that detects electrophoretic peaks of single ions and measure their positions. The centergram is the histogram (i.e. the count of the number of observations that fall into each one of the intervals, known as bins, as determined by the user) of the measured positions. The intensity of the bars in this histogram will indicate the amount of peaks in the whole dataset whose centers are within each interval. As a compound that has been separated and has entered the MS instrument will produce multiple images at the same position along the m/z dimension, the centergram will exhibit a series of

  18. Geologic and seismic investigations, relocation of Route 3, grade separation at Route 62, southeast ramp in Bedford, Mass.

    USGS Publications Warehouse

    May, James E.

    1954-01-01

    The relocation of Route 3 in Bedford, Mass. requires extensive cuts for a grade separation at Route 62. This report contains only the results of the geologic and seismic studies that were made for the purpose of obtaining information that would aid in the construction of the inner and outer loops of the southeast ramp. The studies represent part of a cooperative program of the Massachusetts Department of Public Works and the United States Geological Survey. The work was performed in July 1953. The site is located in the Wilmington and Lexington 7-1/2-minute quadrangle maps of the United States Geological Survey. Mr. M. E. Chandler and Mr. W. L. Carney, Massachusetts Department of Public works' Engineers, performed all pertinent survey work required for this project, and prepared the essential plans and profiles. Mr. Chandler also operated the seismic equipment and assisted in the preparation of the seismic velocity data.

  19. The mechanics of elastic loading and recoil in anuran jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2014-12-15

    Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch. PMID:25520385

  20. The mechanics of elastic loading and recoil in anuran jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2014-12-15

    Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch.

  1. Solid phase extraction-liquid chromatography (SPE-LC) interface for automated peptide separation and identification by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hørning, Ole Bjeld; Theodorsen, Søren; Vorm, Ole; Jensen, Ole Nørregaard

    2007-12-01

    Reversed-phase solid phase extraction (SPE) is a simple and widely used technique for desalting and concentration of peptide and protein samples prior to mass spectrometry analysis. Often, SPE sample preparation is done manually and the samples eluted, dried and reconstituted into 96-well titer plates for subsequent LC-MS/MS analysis. To reduce the number of sample handling stages and increase throughput, we developed a robotic system to interface off-line SPE to LC-ESI-MS/MS. Samples were manually loaded onto disposable SPE tips that subsequently were connected in-line with a capillary chromatography column. Peptides were recovered from the SPE column and separated on the RP-LC column using isocratic elution conditions and analysed by electrospray tandem mass spectrometry. Peptide mixtures eluted within approximately 5 min, with individual peptide peak resolution of ~7 s (FWHM), making the SPE-LC suited for analysis of medium complex samples (3-12 protein components). For optimum performance, the isocratic flow rate was reduced to 30 nL/min, producing nanoelectrospray like conditions which ensure high ionisation efficiency and sensitivity. Using a modified autosampler for mounting and disposing of the SPE tips, the SPE-LC-MS/MS system could analyse six samples per hour, and up to 192 SPE tips in one batch. The relatively high sample throughput, medium separation power and high sensitivity makes the automated SPE-LC-MS/MS setup attractive for proteomics experiments as demonstrated by the identification of the components of simple protein mixtures and of proteins recovered from 2DE gels.

  2. Buffer system for the separation of neutral and charged small molecules using micellar electrokinetic chromatography with mass spectrometric detection.

    PubMed

    Goetzinger, Wolfgang K; Cai, Hong

    2005-06-24

    An organic buffer system will be discussed that is suitable for the separation of neutral as well as charged molecules be means of micellar electrokinetic chromatography (MEKC). The buffers are based on the combination of a long chain alkyl acid, such as lauric acid with ammonium hydroxide or an organic base such as tris-hydroxymethylaminomethane (Tris). The resulting buffer system is able to separate neutral compounds based on its micellar properties. These buffers exhibit much reduced conductivity compared to traditional MEKC buffers, such as sodium dodecylsulfate (SDS), which contain inorganic salts. They also have inherent buffer capacity at high pH resulting from the basic buffer component, which in our studies had pK values from about 8-11. The separations that were observed showed high efficiency with plate counts in many cases above 500,000 plates per meter. The reduced conductivity allowed for the application of much higher electric fields, resulting in very fast analysis times. Alternatively, an increase in detection sensitivity could be achieved, as the reduced conductivity allowed for the use of capillaries with lager internal diameters. Combinations of different alkyl acids and organic bases provided for significant flexibility in selectivity tuning. Finally, the fact that the organic micellar buffer systems discussed here do not contain inorganic ions, allows for coupling with mass spectrometric (MS) detection. The possibility of MS detection combined with the high speed in analysis that can be obtained using these organic buffer systems, could make this approach an interesting option for high throughput analysis of combinatorial libraries. PMID:16038325

  3. Nitrogen Doping of Single-Walled Carbon Nanotube by Using Mass-Separated Low-Energy Ion Beams

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Kamimura, Takafumi; Matsumoto, Kazuhiko

    2005-04-01

    Mass-separated nitrogen ions with the mass number of 14 were irradiated to the single-walled carbon nanotubes (SWCNTs) under an ultra high-vacuum pressure of 10-7 Pa for the purpose of achieving nitrogen doping in nanotubes. The incident angle of the ion beam was normal to the target nanotube, and the ion beam energy was 30 eV, which was close to the displacement energy of graphite. The dependence of the structure of SWCNTs on the ion dose was investigated. The ion dose ranged from 2.8× 1014 to 2.2× 1016 ions/cm2. The nitrogen ions are incorporated into graphite sheets of SWCNTs after irradiation at 2.8× 1014 ions/cm2. The graphite structure is distorted and many defects are induced in the nanotube by the nitrogen incorporation. The structure is changed to amorphous after irradiation at 2.2× 1016 ions/cm2. The nitrogen ions with the ion energy of 25 eV are irradiated to the field effect transistor device with the nanotube channel. The n-type characteristic appears upon ion irradiation, and the device exhibits ambipolar behavior.

  4. Solvent Separating Secondary Metabolites Directly from Biosynthetic Tissue for Surface-Assisted Laser Desorption Ionisation Mass Spectrometry

    PubMed Central

    Rudd, David; Benkendorff, Kirsten; Voelcker, Nicolas H.

    2015-01-01

    Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of “on surface” solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples. PMID:25786067

  5. Impact of the equivalent center of mass separating from the sliding surface on the isolation performance of friction pendulum bearings

    NASA Astrophysics Data System (ADS)

    Xia, Junyong; Ning, Xiangliang; Tan, Ping; Hao, Hongxiao; Chen, Guoping

    2015-12-01

    A new equivalent center of mass model of FPBs (friction pendulum bearings) is introduced, and based on this model, coefficient j of the equivalent center of mass separating from the sliding surface is defined. It is thought in theory that j has a significant impact on the isolation parameter of FPBs, since the equivalent post-yielding stiffness and friction coefficients are not simply determined by sliding radius and sliding friction pairs. The results of numerical simulation analysis using ABAQUS conducted on two groups of FPBs support this viewpoint. For FPBs with the same sliding radius and sliding friction pairs, the FPB modules of structural analysis software such as ETABS could only distinguish the equivalent transformation using j one by one. The seismic response data obtained in a base isolation calculation example of FPBs are very different, which reveals that j's impact on the isolation effectiveness of FPBs cannot be ignored. The introduction of j will help improve the classical structural theory of FPBs and the weak points of structural analysis software based on this theory, which is important in achieving more accurate analyses in structural design.

  6. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  7. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, {delta}E{sub rr} = ({alpha}({Zeta}{alpha})/{pi}{sup 2})(m/M)E{sub F}(6{zeta}(3) + 3{pi}{sup 2} In 2 + {pi}{sup 2}/2 + 17/8), are also presented.

  8. Oxygen recoil implant from SiO{sub 2} layers into single-crystalline silicon

    SciTech Connect

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-06-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF{sub 2} implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. {copyright} 2001 American Institute of Physics.

  9. Ionization efficiency study for low energy nuclear recoils in germanium

    NASA Astrophysics Data System (ADS)

    Barker, D.; Wei, W.-Z.; Mei, D.-M.; Zhang, C.

    2013-08-01

    We used the internal conversion (E0 transition) of germanium-72 to indirectly measure the low energy nuclear recoils of germanium. Together with a reliable Monte Carlo package, in which we implement the internal conversion process, the data was compared to the Lindhard (k = 0.159) and Barker-Mei models. A shape analysis indicates that both models agree well with data in the region of interest within 4%. The most probable value (MPV) of the nuclear recoils obtained from the shape analysis is 17.5 ± 0.12 (sys) ±0.035 (stat) keV with an average path-length of 0.014 μm.

  10. Characterization of the CRESST detectors by neutron induced nuclear recoils

    NASA Astrophysics Data System (ADS)

    Coppi, C.; Ciemniak, C.; von Feilitzsch, F.; Gütlein, A.; Hagn, H.; Isaila, C.; Jochum, J.; Kimmerle, M.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Rau, W.; Roth, S.; Rottler, K.; Sailer, C.; Scholl, S.; Usherov, I.; Westphal, W.

    CRESST is an experiment for the direct detection of dark matter particles via nuclear recoils. The CRESST detectors, based on CaWO4 scintillating crystals, are able to discriminate γ and β background by simultaneously measuring the light and phonon signals produced by particle interactions. The discrimination of the background is possible because of the different light output (Quenching Factor, QF) for nuclear and electron recoils. In this article a measurement is shown, aimed at the determination of the QFs of the different nuclei (O, Ca, W) of the detector crystal at 40-60 mK using an 11 MeV neutron beam produced at the Maier-Leibnitz-Laboratorium in Garching (MLL).

  11. Dynamical formation of horizons in recoiling D-branes

    SciTech Connect

    Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.

    2000-10-15

    A toy calculation of string or D-particle interactions within a world-sheet approach indicates that quantum recoil effects -- reflecting the gravitational back reaction on space-time foam due to the propagation of energetic particles -- induces the appearance of a microscopic event horizon, or ''bubble,'' inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a ''bounce'' solution. Within such ''bubbles,'' massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially 3 for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3-branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  12. Dynamical formation of horizons in recoiling D-branes

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.

    2000-10-01

    A toy calculation of string or D-particle interactions within a world-sheet approach indicates that quantum recoil effects-reflecting the gravitational back reaction on space-time foam due to the propagation of energetic particles-induces the appearance of a microscopic event horizon, or ``bubble,'' inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a ``bounce'' solution. Within such ``bubbles,'' massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially 3 for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3-branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  13. Recoil-induced subradiance in an ultracold atomic gas

    SciTech Connect

    Cola, M. M.; Bigerni, D.; Piovella, N.

    2009-05-15

    Subradiance, i.e., the cooperative inhibition of spontaneous emission by destructive interatomic interference, can be realized in a cold atomic sample confined in a ring cavity and lightened by a two-frequency laser. The atoms, scattering the photons of the two laser fields into the cavity mode, recoil and change their momentum. Under proper conditions the atomic initial momentum state and the first two momentum recoil states form a three-level degenerate cascade. A stationary subradiant state is obtained after the scattered photons have left the cavity, leaving the atoms in a coherent superposition of the three collective momentum states. Both a semiclassical description of the process and the quantum subradiant state with its Wigner function are given. Antibunching, quantum correlations, and entanglement between the atomic modes of the subradiant state are demonstrated.

  14. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  15. Recoil Polarization for Neutral Pion Electroproduction near the Delta Resonance

    SciTech Connect

    Kelly, James J

    2003-10-01

    We have measured angular distributions for recoil polarization in the p(e,e'p)p0 reaction at Q2»1(GeV/c)2 with 1.16 |lte| W |lte|1.36 GeV across the D resonance. The data are compared with representative models and a truncated Legendre analysis is compared with a more general multipole analysis.

  16. Hyphenation of supercritical fluid chromatography and two-dimensional gas chromatography-mass spectrometry for group type separations.

    PubMed

    Potgieter, H; van der Westhuizen, R; Rohwer, E; Malan, D

    2013-06-14

    The Fischer-Tropsch (FT) process produces a variety of compounds over a wide carbon number range and the synthetic crude oil produced by this process is rich in highly valuable olefins and oxygenates, which crude oil only contains at trace levels. The characterization of these products is very challenging even when using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF-MS). The separation between cyclic paraffins and olefins is especially difficult since they elute in similar positions on the GC×GC chromatogram and since they have identical molecular masses with indistinguishable fragmentation patterns. Previously, a high performance liquid chromatography (HPLC) fractionation procedure was used prior to GC×GC-TOF-MS analysis to distinguish between alkenes and alkanes, both cyclic and non-cyclic, however, there was co-elution of the solvents used in the HPLC fractionation procedure, and the volatile components in the gasoline sample and the dilution introduced by the off-line fractionation procedure made it very difficult to investigate components present at very low concentrations. The hyphenation of supercritical fluid chromatography (SFC) to GC×GC is less complicated and the removal of the supercritical CO2 can be easily achieved without any loss of the volatile sample components, eliminating the introduction of co-eluting solvents as well as the dilution effect. This paper describes the on-line hyphenation of SFC to a GC×GC system in order to comprehensively characterize the chemical groups (saturates, unsaturates, oxygenates and aromatics) in an FT sample. PMID:23647609

  17. The velocity and recoil of DNA bands during gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Keiner, Louis E.; Holzwarth, G.

    1992-09-01

    The velocity and recoil of bands of DNA containing 48.5 to 4800 kilobasepairs (kb) were measured during pulsed-field gel electrophoresis by a video imaging and analysis system. When a 10 V/cm electric field was first applied, the velocity showed an initial sharp peak after approximately 1 s whose amplitude depended on the molecular weight of the DNA and the rest time and polarity of the previous pulse. For example, G DNA (670 kb) exhibited an initial velocity peak of 13 μm/s. The velocity then oscillated through a shallow minimum and small maximum before reaching a 5.0 μm/s plateau. After the field was turned off, the bands moved backward (recoiled). The band position obeyed a stretched-exponential relation, x = x0 exp[ - (t/τ)β] with amplitude x0 equal to approximately 1/10th of the DNA contour length and β≊0.6; for S. pombe DNA, x0 was a remarkable 165 μm. Both the initial velocity spike and the recoil arise from the presence of a significant fraction of U-shaped molecules with low configurational entropy. The initial velocity spike is exploited in field-inversion gel electrophoresis to generate the ``antiresonance,'' which is the basis of size-dependent mobility. Recent computer simulations which include tube-length fluctuations and tube leakage are in excellent accord with the measured velocities.

  18. The recoil proton polarization in. pi. p elastic scattering

    SciTech Connect

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  19. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei

    NASA Astrophysics Data System (ADS)

    Dickel, T.; Plaß, W. R.; Becker, A.; Czok, U.; Geissel, H.; Haettner, E.; Jesch, C.; Kinsel, W.; Petrick, M.; Scheidenberger, C.; Simon, A.; Yavor, M. I.

    2015-03-01

    A novel multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) and isobar separator for the research with exotic nuclides at low-energy rare isotope beam facilities has been developed, commissioned and characterized. It can be used (i) as broadband mass spectrometer with medium resolution, (ii) as highly accurate mass spectrometer for direct mass measurements and (iii) as high-resolution mass separator. The device features a worldwide unique combination of performance characteristics: a mass resolving power of 600,000 (FWHM), a mass measurement accuracy of ~10-7, large ion capacities in excess of 106 ions per second, a transmission efficiency of up to 70%, single-ion sensitivity, and cycle frequencies of up to 400 Hz have been achieved. The spatial separation of close-lying isobars with an intensity ratio of 200:1 and a binding energy difference as small as 4 MeV has been demonstrated. The MR-TOF-MS is ideally suited for experiments with rare and very short-lived nuclei at present and future in-flight, ISOL or IGISOL facilities, such as the FRS Ion-Catcher and SHIP/SHIPTRAP at GSI, TITAN at TRIUMF, IGISOL at the University of Jyväskylä and the Low-Energy Branch of the Super-FRS at FAIR.

  20. Conception of PIPERADE: A high-capacity Penning-trap mass separator for high isobaric contamination at DESIR

    NASA Astrophysics Data System (ADS)

    Minaya Ramirez, E.; Alfaurt, P.; Aouadi, M.; Ascher, P.; Blank, B.; Blaum, K.; Cam, J.-F.; Chauveau, P.; Daudin, L.; Delahaye, P.; Delalee, F.; Dupré, P.; El Abbeir, S.; Gerbaux, M.; Grévy, S.; Guérin, H.; Lunney, D.; Metz, F.; Naimi, S.; Perrot, L.; de Roubin, A.; Serani, L.; Thomas, B.; Thomas, J.-C.

    2016-06-01

    The DESIR (decay, excitation and storage of radioactive ions) facility at GANIL-SPIRAL2 will receive a large variety of exotic nuclei at low energy (up to 60 keV) with high intensities. However, the production methods of radioactive beams are non selective, limiting the purity of the beams of interest. Moreover, the high precision needed for nuclear structure and astrophysics studies using beta decay spectroscopy, laser spectroscopy and trap-based experiments at DESIR requires highly pure samples of exotic nuclei. The aim of the double-Pennig-trap mass separator PIPERADE is to deliver large and very pure samples of exotic nuclei to the different experiments in DESIR. New excitation schemes and a large inner diameter of the first trap will mitigate space charge effects to attempt trapping of up to 105 ions per pulse. The purification cycle will be performed in a few milliseconds so that short-lived nuclei can be purified. To extract the nuclides of interest from the large amount of isobaric contaminants, a resolving power of 105 is mandatory. Afterwards the ions of interest will be accumulated in the second trap until they constitute a sufficiently pure sample for the measurements. The status of the project is presented.

  1. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  2. Phage amplification and immunomagnetic separation combined with targeted mass spectrometry for sensitive detection of viable bacteria in complex food matrices.

    PubMed

    Martelet, Armelle; L'Hostis, Guillaume; Nevers, Marie-Claire; Volland, Hervé; Junot, Christophe; Becher, François; Muller, Bruno H

    2015-06-01

    We have developed and describe here for the first time a highly sensitive method for the fast and unambiguous detection of viable Escherichia coli in food matrices. The new approach is based on using label-free phages (T4), obligate parasites of bacteria, which are attractive for pathogen detection because of their inherent natural specificity and ease of use. A specific immunomagnetic separation was used to capture the progeny phages produced. Subsequently, T4 phage markers were detected by liquid chromatography coupled to targeted mass spectrometry. Combining the specificity of these three methodologies is of great interest in developing an alternative to conventional time-consuming culture-based technologies for the detection of viable bacteria for industrial applications. First, optimization experiments with phage T4 spiked in complex matrices (without a phage amplification event) were performed and demonstrated specific, sensitive, and reproducible phage capture and detection in complex matrices including Luria-Bertani broth, orange juice, and skimmed milk. The method developed was then applied to the detection of E. coli spiked in foodstuffs (with a phage amplification event). After having evaluated the impact of infection duration on assay sensitivity, we showed that our assay specifically detects viable E. coli in milk at an initial count of ≥1 colony-forming unit (cfu)/mL after an 8-h infection. This excellent detection limit makes our new approach an alternative to PCR-based assays for rapid bacterial detection.

  3. Enantiomeric separation of free L- and D-amino acids in hydrolyzed protein fertilizers by capillary electrophoresis tandem mass spectrometry.

    PubMed

    Sánchez-Hernández, Laura; Serra, Nuria Sierras; Marina, María Luisa; Crego, Antonio L

    2013-05-29

    Two capillary electrophoresis-tandem mass spectrometry (CE-MS(2)) methods were optimized in this work using cyclodextrins (CDs) as chiral selectors in order to determine the degree of racemization of the free amino acids contained in different hydrolyzed protein fertilizers used as plant biostimulants. The methodologies developed were characterized by the specificity of MS(2) experiments enabling the identification of all protein amino acids, except for cysteine. The enantiomeric separation of up to 14 amino acids was achieved with resolutions above 1.0 and limits of detection between 0.02 and 0.8 μM. The methods were applied to the analysis of complex samples such as hydrolyzed protein fertilizers to evaluate the presence of d-amino acids after different kinds of hydrolysis treatments. The results corroborated the absence or almost negligible presence of enantiomeric conversions of the L-amino acids into D-amino acids in the case of fertilizers obtained by enzymatic hydrolysis, as well as the high racemization rate for those obtained through a chemical hydrolysis.

  4. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1. PMID:16496054

  5. Comprehensive multidimensional separation methods by hyphenation of single-photon ionization time-of-flight mass spectrometry (SPI-TOF-MS) with GC and GCxGC.

    PubMed

    Eschner, Markus S; Welthagen, Werner; Gröger, Thomas M; Gonin, Marc; Fuhrer, Katrin; Zimmermann, Ralf

    2010-10-01

    One- and comprehensive two-dimensional gas chromatography were hyphenated with soft photoionization mass spectrometry. The characteristics of these two- and three-dimensional comprehensive separation techniques are discussed in detail. Using the innovative electron beam pumped excimer light source (EBEL) for single-photon ionization (SPI), organic molecules with ionization energies (E ( i )) of below 9.8 eV can be detected by a time-of-flight mass spectrometer (TOF-MS). SPI with 126 nm vacuum ultraviolet (VUV) photons enables the universal and soft ionization of organic molecules. SPI-TOF-MS hyphenated to one-dimensional gas chromatography results in a comprehensive two-dimensional separation method (GCxMS). To demonstrate this, diesel fuel was analyzed, and the resulting GCxMS chromatograms are discussed in depth. A three-dimensional separation method was also realized by combining comprehensive two-dimensional gas chromatography (GCxGC) with SPI-MS. In the resulting separation space, constituents originating from mineral oil diesel blended with biodiesel were dispersed along the two GC separation axes, while the molecular mass axis served as a third separation dimension.

  6. Lifetime measurement of 2+- state in 74Zn by recoil-distance Doppler-shift method

    NASA Astrophysics Data System (ADS)

    Niikura, M.; Mouginot, B.; Azaiez, F.; Franchoo, S.; Matea, I.; Stefan, I.; Verney, D.; Assie, M.; Bednarczyk, P.; Borcea, C.; Burger, A.; Burgunder, G.; Buta, A.; Cáceres, L.; Cléement, E.; Coquard, L.; de Angelis, G.; de France, G.; de Oliveira Santos, F.; Dewald, A.; Dijon, A.; Dombradi, Z.; Fiori, E.; Fransen, C.; Friessner, G.; Gaudefroy, L.; Georgiev, G.; Grévy, S.; Hackstein, M.; Harakeh, M. N.; Ibrahim, F.; Kamalou, O.; Kmiecik, M.; Lozeva, R.; Maj, A.; Mihai, C.; Möller, O.; Myalski, S.; Negoita, F.; Pantelica, D.; Perrot, L.; Pissulla, Th.; Rotaru, F.; Rother, W.; Scarpaci, J. A.; Stodel, C.; Thomas, J. C.; Ujic, P.

    2013-09-01

    We have performed the first direct lifetime measurement of the 2+- state in 74Zn. The neutron-rich 74Zn beam was produced by in-flight fragmentation of 76Ge at the Grand Accélérateur National d'Ions Lourds and separated with the LISE spectrometer. The lifetime of the 2+- state was measured by the recoil-distance Doppler-shift method with the Cologne plunger device combined with the EXOGAM detectors. The lifetime of the 2+- state in 74Zn was determined to be 27.0(24) ps, which corresponds to a reduced transition probability B(E2; 2+- -> 0+) = 370(33) e2fm4.

  7. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  8. First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at the NIF

    NASA Astrophysics Data System (ADS)

    Frenje, J.; Casey, D.; Li, C.; Seguin, F.; Petrasso, R.; Bionta, R.; Cerjan, C.; Eckart, M.; Haan, S.; Hatchett, S.; Khater, H.; Landen, O.; MacKinnon, A.; Moran, M.; Rygg, J.; Kilkenny, J.; Glebov, V.; Sangster, T.; Meyerhofer, D.; Magoon, J.; Fletcher, K.; Leeper, R.

    2010-11-01

    Proper assembly of capsule mass, as manifested through evolution of fuel areal density (ρR), is fundamentally important for achieving hot-spot ignition planned at the National Ignition Facility (NIF). Experimental information about ρR and ρR asymmetries, Ti and yield is therefore essential for understanding how this assembly occurs. To obtain this information, a neutron spectrometer, called the Magnetic-Recoil Spectrometer (MRS) has been implemented on the NIF. Its primary objective is to measure the absolute neutron spectrum in the range 5 to 30 MeV, from which ρR, Ti and yield can be directly inferred for both low-yield tritium-hydrogen-deuterium (THD) and high-yield DT implosions. In this talk, the results from the first measurements of the absolute neutron spectrum produced in exploding pusher and THD implosions will be presented. This work was supported in part by the U.S. DOE, LLNL and LLE.

  9. Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium: Diagrams with Polarization Loops

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-25

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the diagrams with electron and muon vacuum polarizations. We calculate single-logarithmic and nonlogarithmic contributions of order alpha{sup 3}(m/M)E{sub F} generated by gauge invariant sets of diagrams with electron and muon polarization insertions in the electron and muon factors. Combining these corrections with the older results, we obtain total contribution to hyperfine splitting generated by all diagrams with electron and muon polarization loops. The calculation of this contribution completes an important stage in the implementation of the program of reduction of the theoretical uncertainty of hyperfine splitting below 10 Hz. The new results improve the theory of hyperfine splitting and affect the value of the electron-muon mass ratio extracted from experimental data on muonium hyperfine splitting.

  10. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. PMID:26293959

  11. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ.

  12. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation.

    PubMed

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Song, Kyuseok

    2015-08-15

    Thermal ionization mass spectrometry (TIMS) with a continuous heating technique is known as an effective method for measuring the isotope ratio in trace amounts of uranium. In this study, the analytical performance of thermal ionization mass spectrometry with a continuous heating technique was investigated using a standard plutonium solution (SRM 947). The influence of the heating rate of the evaporation filament on the precision and accuracy of the isotope ratios was examined using a plutonium solution sample at the fg level. Changing the heating rate of the evaporation filament on samples ranging from 0.1fg to 1000fg revealed that the influence of the heating rate on the precision and accuracy of the isotope ratios was slight around the heating rate range of 100-250mA/min. All of the isotope ratios of plutonium (SRM 947), (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu and (242)Pu/(239)Pu, were measured down to sample amounts of 70fg. The ratio of (240)Pu/(239)Pu was measured down to a sample amount of 0.1fg, which corresponds to a PuO2 particle with a diameter of 0.2μm. Moreover, the signals of (239)Pu could be detected with a sample amount of 0.03fg, which corresponds to the detection limit of (239)Pu of 0.006fg as estimated by the 3-sigma criterion. (238)Pu and (238)U were clearly distinguished owing to the difference in the evaporation temperature between (238)Pu and (238)U. In addition, (241)Pu and (241)Am formed by the decay of (241)Pu can be discriminated owing to the difference in the evaporation temperature. As a result, the ratios of (238)Pu/(239)Pu and (241)Pu/(239)Pu as well as (240)Pu/(239)Pu and (242)Pu/(239)Pu in plutonium samples could be measured by TIMS with a continuous heating technique and without any chemical separation processes.

  13. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation.

    PubMed

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Song, Kyuseok

    2015-08-15

    Thermal ionization mass spectrometry (TIMS) with a continuous heating technique is known as an effective method for measuring the isotope ratio in trace amounts of uranium. In this study, the analytical performance of thermal ionization mass spectrometry with a continuous heating technique was investigated using a standard plutonium solution (SRM 947). The influence of the heating rate of the evaporation filament on the precision and accuracy of the isotope ratios was examined using a plutonium solution sample at the fg level. Changing the heating rate of the evaporation filament on samples ranging from 0.1fg to 1000fg revealed that the influence of the heating rate on the precision and accuracy of the isotope ratios was slight around the heating rate range of 100-250mA/min. All of the isotope ratios of plutonium (SRM 947), (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu and (242)Pu/(239)Pu, were measured down to sample amounts of 70fg. The ratio of (240)Pu/(239)Pu was measured down to a sample amount of 0.1fg, which corresponds to a PuO2 particle with a diameter of 0.2μm. Moreover, the signals of (239)Pu could be detected with a sample amount of 0.03fg, which corresponds to the detection limit of (239)Pu of 0.006fg as estimated by the 3-sigma criterion. (238)Pu and (238)U were clearly distinguished owing to the difference in the evaporation temperature between (238)Pu and (238)U. In addition, (241)Pu and (241)Am formed by the decay of (241)Pu can be discriminated owing to the difference in the evaporation temperature. As a result, the ratios of (238)Pu/(239)Pu and (241)Pu/(239)Pu as well as (240)Pu/(239)Pu and (242)Pu/(239)Pu in plutonium samples could be measured by TIMS with a continuous heating technique and without any chemical separation processes. PMID:25966386

  14. INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

    SciTech Connect

    Li Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer; Chen Xian E-mail: fkliu@bac.pku.edu.cn

    2012-03-20

    Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s{sup -1} due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is {approx}10{sup -6} M{sub Sun} yr{sup -1}, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about {approx}0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

  15. High resolution LC-ESI-TOF-mass spectrometry method for fast separation, identification, and quantification of 12 isoflavones in soybeans and soybean products.

    PubMed

    Lee, Mi Jin; Chung, Ill-Min; Kim, Hunjung; Jung, Mun Yhung

    2015-06-01

    A high resolution LC-ESI-TOF-MS analytical method was established for the rapid isolation, identification, and quantification of 12 isoflavones in soybean and soybean products. Individual isoflavones were identified on the basis of the accurate mass data of their respective protonated mass ions, Na or K adduct ions, fragment ions, and isotope ion patterns. The protonated mass ions of isoflavones were extracted for their quantification in soybean products. Twelve different isoflavones in the soybean products were fully separated, identified and quantified within 12min separation time. The established LC-TOF/MS was an effective analytical method for the simultaneous characterization and quantification of isoflavones with exceptionally short analytical time, high selectivity, a high linearity (r(2)>0.992) in a wide range, low LOD and LOQ, high precision, inter-and intra-day repeatability, and no significant matrix effect. Furthermore, it requires simple sample preparation procedure (solvent extraction, dilution, and syringe filtration).

  16. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  17. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    SciTech Connect

    Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Jahnke, K.; Zamorani, G.; Comastri, A.; Bolzonella, M.; Blecha, L.; Loeb, A.; Bongiorno, A.; Brusa, M.; Leauthaud, A.; Mainieri, V.; Piconcelli, E.; Salvato, M.; Scoville, N.; Trump, J.; Vignali, C.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.

  18. B -> D* l nu at zero recoil: an update

    SciTech Connect

    Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; El-Khadra, A.X.; Freeland, E.D.; Gamiz, E.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.

    2010-11-01

    We present an update of our calculation of the form factor for {bar B} {yields} D*{ell}{bar {nu}} at zero recoil, with higher statistics and finer lattices. As before, we use the Fermilab action for b and c quarks, the asqtad staggered action for light valence quarks, and the MILC ensembles for gluons and light quarks (Luescher-Weisz married to 2+1 rooted staggered sea quarks). In this update, we have reduced the total uncertainty on F(1) from 2.6% to 1.7%.

  19. Projectile paths corrected for recoil and air resistance

    NASA Astrophysics Data System (ADS)

    Kemp, H. R.

    1986-01-01

    The angle of projection of a bullet is not the same as the angle of the bore of the firearm just before firing. This is because recoil alters the direction of the barrel as the bullet moves along the barrel. Neither is the angle of projection of an arrow the same as the direction of the arrow just before it is projected. The difficulty in obtaining the angle of projection limits the value of the standard equation for trajectories relative to a horizontal plane. Furthermore, air resistance makes this equation unrealistic for all but short ranges.

  20. Prompt and delayed spectroscopy of {sup 142}Tb using recoil-isomer tagging

    SciTech Connect

    Mason, P. J. R.; Cullen, D. M.; Kishada, A. M.; Rigby, S. V.; Varley, B. J.; Scholey, C.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaenen, A.-P.; Maentyniemi, K.; Nieminen, P.; Nyman, M.; Pakarinen, J.

    2009-02-15

    Recoil-isomer tagging has been used to characterize the states built upon an I{sup {pi}}=8{sup +} isomer in {sup 142}Tb. High-spin states of the neutron-deficient nucleus {sup 142}Tb were populated using an {sup 54}Fe beam, accelerated onto a {sup 92}Mo target of thickness {approx}500 {mu}g/cm{sup 2} at energies of 245, 252, and 265 MeV using the K130 cyclotron at the University of Jyvaeskylae, Finland. Use of the JUROGAM target-position Ge-detector array coupled with the GREAT focal-plane spectrometer at the RITU gas-filled recoil separator has significantly increased the efficiency of the isomer-tagging technique. The rotational band built upon the I{sup {pi}}=8{sup +} isomeric state was established with isomer-tagged {gamma}-{gamma} coincidence data and angular distributions were measured for some of the more intensely populated states. Two previously unobserved bands that bypass the isomer were also established. The new data have been interpreted within the framework of the cranked-shell model. The data show good agreement with the calculated triaxial nuclear shape with {gamma}=-30 deg. for the {sup 142m2}Tb isomeric state. The B(M1)/B(E2) branching ratios, nuclear alignment, signature splitting, and reduced transition probability, B(E1), of the isomeric state have been systematically compared with those of the neighboring nuclei. These comparisons give further evidence for the {pi}h{sub 11/2} x {nu}h{sub 11/2} configuration of the isomer.

  1. Chemical characterisation of different separation media based on agarose by static time-of-flight secondary ion mass spectrometry.

    PubMed

    Johansson, Bo-Lennart; Andersson, Mikael; Lausmaa, Jukka; Sjövall, Peter

    2004-01-01

    In this paper, the novel application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for qualitative and semi-quantitative investigation of the surface chemistry of separation media based on beaded agarose is reported. Five different media were studied: DEAE Sepharose Fast Flow, Q Sepharose Fast Flow, SP Sepharose Fast Flow, Phenyl Sepharose Fast Flow at ligand densities between 7 and 33% (w/w) and the base matrix Sepharose 6 Fast Flow. The obtained TOF-SIMS spectra reveal significant chemical information regarding the ligands (DEAE, Q, SP and Phenyl) which are covalently attached to the agarose-based matrix Sepharose 6 Fast Flow. For the anion-exchange media (DEAE and Q Sepharose Fast Flow), the positive TOF-SIMS spectra yielded several strong characteristic fragment peaks from the amine ligands. Structural information was obtained, e.g. from the peak at m/z 173.20, originating from the ion structure [(C2H5)2NCH2CH2NH(C2H5)2l+, which shows that the ligand in DEAE Sepharose Fast Flow is composed of both tertiary and quaternary amines. The positive spectrum of Phenyl Sepharose Fast Flow contained major fragments both from the base matrix and the ligand. The cation-exchanger (SP Sepharose Fast Flow) gave rise to a positive spectrum resembling that of the base matrix (Sepharose 6 Fast Flow) but with a different intensity pattern of the matrix fragments. In addition, peaks with low intensity at m/z 109.94, 125.94 and 139.95 corresponding to Na2SO2+, Na2SO3+ and Na2SO3CH2+, respectively, were observed. The positive TOF-SIMS spectrum of Sepharose 6 Fast Flow contains a large number of fragments in the mass range up to m/z 200 identified as CxHyOz and CxHy structures. The results clearly show that positive TOF-SIMS spectra of different media based on Sepharose 6 Fast Flow are strongly influenced by the ligand coupled to the matrix. The negative TOF-SIMS spectra contained several ligand-specific, characteristic peaks for the cation-exchanger, having sulphonate

  2. Silicon shallow doping by erbium and oxygen recoils implantation

    NASA Astrophysics Data System (ADS)

    Feklistov, K. V.; Cherkov, A. G.; Popov, V. P.

    2016-09-01

    In order to get shallow high doping of Si with optically active complexes ErOn, Er followed by O recoils implantation was realized by means of subsequent Ar+ 250-290 keV implantation with doses 2×1015-1×1016 cm-2 through 50-nm deposited films of Er and then SiO2, accordingly. High Er concentration up to 5×1020 cm-3 to the depth of 10 nm was obtained after implantation. However, about a half of the Er implanted atoms become part of surface SiO2 during post-implantation annealing at 950 °C for 1 h in the N2 ambient under a SiO2 cap. The mechanism of Er segregation into the cap oxide following the moving amorphous-crystalline interface during recrystallization was rejected by the transmission electron microscopy (TEM) analysis. Instead, the other mechanism of immobile Er atoms and redistribution of recoil-implanted O atoms toward cap oxide was proposed. It explains the observed formation of two Er containing phases: Er-Si-O phase with a high O content adjacent to the cap oxide and deeper O depleted Er-Si phase. The correction of heat treatments is proposed in order to avoid the above-mentioned problems.

  3. Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    SciTech Connect

    McCracken, Michael E.

    2010-02-01

    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

  4. Method for quantitative determination and separation of trace amounts of chemical elements in the presence of large quantities of other elements having the same atomic mass

    DOEpatents

    Miller, C.M.; Nogar, N.S.

    1982-09-02

    Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.

  5. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin.

    PubMed

    Downey, Mark O; Rochfort, Simone

    2008-08-01

    A limitation of large-scale viticultural trials is the time and cost of comprehensive compositional analysis of the fruit by high-performance liquid chromatography (HPLC). In addition, separate methods have generally been required to identify and quantify different classes of metabolites. To address these shortcomings a reversed-phase HPLC method was developed to simultaneously separate the anthocyanins and flavonols present in grape skins. The method employs a methanol and water gradient acidified with 10% formic acid with a run-time of 48 min including re-equilibration. Identity of anthocyanins and flavonols in Shiraz (Vitis vinifera L.) skin was confirmed by mass spectral analysis. PMID:18573501

  6. Differential cross sections and recoil polarizations for the reaction γp→K+Σ0

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; McCracken, M. E.; Williams, M.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; et al

    2010-08-06

    Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less

  7. Using GPS and Absolute Gravity Observations to Separate the Effects of Present-day and Pleistocene Ice-mass Changes in South East Greenland

    NASA Astrophysics Data System (ADS)

    van Dam, T. M.; Francis, O.; Wahr, J. M.; Khan, S. A.; Bevis, M. G.; van den Broeke, M.

    2015-12-01

    Precise estimates of the present-day rates and accelerations of ice-mass loss from the polar ice-sheets are important for predicting potential changes in sea level. Current predictions of 21st century sea level change are limited by, among other things, their ability to precisely capture the effects of global warming on the Greenland ice sheet (GrIS). One method for constraining the mass loss on the GrIS is to make measurements of vertical crustal uplift rates from bedrock around the edge of the ice sheet. Using only GPS observations of crustal displacement, it is impossible to separate the uplift driven by present day mass changes from that due to ice mass changes in the past, e.g. the extensive retreat of the ice sheets since the Last Glacial Maximum (LGM) or even ice sheet changes during the Little Ice Age. By making measurements of both gravity and surface motion at a bedrock site, the viscoelastic effects could be removed from the observations and we would be able to constrain present day ice mass changes. In this presentation we discuss the results of an experiment to collect surface displacement and absolute gravity observations from southeast Greenland to separate the elastic and viscoelastic signals. We find that the glacial isostatic adjustment signal in this region is positive, contrary to the negative signal predicted by all existing viscosity and ice history models.

  8. UV photodissociation of trapped ions following ion mobility separation in a Q-ToF mass spectrometer.

    PubMed

    Bellina, Bruno; Brown, Jeffery M; Ujma, Jakub; Murray, Paul; Giles, Kevin; Morris, Michael; Compagnon, Isabelle; Barran, Perdita E

    2014-12-21

    An ion mobility mass spectrometer has been modified to allow optical interrogation of ions with different mass-to-charge (m/z) ratios and/or mobilities (K). An ion gating and trapping procedure has been developed which allows us to store ions for several seconds enabling UV photodissociation (UVPD).

  9. Separating the Chaff from the Oats: Evidence for a Conceptual Distinction between Count Noun and Mass Noun Aggregates

    ERIC Educational Resources Information Center

    Middleton, Erica L.; Wisniewski, Edward J.; Trindel, Kelly A.; Imai, Mutsumi

    2004-01-01

    The English language makes a grammatical distinction between count nouns and mass nouns. For example, count nouns but not mass nouns can be pluralized and can appear with the indefinite article. Some scholars dismiss the distinction as an arbitrary convention of language whereas others suggest that it is conceptually based. The present studies…

  10. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Redondo, L. M.; Silva, J. Fernando; Canacsinh, H.; Ferrão, N.; Mendes, C.; Soares, R.; Schipper, J.; Fowler, A.

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  11. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    PubMed

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  12. Comparison of a jet separator and an open splitter as an interface between a multi-capillary gas chromatographic column and a time-of-flight mass spectrometer

    PubMed

    Pongpun; Mlynski; Crisp; Guilhaus

    2000-09-01

    A gas chromatographic/time-of-flight mass spectrometric (GC/TOFMS) interface is being developed for fast on-line analysis utilizing multi-capillary column technology. A variable gap-distance jet separator has been constructed and its performance compared with that of a commercially supplied post-column open splitter recommended for use between the multi-capillary column and a mass spectrometer. Both interfaces were found to be compatible with the GC/TOFMS system at high carrier gas flow-rates, facilitating high-speed and high-resolution separations. The systems were investigated and tested with a mixture of volatile organic compounds (VOCs) with molecular masses from 85 to 166: dichloromethane, toluene, m-dichlorobenzene, o-dichlorobenzene and tetrachloroethylene. The optimum tip-to-tip gap distance corresponding to the highest efficiency of the jet separator was found to be 0.030 mm for each compound at carrier gas flow-rates of 20, 40 and 60 ml min(-1) giving, in the ion source housing, ion gauge pressure readings of 1.6 x 10(-6), 5.0 x 10(-6) and 5.8 x 10(-6) mbar, respectively. The efficiency of the jet separator (10-30% yields) was significantly higher than that of the open splitter (6-9% yields). The observation that the open splitter did not provide a constant flow-rate to the ion source was not in agreement with the manufacturer's specifications. A method for measuring the gas flow-rates in all parts of the equipment is described. The correlation between yield in the jet separator and molecular mass for the heterogeneous set of compounds studied was found to be less linear than usually reported for homologous series of compounds in jet separator studies. The result suggests that the pressure conditions in the jet may be sufficient for the separation process to be partly controlled by diffusion rather than predominately by effusion. Copyright 2000 John Wiley & Sons, Ltd.

  13. Analytical calculation of radiative-recoil corrections to muonium hyperfine splitting: Muon-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    Analytic expression for radiative-recoil corrections to muonium ground-state hyperfine splitting induced by muon-line radiative insertions is obtained. This result completes the program of analytic calculation of all radiative-recoil corrections. The perspectives of further muonium hyperfine splitting investigations are also discussed.

  14. Exact calculations of nuclear-recoil energies from prompt gamma decays resulting from neutron capture

    SciTech Connect

    Kinney, J.H.

    1981-07-20

    The results of an accurate determination of the recoil spectrum from (n, ..gamma..) reactions in molybdenum are presented. The recoil spectrum has been calculated from nuclear level structure data and measured branching ratios. Angular correlations between successive gammas have been accounted for using the standard theoretical techniques of Racah algebra and the density matrix formalism.

  15. [Applications of two-dimensional liquid chromatography coupled to mass spectrometry for the separation and identification of compounds in ginkgo biloba extracts].

    PubMed

    Chen, Xueguo; Kong, Liang; Sheng, Lianghong; Li, Xin; Zou, Hanfa

    2005-01-01

    A comprehensive two-dimensional liquid chromatographic separation system based on the combination of an immobilized liposome chromatographic (ILC) column and an ODS column was developed for the separation of components in Ginkgo biloba, a traditional Chinese medicine. Two columns were coupled by a two-position, eight-port valve equipped with two storage loops, and the system was controlled by a computer. The effluent was detected both by a diode array detector and by an atmospheric pressure chemical ionization (APCI) mass spectrometer. Under the optimization separation conditions with the separation system, more than 41 components in the methanol extract of Ginkgo biloba were resolved. According to their UV and mass spectra, 13 of them were preliminarily identified as ginkgolide B, ginkgolide C, bilobalide, rutin, quercetin, quercetin-3-O-beta-D-glucosyl (1-2)-alpha-L-rhamnoside, quercetin-3-O-beta-D-glucoside, isorhamnetin, kaempferol-3-O-beta-D-glucosyl (1-2)-alpha-L-rhamnoside, isohamnetin-3-O-beta-D-rutinoside, kaempferol-3-O-beta-D-glucoside, kaempferol, kaempferol-3-O-beta-D-rutinoside. PMID:15881366

  16. Deconvoluting nonaxial recoil in Coulomb explosion measurements of molecular axis alignment

    NASA Astrophysics Data System (ADS)

    Christensen, Lauge; Christiansen, Lars; Shepperson, Benjamin; Stapelfeldt, Henrik

    2016-08-01

    We report a quantitative study of the effect of nonaxial recoil during Coulomb explosion of laser-aligned molecules and introduce a method to remove the blurring caused by nonaxial recoil in the fragment-ion angular distributions. Simulations show that nonaxial recoil affects correlations between the emission directions of fragment ions differently from the effect caused by imperfect molecular alignment. The method, based on analysis of the correlation between the emission directions of the fragment ions from Coulomb explosion, is used to deconvolute the effect of nonaxial recoil from experimental fragment angular distributions. The deconvolution method is then applied to a number of experimental data sets to correct the degree of alignment for nonaxial recoil, to select optimal Coulomb explosion channels for probing molecular alignment, and to estimate the highest degree of alignment that can be observed from selected Coulomb explosion channels.

  17. Dielectric barrier structure with hollow electrodes and its recoil effect

    SciTech Connect

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  18. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  19. Spectroscopy of {sup 144}Ho using recoil-isomer tagging

    SciTech Connect

    Mason, P. J. R; Cullen, D. M.; Scholey, C.; Greenlees, P. T.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Peura, P.; Puurunen, A.; Rahkila, P.; Ruotsalainen, P.; Sorri, J.; Saren, J.; Uusitalo, J.; Xu, F. R.

    2010-02-15

    Excited states in the proton-unbound odd-odd nucleus {sup 144}Ho have been populated using the {sup 92}Mo({sup 54}Fe,pn){sup 144}Ho reaction and studied using the recoil-isomer-tagging technique. The alignment properties and signature splitting of the rotational band above the I{sup p}i=(8{sup +}){sup 144m}Ho isomer have been analyzed and the isomer confirmed to have a pih{sub 11/2} x nuh{sub 11/2} two-quasiparticle configuration. The configuration-constrained blocking method has been used to calculate the shapes of the ground and isomeric states, which are both predicted to have triaxial nuclear shapes with |gamma|approx =24 deg.

  20. Neutron absorbed dose determination by calculations of recoil energy.

    PubMed

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  1. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  2. B{yields}D* at zero recoil revisited

    SciTech Connect

    Gambino, Paolo; Mannel, Thomas; Uraltsev, Nikolai

    2010-06-01

    We examine the B{yields}D* form factor at zero recoil using a continuum QCD approach rooted in the heavy quark sum rules framework. A refined evaluation of the radiative corrections as well as the most recent estimates of higher-order power terms together with more careful continuum calculation are included. An upper bound on the form factor of F(1) < or approx. 0.93 is derived, based on just the positivity of inelastic contributions. A model-independent estimate of the inelastic contributions shows they are quite significant, lowering the form factor by about 6% or more. This results in an unbiased estimate F(1){approx_equal}0.86 with about 3% uncertainty in the central value.

  3. γp ->K^+λ Differential Cross Section and Recoil Polarization Measurements from the CLAS g11a Dataset

    NASA Astrophysics Data System (ADS)

    McCracken, Michael

    2009-05-01

    We present measurements of γp ->K^+λ differential cross section and λ recoil polarization from the CLAS g11a dataset. The measurements cover the center-of-mass energy range from 1.62 GeV to 2.84 GeV and a wide range of center-of-mass angles (-0.90<=θCM^K<=0.90). We have analyzed this reaction via both the K^+p&-circ; and K^+p (missing &-circ;) final-state topologies independently and found the results to be in excellent agreement. Previous γp ->K^+λ differential cross section results from the CLAS (Bradford, et al. 2005) and SAPHIR (Glander, et al., 2004) Collaborations show discrepancies in magnitude at most energies and a discrepancy in scale and shape at √s 1.9 GeV. These discrepancies have been problematic for interpretations of K^+λ photoproduction mechanisms. These new g11a differential cross section results show excellent agreement with the previous CLAS result. The recoil polarization results show agreement with previous data from the CLAS, SAPHIR, and GRAAL experiments, and are a 500 MeV extension of the observed energy range.

  4. Quantitative separation of the influence of copper (II) chloride mass migration on the chemo-responsive shape memory effect in polyurethane shape memory polymer

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Lu, Chunrui; Huang, Wei Min; Leng, Jinsong

    2016-10-01

    Chemo-responsive shape memory effect in polyurethane shape memory polymer (SMP) composite triggered by mass migration of copper (II) chloride (CuCl2) has been experimentally demonstrated. In this study, we present a comprehensive study on quantitative separation of the effect of CuCl2 particle mass migration on the chemo-responsive shape recovery behavior of polyurethane SMP composites with different concentrations of CuCl2 particles. It is found that the SMP is featured with a critical release rate of the mechanical energy storage associated with the shape recovery behavior due to mass migration of the CuCl2 particle. A sequence of molecular interactions among CuCl2 particles, polyurethane macromolecules and water molecules, i.e., assembly of the CuCl2 particle with polyurethane macromolecules, and then disassembly and dissolution of the CuCl2 particle in water, results in an acceleration of water-induced shape recovery of polyurethane SMP. This study focuses on the quantitative separation of the influence of mass migration on the chemo-responsive shape recovery behavior of polyurethane SMP in response to water. It is expected to promote and achieve the actuation of chemo-responsive SMPs in a fully controllable manner.

  5. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  6. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform.

    PubMed

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J; Kertesz, Vilmos

    2016-03-01

    In this paper, the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry. The infrared chemical imaging component of the system utilized photothermal expansion of the sample at the tip of the atomic force microscopy probe recorded at infrared wave numbers specific to the different surface constituents. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for thermolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. The basic instrumental setup, operation, and image correlation procedures are discussed, and the multimodal imaging capability and utility are demonstrated using a phase separated poly(2-vinylpyridine)/poly(methyl methacrylate) polymer thin film. The topography and both the infrared and mass spectral chemical images showed that the valley regions of the thin film surface were comprised primarily of poly(2-vinylpyridine) and hill or plateau regions were primarily poly(methyl methacrylate). The spatial resolution of the mass spectral chemical images was estimated to be 1.6 μm based on the ability to distinguish surface features in those images that were also observed in the topography and infrared images of the same surface.

  7. Identification and separation of saxitoxins using hydrophilic interaction liquid chromatography coupled to traveling wave ion mobility-mass spectrometry.

    PubMed

    Poyer, Salomé; Loutelier-Bourhis, Corinne; Coadou, Gaël; Mondeguer, Florence; Enche, Julien; Bossée, Anne; Hess, Philipp; Afonso, Carlos

    2015-01-01

    The aim of this work was to develop a reliable and efficient analytical method to characterise and differentiate saxitoxin analogues (STX), including sulphated (gonyautoxins, GTX) and non-sulphated analogues. For this purpose, hydrophilic interaction liquid chromatography (HILIC) was used to separate sulphated analogues. We also resorted to ion mobility spectrometry to differentiate the STX analogues because this technique adds a new dimension of separation based on ion gas phase conformation. Positive and negative ionisation modes were used for gonyautoxins while positive ionisation mode was used for non-sulphated analogues. Subsequently, the coupling of these three complementary techniques, HILIC-IM-MS, permitted the separation and identification of STX analogues; isomer differentiation was achieved in HILIC dimension while non-sulphated analogues were separated in the IM-MS dimension. Additional structural characteristics concerning the conformation of STXs could be obtained using IM-MS measurements. Thus, the collision cross sections (CCS) of STXs are reported for the first time in the positive ionisation mode. These experimental CCSs correlated well with the calculated CCS values using the trajectory method. PMID:25601690

  8. Rapid separation and identification of furocoumarins in Angelica dahurica by high-performance liquid chromatography with diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry.

    PubMed

    Zhang, Hai; Gong, Chungui; Lv, Lei; Xu, Yuanjie; Zhao, Liang; Zhu, Zhenyu; Chai, Yifeng; Zhang, Guoqing

    2009-07-01

    High-performance liquid chromatography with diode-array detection (HPLC/DAD), time-of-flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QITMS) were used for separation, identification and structural analysis of furocoumarins in Angelica dahurica. Two furocoumarins (imperatorin and isoimperatorin) in Angelica dahurica extract were identified unambiguously by comparing their relative retention times, characteristic ultraviolet information and accurate mass measurement. A formula database of known furocoumarins in Angelica dahurica was established, against which the other 21 furocoumarins were identified effectively based on the accurate extract masses and formulae acquired by HPLC/TOFMS. In order to distinguish the isomers, multi-stage mass spectrometry (MSn, ion trap mass spectrometry) was used. General fragmentation behavior of the furocoumarins in the ion trap mass spectrometer was studied by the two furocoumarin standards, and their fragmentation rules in MS(n) spectra were summarized. These deduced fragmentation rules of furocoumarins were successfully implemented in distinguishing the three groups of isomers in Angelica dahurica by HPLC/QITMS. By using the three different analytical techniques, 23 furocoumarins in Angelica dahurica were tentatively identified within 30 min. Finally, HPLC/TOFMS fingerprints of Angelica dahurica were established by which it can be concluded that a rapid and effective method based on the three analytical techniques for identification of chemical components was established. This can provide help for further quality control of Angelica dahurica and pharmacology mechanism study of furocoumarins in Angelica dahurica.

  9. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    SciTech Connect

    Dain, Sergio; Lousto, Carlos O.; Zlochower, Yosef

    2008-07-15

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/m{sub H}{approx}0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high central resolutions (h{approx}M/320). We find that these highly spinning holes reach a maximum recoil velocity of {approx}3300 km s{sup -1} (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/m{sub H}{approx}0.922. These results are consistent with our previous predictions for the maximum recoil velocity of {approx}4000 km s{sup -1} and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r{sup -2}) singularity at the puncture, rather than the usual O(r{sup -4}) singularity seen for nonmaximal spins.

  10. 2M1155-79 (= T CHAMAELEONTIS B): A LOW-MASS, WIDE-SEPARATION COMPANION TO THE NEARBY, 'OLD' T TAURI STAR T CHAMAELEONTIS

    SciTech Connect

    Kastner, Joel H.; Thompson, Emily A.; Montez, Rodolfo; Sacco, Giuseppe Germano; Murphy, Simon J.; Bessell, Michael S.

    2012-03-10

    The early-K star T Cha, a member of the nearby (D Almost-Equal-To 100 pc) {epsilon} Cha Association, is a relatively 'old' (age {approx} 7 Myr) T Tauri star that is still sporadically accreting from an orbiting disk whose inner regions are now evidently being cleared by a close, substellar companion. We report the identification, via analysis of proper motions, serendipitous X-ray imaging spectroscopy, and follow-up optical spectroscopy, of a new member of the {epsilon} Cha Association that is very likely a low-mass companion to T Cha at a projected separation of {approx}38 kAU. The combined X-ray and optical spectroscopy data indicate that the companion, T Cha B (= 2M1155-79), is a weak-lined T Tauri star (wTTS) of spectral type M3 and age {approx}< 10 Myr. The serendipitous X-ray (XMM-Newton) observation of T Cha B, which targeted T Cha, also yields serendipitous detections of two background wTTS in the Chamaeleon cloud complex, including one newly discovered, low-mass member of the Cha cloud pre-main-sequence (pre-MS) population. T Cha becomes the third prominent example of a nearby, 'old' yet still actively accreting, K-type pre-MS star/disk system (the others being TW Hya and V4046 Sgr) to feature a low-mass companion at very large (12-40 kAU) separation, suggesting that such wide-separation companions may affect the conditions and timescales for planet formation around solar-mass stars.

  11. A design study for a compact two stage in-flight separator with a high mass resolution and large acceptance.

    PubMed

    Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji

    2015-03-01

    The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of (132)Sn produced by a fission reaction between the primary beam of (238)U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively. PMID:25832210

  12. Cull sow knife-separable lean content evaluation at harvest and lean mass content prediction equation development.

    PubMed

    Abell, Caitlyn E; Stalder, Kenneth J; Hendricks, Haven B; Fitzgerald, Robert F

    2012-07-01

    The objectives of this study were to develop a prediction equation for carcass knife-separable lean within and across USDA cull sow market weight classes (MWC) and to determine carcass and individual primal cut knife separable lean content from cull sows. There were significant percent lean and fat differences in the primal cuts across USDA MWC. The two lighter USDA MWC had a greater percent carcass lean and lower percent fat compared to the two heavier MWC. In general, hot carcass weight explained the majority of carcass lean variation. Additionally, backfat was a significant variation source when predicting cull sow carcass lean. The findings support using a single lean prediction equation across MWC to assist processors when making cull sow purchasing decisions and determine the mix of animals from various USDA MWC that will meet their needs when making pork products with defined lean:fat content.

  13. A design study for a compact two stage in-flight separator with a high mass resolution and large acceptance

    SciTech Connect

    Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji

    2015-03-15

    The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of {sup 132}Sn produced by a fission reaction between the primary beam of {sup 238}U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.

  14. Modeling of mass transfer of Phospholipids in separation process with supercritical CO2 fluid by RBF artificial neural networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...

  15. Photo-ionisation mass spectrometry as detection method for gas chromatography. Optical selectivity and multidimensional comprehensive separations.

    PubMed

    Zimmermann, Ralf; Welthagen, Werner; Gröger, Thomas

    2008-03-14

    Mass spectrometry (MS) with soft ionisation techniques (i.e. ionisation without fragmentation of the analyte molecules) for gaseous samples exhibits interesting analytical properties for direct analysis applications (i.e. direct inlet mass spectrometric on-line monitoring) as well as mass spectrometric detection method for gas chromatography (GC-MS). Commonly either chemical ionisation (CI) or field ionisation (FI) is applied as soft ionisation technology for GC-MS. An interesting alternative to the CI and FI technologies methods are photo-ionisation (PI) methods. PI overcomes some of the limitations of CI and FI and furthermore add some unique analytical properties. The resonance enhanced multi-photon ionisation (REMPI) method uses intense UV-laser pulses (wavelength range approximately 350-193 nm) for highly selective, sensitive and soft ionisation of predominately aromatic compounds. The single photon ionisation (SPI) method utilises VUV light (from lamps or laser sources, wavelengths range approximately 150-110 nm) can be used for a universal soft ionisation of organic molecules. In this article the historical development as well as the current status and concepts of gas chromatography hyphenated to photo-ionisation mass spectrometry are reviewed. PMID:17915237

  16. UTILITY OF THREE TYPES OF MASS SPECTROMETERS FOR DETERMINING ELEMENTAL COMPOSITIONS OF IONS FORMED FROM CHROMATOGRAPHICALLY SEPARATED COMPOUNDS

    EPA Science Inventory

    Sponsor Referee: Douglas F. Barofsky, Oregon State University Concentration factors of 1000 and more reveal dozens of compounds in extracts of water supplies. Library mass spectra for most of these compounds are not available, and alternative means of identification are needed. D...

  17. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. PMID:24401459

  18. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation.

  19. Spreading and recoil of a surfactant-containing water drop on glass-supported alcohol films.

    PubMed

    Chowdhury, Devasish; Sarkar, Surya Protim; Kalita, Dipankar; Sarma, Tridib Kumar; Paul, Anumita; Chattopadhyay, Arun

    2004-02-17

    In this paper we report the experimental observation of spreading and recoil of surfactant-containing water drops on various alcohol films supported on glass slides. The time evolution of spreading and recoil behavior was recorded by placing a web camera above the drop. We observed that the drop spread the fastest on CH3OH, followed by C2H5OH, and the slowest on i-PrOH. On the other hand, the recoil behavior was just the opposite. The drop recoiled the slowest on CH3OH and fastest on i-PrOH, while it recoiled in an intermediate time on C2H5OH. In addition, concentration of surfactant in the drop played a prominent role in the spreading and recoil time of the drop, with higher surfactant concentration making the drop spread and recoil faster. The time evolution of spreading velocity of the drop on different alcohol films at various surfactant concentrations occurred with a Gaussian distribution and the peak velocity was reached earliest on CH3OH followed by C2H5OH, while on i-PrOH it took the longest time. The recoil behavior was similar. The variation of velocity as a function of radius exhibited oscillatory behavior, indicating the existence of an interfacial phenomenon. We also report the observation that spreading of the drop occurred without observable fingering instability. Further, we observed by Fourier transform infrared (FTIR) spectroscopic measurements that the drop had mixed with the alcohol films as it spread. Miscibility of the alcohol in the film with the drop, alcohol evaporation cooling-induced temperature gradient, and Marangoni effect probably play important roles in the spreading and recoil behavior of the drop.

  20. FAST TRACK COMMUNICATION: The gravitational-wave recoil from the ringdown phase of coalescing black hole binaries

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre; Blanchet, Luc; Will, Clifford M.

    2010-01-01

    The gravitational recoil or 'kick' of a black hole formed from the merger of two orbiting black holes, and caused by the anisotropic emission of gravitational radiation, is an astrophysically important phenomenon. We combine (i) an earlier calculation, using post-Newtonian theory, of the kick velocity accumulated up to the merger of two non-spinning black holes, (ii) a 'close-limit approximation' calculation of the radiation emitted during the ringdown phase, and based on a solution of the Regge-Wheeler and Zerilli equations using initial data accurate to second post-Newtonian order. We prove that ringdown radiation produces a significant 'anti-kick'. Adding the contributions due to inspiral, merger and ringdown phases, our results for the net kick velocity agree with those from numerical relativity to 10-15% over a wide range of mass ratios, with a maximum velocity of 180 km s-1 at a mass ratio of 0.38.

  1. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    PubMed

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac. PMID:24374072

  2. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    PubMed

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac.

  3. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    NASA Astrophysics Data System (ADS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-03-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  4. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  5. Online Matrix Removal Platform for Coupling Gel-Based Separations to Whole Protein Electrospray Ionization Mass Spectrometry

    PubMed Central

    Kim, Ki Hun; Compton, Philip D.; Tran, John C.; Kelleher, Neil L.

    2015-01-01

    A fractionation method called gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) has been used to dramatically increase the number of proteins identified in top-down proteomic workflows; however, the technique involves the use of sodium dodecyl sulfate (SDS), a surfactant that interferes with electrospray ionization. Therefore, an efficient removal of SDS is absolutely required prior to mass analysis. Traditionally, methanol/chloroform precipitation and spin columns have been used, but they lack reproducibility and are difficult to automate. Therefore, we developed an in-line matrix removal platform to enable the direct analysis of samples containing SDS and salts. Only small molecules like SDS permeate a porous membrane and are removed in a manner similar to cross-flow filtration. With this device, near-complete removal of SDS is accomplished within 5 min and proteins are subsequently mobilized into a mass spectrometer. The new platform was optimized for the analysis of GELFrEE fractions enriched for histones extracted from human HeLa cells. All four core histones and their proteoforms were detected in a single spectrum by high-resolution mass spectrometry. The new method versus protein precipitation/resuspension showed 2- to 10-fold improved signal intensities, offering a clear path forward to improve proteome coverage and the efficiency of top-down proteomics. PMID:25836738

  6. IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomic biomarker discovery

    SciTech Connect

    Shi, Tujin; Zhou, Jianying; Gritsenko, Marina A.; Hossain, Mahmud; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-02-01

    Interest in the application of advanced proteomics technologies to human blood plasma- or serum-based clinical samples for the purpose of discovering disease biomarkers continues to grow; however, the enormous dynamic range of protein concentrations in these types of samples (often >10 orders of magnitude) represents a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. In response, immunoaffinity separation methods for depleting multiple high- and moderate-abundance proteins have become key tools for enriching low-abundance proteins and enhancing detection of these proteins in plasma proteomics. Herein, we describe IgY14 and tandem IgY14-Supermix separation methods for removing 14 high-abundance and up to 60 moderate-abundance proteins, respectively, from human blood plasma and highlight their utility when combined with liquid chromatography-tandem mass spectrometry for interrogating the human plasma proteome.

  7. Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography-negative electrospray ionization tandem mass spectrometry.

    PubMed

    Parejo, Irene; Jauregui, Olga; Sánchez-Rabaneda, Ferran; Viladomat, Francesc; Bastida, Jaume; Codina, Carles

    2004-06-16

    Liquid chromatography (LC) diode array detection (DAD) coupled to negative electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was used for the rapid and sensitive identification of water-soluble phenolic compounds in fennel waste. The plant material was first extracted and then chromatographed on Sephadex LH-20 to afford seven fractions, each of them being subjected to LC-MS analysis. Identification of the compounds was carried out by interpretation of UV, MS, and MS/MS spectra. Forty-two phenolic substances were identified, 27 of which had not previously been reported in fennel, including hydroxycinnamic acid derivatives, flavonoid glycosides, and flavonoid aglycons.

  8. Serum peptidome patterns of colorectal cancer based on magnetic bead separation and MALDI-TOF mass spectrometry analysis.

    PubMed

    Fan, Nai-Jun; Gao, Chun-Fang; Wang, Xiu-Li; Zhao, Guang; Liu, Qing-Yin; Zhang, Yuan-Yao; Cheng, Bao-Guo

    2012-01-01

    Background. Colorectal cancer (CRC) is one of the most common cancers in the world, identification of biomarkers for early detection of CRC represents a relevant target. The present study aims to determine serum peptidome patterns for CRC diagnosis. Methods. The present work focused on serum proteomic analysis of 32 health volunteers and 38 CRC by ClinProt Kit combined with mass spectrometry. This approach allowed the construction of a peptide patterns able to differentiate the studied populations. An independent group of serum (including 33 health volunteers, 34 CRC, 16 colorectal adenoma, 36 esophageal carcinoma, and 31 gastric carcinoma samples) was used to verify the diagnostic and differential diagnostic capability of the peptidome patterns blindly. An immunoassay method was used to determine serum CEA of CRC and controls. Results. A quick classifier algorithm was used to construct the peptidome patterns for identification of CRC from controls. Two of the identified peaks at m/z 741 and 7772 were used to construct peptidome patterns, achieving an accuracy close to 100% (>CEA, P < 0.05). Furthermore, the peptidome patterns could differentiate validation group with high accuracy. Conclusions. These results suggest that the ClinProt Kit combined with mass spectrometry yields significantly higher accuracy for the diagnosis and differential diagnosis of CRC.

  9. Fast thermometry for trapped atoms using recoil-induced resonance

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Ting; Su, Dian-Qiang; Ji, Zhong-Hua; Zhang, Hong-Shan; Xiao, Lian-Tuan; Jia, Suo-Tang

    2015-09-01

    We have employed recoil-induced resonance (RIR) with linewidth on the order of 10 kHz to demonstrate the fast thermometry for ultracold atoms. We theoretically calculate the absorption spectrum of RIR which agrees well with the experimental results. The temperature of the ultracold sample derived from the RIR spectrum is T = 84±4.5 μK, which is close to 85 μK that measured by the method of time-of-flight absorption imaging. To exhibit the fast measurement advantage in applying RIR to the ultracold atom thermometry, we study the dependence of ultracold sample temperature on the trapping beam frequency detuning. This method can be applied to determine the translational temperature of molecules in photoassociation dynamics. Project supported by the National Basic Research Development Program of China (Grant No. 2012CB921603), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 61275209, 11304189, 61378015, and 11434007), and Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13076).

  10. Superconducting Nuclear Recoil Sensor for Directional Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Baldwin, Kevin; Hehlen, Markus; Lafler, Randy; Loomba, Dinesh; Phan, Nguyen; Weisse-Bernstein, Nina

    The Universe consists of 72% dark energy, 23% dark matter and only 5% of ordinary matter. One of the greatest challenges of the scientific community is to understand the nature of dark matter. Current models suggest that dark matter is made up of slowly moving, weakly interacting massive particles (WIMPs). But detecting WIMPs is challenging, as their expected signals are small and rare compared to the large background that can mimic the signal. The largest and most robust unique signature that sets them apart from other particles is the day-night variation of the directionality of dark matter on Earth. This modulation could be observed with a direction-sensitive detector and hence, would provide an unambiguous signature for the galactic origin of WIMPs. There are many studies underway to attempt to detect WIMPs both directly and indirectly, but solid-state WIMP detectors are widely unexplored although they would present many advantages to prevalent detectors that use large volumes of low pressure gas. We present first results of a novel multi-layered architecture, in which WIMPs would interact primarily with solid layers to produce nuclear recoils that then induce measureable voltage pulses in adjacent superconductor layers. This work was supported by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development Program.

  11. Elastic recoil of coronary stents: a comparative analysis.

    PubMed

    Barragan, P; Rieu, R; Garitey, V; Roquebert, P O; Sainsous, J; Silvestri, M; Bayet, G

    2000-05-01

    Minimum elastic recoil (ER) has became an essential feature of new coronary stents when deployed in artheromatous lesions of various morphologies. The ER of coronary stent might be an important component of 6-month restenosis rate by minimizing the luminal loss. We evaluated the intrinsic ER of 23 coronary stents with a mechanical test bench. The amount of ER for one size of stent (3.0 mm) was quantified using a 3D optical contactless machine (Smartscope MVP, Rochester, NY). The stents were expanded on their own balloon for the precrimped stents; the uncrimped stents were expended using identical 3.0-mm balloons. Two types of measurements were done without exterior stress and with a 0.2-bar exterior stress, directly on the stent at the end of balloon expansion, immediately after balloon deflation, and then 30 min, 60 min, and 120 min after. ER ranged from 1.54%+/-0.81% (Bestent BES 15) to 16.51%+/-2.89% (Paragon stent) without stress (P<0.01) and from 2.35%+/-1.14% (Bestent BES 15) to 18.34%+/-2.41% (Cook GR2) under 0.2-bar pressure (P<0.0001). Furthermore, there was a significant reduction between the mean result of tubular stents (TS) and coil stents (CS). The results of in vitro mechanical tests may confirm strongly the interest of a minimum ER in the prevention of the 6-month restenosis. PMID:10816295

  12. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry.

    PubMed

    Jumaah, Firas; Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta; Sandahl, Margareta

    2016-08-01

    In this study, a rapid and sensitive ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS) method has been developed and partially validated for the separation of carotenoids within less than 6 min. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The length of polyene chain as well as the number of hydroxyl groups in the structure of the studied carotenoids determines their differences in the physiochemical properties and thus the separation that is achieved on this column. All of the investigated carotenoids were baseline separated with resolution values greater than 1.5. The effects of gradient program, back pressure, and column temperature were studied with respect to chromatographic properties such as retention and selectivity. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in both positive and negative mode, using both direct infusion and hyphenated with UHPSFC. The ESI in positive mode provided the highest response. The coefficient of determination (R (2)) for all calibration curves were greater than 0.998. Limit of detection (LOD) was in the range of 2.6 and 25.2 ng/mL for α-carotene and astaxanthin, respectively, whereas limit of quantification (LOQ) was in the range of 7.8 and 58.0 ng/mL for α-carotene and astaxanthin, respectively. Repeatability and intermediate precision of the developed UHPSFC-MS method were determined and found to be RSD < 3 % and RSD < 6 %, respectively. The method was applied in order to determine carotenoids in supercritical fluid extracts of microalgae and rosehip. Graphical Abstract Ultra-high performance supercritical fluid chromatography-a rapid separation method for the analysis of carotenoids in rosehip and microalgae samples. PMID:27349917

  13. First measurement of the ionization yield of nuclear recoils in liquid argon

    SciTech Connect

    Joshi, T.; Sangiorgio, Samuele; Bernstein, A.; Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Kazkaz, K.; Mozin, Vladimir V.; Norman, E. B.; Pereverzev, S. V.; Rebassoo, Finn O.; Sorensen, Peter F.

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  14. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  15. MIMAC low energy electron-recoil discrimination measured with fast neutrons

    NASA Astrophysics Data System (ADS)

    Riffard, Q.; Santos, D.; Guillaudin, O.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Muraz, J.-F.; Lebreton, L.; Maire, D.; Colas, P.; Giomataris, I.; Busto, J.; Fouchez, D.; Brunner, J.; Tao, C.

    2016-08-01

    MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. This analysis shows that a 105 rejection power is reachable for electron/recoil discrimination. Moreover, the efficiency was estimated by a Monte-Carlo simulation showing that a 105 electron rejection power is reached with a 86.49 ± 0.17% nuclear recoil efficiency considering the full energy range and 94.67 ± 0.19% considering a 5 keV lower threshold.

  16. Observation of a resonance in B+ → K+ μ+ μ- decays at low recoil.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-13

    A broad peaking structure is observed in the dimuon spectrum of B+ → K+ μ+ μ- decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the B+ → K+ μ+ μ- decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be 4191(-8)(+9)  MeV/c2 and 65(-16)(+22)  MeV/c2, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the ψ(4160) meson. First observations of both the decay B+ → ψ(4160)K+ and the subsequent decay ψ(4160) → μ+ μ- are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770  MeV/c2. This contribution is larger than theoretical estimates. PMID:24074076

  17. Extremely fast prey capture in pipefish is powered by elastic recoil.

    PubMed

    Van Wassenbergh, Sam; Strother, James A; Flammang, Brooke E; Ferry-Graham, Lara A; Aerts, Peter

    2008-03-01

    The exceptionally high speed at which syngnathid fishes are able to rotate their snout towards prey and capture it by suction is potentially caused by a catapult mechanism in which the energy previously stored in deformed elastic elements is suddenly released. According to this hypothesis, tension is built up in tendons of the post-cranial muscles before prey capture is initiated. Next, an abrupt elastic recoil generates high-speed dorsal rotation of the head and snout, rapidly bringing the mouth close to the prey, thus enabling the pipefish to be close enough to engulf the prey by suction. However, no experimental evidence exists for such a mechanism of mechanical power amplification during feeding in these fishes. To test this hypothesis, inverse dynamical modelling based upon kinematic data from high-speed videos of prey capture in bay pipefish Syngnathus leptorhynchus, as well as electromyography of the muscle responsible for head rotation (the epaxial muscle) was performed. The remarkably high instantaneous muscle-mass-specific power requirement calculated for the initial phase of head rotation (up to 5795 W kg(-1)), as well as the early onset times of epaxial muscle activity (often observed more than 300 ms before the first externally discernible prey capture motion), support the elastic power enhancement hypothesis.

  18. Observation of a resonance in B+ → K+ μ+ μ- decays at low recoil.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-13

    A broad peaking structure is observed in the dimuon spectrum of B+ → K+ μ+ μ- decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the B+ → K+ μ+ μ- decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be 4191(-8)(+9)  MeV/c2 and 65(-16)(+22)  MeV/c2, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the ψ(4160) meson. First observations of both the decay B+ → ψ(4160)K+ and the subsequent decay ψ(4160) → μ+ μ- are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770  MeV/c2. This contribution is larger than theoretical estimates.

  19. Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements

    NASA Astrophysics Data System (ADS)

    Van Camp, M.; Viron, O.; Avouac, J. P.

    2016-05-01

    We estimate the signature of the climate-induced mass transfers in repeated absolute gravity measurements based on satellite gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission. We show results at the globe scale and compare them with repeated absolute gravity (AG) time behavior in three zones where AG surveys have been published: Northwestern Europe, Canada, and Tibet. For 10 yearly campaigns, the uncertainties affecting the determination of a linear gravity rate of change range 3-4 nm/s2/a in most cases, in the absence of instrumental artifacts. The results are consistent with what is observed for long-term repeated campaigns. We also discuss the possible artifact that can result from using short AG survey to determine the tectonic effects in a zone of high hydrological variability. We call into question the tectonic interpretation of several gravity changes reported from stations in Tibet, in particular the variation observed prior to the 2015 Gorkha earthquake.

  20. Investigation on modeling and controability of a magnetorheological gun recoil damper

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Wang, Juan; Wang, Jiong; Qian, Suxiang; Li, Yancheng

    2009-07-01

    Magnetorheological (MR) fluid as a new smart material has done well in the vibration and impact control engineering fields because of its good electromechanical coupling characteristics, preferable dynamic performance and higher sensitivity. And success of MRF has been apparent in many engineering applied fields, such as semi-active suspension, civil engineering, etc. So far, little research has been done about MR damper applied into the weapon system. Its primary purpose of this study is to identify its dynamic performance and controability of the artillery recoil mechanism equipped with MR damper. Firstly, based on the traditional artillery recoil mechanism, a recoil dynamic model is developed in order to obtain an ideal rule between recoil force and its stroke. Then, its effects of recoil resistance on the stability and firing accuracy of artillery are explored. Because MR gun recoil damper under high impact load shows a typical nonlinear character and there exists a shear-thinning phenomenon, to establish an accurate dynamic model has been a seeking aim of its design and application for MR damper under high impact load. Secondly, in this paper, considering its actual bearing load, an inertia factor was introduced to Herschel-Bulkley model, and some factor's effect on damping force are simulated and analyzed by using numerical simulation, including its dynamic performance under different flow coefficients and input currents. Finally, both of tests with the fixed current and different On-Off control algorithms have been done to confirm its controability of MR gun recoil damper under high impact load. Experimental results show its dynamic performances of the large-scale single-ended MR gun recoil damper can be changed by altering the applied currents and it has a good controllability.

  1. A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry.

    PubMed

    Bragg, William; Shamsi, Shahab A

    2012-12-01

    The work presented here demonstrates the incorporation of vinylbenzyl trimethylammonium (VBTA) as a novel positively charged achiral co-monomer to a glycidyl methacrylate-beta cyclodextrin (GMA/β-CD) based monolith, providing anion exchange sites with reversed electroosmotic flow (EOF) for capillary electrochromatography (CEC). The monolithic phases, GMA/β-CD-VBTA and GMA/β-CD (without co-monomer) were characterized by scanning electron microscopy, optical microscopy, pressure drop/flow-rate curves and nitrogen adsorption analysis. After optimizing the stationary phase and mobile phase parameters, chiral separations of 41 pairs of structurally diverse anionic chiral analytes were compared individually using the GMA/β-CD-VBTA and GMA/β-CD monolithic columns. The GMA/β-CD-VBTA monolith chiral stationary phase separated significantly more acidic compounds compared to the GMA/β-CD column. To-date there has been limited work in the development of chiral monolithic column for CEC-mass spectrometry (MS). Because of good electrodriven flow characteristics, which allow the column to maintain a stable current in the absence of outlet vial, GMA/β-CD-VBTA column was successfully coupled to single quadrupole mass spectrometer for CEC-MS of several chiral test compounds. In addition, the same monolithic CEC column when coupled to a triple quadrupole MS instrument, two orders of magnitude higher sensitivity was observed compared to a single quadrupole MS instrument.

  2. Heat-transfer and pressure distributions for laminar separated flows downstream of rearward-facing steps with and without mass suction

    NASA Technical Reports Server (NTRS)

    Brown, R. D.; Jakubowski, A. K.

    1974-01-01

    Heat-transfer and pressure distributions were measured for laminar separated flows downstream of rearward-facing steps with and without mass suction. The flow conditions were such that the boundary-layer thickness was comparable to or larger than the step height. For both suction and no-suction cases, an increase in the step height resulted in a sharp decrease in the initial heat-transfer rates behind the step. Downstream, however, the heat transfer gradually recovered back to less than or near attached-flow values. Mass suction from the step base area increased the local heat-transfer rates; however, this effect was relatively weak for the laminar flows considered. Even removal of the entire approaching boundary layer raised the post-step heat-transfer rates only about 10 percent above the flatplate values. Post-step pressure distributions were found to depend on the entrainment conditions at separation. In the case of the solid-faced step, a sharp pressure drop behind the step was followed by a very short plateau and relatively fast recompression. For the slotted-step connected to a large plenum but without suction, the pressure drop at the base was much smaller and the downstream recompression more gradual than that for solid-faced step.

  3. Rapid chiral separation of atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid using supercritical fluid chromatography-tandem mass spectrometry - Application to wetland microcosms.

    PubMed

    Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Jasper, Justin T; Sedlak, David L; Pettersson, Curt E

    2015-08-28

    A method for enantiomeric separation of the three β-blocking agents atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid, a major metabolite of both metoprolol and in environmental matrices also atenolol, has been developed. By use of supercritical fluid chromatography and the polysaccharide-based Chiralpak(®) IB-3, all four compounds were simultaneously enantiomerically separated (Rs>1.5) within 8min. Detection was performed using tandem mass spectrometry, and to avoid isobaric interference between the co-eluting metoprolol and metoprolol acid, the achiral column Acquity(®) UPC(2) BEH 2-EP was attached ahead of to the chiral column. Carbon dioxide with 18% methanol containing 0.5% (v/v) of the additives trifluoroacetic acid and ammonia in a 2:1 molar ratio were used as mobile phase. A post column make-up flow (0.3mL/min) of methanol containing 0.1% (v/v) formic acid was used to enhance the positive electrospray ionization. Detection was carried out using a triple quadrupole mass spectrometer operating in the selected reaction monitoring mode, using one transition per analyte and internal standard. The method was successfully applied for monitoring the enantiomeric fraction change over time in a laboratory scale wetland degradation study. It showed good precision, recovery, sensitivity and low effect of the sample matrix. PMID:26228849

  4. The Yale Gas-Filled Split Pole Magnetic Separator

    NASA Astrophysics Data System (ADS)

    Cata-Danil, G.; Beausang, C. W.; Casten, R. F.; Chen, A.; Chubrich, N.; Cooper, J. R.; Krücken, R.; Liu, B.; Novak, J. R.; Visser, D.; Zamfir, N. V.

    1998-10-01

    Design and construction of a gas-filled recoil separator is underway at the Wright Nuclear Structure Laboratory at Yale University. By filling the magnetic field region of the existing Enge Split-Pole magnet with N2 or He2 gases in the 1 to 15 mbar pressure range a gradual focussing of discrete charge states has been measured. The incident ions were ^16O and ^35,37Cl with 49 MeV and 95 MeV energies, respectively. The process is understood as a result of coalescing of trajectories of different charge states around a trajectory defined by the mean charge state (q¯) of the ion in gas. Because q¯ depends on the atomic number Z and is roughly proportional with the ion velocity, the average magnetic rigidity (B¯ρ=Av/q¯) is almost independent of the velocity distribution of the incident ions. The ion trajectories will be therefore be mainly determined by the mass number A and the atomic number Z of the ion. Monte Carlo simulations with the code RAYTRACE closely reproduce the experimental behavior. We plan to use the Yale Mass Separator (YaMS) for nuclear structure studies in conjunction with high efficency gamma detectors (clover detectors) for enhancing weak reaction channels and fission background reduction. Work supported by the US-DOE under contract numbers DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  5. Characterization of diesel fuel by chemical separation combined with capillary gas chromatography (GC) isotope ratio mass spectrometry (IRMS).

    PubMed

    Harvey, Scott D; Jarman, Kristin H; Moran, James J; Sorensen, Christina M; Wright, Bob W

    2012-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for discovering fuel tax evasion schemes or for environmental forensic studies. Two urea adduction-based techniques were used to isolate the n-alkanes from the fuel. Both carbon isotope ratio (δ(13)C) and hydrogen isotope ratio (δD) values for the n-alkanes were then determined by CSIA in each sample. The samples investigated had δ(13)C values that ranged from -30.1‰ to -26.8‰, whereas δD values ranged from -83‰ to -156‰. Plots of δD versus δ(13)C with sample n-alkane points connected in order of increasing carbon number gave well-separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ(13)C, δD, or combined δ(13)C and δD data was applied to extract the maximum information content. PCA scores plots could clearly differentiate the samples, thereby demonstrating the potential of this approach for distinguishing (e.g., fingerprinting) fuel samples using δ(13)C and δD values.

  6. Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)

    SciTech Connect

    Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

    2011-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both δ13C and δD values for the n-alkanes were then determined by CSIA in each sample. Plots of δD versus δ13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ13C, δD, or combined δ13C and δD data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the δ13C and δD values.

  7. Characterization of diesel fuel by chemical separation combined with capillary gas chromatography (GC) isotope ratio mass spectrometry (IRMS).

    PubMed

    Harvey, Scott D; Jarman, Kristin H; Moran, James J; Sorensen, Christina M; Wright, Bob W

    2012-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for discovering fuel tax evasion schemes or for environmental forensic studies. Two urea adduction-based techniques were used to isolate the n-alkanes from the fuel. Both carbon isotope ratio (δ(13)C) and hydrogen isotope ratio (δD) values for the n-alkanes were then determined by CSIA in each sample. The samples investigated had δ(13)C values that ranged from -30.1‰ to -26.8‰, whereas δD values ranged from -83‰ to -156‰. Plots of δD versus δ(13)C with sample n-alkane points connected in order of increasing carbon number gave well-separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ(13)C, δD, or combined δ(13)C and δD data was applied to extract the maximum information content. PCA scores plots could clearly differentiate the samples, thereby demonstrating the potential of this approach for distinguishing (e.g., fingerprinting) fuel samples using δ(13)C and δD values. PMID:22967550

  8. Influence of elastic recoil on restenosis after successful coronary angioplasty in unstable angina pectoris.

    PubMed

    Ardissino, D; Di Somma, S; Kubica, J; Barberis, P; Merlini, P A; Eleuteri, E; De Servi, S; Bramucci, E; Specchia, G; Montemartini, C

    1993-03-15

    The elastic behavior of the dilated coronary vessel has been reported to affect the immediate results of coronary angioplasty. To determine whether elastic recoil may also influence the long-term restenosis process, 98 consecutive patients with unstable angina and 1-vessel disease were studied. An automated coronary quantitative program was used for the assessment of balloon and coronary luminal diameters. Elastic recoil was defined as the percent reduction between minimal balloon diameter at the highest inflation pressure and minimal lesion diameter immediately after coronary angioplasty. Follow-up coronary arteriography was performed 8 to 12 months after the procedure in all patients. The mean elastic recoil averaged 17.7 +/- 16% and was correlated to the degree of residual stenosis immediately after coronary angioplasty (r = 0.64; p < 0.001). Restenosis, defined as > 50% diameter stenosis at follow-up, developed in 53 patients (54%). There was no correlation between the degree of elastic recoil and the changes in minimal lesion diameter observed during follow-up, whereas a positive correlation between the amount of elastic recoil and the incidence of restenosis was documented (r = 0.84; p < 0.05). Thus, the elastic properties of the dilated vessel do not influence the active process of restenosis. However, because elastic recoil negatively influences the initial results of angioplasty, it is more likely that further reductions in lumen diameter during follow-up can reach a threshold of obstruction considered critical for a binary definition of restenosis. PMID:8447261

  9. Indirect chiral separation of new recreational drugs by gas chromatography-mass spectrometry using trifluoroacetyl-L-prolyl chloride as chiral derivatization reagent.

    PubMed

    Weiß, Jennifer A; Mohr, Stefan; Schmid, Martin G

    2015-03-01

    New recreational drugs such as amphetamine-, cathinone, and benzofury derivatives gained high popularity on the drug market in recent years. They can be purchased via the Internet from different providers and online portals. Most of these compounds are chiral, which makes the development of chiral separation methods necessary. Besides this, it is useful to find out if the compounds were sold as racemic mixtures. Also, it is important to check whether the new psychoactive compounds contain further ingredients or impurities. The aim of this research was the continuation of the application of a method for indirect chiral separation of 24 new psychoactive compounds recently purchased via the Internet. After derivatization with the chiral derivatization reagent trifluoroacetyl-L-prolyl chloride, chromatographic separation of diastereomers was achieved using a 30 m HP5-MS capillary column. As carrier gas, helium was used with a constant flow of 1.0 ml/min. Three different column temperature programs were tested. Under optimum conditions 13 out of 24 compounds were successfully resolved into their enantiomers obtaining Rs values up to 7.0. The use of a single quadrupole mass spectrometer as the detector allowed the identification of the compounds in multicomponent samples.

  10. Gadolinium speciation with Tetradentate, N-donor extractants for minor actinide/lanthanide separation: an XRD, mass spectrometry and EPR study

    SciTech Connect

    Whittaker, D.M.; Sharrad, C.A.; Sproules, S.

    2013-07-01

    The hydrophobic organic molecules CyMe{sub 4}-BTPhen (1) and CyMe{sub 4}-BTBP (2) have been developed and tuned over many years to be able to separate the trivalent actinides from the trivalent lanthanides (Ln) selectively in bi-phasic solvent extraction processes for the separation of the long-lived radio-toxic minor actinides from spent nuclear fuel. The ability of these N-donor ligands to perform this separation is poorly understood, as is their speciation with the metal ions when extracted into the organic phase. Our previous work has shown Ln{sup 3+} speciation to be largely 1:2 Ln:L in nature with another small molecule, either water or nitrate, occupying a cavity between the tetradentate bound N-donor ligands. The identity of the small molecule changes across the lanthanide series, and here we continue investigations into this speciation. Complexes of these N-donor ligands with Gd{sup 3+} have been synthesised and characterised by X-ray crystallography, mass spectrometry and EPR spectroscopy. We show that the N-donor ligands have no effect on the electronic configuration of Gd{sup 3+} and that the lanthanide contraction with the steric rigidity of the N-donor ligand appears to determine the size of the cavity between the coordinated ligands. This in turn appears to control the identity of the small molecule on the ninth site in the 1:2 Gd:L species. (authors)

  11. When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry.

    PubMed

    Kujawinski, Dorothea M; Zhang, Lijun; Schmidt, Torsten C; Jochmann, Maik A

    2012-09-18

    Compound-specific isotope analysis (CISA) of nonvolatile analytes has been enabled by the introduction of the first commercial interface to hyphenate liquid chromatography with an isotope ratio mass spectrometer (LC-IRMS) in 2004, yet carbon isotope analysis of unpolar and moderately polar compounds is still a challenging task since only water as the eluent and no organic modifiers can be used to drive the separation in LC. The only way to increase the elution strength of aqueous eluents in reversed phase LC is the application of high temperatures to the mobile and stationary phases (HT-LC-IRMS). In this context we present the first method to determine carbon isotope ratios of pharmaceuticals that cannot be separated by already existing separation techniques for LC-IRMS, such as reversed phase chromatography at normal temperatures, ion-chromatography, and mixed mode chomatography. The pharmaceutical group of sulfonamides, which is generally mixed with trimethoprim in pharmaceutical products, has been chosen as probe compounds. Substance amounts as low as 0.3 μg are sufficient to perform a precise analysis. The successful applicability and reproducibility of this method is shown by the analysis of real pharmaceutical samples. The method provides the first tool to study the pharmaceutical authenticity as well as degradation and mobility of such substances in the environment by using the stable isotopic signature of these compounds.

  12. Target-guided separation of Bougainvillea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry.

    PubMed

    Jerz, Gerold; Wybraniec, Sławomir; Gebers, Nadine; Winterhalter, Peter

    2010-07-01

    In this study, preparative ion-pair high-speed countercurrent chromatography was directly coupled to an electrospray ionization mass-spectrometry device (IP-HSCCC/ESI-MS-MS) for target-guided fractionation of high molecular weight acyl-oligosaccharide linked betacyanins from purple bracts of Bougainvillea glabra (Nyctaginaceae). The direct identification of six principal acyl-oligosaccharide linked betacyanins in the mass range between m/z 859 and m/z 1359 was achieved by positive ESI-MS ionization and gave access to the genuine pigment profile already during the proceeding of the preparative separation. Inclusively, all MS/MS-fragmentation data were provided during the chromatographic run for a complete analysis of substitution pattern. On-line purity evaluation of the recovered fractions is of high value in target-guided screening procedures and for immediate decisions about suitable fractions used for further structural analysis. The applied preparative hyphenation was shown to be a versatile screening method for on-line monitoring of countercurrent chromatographic separations of polar crude pigment extracts and also traced some minor concentrated compounds. For the separation of 760mg crude pigment extract the biphasic solvent system tert.-butylmethylether/n-butanol/acetonitrile/water 2:2:1:5 (v/v/v/v) was used with addition of ion-pair forming reagent trifluoroacetic acid. The preparative HSCCC-eluate had to be modified by post-column addition of a make-up solvent stream containing formic acid to reduce ion-suppression caused by trifluoroacetic acid and later significantly maximized response of ESI-MS/MS detection of target substances. A variable low-pressure split-unit guided a micro-eluate to the ESI-MS-interface for sensitive and direct on-line detection, and the major volume of the effluent stream was directed to the fraction collector for preparative sample recovery. The applied make-up solvent mixture significantly improved smoothness of the continuously

  13. Identification of gel-separated proteins by liquid chromatography-electrospray tandem mass spectrometry: comparison of methods and their limitations.

    PubMed

    Haynes, P A; Fripp, N; Aebersold, R

    1998-05-01

    We have compared several different experimental systems currently in use in our laboratory for protein identification by high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The efficiency of peptide recovery from trypsin-digested gel bands or electroblotted membrane slices was examined using 35S-labeled yeast proteins, and was found to be in excess of 80%. A dilution series of two standard proteins, bovine serum albumin (BSA) and carbonic anhydrase (CA), was analyzed by HPLC-ESI-MS/MS to determine what amount of protein could be loaded onto a gel and successfully identified, a measure we refer to as the practical detection limit. We were able to identify both standards at the 500 ng level in samples prepared from gel slices, using either a regular spray or a flow-split microspray HPLC-MS interface system. In samples prepared from membrane pieces, carbonic anhydrase was also identified at the 500 ng level, while bovine serum albumin could only be identified in samples of more than 1000 ng. In general, protein identification was slightly better in samples prepared from gels rather than membranes. A dilution series of lesser amounts of the same standard proteins was also analyzed using a gradient capillary LC system and we were able to successfully identify 50 ng of carbonic anhydrase and 100 ng of BSA.

  14. Analysis of automatically generated peptide mass fingerprints of cellular proteins and antigens from Helicobacter pylori 26695 separated by two-dimensional electrophoresis.

    PubMed

    Krah, Alexander; Schmidt, Frank; Becher, Dörte; Schmid, Monika; Albrecht, Dirk; Rack, Axel; Büttner, Knut; Jungblut, Peter R

    2003-12-01

    Helicobacter pylori is a causative agent of severe diseases of the gastric tract ranging from chronic gastritis to gastric cancer. Cellular proteins of H. pylori were separated by high resolution two-dimensional gel electrophoresis. A dataset of 384 spots was automatically picked, digested, spotted, and analyzed by matrix-assisted laser desorption ionization mass spectrometry peptide mass fingerprint in triple replicates. This procedure resulted in 960 evaluable mass spectra. Using a new version of our data analysis software MS-Screener we improved identification and tested reliability of automatically generated data by comparing with manually produced data. Antigenic proteins from H. pylori are candidates for vaccines and diagnostic tests. Previous immunoproteomics studies of our group revealed antigen candidates, and 24 of them were now closely analyzed using the MS-Screener software. Only in three spots minor components were found that may have influenced their antigenicities. These findings affirm the value of immunoproteomics as a hypothesis-free approach. Additionally, the protein species distribution of the known antigen GroEL was investigated, dimers of the protein alkyl hydroperoxide reductase were found, and the fragmentation of gamma-glutamyltranspeptidase was demonstrated.

  15. Separation and fragmentation study of isocoproporphyrin derivatives by UHPLC-ESI-exact mass MS/MS and identification of a new isocoproporphyrin sulfonic acid metabolite.

    PubMed

    Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Baxter, Sinéad L; Jones, Donald J L

    2014-01-01

    Isocoproporphyrin and its derivatives are commonly used as biomarkers of porphyria cutanea tarda, heavy metal toxicity and hexachlorobenzene (HCB) intoxication in humans and animals. However, most are isobaric with other porphyrins and reference materials are unavailable commercially. The structural characterisation of these porphyrins is important but very little data is available. We report here the separation and characterisation of isocoproporphyrin, deethylisocoproporphyrin, hydroxyisocoproporphyrin and ketoisocoproporphyrin, isolated in the faeces of rats fed with a diet containing HCB, by ultra high performance liquid chromatography-exact mass tandem mass spectrometry (UHPLC-MS/MS). Furthermore, we report the identification and characterisation of a previously unreported porphyrin metabolite, isocoproporphyrin sulfonic acid isolated in the rat faeces. The measured mass-to-charge ratio (m/z) of the precursor ion was m/z 735.2338, corresponding to a molecular formula of C36H39N4O11S with an error of 0.3 ppm from the calculated m/z 735.2336. The MS/MS data was consistent with an isocoproporphyrin sulfonic acid structure, derived from dehydroisocoproporphyrinogen by sulfonation of the vinyl group. The metabolite was present in a greater abundance than other isocoproporphyrin derivatives and may be a more useful biomarker for HCB intoxication.

  16. Advancement in stationary phase for peptide separation helps in protein identification: application to atheroma plaque proteomics using nano-chip liquid chromatography and mass spectrometry.

    PubMed

    Delporte, Cédric; Noyon, Caroline; Raynal, Pierre; Dufour, Damien; Nève, Jean; Abts, Frederic; Haex, Martin; Zouaoui Boudjeltia, Karim; Van Antwerpen, Pierre

    2015-03-13

    In the last decades, proteomics has largely progressed. Mass spectrometry and liquid chromatography (LC) are generally used in proteomics. These techniques enable proper separation of peptides and good identification and/or quantification of them. Later, nano-scaled liquid chromatography, improvements of mass spectrometry resolution and sensitivity brought huge advancements. Enhancements in chemistry of chromatographic columns also brought interesting results. In the present work, the potency of identification of proteins by different nano-chip columns was studied and compared with classical LC column. The present study was applied to cardiovascular field where proteomics has shown to be highly helpful in research of new biomarkers. Protein extracts from atheroma plaques were used and proteomics data were compared. Results show that fewer spectra were acquired by the mass spectrometer when nano-chip columns were used instead of the classical ones. However, approximately 40% more unique peptides were identified by the recently optimized chip named Polaris-HR-chip-3C18 column, and 20% more proteins were identified. This fact leads to the identification of more low-abundance proteins. Many of them are involved in atheroma plaque development such as apolipoproteins, ceruloplasmin, etc. In conclusion, present data shows that recent developments of nanoLC column chemistry and dimensions enabled the improved detection and identification of low-abundance proteins in atheroma plaques. Several of them are of major interest in the field of cardiovascular disease. PMID:25680550

  17. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  18. Fast separation and quantification method for nitroguanidine and 2,4-dinitroanisole by ultrafast liquid chromatography-tandem mass spectrometry.

    PubMed

    Mu, Ruipu; Shi, Honglan; Yuan, Yuan; Karnjanapiboonwong, Adcharee; Burken, Joel G; Ma, Yinfa

    2012-04-01

    Explosives are now persistent environmental pollutants that are targets of remediation and monitoring in a wide array of environmental media. Nitroguanidine (NG) and 2,4-dinitroanisole (DNAN) are two insensitive energetic compounds recently used as munitions explosives. To protect our environment and human health, the levels of these compounds in soils and waters need to be monitored. However, no sensitive analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), have been developed for detecting these new compounds at trace levels and to be concurrently applied to monitor the common explosives. In general, the concentrations of explosives in either soil or water samples are very low and widely distributed. Therefore, a fast and sensitive method is required to monitor those compounds and increase our ability to find and address the threats they pose to human health and ecological receptors. In this study, a fast and sensitive analytical method has been developed to quantitatively determine NG and DNAN in soil, tap water, and river water by using ultrafast LC-MS/MS. To make this method a comprehensive analytical technique for other explosives as well, it has included other commonly used explosives in the method development, such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 1,3,5-trinitroper-hydro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (ADNT), and pentaerythritol tetranitrate (PETN). The method detection limits (MDLs) of these compounds in soil ranged from 0.2 to 5 ppb, and a good linearity was obtained over a concentration range of 0.5-200 ppb. The recoveries of some compounds are equal to or better than the current EPA methods but with much higher sensitivities.

  19. A THERMAL INFRARED IMAGING STUDY OF VERY LOW MASS, WIDE-SEPARATION BROWN DWARF COMPANIONS TO UPPER SCORPIUS STARS: CONSTRAINING CIRCUMSTELLAR ENVIRONMENTS

    SciTech Connect

    Bailey, Vanessa; Hinz, Philip M.; Su, Kate Y. L.; Hoffmann, William F.; Rieke, George; Rodigas, Timothy; Skemer, Andrew; Vaitheeswaran, Vidhya; Currie, Thayne; Esposito, Simone; Pinna, Enrico; Puglisi, Alfio; Hill, John M.; Jones, Terry; Kim, Jihun; Leisenring, Jarron; Meyer, Michael; Murray-Clay, Ruth; Skrutskie, Michael F.; Nelson, Matthew J.; and others

    2013-04-10

    We present a 3-5 {mu}m LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low masses/mass ratios (M{sub BD} <25 M{sub Jup}; M{sub BD}/M{sub *} Almost-Equal-To 1%-2%) and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4 {mu}m and 24 {mu}m photometry to constrain the properties of the BDs and identify evidence for circumprimary/circumsecondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing that this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24 {mu}m excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4 {mu}m excess, nor does its primary; however, the system as a whole has a modest 24 {mu}m excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4 {mu}m colors of HIP 78530B match a spectral type of M3 {+-} 2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating that it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5 M{sub Jup} beyond 175 AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering.

  20. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  1. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  2. A curved detection-slit to improve ERD (Elastic Recoil Detection) energy/depth resolution

    SciTech Connect

    Brice, D.K.; Doyle, B.L.

    1989-01-01

    Recoil atoms detected in Elastic Recoil Detection (ERD) experiments emerge from an initial collision area along cones of constant energy due to the cylindrical symmetry of the elastic scattering cross section. The constant energy cones therefore intercept planar slit plates placed before the detectors in conic sections. For ease of fabrication slits are typically configured as long narrow rectangles, and as a result energy resolution is adversely affected. It has been shown that the kinematic broadening caused by using rectangular slits is minimized when L = 2 (W z tan/Theta//sub recoil/)/sup 1/2/ where W is the slit width, L is the slit length, z is the slit-target distance and /Theta//sub recoil/ is the lab-frame recoil angle. The improved energy resolution which results when rectangular slits are replaced by appropriate curved slits is examined here. Formulas are given for the conic sections associated with the curved slits as a function of experimental geometry. When slit dimensions are small compared with the full extent of the conic section slit geometry can be accurately approximated as the arc of a circle with radius R/sub c/ = z tan/Theta//sub recoil/. Energy loss effects on the resolution are also accounted for in our treatment. The use of curved slits with L = 4 (W z tan/Theta//sub recoil/)/sup 1/2/ is shown to improve kinematic broadening by /approximately/50% as compared to optimized rectangular slits of the same area. 2 refs., 5 figs.

  3. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  4. Detection and quantification of some plant growth regulators in a seaweed-based foliar spray employing a mass spectrometric technique sans chromatographic separation.

    PubMed

    Prasad, Kamalesh; Das, Arun Kumar; Oza, Mihir Deepak; Brahmbhatt, Harshad; Siddhanta, Arup Kumar; Meena, Ramavatar; Eswaran, Karuppanan; Rajyaguru, Mahesh Rameshchandra; Ghosh, Pushpito Kumar

    2010-04-28

    The sap expelled from the fresh harvest of Kappaphycus alvarezii , a red seaweed growing in tropical waters, has been reported to be a potent foliar spray. Tandem mass spectrometry of various organic extracts of the sap confirmed the presence of the plant growth regulators (PGRs) indole 3-acetic acid, gibberellin GA(3), kinetin, and zeatin. These PGRs were quantified in fresh state and after 1 year of storage by ESI-MS without recourse to chromatographic separation. Quantification was validated against HPLC data. The results may be useful in correlating with the efficacy of the sap. The methodology was extended to two other seaweeds. The method developed is convenient and precise and may find application in other agricultural formulations containing these growth hormones.

  5. Rapid separation and characterization of active flavonolignans of Silybum marianum by ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Wang, Kuiwu; Zhang, Hong; Shen, Lianqing; Du, Qizhen; Li, Jianrong

    2010-12-01

    Ultra-performance liquid chromatography (UPLC) interfaced with the electrospray ionization (ESI) tandem mass spectrometer (MS(n)) was developed for the simultaneous determination of silychristins A (1) and B (2), silydianin (3), silybins A (4) and B (5), and isosilybins A (6) and B (7), major bioactive flavonolignans in silymarin, a herbal remedy derived from the milk thistle Silybum marianum. In this study, the seven major active flavonolignans including the diastereomers 1/2, 4/5, and 6/7 were completely separated using UPLC with an ACQUITY UPLC C(18) column and a MeOH/water/formic acid mobile phase system. The collision-induced dissociation (CID) MS(n) spectra of these flavonolignans were studied systematically using ESI-MS. The results with the present methodology show that UPLC-MS(n) can be useful for general screening of active natural products from plant extracts and for the specific quality control of silymarin.

  6. Elucidation of complex decay schemes using on-line mass separated sources and a large array of Compton-suppressed germanium detectors

    NASA Astrophysics Data System (ADS)

    Brown, N.; Wood, J. L.; Kulp, W. D.; Furse, D.; Demand, G. A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Ball, G. C.; Bandyopadhyay, D. S.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Austin, R. A. E.; Colosimo, S.; Yates, S. W.; Cross, D.

    2008-10-01

    Complex decay scheme construction using beta decay of isotopes produced by spallation and mass separation on-line at TRIUMF-ISAC and studied with the 8π array of 20 Compton-suppressed germanium detectors is described. Results from the analysis of the ^160Yb -> ^160Tm decay will be presented. Emphasis will be placed on the sensitivity to weak decay branches, assignment of γ-ray lines to isobars, and the use of conversion electron coincidences to observe low-energy transitions. The goal of this work is to achieve detailed decay scheme spectroscopy far from stability with the same level of detail as obtained with the 8π array near stabilty in earlier N=90 studies [1] [2]. [1] W.D. Kulp et al., Phys. Rev. C 69, 064309 (2004). [2] W.D. Kulp et al., Phys. Rev. C 76, 034319 (2007).

  7. Two-dimensional separation of the membrane protein sarcoplasmic reticulum Ca-ATPase for high-performance liquid chromatography-tandem mass spectrometry analysis of posttranslational protein modifications.

    PubMed

    Sharov, Victor S; Galeva, Nadezhda A; Knyushko, Tatyana V; Bigelow, Diana J; Williams, Todd D; Schöneich, Christian

    2002-09-15

    For the characterization of posttranslational modifications of the sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA), we developed a two-dimensional separation protocol based on reversed-phase HPLC followed by SDS-PAGE and LC-MS/MS analysis of in-gel tryptic digests. Representative experiments are shown for the rabbit fast-twitch skeletal muscle isoform SERCA1. Matrix-assisted laser desorption-ionization and electrospray ionization-mass spectrometry analyses of SERCA1 tryptic digests revealed ca. 66% coverage of the protein sequence. This approach was used for the detection and quantitation of nitrotyrosine formation after exposure of SERCA1 to peroxynitrite in vitro. At molar ratios of nitrotyrosine to protein of 0.23 we confirmed by LC-MS/MS the nitration of predominantly Tyr(122) in the SERCA1 sequence. PMID:12419347

  8. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation.

    PubMed

    Škrášková, Karolina; Claude, Emmanuelle; Jones, Emrys A; Towers, Mark; Ellis, Shane R; Heeren, Ron M A

    2016-07-15

    The increased interest in lipidomics calls for improved yet simplified methods of lipid analysis. Over the past two decades, mass spectrometry imaging (MSI) has been established as a powerful technique for the analysis of molecular distribution of a variety of compounds across tissue surfaces. Matrix-assisted laser desorption/ionization (MALDI) MSI is widely used to study the spatial distribution of common lipids. However, a thorough sample preparation and necessity of vacuum for efficient ionization might hamper its use for high-throughput lipid analysis. Desorption electrospray ionization (DESI) is a relatively young MS technique. In DESI, ionization of molecules occurs under ambient conditions, which alleviates sample preparation. Moreover, DESI does not require the application of an external matrix, making the detection of low mass species more feasible due to the lack of chemical matrix background. However, irrespective of the ionization method, the final information obtained during an MSI experiment is very complex and its analysis becomes challenging. It was shown that coupling MSI to ion mobility separation (IMS) simplifies imaging data interpretation. Here we employed DESI and MALDI MSI for a lipidomic analysis of the murine brain using the same IMS-enabled instrument. We report for the first time on the DESI IMS-MSI of multiply sialylated ganglioside species, as well as their acetylated versions, which we detected directly from the murine brain tissue. We show that poly-sialylated gangliosides can be imaged as multiply charged ions using DESI, while they are clearly separated from the rest of the lipid classes based on their charge state using ion mobility. This represents a major improvement in MSI of intact fragile lipid species. We additionally show that complementary lipid information is reached under particular conditions when DESI is compared to MALDI MSI.

  9. A novel phosphoprotein analysis scheme for assessing changes in premalignant and malignant breast cell lines using 2D liquid separations, protein microarrays and tandem mass spectrometry

    PubMed Central

    Patwa, Tasneem H.; Wang, Yanfei; Miller, Fred R.; Goodison, Steve; Pennathur, Subramaniam; Barder, Timothy J.; Lubman, David M.

    2008-01-01

    An analysis of phosphorylation changes that occur during cancer progression would provide insights into the molecular pathways responsible for a malignant phenotype. In this study we employed a novel coupling of 2D-liquid separations and protein microarray technology to reveal changes in phosphoprotein status between premalignant (AT1) and malignant (CA1a) cell lines derived from the human MCF10A breast cell lines. Intact proteins were first separated according to their isoelectric point and hydrophobicities, then arrayed on SuperAmine glass slides. Phosphoproteins were detected using the universal, inorganic phospho-sensor dye, ProQ Diamond. Using this dye, out of 140 spots that were positive for phosphorylation, a total of 85 differentially expressed spots were detected over a pH range of 7.2 to 4.0. Proteins were identified and their peptides sequenced by mass spectrometry. The strategy enabled the identification of 75 differentially expressed phosphoproteins, from which 51 phosphorylation sites in 27 unique proteins were confirmed. Interestingly, the majority of differentially expressed phosphorylated proteins observed were nuclear proteins. Three regulators of apoptosis, Bad, Bax and Acinus, were also differentially phosphorylated in the two cell lines. Further development of this strategy will facilitate an understanding of the mechanisms involved in malignancy progression and other disease-related phenotypes. PMID:19194518

  10. Determination of ultralow level 129I/127I in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection.

    PubMed

    Hou, Xiaolin; Zhou, Weijian; Chen, Ning; Zhang, Luyuan; Liu, Qi; Luo, Maoyi; Fan, Yukun; Liang, Wangguo; Fu, Yunchong

    2010-09-15

    Separation of carrier free iodine from low iodine level samples and accurate measurement of ultralow level (129)I in micrograms of iodine target are essential but a bottleneck in geological dating of terrestrial system and tracer research using naturally produced (129)I. In this work, we present a carrier free method using coprecipitation of AgI with AgCl for preparing micrograms of iodine target, associated with combustion using a tube furnace for separating iodine from solid samples and anion exchange chromatography for preconcentrating iodine from a large volume of water. An accelerator mass spectrometry was used to measure ultralow level (129)I in micrograms of iodine target. The recovery of iodine in the entire separation procedure is higher than 80% and 65% for solid and water samples, respectively. One microgram iodine in the target (AgI-AgCl) can produce a stable (127)I signal for AMS measurement of (129)I/(127)I, and a detection limit of this method for (129)I is calculated to be 10(5) atoms. This will allow us to accurately determine (129)I in prenuclear geological samples of low iodine concentration with (129)I/(127)I of 10(-12), such as loess, soil, coral, rock, sediment, and groundwater. Some samples with low iodine content have been successfully analyzed, and the lowest value of the (129)I/(127)I ratio of 2 × 10(-11) was observed in 23.5 and 63.5 m loess samples collected in the Loess Plateau, China. The developed method sheds light on a wide application in earth science. PMID:20735008

  11. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  12. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    USGS Publications Warehouse

    Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J.

    2001-01-01

    A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H2O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood. Copyright ?? 2001 John Wiley & Sons, Ltd.

  13. Measurement of nuclear recoil quenching factors in CaWO 4

    NASA Astrophysics Data System (ADS)

    Jagemann, Th.; Feilitzsch, F. v.; Hagn, H.; Jochum, J.; Potzel, W.; Rau, W.; Stark, M.; Westphal, W.

    2006-11-01

    The CRESST experiment, aiming at the direct detection of WIMPs via nuclear recoils, is currently using scintillating CaWO4 crystals. The WIMP-nucleus cross section for elastic scattering as well as the scintillation efficiency differ considerably for recoils from Ca, W and O in these crystals. Therefore a discriminating detector calibration is essential in order to improve WIMP parameter claims. At the tandem accelerator of the Maier-Leibnitz-Laboratory (MLL) in Garching, Germany, a neutron scattering facility is operated for the determination of the individual quenching factors (QF) in the bulk of a CaWO4 crystal to better understand the detector response to neutron background and a possible WIMP signal. First measurements at room temperature reveal QF(O) = 7.8 ± 0.3% (recoil energy 1.0-2.2 MeV), QF(Ca) = 6.3 ± 1.6% (recoil energy 0.4-1 MeV), QF(W) < 3.0% (2σ, recoil energy 0.1 MeV).

  14. Azimuthal asymmetry of recoil electrons in neutrino-electron elastic scattering as signature of neutrino nature

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-05-01

    In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, {V}+{A} weak interactions in addition to the standard vector-axial ({V}-{A}) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings.

  15. Separation of one-pot procedure released O-glycans as 1-phenyl-3-methyl-5-pyrazolone derivatives by hydrophilic interaction and reversed-phase liquid chromatography followed by identification using electrospray mass spectrometry and tandem mass spectrometry.

    PubMed

    Wang, Chengjian; Yuan, Jiangbei; Wang, Zhongfu; Huang, Linjuan

    2013-01-25

    Qualitative and quantitative analysis of naturally-occurring complex glycans is essential for glycomics, which focuses on the studies of structure-function correlations of saccharides. We previously reported a one-pot procedure for the non-reductive release from glycoproteins and in situ labeling with 1-phenyl-3-methyl-5-pyrazolone (PMP) of O-glycans (C. Wang et al., Proteomics 11 (2011) 4229). Here we describe an HPLC-based O-glycan analytical strategy that combines a range of techniques including the one-pot procedure, independent separation by hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC) and identification by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). The complex mixtures of both neutral and sialylated O-glycans as bis-PMP derivatives released from glycoproteins using the one-pot procedure could be well separated by HILIC based on their size or by RP-HPLC depending on the type of linkage and their resulting three-dimensional (3D) structure, and their structure could be characterized by the ESI-MS and MS/MS analysis of the eluted glycan fractions. The validity of the current strategy was confirmed by the analysis of O-glycans released by the one-pot procedure from some standard glycoproteins, including porcine stomach mucin (PSM), bovine submaxillary mucin (BSM) and bovine fetuin. The applicability of the current method to complex biological samples was also demonstrated by the analysis of mucin-type glycans from fetal bovine serum (FBS) and frog egg-jelly coat (FEC). This strategy, a powerful analytical tool that features the combination of different techniques, is useful for the qualitative and quantitative O-glycan analysis of more complex biological samples and has a potential for constructing an O-glycan analysis and structure database.

  16. Dynamical simulations of radiation damage induced by 10 keV energetic recoils in UO 2

    NASA Astrophysics Data System (ADS)

    Tian, X. F.; Gao, T.; Long, Chongsheng; Li, JiuKai; Jiang, Gang; Xiao, Hongxing

    2011-08-01

    We have performed classical molecular dynamics simulations to simulate the primary damage state induced by 10 keV energetic recoils in UO 2. The numbers versus time and the distance distributions for the displaced uranium and oxygen atoms were investigated with the energetic recoils accelerated along four different directions. The simulations suggest that the direction of the primary knock-on atom (PKA) has no effect on the final primary damage state. In addition, it was found that atomic displacement events consisted of replacement collision sequences in addition to the production of Frenkel pairs. The spatial distribution of defects introduced by 10 keV collision cascades was also presented and the results were similar to that of energetic recoils with lower energy.

  17. Recoiling black holes: prospects for detection and implications of spin alignment

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Sijacki, Debora; Kelley, Luke Zoltan; Torrey, Paul; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, Lars

    2016-02-01

    Supermassive black hole (BH) mergers produce powerful gravitational wave emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly oriented spins, ≲ 10 spatially offset AGN may be detectable in Hubble Space Telescope-Cosmological Evolution Survey, and >103 could be found with the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the Large Synoptic Survey Telescope (LSST), Euclid, and the Wide-Field Infrared Survey Telescope (WFIRST). Nearly a thousand velocity offset AGN are predicted within the Sloan Digital Sky Survey (SDSS) footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. None the less, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  18. B → Dℓν form factors at nonzero recoil and |Vcb| from 2+1-flavor lattice QCD

    DOE PAGES

    Bailey, Jon A.

    2015-08-10

    We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay B¯→Dℓν¯ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate ourmore » results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for f+(q2) and f0(q2), including statistical and systematic errors, as coefficients of a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BABAR to determine the CKM matrix element, |Vcb|=(39.6 ± 1.7QCD+exp ± 0.2QED) × 10–3. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. In conclusion, we use them to update our calculation of the ratio R(D) in the Standard Model, which yields R(D)=0.299(11).« less

  19. A Thermal Infrared Imaging Study of Very Low Mass, Wide-separation Brown Dwarf Companions to Upper Scorpius Stars: Constraining Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Bailey, Vanessa; Hinz, Philip M.; Currie, Thayne; Su, Kate Y. L.; Esposito, Simone; Hill, John M.; Hoffmann, William F.; Jones, Terry; Kim, Jihun; Leisenring, Jarron; Meyer, Michael; Murray-Clay, Ruth; Nelson, Matthew J.; Pinna, Enrico; Puglisi, Alfio; Rieke, George; Rodigas, Timothy; Skemer, Andrew; Skrutskie, Michael F.; Vaitheeswaran, Vidhya; Wilson, John C.

    2013-04-01

    We present a 3-5 μm LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low masses/mass ratios (M BD <25 M Jup; M BD/M sstarf ≈ 1%-2%) and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4 μm and 24 μm photometry to constrain the properties of the BDs and identify evidence for circumprimary/circumsecondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing that this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24 μm excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4 μm excess, nor does its primary; however, the system as a whole has a modest 24 μm excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4 μm colors of HIP 78530B match a spectral type of M3 ± 2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating that it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5 M Jup beyond 175 AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering. Observations reported here were obtained at the LBT and MMT Observatories. The MMT Observatory is a joint facility of the University of Arizona and the Smithsonian Institution. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT

  20. Observation of Collective Atomic Recoil Motion in a Degenerate Fermion Gas

    SciTech Connect

    Wang Pengjun; Fu Zhengkun; Chai Shijie; Zhang Jing; Deng, L.; Hagley, E. W.

    2011-05-27

    We demonstrate collective atomic recoil motion with a dilute, ultracold, degenerate fermion gas in a single spin state. By utilizing an adiabatically decompressed magnetic trap with an aspect ratio different from that of the initial trap, a momentum-squeezed fermion cloud is achieved. With a single pump pulse of the proper polarization, we observe, for the first time, multiple wave-mixing processes that result in distinct collective atomic recoil motion modes in a degenerate fermion cloud. Contrary to the case with Bose condensates, no pump-laser detuning asymmetry is present.

  1. Analytical calculation of the electron-line radiative-recoil corrections to muonium hyperfine splitting

    NASA Astrophysics Data System (ADS)

    Eides, M. I.; Karshenboim, S. G.; Shelyuto, V. A.

    1986-09-01

    An analytical calculation of electron-line radiative corrections to muonium hyperfine splitting is presented. The classic non-recoil and leading logarithmic radiative-recoil contribution is re-evaluated and a new term is obtained, which was not known previously in analytical form. This new term is found to be [ {α(Zα)}/{π 2}]( {m e}/{m μ})E F[6ζ(3)+3π 2 ln 2+ {1}/{2}π 2+ {17}/{18}], where EF is the Fermi energy.

  2. Separation of isomeric short-chain acyl-CoAs in plant matrices using ultra-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Purves, Randy W; Ambrose, Stephen J; Clark, Shawn M; Stout, Jake M; Page, Jonathan E

    2015-02-01

    Acyl coenzyme A (acyl-CoA) thioesters are important intermediates in cellular metabolism and being able to distinguish among them is critical to fully understanding metabolic pathways in plants. Although significant advances have been made in the identification and quantification of acyl-CoAs using liquid chromatography tandem mass spectrometry (LC-MS/MS), separation of isomeric species such as isobutyryl- and n-butyrl-CoA has remained elusive. Here we report an ultra-performance liquid chromatography (UPLC)-MS/MS method for quantifying short-chain acyl-CoAs including isomeric species n-butyryl-CoA and isobutyryl-CoA as well as n-valeryl-CoA and isovaleryl-CoA. The method was applied to the analysis of extracts of hop (Humulus lupulus) and provided strong evidence for the existence of an additional structural isomer of valeryl-CoA, 2-methylbutyryl-CoA, as well as an unexpected isomer of hexanoyl-CoA. The results showed differences in the acyl-CoA composition among varieties of Humulus lupulus, both in glandular trichomes and cone tissues. When compared with the analysis of hemp (Cannabis sativa) extracts, the contribution of isobutyryl-CoAs in hop was greater as would be expected based on the downstream polyketide products. Surprisingly, branched chain valeryl-CoAs (isovaleryl-CoA and 2-methylbutyryl-CoA) were the dominant form of valeryl-CoAs in both hop and hemp. The capability to separate these isomeric forms will help to understand biochemical pathways leading to specialized metabolites in plants.

  3. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  4. Separation and characterization of oligomeric hindered amine light stabilizers using high-performance liquid chromatography with UV and quadrupole time-of-flight mass spectrometric detection.

    PubMed

    Hintersteiner, Ingrid; Reisinger, Michael; Himmelsbach, Markus; Buchberger, Wolfgang

    2016-03-01

    Hindered amine light stabilizers are an important class of stabilizers that protect synthetic polymers from degradation and thus from changing mechanical and optical properties. The current study presents an HPLC method capable of separating oligomeric hindered amine light stabilizers on a commercially available stationary phase, employing an MS-compatible novel mobile phase. Based on the exact masses observed with Q-TOF-MS, a comprehensive characterization of five different types of oligomeric hindered amine light stabilizers was achieved, leading to structural information not included in the datasheets provided by the suppliers. For the different investigated hindered amine light stabilizers, a number of recurring units up to 17 and a molecular weight of 5200 g/mol were detected. Furthermore, the analysis of stabilizer extracts of processed polypropylene samples containing different types of hindered amine light stabilizers revealed significant differences in the oligomeric pattern between standards and polymer samples. Thus, changes in the analytes' oligomeric pattern resulting from processing or aging of polymer materials can be monitored with the presented method. PMID:26778637

  5. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  6. Separation and characterization of metallothionein in the liver of sea turtles by high performance liquid chromatographylinductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shinsuke, T.; Yasumi, A.; Takashi, K.

    2003-05-01

    To investigate whether trace metals bind to metallothioneins (MTs) in the hepatocytosol of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata), MT fraction was obtained by ultracentrifugation and gel filtration methods. MTs separated from hepatocytosol were further purified and characterized by high performance liquid chromatography/inductively coupled plasma-mass spectrometry. In addition, the involvement of MTs in the accumulation of trace metals in the liver of sea turtle was examine. Gel filtration analysis showed that significant amounts of Cu, Zn, Ag and Cd were bound to MT in the cytosol of sea turtles, suggesting that such trace metals were primarily detoxified by interaction with MTs in the liver. Elution profiles of these trace metals by anion-exchange chromatography were different between green turtles and hawksbill turtles. These results suggest the presence of multiple isoforms of MT in the liver of both sea turtles; however, constituents of isoforms were different between green and hawksbill turtles. In both species, we observed the elevation of the height of a specific peak in elution profile with an increase in Cu concentration in hepatocytosol. This result suggests the presence of a novel MT isoform related to copper accumulation in the liver of sea turtles.

  7. Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO₃/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry.

    PubMed

    Ma, Yunjian; Zhao, Cheng; Zhan, Yisen; Li, Jianbin; Zhang, Zhuomin; Li, Gongke

    2015-05-01

    An in situ embedded synthesis strategy was developed for the preparation of a MoO3 /polypyrrole intercalative sampling adsorbent for the separation and analysis of trace volatile formaldehyde in aquatic products. Structural and morphological characteristics of the MoO3 /polypyrrole intercalative adsorbent were investigated by a series of characterization methods. The MoO3 /polypyrrole sampling adsorbent possessed a higher sampling capacity and selectivity for polar formaldehyde than commonly used commercial adsorbent Tenax TA. Finally, the MoO3 /polypyrrole adsorbent was packed in the thermal desorption tube that was directly coupled to gas chromatography with mass spectrometry for the analysis of trace volatile formaldehyde in aquatic products. Trace volatile formaldehyde from real aquatic products could be selectively sampled and quantified to be 0.43-6.6 mg/kg. The detection limit was achieved as 0.004 μg/L by this method. Good recoveries for spiked aquatic products were achieved in range of 75.0-108% with relative standard deviations of 1.2-9.0%. PMID:25677048

  8. Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO₃/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry.

    PubMed

    Ma, Yunjian; Zhao, Cheng; Zhan, Yisen; Li, Jianbin; Zhang, Zhuomin; Li, Gongke

    2015-05-01

    An in situ embedded synthesis strategy was developed for the preparation of a MoO3 /polypyrrole intercalative sampling adsorbent for the separation and analysis of trace volatile formaldehyde in aquatic products. Structural and morphological characteristics of the MoO3 /polypyrrole intercalative adsorbent were investigated by a series of characterization methods. The MoO3 /polypyrrole sampling adsorbent possessed a higher sampling capacity and selectivity for polar formaldehyde than commonly used commercial adsorbent Tenax TA. Finally, the MoO3 /polypyrrole adsorbent was packed in the thermal desorption tube that was directly coupled to gas chromatography with mass spectrometry for the analysis of trace volatile formaldehyde in aquatic products. Trace volatile formaldehyde from real aquatic products could be selectively sampled and quantified to be 0.43-6.6 mg/kg. The detection limit was achieved as 0.004 μg/L by this method. Good recoveries for spiked aquatic products were achieved in range of 75.0-108% with relative standard deviations of 1.2-9.0%.

  9. The transesterification of rapeseed and waste sunflower oils: Mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup.

    PubMed

    Klofutar, B; Golob, J; Likozar, B; Klofutar, C; Zagar, E; Poljansek, I

    2010-05-01

    We have investigated the transesterification of rapeseed (RO) and waste sunflower (SO) oils with methanol in the presence of potassium hydroxide as a catalyst. The transesterification of tri-acylglycerols was first conducted in a batch reactor. The effect of the temperature on the reaction rates was studied at a constant molar ratio of the alcohol to tri-acylglycerols (6:1) and for a constant concentration of the catalyst (1.0wt%). Size-exclusion chromatography and (1)H NMR spectroscopy were used to quantitatively monitor the transesterification reaction. The mass-transfer coefficients of the tri-acylglycerols during the initial transesterification stage were found to be 0.2-1.2x10(-5)mmin(-1), depending on the type of oil and the temperature. Calculated activation energies implied that at higher temperatures the formation of mono-acylglycerols and glycerole was favored for the SO (93kJ/mol for the forward and 48kJ/mol for the backward reaction) and the RO (47kJ/mol for the forward and 36kJ/mol for the backward reaction), respectively. For the continuous industrial reactor/separator setup, the optimum methanol recycle ratio was established as 0.0550.

  10. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Foxe, M.; Hagmann, C.; Jovanovic, I.; Bernstein, A.; Joshi, T. H.; Kazkaz, K.; Mozin, V.; Pereverzev, S. V.; Sangiorgio, S.; Sorensen, P.

    2015-09-01

    Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recently reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.

  11. Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements

    SciTech Connect

    Guillemin, Renaud; Bomme, Cedric; Marin, Thierry; Journel, Loic; Marchenko, Tatiana; Kushawaha, Rajesh K.; Piancastelli, Maria Novella; Simon, Marc; Trcera, Nicolas

    2011-12-15

    Following core 1s ionization and resonant excitation of argon atoms, we measure the recoil energy of the ions due to momentum conservation during the emission of Auger electrons. We show that such ion momentum spectroscopy can be used to disentangle to some degree complex decay patterns, involving both radiative and nonradiative decays.

  12. Perspectives of the Use of Different Types of Neutron Detectors at the Focal Plane of VASSILISSA Separator

    SciTech Connect

    Svirikhin, A. I.; Yeremin, A. V.; Belozerov, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Gorshkov, V. A.; Kabachenko, A. P.; Malyshev, O. N.; Popeko, A. G.; Sagaidak, R. N.; Shutov, A. V.; Sokol, E. N.; Kuznetsova, E. A.; Zadneprovski, B. I.; Eremin, N. V.; Paskhalov, A. A.

    2007-05-22

    Presently available experimental information on spontaneous fission of transfermium elements mainly concerns partial half-lives. In addition, for Fm and No isotopes and for a few Md, Lr and Rf isotopes the total kinetic energy (TKE) and mass distributions of fission fragments from spontaneous fission were also accurately measured. Recoil in - flight separator VASSILISSA is widely used for the synthesis and study of decay properties of heavy and superheavy nuclei. It is planned in the future to measure the TKE and multiplicity distribution of prompt neutrons in spontaneous fission of other No. Now, the search of alternative methods of the neutrons detection was realized. During the search, with colleagues from Skobeltsyn Institute of Nuclear Physics (SINP MSU), the properties of some inorganic scintillators, was investigate.

  13. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  14. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    USGS Publications Warehouse

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  15. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations, and Electrospray Ionization-Mass Spectrometry

    PubMed Central

    2015-01-01

    The N-glycan diversity of human serum glycoproteins, i.e., the human blood serum N-glycome, is both complex and constrained by the range of glycan structures potentially synthesizable by human glycosylation enzymes. The known glycome, however, has been further limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to include polysialylated N-glycans. Sample preparation improvements included acidified, microwave-accelerated, PNGase F N-glycan release to promote lactonization, and sodium borohydride reduction, that were both optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. Online separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient, providing additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) was utilized. When these improved methods are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described (Kronewitter et al. Anal. Chem.2014, 86, 6268−627624881670), we are able to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrated the application of these advances in the context of the human serum glycome, and for which our initial observations included the detection of a new

  16. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    SciTech Connect

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G.; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.

    2014-09-02

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.

  17. Complete and incomplete fusion reactions in the {sup 16}O+{sup 169}Tm system: Excitation functions and recoil range distributions

    SciTech Connect

    Sharma, Manoj Kumar; Unnati,; Sharma, B.K.; Singh, B.P.; Prasad, R.; Bhardwaj, H.D.; Kumar, Rakesh; Golda, K.S.

    2004-10-01

    With the view to study complete and incomplete fusion in heavy ion induced reactions, experiments have been carried out for measuring excitation functions for several reactions in the system {sup 16}O+{sup 169}Tm at energies near the Coulomb barrier to well above it, using an activation technique. The measured excitation functions have been compared with those calculated theoretically using three different computer codes viz., ALICE-91, CASCADE and PACE2. The enhancement of experimentally measured cross sections for alpha emission channels over their theoretical prediction has been attributed to the fact that these residues are formed not only by complete fusion but also through incomplete fusion. In order to separate out the relative contributions of complete and incomplete fusion, the recoil range distributions of eight residues produced in the interaction of {sup 16}O with {sup 169}Tm at {approx_equal}87 MeV have been measured. The recoil range distributions indicate significant contributions from incomplete fusion at {approx_equal}87 MeV for some of the channels.

  18. Update of |Vcb| from the B¯→D*bold">ℓν¯ form factor at zero recoil with three-flavor lattice QCD

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C. M.; DeTar, C.; Du, Daping; El-Khadra, A. X.; Foley, J.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kronfeld, A. S.; Laiho, J.; Levkova, L.; Mackenzie, P. B.; Neil, E. T.; Qiu, Si-Wei; Simone, J.; Sugar, R.; Toussaint, D.; Van de Water, R. S.; Zhou, Ran; Fermilab Lattice; MILC Collaborations

    2014-06-01

    We compute the zero-recoil form factor for the semileptonic decay B¯0→D*+ℓ-ν¯ (and modes related by isospin and charge conjugation) using lattice QCD with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC asqtad configurations), and the Fermilab action for the heavy quarks. Our calculations incorporate higher statistics, finer lattice spacings, and lighter quark masses than our 2008 work. As a byproduct of tuning the new data set, we obtain the Ds and Bs hyperfine splittings with few-MeV accuracy. For the zero-recoil form factor, we obtain F(1)=0.906(4)(12), where the first error is statistical and the second is the sum in quadrature of all systematic errors. With the latest Heavy Flavor Averaging Group average of experimental results and a cautious treatment of QED effects, we find |Vcb|=(39.04±0.49expt±0.53QCD±0.19QED)×10-3. The QCD error is now commensurate with the experimental error.

  19. Atomistic Simulation of Track Formation by Energetic Recoils in Zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Weber, William J.

    2010-09-17

    We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5 to 12.8 keV/nm and radius of 3 nm. At a low dE/dx of 2.55 keV/nm, the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission-track formation in zircon that is relevant to thermo-chronology and nuclear waste immobilization.

  20. Speciation of metallothionein-like proteins of the mussel Mytilus edulis by orthogonal separation mechanisms with inductively coupled plasma-mass spectrometry detection: effect of selenium administration

    NASA Astrophysics Data System (ADS)

    Ferrarello, Claudio N.; del Rosario Fernández de la Campa, María.; Francisco Carrasco, José; Sanz-Medel, Alfredo

    2002-03-01

    Several complementary separation mechanisms (size-exclusion chromatography, SEC; fast protein liquid chromatography, FPLC; reverse-phase chromatography, RPC) have been coupled to inductively coupled plasma mass spectrometry (ICP-MS) detection to investigate the speciation of Cd, Se, Cu and Zn in mussel hepatopancreas. SEC with double-focusing (DF) ICP-MS detection was used first for speciation analysis of those four trace elements, both in uncontaminated mussels and in mussels exposed to Cd (500 μg l -1) or to Cd+Se (500 μg l -1 of each element). Observed SEC results indicated that Se does not seem to significantly bind to metallothionein-like proteins (MLPs) 'in vivo'. Total cytosolic Cd and MLPs content were lower in Cd+Se exposed mussels than those exposed to Cd only. For each treatment, 50 μl of the SEC peak fraction containing the MLPs was used to perform fast protein liquid chromatography coupled 'on-line' with a quadrupole (Q) ICP-MS. 82Se and 114Cd isotopes were simultaneously monitored. Four and five Cd/MLPs isoforms were then detected in mussels exposed to only Cd and Cd+Se, respectively. In contrast, no signs of Se/MLP isoforms were found for both treatments. Subsequently, the bulk of MLPs eluting from the FPLC system were isolated and lyophilizated. A 50-μl aliquot of such reconstituted lyophilisate was then injected into a Vydac C 8 Reverse-Phase column directly connected to the Q-ICP-MS. Results confirmed the presence of one more Cd/MLP peak in those mussels exposed to Cd+Se. However, the number of Cd/MLP peaks detected decreased to three and four in only Cd and Cd+Se exposed animals, respectively. These results tend to indicate that Se, which does not trigger the biosynthesis of MLPs, could probably orient such synthesis towards the generation of a new Cd/MLP isoform in mussels submitted to both elements. The possible interrelation/complementation between Se and MLP against Cd toxicity is discussed.

  1. Rapid Assessment of Human Amylin Aggregation and Its Inhibition by Copper(II) Ions by Laser Ablation Electrospray Ionization Mass Spectrometry with Ion Mobility Separation

    PubMed Central

    Donaldson, Robert P.; Jeremic, Aleksandar M.; Vertes, Akos

    2015-01-01

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. Here, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the –HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of

  2. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (∼<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  3. Low energy electron/recoil discrimination for directional Dark Matter detection

    SciTech Connect

    Billard, J.; Mayet, F.; Santos, D. E-mail: mayet@lpsc.in2p3.fr

    2012-07-01

    Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about ∼ 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.

  4. A predictive theory for elastic scattering and recoil of protons from 4He

    SciTech Connect

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  5. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    SciTech Connect

    Bolte, W.J.; Collar, Juan I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.; /Chicago U., EFI /KICP, Chicago /Fermilab

    2005-03-01

    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF{sub 3}I chamber.

  6. Black hole as a point radiator and recoil effect on the brane world.

    PubMed

    Frolov, Valeri; Stojković, Dejan

    2002-10-01

    A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.

  7. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGES

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  8. Recoil excitation of vibrational structure in the carbon 1s photoelectron spectrum of CF4.

    PubMed

    Thomas, T Darrah; Kukk, Edwin; Sankari, Rami; Fukuzawa, Hironobu; Prümper, Georg; Ueda, Kiyoshi; Püttner, Ralph; Harries, James; Tamenori, Yusuke; Tanaka, Takahiro; Hoshino, Masamitsu; Tanaka, Hiroshi

    2008-04-14

    The carbon 1s photoelectron spectrum of CF4 measured at photon energies from 330 to 1500 eV shows significant contributions from nonsymmetric vibrational modes. These increase linearly as the photon energy increases. The excitation of these modes, which is not predicted in the usual Franck-Condon point of view, arises from the recoil momentum imparted to the carbon atom in the ionization process. A theory is presented for quantitative prediction of the recoil effect; the predictions of this theory are in agreement to the measurements. The experiments also yield the vibrational frequencies of the symmetric and asymmetric stretching modes in core-ionized CF4, the change in CF bond length upon ionization, -0.61 pm, and the Lorentzian linewidth of the carbon 1s hole, 67 meV.

  9. A coherent understanding of low-energy nuclear recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (lesssim10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  10. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  11. Lifetimes in neutron-rich fission fragments using the differential recoil distance method

    SciTech Connect

    Kruecken, R.; Chou, W.-T.; Cooper, J. R.; Beausang, C. W.; Barton, C. J.; Caprio, M. A.; Casten, R. F.; Hecht, A. A.; Novak, J. R.; Pietralla, N.

    2001-07-01

    Lifetimes in the neutron-rich nuclei {sup 104}Mo, {sup 110}Ru, and {sup 144}Ba were measured using the differential recoil distance method. The experiment was performed with a {sup 252}Cf fission source inside the New Yale Plunger Device. {gamma} rays were detected by the SPEctrometer for Experiments with Doppler shifts at Yale (SPEEDY) while fission fragments with the appropriate kinematics were detected by an array of photocells.

  12. Production of soft X-ray emitting slow multiply charged ions - Recoil ion spectroscopy

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.; Elston, S. B.; Forester, J. P.; Griffin, P. M.; Pegg, D. J.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Wright, J. J.; Groeneveld, K.-O.

    1977-01-01

    S ions with a mean charge state of about 14+ and Cl ions with a mean charge state of 12+ were used to study Ne L-shell vacancy production. The ions caused copious production of NeII-NeVIII excited states with approximately 10 to the minus 18 sq cm cross sections. The induced recoil velocities might have application to a significantly higher resolution spectroscopy than is possible with beam-foil methods.

  13. Recoil-proton polarization in high-energy deuteron photodisintegration with circularly plarized photons.

    SciTech Connect

    Jiang, X.; Arrington, J.; Benmokhtar, F.; Camsonne, A.; Chen, J. P.; Holt, R. J.; Qattan, I. A.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Physics; Rutgers Univ.; Univ. Blaise Pascal; Thomas Jefferson National Accelerator Facility

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  14. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    Jiang, X.; Benmokhtar, F.; Glashauser, C.; McCormick, K.; Ransome, R. D.; Arrington, J.; Holt, R. J.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Camsonne, A.

    2007-05-04

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  15. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    X. Jiang; J. Arrington; F. Benmokhtar; A. Camsonne; J. P. Chen; S. Choi; E. Chudakov; F. Cusanno; A. Deur; D. Dutta; F. Garibaldi; D. Gaskell; O. Gayou; R. Gilman; C. Glashauser; D. Hamilton; O. Hansen; D. W. Higinbotham; R. J. Holt; C. W. de Jager; M. K. Jones; L. J. Kaufman; E. R. Kinney; K. Kramer; L. Lagamba; R. de Leo; J. Lerose; D. Lhuillier; R. Lindgren; N. Liyanage; K. McCormick; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; S. Nanda; K. D. Paschke; C. F. Perdrisat; V. Punjabi; I. A. Qattan; R. D. Ransome; P. E. Reimer; B. Reitz; A. Saha; E. C. Schulte; R. Sheyor; K. Slifer; P. Solvignon; V. Sulkosky; G. M. Urciuoli; E. Voutier; K. Wang; K. Wijesooriya; B. Wojtsekhowski; and L. Zhu

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  16. Angular dependence of recoil proton polarization in high-energy \\gamma d \\to p n

    SciTech Connect

    X. Jiang; J. Arrington; F. Benmokhtar; A. Camsonne; J.P. Chen; S. Choi; E. Chudakov; F. Cusanno; A. Deur; D. Dutta; F. Garibaldi; D. Gaskell; O. Gayou; R. Gilman; C. Glashauser; D. Hamilton; O. Hansen; D.W. Higinbotham; R.J. Holt; C.W. de Jager; M.K. Jones; L.J. Kaufman; E.R. Kinney; K. Kramer; L. Lagamba; R. de Leo; J. Lerose; D. Lhuillier; R. Lindgren; N. Liyanage; K. McCormick; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; S. Nanda; K.D. Paschke; C.F. Perdrisat; V. Punjabi; I.A. Qattan; R.D. Ransome; P.E. Reimer; B. Reitz; A. Saha; E.C. Schulte; R. Sheyor; K. Slifer; P. Solvignon; V. Sulkosky; G.M. Urciuoli; E. Voutier; K. Wang; K. Wijesooriya; B. Wojtsekhowski; L. Zhu

    2007-02-26

    We measured the angular dependence of the three recoil proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily.. Transverse polarizations are not well described, but suggest isovector dominance.

  17. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  18. Lung recoil during rapid vital capacity expirations simulated by gas compression.

    PubMed

    Webster, P M; Loring, S H; Butler, J P; Hoppin, F G

    1980-07-01

    Excised dog lobes were inflated to a transpulmonary pressure (PL) of about 30 cmH2O, and their airways were occluded. Then they were rapidly compressed to a volume where PL was about zero, simulating forced expiratory maneuvers. Since there was no airflow during the compression, PL was a direct measure of lung recoil. Lung volume (VL) was calculated from absolute airway pressure using Boyle's law. At ambient temperature, lung recoil pressure during compressive maneuvers simulating forced vital capacity expirations (Pdyn) was less than that during quasi-static (30 s) compressions (Pst). Typically the dynamic component (i.e., Pst--Pdyn) decreased from about 2 cmH2O near total lung capacity to no difference at the end of the compression. Cooling the lobes to 15 degrees C increased Pst-Pdyn, and warming the lobes to 37 degrees C reduced Pst-Pdyn almost to zero. We suggest that the driving force of lung recoil during expirations is adequately modeled by the quasi-static VL/PL relationship, though a small correction should be made for excised lungs at room temperature. PMID:7399986

  19. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    NASA Astrophysics Data System (ADS)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  20. Einstein-Bohr recoiling double-slit gedanken experiment performed at the molecular level

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Miao, Quan; Gel'Mukhanov, Faris; Patanen, Minna; Travnikova, Oksana; Nicolas, Christophe; Ågren, Hans; Ueda, Kiyoshi; Miron, Catalin

    2015-02-01

    Double-slit experiments illustrate the quintessential proof for wave-particle complementarity. If information is missing about which slit the particle has traversed, the particle, behaving as a wave, passes simultaneously through both slits. This wave-like behaviour and corresponding interference is absent if ‘which-slit’ information exists. The essence of Einstein-Bohr's debate about wave-particle duality was whether the momentum transfer between a particle and a recoiling slit could mark the path, thus destroying the interference. To measure the recoil of a slit, the slits should move independently. We showcase a materialization of this recoiling double-slit gedanken experiment by resonant X-ray photoemission from molecular oxygen for geometries near equilibrium (coupled slits) and in a dissociative state far away from equilibrium (decoupled slits). Interference is observed in the former case, while the electron momentum transfer quenches the interference in the latter case owing to Doppler labelling of the counter-propagating atomic slits, in full agreement with Bohr's complementarity.

  1. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    NASA Astrophysics Data System (ADS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Y Yu, H.; Gao, X. X.

    2014-06-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved.

  2. Inclusive production of H\\rightarrow b\\bar{b} plus a recoil for the LHC Run-II

    NASA Astrophysics Data System (ADS)

    Gutierrez, Nicolas

    2016-07-01

    This letter presents a study of the inclusive production of H→ b\\bar{b} plus a recoil, using simulated samples of pp collisions at \\sqrt{s}=14 \\text{TeV} for an integrated luminosity in the range between 30 \\text{fb}-1 and 3 \\text{ab}-1 . The case for experiments to include un-prescaled b-tag multijet triggers for this topology is made and the ideal jet thresholds are discussed. The sensitivity to the Standard Model Higgs boson with a transverse momentum of at least 200 GeV is evaluated with respect to a continuous background, dominated by multijet processes. The mass of b-jet-pairs is analysed, quoting sensitivity to cross-sections in the range from 1 to 2 pb, for 100 \\text{fb}-1 , covering the total Higgs-boson production cross-section of 1.8 pb. The trigger strategy presented in this letter is compared to triggers already in use, showing an increase on the signal efficiency for masses below 200 GeV and a performance comparable to a logical OR of all the currently available akin triggers for higher masses. The robustness of the expected sensitivity against systematic uncertainties is estimated by considering various typical sources, such as those on the fitting parameters of the continuous background, shape uncertainties affecting the signal acceptance and the background modelling. The accuracy of the Higgs-boson production cross-section measurements is also discussed, quoting sensitivity to deviations of 50% for 100 \\text{fb}-1 and 10% for 3 \\text{ab}-1 .

  3. Integral cross section measurements and product recoil velocity distributions of Xe(2+) + N2 hyperthermal charge-transfer collisions.

    PubMed

    Hause, Michael L; Prince, Benjamin D; Bemish, Raymond J

    2016-07-28

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe(2+) and N2, in particular, is known to create N2 (+) in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe(2+) + N2 reaction as well as axial recoil velocity distributions of the Xe(+) and N2 (+) product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å(2) to about 40 Å(2) with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe(2+) - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies. PMID:27475363

  4. Integral cross section measurements and product recoil velocity distributions of Xe2+ + N2 hyperthermal charge-transfer collisions

    NASA Astrophysics Data System (ADS)

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2016-07-01

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe2+ and N2, in particular, is known to create N2 + in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe2+ + N2 reaction as well as axial recoil velocity distributions of the Xe+ and N2 + product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å2 to about 40 Å2 with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe2+ - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies.

  5. New separators at the ATLAS facility

    NASA Astrophysics Data System (ADS)

    Back, Birger; Agfa Collaboration; Airis Team

    2015-10-01

    Two new separators are being built for the ATLAS facility. The Argonne Gas-Filled Analyzer (AGFA) is a novel design consisting of a single quadrupole and a multipole magnet that has both dipole and quadrupole field components. The design allows for placing Gammasphere at the target position while providing a solid angle of ~ 22 msr for capturing recoil products emitted at zero degrees. This arrangement enables studies of prompt gamma ray emission from weakly populated trans-fermium nuclei and those near the doubly-magic N = Z = 50 shell closure measured in coincidence with the recoils registered by AGFA. The Argonne In-flight Radioactive Ion Separator (AIRIS) is a magnetic chicane that will be installed immediately downstream of the last ATLAS cryostat and serve to separate radioactive ion beams generated in flight at an upstream high intensity production target. These beams will be further purified by a downstream RF sweeper and transported into a number of target stations including HELIOS, the Enge spectrograph, the FMA and Gammasphere. This talk will present the status of these two projects. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  6. Evaluation of Enhanced Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for the Separation of Recalcitrant Polychlorinated Biphenyl Isomers

    EPA Science Inventory

    The separation of some recalcitrant polychlorinated biphenyl (PCB) isomers in extracts from environmental compartments has been a daunting task for environmental chemists. Summed quantitation values for coeluting PCB isomers are often reported. This composite data obscures the ac...

  7. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  8. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE PAGES

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J.; Kertesz, Vilmos

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  9. Determination of concentration profiles by elastic recoil detection with a ΔE-E gas telescope and high energy incident heavy ions

    NASA Astrophysics Data System (ADS)

    Stoquert, J. P.; Guillaume, G.; Hage-Ali, M.; Grob, J. J.; Ganter, C.; Siffert, P.

    1989-12-01

    The Elastic Recoil Detection (ERD) method has been used to determine the profile of a wide range of elements simultaneously in a thin layer (1μm) with a depth resolution of a few hundred Å and high sensitivity. Z separation is achieved by a ΔE(gas)-E(solid) telescope. Results for 127I (up to 240 MeV) incident ions used to profile thin films of dielectrics (SiOxNyHz), amorphous semiconductors (a-GaAs: H) and superconductors (YBaCuO, BiSrCaCuO) are reported. It has been considered previously that ERD is of interest for analysis of light elements. We show that high energy heavy incident ions extend the field of application of the ERD method to all elements with an approximately constant depth resolution and sensitivity.

  10. Determination of microamounts of hafnium in zirconium using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry during their separation by ion exchange on Diphonix chelating resin.

    PubMed

    Smolik, Marek; Jakóbik-Kolon, Agata

    2009-04-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICPMS) methods were applied to check the possibility of determination of hafnium in zirconium at a level lower than 100 ppm. A zirconium matrix of hafnium content lower than 10 ppm was obtained using a worked-out separation method exploiting ion exchange on Diphonix resin. Both methods give results in good agreement with each other as well as with those for certified reference material BCR-098 (Zircaloy-4). They were utilized in determination of Hf in the samples collected during separation of microamounts of hafnium from zirconium by the mentioned ion exchange. These results proved the earlier described method of separation on Diphonix resin to be effective even when the initial concentration of hafnium in zirconium decreases from 2.4% to 0.0082%.

  11. Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates.

    PubMed

    Kanyal, Supriya S; Häbe, Tim T; Cushman, Cody V; Dhunna, Manan; Roychowdhury, Tuhin; Farnsworth, Paul B; Morlock, Gertrud E; Linford, Matthew R

    2015-07-24

    Microfabrication of ultrathin-layer chromatography (UTLC) plates via conformal deposition of silicon nitride by low-pressure chemical vapor deposition onto patterned carbon nanotube (CNT) scaffolds was demonstrated. After removal of the CNTs and hydroxylation, the resulting UTLC phase showed no expansion or distortion of their microfeatures and the absence/reduction of remaining nitrogenic species. Developing time of a mixture of lipophilic dyes on this UTLC plates was 86% shorter than on high-performance thin-layer chromatography (HPTLC) plates. A water-soluble food dye mixture was also separated resulting in low band broadening and reduced developing time compared to HPTLC. For the latter example, mobile phase optimization on a single UTLC plate consisted of 14 developments with different mobile phases, each preceded by a plate prewashing step. The same plate was again reused for additional 11 separations under varying conditions resulting in a development procedure with a mean separation efficiency of 233,000theoretical plates/m and a reduced mobile phase consumption of only 400μL. This repeated use proved the physical robustness of the ultrathin layer and its resistance to damage. The layer was highly suited for hyphenation to ambient mass spectrometry, including desorption electrospray ionization (DESI) mass spectrometry imaging and direct analysis in real time (DART) mass spectrometry.

  12. Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates.

    PubMed

    Kanyal, Supriya S; Häbe, Tim T; Cushman, Cody V; Dhunna, Manan; Roychowdhury, Tuhin; Farnsworth, Paul B; Morlock, Gertrud E; Linford, Matthew R

    2015-07-24

    Microfabrication of ultrathin-layer chromatography (UTLC) plates via conformal deposition of silicon nitride by low-pressure chemical vapor deposition onto patterned carbon nanotube (CNT) scaffolds was demonstrated. After removal of the CNTs and hydroxylation, the resulting UTLC phase showed no expansion or distortion of their microfeatures and the absence/reduction of remaining nitrogenic species. Developing time of a mixture of lipophilic dyes on this UTLC plates was 86% shorter than on high-performance thin-layer chromatography (HPTLC) plates. A water-soluble food dye mixture was also separated resulting in low band broadening and reduced developing time compared to HPTLC. For the latter example, mobile phase optimization on a single UTLC plate consisted of 14 developments with different mobile phases, each preceded by a plate prewashing step. The same plate was again reused for additional 11 separations under varying conditions resulting in a development procedure with a mean separation efficiency of 233,000theoretical plates/m and a reduced mobile phase consumption of only 400μL. This repeated use proved the physical robustness of the ultrathin layer and its resistance to damage. The layer was highly suited for hyphenation to ambient mass spectrometry, including desorption electrospray ionization (DESI) mass spectrometry imaging and direct analysis in real time (DART) mass spectrometry. PMID:26065571

  13. Separation and identification of polyphenols in apple pomace by high-speed counter-current chromatography and high-performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Cao, Xueli; Wang, Cong; Pei, Hairun; Sun, Baoguo

    2009-05-01

    Apple pomace, a by-product in the processing of apple juice, was investigated as a potential source of polyphenols. Two methods of separation and purification of polyphenols from apple pomace extract were established by combination of gel chromatography with high-speed counter-current chromatography (HSCCC) and solvent extraction with HSCCC, respectively. The optimal separation was performed on a Sephadex LH-20 column using gradient aqueous ethanol as eluting solvent from 0% to 100% in increments of 10%. HPLC analysis indicated that main polyphenols existed in fractions eluted between 40% and 50% aqueous ethanol. The fractions of interest from column were separated by HSCCC with the solvent system hexane-ethyl acetate-1% aqueous acetic acid (0.5:9.5:10, v/v/v). Ethyl acetate fractionation of the apple pomace extract followed by direct HSCCC separation by the same solvent system in the volume ratio of 1:9:10 also produced a good separation of the main polyphenols of interest. Six high-purity polyphenols were achieved tentatively and identified by HPLC/MS: chlorogenic acid (1, m/z 354), quercetin-3-glucoside/quercetin-3-glacaside (2, m/z 464), quercetin-3-xyloside (3, m/z 434), phloridzin (4, m/z 436), quercetin-3-arabinoside (5, m/z 434), and quercetin-3-rhamnoside (6, m/z 448). These results provided a preliminary foundation for further development and exploration of apple pomace.

  14. Implementation of a design of experiments to study the influence of the background electrolyte on separation and detection in non-aqueous capillary electrophoresis-mass spectrometry.

    PubMed

    Posch, Tjorben Nils; Müller, Alexander; Schulz, Wolfgang; Pütz, Michael; Huhn, Carolin

    2012-02-01

    Non-aqueous capillary electrophoresis (NACE) background electrolytes are most often composed of a mixture of methanol and acetonitrile (ACN) with soluble ammonium salts added as electrolyte. In this study on NACE-MS, we used a mixture of glacial acetic acid and ACN giving rise to an acidic background electrolyte (BGE) with a very low dielectric constant. Impressive changes in selectivity and resolution were observed for structurally closely related indole alkaloids including diastereomers upon addition of ammonium formate as electrolyte and upon variation of the solvent ratio. In order to obtain best separation and MS detection conditions and to reveal the influence of the parameters of the BGE on separation and detection and vice versa of the MS parameters on separation, an optimization strategy was employed using a design of experiments in a central composite design with response surface methodology. It was proven that at high electroosmotic flow conditions capillary electrophoretic separations and thus optimization can be realized without interference from the coupling to an MS system. Several significantly interacting parameters were revealed, which are not accessible with classical univariate optimization approaches. With this optimization, alkaloid mixtures from a plant extract of Mitragyna speciosa, containing a large number of diastereomeric compounds were successfully separated. PMID:22451051

  15. A gas chromatograph/mass spectrometry method for determining isotopic distributions in organic compounds used in the chemical approach to stable isotope separation

    SciTech Connect

    Martinez, A.M.; Spall, W.D.; Smith, B.F.

    1990-01-01

    A variety of gas chromatograph/mass spectrometry (GC/MS) methods have been developed to resolve benzene, benzophenone, anthracene, fluorenone, and their respective stable isotope analogs from other components by gas chromatography. The ratio of stable isotope-labeled material to natural isotopic abundance compounds is determined from the mass spectra averaged across the chromatographic peak. Both total ion and selective ion chromatographic approaches were used for relative data and comparison. 9 refs., 11 tabs.

  16. This-layer chromatography/electrospray ionization triple-quadrupole linear ion trap mass spectrometry system: analysis of rhodamine dyes separated on reversed-phase C8 plates

    SciTech Connect

    Ford, Michael J; Kertesz, Vilmos; Van Berkel, Gary J

    2005-01-01

    The direct analysis of separated rhodamine dyes on reversed-phase C{sub 8} thin-layer chromatography plates using a surface sampling/electrospray emitter probe coupled with a triple-quadrupole linear ion trap mass spectrometer is presented. This report represents continuing work to advance the performance metrics and utility of this basic surface sampling electrospray mass spectrometry system for the analysis of thin-layer chromatography plates. Experimental results examining the role of sampling probe spray end configuration on liquid aspiration rate and gas-phase ion signal generated are discussed. The detection figures-of-merit afforded by full-scan, automated product ion and selected reaction monitoring modes of operation were examined. The effect of different eluting solvents on mass spectrum signal levels with the reversed-phase C{sub 8} plate was investigated. The combined effect of eluting solvent flow-rate and development lane surface scan rate on preservation of chromatographic resolution was also studied. Analysis of chromatographically separated red pen ink extracts from eight different pens using selected reaction monitoring demonstrated the potential of this surface sampling electrospray mass spectrometry system for targeted compound analysis with real samples.

  17. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    NASA Astrophysics Data System (ADS)

    Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.

  18. Subaru and e-Merlin observations of NGC 3718. Diaries of a supermassive black hole recoil?

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Dierkes, J.; Eckart, A.; Nishiyama, S.; Britzen, S.; García-Marín, M.; Horrobin, M.; Muxlow, T.; Zensus, J. A.

    2015-08-01

    NGC 3718 is a low-ionization nuclear emission line region (LINER) L1.9 galaxy, lying at a distance of about ~17.4 Mpc from the Earth; its similarities with NGC 5128 often award it the name northern Centaurus A. The presence of a compact radio source with a candidate jet structure, a prominent dust lane, and a strongly warped molecular and atomic gas disk are indications that NGC 3718 has undergone some sort of a large-scale gravitational interaction sometime in the recent past, which channeled gas towards the center, feeding the black hole and igniting the central engine. One proposed scenario involves an encounter with the close neighboring galaxy NGC 3729, while other authors favor a merging event with mass ratio ≥(3-4):1 as the origin of NGC3718. We use high angular resolution (~100 mas) e-Merlin radio and Subaru near-IR (NIR) (~170 mas) data to take a detailed view of the processes taking place in its central region. In order to preserve some objectivity in our interpretation, we combine our results with literature values and findings from previous studies. Our NIR maps suggest, on the one hand, that towards the stellar bulge there are no large-scale absorption phenomena caused by the apparent dust lane and, on the other, that there is a significant (local) contribution from hot (~1000 K) dust to the nuclear NIR emission. The position where this takes place appears to be closer to the offset compact radio emission from our e-Merlin 6 cm map and is offset by ~4.25 pc from the center of the underlying stellar bulge. The shape of the radio map suggests the presence of one (or possibly two, forming an X-shape) bipolar structure(s) ~1 (~0.6) arcsec across, which combined with the balance between the gas and the stellar velocity dispersions and the presence of hard X-ray emission, point towards effects expected by AGN feedback. We also argue that NGC 3718 has a core in its surface brightness profile, although it is a gas-rich galaxy and we discuss its mixed

  19. Order-of-Magnitude Estimate of Fast Neutron Recoil Rates in Proposed Neutrino Detector at SNS

    SciTech Connect

    Iverson, Erik B.

    2006-02-01

    Yuri Efremenko (UT-K) and Kate Scholberg (Duke) indicated, during discussions on 12 January 2006 with the SNS Neutronics Team, interest in a new type of neutrino detector to be placed within the proposed neutrino bunker at SNS, near beam-line 18, against the RTBT. The successful operation of this detector and its associated experiments would require fast-neutron recoil rates of approximately one event per day of operation or less. To this end, the author has attempted the following order-of-magnitude estimate of this recoil rate in order to judge whether or not a full calculation effort is needed or justified. For the purposes of this estimate, the author considers a one-dimensional slab geometry, in which fast and high-energy neutrons making up the general background in the target building are incident upon one side of an irbon slab. This iron slab represents the neutrino bunker walls. If we assume that a significant fraction of the dose rate throughout the target building is due to fast or high-energy neutrons, we can estimate the flux of such neutrons based upon existing shielding calculations performed for radiation protection purposes. In general, the dose rates within the target building are controlled to be less than 0.25 mrem per hour. A variety of calculations have indicated that these dose rates have significant fast and high-energy neutron components. Thus they can estimate the fast neutron flux incident on the neutrino bunker, and thereby the fast neutron flux inside that bunker. Finally, they can estimate the neutron recoil rate within a nominal detector volume. Such an estimate is outlined in Table 1.

  20. Measurement and calculation of recoil pressure produced during CO{sub 2} laser interaction with ice

    SciTech Connect

    Semak, V.V.; Knorovsky, G.A.; Maccallum, D.O.; Noble, D.R.; Kanouff, M.P.

    1999-12-09

    Evaporation is a classical physics problem which, because of its significant importance for many engineering applications, has drawn considerable attention by previous researchers. Classical theoretical models [Ta. I. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, 1946] represent evaporation in a simplistic way as the escape of atoms with highest velocities from a potential well with the depth determined by the atomic binding energy. The processes taking place in the gas phase above the rapidly evaporating surface have also been studied in great detail [S.I.Anisimov and V. A. Khokhlov, Instabilities in Lasser-Matter Interaction, CRC Press, Boca Raton, 1995]. The description of evaporation utilizing these models is known to adequately characterize drilling with high beam intensity, e.g., >10{sup 7} W/cm{sup 2}. However, the interaction regimes when beam intensity is relatively low, such as during welding or cutting, lack both theoretical and experimental consideration of the evaporation. It was shown recently that if the evaporation is treated in accordance with Anisimov et.al.'s approach, then predicted evaporation recoil should be a substantial factor influencing melt flow and related heat transfer during laser beam welding and cutting. To verify the applicability of this model for low beam intensity interaction, the authors compared the results of measurements and calculations of recoil pressure generated during laser beam irradiation of a target. The target material used was water ice at {minus}10 C. The displacement of a target supported in a nearly frictionless air bearing under irradiation by a defocused laser beam from a 14 kW CO{sub 2} laser was recorded and Newton's laws of motion used to derive the recoil pressure.

  1. Quantitative angiographic assessment of elastic recoil after percutaneous transluminal coronary angioplasty.

    PubMed

    Rensing, B J; Hermans, W R; Beatt, K J; Laarman, G J; Suryapranata, H; van den Brand, M; de Feyter, P J; Serruys, P W

    1990-11-01

    Little is known about the elastic behavior of the coronary vessel wall directly after percutaneous transluminal coronary angioplasty (PTCA). Minimal luminal cross-sectional areas of 151 successfully dilated lesions were studied in 136 patients during balloon inflation and directly after withdrawal of the balloon. The circumvent geometric assumptions about the shape of the stenosis after PTCA, a videodensitometric analysis technique was used for the assessment of vascular cross-sectional areas. Elastic recoil was defined as the difference between balloon cross-sectional area of the largest balloon used at the highest pressure and minimal luminal cross-sectional area after PTCA. Mean balloon cross-sectional area was 5.2 +/- 1.6 mm2 with a mean minimal cross-sectional area of 2.8 +/- 1.4 mm2 immediately after inflation. Oversizing of the balloon (balloon artery ratio greater than 1) led to more recoil (0.8 +/- 0.3 vs 0.6 +/- 0.3 mm, p less than 0.001), suggestive of an elastic phenomenon. A difference in recoil of the 3 main coronary branches was observed: left anterior descending artery 2.7 +/- 1.3 mm2, circumflex artery 2.3 +/- 1.2 mm2 and right coronary artery 1.9 +/- 1.5 mm2 (p less than 0.025). The difference was still statistically significant if adjusted for reference area. Thus, nearly 50% of the theoretically achievable cross-sectional area (i.e., balloon cross-sectional area) is lost shortly after balloon deflation.

  2. Control of recoil losses in nanomechanical SiN membrane resonators

    NASA Astrophysics Data System (ADS)

    Borrielli, A.; Marconi, L.; Marin, F.; Marino, F.; Morana, B.; Pandraud, G.; Pontin, A.; Prodi, G. A.; Sarro, P. M.; Serra, E.; Bonaldi, M.

    2016-09-01

    In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of 107, reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures.

  3. Calculated yield of isomer depletion due to NEEC for {sup 93m}Mo recoils

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2012-11-15

    In the present work, quantitative calculations were carried out for production and depletion of the {sup 93m}Mo isomer in a relatively simple experiment using {sup 91}Zr beam ions. Such studies could be arranged at existing and operating accelerator facilities, e.g. at GSI or in JINR. The {sup 93m}Mo nuclei produced in a He gas target due to the {sup 4}He({sup 91}Zr, 2n) reaction will recoil into a gas stopper with a high velocity, being then depleted due to NEEC in highly-ionized species.

  4. Reaction {gamma}p {sup {yields}} {eta}' (958) p and polarization of recoil protons

    SciTech Connect

    Tryasuchev, V. A.

    2006-02-15

    On the basis of the isobar model extended by including the t-channel, the cross sections for and single-polarization features of the reaction {gamma}p {sup {yields}} {eta}'p are calculated for incident-photon energies up to 5 GeV, two poorly studied resonances, S{sub 11}(1978) and P{sub 13}(2080), being taken into account in this calculation. In order to reduce the ambiguities in the choice of resonances and their parameters that make it possible to reproduce the experimental differential cross sections, it is proposed to measure the polarization of recoil protons in the reaction being considered.

  5. Recoil polarization measurements of the proton electromagnetic form factor ratio at high momentum transfer

    SciTech Connect

    Andrew Puckett

    2009-12-01

    Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.

  6. Lifetime measurement of the 41+ state of 58Ni with the recoil distance method

    NASA Astrophysics Data System (ADS)

    Loelius, C.; Iwasaki, H.; Brown, B. A.; Honma, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Braunroth, T.; Campbell, C. M.; Dewald, A.; Gade, A.; Kobayashi, N.; Langer, C.; Lee, I. Y.; Lemasson, A.; Lunderberg, E.; Morse, C.; Recchia, F.; Smalley, D.; Stroberg, S. R.; Wadsworth, R.; Walz, C.; Weisshaar, D.; Westerberg, A.; Whitmore, K.; Wimmer, K.

    2016-08-01

    The quadrupole transition rate for the 41+→21+ transition of 58Ni was determined from an application of the recoil distance method with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA). The present result of the B (E 2 ;41+→21+) was found to be 50-6+11e2fm4 , which is about three times smaller than the literature value, indicating substantially less collectivity than previously believed. Shell model calculations performed with the GXPF1A effective interaction agree with the present data and the validity of the standard effective charges in understanding collectivity in the nickel isotopes is discussed.

  7. g-FACTOR Measurements of Picosecond States:. Opportunities and Limitations of the Recoil-In Method

    NASA Astrophysics Data System (ADS)

    Stone, N. J.; Stone, J. R.; Bingham, C. R.; Fischer, C. Froese; Jönsson, P.

    2008-08-01

    This paper reports a new a-priori approach to the calibration of attenuations observed in Recoil-in-Vacuum angular distribution experiments which should allow extraction of g-factors for states of picosecond (ps) lifetime in many nuclei, of both odd-A and even-A without the need for extensive experimentally based calibration. The methods used and results for Ge and Mo isotopes are discussed, with outline applications to both on-line beam/target Coulomb excitation and fission fragment experiments.

  8. Ischemic stroke secondary to aortic dissection following rifle butt recoil chest injury: a case report.

    PubMed

    Rao, Mamatha; Panduranga, Prashanth; Al-Mukhaini, Mohammed; Al-Jufaili, Mahmood; Valiath, John

    2011-11-01

    Ischemic stroke secondary to aortic dissection is not uncommon. We present a patient with left hemiplegia secondary to Stanford type A aortic dissection extending to the supra-aortic vessels, which was precipitated by rifle butt recoil chest injury. The diagnosis of aortic dissection was delayed due to various factors. Finally, the patient underwent successful Bentall procedure with complete resolution of symptoms. This case emphasizes the need for caution in the use of firearms for recreation and to take precautions in preventing such incidents. In addition, this case illustrates the need for prompt cardiovascular physical examination in patients presenting with stroke.

  9. Ischemic Stroke Secondary to Aortic Dissection Following Rifle Butt Recoil Chest Injury: A Case Report

    PubMed Central

    Rao, Mamatha; Panduranga, Prashanth; Al-Mukhaini, Mohammed; Al-Jufaili, Mahmood; Valiath, John

    2011-01-01

    Ischemic stroke secondary to aortic dissection is not uncommon. We present a patient with left hemiplegia secondary to Stanford type A aortic dissection extending to the supra-aortic vessels, which was precipitated by rifle butt recoil chest injury. The diagnosis of aortic dissection was delayed due to various factors. Finally, the patient underwent successful Bentall procedure with complete resolution of symptoms. This case emphasizes the need for caution in the use of firearms for recreation and to take precautions in preventing such incidents. In addition, this case illustrates the need for prompt cardiovascular physical examination in patients presenting with stroke. PMID:22253955

  10. Binary and Recoil Collisions in Strong Field Double Ionization of Helium

    SciTech Connect

    Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.

    2007-12-31

    We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10{sup 14} W/cm{sup 2} laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model.

  11. Experimental evidence of the vapor recoil mechanism in the boiling crisis.

    PubMed

    Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D

    2006-11-01

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  12. Simultaneous electrophoretic concentration and separation of herbicides in beer prior to stacking capillary electrophoresis UV and liquid chromatography-mass spectrometry.

    PubMed

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2016-05-01

    Simultaneous electrophoretic concentration and separation (SECS) was used as a simple and environmental friendly sample preparation strategy for herbicides in beer samples. An electric field was used to facilitate the separation and concentration of the analytes based on their charge from a 20 mL sample of diluted beer into two separate 20 μL aliquots of an acceptor electrolyte housed inside a micropipette. The anionic organophosphonate and cationic quaternary ammonium herbicides were concentrated in the anodic and cathodic pipette, respectively. Under optimized conditions, SECS was completed in 30 min at an applied voltage of 150 V, which provided analyte concentration factors of up to 90. After sample preparation, the SECS concentrate of cationic and anionic herbicides was analyzed by stacking CE with UV detection and also by LC-MS, respectively. The method detection limit for the diluted and undiluted sample was as low as 3 and 15 ng/mL, respectively. The method was linear over two orders of concentration with repeatability and intermediate precision of better than 5.8 and 7.0%RSD, respectively. Accuracy values were between 91.0-115.1%. PMID:26921124

  13. Separation and characterization of bufadienolides in toad skin using two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography coupled with mass spectrometry.

    PubMed

    Zhang, Yun; Jin, Hongli; Li, Xiaolong; Zhao, Jianqiang; Guo, Xiujie; Wang, Jixia; Guo, Zhimou; Zhang, Xiuli; Tao, Yanduo; Liu, Yanfang; Chen, Deliang; Liang, Xinmiao

    2016-07-15

    Bufadienolides possess various bioactivities especially antitumor. Due to the high structural diversity, the separation of bufadienolides often suffers from coelution problem on conventional RP columns. In this work, an off-line two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D-NPLC×RPLC) method was developed to separate and characterize bufadienolides in toad skin. Several RP and NP columns were evaluated with five reference bufadienlides. The XUnion C18 and XAmide columns exhibited superior chromatographic performances for bufadienlide separation, and were selected in RPLC and NPLC, respectively. RPLC was used in the second-dimension for the good compatibility with MS, while NPLC was adopted in the first-dimension. The orthogonality of the 2D-NPLC×RPLC system was investigated by the geometric approach using fifteen bufadienolide mixtures. The result was 49.6%, demonstrating reasonable orthogonality of this 2D-LC system. By combining the 2D-LC system with MS, 64 bufadienlides including 33 minor ones and 11 pairs of isomers in toad skin were identified. This off-line 2D-NPLC×RPLC allowed to solve the coelution problem of bufadienlides in one-dimension RPLC, and thus facilitated the identification significantly.

  14. A closer look at 40Ar/39Ar systematics of illite, recoil, retention ages, total gas ages, and a new correction method

    NASA Astrophysics Data System (ADS)

    Fitz-Diaz, E.; Hall, C. M.; van der Pluijm, B.

    2013-12-01

    One of the fundamentals of 40Ar-39Ar systematics of illite considers the effects of 39Ar recoil (ejection of 39Ar from tiny illite crystallites during the nuclear reaction 39K(n,p)39Ar), for which sample vacuum encapsulation prior to irradiation has been used since the 1990's. This technique separately measures the fraction of recoiled 39Ar and the Ar (39Ar and 40Ar) retained within illite crystals as they degas during step heating in vacuum. Total-gas ages (TGA) are calculated by using both recoiled and retained argon, while retention ages (RA) only involve retained Ar. Observations in numerous natural examples have shown that TGA fit stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10nm, and that RA better matches these constrains for larger ICTs. Illite crystals with ICT >50nm show total gas and retention ages within a few My and they are identical, within analytical error, when ICT exceeds 150nm. We propose a new age correction that takes into account the average ICT and corresponding recoil for a sample , with such corrected ages (XCA) lying between the TGA and RA end-member ages. We apply this correction to samples containing one generation of illite and it particularly affects illite populations formed in the anchizone, with typical ICT values between 10-40nm. We analyzed bentonitic samples (S1, S2 and S3) from sites in Cretaceous carbonates in the front of the Monterrey salient in northern Mexico. Four size fractions (<0.05, 0.05-0.2, 0.2-1 & 1-2 μm) were separated, analyzed with XRD and dated by Ar-Ar. XRD analysis provides mineralogic characterization, illite polytype quantification, and illite crystallite thickness (ICT) determination using half-height peak width (illite crystallinity) and the Scherrer equation. All samples contain illite as the main mineral phase, ICT values between 8-27nm, from fine to coarser grain size fractions. Ages show a range in TGA among the different size

  15. Rapid separation and identification of multiple constituents in traditional Chinese medicine formula Shenqi Fuzheng Injection by ultra-fast liquid chromatography combined with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Liu, Meng-Hua; Tong, Xin; Wang, Jin-Xu; Zou, Wei; Cao, Hui; Su, Wei-Wei

    2013-02-23

    Shenqi Fuzheng Injection (SFI) a well-known traditional Chinese medicine (TCM) formula, has been extensively used as an adjuvant to chemotherapy for cancer treatment in clinic. However, the chemical constituents in SFI, especially water-soluble ingredients, had not been investigated so far. In this study, an ultra-fast liquid chromatography (UFLC) coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) method was established for rapid separation and structural identification of the constituents in SFI. Separation was performed on a C18 reversed-phase column (2.1 mm × 100 mm, 1.8 μm) by gradient elution mode, using methanol-water containing 0.1% formic acid as mobile phase at the flow-rate of 0.2 mL/min. Accurate mass measurement for molecular ions and characteristic fragment ions could represent reliable identification criteria for these compounds. As a result, eighty-one major constituents including organic acids, amino acids, oligosaccharides, alkaloids, nucleosides, phenylpropanoids, polyacetylenes, flavonoids, isoflavonoids and saponins were identified or tentatively characterized by comparing their retention times and MS spectra with those of authentic standards or literature data. All compounds were further assigned in the individual raw material. In conclusion, the UFLC-Q-TOF-MS/MS is a highly efficient technique to separate and identify constituents in complex matrices of traditional Chinese medicines. These results obtained in this research will provide a basis for quality control and further study in vivo of SFI.

  16. Rapid separation and characterization of diterpenoid alkaloids in processed roots of Aconitum carmichaeli using ultra high performance liquid chromatography coupled with hybrid linear ion trap-Orbitrap tandem mass spectrometry.

    PubMed

    Xu, Wen; Zhang, Jing; Zhu, Dayuan; Huang, Juan; Huang, Zhihai; Bai, Junqi; Qiu, Xiaohui

    2014-10-01

    The lateral root of Aconitum carmichaeli, a popular traditional Chinese medicine, has been widely used to treat rheumatic diseases. For decades, diterpenoid alkaloids have dominated the phytochemical and biomedical research on this plant. In this study, a rapid and sensitive method based on ultra high performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry was developed to characterize the diterpenoid alkaloids in Aconitum carmichaeli. Based on an optimized chromatographic condition, more than 120 diterpenoid alkaloids were separated with good resolution. Using a systematic strategy that combines high resolution separation, highly accurate mass measurements and a good understanding of the diagnostic fragment-based fragmentation patterns, these diterpenoid alkaloids were identified or tentatively identified. The identification of these chemicals provided essential data for further phytochemical studies and toxicity research of Aconitum carmichaeli. Moreover, the ultra high performance liquid chromatography with linear ion trap-Orbitrap mass spectrometry platform was an effective and accurate tool for rapid qualitative analysis of secondary metabolite productions from natural resources.

  17. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography

    SciTech Connect

    Chong, N.S.; Houk, R.S.

    1987-01-01

    A gas chromatograph (GC) with a packed column was interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to yield atomic mass spectra from volatile organic compounds. Atomization of injected compounds was nearly complete and independent of molecular structure, so that elemental ratios could be determined. Detection limits were in the range 0.001 to 400 ng s/sup -1/, depending on the ionization energy of the element and its abundance in the background spectrum. The relative standard deviation of measured isotope ratios varied from 0.4% for Br (i.e., a ratio close to unity) to 18% for N (a very large ratio). Thus, GC-ICP-MS provides elemental and isotope ratio information that is complementary to the molecular information derived from GC-MS with conventional ionization methods.

  18. Precision measurement of quenching factors for low-energy nuclear recoils at TUNL

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Barbeau, Phil; Howell, Calvin; Karwowski, Hugon

    2014-03-01

    With detector technologies becoming increasingly sensitive to exotic events, a thorough understanding of signal yield as a function of deposited energy is required for appropriate interpretation of results from cutting edge detector systems. Elastic neutron scattering is a probe which has been used to mimic the nuclear recoils which may be produced in detection media by light-WIMP interactions or coherent neutrino-nucleus scattering (CNS). We have built at the Triangle Universities Nuclear Laboratory (TUNL) a facility which produces pulsed, collimated, low-energy, quasi-monoenergetic neutron beams using the 7Li(p,n) reaction, resulting in fluxes of ~ 1 neutrons / (s . cm2) at ~90 cm from the neutron-production target. The first precision results from this facility are reported for ultra-low-energy recoils in NaI(Tl) and CsI(Na) and future plans are outlined, including measurements on candidate materials for a CNS detector that can potentially be fielded at the Spallation Neutron Source of Oak Ridge National Laboratory as a part the Coherent Scatter Initiative (CSI). We discuss the implications of new, precise measurements of quenching factors on neutrino detectors and on current- and next-generation light-WIMP searches, particularly the DAMA experiment.

  19. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method. PMID:18509666

  20. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  1. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  2. Recoil effects due to electron shake-off following the beta decay of 6 He

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.; Schulhoff, Eva

    2016-05-01

    There are currently several experiments in progress to search for new physics beyond the Standard Model by high precision studies of angular correlations in the β decay of the helium isotope 6He to form 6Li +e- +νe. After the β decay process, the atomic electrons of 6 Li+ adjust to the sudden change of nuclear charge from 2 to 3. We calculate the probabilities for electron shake-up and shake-off, including recoil effects, by the use of a Stieltjes imaging representation of the final states. A variety of sum rules provides tight consistency checks on the accuracy of the results. Results obtained previously indicate that there is a 7 σ disagreement between theory and experiment for the additional nuclear recoil induced by the emission of atomic shake-off electrons. This disagreement will be further studied, and the results extended to the 1 s 2 p3 P and metastable 1 s 2 s3 S states as initial states of 6 He before β-decay. Research supported by the Natural Sciences and Engineering Research Council of Canada.

  3. Characterization of Low-mass, Wide-separation Substellar Companions to Stars in Upper Scorpius: Near-infrared Photometry and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lachapelle, François-René; Lafrenière, David; Gagné, Jonathan; Jayawardhana, Ray; Janson, Markus; Helling, Christiane; Witte, Soeren

    2015-03-01

    We present new 0.9-2.45 μm spectroscopy (R˜ 1000 ), and Y, J, H, Ks, {{L}\\prime } photometry, obtained at Gemini North, of three low-mass brown dwarf companions on wide orbits around young stars of the Upper Scorpius OB association: HIP 78530 B, [PGZ 2001] J161031.9-191305 B, and GSC 06214-00210 B. We use these data to assess the companions’ spectral type, temperature, surface gravity, and mass, as well as the ability of the BT-SETTL and Drift-Phoenix atmosphere models to reproduce the spectral features of young substellar objects. For completeness, we also analyze the archival spectroscopy and photometry of the Upper Scorpius planetary mass companion 1RXS J160929.1-210524 b. Based on a comparison with model spectra we find that the companions, in the above order, have effective temperatures of 2700 ± 100, 2500 ± 200, 2300 ± 100, and 1700 ± 100 K. These temperatures are consistent with our inferred spectral types, respectively M7 β, M9 γ, M9 γ, and L4 γ, obtained from spectral indices and comparisons with templates. From bolometric luminosities estimated from atmosphere model spectra adjusted to our photometry, and using evolution models at 5-10 Myr, we estimate masses of 21-25, 28-70, 14-17, and 7-12 MJup, respectively. [PGZ 2001] J161031.9-191305 B appears significantly overluminous for its inferred temperature, which explains its higher mass estimate. Synthetic spectra based on the BT-Settl and Drift-Phoenix atmosphere models generally offer a good fit to our observed spectra, although our analysis has highlighted a few problems. For example, the best fits in the individual near-infrared bands occur at different model temperatures. Also, temperature estimates based on a comparison of the broadband magnitudes and colors of the companions to synthetic magnitudes from the models are systematically lower than the temperature estimates based on a comparison with synthetic spectra.

  4. Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography×reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

    PubMed

    Sun, Wanyang; Tong, Ling; Miao, Jingzhuo; Huang, Jingyi; Li, Dongxiang; Li, Yunfei; Xiao, Hongting; Sun, Henry; Bi, Kaishun

    2016-01-29

    Salvia miltiorrhiza (SM) is one of the most widely used Traditional Chinese Medicine. Active constituents of SM mainly contain hydrophilic phenolic acids (PAs) and lipophilic tanshinones. However, due to the existing of multiple ester bonds and unsaturated bonds in the structures, PAs have numerous chemical conversion products. Many of them are so low-abundant that hard to be separated using conventional methods. In this study, an off-line two-dimensional liquid chromatography (2D-LC) method was developed to separate PAs in SM and its related preparations. In the first dimension, samples were fractionated by hydrophilic interaction chromatography (HILIC) (Acchrom×Amide, 4.6×250mm, 5μm) mainly based on the hydrogen bonding effects. The fractions were then separated on reversed-phase liquid chromatography (RP-LC) (Acquity HSS T3, 2.1×50mm, 1.7μm) according to hydrophobicity. For the selective identification of PAs, diode array detector (DAD) and electrospray ionization tandem ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) were employed. Practical and effective peak capacities of all the samples were greater than 2046 and 1130, respectively, with the orthogonalities ranged from 69.7% to 92.8%, which indicated the high efficiency and versatility of this method. By utilizing the data post-processing techniques, including mass defect filter, neutral loss filter and product ion filter, a total of 265 compounds comprising 196 potentially new PAs were tentatively characterized. Twelve kinds of derivatives, mainly including glycosylated compounds, O-alkylated compounds, condensed compounds and hydrolyzed compounds, constituted the novelty of the newly identified PAs. The HILIC×RP-LC/TOF-MS system expanded our understanding on PAs of S. miltiorrhiza and its related preparations, which could also benefit the separation and characterization of polar constituents in complicated herbal extracts.

  5. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography-mass spectrometry.

    PubMed

    Bertoletti, Laura; Regazzoni, Luca; Aldini, Giancarlo; Colombo, Raffaella; Abballe, Franco; Caccialanza, Gabriele; De Lorenzi, Ersilia

    2013-04-10

    In this work we present for the first time the use of ion-exchange liquid chromatography to separate the native form and a partially structured intermediate of the folding of the amyloidogenic protein beta2-microglobulin. Using a strong anion-exchange column that accounts for the differences in charge exposure of the two conformers, a LC-UV method is initially optimised in terms of mobile phase pH, composition and temperature. The preferred mobile phase conditions that afford useful information were found to be 35 mM ammonium formate, pH 7.4 at 25°C. The dynamic equilibrium of the two species is demonstrated upon increasing the concentration of acetonitrile in the protein sample. Then, the chromatographic method is transferred to MS detection and the respective charge state distributions of the separated conformers are identified. The LC-MS results demonstrate that one of the conformers is partially unfolded, compared with the native and more compact species. The correspondence with previous results obtained in free solution by capillary electrophoresis suggest that strong ion exchange LC-MS does not alter beta2-microglobulin conformation and maintains the dynamic equilibrium already observed between the native protein and its folding intermediate. PMID:23522119

  6. B → Dℓν form factors at nonzero recoil and |Vcb| from 2+1-flavor lattice QCD

    SciTech Connect

    Bailey, Jon A.

    2015-08-10

    We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay B¯→Dℓν¯ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate our results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for f+(q2) and f0(q2), including statistical and systematic errors, as coefficients of a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BABAR to determine the CKM matrix element, |Vcb|=(39.6 ± 1.7QCD+exp ± 0.2QED) × 10–3. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. In conclusion, we use them to update our calculation of the ratio R(D) in the Standard Model, which yields R(D)=0.299(11).

  7. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system.

    PubMed

    Kudryavtsev, Andrey S; Makas, Alexey L; Troshkov, Mikhail L; Grachev, Mikhail А; Pod'yachev, Sergey P

    2014-06-01

    A method for fast simultaneous on-site determination of methyl mercaptan and dimethyl sulfide in air was developed. The target compounds were actively collected on silica gel, followed by direct flash thermal desorption, fast separation on a short chromatographic column and detection by means of mass spectrometer with atmospheric pressure chemical ionization. During the sampling of ambient air, water vapor was removed with a Nafion selective membrane. A compact mass spectrometer prototype, which was designed earlier at Trofimuk Institute of Petroleum Geology and Geophysics, was used. The minimization of gas load of the atmospheric pressure ion source allowed reducing the power requirements and size of the vacuum system and increasing its ruggedness. The measurement cycle is about 3 min. Detection limits in a 0.6 L sample are 1 ppb for methyl mercaptan and 0.2 ppb for dimethyl sulfide.

  8. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  9. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    SciTech Connect

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems.

  10. Angular anisotropy parameters and recoil-ion momentum distribution in two-photon double ionization of helium

    SciTech Connect

    Kheifets, A. S.; Ivanov, I. A.; Bray, Igor

    2007-08-15

    We present convergent-close-coupling (CCC) calculations of the angular anisotropy parameters {beta}{sub 2},{beta}{sub 4} and the recoil ion momentum distribution d{sigma}/dp in two-photon double ionization (TPDI) of helium. In a stark contrast to single-photon double ionization (SPDI), where the {beta}{sub 2} parameter varies widely changing the angular distribution from isotropic to nearly dipole for slow and fast photoelectrons, respectively, the {beta} parameters for TPDI show very little change. The angular distribution of the recoil ion is fairly isotropic in TPDI as opposed to a strong alignment with the polarization of light in SPDI.

  11. Numerical simulation of heat and mass transfer processes in the nozzle and expansion unit of the separator-steam-generator system in waste-heat utilization complex

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.

    2015-12-01

    Homogeneous equilibrium and nonequilibrium (relaxation) models are used to simulate flash boiling flows in nozzles. The simulation were performed using the author's CFD-code ANES. Existing experimental data are used to test the realized mathematical model and the modified algorithms of ANES CFD-code. The results of test calculations are presented, together with data obtained for the nozzle and expansion unit of the steam generator and separator in the waste-heat system at ZAO NPVP Turbokon. The SIMPLE algorithm may be used for the transonic and supersonic flashing liquid flow. The relaxation model yields better agreement with experimental data regarding the distribution of void fraction along the nozzle axis. For the given class of flow, the difference between one- and two-dimensional models is slight.

  12. Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations.

    PubMed

    Zhong, Liping; Cheng, Fei; Lu, Xiaoyong; Duan, Yixiang; Wang, Xiaodong

    2016-09-01

    Breast cancer (BC) is not only the most frequently diagnosed cancer, but also the leading cause of cancer death among women worldwide. This study aimed to screen the potential salivary biomarkers for breast cancer diagnosis, staging, and biomarker discovery. For the first time, a UPLC-MS based method along with multivariate data analysis, was proposed for the global saliva metabonomics analysis and diagnosis of BC, which used both hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) separations and operated in both positive (ESI+) and negative (ESI-) ionization modes. On account of different polarities of endogenous metabolites, this method was established to overcome the boundedness of a single chromatographic approach. As a result, 18 potential metabolites for diagnosing BC were identified. A nonparametric Mann-Whitney U test, heat map, and the receiver operating characteristic (ROC) were exploited to analyze the data with the purpose of evaluating the predictive power of the 18 biomarkers. Significant differences (P<0.05) were disclosed in terms of the levels of the 18 potential biomarkers between BC patients and healthy controls (HC). Among the 18 biomarkers, three up-regulated metabolites, LysoPC (18:1), LysoPC (22:6) and MG (0:0/14:0/0:0) displayed the area under the curve (AUC) values of 0.920, 0.920 and 0.929, respectively, indicating the high accuracy of this method to predict BC. In this study, an integrated metabonomics analysis in human saliva for identifying potential biomarkers to diagnose and stage BC was successfully eastablished, which was non-invasive, reliable, low-cost, and simple. The HILIC was demonstrated to be essential for a comprehensive saliva metabonomics profiling as well as RPLC separation. This saliva metabonomics technique may provide new insight into the discovery and identification of diagnostic biomarkers for BC. PMID:27343615

  13. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil

    NASA Astrophysics Data System (ADS)

    Wiseman, Alan G.

    1992-08-01

    Using formulas developed by Blanchet, Damour, and Iyer, we obtain a symmetric trace-free multipolar expansion of the gravitational radiation from a coalescing binary system which is sufficiently accurate to allow a post-Newtonian calculation of the linear momentum carried off by the gravitational radiation prior to a binary coalescence. We briefly examine the structure of the post-quadrupole corrections to the wave form for an orbiting binary system near coalescence. The post-Newtonian correction to the momentum ejection allows a more accurate calculation of the system recoil velocity (radiation rocket effect). We find that the higher-order correction actually reduces the net momentum ejection. Furthermore, the post-Newtonian correction to the momentum flux has only a weak dependence on the mass ratio of the objects in the binary, suggesting that previous test mass calculations may be quite accurate. We estimate an upper bound of the center-of-mass velocity of 1 km s-1 for neutron star binaries very near coalescence. In an appendix we give a self-contained (albeit less rigorous) derivation of the gravitational wave form using the Epstein-Wagoner formalism.

  14. Char separator

    DOEpatents

    Matthews, Francis T.

    1979-01-01

    Particulates removed from the flue gases produced in a fluidized-bed furnace are separated into high-and low-density portions. The low-density portion is predominantly char, and it is returned to the furnace or burned in a separate carbon burnup cell. The high-density portion, which is predominantly limestone products and ash, is discarded or reprocessed. According to another version, the material drained from the bed is separated, the resulting high-and low-density portions being treated in a manner similar to that in which the flue-gas particulates are treated.

  15. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  16. Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns: A highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry.

    PubMed

    Simone, Patrizia; Pierri, Giuseppe; Foglia, Patrizia; Gasparrini, Francesca; Mazzoccanti, Giulia; Capriotti, Anna Laura; Ursini, Ornella; Ciogli, Alessia; Laganà, Aldo

    2016-01-01

    Polymethacrylate-based monolithic capillary columns, prepared by γ-radiation-induced polymerization, were used to optimize the experimental conditions (nature of the organic modifiers, the content of trifluoroacetic acid and the column temperature) in the separation of nine standard proteins with different hydrophobicities and a wide range of molecular weights. Because of the excellent permeability of the monolithic columns, an ion-pair reversed-phase capillary liquid chromatography with high-resolution mass spectrometry method has been developed by coupling the column directly to the mass spectrometer without a flow-split and using a standard electrospray interface. Additionally, the high working flow and concomitant high efficiency of these columns allowed us to employ a longer column (up to 50 cm) and achieve a peak capacity value superior to 1000. This work is motivated by the need to develop new materials for high-resolution chromatographic separation that combine chemical stability at elevated temperatures (up to 75°C) and a broad pH range, with a high peak capacity value. The advantage of the γ-ray-induced monolithic column lies in the batch-to-batch reproducibility and long-term high-temperature stability. Their proven high loading capacity, recovery, good selectivity and high permeability, moreover, compared well with that of a commercially available poly(styrene-divinylbenzene) monolithic column, which confirms that such monolithic supports might facilitate analysis in proteomics.

  17. Chiral separation of new cathinone- and amphetamine-related designer drugs by gas chromatography-mass spectrometry using trifluoroacetyl-l-prolyl chloride as chiral derivatization reagent.

    PubMed

    Mohr, Stefan; Weiß, Jennifer A; Spreitz, Josef; Schmid, Martin G

    2012-12-21

    Since cathinone derivatives gained high popularity on the recreational drugs market within the past 5 years the development of analytical methods for the achiral and chiral determination of this substance class is of great interest. Not at least because it is obvious that the pharmacological potency differs between both enantiomers. Cathinones are structurally closely related to amphetamines, which have similar stimulating effects and are somehow better investigated. The goal of this research was to perform indirect enantioseparation of novel psychoactive cathinone and amphetamine derivatives. Trifluoroacetyl-l-prolyl chloride was served as chiral derivatization agent (CDA). Chromatographic separation was performed using a commercially available HP5-MS capillary column with a length of 30 m. Helium was used as carrier gas with a constant flow of 1.0 ml/min. Under optimum conditions 14 amphetamine derivatives were successfully resolved into their enantiomers and detected with the single quadrupol detector. Racemic methcathinone derivatives analyzed with the same method showed different peak areas for each of the produced diastereomeric isomers, even if they are structurally closely related to the amphetamines. Derivatization experiments with the single isomers of methcathinone led to both diastereomers whereas the S(-) enantiomer seemed to racemize more likely. Based on comparative experiments with R-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (MTPA) as CDA, racemization due to the keto-enol-tautomerism of the cathinone derivatives seemed to be responsible for this phenomenon. Nevertheless, 18 cathinone derivatives were successfully enantioseparated and an approach of quantitative evaluation is demonstrated.

  18. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry.

    PubMed

    Qiao, Xue; Song, Wei; Ji, Shuai; Wang, Qi; Guo, De-an; Ye, Min

    2015-07-10

    Licorice is one of the most popular herbal medicines worldwide. It contains a big array of phenolic compounds (flavonoids, coumarins, and diphenylethanones). Due to high structural diversity, low abundance, and co-elution with licorice saponins, these phenolic compounds are difficult to be separated by conventional chromatography. In this study, a mobile phase-dependent reversed-phase×reversed phase comprehensive two-dimensional liquid chromatography (RP×RP 2DLC) method was established to separate phenolic compounds in licorice (the roots of Glycyrrhiza uralensis). Organic solvents in the mobile phase were optimized to improve orthogonality of the first and second dimensions, and a synchronized gradient mode was used to improve chromatographic resolution. Finally, licorice extracts were eluted with methanol/water/formic acid in the first dimension (Acquity CSH C18 column), and acetonitrile/water/formic acid in the second dimension (Poroshell Phenyl-Hexyl column). By using this 2DLC system, a total of 311 compounds were detected within 40min. The practical and effective peak capacity was 1329 and 524, respectively, and the orthogonality was 79.8%. The structures of 21 selected unknown compounds were tentatively characterized by mass spectrometry, and 8 of them were discovered from G. uralensis for the first time. The mobile phase-dependent 2DLC/MS system could benefit the separation and characterization of natural products in complicated herbal extracts.

  19. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  20. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  1. Selenium speciation in bay scallops by high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection after complete enzymatic extraction.

    PubMed

    Zhang, Qihua; Yang, Guipeng

    2014-01-17

    Selenium (Se) species, Se-methyl-seleno-cysteine (MeSeCys), seleno-cystine (SeCys2), seleno-methionine (SeMet), selenite (SeO3(2-)) and selenate (SeO4(2-)), in the three main anatomical tissues of bay scallops (Argopecten irradians), the adductor muscle, the mantle and the visceral mass, were completely released by enzymatic hydrolysis and detected by high performance liquid chromatography (HPLC) in combination with inductively coupled plasma mass spectrometry (ICP-MS). For the thorough hydrolysis of the proteins to free the Se species, bay scallop tissues were pre-treated (pre-hydrolyzed) with papain in a 1molL(-1) sodium bicarbonate solution containing 5mmolL(-1) sodium thiosulfate at 30-40°C for 24h, then hydrolyzed by the combination of Flavourzyme(®) 500 L, carboxypeptidase Y and trypsin (3+1+1) at 45°C, at a constant pH of 8.00 for 6h. Under the optimized conditions, the quantification limits of MeSeCys, SeCys2, SeMet, SeO3(2-) and SeO4(2-) were 0.69, 0.48, 0.93 0.53 and 1.22μgL(-1), respectively (equivalent to 0.14, 0.097, 0.19, 0.11 and 0.24μgg(-1) for real samples). The working curves in the concentration ranges of 2 to 500μgL(-1) were linear with all the RSD (n=5) smaller than 15% and regression coefficients greater than 0.999. The recoveries of the species for spiked samples at 4μgg(-1) (equivalent to 20μgL(-1) in the final hydrolyzates) levels all exceeded 90%. The developed method was validated by the determination of SeMet in SELM-1, a Se enriched yeast certified reference material (CRM). Selenate was the only absent species, whereas the other four species did exist in bay scallops. PMID:24342533

  2. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  3. New recoil transfer chamber for thermalization of heavy ions produced in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Alfonso, M. C.; Tereshatov, E. E.; DeVanzo, M. J.; Sefcik, J. A.; Bennett, M. E.; Mayorov, D. A.; Werke, T. A.; Folden, C. M.

    2015-10-01

    A new Recoil Transfer Chamber (RTC) has been designed, fabricated, and characterized at the Cyclotron Institute at Texas A&M University. The design is based on a gas stopper that was previously in routine use at the National Superconducting Cyclotron Laboratory. This new RTC uses He gas to stop ions, and a combination of a static electric field and gas flow to maximize the extraction efficiency. In offline experiments, a 228Th source was used to produce 216Po which was successfully extracted even though it has a short half-life. In online experiments using the products of the 118Sn(40Ar, 6n)152Er reaction, an efficiency of several tens of percent was measured.

  4. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    SciTech Connect

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  5. Stability diagram of the collective atomic recoil laser with thermal atoms

    NASA Astrophysics Data System (ADS)

    Tomczyk, H.; Schmidt, D.; Georges, C.; Slama, S.; Zimmermann, C.

    2015-06-01

    We experimentally investigate cold thermal atoms in a single sidedly pumped optical ring resonator for temperatures between 0.4 and 9 μ K . The threshold for collective atomic recoil lasing (CARL) is recorded for various pump-cavity detunings. The resulting stability diagram is interpreted by simulating the classical CARL equations. We find that the stability diagram for thermal atoms shows the same asymmetry as observed for Bose-Einstein condensates in previous experiments. Whereas for condensates the asymmetry is well explained by a Dicke-type quantum model we here discuss a simplified classical model. It complements the quantum model and provides an intuitive explanation based on the change in the long-range atomic interaction with pump-cavity detuning.

  6. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  7. Neutron scattering facility for the calibration of the response to nuclear recoils

    NASA Astrophysics Data System (ADS)

    Jochum, J.; Chambon, B.; Drain, D.; von Feilitzsch, F.; Gascon, J.; Huber, M.; Jagemann, T.; de Jésus, M.; Lachenmaier, T.; Lanfranchi, J.-C.; Martineau, O.; Potzel, W.; Rüdig, A.; Schnagl, J.; Simon, E.; Stark, M.; Stern, M.; Wulandari, H.

    2002-02-01

    A possibility to search for elementary particles as dark matter candidates is to detect elastic scattering with cryogenic detectors. For the interpretation of the data one has to determine the detector response to nuclear recoils, the so-called quenching factors. They can differ for the heat-, for the scintillation- and for the ionization-signal and can be measured by scattering of neutrons. The CRESST- and the EDELWEISS-collaborations have set up a neutron scattering facility for cryogenic detectors at the tandem-accelerator of the Munich `Maier-Leibniz-Labor.' The scattering angle and the time-of-flight of the neutrons are measured by an array of liquid scintillator cells. The pulsed high energy (11 MeV) neutron beam is created by nuclear reaction of a 11B on a H2-gas target. The set-up and the results of first tests are presented. .

  8. The B {r{underscore}arrow} D*{ell}{nu} form factor at zero recoil

    SciTech Connect

    Simone, J.N.; Hashimoto, S.; El-Khadra, A.X.; Kronfeld, A.S.; Mackenzie, P.B.; Ryan, S.M.

    2000-01-26

    The authors describe a model independent lattice QCD method for determining the deviation from unity for h{sub A{sub 1}}, the B {r{underscore}arrow} D*{ell}{nu} form factor at zero recoil. They extend the double ratio method previously used to determine the B {r{underscore}arrow} D{ell}{nu} form factor. The bulk of statistical and systematic errors cancel in the double ratios they consider, yielding form factors which promise to reduce present theoretical uncertainties in the determination of {vert{underscore}bar}V{sub cb}{vert{underscore}bar}. They present results from a prototype calculation at a single lattice spacing corresponding to {beta} = 5.7.

  9. Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity.

    PubMed

    Slama, S; Bux, S; Krenz, G; Zimmermann, C; Courteille, Ph W

    2007-02-01

    Collective interaction of light with an atomic gas can give rise to superradiant instabilities. We experimentally study the sudden buildup of a reverse light field in a laser-driven high-finesse ring cavity filled with ultracold thermal or Bose-Einstein condensed atoms. While superradiant Rayleigh scattering from atomic clouds is normally observed only at very low temperatures (i.e., well below 1 microK), the presence of the ring cavity enhances cooperativity and allows for superradiance with thermal clouds as hot as several 10 microK. A characterization of the superradiance at various temperatures and cooperativity parameters allows us to link it to the collective atomic recoil laser.

  10. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    SciTech Connect

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.

    2011-11-15

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a starlike geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S{sub 1/2}{yields}5P{sub 3/2}{yields}6S{sub 1/2}{yields}nP in Rb atoms have shown that, compared to the one- and two-photon laser excitation, this approach provides much narrower linewidth and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.

  11. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  12. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  13. Measurement of the (211)Pb half-life using recoil atoms from (219)Rn decay.

    PubMed

    Aitken-Smith, P M; Collins, S M

    2016-04-01

    The radioactive half-life of (211)Pb was measured, by α-particle counting of samples of radiochemically pure (211)Pb in equilibrium with its α-emitting progeny, (211)Bi and (211)Po. The samples were prepared by the collection of (215)Po recoil atoms from the decay of the (219)Rn decay progeny produced from a (223)Ra sample onto stainless steel discs. The radioactive decay of the (211)Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13)min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of T1/2((211)Pb)=36.161 (17)min has been evaluated from the current literature values. PMID:26773817

  14. Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics

    SciTech Connect

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas

    2009-01-28

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  15. The role of localized recoil in the formation of Kikuchi patterns.

    PubMed

    Winkelmann, Aimo; Vos, Maarten

    2013-02-01

    In electron scattering from crystals, diffraction spots are replaced by Kikuchi patterns at high momentum transfer. Kikuchi pattern formation is based on the concept of effective incoherent electron sources (or detectors) inside a crystal. The resulting incoherence is a consequence of energy transfer connected with the momentum transfer in large-angle scattering events. We identify atomic recoil as a key incoherent process giving rise to electron Kikuchi patterns in the scope of the "channeling-in and channeling-out" model of electron backscatter diffraction (EBSD) and electron channeling patterns (ECP) in the scanning electron microscope (SEM). Using model calculations, we explore the characteristic role of the localization of the incoherent scattering event at specific places within the unit cell. In this way, we explain why sometimes inelastic losses do cause Kikuchi-type contrast, and sometimes inelastic losses result in the disappearance of this contrast in the SEM.

  16. Shielding design for the Magnetic Recoil Spectrometer (MRS) at OMEGA and the NIF using TART2002

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Glebov, V. Yu.; Haan, S.; Wilson, D. C.; Leeper, R.

    2005-10-01

    A Magnetic Recoil Spectrometer (MRS) is currently being developed, at both OMEGA and the NIF, for measurements of down-scattered neutrons from which ρR of cryogenic DT implosions can be inferred. As is the case for complementary methods to measure ρR,ootnotetextC. K. Li et al, Phys. Plasmas 8, 4902 (2001) minimizing the effect of the background is critical for successful implementation. The established minimum S/B of 20, folded with CR-39 neutron response, determines the tolerable neutron fluence. The transport code TART2002 was used to calculate the neutron fluence at the MRS detector and provided input for design of the shielding for the MRS. This poster will present the current status of this project. This work was supported in part by LLE, LLNL, the U.S. DoE, the Univ. of Rochester, and the N.Y. State Energy Research and Development Authority.

  17. Measurement of the (211)Pb half-life using recoil atoms from (219)Rn decay.

    PubMed

    Aitken-Smith, P M; Collins, S M

    2016-04-01

    The radioactive half-life of (211)Pb was measured, by α-particle counting of samples of radiochemically pure (211)Pb in equilibrium with its α-emitting progeny, (211)Bi and (211)Po. The samples were prepared by the collection of (215)Po recoil atoms from the decay of the (219)Rn decay progeny produced from a (223)Ra sample onto stainless steel discs. The radioactive decay of the (211)Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13)min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of T1/2((211)Pb)=36.161 (17)min has been evaluated from the current literature values.

  18. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGES

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  19. Recoil Decay Tagging Study Of Transitional Proton Emitters 145,146,147Tm

    SciTech Connect

    Robinson, A.P.; Woods, P.J.; Davinson, T.; Liu, Z.; Davids, C.N.; Seweryniak, D.; Carpenter, M.P.; Hammond, N.; Janssens, R.V.F.; Mukherjee, G.; Sinha, S.; Blank, B.; Freeman, S.J.; Hoteling, N.; Shergur, J.; Walters, W.B.; Scholey, C.; Sonzogni, A.A.; Woehr, A.

    2005-04-05

    Gamma rays from the transitional proton emitting nuclei 145,146,147Tm have been observed using the recoil-decay tagging technique. The ground state band of 147Tm was confirmed and extended and the unfavoured signature sequence was observed. A ground state rotational band with properties of a decoupled h11/2 band was observed in 145Tm. In addition coincidences between the proton fine structure line and the 2+{yields}0+ {gamma}-ray transition in 144Er were detected at the focal plane of the FMA. This is the first time that coincidences between proton radioactive decays and {gamma} rays have been seen. The particle decay of 146Tm has been measured with improved statistics and a rotational band similar to 147Tm has been observed.

  20. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  1. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons.

  2. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons. PMID:26724081

  3. Plasma isotope separation methods

    SciTech Connect

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  4. Origin of open recoil curves in L10-A1 FePt exchange coupled nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.

    2016-11-01

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L10-A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases.

  5. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.

    PubMed

    Bluemlein, Katharina; Raab, Andrea; Feldmann, Jörg

    2009-01-01

    The instability of metal and metalloid complexes during analytical processes has always been an issue of an uncertainty regarding their speciation in plant extracts. Two different speciation protocols were compared regarding the analysis of arsenic phytochelatin (As(III)PC) complexes in fresh plant material. As the final step for separation/detection both methods used RP-HPLC simultaneously coupled to ICP-MS and ES-MS. However, one method was the often used off-line approach using two-dimensional separation, i.e. a pre-cleaning step using size-exclusion chromatography with subsequent fraction collection and freeze-drying prior to the analysis using RP-HPLC-ICP-MS and/or ES-MS. This approach revealed that less than 2% of the total arsenic was bound to peptides such as phytochelatins in the root extract of an arsenate exposed Thunbergia alata, whereas the direct on-line method showed that 83% of arsenic was bound to peptides, mainly as As(III)PC(3) and (GS)As(III)PC(2). Key analytical factors were identified which destabilise the As(III)PCs. The low pH of the mobile phase (0.1% formic acid) using RP-HPLC-ICP-MS/ES-MS stabilises the arsenic peptide complexes in the plant extract as well as the free peptide concentration, as shown by the kinetic disintegration study of the model compound As(III)(GS)(3) at pH 2.2 and 3.8. But only short half-lives of only a few hours were determined for the arsenic glutathione complex. Although As(III)PC(3) showed a ten times higher half-life (23 h) in a plant extract, the pre-cleaning step with subsequent fractionation in a mobile phase of pH 5.6 contributes to the destabilisation of the arsenic peptides in the off-line method. Furthermore, it was found that during a freeze-drying process more than 90% of an As(III)PC(3) complex and smaller free peptides such as PC(2) and PC(3) can be lost. Although the two-dimensional off-line method has been used successfully for other metal complexes, it is concluded here that the fractionation and

  6. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.

    PubMed

    Bluemlein, Katharina; Raab, Andrea; Feldmann, Jörg

    2009-01-01

    The instability of metal and metalloid complexes during analytical processes has always been an issue of an uncertainty regarding their speciation in plant extracts. Two different speciation protocols were compared regarding the analysis of arsenic phytochelatin (As(III)PC) complexes in fresh plant material. As the final step for separation/detection both methods used RP-HPLC simultaneously coupled to ICP-MS and ES-MS. However, one method was the often used off-line approach using two-dimensional separation, i.e. a pre-cleaning step using size-exclusion chromatography with subsequent fraction collection and freeze-drying prior to the analysis using RP-HPLC-ICP-MS and/or ES-MS. This approach revealed that less than 2% of the total arsenic was bound to peptides such as phytochelatins in the root extract of an arsenate exposed Thunbergia alata, whereas the direct on-line method showed that 83% of arsenic was bound to peptides, mainly as As(III)PC(3) and (GS)As(III)PC(2). Key analytical factors were identified which destabilise the As(III)PCs. The low pH of the mobile phase (0.1% formic acid) using RP-HPLC-ICP-MS/ES-MS stabilises the arsenic peptide complexes in the plant extract as well as the free peptide concentration, as shown by the kinetic disintegration study of the model compound As(III)(GS)(3) at pH 2.2 and 3.8. But only short half-lives of only a few hours were determined for the arsenic glutathione complex. Although As(III)PC(3) showed a ten times higher half-life (23 h) in a plant extract, the pre-cleaning step with subsequent fractionation in a mobile phase of pH 5.6 contributes to the destabilisation of the arsenic peptides in the off-line method. Furthermore, it was found that during a freeze-drying process more than 90% of an As(III)PC(3) complex and smaller free peptides such as PC(2) and PC(3) can be lost. Although the two-dimensional off-line method has been used successfully for other metal complexes, it is concluded here that the fractionation and

  7. Geologic interpretations of seismic data Route 128 (Northern Circumferential Highway) cut, and Hopkins Street grade separation stations 1-18 in Wakefield, Mass.

    USGS Publications Warehouse

    May, James E.; Lineham, Rev. Daniel

    1950-01-01

    The completion of a segment of the Northern Circumferential Highway, Route 126, in Wakefield, Mass., requires an underpass bridge at Hopkins Street, Station 5+50. The plan of the project shows approximately 1800 feet if approach cuts between stations 1 and 18. In October 1945 a preliminary seismic study was made of a segment of this cut between stations 6+50 and 13+30. Four profiles were made at this time and a report was submitted by Newton E. Chute and Rev. Daniel Linhan (file report of January 15). This work showed a relatively shallow (in general, 6 to 12 feet in depth) somewhat irregular bedrock surface between stations 6+50 and 13+50. That data indicated that much of this segment of the cut will be in bedrock. In order to obtain more complete data for the preparation of detailed estimates on the amount of bedrock to be excavated for this segment of the cut, and also to obtain sufficient data for the unexplored segment of the cut, 21 additional seismic traverses were made in September 1949. The present report contains only the results obtained from this later work. The work was performed as a part of a cooperative program of the Massachusetts Department of Public Works and the United States Geological Survey.

  8. Simultaneous separation of 17 inorganic and organic arsenic compounds in marine biota by means of high-performance liquid chromatography/inductively coupled plasma mass spectrometry.

    PubMed

    Kohlmeyer, Ute; Kuballa, Jürgen; Jantzen, Eckard

    2002-01-01

    A method using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) has been developed to determine inorganic arsenic (arsenite, arsenate) along with organic arsenic compounds (monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and several arsenosugars) in fish, mussel, oyster and marine algae samples. The species were extracted by means of a methanol/water mixture and a dispersion unit in 2 min, with extraction efficiencies ranging from 83 to 107% in the different organisms. Up to 17 different species were determined within 15 min on an anion-exchange column, using a nitric acid gradient and an ion-pairing reagent. As all species are shown in one chromatogram, a clear overview of arsenic distribution patterns in different marine organisms is given. Arsenobetaine is the major compound in marine animals whereas arsenosugars and arsenate are dominant in marine algae. The method was validated with CRM DORM-2 (dogfish muscle). Concentrations were within the certified limits and low detection limits of 8 ng g(-1) (arsenite) to 50 ng g(-1) (arsenate) were obtained. PMID:11968129

  9. Double and single ionization of He and other targets studied using cold target recoil momentum spectroscopy

    SciTech Connect

    Doerner, R.; Feagin, J. M.; Brauning, H.; Jagutzki, O.; Jung, M.; Kanter, E. P.; Khemliche, H.; Kravis, S.; Mergel, V.; Prior, M. H.; Schmidt-Boeking, H.; Spielberger, L.; Ullrich, J.; Unverzagt, M.; Vogt, T.

    1997-04-01

    Double ionization of an atom by a single photon is the simplest and most fundamental many-electron process. The ejection of two electrons following the absorption of one photon is strictly prohibited in an independent electron approximation. Thus determining the probability of double photoionization alone is already a challenging test of the understanding of electron-electron correlation. Furthermore, in the slow breakup of a bound system into three charged particles, the final state wave function must represent a high degree of few-body Coulomb correlation involving the simultaneous interaction of all three particles. The case of double photoionization is again particularly well suited to study this problem as the energy and the angular momentum delivered to the system can be very well controlled. Helium, as the most basic three body system, has been the target of extensive studies over the past decades. The purpose of this project has been to study double and single ionization using cold target recoil ion momentum spectroscopy (COLTRIMS). This technique has been widely applied within the area of ion-atom collisions to study the dynamics of energy and momentum transfer in collisions between few-electron systems, and the entire technical machinery has been transferred to photon-atom collisions. The technique uses space- and time-imaging of He{sup +} and He{sup ++} recoil ions created in photon-He collisions to measure the full momentum vector of each ion produced. Event-mode recording is used and a solid angle of nearly 4{pi} is realized, allowing an extremely high data-collection efficiency. In order to reduce the initial momentum spread of the He target a precooled supersonic He jet is used.

  10. Laser-tissue interaction with fs pulses: measurement of the recoil momentum by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Sessa, Gaetano; Travaglini, Michele; Mittnacht, Dirk; Foth, Hans-Jochen

    2003-07-01

    Currently ultra short pulses with pluse duration close to 100 fs are investigated for tissue ablation to perform laser surgery in a microscopic scale without any damage to the remaining tissue. Several groups showed already that the risk of thermal damage can be avoided; however the ablated material leaves the surface with a high velocity which leads to significant recoil momentum to the tissue. This paper focuses on the experimental set-up to measure this momentum transfer. Various set-ups had been developd over the last years like a pendulum that is highly senstive but cannot ensure that in a train of pulses each pulse will impact at exactly the same spot. A sliding rod in a glass tube ensured the constant impact point but is sensitive to several environmental conditions, which are hard to control. Recently, special swing plates were designed as vibration disks. The small sample was mounted in the center of this plate and exposed by fs pulses of a TiSa laser. The beam of a laser Doppler vibrometer was focused onto the backside of the plate monitored its motion. This set-up enabled us to measure the recoil momentum. While the total momentum transfer could be well determined to Δp=6 10-3 g mm/s, the question about a mechanical damage, for example for hair cells in the inner ear is much more difficult to answer, since this depends on the time in which the ablated materials leaves the surface. Evaporation times of 40 ps would lead to serious risk ofhar cell damage.

  11. A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES

    SciTech Connect

    Eracleous, Michael; Boroson, Todd A.; Halpern, Jules P.; Liu Jia

    2012-08-01

    We have carried out a systematic search for subparsec supermassive black hole (BH) binaries among z {approx}< 0.7 Sloan Digital Sky Survey quasars. These are predicted by models of supermassive BH and host galaxy coevolution, therefore their census and population properties constitute an important test of these models. In our working hypothesis, one of the two BHs accretes at a much higher rate than the other and carries with it the only broad emission line region of the system, making the system analogous to a single-lined spectroscopic binary star. Accordingly, we used spectroscopic principal component analysis to search for broad H{beta} emission lines that are displaced from the quasar rest frame by |{Delta} v| {approx}> 1000 km s{sup -1}. This method also yields candidates for rapidly recoiling BHs. Of the 88 candidates, several were previously reported in the literature. We found a correlation between the peak offset and skewness of the broad H{beta} profiles, suggesting a common physical explanation for these profiles. We carried out follow-up spectroscopic observations of 68 objects to search for changes in the peak velocities of the H{beta} lines. We measured statistically significant changes in 14 objects, with implied accelerations between -120 and +120 km s{sup -1} yr{sup -1}. Interpreting the offset broad emission lines as signatures of supermassive binaries is subject to many caveats. Many more follow-up observations over a long temporal baseline are needed to characterize the variability pattern of the broad lines and test that it is consistent with orbital motion. The possibility that some of the objects in this sample are rapidly recoiling BHs remains open.

  12. A Large Systematic Search for Close Supermassive Binary and Rapidly Recoiling Black Holes

    NASA Astrophysics Data System (ADS)

    Eracleous, Michael; Boroson, Todd A.; Halpern, Jules P.; Liu, Jia

    2012-08-01

    We have carried out a systematic search for subparsec supermassive black hole (BH) binaries among z <~ 0.7 Sloan Digital Sky Survey quasars. These are predicted by models of supermassive BH and host galaxy coevolution, therefore their census and population properties constitute an important test of these models. In our working hypothesis, one of the two BHs accretes at a much higher rate than the other and carries with it the only broad emission line region of the system, making the system analogous to a single-lined spectroscopic binary star. Accordingly, we used spectroscopic principal component analysis to search for broad Hβ emission lines that are displaced from the quasar rest frame by |Δ v| >~ 1000 km s-1. This method also yields candidates for rapidly recoiling BHs. Of the 88 candidates, several were previously reported in the literature. We found a correlation between the peak offset and skewness of the broad Hβ profiles, suggesting a common physical explanation for these profiles. We carried out follow-up spectroscopic observations of 68 objects to search for changes in the peak velocities of the Hβ lines. We measured statistically significant changes in 14 objects, with implied accelerations between -120 and +120 km s-1 yr-1. Interpreting the offset broad emission lines as signatures of supermassive binaries is subject to many caveats. Many more follow-up observations over a long temporal baseline are needed to characterize the variability pattern of the broad lines and test that it is consistent with orbital motion. The possibility that some of the objects in this sample are rapidly recoiling BHs remains open.

  13. Nuclear Microprobe using Elastic Recoil Detection (ERD) for Hydrogen Profiling in High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Berger, Pascal; Sayir, Ali; Berger, Marie-Helene

    2004-01-01

    The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.

  14. Active regulation of longitudinal arch compression and recoil during walking and running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen; Cresswell, Andrew G

    2015-01-01

    The longitudinal arch (LA) of the human foot compresses and recoils in response to being cyclically loaded. This has typically been considered a passive process, however, it has recently been shown that the plantar intrinsic foot muscles have the capacity to actively assist in controlling LA motion. Here we tested the hypothesis that intrinsic foot muscles, abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus plantae (QP), actively lengthen and shorten during the stance phase of gait in response to loading of the foot. Nine participants walked at 1.25 m s⁻¹ and ran at 2.78 and 3.89 m s⁻¹ on a force-instrumented treadmill while foot and ankle kinematics were recorded according to a multisegment foot model. Muscle-tendon unit (MTU) lengths, determined from the foot kinematics, and intramuscular electromyography (EMG) signals were recorded from AH, FDB and QP. Peak EMG amplitude was determined during the stance phase for each participant at each gait velocity. All muscles underwent a process of slow active lengthening during LA compression, followed by a rapid shortening as the arch recoiled during the propulsive phase. Changes in MTU length and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion. These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient foot ground force transmission.

  15. Active regulation of longitudinal arch compression and recoil during walking and running

    PubMed Central

    Kelly, Luke A.; Lichtwark, Glen; Cresswell, Andrew G.

    2015-01-01

    The longitudinal arch (LA) of the human foot compresses and recoils in response to being cyclically loaded. This has typically been considered a passive process, however, it has recently been shown that the plantar intrinsic foot muscles have the capacity to actively assist in controlling LA motion. Here we tested the hypothesis that intrinsic foot muscles, abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus plantae (QP), actively lengthen and shorten during the stance phase of gait in response to loading of the foot. Nine participants walked at 1.25 m s−1 and ran at 2.78 and 3.89 m s−1 on a force-instrumented treadmill while foot and ankle kinematics were recorded according to a multisegment foot model. Muscle–tendon unit (MTU) lengths, determined from the foot kinematics, and intramuscular electromyography (EMG) signals were recorded from AH, FDB and QP. Peak EMG amplitude was determined during the stance phase for each participant at each gait velocity. All muscles underwent a process of slow active lengthening during LA compression, followed by a rapid shortening as the arch recoiled during the propulsive phase. Changes in MTU length and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion. These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient foot ground force transmission. PMID:25551151

  16. Impact of the nature and composition of the mobile phase on the mass transfer mechanism in chiral reversed phase liquid chromatography. Application to the minimization of the solvent cost in chiral separations.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-01-31

    The mechanism of mass transfer was studied on a cellulose-based chiral stationary phase (CSP, Lux Cellulose-1) using aqueous mixtures of acetonitrile (50/50-90/10, v/v) or methanol (90/10 and 100/0, v/v) as the mobile phase. An experimental protocol validated in RPLC and HILIC chromatography and recently extended to chiral RPLC was applied. The five mass-transfer contributions (longitudinal diffusion, short-range and long-range eddy dispersion, solid-liquid mass transfer resistances due to finite intra-particle diffusivity and slow adsorption-desorption) to the reduced height equivalent to a theoretical plate (HETP) were measured. The experimental results show that the adsorption rate constants kads of trans-stilbene enantiomers onto the CSP are three times larger with acetonitrile than with methanol as the organic modifier. This is correlated to the decrease of enantioselectivity from 1.4 (in methanol) to only 1.1 (in acetonitrile). The amount of solvent needed to achieve a separation factor of exactly 2.0 was determined. This showed that analysis cost could be reduced seven times by selecting pure methanol as the eluent for a 5cm long column rather than an acetonitrile-water mixture for a longer (20-45cm) column.

  17. Quantitative mass spectrometry combined with separation and enrichment of phosphopeptides by titania coated magnetic mesoporous silica microspheres for screening of protein kinase inhibitors.

    PubMed

    Ji, Liyun; Wu, Jian-Hong; Luo, Qun; Li, Xianchan; Zheng, Wei; Zhai, Guijin; Wang, Fuyi; Lü, Shuang; Feng, Yu-Qi; Liu, Jianan; Xiong, Shaoxiang

    2012-03-01

    We describe herein the development of a matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) approach for screening of protein kinase inhibitors (PKIs). MS quantification of phosphopeptides, the kinase-catalyzed products of nonphosphorylated substrates, is a great challenge due to the ion suppression effect of highly abundant nonphosphorylated peptides in enzymatic reaction mixtures. To address this issue, a novel type of titania coated magnetic hollow mesoporous silica spheres (TiO(2)/MHMSS) material was fabricated for capturing phosphopeptides from the enzymatic reaction mixtures prior to MS analysis. Under optimized conditions, even in the presence of 1000-fold of a substrate peptide of tyrosine kinase epidermal growth factor receptor (EGFR), the phosphorylated substrates at the femtomole level can be detected with high accuracy and reproducibility. With a synthetic nonisotopic labeled phosphopeptide, of which the sequence is similar to that of the phosphorylated substrate, as the internal standard, the MS signal ratio of the phosphorylated substrate to the standard is linearly correlated with the molar ratio of the two phosphopeptides in peptide mixtures over the range of 0.1 to 4 with r(2) being 0.99. The IC(50) values of three EGFR inhibitors synthesized in our laboratory were then determined, and the results are consistent with those determined by an enzyme-linked immunosorbent assay (ELISA). The developed method is sensitive, cost/time-effective, and operationally simple and does not require isotope/radioative-labeling, providing an ideal alterative for screening of PKIs as therapeutic agents. PMID:22304342

  18. Comparative proteomic analysis of serum diagnosis patterns of sputum smear-positive pulmonary tuberculosis based on magnetic bead separation and mass spectrometry analysis.

    PubMed

    Liu, Jiyan; Jiang, Tingting; Jiang, Feng; Xu, Dandan; Wei, Liliang; Wang, Chong; Chen, Zhongliang; Zhang, Xing; Li, Jicheng

    2015-01-01

    A major challenge in pulmonary tuberculosis (TB) control is early and accurate diagnosis of sputum smear negative pulmonary TB (SSN-PTB). The patients with SSN-PTB have to wait for a longer period of time before receiving proper treatment than sputum smear positive pulmonary TB (SSP-PTB) patients due to delay in diagnosis. The purpose of this study is to discover potential serum protein biomarkers for SSN-PTB. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS) combined with weak cation exchange (WCX) magnetic beads was used to screen serum samples from SSN-PTB patients (N = 66), SSP-PTB patients (N = 49), and healthy volunteers (N = 80). The serum protein profiles were analyzed with Biomarker Wizard system. A classification model was established using Biomarker Pattern Software (BPS). Fifty-eight protein peaks were identified to exhibit significant differences between SSN-PTB, SSP-PTB and healthy control groups (P < 0.05), among which 6 peaks were found to be down-regulated, while 10 peaks were up-regulated gradually in the healthy control, SSN-PTB, and SSP-PTB groups. Twenty-three discriminating m/z peaks were detected between SSN-PTB patients and healthy controls (P < 0.01, Fold ≥ 1.5). The classification tree combined with three protein peaks (2747.0, 4480.0, and 9410.1 Da) could distinguish SSN-PTB patients from healthy controls with a sensitivity of 83.33% and a specificity of 82.50%. Early diagnosis of SSN-PTB disease is critical in order to reduce morbidity and mortality associated with TB. The study will help to clarify the role of differential proteins in the pathogenesis of TB.

  19. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  20. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting

    NASA Astrophysics Data System (ADS)

    Korschinek, G.; Bergmaier, A.; Faestermann, T.; Gerstmann, U. C.; Knie, K.; Rugel, G.; Wallner, A.; Dillmann, I.; Dollinger, G.; von Gostomski, Ch. Lierse; Kossert, K.; Maiti, M.; Poutivtsev, M.; Remmert, A.

    2010-01-01

    The importance of 10Be in different applications of accelerator mass spectrometry (AMS) is well-known. In this context the half-life of 10Be has a crucial impact, and an accurate and precise determination of the half-life is a prerequisite for many of the applications of 10Be in cosmic-ray and earth science research. Recently, the value of the 10Be half-life has been the centre of much debate. In order to overcome uncertainties inherent in previous determinations, we introduced a new method of high accuracy and precision. An aliquot of our highly enriched 10Be master solution was serially diluted with increasing well-known masses of 9Be. We then determined the initial 10Be concentration by least square fit to the series of measurements of the resultant 10Be/ 9Be ratio. In order to minimize uncertainties because of mass bias which plague other low-energy mass spectrometric methods, we used for the first time Heavy-Ion Elastic Recoil Detection (HI-ERD) for the determination of the 10Be/ 9Be isotopic ratios, a technique which does not suffer from difficult to control mass fractionation. The specific activity of the master solution was measured by means of accurate liquid scintillation counting (LSC). The resultant combination of the 10Be concentration and activity yields a 10Be half-life of T1/2 = 1.388 ± 0.018 (1 s, 1.30%) Ma. In a parallel but independent study (Chmeleff et al. [11]), found a value of 1.386 ± 0.016 (1.15%) Ma. Our recommended weighted mean and mean standard error for the new value for 10Be half-life based on these two independent measurements is 1.387 ± 0.012 (0.87%) Ma.