Science.gov

Sample records for recombinant calreticulin peptide

  1. Ovalbumin-derived precursor peptides are transferred sequentially from gp96 and calreticulin to MHC I in the endoplasmic reticulum

    PubMed Central

    Kropp, Laura E.; Garg, Manish; Binder, Robert J.

    2010-01-01

    Cellular peptides generated by proteasomal degradation of proteins in the cytosol and destined for presentation by MHC I are associated with several chaperones. Hsp70, hsp90 and the TCP1-ring complex have been implicated as important cytosolic players for chaperoning these peptides. In this study we report that gp96 and calreticulin are essential for chaperoning peptides in the endoplasmic reticulum. Importantly we demonstrate that cellular peptides are transferred sequentially from gp96 to calreticulin and then to MHC I forming a relay line. Disruption of this relay line by removal of gp96 or calreticulin prevents the binding of peptides by MHC I and hence presentation of the MHC I-peptide complex on the cell surface. Our results are important for understanding how peptides are processed and trafficked within the endoplasmic reticulum before exiting in association with MHC I heavy chains and β2-microglobulin as a trimolecular complex. PMID:20410492

  2. Taenia solium: immune response against oral or systemic immunization with purified recombinant calreticulin in mice.

    PubMed

    Fonseca-Coronado, Salvador; Ruiz-Tovar, Karina; Pérez-Tapia, Mayra; Mendlovic, Fela; Flisser, Ana

    2011-01-01

    Recombinant functional Taenia solium calreticulin (rTsCRT) confers different degrees of protection in the experimental model of intestinal taeniosis in hamsters. The aim of this study was to evaluate the immune response induced after oral or systemic immunization with an electroeluted rTsCRT in BALB/c mice. Oral immunization elicited high fecal IgA and the production of IL-4 and IL-5 by mesenteric lymph node cells after in vitro stimulation with rTSCRT, indicating a Th2 response. Mice subcutaneously immunized produced high amounts of serum IgG, being IgG1 (Th2-related) the predominant isotype, while in vitro stimulated spleen cells synthesized IL-4, IL-5 and also IFN-γ, indicating a mixed Th1/Th2 cellular response after systemic immunization. Our data show that purified rTsCRT induces polarized Th2 responses after oral immunization of mice, a common characteristic of protective immunity against helminths and, consequently, a desirable hallmark in the search for a vaccine.

  3. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties

    PubMed Central

    Moreau, Christophe; Cioci, Gianluca; Iannello, Marina; Laffly, Emmanuelle; Chouquet, Anne; Ferreira, Arturo; Thielens, Nicole M.; Gaboriaud, Christine

    2016-01-01

    Calreticulin (CRT) is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER) chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant ‘eat-me’ prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi, Entamoeba histolytica, Taenia solium, Leishmania donovani and Schistosoma mansoni. Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences. PMID:27840680

  4. The interactions of calreticulin with immunoglobulin G and immunoglobulin Y.

    PubMed

    Møllegaard, Karen Mai; Duus, Karen; Træholt, Sofie Dietz; Thaysen-Andersen, Morten; Liu, Yan; Palma, Angelina S; Feizi, Ten; Hansen, Paul R; Højrup, Peter; Houen, Gunnar

    2011-07-01

    Calreticulin is a chaperone of the endoplasmic reticulum (ER) assisting proteins in achieving the correctly folded structure. Details of the binding specificity of calreticulin are still a matter of debate. Calreticulin has been described as an oligosaccharide-binding chaperone but data are also accumulating in support of calreticulin as a polypeptide binding chaperone. In contrast to mammalian immunoglobulin G (IgG), which has complex type N-glycans, chicken immunoglobulin Y (IgY) possesses a monoglucosylated high mannose N-linked glycan, which is a ligand for calreticulin. Here, we have used solid and solution-phase assays to analyze the in vitro binding of calreticulin, purified from human placenta, to human IgG and chicken IgY in order to compare the interactions. In addition, peptides from the respective immunoglobulins were included to further probe the binding specificity of calreticulin. The experiments demonstrate the ability of calreticulin to bind to denatured forms of both IgG and IgY regardless of the glycosylation state of the proteins. Furthermore, calreticulin exhibits binding to peptides (glycosylated and non-glycosylated) derived from trypsin digestion of both immunoglobulins. Additionally, calreticulin peptide binding was examined with synthetic peptides covering the IgG Cγ2 domain demonstrating interaction with approximately half the peptides. Our results show that the dominant binding activity of calreticulin in vitro is toward the polypeptide moieties of IgG and IgY even in the presence of the monoglucosylated high mannose N-linked oligosaccharide on IgY.

  5. Adjuvanticity of a Recombinant Calreticulin Fragment in Assisting Anti-β-Glucan IgG Responses in T Cell-Deficient Mice

    PubMed Central

    Li, Wei-Ji; Long, Kai; Dong, Hong-Liang

    2013-01-01

    Polysaccharide-encapsulated fungi are the chief source of diseases in immunocompromised hosts such as those infected with human immunodeficiency virus or neutropenia patients. Currently available polysaccharide-protein conjugate vaccines are mainly T cell dependent and are usually ineffective in weakened immune systems. In this study, laminarin, a well-characterized β-1,3-glucan, was conjugated with a prokaryotically expressed recombinant fragment (amino acids [aa] 39 to 272) of calreticulin (rCRT/39–272), which exhibits extraordinarily potent immunogenicity and adjuvanticity in experimental animals. The resultant conjugate reserves the immunostimulatory effect of rCRT/39–272 on naïve murine B cells and is capable of eliciting anti-β-glucan IgG (mostly IgG1) responses in not only BALB/c mice but also athymic nude mice. Laminarin-CRT-induced mouse antibodies (Abs) are able to bind with Candida albicans and inhibit its growth in vitro. In addition, vaccination with laminarin-CRT partially protects mice from lethal C. albicans challenge. These results imply that rCRT/39–272 could be used as an ideal carrier or adjuvant for carbohydrate vaccines aimed at inducing or boosting IgG responses to fungal infections in immunodeficient hosts. PMID:23408527

  6. Native signal peptide of human ERp57 disulfide isomerase mediates secretion of active native recombinant ERp57 protein in yeast Saccharomyces cerevisiae.

    PubMed

    Čiplys, Evaldas; Žitkus, Eimantas; Slibinskas, Rimantas

    2013-06-01

    Human ERp57 protein is disulfide isomerase, facilitating proper folding of glycoprotein precursors in the concert with ER lectin chaperones calreticulin and calnexin. Growing amount of data also associates ERp57 with many different functions in subcellular locations outside the ER. Analysis of protein functions requires substantial amounts of correctly folded, biologically active protein, and in this study we introduce yeast Saccharomyces cerevisiae as a perfect host for production of human ERp57. Our data suggest that native signal peptide of human ERp57 protein is recognized and correctly processed in the yeast cells, which leads to protein secretion. Secreted recombinant ERp57 protein possesses native amino acid sequence and is biologically active. Moreover, secretion allows simple one-step purification of recombinant ERp57 protein with the yields reaching up to 10mg/L. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Recombinant self-assembling peptides as biomaterials for tissue engineering

    PubMed Central

    Kyle, Stuart; Aggeli, Amalia; Ingham, Eileen; McPherson, Michael J.

    2010-01-01

    Synthetic nanostructures based on self-assembling systems that aim to mimic natural extracellular matrix are now being used as substrates in tissue engineering applications. Peptides are excellent starting materials for the self-assembly process as they can be readily synthesised both chemically and biologically. P11-4 is an 11 amino acid peptide that undergoes triggered self-assembly to form a self-supporting hydrogel. It exists as unimers of random coil conformations in water above pH 7.5 but at low pH adopts an antiparallel β-sheet conformation. It also self-assembles under physiological conditions in a concentration-dependent manner. Here we describe an unimer P11-4 production system and the use of a simple site-directed mutagenesis approach to generate a series of other P11-family peptide expression vectors. We have developed an efficient purification strategy for these peptide biomaterials using a simple procedure involving chemical cleavage with cyanogen bromide then repeated filtration, lyophilisation and wash steps. We report peptide-fusion protein yields of ca. 4.64 g/L and we believe the highest reported recovery of a recombinant self-assembling peptide at 203 mg/L of pure recombinant P11-4. This peptide forms a self-supporting hydrogel under physiological conditions with essentially identical physico-chemical properties to the chemically synthesised peptide. Critically it also displays excellent cytocompatibility when tested with primary human dermal fibroblasts. This study demonstrates that high levels of a series of recombinant self-assembling peptides can be purified using a simple process for applications as scaffolds in tissue engineering. PMID:20932572

  8. Calreticulin is a microbial-binding molecule with phagocytosis-enhancing capacity.

    PubMed

    Liu, Xuemei; Xu, Na; Zhang, Shicui

    2013-09-01

    Calreticulin (CRT) is a highly conserved calcium-binding protein mainly involved in directing proper conformation of proteins and controlling calcium level. Accumulating data also show that CRT is emerging as an immune-relevant molecule. In this study, we demonstrated that the CRT gene from the amphioxus Branchiostoma japonicum, named Bjcrt, consisted of a signal peptide, three domains (N-, P-, C-domains) and an ER retrieval signal sequence (KDEL), which appears to be the ancient form of vertebrate CRTs, and Bjcrt was expressed in a tissue-specific manner, with the most abundant expression in the notochord. We also demonstrated for the first time that the recombinant BjCRT (rBjCRT) was able to bind the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. Moreover, both BjCRT as well as human recombinant calreticulin were able to promote the phagocytosis of E. coli and S. aureus by sea bass macrophages. These results indicate that CRT is a microbial-binding molecule and possesses an ability to enhance phagocytosis, a novel function assigned to CRT, reenforcing the notion that CRT is an immune-relevant molecule associated with host immune responses.

  9. Mapping the Ca(2+) induced structural change in calreticulin.

    PubMed

    Boelt, Sanne Grundvad; Norn, Christoffer; Rasmussen, Morten Ib; André, Ingemar; Čiplys, Evaldas; Slibinskas, Rimantas; Houen, Gunnar; Højrup, Peter

    2016-06-16

    Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Recombinant expression of bioactive peptide lunasin in Escherichia coli.

    PubMed

    Liu, Chin-Feng; Pan, Tzu-Ming

    2010-09-01

    Lunasin, a cancer-preventive peptide, was isolated from soybean, barley, and wheat. Previous studies showed that this 43-amino acid peptide has the ability to suppress chemical carcinogen-induced transformation in mammalian cells and skin carcinogenesis in mice. In this study, we attempted to use the Escherichia coli T7 expression system for expression of lunasin. The lunasin gene was synthesized by overlapping extension polymerase chain reaction and expressed in E. coli BL21(DE3) with the use of vector pET29a. The recombinant lunasin containing his-tag at the C-terminus was expressed in soluble form which could be purified by immobilized metal affinity chromatography. After 4 h, the expression level is above 4.73 mg of recombinant his-tagged lunasin/L of Luria-Bertani broth. It does not affect the bacterial growth and expression levels. This is the first study that successfully uses E. coli as a host to produce valuable bioactive lunasin. The result of in vitro bioassay showed that the purified recombinant lunasin can inhibit histone acetylation. Recombinant lunasin also inhibits the release of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide production). Compared with other research methods on extraction or chemical synthesis to produce lunasin, our method is very efficient in saving time and cost. In the future, it could be applied in medicine and structure-function determination.

  11. Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value

    PubMed Central

    Vannucchi, A M; Rotunno, G; Bartalucci, N; Raugei, G; Carrai, V; Balliu, M; Mannarelli, C; Pacilli, A; Calabresi, L; Fjerza, R; Pieri, L; Bosi, A; Manfredini, R; Guglielmelli, P

    2014-01-01

    Mutations in the gene calreticulin (CALR) occur in the majority of JAK2- and MPL-unmutated patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF); identifying CALR mutations contributes to the diagnostic pathway of ET and PMF. CALR mutations are heterogeneous spanning over the exon 9, but all result in a novel common protein C terminus. We developed a polyclonal antibody against a 17-amino-acid peptide derived from mutated calreticulin that was used for immunostaining of bone marrow biopsies. We show that this antibody specifically recognized patients harboring different types of CALR mutation with no staining in healthy controls and JAK2- or MPL-mutated ET and PMF. The labeling was mostly localized in megakaryocytes, whereas myeloid and erythroid cells showed faint staining, suggesting a preferential expression of calreticulin in megakaryocytes. Megakaryocytic-restricted expression of calreticulin was also demonstrated using an antibody against wild-type calreticulin and by measuring the levels of calreticulin RNA by gene expression analysis. Immunostaining using an antibody specific for mutated calreticulin may become a rapid, simple and cost-effective method for identifying CALR-mutated patients complementing molecular analysis; furthermore, the labeling pattern supports the preferential expansion of megakaryocytic cell lineage as a result of CALR mutation in an immature hematopoietic stem cell. PMID:24618731

  12. Peptide specific expansion of CD8(+) T cells by recombinant plate bound MHC/peptide complexes.

    PubMed

    Schmidt, Esben G W; Buus, Søren; Thorn, Mette; Stryhn, Anette; Leisner, Christian; Claesson, Mogens H

    2009-01-01

    Development of methods for efficient in vitro stimulation and expansion of peptide specific CD8(+) T cells is compelling not only with respect to adoptive T cell therapy but also regarding analysis of T cell responses and search for new immunogenic peptides. In the present study, a new approach to in vitro T cell stimulation was investigated. By use of an antigenic peptide derived from the cytomegalovirus (CMVp) we tested the stimulatory efficacy of recombinant plate bound MHC molecules (PB-MHC), being immobilized in culture plates. A single stimulation of non-adherent peripheral blood mononuclear cells (NA-PBMCs) with PB-MHC/CMVp resulted in significant expansion of CMVp specific CD8(+) T cells, which was comparable to that achieved by CMVp pulsed mature dendritic cells (DCs). By repeated exposure of NA-PBMCs to PB-MHC/CMVp more than 60% CMVp specific CD8(+) T cells, representing a 240-fold expansion, were reached after only two stimulations. Although stimulation with PB-MHC/CMVp clearly demonstrated efficient peptide specific expansion of CD8(+) T cells, there was a tendency to proliferative exhaustion of the cells after 3-4 stimulations. Thus, it will be of interest to examine the effect of new stimulatory cocktails, e.g. cytokines and co-stimulatory molecules, by use of the present rapid and easy-to-use method of expanding peptide specific T cells.

  13. Structural and Functional Relationships between the Lectin and Arm Domains of Calreticulin*

    PubMed Central

    Pocanschi, Cosmin L.; Kozlov, Guennadi; Brockmeier, Ulf; Brockmeier, Achim; Williams, David B.; Gehring, Kalle

    2011-01-01

    Calreticulin and calnexin are key components in maintaining the quality control of glycoprotein folding within the endoplasmic reticulum. Although their lectin function of binding monoglucosylated sugar moieties of glycoproteins is well documented, their chaperone activity in suppressing protein aggregation is less well understood. Here, we use a series of deletion mutants of calreticulin to demonstrate that its aggregation suppression function resides primarily within its lectin domain. Using hydrophobic peptides as substrate mimetics, we show that aggregation suppression is mediated through a single polypeptide binding site that exhibits a Kd for peptides of 0.5–1 μm. This site is distinct from the oligosaccharide binding site and differs from previously identified sites of binding to thrombospondin and GABARAP (4-aminobutyrate type A receptor-associated protein). Although the arm domain of calreticulin was incapable of suppressing aggregation or binding hydrophobic peptides on its own, it did contribute to aggregation suppression in the context of the whole molecule. The high resolution x-ray crystal structure of calreticulin with a partially truncated arm domain reveals a marked difference in the relative orientations of the arm and lectin domains when compared with calnexin. Furthermore, a hydrophobic patch was detected on the arm domain that mediates crystal packing and may contribute to calreticulin chaperone function. PMID:21652723

  14. Somatic mutations of calreticulin in myeloproliferative neoplasms.

    PubMed

    Klampfl, Thorsten; Gisslinger, Heinz; Harutyunyan, Ashot S; Nivarthi, Harini; Rumi, Elisa; Milosevic, Jelena D; Them, Nicole C C; Berg, Tiina; Gisslinger, Bettina; Pietra, Daniela; Chen, Doris; Vladimer, Gregory I; Bagienski, Klaudia; Milanesi, Chiara; Casetti, Ilaria Carola; Sant'Antonio, Emanuela; Ferretti, Virginia; Elena, Chiara; Schischlik, Fiorella; Cleary, Ciara; Six, Melanie; Schalling, Martin; Schönegger, Andreas; Bock, Christoph; Malcovati, Luca; Pascutto, Cristiana; Superti-Furga, Giulio; Cazzola, Mario; Kralovics, Robert

    2013-12-19

    Approximately 50 to 60% of patients with essential thrombocythemia or primary myelofibrosis carry a mutation in the Janus kinase 2 gene (JAK2), and an additional 5 to 10% have activating mutations in the thrombopoietin receptor gene (MPL). So far, no specific molecular marker has been identified in the remaining 30 to 45% of patients. We performed whole-exome sequencing to identify somatically acquired mutations in six patients who had primary myelofibrosis without mutations in JAK2 or MPL. Resequencing of CALR, encoding calreticulin, was then performed in cohorts of patients with myeloid neoplasms. Somatic insertions or deletions in exon 9 of CALR were detected in all patients who underwent whole-exome sequencing. Resequencing in 1107 samples from patients with myeloproliferative neoplasms showed that CALR mutations were absent in polycythemia vera. In essential thrombocythemia and primary myelofibrosis, CALR mutations and JAK2 and MPL mutations were mutually exclusive. Among patients with essential thrombocythemia or primary myelofibrosis with nonmutated JAK2 or MPL, CALR mutations were detected in 67% of those with essential thrombocythemia and 88% of those with primary myelofibrosis. A total of 36 types of insertions or deletions were identified that all cause a frameshift to the same alternative reading frame and generate a novel C-terminal peptide in the mutant calreticulin. Overexpression of the most frequent CALR deletion caused cytokine-independent growth in vitro owing to the activation of signal transducer and activator of transcription 5 (STAT5) by means of an unknown mechanism. Patients with mutated CALR had a lower risk of thrombosis and longer overall survival than patients with mutated JAK2. Most patients with essential thrombocythemia or primary myelofibrosis that was not associated with a JAK2 or MPL alteration carried a somatic mutation in CALR. The clinical course in these patients was more indolent than that in patients with the JAK2 V617F

  15. Application of recombinant and non-recombinant peptides in the determination of tumor response to cancer therapy.

    PubMed

    Lopez-Barcons, Lluis A; Ali, Arif N; Diaz, Roberto

    2011-02-01

    An early and reliable assessment of therapeutic efficacy during the treatment of cancer is essential to achieve an optimal treatment regimen and patient outcome. The use of labeled peptides to monitor tumor response is associated with several advantages. For example, peptides are very stable, non-immunogenic, are easy to label for imaging, they undergo rapid clearance from the circulation, can penetrate tumor tissue, and are inexpensive to synthesize. In this review, studies using recombinant and non-recombinant peptides to monitor the response of glioblastoma multiforme, lung, breast, pancreas, colon, prostate, and skin carcinomas to radiation and/or chemotherapeutics such as camptothecin, doxorubicin, etoposide, 5-fluorouracil, paclitaxel, AG3340, sunitinib, and dasatinib, are presented. A consideration of the imaging techniques available to monitor peptide localization, including near-infrared (NIR) fluorescence, magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography, is also included. Peptides that have been successfully used to monitor various tumor types and therapies have been shown to target proteins that undergo changes in expression in response to treatment, endothelial cells that respond to radiation, or mediators of apoptosis. Peptides that are able to selectively bind responsive versus unresponsive tumors have also been identified. Therefore, the advantages associated with the use of peptides, combined with the capacity for selected peptides to assess tumor response as demonstrated in various studies, support the use of labeled peptides to evaluate the effectiveness of a given cancer therapy.

  16. Design and implementation of a high yield production system for recombinant expression of peptides

    PubMed Central

    2014-01-01

    Background Making peptide pharmaceuticals involves challenging processes where many barriers, which include production and manufacture, need to be overcome. A non common but interesting research area is related to peptides with intracellular targets, which opens up new possibilities, allowing the modulation of processes occurring within the cell or interference with signaling pathways. However, if the bioactive sequence requires fusion to a carrier peptide to allow access into the cell, the resulting peptide could be such a length that traditional production could be difficult. The goal of the present study was the development of a flexible recombinant expression and purification system for peptides, as a contribution to the discovery and development of these potentially new drugs. Results In this work, a high throughput recombinant expression and purification system for production of cell penetrating peptides in Escherichia coli has been designed and implemented. The system designed produces target peptides in an insoluble form by fusion to a hexahistidine tagged ketosteroid isomerase which is then separated by a highly efficient thrombin cleavage reaction procedure. The expression system was tested on the anticancer peptides p53pAnt and PNC27. These peptides comprise the C-terminal region and the N-terminal region of the protein p53, respectively, fused by its carboxyl terminal extreme to the cell penetrating peptide Penetratin. High yields of purified recombinant fused peptides were obtained in both cases; nevertheless, thrombin cleavage reaction was successful only for p53pAnt peptide release. The features of the system, together with the procedure developed, allow achievement of high production yields of over 30 mg of highly pure p53pAnt peptide per g of dry cell mass. It is proposed that the system could be used for production of other peptides at a similar yield. Conclusions This study provides a system suitable for recombinant production of peptides for

  17. Calreticulin Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Lavi, Noa

    2014-01-01

    With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph−) myeloproliferative neoplasms (MPNs) in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET) and primary myelofibrosis (PMF). At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR) using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations) and recurrent 5-bp insertions (type 2 mutations) in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin) were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review. PMID:25386351

  18. The chromatography-free release, isolation and purification of recombinant peptide for fibril self-assembly.

    PubMed

    Hartmann, B M; Kaar, W; Yoo, I K; Lua, L H L; Falconer, R J; Middelberg, A P J

    2009-12-01

    One of the major expenses associated with recombinant peptide production is the use of chromatography in the isolation and purification stages of a bioprocess. Here we report a chromatography-free isolation and purification process for recombinant peptide expressed in Escherichia coli (E. coli). Initial peptide release is by homogenization and then by enzymatic cleavage of the peptide-containing fusion protein, directly in the E. coli homogenate. Release is followed by selective solvent precipitation (SSP) to isolate and purify the peptide away from larger cell contaminants. Specifically, we expressed in E. coli the self-assembling beta-sheet forming peptide P(11)-2 in fusion to thioredoxin. Homogenate was heat treated (55 degrees C, 15 min) and then incubated with tobacco etch virus protease (TEVp) to release P(11)-2 having a native N-terminus. SSP with ethanol at room temperature then removed contaminating proteins in an integrated isolation-purification step; it proved necessary to add 250 mM NaCl to homogenate to prevent P(11)-2 from partitioning to the precipitate. This process structure gave recombinant P(11)-2 peptide at 97% polypeptide purity and 40% overall yield, without a single chromatography step. Following buffer-exchange of the 97% pure product by bind-elute chromatography into defined chemical conditions, the resulting peptide was shown to be functionally active and able to form self-assembled fibrils. To the best of our knowledge, this manuscript reports the first published process for chromatography-free recombinant peptide release, isolation and purification. The process proved able to deliver functional recombinant peptide at high purity and potentially low cost, opening cost-sensitive materials applications for peptide-based materials.

  19. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli

    PubMed Central

    Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  20. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.

    PubMed

    Pane, Katia; Durante, Lorenzo; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.

  1. Regulation of Calreticulin Gene Expression by Calcium

    PubMed Central

    Waser, Mathilde; Mesaeli, Nasrin; Spencer, Charlotte; Michalak, Marek

    1997-01-01

    We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This construct was then used in transient and stable transfection of NIH/ 3T3 cells. Treatment of transfected cells either with the Ca2+ ionophore A23187, or with the ER Ca2+-ATPase inhibitor thapsigargin, resulted in a five- to sevenfold increase of the expression of chloramphenicol acetyltransferase protein. Transactivation of the calreticulin promoter was also increased by fourfold in NIH/3T3 cells treated with bradykinin, a hormone that induces Ca2+ release from the intracellular Ca2+ stores. Analysis of the promoter deletion constructs revealed that A23187- and thapsigargin-responsive regions are confined to two regions (−115 to −260 and −685 to −1,763) in the calreticulin promoter that contain the CCAAT nucleotide sequences. Northern blot analysis of cells treated with A23187, or with thapsigargin, revealed a fivefold increase in calreticulin mRNA levels. Thapsigargin also induced a fourfold increase in calreticulun protein levels. Importantly, we show by nuclear run-on transcription analysis that calreticulin gene transcription is increased in NIH/3T3 cells treated with A23187 and thapsigargin in vivo. This increase in gene expression required over 4 h of continuous incubation with the drugs and was also sensitive to treatment with cycloheximide, suggesting that it is dependent on protein synthesis. Changes in the concentration of extracellular and cytoplasmic Ca2+ did not affect the increased expression of the calreticulin gene. These studies suggest that stress response to the depletion of intracellular Ca2+ stores induces expression of the calreticulin gene in vitro

  2. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation*

    PubMed Central

    Goitea, Victor E.; Hallak, Marta E.

    2015-01-01

    Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm. PMID:25969538

  3. Calreticulin: one protein, one gene, many functions.

    PubMed Central

    Michalak, M; Corbett, E F; Mesaeli, N; Nakamura, K; Opas, M

    1999-01-01

    The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology. PMID:10567207

  4. Recombinant gas vesicles from Halobacterium sp. displaying SIV peptides demonstrate biotechnology potential as a pathogen peptide delivery vehicle.

    PubMed

    Sremac, Marinko; Stuart, Elizabeth S

    2008-01-31

    Previous studies indicated that recombinant gas vesicles (r-GV) from a mutant strain of Halobacterium sp. NRC-1 could express a cassette containing test sequences of SIVmac gag derived DNA, and function as an antigen display/delivery system. Tests using mice indicated that the humoral immune response to the gag encoded sequences evoked immunologic memory in the absence of an exogenous adjuvant. The goal of this research was to extend this demonstration to diverse gene sequences by testing recombinant gas vesicles displaying peptides encoded by different SIV genes (SIVtat, rev or nef). Verification that different peptides can be successfully incorporated into the GvpC surface protein of gas vesicle would support a more general biotechnology application of this potential display/delivery system. Selected SIVsm-GvpC fusion peptides were generated by creating and expressing fusion genes, then assessing the resulting recombinant gas vesicles for SIV peptide specific antigenic and immunogenic capabilities. Results from these analyses support three conclusions: (i) Different recombinant gvpC-SIV genes will support the biosynthesis of chimeric, GvpC fusion proteins which are incorporated into the gas vesicles and generate functional organelles. (ii) Monkey antibody elicited by in vivo infection with SHIV recognizes these expressed SIV sequences in the fusion proteins encoded by the gvpC-SIV fusion genes as SIV peptides. (iii) Test of antiserum elicited by immunizing mice with recombinant gas vesicles demonstrated notable and long term antibody titers. The observed level of humoral responses, and the maintenance of elevated responses to, Tat, Rev and Nef1 encoded peptides carried by the respective r-GV, are consistent with the suggestion that in vivo there may be a natural and slow release of epitope over time. The findings therefore suggest that in addition to providing information about these specific inserts, r-GV displaying peptide inserts from other relevant pathogens

  5. Recombinant gas vesicles from Halobacterium sp. displaying SIV peptides demonstrate biotechnology potential as a pathogen peptide delivery vehicle

    PubMed Central

    Sremac, Marinko; Stuart, Elizabeth S

    2008-01-01

    Background Previous studies indicated that recombinant gas vesicles (r-GV) from a mutant strain of Halobacterium sp. NRC-1 could express a cassette containing test sequences of SIVmac gag derived DNA, and function as an antigen display/delivery system. Tests using mice indicated that the humoral immune response to the gag encoded sequences evoked immunologic memory in the absence of an exogenous adjuvant. Results The goal of this research was to extend this demonstration to diverse gene sequences by testing recombinant gas vesicles displaying peptides encoded by different SIV genes (SIVtat, rev or nef). Verification that different peptides can be successfully incorporated into the GvpC surface protein of gas vesicle would support a more general biotechnology application of this potential display/delivery system. Selected SIVsm-GvpC fusion peptides were generated by creating and expressing fusion genes, then assessing the resulting recombinant gas vesicles for SIV peptide specific antigenic and immunogenic capabilities. Results from these analyses support three conclusions: (i) Different recombinant gvpC-SIV genes will support the biosynthesis of chimeric, GvpC fusion proteins which are incorporated into the gas vesicles and generate functional organelles. (ii) Monkey antibody elicited by in vivo infection with SHIV recognizes these expressed SIV sequences in the fusion proteins encoded by the gvpC-SIV fusion genes as SIV peptides. (iii) Test of antiserum elicited by immunizing mice with recombinant gas vesicles demonstrated notable and long term antibody titers. The observed level of humoral responses, and the maintenance of elevated responses to, Tat, Rev and Nef1 encoded peptides carried by the respective r-GV, are consistent with the suggestion that in vivo there may be a natural and slow release of epitope over time. Conclusion The findings therefore suggest that in addition to providing information about these specific inserts, r-GV displaying peptide inserts

  6. Confirmation of tick bite by detection of antibody to Ixodes calreticulin salivary protein.

    PubMed

    Alarcon-Chaidez, Francisco; Ryan, Raymond; Wikel, Stephen; Dardick, Kenneth; Lawler, Caroline; Foppa, Ivo M; Tomas, Patricio; Cushman, Alexis; Hsieh, Ann; Spielman, Andrew; Bouchard, Keith R; Dias, Filiciano; Aslanzadeh, Jaber; Krause, Peter J

    2006-11-01

    Ticks introduce a variety of pharmacologically active molecules into their host during attachment and feeding in order to obtain a blood meal. People who are repeatedly exposed to ticks may develop an immune response to tick salivary proteins. Despite this response, people usually are unaware of having been bitten, especially if they are not repeatedly exposed to ticks. In order to develop a laboratory marker of tick exposure that would be useful in understanding the epidemiology of tick-borne infection and the immune response to tick bite, we developed an enzyme-linked immunosorbent assay (ELISA) to detect antibody to a recombinant form of calreticulin protein found in the salivary glands of Ixodes scapularis, a member of a complex of Ixodes ticks that serve as the vectors for Lyme disease, human babesiosis, and human granulocytic anaplasmosis. Using this assay, we tested sera obtained from C3H/HeN and BALB/c mice before and after experimental deer tick infestation. These mice developed antibody to Ixodes calreticulin antigen after infestation. We then used the same assay to test sera obtained from people before and after they experienced deer tick bite(s). People experiencing deer tick bite(s) developed Ixodes calreticulin-specific antibody responses that persisted for up to 17 months. This Ixodes recombinant calreticulin ELISA provides objective evidence of deer tick exposure in people.

  7. Confirmation of Tick Bite by Detection of Antibody to Ixodes Calreticulin Salivary Protein▿

    PubMed Central

    Alarcon-Chaidez, Francisco; Ryan, Raymond; Wikel, Stephen; Dardick, Kenneth; Lawler, Caroline; Foppa, Ivo M.; Tomas, Patricio; Cushman, Alexis; Hsieh, Ann; Spielman, Andrew; Bouchard, Keith R.; Dias, Filiciano; Aslanzadeh, Jaber; Krause, Peter J.

    2006-01-01

    Ticks introduce a variety of pharmacologically active molecules into their host during attachment and feeding in order to obtain a blood meal. People who are repeatedly exposed to ticks may develop an immune response to tick salivary proteins. Despite this response, people usually are unaware of having been bitten, especially if they are not repeatedly exposed to ticks. In order to develop a laboratory marker of tick exposure that would be useful in understanding the epidemiology of tick-borne infection and the immune response to tick bite, we developed an enzyme-linked immunosorbent assay (ELISA) to detect antibody to a recombinant form of calreticulin protein found in the salivary glands of Ixodes scapularis, a member of a complex of Ixodes ticks that serve as the vectors for Lyme disease, human babesiosis, and human granulocytic anaplasmosis. Using this assay, we tested sera obtained from C3H/HeN and BALB/c mice before and after experimental deer tick infestation. These mice developed antibody to Ixodes calreticulin antigen after infestation. We then used the same assay to test sera obtained from people before and after they experienced deer tick bite(s). People experiencing deer tick bite(s) developed Ixodes calreticulin-specific antibody responses that persisted for up to 17 months. This Ixodes recombinant calreticulin ELISA provides objective evidence of deer tick exposure in people. PMID:16928887

  8. High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli.

    PubMed

    Feng, Xingjun; Xu, Wenshan; Qu, Pei; Li, Xiaochong; Xing, Liwei; Liu, Di; Jiao, Jian; Wang, Jue; Li, Zhongqiu; Liu, Chunlong

    2015-01-01

    The antimicrobial peptide fowlicidin-2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin-2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin-2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin-2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET-32a(+), which features fusion protein thioredoxin at the N-terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria-Bertani (LB) medium. After isopropyl-β-D-thiogalactopyranoside (IPTG) induction, the fowlicidin-2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse-phase high-performance liquid chromatography (RP-HPLC), ∼6.0 mg of fowlicidin-2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram-positive and Gram-negative bacteria, and even drug-resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large-scale production. © 2015 American Institute of Chemical Engineers.

  9. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata

    PubMed Central

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-01-01

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C–C–CC–C–C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides. PMID:26950153

  10. Differential expression of calreticulin in developmental stages of Taenia solium.

    PubMed

    Mendlovic, Fela; Carrillo-Farga, Joaquín; Torres, José; Laclette, Juan Pedro; Flisser, Ana

    2006-08-01

    Taenia solium, a cestode that causes neurocysticercosis and taeniasis in humans, has a complex life cycle. The adult tapeworm develops in the intestine of human beings and is also responsible for neurocysticercosis, which is caused by the metacestode or cysticercus that develops in the brain. Recently, we have cloned the coding region for T. solium calreticulin (TsCRT) as a functional Ca(2+)-binding protein. Calreticulin is a ubiquitous protein involved in cellular Ca2+ homeostasis and protein folding. These important functions affect several aspects of cell physiology. To explore the expression of TsCRT during the T. solium life cycle, we used a specific polyclonal antibody raised against recombinant TsCRT to localize this protein by immunolabeling techniques. In sections of cysticerci obtained from swine muscle, as well as of adult tapeworms obtained after infection of hamsters with cysticerci, TsCRT was preferentially localized in tegumentary and muscle cytons of the suckers and rostellum. In mature proglottids obtained from infected humans, positive staining was observed in spermatogonia, ovogonia, uterine epithelium, and cells of the vas deferens. In the gravid uterus, the morula and early stage embryos were highly positive to TsCRT. However, expression diminished as embryonic development progressed and was absent in fully developed oncospheres that were surrounded by an embryophore. A similar down regulation was observed during spermatogenesis. Although early spermatocytes showed a high expression of TsCRT, mature spermatozoa present in the vas deferens were completely negative. These data indicate that calreticulin expression is spatially and temporally regulated during development of T. solium, especially during germ cell development and embryogenesis. In addition, these original images illustrate, for the first time, these processes at a histological level.

  11. Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria.

    PubMed

    Zhang, L; Falla, T; Wu, M; Fidai, S; Burian, J; Kay, W; Hancock, R E

    1998-06-29

    Cationic peptides possessing antibacterial activity are virtually ubiquitous in nature, and offer exciting prospects as new therapeutic agents. We had previously demonstrated that such peptides could be produced by fusion protein technology in bacteria and several carrier proteins had been tested as fusion partners including glutathione-S-transferase, S. aureus protein A, IgG binding protein and P. aeruginosa outer membrane protein OprF. However these fusion partners, while successfully employed in peptide expression, were not optimized for high level production of cationic peptides (Piers, K., Brow, M. L., and Hancock, R. E. W. 1993, Gene 137, 7-13). In this paper we took advantage of a small replication protein RepA from E. coli and used its truncated version to construct fusion partners. The minimal elements required for high level expression of cationic peptide were defined as a DNA sequence encoding a fusion protein comprising, from the N-terminus, a 68 amino acid carrier region, an anionic prepro domain, a single methionine and the peptide of interest. The 68 amino acid carrier region was a block of three polypeptides consisting of a truncated RepA, a synthetic cellulose binding domain and a hexa histidine domain. The improved system showed high level expression and simplified downstream purification. The active peptide could be yielded by CNBr cleavage of the fusion protein. This novel vector was used to express three classes of cationic peptides including the alpha-helical peptide CEMA, the looped peptide bactenecin and the extended peptide indolicidin. In addition, mutagenesis of the peptide gene to produce peptide variants of CEMA and indolicidin using the improved vector system was shown to be successful.

  12. Design, synthesis, and functional testing of recombinant cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Widyaningtyas, S. T.; Soebandrio, A.; Ibrahim, F.; Bela, B.

    2017-08-01

    Cell penetrating peptides (CPP) are one of the most attractive DNA delivery systems currently in development. In this research, in silico CPP development was performed based on a literature study to look for peptides that induce endosome escape, have the ability to bind DNA, and pass through cell membranes and/or nuclear membranes with a final goal of creating a new CPP to be used as a DNA delivery system. We report herein the successful isolation of three candidate CPP molecules, which have all been successfully expressed and purified by NiNTA. One of the determinants of CPP success as a DNA carrier is the ability of the CPP to bind and protect DNA from the effects of nucleases. The DNA binding test results show that all three CPPs can bind to DNA and protect it from the effects of serum nucleases. These three CPP candidates designed in silico and synthesized in the prokaryote system are eligible candidates for further testing of their ability to deliver DNA in vitro and in vivo.

  13. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  14. Single recombinant and purified major allergens and peptides: How they are made and how they change allergy diagnosis and treatment.

    PubMed

    Curin, Mirela; Garib, Viktoriya; Valenta, Rudolf

    2017-09-01

    To review the current knowledge regarding recombinant and purified allergens and allergen-derived peptides. PubMed, homepages relevant to the topic, and the National Institutes of Health clinical trial database were searched. The literature was screened for studies describing purified and recombinant allergens and allergen-derived peptides. Studies relevant to the topic were included in this review. Advantages and drawbacks of pure and defined recombinant allergens and peptides over allergen extracts in the context of allergy research, diagnosis, and allergen immunotherapy are discussed. We describe how these molecules are manufactured, which products are currently available on the market, and what the regulative issues are. We furthermore provide an overview of clinical studies with vaccines based on recombinant allergens and synthetic peptides. The possibility of prophylactic vaccination based on recombinant fusion proteins consisting of viral carrier proteins and allergen-derived peptides without allergenic activity are also discussed. During the last 25 years more than several hundred allergen sequences were determined, which led to a production of recombinant allergens that mimic biochemically and immunologically their natural counterparts. Especially in Europe, recombinant allergens are increasingly replacing allergen extracts in diagnosis of allergy. Despite many challenges, such as high cost of clinical trials and regulative issues, allergy vaccines based on recombinant allergens and peptides are being developed and will likely soon be available on the market. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Discrimination of recombinant and pituitary-derived bovine and porcine growth hormones by peptide mass mapping.

    PubMed

    Pinel, Gaud; André, François; Le Bizec, Bruno

    2004-02-11

    Somatotropins, which are used in cattle for growth and lactating performances, are difficult to reliably detect because no direct method exists. Reversed-phase high-performance liquid chromatography (RP-HLC) coupled to electrospray ionization quadrupole mass spectrometry (ESI/MS) has been developed to separate and characterize the N-terminal peptides resulting from tryptic cleavage of natural and recombinant growth hormones from different species (bovine, porcine, and human) and suppliers. Conditions for tryptic digestion were optimized. This technique was found to be optimal to cleave efficiently the N-terminal peptide of the proteins without releasing too much noise from the matrix. Characterization of the peptides through ESI(+)-MS allowed natural and recombinant growth hormones from bovine and porcine species with N-terminal amino acid sequences differing from one amino acid residue to be discriminated. However, the studied human growth hormones had similar primary sequences that did not permit any discrimination between recombinant and natural forms, thus confirming the known identity of these hormones. Protein digestions with pepsin and chymotrypsin were also compared but were not conclusive due to the too small N-terminal peptides released after proteolysis.

  16. A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: Design, production, and assessment

    PubMed Central

    Gramlich, Paul A.; Westbroek, Wendy; Feldman, Ricardo A.; Awad, Ola; Mello, Nicholas; Remington, Mary P.; Sun, Ying; Zhang, Wujuan; Sidransky, Ellen; Betenbaugh, Michael J.; Fishman, Paul S.

    2017-01-01

    Although recombinant glucocerebrosidase (GCase) is the standard therapy for the inherited lysosomal storage disease Gaucher’s disease (GD), enzyme replacement is not effective when the central nervous system is affected. We created a series of recombinant genes/proteins where GCase was linked to different membrane binding peptides including the Tat peptide, the rabies glycoprotein derived peptide (RDP), the binding domain from tetanus toxin (TTC), and a tetanus like peptide (Tet1). The majority of these proteins were well-expressed in a mammalian producer cell line (HEK 293F). Purified recombinant Tat-GCase and RDP-GCase showed similar GCase protein delivery to a neuronal cell line that genetically lacks the functional enzyme, and greater delivery than control GCase, Cerezyme (Genzyme). This initial result was unexpected based on observations of superior protein delivery to neurons with RDP as a vector. A recombinant protein where a fragment of the flexible hinge region from IgA (IgAh) was introduced between RDP and GCase showed substantially enhanced GCase neuronal delivery (2.5 times over Tat-GCase), suggesting that the original construct resulted in interference with the capacity of RDP to bind neuronal membranes. Extended treatment of these knockout neuronal cells with either Tat-GCase or RDP-IgAh-GCase resulted in an >90% reduction in the lipid substrate glucosylsphingosine, approaching normal levels. Further in vivo studies of RDP-IgAh-GCase as well as Tat-GCase are warranted to assess their potential as treatments for neuronopathic forms of GD. These peptide vectors are especially attractive as they have the potential to carry a protein across the blood–brain barrier, avoiding invasive direct brain delivery. PMID:26795355

  17. PAS-cal: a Generic Recombinant Peptide Calibration Standard for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Breibeck, Joscha; Serafin, Adam; Reichert, Andreas; Maier, Stefan; Küster, Bernhard; Skerra, Arne

    2014-08-01

    We describe the design, preparation, and mass-spectrometric characterization of a new recombinant peptide calibration standard with uniform biophysical and ionization characteristics for mass spectrometry. "PAS-cal" is an artificial polypeptide concatamer of peptide cassettes with varying lengths, each composed of the three small, chemically stable amino acids Pro, Ala, and Ser, which are interspersed by Arg residues to allow site-specific cleavage with trypsin. PAS-cal is expressed at high yields in Escherichia coli as a Small Ubiquitin-like MOdifier (SUMO) fusion protein, which is easily purified and allows isolation of the PAS-cal moiety after SUMO protease cleavage. Upon subsequent in situ treatment with trypsin, the PAS-cal polypeptide yields a set of four defined homogeneous peptides in the range from 2 to 8 kDa with equal mass spacing. ESI-MS analysis revealed a conveniently interpretable raw spectrum, which after deconvolution resulted in a very simple pattern of four peaks with similar ionization signals. MALDI-MS analysis of a PAS-cal peptide mixture comprising both the intact polypeptide and its tryptic fragments revealed not only the four standard peptides but also the singly and doubly charged states of the intact concatamer as well as di- and trimeric adduct ion species between the peptides, thus augmenting the observable m/z range. The advantageous properties of PAS-cal are most likely a result of the strongly hydrophilic and conformationally disordered PEG-like properties of the PAS sequences. Therefore, PAS-cal offers an inexpensive and versatile recombinant peptide calibration standard for mass spectrometry in protein/peptide bioanalytics and proteomics research, the composition of which may be further adapted to fit individual needs.

  18. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase

    PubMed Central

    Harris, Karen S.; Durek, Thomas; Kaas, Quentin; Poth, Aaron G.; Gilding, Edward K.; Conlan, Brendon F.; Saska, Ivana; Daly, Norelle L.; van der Weerden, Nicole L.; Craik, David J.; Anderson, Marilyn A.

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  19. Recombinant human intelectin binds bovine lactoferrin and its peptides.

    PubMed

    Shin, Kouichirou; Wakabayashi, Hiroyuki; Yamauchi, Koji; Yaeshima, Tomoko; Iwatsuki, Keiji

    2008-08-01

    Intelectin (IntL), a lectin that exists on the brush border membrane of the small intestine, plays a role in the innate immune response and also acts as a receptor for lactoferrin (LF), an iron-binding glycoprotein found in milk and other secretions. Similar to human LF (hLF), bovine LF (bLF) has been shown to induce proliferation and differentiation of human enterocytes and to modulate their cytokine productions. To evaluate the interaction between human IntL (hIntL) and bLF, recombinant hIntL (rhIntL) conjugated with a tag sequence was examined for its ligand-binding capacity by using microtiter plates coated with LF or other proteins. Interestingly, rhIntL showed higher binding for bLF than hLF. It also bound pepsin hydrolysate of bLF, but to a lower degree than native bLF. A very low binding of rhIntL was observed for bovine serum albumin or transferrin. These findings suggest that hIntL acts as a receptor for bLF and its digested fragments.

  20. Selective lead adsorption by recombinant Escherichia coli displaying a lead-binding peptide.

    PubMed

    Nguyen, Thuong T L; Lee, Hae Ryong; Hong, Soon Ho; Jang, Ji-Ryang; Choe, Woo-Seok; Yoo, Ik-Keun

    2013-02-01

    A highly specific lead-binding peptide ThrAsnThrLeuSerAsnAsn was displayed on Escherichia coli, and lead adsorption characteristics of the recombinant bacteria were investigated. Cell surface-displayed peptide was expressed under the control of an arabinose promoter using outer membrane protein C (OmpC(t)) as an anchoring motif. The optimal induction period and arabinose concentration for the expression of peptide-fused OmpC(t) were determined to be 2 h and 0.001 g/L, respectively. Selective adsorption of Pb(2+) onto recombinant cells was verified with individual or combinatory use of four metal ions, Pb(2+), Ni(2+), Co(2+), and Cu(2+); the amount of bound Pb(2+) onto the biosorbents was significantly higher than the other metal ions. The adsorption isotherm of recombinant cells for Pb(2+) followed the Langmuir isotherm with a maximum adsorption loading (q (max)) of 526 μmol/g dry cell weight.

  1. Comparison of Recombinant Trypanosoma cruzi Peptide Mixtures versus Multiepitope Chimeric Proteins as Sensitizing Antigens for Immunodiagnosis▿

    PubMed Central

    Camussone, Cecilia; Gonzalez, Verónica; Belluzo, María S.; Pujato, Nazarena; Ribone, María E.; Lagier, Claudia M.; Marcipar, Iván S.

    2009-01-01

    The aim of this work was to determine the best strategy to display antigens (Ags) on immunochemical devices to improve test selectivity and sensitivity. We comparatively evaluated five Trypanosoma cruzi antigenic recombinant peptides, chose the three more sensitive ones, built up chimeras bearing these selected Ags, and systematically compared by enzyme-linked immunosorbent assay the performance of the assortments of those peptides with that of the multiepitope constructions bearing all those peptides lineally fused. The better-performing Ags that were compared included peptides homologous to the previously described T. cruzi flagellar repetitive Ag (here named RP1), shed acute-phase Ag (RP2), B13 (RP5), and the chimeric recombinant proteins CP1 and CP2, bearing repetitions of RP1-RP2 and RP1-RP2-RP5, respectively. The diagnostic performances of these Ags were assessed for discrimination efficiency by the formula +OD/cutoff value (where +OD is the mean optical density value of the positive serum samples tested), in comparison with each other either alone, in mixtures, or as peptide-fused chimeras and with total parasite homogenate (TPH). The discrimination efficiency values obtained for CP1 and CP2 were 25% and 52% higher, respectively, than those of their individual-Ag mixtures. CP2 was the only Ag that showed enhanced discrimination efficiency between Chagas' disease-positive and -negative samples, compared with TPH. This study highlights the convenience of performing immunochemical assays using hybrid, single-molecule, chimeric Ags instead of peptide mixtures. CP2 preliminary tests rendered 98.6% sensitivity when evaluated with a 141-Chagas' disease-positive serum sample panel and 99.4% specificity when assessed with a 164-Chagas' disease-negative serum sample panel containing 15 samples from individuals infected with Leishmania spp. PMID:19339486

  2. Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis.

    PubMed

    Camussone, Cecilia; Gonzalez, Verónica; Belluzo, María S; Pujato, Nazarena; Ribone, María E; Lagier, Claudia M; Marcipar, Iván S

    2009-06-01

    The aim of this work was to determine the best strategy to display antigens (Ags) on immunochemical devices to improve test selectivity and sensitivity. We comparatively evaluated five Trypanosoma cruzi antigenic recombinant peptides, chose the three more sensitive ones, built up chimeras bearing these selected Ags, and systematically compared by enzyme-linked immunosorbent assay the performance of the assortments of those peptides with that of the multiepitope constructions bearing all those peptides lineally fused. The better-performing Ags that were compared included peptides homologous to the previously described T. cruzi flagellar repetitive Ag (here named RP1), shed acute-phase Ag (RP2), B13 (RP5), and the chimeric recombinant proteins CP1 and CP2, bearing repetitions of RP1-RP2 and RP1-RP2-RP5, respectively. The diagnostic performances of these Ags were assessed for discrimination efficiency by the formula +OD/cutoff value (where +OD is the mean optical density value of the positive serum samples tested), in comparison with each other either alone, in mixtures, or as peptide-fused chimeras and with total parasite homogenate (TPH). The discrimination efficiency values obtained for CP1 and CP2 were 25% and 52% higher, respectively, than those of their individual-Ag mixtures. CP2 was the only Ag that showed enhanced discrimination efficiency between Chagas' disease-positive and -negative samples, compared with TPH. This study highlights the convenience of performing immunochemical assays using hybrid, single-molecule, chimeric Ags instead of peptide mixtures. CP2 preliminary tests rendered 98.6% sensitivity when evaluated with a 141-Chagas' disease-positive serum sample panel and 99.4% specificity when assessed with a 164-Chagas' disease-negative serum sample panel containing 15 samples from individuals infected with Leishmania spp.

  3. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  4. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy

    PubMed Central

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef; Blatt, Katharina; Valent, Peter; Valenta, Rudolf

    2015-01-01

    Background Grass pollen is one of the most important sources of respiratory allergies worldwide. Objective This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Methods Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. Results Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. Conclusion A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy. PMID:25441634

  5. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy.

    PubMed

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef; Blatt, Katharina; Valent, Peter; Valenta, Rudolf

    2015-05-01

    Grass pollen is one of the most important sources of respiratory allergies worldwide. This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Calnexin, calreticulin and the folding of glycoproteins.

    PubMed

    1997-05-01

    Calnexin and calreticulin are molecular chaperones in the endoplasmic reticulum (ERJ. They are lectins that interact with newly synthesized glycoproteins that have undergone partial trimming of their core N-linked oligosaccharides. Together with the enzymes responsible for glucose removal and a glucosyltransferase that re-glucosylates already-trimmed glycoproteins, they provide a novel mechanism for promoting folding, oligomeric assembly and quality control in the ER.

  7. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans.

    PubMed

    Cunha-Neto, E

    1999-02-01

    The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  8. Antiviral Cationic Peptides as a Strategy for Innovation in Global Health Therapeutics for Dengue Virus: High Yield Production of the Biologically Active Recombinant Plectasin Peptide

    PubMed Central

    Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M.; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-01-01

    Abstract Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03±0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection. PMID:24044366

  9. Solution behavior of synthetic silk peptides and modified recombinant silk proteins

    NASA Astrophysics Data System (ADS)

    Foo, C. Wong Po; Bini, E.; Huang, J.; Lee, S. Y.; Kaplan, D. L.

    2006-02-01

    Spider dragline silk from Nephila clavipes possesses impressive mechanical properties derived in part from repetitive primary sequence containing polyalanine regions that self-assemble into crystalline β-sheets. In the present study, we have sought to understand more details of redox responses related to conformational transitions of modified silk peptides and a recombinant protein containing encoded methionine triggers. Regardless of the position of the methionine trigger relative to the polyalanine domain, chemical oxidation was rapid and slight increases in the α-helical structure and decreases in the β-sheet and random coil content were observed by CD and FTIR in the assembled silk-like peptides and the recombinant protein. CD results indicated that the decrease in β-sheet and random coil conformations, coupled with the increase in helical content during oxidation, occurred during the first 30 min of the reaction. No further conformational changes occurred after this time and the response was independent of methionine trigger location relative to the penta-alanine domain. These results were confirmed with fluorescence studies. The design, processing and utility of these modified redox triggered silk-like peptides and proteins suggest a range of potential utility, from biomaterials to engineered surface coatings with chemically alterable secondary structure and, thus, properties.

  10. Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases.

    PubMed

    Calcott, Mark J; Ackerley, David F

    2015-08-13

    Non-ribosomal peptide synthetase (NRPS) enzymes govern the assembly of amino acids and related monomers into peptide-like natural products. A key goal of the field is to develop methods to effective recombine NRPS domains or modules, and thereby generate modified or entirely novel products. We previously showed that substitution of the condensation (C) and adenylation (A) domains in module 2 of the pyoverdine synthetase PvdD from Pseudomonas aeruginosa led to synthesis of modified pyoverdines in a minority of cases, but that more often the recombinant enzymes were non-functional. One possible explanation was that the majority of introduced C domains were unable to effectively communicate with the thiolation (T) domain immediately upstream, in the first module of PvdD. To test this we first compared the effectiveness of C-A domain substitution relative to T-C-A domain substitution using three different paired sets of domains. Having previously demonstrated that the PvdD A/T domain interfaces are tolerant of domain substitution, we hypothesised that T-C-A domain substitution would lead to more functional recombinant enzymes, by maintaining native T/C domain interactions. Although we successfully generated two recombinant pyoverdines, having a serine or a N5-formyl-N5-hydroxyornithine residue in place of the terminal threonine of wild type pyoverdine, in neither case did the T-C-A domain substitution strategy lead to substantially higher product yield. To more comprehensively examine the abilities of non-native T domains to communicate effectively with the C domain of PvdD module 2 we then substituted the module 1 T domain with 18 different T domains sourced from other pyoverdine NRPS enzymes. In 15/18 cases the recombinant NRPS was functional, including 6/6 cases where the introduced T domain was located upstream of a C domain in its native context. Our data indicate that T domains are generally able to interact effectively with non-native C domains, contrasting with

  11. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus.

    PubMed

    Matsubara, F H; Meissner, G O; Herzig, V; Justa, H C; Dias, B C L; Trevisan-Silva, D; Gremski, L H; Gremski, W; Senff-Ribeiro, A; Chaim, O M; King, G F; Veiga, S S

    2017-02-01

    Loxosceles intermedia venom comprises a complex mixture of proteins, glycoproteins and low molecular mass peptides that act synergistically to immobilize envenomed prey. Analysis of a venom-gland transcriptome from L. intermedia revealed that knottins, also known as inhibitor cystine knot peptides, are the most abundant class of toxins expressed in this species. Knottin peptides contain a particular arrangement of intramolecular disulphide bonds, and these peptides typically act upon ion channels or receptors in the insect nervous system, triggering paralysis or other lethal effects. Herein, we focused on a knottin peptide with 53 amino acid residues from L. intermedia venom. The recombinant peptide, named U2 -sicaritoxin-Li1b (Li1b), was obtained by expression in the periplasm of Escherichia coli. The recombinant peptide induced irreversible flaccid paralysis in sheep blowflies. We screened for knottin-encoding sequences in total RNA extracts from two other Loxosceles species, Loxosceles gaucho and Loxosceles laeta, which revealed that knottin peptides constitute a conserved family of toxins in the Loxosceles genus. The insecticidal activity of U2 -SCTX-Li1b, together with the large number of knottin peptides encoded in Loxosceles venom glands, suggests that studies of these venoms might facilitate future biotechnological applications of these toxins.

  12. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization.

    PubMed

    Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald

    2015-04-01

    We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris

    PubMed Central

    Xing, Li-Wei; Tian, Shi-Xun; Gao, Wei; Yang, Na; Qu, Pei; Liu, Di; Jiao, Jian; Wang, Jue; Feng, Xing-Jun

    2016-01-01

    Fowlicidins are a group of cathelicidin antimicrobial peptides that were initially identified in chickens. Fowlicidin-2, which is composed of 31 amino acids, is widely expressed in the majority of tissues in chickens and has an important role in innate immunity. In the present study, a recombinant expression system for fowlicidin-2 was successfully constructed using Pichia pastoris X-33 and the expression vector pPICZα-A. Under the optimized fermentation conditions, 85.6 mg fowlicidin-2 with >95% purity was obtained from 1 liter culture medium following purification by ion exchange chromatography and reversed phase high performance liquid chromatography. The recombinant fowlicidin-2 exhibited broad spectrum antimicrobial activity and had a minimum inhibitory concentration ranging from 1 to 4 µM. Furthermore, recombinant fowlicidin-2 exhibited hemolytic activity, promoting 50% human erythrocyte hemolysis in the concentration range of 128–256 µM, and anticancer activity, resulting in the death of 50% of A375 human malignant melanoma cells in the concentration range of 2–4 µM. The results of the present study suggest that recombinant fowlicidin-2 may be a promising candidate for therapeutic applications. PMID:27698732

  14. Comparative effect of human and Trypanosoma cruzi calreticulin in wound healing.

    PubMed

    Ignacio Arias, J; Sepulveda, Caroll; Bravo, Patricia; Hamilton-West, Christopher; Maldonado, Ismael; Ferreira, Arturo

    2015-01-01

    In orthopaedics, the use of factors that enhance granulation tissue formation and prevent or delay new bone regeneration is sometimes desirable. Calreticulin (CRT), a unique endoplasmic reticulum luminal Ca(2+) -binding chaperone widely distributed in eukaryotic cells, is involved in many cellular functions. Among them, CRT has an important influence in cutaneous wound healing and diverse processes associated with cutaneous repair, inhibition of angiogenesis, promotion of cell adhesion and antitumour effect. One of the molecules involved in several aspects of the host-parasite interplay is Trypanosoma cruzi calreticulin (TcCRT), which is highly homologous to human calreticulin (HuCRT). Here, recombinant (r)HuCRT and rTcCRT are compared on their abilities to affect fibroblast behaviour in a scratch plate assay, and wound healing in in vivo skin rat models. In molar terms, rTcCRT is three orders of magnitude more efficient than rHuCRT in increasing proliferation and migration of human fibroblasts in vitro. A similar effect was observed in vivo on rat skin wounds and inhibition of bone gap bridging in rabbit unicortical bone osteotomies.

  15. Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity.

    PubMed

    Serna, Naroa; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Unzueta, Ugutz; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio

    2017-09-15

    The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections

  16. Cloning and characterization of the calreticulin gene from Ricinus communis L.

    PubMed

    Coughlan, S J; Hastings, C; Winfrey, R

    1997-08-01

    A full-length cDNA encoding a calreticulin-like protein was isolated by immune-screening a germinating castor bean endosperm cDNA library with antisera raised to the total lumenal fraction of purified plant endoplasmic reticulum. The calcium-binding properties of the recombinant protein were characterized and shown to be essentially identical to those reported for the mammalian calreticulin. Calcium overlays and immune blot analysis confirmed the endoplasmic lumenal identity of this reticuloplasmin. Probing protein blots of endoplasmic reticulum subfractions with radio-iodinated calreticulin showed specific associations with various polypeptides including one identified as the abundant reticuloplasmin protein disulfide isomerase. Characterization of the corresponding genomic clones revealed that calreticulin is encoded by a single gene of 3 kb in castor. The full genomic sequence reveals the presence of 12 introns, 12 translated exons, and one exon containing the last three amino acids of the translated sequence and the 3'-untranslated region of the gene. Northern blot analysis of RNA isolated from various organ tissues showed a basal constitutive level of expression throughout the plant, but more abundant mRNA being detected in tissues active in secretion. This was confirmed by analysis of transgenic tobacco plants containing 1.8 kb of 5'-untranslated genomic sequence fused to the beta-glucuronidase reporter gene (GUS) showed a more localized pattern of expression. Activity being localized to the vasculature (phloem, root hairs and root tip) in vegetative tissue, and being strongly expressed in the floral organs including the developing and germinating seed.

  17. Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury.

    PubMed

    Le Marrec-Croq, Francoise; Bocquet-Garcon, Annelise; Vizioli, Jacopo; Vancamp, Christelle; Drago, Francesco; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Sautiere, Pierre-Eric; Lefebvre, Christophe

    2014-04-19

    The medicinal leech is considered as a complementary and appropriate model to study immune functions in the central nervous system (CNS). In a context in which an injured leech's CNS can naturally restore normal synaptic connections, the accumulation of microglia (immune cells of the CNS that are exclusively resident in leeches) has been shown to be essential at the lesion to engage the axonal sprouting. HmC1q (Hm for Hirudo medicinalis) possesses chemotactic properties that are important in the microglial cell recruitment by recognizing at least a C1q binding protein (HmC1qBP alias gC1qR). Recombinant forms of C1q were used in affinity purification and in vitro chemotaxis assays. Anti-calreticulin antibodies were used to neutralize C1q-mediated chemotaxis and locate the production of calreticulin in leech CNS. A newly characterized leech calreticulin (HmCalR) has been shown to interact with C1q and participate to the HmC1q-dependent microglia accumulation. HmCalR, which has been detected in only some microglial cells, is consequently a second binding protein for HmC1q, allowing the chemoattraction of resident microglia in the nerve repair process. These data give new insight into calreticulin/C1q interaction in an immune function of neuroprotection, suggesting another molecular target to use in investigation of microglia reactivity in a model of CNS injury.

  18. Allergen Peptides, Recombinant Allergens and Hypoallergens for Allergen-Specific Immunotherapy.

    PubMed

    Marth, Katharina; Focke-Tejkl, Margarete; Lupinek, Christian; Valenta, Rudolf; Niederberger, Verena

    2014-01-01

    Allergic diseases are among the most common health issues worldwide. Specific immunotherapy has remained the only disease-modifying treatment, but it is not effective in all patients and may cause side effects. Over the last 25 years, allergen molecules from most prevalent allergen sources have been isolated and produced as recombinant proteins. Not only are these molecules useful in improved allergy diagnosis, but they also have the potential to revolutionize the treatment of allergic disease by means of immunotherapy. Panels of unmodified recombinant allergens have already been shown to effectively replace natural allergen extracts in therapy. Through genetic engineering, several molecules have been designed with modified immunological properties. Hypoallergens have been produced that have reduced IgE binding capacity but retained T cell reactivity and T cell peptides which stimulate allergen-specific T cells, and these have already been investigated in clinical trials. New vaccines have been recently created with both reduced IgE and T cell reactivity but retained ability to induce protective allergen-specific IgG antibodies. The latter approach works by fusing per se non-IgE reactive peptides derived from IgE binding sites of the allergens to a virus protein, which acts as a carrier and provides the T-cell help necessary for immune stimulation and protective antibody production. In this review, we will highlight the different novel approaches for immunotherapy and will report on prior and ongoing clinical studies.

  19. Design and expression of recombinant antihypertensive peptide multimer gene in Escherichia coli BL21.

    PubMed

    Rao, Shengqi; Su, Yujie; Li, Junhua; Xu, Zhenzhen; Yang, Yanjun

    2009-12-01

    The design and expression of an antihypertensive peptide multimer (AHPM), a common precursor of 11 kinds of antihypertensive peptides (AHPs) tandemly linked up according to the restriction sites of gastrointestinal proteases, were explored. The DNA fragment encoding the AHPM was chemically synthesized and cloned into expression vector pGEX-3X. After an optimum induction with IPTG, the recombinant AHPM fused with glutathione S-transferase (GST-AHPM) was expressed mostly as inclusion body in Escherichia coli BL21 and reached the maximal production, 35% of total intracellular protein. The inclusion body was washed, dissolved, and purified by cation exchange chromatography under denaturing conditions, followed by refolding together with size exclusion chromatography and gradual dialysis. The resulting yield of the soluble GST-AHPM (34 kDa) with a purity of 95% reached 399 mg/l culture. The release of high active fragments from the AHPM was confirmed by the simulated gastrointestinal digestion. The results suggest that the design strategy and production method of the AHPM will be useful to obtain a large quantity of recombinant AHPs at a low cost.

  20. Selective Purification of Recombinant Neuroactive Peptides Using the Flagellar Type III Secretion System

    PubMed Central

    Singer, Hanna M.; Erhardt, Marc; Steiner, Andrew M.; Zhang, Min-Min; Yoshikami, Doju; Bulaj, Grzegorz; Olivera, Baldomero M.; Hughes, Kelly T.

    2012-01-01

    ABSTRACT The structure, assembly, and function of the bacterial flagellum involves about 60 different proteins, many of which are selectively secreted via a specific type III secretion system (T3SS) (J. Frye et al., J. Bacteriol. 188:2233–2243, 2006). The T3SS is reported to secrete proteins at rates of up to 10,000 amino acid residues per second. In this work, we showed that the flagellar T3SS of Salmonella enterica serovar Typhimurium could be manipulated to export recombinant nonflagellar proteins through the flagellum and into the surrounding medium. We translationally fused various neuroactive peptides and proteins from snails, spiders, snakes, sea anemone, and bacteria to the flagellar secretion substrate FlgM. We found that all tested peptides of various sizes were secreted via the bacterial flagellar T3SS. We subsequently purified the recombinant μ-conotoxin SIIIA (rSIIIA) from Conus striatus by affinity chromatography and confirmed that T3SS-derived rSIIIA inhibited mammalian voltage-gated sodium channel NaV1.2 comparably to chemically synthesized SIIIA. PMID:22647788

  1. Recombinant prosegment peptide acts as a folding catalyst and inhibitor of native pepsin.

    PubMed

    Dee, Derek R; Filonowicz, Shaun; Horimoto, Yasumi; Yada, Rickey Y

    2009-12-01

    Porcine pepsin A, a gastric aspartic peptidase, is initially produced as the zymogen pepsinogen that contains an N-terminal, 44 residue prosegment (PS) domain. In the absence of the PS, native pepsin (Np) is irreversibly denatured and when placed under refolding conditions, folds to a thermodynamically stable denatured state. This denatured, refolded pepsin (Rp) state can be converted to Np by the exogenous addition of the PS, which catalyzes the folding of Rp to Np. In order to thoroughly study the mechanism by which the PS catalyzes pepsin folding, a soluble protein expression system was developed to produce recombinant PS peptide in a highly pure form. Using this system, the wild-type and three-mutant PS forms, in which single residue substitutions were made (V4A, R8A and K36A), were expressed and purified. These PS peptides were characterized for their ability to inhibit Np enzymatic activity and to catalyze the folding of Rp to Np. The V4A, R8A and K36A mutant PS peptides were found to have nanomolar inhibition constants, Ki, of 82.4, 58.3 and 95.6 nM, respectively, approximately a two-fold increase from that of the wild-type PS (36.2 nM). All three-mutant PS peptides were found to catalyze Np folding with a rate constant of 0.06 min(-1), five-fold lower than that of the wild-type. The observation that the mutant PS peptides retained their inhibition and folding-catalyst functionality suggests a high level of resilience to mutations of the pepsin PS.

  2. Evaluation of Recombinant Human Growth Hormone Secretion in E. coli using the L-asparaginase II Signal Peptide

    PubMed Central

    Zamani, Mozhdeh; Nezafat, Navid; Ghasemi, Younes

    2016-01-01

    Background: In the recent years, there has been an increasing interest in secretory production of recombinant proteins, due to its various advantages compared with intracellular expression. Signal peptides play a critical role in prosperous secretion of recombinant proteins. Accordingly, different signal peptides have been assessed for their ability to produce secretory proteins by trial-and-error experiments. The aim of this study was to evaluate the effect of L-asparaginase II signal peptide on the recombinant human Growth Hormone (hGH) protein secretion in the Escherichia coli (E. coli) host. Methods: Cloning and expression of a synthetic hGH gene, containing L-asparaginase II signal sequence was performed in E. coli BL21 (DE3) using 0.1mM IPTG as an inducer at 23°C overnight. Periplasmic protein extraction was performed using three methods, including osmotic shock, osmotic shock in the presence of glycine and combined Lysozyme/EDTA osmotic shock. Afterwards, the hGH expression was determined by SDS-PAGE. Results: Based on experimentally obtained results, hGH protein is expressed as inclusion body even in the presence of L-asparaginase II signal peptide. Conclusion: Therefore, this signal peptide is not effective for secretory production of the recombinant hGH. PMID:27920886

  3. Cytoplasmic localization of the androgen receptor is independent of calreticulin

    PubMed Central

    Nguyen, Minh M.; Dincer, Zehra; Wade, James R.; Alur, Mahesh; Michalak, Marek; DeFranco, Donald B.; Wang, Zhou

    2009-01-01

    Identification and characterization of factors regulating intracellular localization of the androgen receptor (AR) are fundamentally important because nucleocytoplasmic trafficking of AR is a critical step in AR regulation by androgen manipulation. Normally, AR is localized to the cytoplasm in the absence of androgen. Upon ligand binding, AR translocates to the nucleus, where it can modulate transcription of AR-responsive genes. The withdrawal of androgen results in the export of unliganded AR from the nucleus to the cytoplasm, where it is transcriptionally inactive. Calreticulin has been implicated as a possible nuclear export factor for AR because the two proteins form a complex. In this study, we assessed whether the cytoplasmic localization of AR requires binding to calreticulin. To test this we substituted the calreticulin binding sequence (CBS) KVFFKR (residues 579–584) with the amino acids RLAARK in AR and monitored the cellular localization of a GFP-AR fusion protein in the absence of androgen. We also determined if knockdown or knockout of calreticulin expression affected the cytoplasmic localization of the AR. We found that a mutated CBS did not affect the localization of AR and that in the absence of androgen, AR is localized to the cytoplasm regardless of its ability to interact with calreticulin. Also, a reduction in the levels or loss of calreticulin did not affect the localization of AR. These data argue that calreticulin is not required for the cytoplasmic localization of AR. PMID:19150386

  4. An in vivo role for Trypanosoma cruzi calreticulin in antiangiogenesis.

    PubMed

    Molina, María C; Ferreira, Viviana; Valck, Carolina; Aguilar, Lorena; Orellana, Juana; Rojas, Alvaro; Ramirez, Galia; Billetta, Rosario; Schwaeble, Wilhelm; Lemus, David; Ferreira, Arturo

    2005-04-01

    Angiogenesis leads to neovascularization from existing blood vessels. It is associated with tumor growth and metastasis and is regulated by pro- and antiangiogenic molecules, some of them currently under clinical trials for cancer treatment. During the last few years we have cloned, sequenced and expressed a Trypanosoma cruzi calreticulin gene (TcCRT). Its product, TcCRT, a 45 kDa protein, is more than 50% identical to human CRT (HuCRT). TcCRT, present on the surface of trypomastigotes, binds both C1q and mannan binding lectin and inhibits the classical activation pathway of human complement. Since TcCRT is highly homologous to a functional antiangiogenic fragment from HuCRT (aa 120-180), recombinant (r) and native (n) TcCRT were tested in their antiangiogenic effects, in the chick embryonic chorioallantoid membrane (CAM) assay. Both proteins mediated highly significant antiangiogenic effects in the in vivo CAM assay. This effect was further substantiated in experiments showing that the plasmid construct pSecTag/TcCRT also displayed significant antiangiogenic properties, as compared to the empty vector. Most likely, the fact that antiangiogenic substances act preferentially on growing neoplasic tissues, but not on already established tumors, is due to their effects on emerging blood vessels. The results shown here indicate that TcCRT, like its human counterpart, has antiangiogenic properties. These properties may explain, at least partly, the reported antineoplasic effect of experimental T. cruzi infection.

  5. Recombinant Listeria monocytogenes expressing an immunodominant peptide fails to protect after intravaginal challenge with herpes simplex virus-2

    PubMed Central

    Muller, William J.; Orgun, Nural N.; Dong, Lichun; Koelle, David M.; Huang, Meei-Li; Way, Sing Sing

    2009-01-01

    Recombinant Listeria monocytogenes expressing a type-common herpes simplex virus (HSV) gB-peptide was shown previously to protect against footpad inoculation with HSV-1. We tested this construct for protection against vaginal challenge with HSV-2. Primed mice demonstrated strong recall responses, had modest reductions in HSV-2 DNA in vaginal mucosa, but were not protected from disease. PMID:18443737

  6. Cross protection against fowl cholera disease with the use of recombinant Pasteurella multocida FHAB2 peptides vaccine

    USDA-ARS?s Scientific Manuscript database

    It has been demonstrated that fhaB2 (filamentous hemagglutinin) is an important virulence factor for P. multocida in development of fowl cholera disease and that recombinant FHAB2 peptides derived from P. multocida, Pm-1059, protect turkeys against Pm-1059 challenge. To test the hypothesis that rFHA...

  7. Intestinal cell targeting of a stable recombinant Cu-Zn SOD from Cucumis melo fused to a gliadin peptide.

    PubMed

    Intes, Laurent; Bahut, Muriel; Nicole, Pascal; Couvineau, Alain; Guette, Catherine; Calenda, Alphonse

    2012-05-31

    The mRNA encoding full length chloroplastic Cu-Zn SOD (superoxide dismutase) of Cucumis melo (Cantaloupe melon) was cloned. This sequence was then used to generate a mature recombinant SOD by deleting the first 64 codons expected to encode a chloroplastic peptide signal. A second hybrid SOD was created by inserting ten codons to encode a gliadin peptide at the N-terminal end of the mature SOD. Taking account of codon bias, both recombinant proteins were successfully expressed and produced in Escherichia coli. Both recombinant SODs display an enzymatic activity of ~5000U mg(-1) and were shown to be stable for at least 4h at 37°C in biological fluids mimicking the conditions of intestinal transit. These recombinant proteins were capable in vitro, albeit at different levels, of reducing ROS-induced-apoptosis of human epithelial cells. They also stimulated production and release in a time-dependent manner of an autologous SOD activity from cells located into jejunum biopsies. Nevertheless, the fused gliadin peptide enable the recombinant Cu-Zn SOD to maintain a sufficiently sustained interaction with the intestinal cells membrane in vivo rather than being eliminated with the flow. According to these observations, the new hybrid Cu-Zn SOD should show promise in applications for managing inflammatory bowel diseases.

  8. Semisynthesis of human ghrelin: condensation of a Boc-protected recombinant peptide with a synthetic O-acylated fragment.

    PubMed

    Makino, Tomohiro; Matsumoto, Masaru; Suzuki, Yuji; Kitajima, Yasuo; Yamamoto, Katsuhiko; Kuramoto, Masashi; Minamitake, Yoshiharu; Kangawa, Kenji; Yabuta, Masayuki

    2005-12-05

    The creation of peptide using a combination of recombinant expression and chemical synthesis can be a powerful tool for the production of a wide variety of polypeptides modified by phosphorylation, glycosylation, etc. We have developed a new method for the preparation of a recombinant peptide with a free N(alpha)-amino group and protected N(epsilon)-amino groups, and have used this method in the semisynthesis of human ghrelin. Ghrelin, a natural ligand for growth hormone secretagogue receptor, is a 28-residue peptide with an essential n-octanoyl modification on Ser3. A 7-residue N-terminal fragment of ghrelin containing the octanoyl modification was prepared by Fmoc chemistry. In the preparation of it, all reactions were performed on the 2-chlorotrityl resin. Additionally, TBDMS and tBu turned out to be the most effective protection groups for the Ser3 and the Ser2, Ser6, respectively. For preparation of a 21-residue C-terminal fragment, we established a two-step protease processing method for the partially protected segment. A recombinant precursor peptide was Boc protected and subsequently cleaved using two distinct proteases, OmpT and Kex2. The peptides were then coupled to each other and, after deprotection, resulted in fully active human ghrelin.

  9. Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide.

    PubMed

    Yang, Yinshan; Poncet, Joël; Garnier, Julien; Zatylny, Céline; Bachère, Evelyne; Aumelas, André

    2003-09-19

    Penaeidins are a family of antimicrobial peptides of 47-63 residues isolated from several species of shrimp. These peptides display a proline-rich domain (N-terminal part) and a cysteine-rich domain (C-terminal part) stabilized by three conserved disulfide bonds whose arrangement has not yet been characterized. The recombinant penaeidin-3a of Litopenaeus vannamei (63 residues) and its [T8A]-Pen-3a analogue were produced in Saccharomyces cerevisiae and showed similar antimicrobial activity. The solution structure of the [T8A]-Pen-3a analogue was determined by using two-dimensional 1H NMR and simulated annealing calculations. The proline-rich domain, spanning residues 1-28 was found to be unconstrained. In contrast, the cysteine-rich domain, spanning residues 29-58, displays a well defined structure, which consists of an amphipathic helix (41-50) linked to the upstream and the downstream coils by two disulfide bonds (Cys32-Cys47 and Cys48-Cys55). These two coils are in turn linked together by the third disulfide bond (Cys36-Cys54). Such a disulfide bond packing, which is in agreement with the analysis of trypsin digests by ESI-MS, contributes to the highly hydrophobic core. Side chains of Arg45 and Arg50, which belong to the helix, and side chains of Arg37 and Arg53, which belong to the upstream and the downstream coils, are located in two opposite parts of this globular and compact structure. The environment of these positively charged residues, either by hydrophobic clusters at the surface of the cysteine-rich domain or by sequential hydrophobic residues in the unconstrained proline-rich domain, gives rise to the amphipathic character required for antimicrobial peptides. We hypothesize that the antimicrobial activity of penaeidins can be explained by a cooperative effect between the proline-rich and cysteine-rich features simultaneously present in their sequences.

  10. Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita

    SciTech Connect

    Shenkarev, Zakhar O.; Panteleev, Pavel V.; Balandin, Sergey V.; Finkina, Ekaterina I.; Arseniev, Alexander S.; Ovchinnikova, Tatiana V.

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Aurelin was overexpressed in Escherichia coli, and its spatial structure was studied by NMR. Black-Right-Pointing-Pointer Aurelin compact structure encloses helical regions cross-linked by three disulfide bonds. Black-Right-Pointing-Pointer Aurelin shows structural homology to the BgK and ShK toxins of sea anemones. Black-Right-Pointing-Pointer Aurelin binds to the anionic lipid vesicles, but does not interact with zwitterionic ones. Black-Right-Pointing-Pointer Aurelin binds to DPC micelle surface with moderate affinity via two helical regions. -- Abstract: Aurelin is a 40-residue cationic antimicrobial peptide isolated from the mezoglea of a scyphoid jellyfish Aurelia aurita. Aurelin and its {sup 15}N-labeled analogue were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant peptide was examined, and its spatial structure was studied by NMR spectroscopy. Aurelin represents a compact globule, enclosing one 3{sub 10}-helix and two {alpha}-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid (POPC/DOPG, 3:1) vesicles even at physiological salt concentration, it does not interact with zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with moderate affinity via two {alpha}-helical regions. Although aurelin shows structural homology to the BgK and ShK toxins of sea anemones, its surface does not possess the 'functional dyad' required for the high-affinity interaction with the K{sup +}-channels. The obtained data permit to correlate the modest antibacterial properties and membrane activity of aurelin.

  11. Cytotoxicity of recombinant tamapin and related toxin-like peptides on model cell lines.

    PubMed

    Ramírez-Cordero, Belén; Toledano, Yanis; Cano-Sánchez, Patricia; Hernández-López, Rogelio; Flores-Solis, David; Saucedo-Yáñez, Alma L; Chávez-Uribe, Isabel; Brieba, Luis G; del Río-Portilla, Federico

    2014-06-16

    The scorpion toxin tamapin displays the most potent and selective blockage against KCa2.2 channels known to date. In this work, we report the biosynthesis, three-dimensional structure, and cytotoxicity on cancer cell lines (Jurkat E6-1 and human mammary breast cancer MDA-MB-231) of recombinant tamapin and five related peptides bearing mutations on residues (R6A,R7A, R13A, R6A-R7A, and GS-tamapin) that were previously suggested to be important for tamapin's activity. The indicated cell lines were used as they constitutively express KCa2.2 channels. The studied toxin-like peptides displayed lethal responses on Jurkat T cells and breast cancer cells; their effect is dose- and time-dependent with IC50 values in the nanomolar range. The order of potency is r-tamapin>GS-tamapin>R6A>R13A>R6A-R7A>R7A for Jurkat T cells and r-tamapin>R7A for MDA-MB-231 breast cancer cells. Our structural determination by NMR demonstrated that r-tamapin preserves the folding of the αKTx5 subfamily and that neither single nor double alanine mutations affect the three-dimensional structure of the wild-type peptide. In contrast, our activity assays show that changes in cytotoxicity are related to the chemical nature of certain residues. Our results suggest that the toxic activity of r-tamapin on Jurkat and breast cancer cells could be mediated by the interaction of charged residues in tamapin with KCa2.2 channels via the apoptotic cell death pathway.

  12. Recombinant expression of the antimicrobial peptide polyphemusin and its activity against the protozoan oyster pathogen Perkinsus marinus.

    PubMed

    Pierce, J C; Maloy, W L; Salvador, L; Dungan, C F

    1997-09-01

    Polyphemusin is a broad-spectrum antimicrobial peptide isolated from hemocytes of the North American horseshoe crab Limulus polyphemus. To date the polyphemusin used for scientific analyses has been purified from the natural materials or obtained by chemical synthesis. We report here the recombinant expression in Escherichia coli, and subsequent purification, of a polyphemusin analogue (rLim1). To prevent toxicity of the antimicrobial peptide in the highly susceptible E. coli host, we used a carboxy-terminal fusion protein cloning strategy provided by a maltose-binding protein (MBP) gene fusion system (New England Biolabs). Antimicrobial activity of recombinant polyphemusin was similar to that seen with amidated native polyphemusin peptide. When rLim1 was tested for antibiotic activity against the apicomplexan protozoan oyster pathogen Perkinsus marinus, complete inhibition was observed at 12 micrograms/ml, and partial inhibition at 8 micrograms/ml.

  13. Recombinant production of influenza hemagglutinin and HIV-1 GP120 antigenic peptides using a cleavable self-aggregating tag

    PubMed Central

    Xu, Wanghui; Zhao, Qing; Xing, Lei; Lin, Zhanglin

    2016-01-01

    The increasing demand for antigenic peptides in the development of novel serologic diagnostics and epitope-based vaccines requires rapid and reliable peptide synthesis techniques. Here we investigated a method for efficient recombinant expression and purification of medium- to large-sized antigenic peptides in E. coli. Previously we devised a streamlined protein expression and purification scheme based on a cleavable self-aggregating tag (cSAT), which comprised an intein molecule and a self-aggregating peptide ELK16. In this scheme, the target proteins were fused in the C-termini with cSAT and expressed as insoluble aggregates. After intein self-cleavage, target proteins were released into the soluble fraction with high yield and reasonable purity. We demonstrated the applicability of this scheme by preparing seven model viral peptides, with lengths ranging from 32 aa to 72 aa. By adding an N-terminal thioredoxin tag, we enhanced the yield of target peptides released from the aggregates. The purified viral peptides demonstrated high antigenic activities in ELISA and were successfully applied to dissecting the antigenic regions of influenza hemagglutinin. The cSAT scheme described here allows for the rapid and low-cost preparation of multiple antigenic peptides for immunological screening of a broad range of viral antigens. PMID:27808126

  14. Pharmacological effects of a recombinant hPTH(1-34) derived peptide on ovariectomized rats.

    PubMed

    Chunxiao, Wang; Chengying, Gu; Liang, Jin; Xiaoming, Shi; Feng, Guo; Junting, Yuan; Wenhui, Wu; Yu, Wang; Jingjing, Liu

    2017-01-05

    A recombinant peptide Pro-Pro-[Arg(11)]hPTH(1-34)-Pro-Pro, was designed, biosynthesized, and purified in our lab (generated by substituting Arg for Leu at position 11 and adding -Pro-Pro to the carboxyl terminus of hPTH(1-34)-peptide), and reported to be capable of enhancing serum calcium level in chicken. In this investigation, we studied its impact on the structure, component, and biomechanical properties of rat bones. The pharmacological effect of Pro-Pro-[Arg(11)]hPTH(1-34)-Pro-Pro was investigated to evaluate its therapeutic potential for the treatment of osteoporosis, one of the most prevalent and rapidly spreading diseases in the world. 3-month-old normal female rats were sham-ovariectomized or ovariectomized, then fed for 14 weeks. Small doses of Pro-Pro-[Arg(11)]hPTH(1-34)-Pro-Pro were given to the rats afterward (daily subcutaneous injection of 0.4-0.9nmol/100g body weight for 16 weeks). Values of various parameters, including the body weight, the bone mass, the bone geometry, the bone biomechanics, the bone histology, the bone histomorphology, and the serum biochemistry, were collected before or after animal sacrifice. Daily subcutaneous injection of Pro-Pro-[Arg(11)]hPTH(1-34)-Pro-Pro induced 37.0-42.4% increase in vertebral BMD, 28.5-47.9% increase in femoral BMD, 30.7-43.7% decrease in marrow cavity or increase in trabecular bone area. The peptide also increased calcium, phosphorus, and collagen in bone by 52.1-59.7%, 24.5-34.7%, and 26.3-28.0%, respectively. In terms of mechanic properties, peptide administration elevated bone rigidity by 55.7-84.5%, decreased the deflection by 14.8-26.7%, and improved modulus of elasticity by 28.1-76.4%. These data suggest Pro-Pro-[Arg(11)]hPTH(1-34)-Pro-Pro has a positive effect on bone mass accumulation and microstructure improvement, fortifies bone strength, and possesses anti-aging capability, which may merit further investigation.

  15. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

  16. Small molecule functional analogs of peptides that inhibit lambda site-specific recombination and bind Holliday junctions.

    PubMed

    Ranjit, Dev K; Rideout, Marc C; Nefzi, Adel; Ostresh, John M; Pinilla, Clemencia; Segall, Anca M

    2010-08-01

    Our lab has isolated hexameric peptides that are structure-selective ligands of Holliday junctions (HJ), central intermediates of several DNA recombination reactions. One of the most potent of these inhibitors, WRWYCR, has shown antibacterial activity in part due to its inhibition of DNA repair proteins. To increase the therapeutic potential of these inhibitors, we searched for small molecule inhibitors with similar activities. We screened 11 small molecule libraries comprising over nine million individual compounds and identified a potent N-methyl aminocyclic thiourea inhibitor that also traps HJs formed during site-specific recombination reactions in vitro. This inhibitor binds specifically to protein-free HJs and can inhibit HJ resolution by RecG helicase, but only showed modest growth inhibition of bacterial with a hyperpermeable outer membrane; nonetheless, this is an important step in developing a functional analog of the peptide inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Use of Synthetic and Recombinant Peptides in the Study of Host-Parasite Interactions in the Malarias

    DTIC Science & Technology

    1987-01-01

    competitive region could readily vary under immune pres- binding assays, using synthetic peptides with 9 sure, as l-.g as thc overall structure...be the on this construct, we immunized mice with the most important criteria. two constructs emulsified in complete Freund’s adjuvant (CFA). Mice...immunized with R32tet3, IMMUNOGENICITY OF A RECOMBINANT DNA or R32LR emulsified in CFA produced antibod- PLASMODIUM FALCIPARUM SPOROZOITE ies that reacted

  18. Calreticulin Is a Receptor for Nuclear Export

    PubMed Central

    Holaska, James M.; Black, Ben E.; Love, Dona C.; Hanover, John A.; Leszyk, John; Paschal, Bryce M.

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739–14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  19. Calreticulin Exon 9 Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Kim, Yu-Kyung

    2015-01-01

    Background Calreticulin (CALR) mutations were recently discovered in patients with myeloproliferative neoplasms (MPNs). We studied the frequency and type of CALR mutations and their hematological characteristics. Methods A total of 168 MPN patients (36 polycythemia vera [PV], 114 essential thrombocythemia [ET], and 18 primary myelofibrosis [PMF] cases) were included in the study. CALR mutation was analyzed by the direct sequencing method. Results CALR mutations were detected in 21.9% of ET and 16.7% of PMF patients, which accounted for 58.5% and 33.3% of ET and PMF patients without Janus kinase 2 (JAK2) or myeloproliferative leukemia virus oncogenes (MPL) mutations, respectively. A total of five types of mutation were detected, among which, L367fs*46 (53.6%) and K385fs*47 (35.7%) were found to be the most common. ET patients with CALR mutation had lower leukocyte counts and ages compared with JAK2-mutated ET patients. Conclusion Genotyping for CALR could be a useful diagnostic tool for JAK2-or MPL-negative ET or PMF patients. CALR mutation may be a distinct disease group, with different hematological characteristics than that of JAK2-positive patients. PMID:25553276

  20. [Construction and immunogenicity of recombinant bacteriophage T7 vaccine expressing M2e peptides of avian influenza virus].

    PubMed

    Xu, Hai; Wang, Yi-Wei; Tang, Ying-Hua; Zheng, Qi-Sheng; Hou, Ji-Bo

    2013-06-01

    To construct a recombinant T7 phage expressing matrix protein 2 ectodomain (M2e) peptides of avian influenza A virus and test immunological and protective efficacy in the immunized SPF chickens. M2e gene sequence was obtained from Genbank and two copies of M2e gene were artificially synthesised, the M2e gene was then cloned into the T7 select 415-1b phage in the multiple cloning sites to construct the recombinant phage T7-M2e. The positive recombinant phage was identified by PCR and sequencing, and the expression of surface fusion protein was confirmed by SDS-PAGE and Western-blot. SPF chickens were subcutaneously injected with 1 X 10(10) pfu phage T7-M2e, sera samples were collected pre- and post-vaccination, and were tested for anti-M2e antibody by ELISA. The binding capacity of serum to virus was also examined by indirect immunofluorescence assay in virus- infected CEF. The immunized chickens were challenged with 200 EID50 of H9 type avian influenza virus and viral isolation rate was calculated to evaluate the immune protective efficacy. A recombinant T7 phage was obtained displaying M2e peptides of avian influenza A virus, and the fusion protein had favorable immunoreactivity. All chickens developed a certain amount of anti-M2e antibody which could specially bind to the viral particles. In addition, the protection efficacy of phage T7-M2e vaccine against H9 type avian influenza viruses was 4/5 (80%). These results indicate that the recombinant T7 phage displaying M2e peptides of avian influenza A virus has a great potential to be developed into a novel vaccine for the prevention of avian influenza infection.

  1. Effects of vector fusion peptides on the conformation and immune reactivity of epitope-shuffled, recombinant multi-epitope antigens.

    PubMed

    Wang, Jian; Lin, Yahui; Cai, Pengfei; Wang, Heng

    2011-01-01

    The use of multi-epitopes has been considered as a promising strategy to overcome the obstacle of antigenic variation in malarial vaccine development. Previously, we constructed a multi-epitope artificial antigen, Malaria Random Constructed Antigen-1(M.RCAg-1), to optimize expression of the antigen, and we subcloned the gene into three prokaryotic expression vectors that contain different fusion tags at the N-terminus. Three recombinant proteins expressed by these vectors, named M.RCAg-1/Exp.V-1, V-2, and V-3, were purified after the cleavage of the fusion tag. All three recombinant proteins were able to induce similar levels of antigenicity in BALB/c murine models. However, the antibody responses against the individual epitope peptides of the recombinant products were dramatically different. Additionally, the different epitopes elicited various CD4(+) T-cell responses, as shown by the resulting lymphocyte proliferation and varied IFN-γ and IL-4 levels determined by EILSPOT; however, each could be distinctly recognized by sera derived from malaria patients. Additionally, the rabbit antibody induced by these proteins showed diverse efficacy in malaria parasite growth inhibition assays in vitro. Furthermore, analysis via circular dichroism spectroscopy confirmed that the secondary structure was different among these recombinant proteins. These results suggest that the expressed multi-epitope artificial antigens originating from the different vector fusion peptides indeed affect the protein folding and, subsequently, the epitope exposure. Thus, these proteins are able to induce both distinct humoral and cellular immune responses in animal models, and they affect the efficacy of immune inhibition against the parasite. This work should lead to a further understanding of the impact of vector fusion peptides on the conformation and immune reactivity of recombinant proteins and could provide a useful reference for the development of artificial multi-epitope vaccines.

  2. Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury

    PubMed Central

    Le Marrec-Croq, Françoise; Bocquet-Garcon, Annelise; Vizioli, Jacopo; Vancamp, Christelle; Drago, Francesco; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Sautiere, Pierre-Eric; Lefebvre, Christophe

    2014-01-01

    Background The medicinal leech is considered as a complementary and appropriate model to study immune functions in the central nervous system (CNS). In a context in which an injured leech’s CNS can naturally restore normal synaptic connections, the accumulation of microglia (immune cells of the CNS that are exclusively resident in leeches) has been shown to be essential at the lesion to engage the axonal sprouting. HmC1q (Hm for Hirudo medicinalis) possesses chemotactic properties that are important in the microglial cell recruitment by recognizing at least a C1q binding protein (HmC1qBP alias gC1qR). Material/Methods Recombinant forms of C1q were used in affinity purification and in vitro chemotaxis assays. Anti-calreticulin antibodies were used to neutralize C1q-mediated chemotaxis and locate the production of calreticulin in leech CNS. Results A newly characterized leech calreticulin (HmCalR) has been shown to interact with C1q and participate to the HmC1q-dependent microglia accumulation. HmCalR, which has been detected in only some microglial cells, is consequently a second binding protein for HmC1q, allowing the chemoattraction of resident microglia in the nerve repair process. Conclusions These data give new insight into calreticulin/C1q interaction in an immune function of neuroprotection, suggesting another molecular target to use in investigation of microglia reactivity in a model of CNS injury. PMID:24747831

  3. Morphology and stability changes of recombinant TMV particles caused by a cysteine residue in the foreign peptide fused to the coat protein.

    PubMed

    Li, Qiaoli; Jiang, Lubin; Li, Mangmang; Li, Ping; Zhang, Qingqi; Song, Rentao; Xu, Zhengkai

    2007-03-01

    In the studies of expressing various foreign peptides using a TMV-based vector, a portion of morphologically altered progeny viral particles from some recombinant TMV constructs were detected by transmission electron microscopy in the first systematically infected upper leaves, but not in the fully expanded inoculated leaves, from infected tobacco plants. Furthermore, in vitro stability of such recombinant TMV constructs were lower than those of the wild type and other recombinant TMV constructs able to form regular rod-shape virions, hence causing the lower yields of recombinant viral particles purified from the infected tobacco plants. Our studies revealed that the presence of a cysteine residue in the foreign peptides, regardless of its position and the peptide sequence, was directly related to changes in the morphology and stability of these TMV recombinants.

  4. Recombinant expression of a GH12 β-glucanase carrying its own signal peptide from Stachybotrys atra in yeast and filamentous fungi.

    PubMed

    Picart, Pere; Orejas, Margarita; Pastor, F I Javier

    2016-08-01

    The β-glucanase Cel12A gene from Stachybotrys atra has been cloned and heterologously expressed in Aspergillus nidulans and Saccharomyces cerevisiae. The recombinant strains constructed, contained the exonic sequence of cel12A including its own signal peptide coding sequence. SDS-PAGE and zymography revealed that recombinant Cel12A has a molecular mass of 24 kDa which agrees with that deduced from its amino acid sequence, indicating that it is expressed in the non-glycosylated active form. Recombinant A. nidulans showed about eightfold greater activity yield than S. cerevisiae recombinant strain, namely 0.71 and 0.09 β-glucanase Units/ml of culture, respectively. In both host strains most of the activity was secreted to the extracellular media, evidencing the functionality of Cel12A signal peptide in yeast and fungi. This novel signal peptide might facilitate the expression and efficient secretion of other recombinant proteins difficult to secrete.

  5. A simple method for recombinant protein purification using self-assembling peptide-tagged tobacco etch virus protease.

    PubMed

    Li, Guang-Ya; Xiao, Zhen-Zhen; Lu, Hui-Peng; Li, Yang-Yang; Zhou, Xiao-Hui; Tan, Xiao; Zhang, Xin-Yu; Xia, Xiao-Li; Sun, Huai-Chang

    2016-12-01

    Recombinant protein purification remains to be a major challenge in biotechnology and medicine. In this paper we report a simple method for recombinant protein purification using self-assembling peptide-tagged tobacco etch virus protease (TEVp). After construction of an N-terminal ELK16 peptide fusion expression vector, we expressed ELK16-TEVp fusion protein in E. coli. SDS-PAGE analysis showed that ELK16-TEVp was expressed as active protein aggregates which could be purified to 91% purity with 92% recovery by centrifugation in the presence 0.5% Triton X-100. By using His-tagged bovine interferon-γ (His-BoIFN-γ) as the substrate, we demonstrated that EKL16-TEVp had a protease activity of 1.3 × 10(4) units/mg protein with almost 100% cleavage efficiency under the optimized conditions. More importantly, EKL16-TEVp could be removed from the cleavage reaction by single-step centrifugation. After removing the His-tag by nickel-conjugated agarose bead absorption, the recombinant BoIFN-γ (rBoIFN-γ) was purified to 98.3% purity with 63% recovery. The rBoIFN-γ had an antiviral activity of 1.6 × 10(3) units/mg protein against vesicular stomatitis virus. These data suggest that ELK16-TEVp may become a universal tool for recombinant protein purification. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  7. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. [Construction of recombinant adenovirus vector of calcitonin gene-related peptide gene and transfection to neonatal rat cardiomyocytes].

    PubMed

    Sun, Zhi-hui; Han, Jie; Shao, Lei; Wang, Li-hong; Song, Jun-xian; Wei, Zhong-hai; Zheng, Liang-rong

    2010-05-01

    To construct a recombinant adenovirus vector of calcitonin gene-related peptide (CGRP) by AdEasy system and to validate its expression in myocardial cells. The full-length of CGRP gene cDNA was acquired by RT-PCR and cloned into pShuttle-CMV. After linearization with Pme I, the recombinant plasmid (pShuttle-CMV-CGRP) was transformed into E.coli BJ5183 by electroporation to construct the recombinant adenovirus plasmid AdEasy-pShuttle-CGRP. The recombinant adenovirus plasmids were transformed into E.coli XL10-Gold cells to be amplified. Then the recombinant plasmid was digested with Pac I and transfected to 293 cells to package recombinant adenovirus particles. PCR technique was used to detect target gene. The recombinant adenovirus particles were purified by CsC1 density gradient. The purified recombinant adenovirus was transfected to neonatal rat cardiomyocytes,and the recombinant adenovirus production was observed by fluorescent microscope. Expression of CGRP in hearts 7 days after intravenous delivery of adenoviral vectors AV-CGRP was determined by radioimmunoassay. The RT-PCR products confirmed a full-length cDNA of CGRP gene in PUC(57) by sequencing. The corresponding double endonuclease and PCR analysis certified the successful cloning of the gene into the pShuttle-CMV. The recombinant adenovirus plasmid AdEasy-pShuttle-CGRP was digested by Pac I endonuclease to form the typical DNA segments, whose length was about 3 kb and 30 kb. PCR analysis and fluorescent microscope observation confirmed that the CGRP gene was inserted into the adenovirus vector with very strong power of transfection. The recombinant adenovirus particles infected neonatal rat cardiomyocytes successfully. Radioimmunoassay showed that delivery of AV-CGRP significantly increased the expression of CGRP in mice hearts. The recombinant adenovirus vector of CGRP gene has been constructed,and it can infect neonatal rat cardiomyocytes successfully. Somatic delivery of CGRP gene can significantly

  9. A comparison between the recombinant expression and chemical synthesis of a short cysteine-rich insecticidal spider peptide.

    PubMed

    Clement, Herlinda; Flores, Vianey; Diego-Garcia, Elia; Corrales-Garcia, Ligia; Villegas, Elba; Corzo, Gerardo

    2015-01-01

    The choice between heterologous expression versus chemical synthesis for synthesizing short cysteine-rich insecticidal peptides from arthropods may impact the obtainment of yields and well-folded bioactive molecules for scientific research. Therefore, two recombinant expression systems were compared to that of chemical synthesis for producing Ba1, a cysteine-rich spider neurotoxin. The transcription of the insecticidal neurotoxin Ba1 was obtained from a cDNA library of venom glands of the spider Brachypelma albiceps. It was cloned into the pCR®2.1-TOPO® cloning vector and then introduced in two different expression vectors, pQE40 and pET28a(+). Each vector was transfected into E. coli M15 and BL21 cells, respectively, and expressed under induction with isopropyl thiogalactoside (IPTG). The chemical synthesis of Ba1 was performed in an Applied Biosystems 433A peptide synthesizer. Both expression systems pQE40 and pET28a(+) expressed the His-tagged recombinant protein products, HisrDFHRBa1 and HisrBa1, respectively, as inclusion bodies. The recombinant proteins HisrDFHRBa1 and HisrBa1 presented respective molecular masses of 28,289 and 8274.6 Da, and were not biologically active. These results suggested that both HisrDFHRBa1 and HisrBa1 were oxidized after cell extraction, and that their insecticidal activities were affected by their N-terminal pro-peptides and different disulfide bridge arrangements. The respective protein expression yields for HisrDFHRBa1 and HisrBa1 were 100 μg/L and 900 μg/L of culture medium. HisrBa1 was reduced and folded under in vitro conditions. The in vitro folding of HisrBa1 produced several isoforms, one of which, after removing its N-terminal pro-peptide by enzymatic cleavage, presented elevated insecticidal activities compared to the native Ba1. Furthermore, the His-tagged protein HisrDFHRBa1 underwent enzymatic cleavage to obtain recombinant Ba1 (rBa1). As expected, the molecular mass of rBa1 was 4406.4 Da. On the other hand

  10. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    SciTech Connect

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-09-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by (/sup 3/H)thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3/sup +/ lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3/sup /minus// lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection.

  11. Effect of context and adjuvant on the immunogenicity of recombinant proteins and peptide conjugates derived from the polymorphic malarial surface antigen MSA2.

    PubMed

    Jones, G L; Spencer, L; Lord, R; Saul, A J

    1996-01-01

    We have identified a 51 kDa glycosylated myristylated merozoite surface antigen (MSA2) as the target of a number of monoclonal antibodies which inhibit in vitro invasion of the human malarial parasite Plasmodium falciparum. This antigen has been shown to exist in a limited number of strain specific forms but despite wide variation in the sequences of the internal repeat regions both N and C terminal elements of the protein are almost totally conserved. Accordingly, we prepared a large number of overlapping peptide constructs and demonstrated that one peptide SNTFINNA (E71) from the N terminus and two peptides, QHGHMHGS (G5) and NTSDSQKE (G12) from the C terminus could, when suitably conjoined to the carrier protein diphtheria toxoid (DT), elicit antibodies reactive with MSA2 from diverse strains of P. falciparum. Here we compare the immunogenicity of these peptide constructs with two recombinant proteins containing the entire amino acid sequence of MSA2 from the FCQ-27/PNG strain (1609) and the 3D7 strain (1623). We have formulated these recombinant and peptide antigens with Freund's adjuvant, Alum and Algammulin. Both recombinant and peptide antigens elicit high titre antibodies when tested by ELISA against the immunogens themselves. Although both recombinant proteins include the constant region peptide sequences E71, G5 and G12, the extent of ELISA cross reaction between antibody raised against recombinant and peptide antigen or antibody raised against peptide and recombinant antigen is small and sporadic, and depends to an extent on the adjuvant employed. Antisera against both recombinant proteins 1609 and 1623 detected either recombinant on Western blots, as well as detecting native MSA2 in whole protein extracts from both FCQ-27/PNG and 3D7 strains. Antisera against peptide construct E71 recognized recombinant 1609 but not 1623 but recognized the native MSA2 in both strains studied. Antisera against peptide construct G5 showed a similar pattern of recognition

  12. Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta.

    PubMed

    Wang, Yang; Jiang, Haobo

    2017-04-01

    Manduca sexta microbe binding protein (MBP) is a member of the β-1,3-glucanase-related protein superfamily that includes Gram-negative bacteria-binding proteins (GNBPs), β-1,3-glucan recognition proteins (βGRPs), and β-1,3-glucanases. Our previous and current studies showed that the purified MBP from baculovirus-infected insect cells had stimulated prophenoloxidase (proPO) activation in the hemolymph of naïve and immune challenged larvae and that supplementation of the exogenous MBP and peptidoglycans (PGs) had caused synergistic increases in PO activity. To explore the underlying mechanism, we separated by SDS-PAGE naïve and induced larval plasma treated with buffer or MBP and detected on immunoblots changes in intensity and/or mobility of hemolymph (serine) proteases [HP14, HP21, HP6, HP8, proPO-activating proteases (PAPs) 1-3] and their homologs (SPH1, SPH2). In a nickel pull-down assay, we observed association of MBP with proHP14 (slightly), βGRP2, PG recognition protein-1 (PGRP1, indirectly), SPH1, SPH2, and proPO2. Further experiments indicated that diaminopimelic acid (DAP) or Lys PG, MBP, PGRP1, and proHP14 together trigger the proPO activation system in a Ca(2+)-dependent manner. Injection of the recombinant MBP into the 5th instar naïve larvae significantly induced the expression of several antimicrobial peptide genes, revealing a possible link between HP14 and immune signal transduction. Together, these results suggest that the recognition of Gram-negative or -positive bacteria via their PGs induces the melanization and Toll pathways in M. sexta.

  13. Calreticulin (CALR) mutation in myeloproliferative neoplasms (MPNs)

    PubMed Central

    Luo, Wenyi

    2015-01-01

    As a heterogeneous group of disease, myeloproliferative neoplasms (MPNs) have confused hematologists and hematopathologists with their protean clinical presentations and myriads of morphologies. A thought of classifying MPNs based on molecular alterations has gained popularity because there is increasing evidence that molecular or chromosomal alterations have a better correlation with clinical presentation, response to therapies, and prognosis than conventional morphological classification. This type of efforts has been facilitated by the advancement of molecular technologies. A significant number of gene mutations have been identified in MPNs with JAK2 and MPL being the major ones. However, a significant gap is present in that many cases of MPNs do not harbor any of these mutations. This gap is recently filled by the discovery of Calreticulin (CALR) mutation in MPNs without JAK2 or MPL mutation and since then, the clinical and molecular correlation in MPNs has become a hot research topic. There seems to be a fairly consistent correlation between CALR mutation and certain hematological parameters such as a high platelet count and a better prognosis in MPNs with CALR mutation. However, controversies are present regarding the risks of thrombosis, interactions of CALR with other gene mutation, the role of CALR in the pathogenesis, and the optimal treatment strategies. In addition, there are many questions remain to be answered, which all boiled down to the molecular mechanisms by which CALR causes or contributes to MPNs. Here, we summarized current published literatures on CALR mutations in MPNs with an emphasis on the clinical-molecular correlation. We also discussed the controversies and questions remain to be answered. PMID:27358884

  14. Nisin-induced expression of a recombinant antihypertensive peptide in dairy lactic acid bacteria

    USDA-ARS?s Scientific Manuscript database

    Peptides with antihypertensive activity have been identified from the enzymatic hydrolysis of bovine milk proteins. A 12-residue peptide (FFVAPFPEVFGK) shown to inhibit the angiotensin I-converting enzyme is released from the enzymatic breakdown of aS1-casein. A synthetic gene encoding this peptid...

  15. Enhanced recombinant factor VII expression in Chinese hamster ovary cells by optimizing signal peptides and fed-batch medium.

    PubMed

    Peng, Lin; Yu, Xiao; Li, Chengyuan; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2016-04-01

    Signal peptides play an important role in directing and efficiently transporting secretory proteins to their proper locations in the endoplasmic reticulum of mammalian cells. The aim of this study was to enhance the expression of recombinant coagulation factor VII (rFVII) in CHO cells by optimizing the signal peptides and type of fed-batch culture medium used. Five sub-clones (O2, I3, H3, G2 and M3) with different signal peptide were selected by western blot (WB) analysis and used for suspension culture. We compared rFVII expression levels of 5 sub-clones and found that the highest rFVII expression level was obtained with the IgK signal peptide instead of Ori, the native signal peptide of rFVII. The high protein expression of rFVII with signal peptide IgK was mirrored by a high transcription level during suspension culture. After analyzing culture and feed media, the combination of M4 and F4 media yielded the highest rFVII expression of 20 mg/L during a 10-day suspension culture. After analyzing cell density and cell cycle, CHO cells feeding by F4 had a similar percentage of cells in G0/G1 and a higher cell density compared to F2 and F3. This may be the reason for high rFVII expression in M4+F4. In summary, rFVII expression was successfully enhanced by optimizing the signal peptide and fed-batch medium used in CHO suspension culture. Our data may be used to improve the production of other therapeutic proteins in fed-batch culture.

  16. Scalable Production of Recombinant Membrane Active Peptides and Its Potential as a Complementary Adjunct to Conventional Chemotherapeutics

    PubMed Central

    Rothan, Hussin A.; Ambikabothy, Jamunaa; Abdulrahman, Ammar Y.; Bahrani, Hirbod; Golpich, Mojtaba; Amini, Elham; A. Rahman, Noorsaadah; Teoh, Teow Chong; Mohamed, Zulqarnain; Yusof, Rohana

    2015-01-01

    The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent

  17. Large-scale production of soluble recombinant amyloid-β peptide 1-42 using cold-inducible expression system.

    PubMed

    Kim, Eun-Kyung; Moon, Jeong Chan; Lee, Jeong Mi; Jeong, Min Seop; Oh, Choongseob; Ahn, Sung-Min; Yoo, Yung Joon; Jang, Ho Hee

    2012-11-01

    Amyloid-β peptide 1-42 (Aβ(1-42)), the predominant form in senile plaques, plays important roles in the pathogenesis of Alzheimer's disease. Because Aβ(1-42) has aggregation-prone nature, it has been difficult to produce in a soluble state in bacterial expression systems. In this study, we modified our expression system to increase the soluble fraction of Aβ(1-42) in Escherichia coli (E. coli) cells. The expression level and solubility of recombinant Aβ(1-42) induced at the low temperature (16°C) is highly increased compared to that induced at 37°C. To optimize expression temperature, the coding region of Aβ(1-42) was constructed in a pCold vector, pCold-TF, which has a hexahistidine-tagged trigger factor (TF). Recombinant Aβ(1-42) was expressed primarily as a soluble protein using pCold vector system and purified with a nickel-chelating resin. When the toxic effect of recombinant Aβ(1-42) examined on human neuroblastoma SH-SY5Y cells, the purified Aβ(1-42) induced cell toxicity on SH-SY5Y cells. In conclusion, the system developed in this study will provide a useful method for the production of aggregation prone-peptide such as Aβ(1-42).

  18. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays.

    PubMed

    Kumada, Yoichi

    2014-11-01

    The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

  19. Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-lactic Acid) (PLLA) for biomedical application

    PubMed Central

    Li, Zhi; Liu, Xuan; Li, Yi; Lan, Xiqian; Leung, Polly Hangmei; Li, Jiashen; Li, Gang; Xie, Maobin; Han, Yanxia; Lin, Xiaofen

    2016-01-01

    Antimicrobial peptides, produced by innate immune system of hosts in response to invading pathogens, are capable of fighting against a spectrum of bacteria, viruses, fungi, parasites and cancer cells. Here, a recombinant silkworm AMP Bmattacin2 from heterologous expression is studied, indicating a broad spectrum of antibacterial activity and showing selective killing ability towards skin and colon cancer cells over their normal cell counterparts. For the purpose of biomedical application, the electrospinning fabrication technique is employed to load Bmattacin2 into PLLA nanofibrous membrane. In addition to a good compatibility with the normal cells, Bmattacin2 loaded nanofibrous membranes demonstrate instant antibacterial effects and sustained anticancer effects. The cancer cell and bacteria targeting dynamics of recombinant Bmattacin2 are investigated. With these characteristics, PLLA/Bmattacin2 composite membranes have a great potential for developing novel biomedical applications such as cancer therapies and wound healing treatments. PMID:27503270

  20. Calreticulin Is a Thermostable Protein with Distinct Structural Responses to Different Divalent Cation Environments*

    PubMed Central

    Wijeyesakere, Sanjeeva J.; Gafni, Ari A.; Raghavan, Malini

    2011-01-01

    Calreticulin is a soluble calcium-binding chaperone of the endoplasmic reticulum (ER) that is also detected on the cell surface and in the cytosol. Calreticulin contains a single high affinity calcium-binding site within a globular domain and multiple low affinity sites within a C-terminal acidic region. We show that the secondary structure of calreticulin is remarkably thermostable at a given calcium concentration. Rather than corresponding to complete unfolding events, heat-induced structural transitions observed for calreticulin relate to tertiary structural changes that expose hydrophobic residues and reduce protein rigidity. The thermostability and the overall secondary structure content of calreticulin are impacted by the divalent cation environment, with the ER range of calcium concentrations enhancing stability, and calcium-depleting or high calcium environments reducing stability. Furthermore, magnesium competes with calcium for binding to calreticulin and reduces thermostability. The acidic domain of calreticulin is an important mediator of calcium-dependent changes in secondary structure content and thermostability. Together, these studies indicate interactions between the globular and acidic domains of calreticulin that are impacted by divalent cations. These interactions influence the structure and stability of calreticulin, and are likely to determine the multiple functional activities of calreticulin in different subcellular environments. PMID:21177861

  1. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.

  2. Analysis of the immune response induced by a scorpion venom sub-fraction, a pure peptide and a recombinant peptide, against toxin Cn2 of Centruroides noxius Hoffmann.

    PubMed

    Garcia, Consuelo; Calderón-Aranda, Emma S; Anguiano, Gerardo A V; Becerril, Baltazar; Possani, Lourival D

    2003-03-01

    Three different immunogens from the venom of the Mexican scorpion Centruroides noxius Hoffmann were used to study protective antibody response in mice and rabbits, challenged with toxin Cn2, one of the most abundant toxic peptide of this venom. The immunogens were: Cn5, a crustacean specific toxin; a recombinant protein containing the peptide Cn5 linked to the maltose transporter and a sub-fraction (F.II.5) containing 25 distinct peptides, among which is Cn5. Mice immunized with these three preparations, when directly challenged with Cn2 presented no apparent protection, whereas anti-sera produced in rabbits with these three immunogens were capable of partially neutralizing the effect of Cn2, when injected into naive mice. Cn5 rabbit anti-serum showed a better protective effect on mice, than the rabbit sera obtained against the two other antigens. The subcutaneous route of challenging mice was shown to be better than intraperitoneal injections. Comparative structural analysis of Cn5 with other toxins of this venom showed that our results are important to be taken into consideration, when choosing appropriate immunogens aimed at the production of better anti-venoms or for the rational design of possible vaccines.

  3. A novel recombinant slow-release TNF α-derived peptide effectively inhibits tumor growth and angiogensis.

    PubMed

    Ma, Yi; Zhao, Shaojun; Shen, Shutao; Fang, Shixiong; Ye, Zulu; Shi, Zhi; Hong, An

    2015-09-04

    RMP16, a recombinant TNF α-derived polypeptide comprising a specific human serum albumin (HSA)-binding 7-mer peptide identified by phage display screening (WQRPSSW), a cleavage peptide for Factor Xa (IEGR), and a 20-amino acid bioactive peptide P16 (TNF α segment including amino acid residues 75-94), was prepared by gene-engineering technology. RMP16 showed prolonged half-life, 13.11 hours in mice (half-lives of P16 and TNF α are 5.77 and 29.0 minutes, respectively), and obviously higher receptor selectivity for TNFRI than TNF α. RMP16 had significant inhibition effects for multiple tumor cells, especially prostate cancer Du145 cells, and human vascular endothelial cells but not for human mammary non-tumorigenic epithelial cells. RMP16 can more effectively induce apoptosis and inhibit proliferation for DU145 cells than P16 and TNF α via the caspase-dependent apoptosis pathway and G0/G1 cell cycle arrest. In nude mice with transplanted tumor of DU145 cells, RMP16 significantly induced apoptosis and necrosis of tumor tissues but causing less side effects, and tumor inhibitory rate reached nearly 80%, furthermore, RMP16 can potently inhibit tumor angiogenesis and neovascularization. These findings suggest that RMP16 may represent a promising long-lasting antitumor therapeutic peptide with less TNF α-induced toxicity.

  4. A novel recombinant slow-release TNF α-derived peptide effectively inhibits tumor growth and angiogensis

    PubMed Central

    Ma, Yi; Zhao, Shaojun; Shen, Shutao; Fang, Shixiong; Ye, Zulu; Shi, Zhi; Hong, An

    2015-01-01

    RMP16, a recombinant TNF α-derived polypeptide comprising a specific human serum albumin (HSA)-binding 7-mer peptide identified by phage display screening (WQRPSSW), a cleavage peptide for Factor Xa (IEGR), and a 20-amino acid bioactive peptide P16 (TNF α segment including amino acid residues 75–94), was prepared by gene-engineering technology. RMP16 showed prolonged half-life, 13.11 hours in mice (half-lives of P16 and TNF α are 5.77 and 29.0 minutes, respectively), and obviously higher receptor selectivity for TNFRI than TNF α. RMP16 had significant inhibition effects for multiple tumor cells, especially prostate cancer Du145 cells, and human vascular endothelial cells but not for human mammary non-tumorigenic epithelial cells. RMP16 can more effectively induce apoptosis and inhibit proliferation for DU145 cells than P16 and TNF α via the caspase-dependent apoptosis pathway and G0/G1 cell cycle arrest. In nude mice with transplanted tumor of DU145 cells, RMP16 significantly induced apoptosis and necrosis of tumor tissues but causing less side effects, and tumor inhibitory rate reached nearly 80%, furthermore, RMP16 can potently inhibit tumor angiogenesis and neovascularization. These findings suggest that RMP16 may represent a promising long-lasting antitumor therapeutic peptide with less TNF α-induced toxicity. PMID:26337231

  5. Production of a recombinant cholera toxin B subunit-insulin B chain peptide hybrid protein by Brevibacillus choshinensis expression system as a nasal vaccine against autoimmune diabetes.

    PubMed

    Yuki, Yoshikazu; Hara-Yakoyama, Chisato; Guadiz, Abigail A E; Udaka, Shigezo; Kiyono, Hiroshi; Chatterjee, Subhendra

    2005-12-30

    Mucosally induced tolerance is an attractive strategy for preventing or reducing autoimmune diseases. Here, we produced a recombinant CTB fusion protein linked with autoantigen T cell epitope of insulin B chain peptide 9-23 (C19S) at levels up to 200 mg/L culture media in Brevibacillus choshinensis secretion-expression system. Receptor-competitive assay showed that the CTB-insulin peptide binds to GM1 receptor almost equivalent degree as the native form of CTB. Non-obese diabetes (NOD) mice that spontaneously develop an insulin-dependent diabetes were nasally immunized with CTB-insulin peptide (5 microg) for three times. The nasal treatment significantly reduced the development of insulin-dependent diabetes and peptide specific DTH responses after systemic immunization with the insulin peptide B 9-23(C19S) in CFA. Nasal administration of as high as 50 microg of the peptide alone demonstrated a similar level of the disease inhibition. In contrast, all mice given 5 microg of the insulin peptide alone or 5 microg of insulin peptide with 25 microg of the free form of CTB did not lead to the suppression of diabetes development and DTH responses. Because molecular weight of the insulin peptide is about one tenth of that of the CTB-insulin peptide, the results demonstrate that the recombinant hybrid of autoantigen and CTB increased its tolerogenic potential for nasal administration by up 100-fold on molar base of autoantigen peptide. Taken together, nasally-induced tolerance by administration of the recombinant B. choshinensis-derived hybrid protein of CTB and autoantigen T cell-epitope peptide could be useful mucosal immunetherapy for the control of T cell-mediated autoimmune diseases.

  6. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity

    PubMed Central

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Xu, Bing; Zhao, Qian; Chen, Kun

    2016-01-01

    Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers. PMID:27713135

  7. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity.

    PubMed

    Panteleev, Pavel V; Ovchinnikova, Tatiana V

    2017-01-01

    Here, we report an efficient procedure for recombinant production and purification of tachyplesin I (THI) with a final yield of 17 mg/L of the culture medium. The peptide was expressed in Escherichia coli as a part of the thioredoxin fusion protein. With the use of soluble expression followed by immobilized metal-ion affinity chromatography, the recombinant protein cleavage and reversed-phase high-performance liquid chromatography, a yield of THI did not exceed 6.5 mg/L of the culture medium. Further optimization studies were carried out to improve the protein expression level and simplify purification procedure of the target peptide. To achieve better yield of the peptide, we used high-cell-density bacterial expression. The formed inclusion bodies were highly enriched with the fusion protein, which allowed us to perform direct chemical cleavage of the inclusion bodies solubilized in 6 M guanidine-HCl with subsequent selective precipitation of proteins with trifluoroacetic acid. This enabled us to avoid an extra step of purification by immobilized metal-ion affinity chromatography. The developed procedure has made it possible to obtain biologically active THI and was used for screening a number of its mutant analogs. As a result, several selective and nonhemolytic analogs were developed. Significant reduction in hemolytic activity without losing antimicrobial activity was achieved by substitution of tyrosine or isoleucine residue in the β-turn region of the molecule with hydrophilic serine. The present study affords further insight into molecular mechanism of antimicrobial action of tachyplesin and gains a better understanding of structure-activity relationships in its analogs. This is aimed at searching for novel antibiotics on the basis of antimicrobial peptides with reduced cytotoxicity.

  8. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli.

    PubMed

    Luan, Chao; Xie, Yong Gang; Pu, Yu Tian; Zhang, Hai Wen; Han, Fei Fei; Feng, Jie; Wang, Yi Zhen

    2014-03-01

    Antimicrobial peptides (AMPs) are part of the innate immune system of complex multicellular organisms. Despite the fact that AMPs show great potential as a novel class of antibiotics, the lack of a cost-effective means for their mass production limits both basic research and clinical use. In this work, we describe a novel expression system for the production of antimicrobial peptides in Escherichia coli by combining ΔI-CM mini-intein with the self-assembling amphipathic peptide 18A to drive the formation of active aggregates. Two AMPs, human β-defensin 2 and LL-37, were fused to the self-cleaving tag and expressed as active protein aggregates. The active aggregates were recovered by centrifugation and the intact antimicrobial peptides were released into solution by an intein-mediated cleavage reaction in cleaving buffer (phosphate-buffered saline supplemented with 40 mmol/L Bis-Tris, 2 mmol/L EDTA, pH 6.2). The peptides were further purified by cation-exchange chromatography. Peptides yields of 0.82 ± 0.24 and 0.59 ± 0.11 mg/L were achieved for human β-defensin 2 and LL-37, respectively, with demonstrated antimicrobial activity. Using our expression system, intact antimicrobial peptides were recovered by simple centrifugation from active protein aggregates after the intein-mediated cleavage reaction. Thus, we provide an economical and efficient way to produce intact antimicrobial peptides in E. coli.

  9. Cell-penetrating recombinant peptides for potential use in agricultural pest control applications

    USDA-ARS?s Scientific Manuscript database

    Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs) because they possess the ability to translocate across cell membranes. This ability makes ...

  10. Chelating peptide-immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins.

    PubMed

    Smith, M C; Furman, T C; Ingolia, T D; Pidgeon, C

    1988-05-25

    We report our experimental results supporting the hypothesis that a specific metal-chelating peptide (CP) on the NH2 terminus of a protein can be used to purify that protein using immobilized metal ion affinity chromatography (IMAC). The potential utility of this approach resides with recombinant proteins since the nucleotide sequence that codes for the protein can be extended to include codons for the chelating peptide and thereby generate the gene for a chimeric CP-protein that can be cloned, expressed, and affinity-purified with immobilized metal ions. The chelating peptide purification handle could then be removed chemically or enzymatically after purification has been achieved to generate a protein with the natural amino acid sequence. The feasibility of using a chelating peptide as a purification handle has been demonstrated using a leuteinizing hormone-releasing hormone (LHRH) analog, 2-10 LHRH, which contains the previously identified chelating peptide, His-Trp, on the NH2 terminus. 2-10 LHRH had a high affinity for a Ni(II) IMAC column due to the NH2-terminal dipeptide sequence His-Trp, forming a coordination complex with Ni(II), whereas the controls, 3-10 LHRH and 4-10 LHRH, lacking the CP sequence, did not bind. Furthermore, 2-10 LHRH could be purified from a mixture of histidine-containing peptides on a Ni(II) IMAC column in one step. His-Trp proinsulin was used as a model of a recombinant CP-protein. The S-sulfonates of His-Trp-proinsulin and proinsulin were isolated from Escherichia coli engineered to overproduce these proteins as trpLE' fusion proteins. His-Trp-proinsulin(SSO3-)6 had a higher affinity for immobilized Ni(II) than proinsulin (SSO3-)6. Both proteins were eluted by decreasing the pH or by introducing a displacing ligand into the buffer. Ni(II) eluted from the column with much higher concentrations of displacing ligand than the proteins.

  11. Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides.

    PubMed

    Jimenez, M A; Evangelio, J A; Aranda, C; Lopez-Brauet, A; Andreu, D; Rico, M; Lagos, R; Andreu, J M; Monasterio, O

    1999-04-01

    We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of

  12. Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides.

    PubMed Central

    Jimenez, M. A.; Evangelio, J. A.; Aranda, C.; Lopez-Brauet, A.; Andreu, D.; Rico, M.; Lagos, R.; Andreu, J. M.; Monasterio, O.

    1999-01-01

    We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of

  13. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids

    PubMed Central

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J.; Wilkinson, Trevor C. I.

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these “undesirable” residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  14. Production of a recombinant hybrid molecule of cholera toxin-B-subunit and proteolipid-protein-peptide for the treatment of experimental encephalomyelitis.

    PubMed

    Yuki, Y; Byun, Y; Fujita, M; Izutani, W; Suzuki, T; Udaka, S; Fujihashi, K; McGhee, J R; Kiyono, H

    2001-07-05

    Mucosal administration of experimental autoimmune encephalomyelitis (EAE)-specific autoantigens can reduce the onset of disease. To examine whether cholera toxin-B-subunit (CTB)-conjugated EAE-specific T-cell epitope can reduce development of the autoimmune disease in mice, we produced a recombinant hybrid molecule of CTB fusion protein linked with proteolipid-protein (PLP)-peptide139-151(C140S) at levels up to 0.1 gram per liter culture media in Bacillus brevis as a secretion-expression system. Amino acid sequencing and GM1-receptor binding assay showed that this expression system produced a uniformed recombinant hybrid protein. EAE was induced in SJL/J mice by systemic administration with the PLP-peptide. When nasally immunized 5 times with 70 microg rCTB PLP-peptide hybrid protein, mice showed a significantly suppressed development of ongoing EAE and an inhibition of both the PLP-peptide-specific delayed-type hypersensitivity (DTH) responses and leukocyte infiltration into the spinal cord. In contrast, all mice given the PLP-peptide alone or the PLP-peptide with the free form of CTB did not suppress the development of EAE and DTH responses. These results suggest that nasal treatment with the recombinant B. brevis-derived hybrid protein of CTB and autoantigen peptide could prove useful in the control of multiple sclerosis.

  15. Evidence for calreticulin attenuation of cardiac hypertrophy induced by pressure overload and soluble agonists.

    PubMed

    Papp, Sylvia; Dziak, Ewa; Kabir, Golam; Backx, Peter; Clement, Sophie; Opas, Michal

    2010-03-01

    While calreticulin has been shown to be critical for cardiac development, its role in cardiac pathology is unclear. Previous studies have shown the detrimental effects on the heart of sustained germline calreticulin overexpression, yet without calreticulin, the heart does not develop normally. Thus, carefully balanced calreticulin levels are required for the heart to develop and to function properly into adulthood. But what happens to calreticulin levels, and how is this regulated, during cardiac hypertrophy, during which the fetal gene program is reactivated, at least partially? Our working hypothesis was that c-Src, a kinase whose activity we previously found to be correlated with calreticulin expression, was involved with calreticulin in regulating the response to hypertrophic signals. Thus, we subjected adult mice to transverse aortic constriction to induce left ventricular hypertrophy. We found that aortic constriction caused calreticulin levels to increase, whereas those of c-Src fell with longer constriction time. We also examined the ability of embryonic stem cell-derived cardiomyocytes to respond to soluble hypertrophic agonists. Endothelin-1 treatment caused a significantly greater cell area increase of calreticulin-null cardiomyocytes, which had higher c-Src activity, compared with wild-type cells. c-Src inhibition abolished this difference. Greater c-Src activity may explain the efficacy with which calreticulin-null cells are able to induce the hypertrophic program, while cells containing calreticulin may be able to attenuate the hypertrophic response as a result of decreased c-Src activity. Thus, calreticulin may have a protective effect on the heart in the face of cardiac hypertrophy.

  16. Evidence for Calreticulin Attenuation of Cardiac Hypertrophy Induced by Pressure Overload and Soluble Agonists

    PubMed Central

    Papp, Sylvia; Dziak, Ewa; Kabir, Golam; Backx, Peter; Clement, Sophie; Opas, Michal

    2010-01-01

    While calreticulin has been shown to be critical for cardiac development, its role in cardiac pathology is unclear. Previous studies have shown the detrimental effects on the heart of sustained germline calreticulin overexpression, yet without calreticulin, the heart does not develop normally. Thus, carefully balanced calreticulin levels are required for the heart to develop and to function properly into adulthood. But what happens to calreticulin levels, and how is this regulated, during cardiac hypertrophy, during which the fetal gene program is reactivated, at least partially? Our working hypothesis was that c-Src, a kinase whose activity we previously found to be correlated with calreticulin expression, was involved with calreticulin in regulating the response to hypertrophic signals. Thus, we subjected adult mice to transverse aortic constriction to induce left ventricular hypertrophy. We found that aortic constriction caused calreticulin levels to increase, whereas those of c-Src fell with longer constriction time. We also examined the ability of embryonic stem cell-derived cardiomyocytes to respond to soluble hypertrophic agonists. Endothelin-1 treatment caused a significantly greater cell area increase of calreticulin-null cardiomyocytes, which had higher c-Src activity, compared with wild-type cells. c-Src inhibition abolished this difference. Greater c-Src activity may explain the efficacy with which calreticulin-null cells are able to induce the hypertrophic program, while cells containing calreticulin may be able to attenuate the hypertrophic response as a result of decreased c-Src activity. Thus, calreticulin may have a protective effect on the heart in the face of cardiac hypertrophy. PMID:20110410

  17. Recombinant production, isotope labeling and purification of ENOD40B: a plant peptide hormone.

    PubMed

    Chae, Young Kee; Tonneli, Marco; Markley, John L

    2012-08-01

    The plant peptide hormone ENOD40B was produced in a protein production strain of Escherichia coli harboring an induction controller plasmid (Rosetta(DE3)pLysS) as a His6-tagged ubiquitin fusion protein. The fusion protein product was denatured and refolded as part of the isolation procedure and purified by immobilized metal ion chromatography. The peptide hormone was released from its fusion partner by adding yeast ubiquitin hydrolase (YUH) and subsequently purified by reversed phase chromatography. The purity of the resulting peptide fragment was assayed by MALDITOF mass spectrometry and NMR spectroscopy. The final yields of the target peptide were 7.0 mg per liter of LB medium and 3.4 mg per liter of minimal medium.

  18. Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter.

    PubMed Central

    Lavergne-Mazeau, F; Maftah, A; Cenatiempo, Y; Julien, R

    1996-01-01

    Fusion of multiple copies of a test peptide leads to insoluble inclusion bodies. Their presence within bacteria increases either forward-angle light scattering or, to a lesser extent, right-angle light scattering. A linear correlation has been established between cell forward-angle scattering and the level of overexpression of atrial natriuretic peptide. The correlation is valid only for unlysed cells and is protein product specific. PMID:8702299

  19. Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications

    PubMed Central

    Hughes, Stephen R.; Dowd, Patrick F.; Johnson, Eric T.

    2012-01-01

    Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs) because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs) are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX) from the wolf spider (Lycosa carolinensis). One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda) larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance. PMID:24281256

  20. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo.

    PubMed

    Majidi, Asia; Nikkhah, Maryam; Sadeghian, Faranak; Hosseinkhani, Saman

    2016-10-01

    In last decades great efforts have been devoted to the study of development of recombinant peptide based vectors that consist of biological motifs with potential applications in gene therapy. Recombinant Biomimetic Chimeric Vectors (rBCVs) are biopolymeric nanocarriers that are designed to mimic viral features to overcome the cellular obstacles in gene transferring pathway into cell nucleus. In this research, we designed and genetically engineered three novel rBCVs with similar sequences that differed in motifs arrangement and motif abundance: MPG-2H1, 2TMPG-2H1 and 2RMPG-2H1. The MPG as a famous amphipathic cell penetrating peptide is the main segment of these constructs which was studied for the first time in association with truncated histone H1 DNA condensing motif. Through the performance of several physicochemical and biological assays, the rBCVs were remarkably examined regarding transfection efficiency. The main objective of this study is focused on the importance of motif design in transfection efficiency of rBCVs on one hand, and the assessment of correlation between structural features and functionality of motifs on the other hand. The results revealed that all three kinds of rBCVs/pDNA nanoparticles with average sizes of 200nm could overwhelm the cellular obstacles associated with gene transfer, and lead to efficient gene delivery. Furthermore, no significant toxicity was perceived and efficient endosome disruptive activity was obtained. It is noteworthy to say among three mentioned constructs 2RMPG-2H1 showed the highest transfection efficiency. Overall the peptide based vectors hold great promise as a nontoxic and effective gene carrier in vitro and in vivo, besides the rational design possibility as the most vital advantages over the other non-viral gene delivery vectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nerve growth factor induces the expression of chaperone protein calreticulin in human epithelial ovarian cells.

    PubMed

    Vera, C; Tapia, V; Kohan, K; Gabler, F; Ferreira, A; Selman, A; Vega, M; Romero, C

    2012-07-01

    Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Engineering neonatal Fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions

    PubMed Central

    Sockolosky, Jonathan T.; Tiffany, Matthew R.; Szoka, Francis C.

    2012-01-01

    The importance of therapeutic recombinant proteins in medicine has led to a variety of tactics to increase their circulation time or to enable routes of administration other than injection. One clinically successful tactic to improve both protein circulation and delivery is to fuse the Fc domain of IgG to therapeutic proteins so that the resulting fusion proteins interact with the human neonatal Fc receptor (FcRn). As an alternative to grafting the high molecular weight Fc domain to therapeutic proteins, we have modified their N and/or C termini with a short peptide sequence that interacts with FcRn. Our strategy was motivated by results [Mezo AR, et al. (2008) Proc Natl Acad Sci USA 105:2337–2342] that identified peptides that compete with human IgG for FcRn. The small size and simple structure of the FcRn-binding peptide (FcBP) allows for expression of FcBP fusion proteins in Escherichia coli and results in their pH-dependent binding to FcRn with an affinity comparable to that of IgG. The FcBP fusion proteins are internalized, recycled, and transcytosed across cell monolayers that express FcRn. This strategy has the potential to improve protein transport across epithelial barriers, which could lead to noninvasive administration and also enable longer half-lives of therapeutic proteins. PMID:22991460

  3. MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides.

    PubMed

    Braendstrup, Peter; Justesen, Sune; Osterbye, Thomas; Nielsen, Lise Lotte Bruun; Mallone, Roberto; Vindeløv, Lars; Stryhn, Anette; Buus, Søren

    2013-01-01

    Targeting CD4+ T cells through their unique antigen-specific, MHC class II-restricted T cell receptor makes MHC class II tetramers an attractive strategy to identify, validate and manipulate these cells at the single cell level. Currently, generating class II tetramers is a specialized undertaking effectively limiting their use and emphasizing the need for improved methods of production. Using class II chains expressed individually in E. coli as versatile recombinant reagents, we have previously generated peptide-MHC class II monomers, but failed to generate functional class II tetramers. Adding a monomer purification principle based upon affinity-tagged peptides, we here provide a robust method to produce class II tetramers and demonstrate staining of antigen-specific CD4+ T cells. We also provide evidence that both MHC class II and T cell receptor molecules largely accept affinity-tagged peptides. As a general approach to class II tetramer generation, this method should support rational CD4+ T cell epitope discovery as well as enable specific monitoring and manipulation of CD4+ T cell responses.

  4. Non-chromatographic Purification of Recombinant Elastin-like Polypeptides and their Fusions with Peptides and Proteins from Escherichia coli

    PubMed Central

    Chilkoti, Ashutosh

    2014-01-01

    Elastin-like polypeptides are repetitive biopolymers that exhibit a lower critical solution temperature phase transition behavior, existing as soluble unimers below a characteristic transition temperature and aggregating into micron-scale coacervates above their transition temperature. The design of elastin-like polypeptides at the genetic level permits precise control of their sequence and length, which dictates their thermal properties. Elastin-like polypeptides are used in a variety of applications including biosensing, tissue engineering, and drug delivery, where the transition temperature and biopolymer architecture of the ELP can be tuned for the specific application of interest. Furthermore, the lower critical solution temperature phase transition behavior of elastin-like polypeptides allows their purification by their thermal response, such that their selective coacervation and resolubilization allows the removal of both soluble and insoluble contaminants following expression in Escherichia coli. This approach can be used for the purification of elastin-like polypeptides alone or as a purification tool for peptide or protein fusions where recombinant peptides or proteins genetically appended to elastin-like polypeptide tags can be purified without chromatography. This protocol describes the purification of elastin-like polypeptides and their peptide or protein fusions and discusses basic characterization techniques to assess the thermal behavior of pure elastin-like polypeptide products. PMID:24961229

  5. Entamoeba histolytica calreticulin: an endoplasmic reticulum protein expressed by trophozoites into experimentally induced amoebic liver abscesses.

    PubMed

    González, Enrique; de Leon, Maria del Carmen García; Meza, Isaura; Ocadiz-Delgado, Rodolfo; Gariglio, Patricio; Silva-Olivares, Angelica; Galindo-Gómez, Silvia; Shibayama, Mineko; Morán, Patricia; Valadez, Alicia; Limón, Angelica; Rojas, Liliana; Hernández, Eric G; Cerritos, René; Ximenez, Cecilia

    2011-02-01

    Entamoeba histolytica calreticulin (EhCRT) is remarkably immunogenic in humans (90-100% of invasive amoebiasis patients). Nevertheless, the study of calreticulin in this protozoan is still in its early stages. The exact location, biological functions, and its role in pathogenesis are yet to be fully understood. The aim of the present work is to determine the location of EhCRT in virulent trophozoites in vivo and the expression of the Ehcrt gene during the development of experimentally induced amoebic liver abscesses (ALA) in hamsters. Antibodies against recombinant EhCRT were used for the immunolocalization of EhCRT in trophozoites through confocal microscopy; immunohistochemical assays were also performed on tissue sections of ALAs at different times after intrahepatic inoculation. The expression of the Ehcrt gene during the development of ALA was estimated through both in situ RT-PCR and real-time RT-PCR. Confocal assays of virulent trophozoites showed a distribution of EhCRT in the cytoplasmic vesicles of different sizes. Apparently, EhCRT is not exported into the hepatic tissue. Real-time RT-PCR demonstrated an over-expression of the Ehcrt gene at 30 min after trophozoite inoculation, reaching a peak at 1-2 h; thereafter, the expression fell sharply to its original levels. These results demonstrate for the first time in an in vivo model of ALA, the expression of Ehcrt gene in E. histolytica trophozoites and add evidence that support CRT as a resident protein of the ER in E. histolytica species. The in vivo experiments suggest that CRT may play an important role during the early stages of the host-parasite relationship, when the parasite is adapting to a new environment, although the protein seems to be constitutively synthesized. Moreover, trophozoites apparently do not export EhCRT into the hepatic tissue in ALA.

  6. Cytokine, Antibody and Proliferative Cellular Responses Elicited by Taenia solium Calreticulin upon Experimental Infection in Hamsters

    PubMed Central

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis. PMID:25811778

  7. Cytokine, antibody and proliferative cellular responses elicited by Taenia solium calreticulin upon experimental infection in hamsters.

    PubMed

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis.

  8. Combining peptide modeling and capillary electrophoresis-mass spectrometry for characterization of enzymes cleavage patterns: recombinant versus natural bovine pepsin A.

    PubMed

    Simó, Carolina; González, Ramón; Barbas, Coral; Cifuentes, Alejandro

    2005-12-01

    Nowadays there is an increasing number of recombinant enzymes made available to industry. Before replacing the use of natural enzymes with their cognate recombinant counterparts, one important issue to address is their actual equivalence. For a given recombinant proteolytic enzyme, its equivalence can be investigated by comparing its cleavage specificity with that obtained from the natural enzyme. This is mostly done by analyzing the fragments (i.e., peptidic map) attained after enzymatic digestion of a given protein used as substrate. The peptidic maps obtained are typically characterized using separation techniques together with MS and MS/MS systems. However, these procedures are known to be difficult and labor-intensive. In this work, the combined use of a theoretical model that relates electrophoretic behavior of peptides to their sequence together with capillary electrophoresis-mass spectrometry (CE-MS) is proposed to characterize in a very fast and simple way the cleavage specificity of new recombinant enzymes. Namely, the effectiveness of this procedure is demonstrated by analyzing in few minutes the fragments obtained from a protein hydrolysated using recombinant and natural pepsin A. The usefulness of this strategy is further corroborated by CE-MS/MS. The proposed procedure is applicable in many other proteomic studies involving CE-MS of peptides.

  9. Preparation and ectopic osteogenesis in vivo of scaffold based on mineralized recombinant human-like collagen loaded with synthetic BMP-2-derived peptide.

    PubMed

    Wu, Bin; Zheng, Qixin; Guo, Xiaodong; Wu, Yongchao; Wang, Yu; Cui, Fuzai

    2008-12-01

    The ideal bone graft material must be biocompatible, biodegradable, osteoconductive and osteoinductive. In this study, a new biomimetic scaffold based on mineralized recombinant collagen, nano-hydroxyapatite/recombinant human-like collagen/poly(lactic acid) (nHA/RHLC/PLA), was prepared and the synthetic P24 peptide derived from BMP-2 was introduced into the porous nHA/RHLC/PLA scaffold to improve its osteoinductive property. The nHA/RHLC/PLA implants loaded with 3 mg, 2 mg, 1 mg and 0 mg P24 peptide were implanted subcutaneously into rats. At the 4th, 8th and 12th weeks after implantation, the rats were sacrificed in batch and the samples were harvested. Their osteogenic capability was detected by CT scan and histological observation. The results indicated that the osteogenic capability of 3 mg, 2 mg and 1 mg of the P24 peptide was superior to the implants without the P24 peptide. There was no significant difference between implants with 3 mg and 2 mg P24 peptide, but the osteogenic capability of the two dosage groups was significantly better than that of the 1 mg group. It was concluded that BMP-2-derived peptide can increase the osteoinduction of nHA/RHLC/PLA scaffold and the P24 peptide induced new bone formation in a dose-dependent manner. The nHA/RHLC/PLA scaffold loaded with the synthetic BMP-2-derived peptide is a kind of ideal scaffold material for bone tissue engineering.

  10. Recombinant Protein- and Synthetic Peptide-Based Immunoblot Test for Diagnosis of Neurocysticercosis

    PubMed Central

    Rodriguez, Silvia; Lee, Yeuk-Mui; Handali, Sukwan; Gonzalez, Armando E.; Gilman, Robert H.; Tsang, Victor C. W.; Garcia, Hector H.; Wilkins, Patricia P.

    2014-01-01

    One of the most well-characterized tests for diagnosing neurocysticercosis (NCC) is the enzyme-linked immunoelectrotransfer blot (EITB) assay developed at the CDC, which uses lentil lectin-bound glycoproteins (LLGP) extracted from Taenia solium cysticerci. Although the test is very reliable, the purification process for the LLGP antigens has been difficult to transfer to other laboratories because of the need for expensive equipment and technical expertise. To develop a simpler assay, we previously purified and cloned the diagnostic glycoproteins in the LLGP fraction. In this study, we evaluated three representative recombinant or synthetic antigens from the LLGP fraction, individually and in different combinations, using an immunoblot assay (recombinant EITB). Using a panel of 249 confirmed NCC-positive and 401 negative blood serum samples, the sensitivity of the recombinant EITB assay was determined to be 99% and the specificity was 99% for diagnosing NCC. We also tested a panel of 239 confirmed NCC-positive serum samples in Lima, Peru, and found similar results. Overall, our data show that the performance characteristics of the recombinant EITB assay are comparable to those of the LLGP-EITB assay. This new recombinant- and synthetic antigen-based assay is sustainable and can be easily transferred to other laboratories in the United States and throughout the world. PMID:24554747

  11. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris.

    PubMed

    Meng, De-Mei; Zhao, Jing-Fang; Ling, Xiao; Dai, Hong-Xia; Guo, Ya-Jun; Gao, Xiao-Fang; Dong, Bin; Zhang, Zi-Qi; Meng, Xin; Fan, Zhen-Chuan

    2017-02-01

    The antimicrobial peptide PaDef was isolated from Mexican avocado fruit and was reported to inhibit the growth of Escherichia coli and Staphylococcus aureus in 2013. In this study, an N-terminal 6 × His tagged recombinant PaDef (rPaDef) with a molecular weight of 7.5 KDa, for the first time, was expressed as a secreted peptide in Pichia pastoris. The optimal culture condition for rPaDef expression was determined to be incubation with 1.5% methanol for 72 h at 28 °C under pH 6.0. Under this condition, the amount of the rPaDef accumulation reached as high as 79.6 μg per 1 ml of culture medium. Once the rPaDef peptide was purified to reach a 95.7% purity using one-step nickel affinity chromatography, its strong and concentration-dependent antimicrobial activity was detected to be against a broad-spectrum of bacteria of both Gram-negative and Gram-positive. The growth of these bacterial pathogens was almost completely inhibited when the rPaDef peptide was at a concentration of as low as 90 μg/ml. In summary, our data showed that rPaDef derived from Mexican avocado fruit can be expressed and secreted efficiently when P. pastoris was used as a cell factory. This is the first report on heterologous expression of PaDef in P. pastoris and the approach described holds great promise for antibacterial drug development. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. An improved method for high-level soluble expression and purification of recombinant amyloid-beta peptide for in vitro studies.

    PubMed

    Chhetri, Gaurav; Pandey, Tripti; Chinta, Ramesh; Kumar, Awanish; Tripathi, Timir

    2015-10-01

    Amyloid-beta (Aβ) peptide mediates several neurodegenerative diseases. The 42 amino acid (Aβ1-42) is the predominant form of peptide found in the neuritic plaques and has been demonstrated to be neurotoxic in vivo and in vitro. The availability of large quantities of Aβ peptide will help in several biochemical and biophysical studies that may help in exploring the aggregation mechanism and toxicity of Aβ peptide. We report a convenient and economical method to obtain such a peptide biologically. Synthetic oligonucleotides encoding Aβ1-42 were constructed and amplified through the polymerase cycling assembly (also known as assembly PCR), followed by the amplification PCR. Aβ1-42 gene was cloned into pET41a(+) vector for expression. Interestingly, the addition of 3% (v/v) ethanol to the culture medium resulted in the production of large amounts of soluble Aβ fusion protein. The Aβ fusion protein was subjected to a Ni-NTA affinity chromatography followed by enterokinase digestion, and the Aβ peptide was purified using glutathione Sepharose affinity chromatography. The peptide yield was ∼15mg/L culture, indicating the utility of this method for high-yield production of soluble Aβ peptide. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and immunoblotting with anti-His antibody confirmed the identity of purified Aβ fusion protein and Aβ peptide. In addition, this method provides an advantage over the chemical synthesis and other conventional methods used for large-scale production of recombinantpeptide.

  13. Recombinant probiotics with antimicrobial peptides: a dual strategy to improve immune response in immunocompromised patients.

    PubMed

    Mandal, Santi M; Silva, Osmar N; Franco, Octavio L

    2014-08-01

    Bacterial infectious diseases are currently a serious health problem, especially in patients compromised by illness or those receiving immune-suppressant drugs. In this context, it is not only essential to improve the understanding of infectious mechanisms and host response but also to discover novel therapies with extreme urgency. Probiotics and antimicrobial peptides are also favorably viewed as novel strategies in the control of resistant bacteria. The present review will shed some light on the use of probiotic microorganisms expressing antimicrobial peptides as a dual therapy to control bacterial infectious diseases.

  14. Peptide-Recombinant VP6 Protein Based Enzyme Immunoassay for the Detection of Group A Rotaviruses in Multiple Host Species

    PubMed Central

    Sircar, Subhankar; Saurabh, Sharad; Gulati, Baldev R.; Singh, Neeraj; Singh, Arvind Kumar; Joshi, Vinay G.; Banyai, Krisztian; Dhama, Kuldeep

    2016-01-01

    We developed a novel enzyme immunoassay for the detection of group A rotavirus (RVA) antigen in fecal samples of multiple host species. The assay is based on the detection of conserved VP6 protein using anti-recombinant VP6 antibodies as capture antibodies and anti-multiple antigenic peptide (identified and constructed from highly immunodominant epitopes within VP6 protein) antibodies as detector antibodies. The clinical utility of the assay was evaluated using a panel of 914 diarrhoeic fecal samples from four different host species (bovine, porcine, poultry and human) collected from diverse geographical locations in India. Using VP6- based reverse transcription-polymerase chain reaction (RT-PCR) as the gold standard, we found that the diagnostic sensitivity (DSn) and specificity (DSp) of the new assay was high [bovine (DSn = 94.2% & DSp = 100%); porcine (DSn = 94.6% & DSp = 93.3%); poultry (DSn = 74.2% & DSp = 97.7%) and human (DSn = 82.1% & DSp = 98.7%)]. The concordance with RT-PCR was also high [weighted kappa (k) = 0.831–0.956 at 95% CI = 0.711–1.0] as compared to RNA-polyacrylamide gel electrophoresis (RNA-PAGE). The performance characteristics of the new immunoassay were comparable to those of the two commercially available ELISA kits. Our results suggest that this peptide-recombinant protein based assay may serve as a preliminary assay for epidemiological surveillance of RVA antigen and for evaluation of vaccine effectiveness especially in low and middle income settings. PMID:27391106

  15. Functional Peptides from Laminin-1 Improve the Cell Adhesion Capacity of Recombinant Mussel Adhesive Protein.

    PubMed

    Wang, Kai; Ji, Lina; Hua, Zichun

    2017-01-01

    Since cell adhesion is important for cell processes such as migration and proliferation, it is a crucial consideration in biomaterial design and development. Based on the fusion of mussel adhesive protein fp151 with laminin-1-originated functional peptides we designed fusion proteins (fLA4, fLG6 and fAG73) and explored their cell adhesion properties. In our study, cell adhesion analysis showed that protein fLG6 and fLA4 had a significantly higher cell adhesion property for A549 than fp151. Moreover, protein fAG73 also displayed a strong adhesion capacity for Hela cells. In conclusion, the incorporation of functional peptides with integrin and heparin/heparan sulphate binding capacity into mussel adhesive protein will promote the application of mussel adhesive protein as cell adhesion biomaterial. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Production of recombinant human growth hormone conjugated with a transcytotic peptide in Pichia pastoris for effective oral protein delivery.

    PubMed

    Lee, Jun-Yeong; Kang, Sang-Kee; Li, Hui-Shan; Choi, Chang-Yun; Park, Tae-Eun; Bok, Jin-Duck; Lee, Seung-Ho; Cho, Chong-Su; Choi, Yun-Jaie

    2015-05-01

    Among the possible delivery routes, the oral administration of a protein is simple and achieves high patient compliance without pain. However, the low bioavailability of a protein drug in the intestine due to the physical barriers of the intestinal epithelia is the most critical problem that needs to be solved. To overcome the low bioavailability of a protein drug in the intestine, we aimed to construct a recombinant Pichia pastoris expressing a human growth hormone (hGH) fusion protein conjugated with a transcytotic peptide (TP) that was screened through peroral phage display to target goblet cells in the intestinal epithelia. The TP-conjugated hGH was successfully produced in P. pastoris in a secreted form at concentrations of up to 0.79 g/l. The function of the TP-conjugated hGH was validated by in vitro and in vivo assays. The transcytotic function of the TP through the intestinal epithelia was verified only in the C terminus conjugated hGH, which demonstrated the induction of IGF-1 in a HepG2 cell culture assay, a higher translocation of recombinant hGH into the ileal villi after oral administration in rats and both IGF-1 induction and higher body weight gain in rats after oral administration. The present study introduces the possibility for the development of an effective oral protein delivery system in the pharmaceutical and animal industries through the introduction of an effective TP into hGH.

  17. In vivo analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori using recombinant baculovirus as vector

    SciTech Connect

    Wang Shengpeng; Guo Tingqing; Guo Xiuyang; Huang Junting; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-24

    In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues.

  18. The evolutionary history of calreticulin and calnexin genes in green plants.

    PubMed

    Del Bem, Luiz Eduardo V

    2011-02-01

    Calreticulin and calnexin are Ca(2+)-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca(2+) homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided.

  19. Recombinant albumins containing additional peptide sequences smaller than barbourin retain the ability of barbourin-albumin to inhibit platelet aggregation.

    PubMed

    Sheffield, William P; Wilson, Brianna; Eltringham-Smith, Louise J; Gataiance, Sharon; Bhakta, Varsha

    2005-05-01

    The previously described fusion protein BLAH(6) (Marques JA et al.,Thromb Haemost 2001; 86: 902-8) is a recombinant protein that combines the small disintegrin barbourin with hexahistidine-tagged rabbit serumalbumin (RSA) produced in Pichia pastoris yeast. We sought to determine: (1) if BLAH(6) was immunogenic; and (2) if its barbourin domain could be productively replaced with smaller peptides. Purified BLAH(6) was injected into rabbits, and anti-barbourin antibodies were universally detected in plasma 28 days later; BLAH(6) was, however, equally effective in reducing platelet aggregation in both naive and pre-treated rabbits. Thrombocytopenia was not observed, and complexing BLAH(6) to alpha(IIb)beta(3) had no effect on antibody detection. The barbourin moiety of BLAH(6) was replaced with each of four sequences: Pep I (VCKGDWPC); PepII (VCRGDWPC); PepIII (bar-bourin 41-54); and PepIV (LPSPGDWR). The corresponding fusion proteins were tested for their ability to inhibit ADP-induced platelet aggregation. PepIII-LAH(6) inhibited neither rabbit nor human platelets. PepI-LAH(6) and PepIV-LAH(6) inhibited rabbit platelet aggregation as effectively as BLAH(6), but PepIV-LAH(6) did not inhibit human platelet aggregation. PepI-LAH(6) and PepIILAH(6) inhibited human platelet aggregation with IC(50)s 10- and 20-fold higher than BLAH(6). Cross-immunoprecipitation assays with human platelet lysates confirmed that all proteins and peptides interacted with the platelet integrin alpha(IIb)beta(3), but with greatly varying affinities. Our results suggest that the antiplatelet activity of BLAH(6) can be retained in albumin fusion proteins in which smaller peptides replace the barbourin domain; these proteins may be less immunogenic than BLAH(6).

  20. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats

    PubMed Central

    Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  1. Human recombinant domain antibodies against multiple sclerosis antigenic peptide CSF114(Glc).

    PubMed

    Niccheri, Francesca; Real-Fernàndez, Feliciana; Ramazzotti, Matteo; Lolli, Francesco; Rossi, Giada; Rovero, Paolo; Degl'Innocenti, Donatella

    2014-10-01

    Multiple sclerosis (MS) is a chronic auto-immune disease characterized by a damage to the myelin component of the central nervous system. Self-antigens created by aberrant glycosylation have been described to be a key component in the formation of auto-antibodies. CSF114(Glc) is a synthetic glucopeptide detecting in vitro MS-specific auto-antibodies, and it is actively used in diagnostics and research to monitor and quantify MS-associated Ig levels. We reasoned that antibodies raised against this probe could have been relevant for MS. We therefore screened a human Domain Antibody library against CSF114(Glc) using magnetic separation as a panning method. We obtained and described several clones, and the one with the highest signals was produced as a 6×His-tagged protein to properly study the binding properties as a soluble antibody. By surface plasmon resonance measurements, we evidenced that our clone recognized CSF114(Glc) with high affinity and specific for the glucosylated peptide. Kinetic parameters of peptide-clone interaction were calculated obtaining a value of KD in the nanomolar range. Harboring a human framework, this antibody should be very well tolerated by human immune system and may represent a valuable tool for MS diagnosis and therapy, paving the way to new research strategies.

  2. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide

    NASA Astrophysics Data System (ADS)

    Taha, Murtada A.; Singh, Shree R.; Dennis, Vida A.

    2012-08-01

    Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml-1 maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (˜200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 μg ml -1 to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (˜98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml -1 of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml-1) and IL-12p40 (674 pg ml-1) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.

  3. Population pharmacokinetics of lyophilized recombinant glucagon-like peptide-1 receptor agonist (recombinant exendin-4, rE-4) in Chinese patients with type 2 diabetes mellitus
.

    PubMed

    Zang, Yan-Nan; Zhang, Min-Jie; Wang, Yi-Tong; Wang, Chen; Wang, Qian; Zheng, Qing-Shan; Ji, Li-Nong; Guo, Wei; Fang, Yi

    2017-08-01

    To investigate the population pharmacokinetics of lyophilized recombinant glucagon-like peptide-1 receptor agonist (rE-4) in Chinese patients with type 2 diabetes mellitus (T2DM) for plasma concentration estimation and individualized treatment. Twelve patients with T2DM were enrolled to receive subcutaneous injections of rE-4 at 5 µg twice daily for 84 days. Administration dosage was adjusted from 5 µg to 10 µg twice daily at day 29 in case of glycated albumin (GA) ≥ 17%. The population pharmacokinetic model was developed in the nonlinear mixed-effects modeling software NONMEM. The data were best described by a two-compartment model with first-order absorption and elimination. The outcome parameters were as follows: apparent clearance (CL/F) 6.67 L/h, apparent distribution volume of central compartment (Vc/F) 19.4 L, absorption rate constant (Ka) 1.39 h-1, apparent distribution volume of peripheral compartment (Vp/F) 22.6 L, intercompartmental clearance (Q/F) 1.28 L/h. The interindividual variabilities for CL/F, Vc/F, Ka, and Q/F were 64.4%, 57.7%, 45.5%, and 153.3%, respectively. The intra-individual variability of proportional error model was 41.7%. No covariate was screened out that showed significant influence on the model parameters. The established two-compartment model with first-order absorption and elimination successfully described the pharmacokinetic characteristics of rE-4 in Chinese patients with T2DM.
.

  4. Antigenicity in sheep of synthetic peptides derived from stress-regulated Mycobacterium avium subsp. paratuberculosis proteins and comparison with recombinant protein and complex native antigens.

    PubMed

    Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; Whittington, Richard J

    2014-03-15

    Serum antibody enzyme-linked immunosorbent assay is the most commonly used test for diagnosis of Mycobacterium avium subsp. paratuberculosis infection in ruminants. However, the assay requires serum preabsorption with Mycobacterium phlei proteins to reduce cross reactions potentially contributed by the exposure of livestock to environmental mycobacteria. To trial the discovery of novel antigens which do not require serum absorption, synthetic MAP-specific peptides were selected based on in silico research to identify putative B cell epitopes. Four peptides from previously identified stress-regulated proteins were synthesized and evaluated using enzyme linked immunosorbent assay to detect Mycobacterium avium subsp. paratuberculosis specific antibodies in sheep. Two peptides were from hypothetical MAP proteins (MAP3567 and MAP1168c) and two were from proteins with known function (MAP2698c, an acyl-acyl carrier protein desaturase-DesA2 and MAP2487c a carbonic anhydrase). The ability of each peptide to discriminate between unexposed and MAP exposed (infected and vaccinated) animals was similar to that of the parent recombinant MAP antigen, with area under receiver operating curve values of 0.86-0.93. Assays run with a combination of two peptides showed slightly higher reactivity than those of individual peptides. Peptides evaluated in this study had diagnostic potential similar to corresponding recombinant proteins but not superior to a complex native MAP antigen or a commercial assay. Further study is required to investigate other peptides for their diagnostic potential, and this may be simpler and cheaper than subunit protein-based research. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Serum Calreticulin Is a Negative Biomarker in Patients with Alzheimer’s Disease

    PubMed Central

    Lin, Qiao; Cao, Yunpeng; Gao, Jie

    2014-01-01

    Calreticulin is down-regulated in the cortical neurons of patients with Alzheimer’s disease (AD) and may be a potential biomarker for the diagnosis of AD. A total of 128 AD patients were randomly recruited from May 2012 to July 2013. The mRNA levels of calreticulin were measured from the serum of tested subjects using real-time quantitative reverse transcriptase-PCR (real-time qRT-PCR). Serum levels of calreticulin were determined by ELISA and Western Blot. Serum levels of calreticulin in AD patients were significantly lower than those from a healthy group (p < 0.01). The baseline characters indicated that sample size, gender, mean age, diabetes and BMI (body mass index) were not major sources of heterogeneity. The serum levels of mRNA and protein of calreticulin were lower in AD patients than those from a healthy group, and negatively associated with the progression of AD according to CDR scores (p < 0.01). Thus, there is a trend toward decreased serum levels of calreticulin in the patients with progression of AD. Serum levels of calreticulin can be a negative biomarker for the diagnosis of AD patients. PMID:25429433

  6. Serum calreticulin is a negative biomarker in patients with Alzheimer's disease.

    PubMed

    Lin, Qiao; Cao, Yunpeng; Gao, Jie

    2014-11-25

    Calreticulin is down-regulated in the cortical neurons of patients with Alzheimer's disease (AD) and may be a potential biomarker for the diagnosis of AD. A total of 128 AD patients were randomly recruited from May 2012 to July 2013. The mRNA levels of calreticulin were measured from the serum of tested subjects using real-time quantitative reverse transcriptase-PCR (real-time qRT-PCR). Serum levels of calreticulin were determined by ELISA and Western Blot. Serum levels of calreticulin in AD patients were significantly lower than those from a healthy group (p < 0.01). The baseline characters indicated that sample size, gender, mean age, diabetes and BMI (body mass index) were not major sources of heterogeneity. The serum levels of mRNA and protein of calreticulin were lower in AD patients than those from a healthy group, and negatively associated with the progression of AD according to CDR scores (p < 0.01). Thus, there is a trend toward decreased serum levels of calreticulin in the patients with progression of AD. Serum levels of calreticulin can be a negative biomarker for the diagnosis of AD patients.

  7. Glycan-dependent and -independent Interactions Contribute to Cellular Substrate Recruitment by Calreticulin*

    PubMed Central

    Wijeyesakere, Sanjeeva J.; Rizvi, Syed M.; Raghavan, Malini

    2013-01-01

    Calreticulin is an endoplasmic reticulum chaperone with specificity for monoglucosylated glycoproteins. Calreticulin also inhibits precipitation of nonglycosylated proteins and thus contains generic protein-binding sites, but their location and contributions to substrate folding are unknown. We show that calreticulin binds glycosylated and nonglycosylated proteins with similar affinities but distinct interaction kinetics. Although both interactions involve the glycan-binding site or its vicinity, the arm-like proline-rich (P-) domain of calreticulin contributes to binding non/deglycosylated proteins. Correspondingly, ensemble FRET spectroscopy measurements indicate that glycosylated and nonglycosylated proteins induce “open” and “closed” P-domain conformations, respectively. The co-chaperone ERp57 influences substrate-binding kinetics and induces a closed P-domain conformation. Together with analysis of the interactions of calreticulin with cellular proteins, these findings indicate that the recruitment of monoglucosylated proteins to calreticulin is kinetically driven, whereas the P-domain and co-chaperone contribute to stable substrate binding. Substrate sequestration in the cleft between the glycan-binding site and P-domain is a likely mechanism for calreticulin-assisted protein folding. PMID:24100026

  8. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1) Improves Salinity Tolerance in Tobacco

    PubMed Central

    Song, Min; Wang, Yun; Xu, Wenqi; Wu, Lintao; Wang, Hancheng; Ma, Zhengqiang

    2015-01-01

    Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants. PMID:26469859

  9. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death.

    PubMed

    Panaretakis, Theocharis; Kepp, Oliver; Brockmeier, Ulf; Tesniere, Antoine; Bjorklund, Ann-Charlotte; Chapman, Daniel C; Durchschlag, Michael; Joza, Nicholas; Pierron, Gérard; van Endert, Peter; Yuan, Junying; Zitvogel, Laurence; Madeo, Frank; Williams, David B; Kroemer, Guido

    2009-03-04

    Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre-apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)-sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2alpha, followed by partial activation of caspase-8 (but not caspase-3), caspase-8-mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE-dependent exocytosis. Knock-in mutation of eIF2alpha (to make it non-phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase-8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.

  10. Anti-calreticulin immunoglobulin A (IgA) antibodies in refractory coeliac disease.

    PubMed

    Sánchez, D; Palová-Jelínková, L; Felsberg, J; Simsová, M; Pekáriková, A; Pecharová, B; Swoboda, I; Mothes, T; Mulder, C J J; Benes, Z; Tlaskalová-Hogenová, H; Tucková, L

    2008-09-01

    Refractory coeliac disease (RCD) is a very rare and dangerous form of CD, in which gluten-free diet loses its therapeutic effect and the damage of intestinal mucosa persists. Because of the adherence to the diet, serological markers of CD [immunoglobulin A (IgA) antibodies against gliadin, tissue transglutaminase (tTG) and endomysium] are often missing in RCD patients. We found substantially elevated levels of IgA anti-calreticulin (CRT) antibodies in the sera of almost all RCD patients tested. These sera were negative for IgA antibodies to gliadin and tTG and only some of them showed IgA antibodies to enterocytes. Analysis of patients' IgA reactivity to CRT fragments (quarters and halves) by Western blotting revealed differences in the specificity of IgA antibodies between RCD and CD patients. We therefore used the Pepscan technique with synthetic overlapping decapeptides of CRT to characterize antigenic epitopes recognized by serum IgA antibodies of RCD patients. Employing this method we demonstrated several dominant antigenic epitopes recognized by IgA antibodies of RCD patients on the CRT molecule. Epitope GVTKAAEKQMKD was recognized predominantly by serum IgA of RCD patients. Our results suggest that testing for serum IgA antibodies against CRT and its selected peptide could be a very useful tool in RCD differential diagnosis.

  11. Effect of recombinant Lactococcus lactis producing myelin peptides on neuroimmunological changes in rats with experimental allergic encephalomyelitis.

    PubMed

    Kasarełło, K; Szczepankowska, A; Kwiatkowska-Patzer, B; Lipkowski, A W; Gadamski, R; Sulejczak, D; Łachwa, M; Biały, M; Bardowski, J

    2016-01-01

    Multiple sclerosis (MS) is a human autoimmune neurodegenerative disease with an unknown etiology. Despite various therapies, there is no effective cure for MS. Since the mechanism of the disease is based on autoreactive T-cell responses directed against myelin antigens, oral tolerance is a promising approach for the MS treatment. Here, the experiments were performed to assess the impact of oral administration of recombinant Lactococcus lactis producing encephalogenic fragments of three myelin proteins: myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein, on neuroimmunological changes in rats with experimental allergic encephalomyelitis (EAE) - an animal model of MS. Lactococcus lactis whole-cell lysates were administered intragastrically at two doses (103 and 106 colony forming units) in a twenty-fold feeding regimen to Lewis rats with EAE. Spinal cord slices were subjected to histopathological analysis and morphometric evaluation, and serum levels of cytokines (IL-1b, IL-10, TNF-α and IFN-γ) were measured. Results showed that administration of the L. lactis preparations at the tested doses to rats with EAE, diminished the histopathological changes observed in EAE rats and reduced the levels of serum IL-1b, IL-10 and TNF-α, previously increased by evoking EAE. This suggests that oral delivery of L. lactis producing myelin peptide fragments could be an alternative strategy to induce oral tolerance for the treatment of MS.

  12. Employing a recombinant HLA-DR3 expression system to dissect major histocompatibility complex II-thyroglobulin peptide dynamism: a genetic, biochemical, and reverse immunological perspective.

    PubMed

    Jacobson, Eric M; Yang, Heyi; Menconi, Francesca; Wang, Rong; Osman, Roman; Skrabanek, Luce; Li, Cheuk Wun; Fadlalla, Mohammed; Gandhi, Alisha; Chaturvedi, Vijaya; Smith, Eric P; Schwemberger, Sandy; Osterburg, Andrew; Babcock, George F; Tomer, Yaron

    2009-12-04

    Previously, we have shown that statistical synergism between amino acid variants in thyroglobulin (Tg) and specific HLA-DR3 pocket sequence signatures conferred a high risk for autoimmune thyroid disease (AITD). Therefore, we hypothesized that this statistical synergism mirrors a biochemical interaction between Tg peptides and HLA-DR3, which is key to the pathoetiology of AITD. To test this hypothesis, we designed a recombinant HLA-DR3 expression system that was used to express HLA-DR molecules harboring either AITD susceptibility or resistance DR pocket sequences. Next, we biochemically generated the potential Tg peptidic repertoire available to HLA-DR3 by separately treating 20 purified human thyroglobulin samples with cathepsins B, D, or L, lysosomal proteases that are involved in antigen processing and thyroid biology. Sequences of the cathepsin-generated peptides were then determined by matrix-assisted laser desorption ionization time-of-flight-mass spectroscopy, and algorithmic means were employed to identify putative AITD-susceptible HLA-DR3 binders. From four predicted peptides, we identified two novel peptides that bound strongly and specifically to both recombinant AITD-susceptible HLA-DR3 protein and HLA-DR3 molecules expressed on stably transfected cells. Intriguingly, the HLA-DR3-binding peptides we identified had a marked preference for the AITD-susceptibility DR signatures and not to those signatures that were AITD-protective. Structural analyses demonstrated the profound influence that the pocket signatures have on the interaction of HLA-DR molecules with Tg peptides. Our study suggests that interactions between Tg and discrete HLA-DR pocket signatures contribute to the initiation of AITD.

  13. Identification and characterization of structural domains of human ERp57: association with calreticulin requires several domains.

    PubMed

    Silvennoinen, Laura; Myllyharju, Johanna; Ruoppolo, Margherita; Orrù, Stefania; Caterino, Marianna; Kivirikko, Kari I; Koivunen, Peppi

    2004-04-02

    The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.

  14. Improving Serodiagnosis of Human and Canine Leishmaniasis with Recombinant Leishmania braziliensis Cathepsin L-like Protein and a Synthetic Peptide Containing Its Linear B-cell Epitope

    PubMed Central

    Menezes-Souza, Daniel; Mendes, Tiago Antônio de Oliveira; Gomes, Matheus de Souza; Bartholomeu, Daniella Castanheira; Fujiwara, Ricardo Toshio

    2015-01-01

    Background The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis. Methodology/Principal Findings We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis. Conclusions/Significance The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions. PMID:25569432

  15. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli.

    PubMed

    Klint, Julie K; Senff, Sebastian; Saez, Natalie J; Seshadri, Radha; Lau, Ho Yee; Bende, Niraj S; Undheim, Eivind A B; Rash, Lachlan D; Mobli, Mehdi; King, Glenn F

    2013-01-01

    Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2-6 disulfide bonds.

  16. Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis via Expression in the Periplasm of E. coli

    PubMed Central

    Saez, Natalie J.; Seshadri, Radha; Lau, Ho Yee; Bende, Niraj S.; Undheim, Eivind A. B.; Rash, Lachlan D.; Mobli, Mehdi; King, Glenn F.

    2013-01-01

    Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2–6 disulfide bonds. PMID:23667680

  17. Tc45, a dimorphic Trypanosoma cruzi immunogen with variable chromosomal localization, is calreticulin.

    PubMed

    Aguillón, J C; Ferreira, L; Pérez, C; Colombo, A; Molina, M C; Wallace, A; Solari, A; Carvallo, P; Galindo, M; Galanti, N; Orn, A; Billetta, R; Ferreira, A

    2000-01-01

    We demonstrate that Tc45, a polypeptide described as an immunogenetically restricted Trypanosoma cruzi antigen in mice, is calreticulin, a dimorphic molecule encoded by genes with variable chromosomal distribution. Previously we showed that IgG from A.SW (H2s) mice immunized with T. cruzi trypomastigotes or epimastigotes and sera from infected humans recognize Tc45, a 45 kD parasite polypeptide. Herein we describe the cloning, sequencing, and expression of the Tc45 gene. A 98% homology in the deduced amino acid sequence was found with a T. cruzi calreticulin-like molecule and 41% with Leishmania donovani and human calreticulin. In the T. cruzi CL Brener clone and in the Tulahuén strain, the gene is located in two and four chromosomes, respectively. Calreticulin was detected in several T. cruzi clones, in the Tulahuén strain, and in T. rangeli, displaying alternative 43 and 46 kD forms.

  18. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future.

    PubMed

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-02-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination.

  19. The production of recombinant cationic α-helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum.

    PubMed

    Company, Nuri; Nadal, Anna; La Paz, José-Luis; Martínez, Sílvia; Rasche, Stefan; Schillberg, Stefan; Montesinos, Emilio; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, are valuable as novel therapeutics and preservatives. However, they tend to be toxic when expressed at high levels as recombinant peptides in plants, and they can be difficult to detect and isolate from complex plant tissues because they are strongly cationic and display low extinction coefficient and extremely limited immunogenicity. We therefore expressed BP100 with a C-terminal tag which preserved its antimicrobial activity and demonstrated significant accumulation in plant cells. We used a fluorescent tag to trace BP100 following transiently expression in Nicotiana benthamiana leaves and showed that it accumulated in large vesicles derived from the endoplasmic reticulum (ER) along with typical ER luminal proteins. Interestingly, the formation of these vesicles was induced by BP100. Similar vesicles formed in stably transformed Arabidopsis thaliana seedlings, but the recombinant peptide was toxic to the host during latter developmental stages. This was avoided by selecting active BP100 derivatives based on their low haemolytic activity even though the selected peptides remained toxic to plant cells when applied exogenously at high doses. Using this strategy, we generated transgenic rice lines producing active BP100 derivatives with a yield of up to 0.5% total soluble protein. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2015-07-01

    1 AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...COVERED 07/01/2014-06/30/2015 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a...NUMBER(S) 13. SUPPLEMENTARY NOTES 14. ABSTRACT We hypothesize that ER stress induced by glucose in diabetes promotes diabetic CKD through CRT stimulation

  1. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...1 July 2015- 30 June 2016 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a...We hypothesize that ER stress induced by glucose in diabetes promotes diabetic CKD through CRT stimulation of TGF-beta-dependent calcium/NFAT

  2. A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags.

    PubMed

    Islam, Tuhidul; Aguilar-Yañez, José Manuel; Simental-Martínez, Jesús; Ortiz-Alcaraz, Cesar Ivan; Rito-Palomares, Marco; Fernandez-Lahore, Marcelo

    2014-04-25

    In recent years, affinity fusion-tag systems have become a popular technique for the purification of recombinant proteins from crude extracts. However, several drawbacks including the high expense and low stability of ligands, their leakage during operation, and difficulties in immobilization, make it important to further develop the method. The present work is concerned with the utilization of a ceramic fluorapatite (CFT)-based chromatographic matrix to overcome these drawbacks. A heptapeptide library exhibiting a range of properties have been synthesized and subjected to ceramic fluorapatite (CFT) chromatography to characterize their retention behavior as a function of pH and composition of the binding buffer. The specific binding and elution behavior demonstrates the possible application of CFT-binding peptides as tags for enhancing the selective recovery of proteins by CFT chromatography. To materialize this strategy, a phage-derived CFT-specific sequence KPRSVSG (Tag1) with/without a consecutive hexalysine sequence, KKKKKKKPRSVSG (Tag2), were fused at the C-terminus of an enhanced green fluorescent protein (eGFP). The resulting gene constructs H-eGFP, H-eGFP-Tag1 and H-eGFP-Tag2 were expressed in Escherichia coli strain BL-21, and the clarified cell lysate was applied to the CFT column equilibrated with binding buffer (20-50mM sodium phosphate, pH 6-8.4). Sodium phosphate (500mM) or 1M NaCl in the respective binding buffer was used to elute the fused proteins, and the chromatographic fractions were analyzed by gel electrophoresis. Both the yield and purity were over 90%, demonstrating the potential application of the present strategy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Production and secretion of recombinant thaumatin in tobacco hairy root cultures.

    PubMed

    Pham, Ngoc Bich; Schäfer, Holger; Wink, Michael

    2012-04-01

    Production of recombinant proteins in plant cell or organ cultures and their secretion into the plant cell culture medium simplify the purification procedure and increase protein yield. In this study, the sweet-tasting protein thaumatin I was expressed and successfully secreted from tobacco hairy root cultures. The presence of an ER signal peptide appears to be crucial for the secretion of thaumatin: without an ER signal peptide, no thaumatin was detectable in the spent medium, whereas inclusion of the ER signal peptide calreticulin fused to the N terminus of thaumatin led to the secretion of thaumatin into the spent medium of hairy root cultures at concentrations of up to 0.21 mg/L. Extracellular thaumatin levels reached a maximum after 30 days (stationary phase) and the subsequent decline was linked to the rapid increase of proteases in the medium. Significant amounts of thaumatin were trapped in the apoplastic space of the root cells. The addition of polyvinylpyrrolidone and sodium chloride into the culture medium led to an increase of extracellular thaumatin amounts up to 1.4 and 2.63 mg/L, respectively. Thaumatin production compares well with yields from other transgenic plants, so that tobacco hairy roots can be considered an alternative production platform of thaumatin. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Entamoeba histolytica Cell Surface Calreticulin Binds Human C1q and Functions in Amebic Phagocytosis of Host Cells

    PubMed Central

    Vaithilingam, Archana; Teixeira, Jose E.; Miller, Peter J.; Heron, Bradley T.

    2012-01-01

    Phagocytosis of host cells is characteristic of tissue invasion by the intestinal ameba Entamoeba histolytica, which causes amebic dysentery and liver abscesses. Entamoeba histolytica induces host cell apoptosis and uses ligands, including C1q, on apoptotic cells to engulf them. Two mass spectrometry analyses identified calreticulin in amebic phagosome preparations, and, in addition to its function as an endoplasmic reticulum chaperone, calreticulin is believed to be the macrophage receptor for C1q. The purpose of this study was to determine if calreticulin functions as an E. histolytica C1q receptor during phagocytosis of host cells. Calreticulin was localized to the surface of E. histolytica during interaction with both Jurkat lymphocytes and erythrocytes and was present in over 75% of phagocytic cups during amebic erythrophagocytosis. Presence of calreticulin on the cell surface was further demonstrated using a method that selectively biotinylated cell surface proteins and by flow cytometry using trophozoites overexpressing epitope-tagged calreticulin. Regulated overexpression of calreticulin increased E. histolytica's ability to phagocytose apoptotic lymphocytes and calcium ionophore-treated erythrocytes but had no effect on amebic adherence to or destruction of cell monolayers or surface expression of the GalNAc lectin and serine-rich E. histolytica protein (SREHP) receptors. Finally, E. histolytica calreticulin bound specifically to apoptotic lymphocytes and to human C1q. Collectively, these data implicate cell surface calreticulin as a receptor for C1q during E. histolytica phagocytosis of host cells. PMID:22473608

  5. Structural and functional comparisons and production of recombinant crustacean hyperglycemic hormone (CHH) and CHH-like peptides from the mud crab Scylla olivacea.

    PubMed

    Chang, Chih-Chun; Tsai, Kuo-Wei; Hsiao, Nai-Wan; Chang, Cheng-Yen; Lin, Chih-Lung; Watson, R Douglas; Lee, Chi-Ying

    2010-05-15

    Sco-CHH and Sco-CHH-L (CHH-like peptide), two structural variants of the crustacean hyperglycemic hormone family identified in the mud crab (Scylla olivacea), are presumably alternatively spliced gene products. In this study, Sco-CHH and Sco-CHH-L were isolated from the tissues using high performance liquid chromatography. Identity of the native peptides was confirmed using mass spectrometric (MS) analyses of purified materials and of trypsin-digested peptide fragments. Additionally, characterizations using circular dichroism (CD) spectrometry revealed that the 2 peptides have similar CD spectral profiles, showing they are composed mainly of alpha-helices, and are similarly thermo-stable with a melting temperature of 74-75 degrees C. Results of bioassays indicated that Sco-CHH exerted hyperglycemic and molt-inhibiting activity, whereas Sco-CHH-L did not. Further, recombinant Sco-CHH-Gly (rSco-CHH-Gly, a glycine extended Sco-CHH) and Sco-CHH-L (rSco-CHH-L) were produced using an Escherichia coli expression system, refolded, and purified. rSco-CHH-Gly was further alpha-amidated at the C-terminal end to produce rSco-CHH. MS analyses of enzyme-digested peptide fragments of rSco-CHH-Gly and rSco-CHH-L showed that the two peptides share a common disulfide bond pattern: C7-C43, C23-C39, and C26-C52. Circular dichroism analyses and hyperglycemic assay revealed that rSco-CHH and rSco-CHH-L resemble their native counterparts, in terms of CD spectral profiles, melting curve profiles, and biological activity. rSco-CHH-Gly has a lower alpha-helical content (32%) than rSco-CHH (47%), a structural deviation that may be responsible for the significant decrease in the biological activity of rSco-CHH-Gly. Finally, modeled structure of Sco-CHH and Sco-CHH-L indicated that they are similarly folded, each with an N-terminal tail region and 4 alpha-helices. Putative surface residues located in corresponding positions of Sco-CHH and Sco-CHH-L but with side chains of different properties

  6. Probing the copper(II) binding features of angiogenin. Similarities and differences between a N-terminus peptide fragment and the recombinant human protein.

    PubMed

    La Mendola, Diego; Farkas, Daniel; Bellia, Francesco; Magrì, Antonio; Travaglia, Alessio; Hansson, Örjan; Rizzarelli, Enrico

    2012-01-02

    The angiogenin protein (hAng) is a potent angiogenic factor and its cellular activities may be affected by copper ions even if it is yet unknown how this metal ion is able to produce this effect. Among the different regions of hAng potentially able to bind copper ions, the N-terminal domain appears to be an ideal candidate. Copper(II) complexes of the peptide fragments encompassing the amino acid residues 4-17 of hAng protein were characterized by potentiometric, UV-vis, CD, and EPR spectroscopic methods. The results show that these fragments have an unusual copper(II) binding ability. At physiological pH, the prevailing complex species formed by the peptide encompassing the protein sequence 4-17 is [CuHL], in which the metal ion is bound to two imidazole and two deprotonated amide nitrogen atoms disposed in a planar equatorial arrangement. Preliminary spectroscopic (UV-vis, CD, and EPR) data obtained on the copper(II) complexes formed by the whole recombinant hAng protein, show a great similarity with those obtained for the N-terminal peptide fragments. These findings indicate that within the N-terminal domain there is one of the preferred copper(II) ions anchoring site of the whole recombinant hAng protein.

  7. Efficacy and Safety of 1-Hour Infusion of Recombinant Human Atrial Natriuretic Peptide in Patients With Acute Decompensated Heart Failure

    PubMed Central

    Wang, Guogan; Wang, Pengbo; Li, Yishi; Liu, Wenxian; Bai, Shugong; Zhen, Yang; Li, Dongye; Yang, Ping; Chen, Yu; Hong, Lang; Sun, Jianhui; Chen, Junzhu; Wang, Xian; Zhu, Jihong; Hu, Dayi; Li, Huimin; Wu, Tongguo; Huang, Jie; Tan, Huiqiong; Zhang, Jian; Liao, Zhongkai; Yu, Litian; Mao, Yi; Ye, Shaodong; Feng, Lei; Hua, Yihong; Ni, Xinhai; Zhang, Yuhui; Wang, Yang; Li, Wei; Luan, Xiaojun; Sun, Xiaolu; Wang, Sijia

    2016-01-01

    Abstract The aim of the study was to evaluate the efficacy and safety of 1-h infusion of recombinant human atrial natriuretic peptide (rhANP) in combination with standard therapy in patients with acute decompensated heart failure (ADHF). This was a phase III, randomized, double-blind, placebo-controlled, multicenter trial. Eligible patients with ADHF were randomized to receive a 1-h infusion of either rhANP or placebo at a ratio of 3:1 in combination with standard therapy. The primary endpoint was dyspnea improvement (a decrease of at least 2 grades of dyspnea severity at 12 h from baseline). Reduction in pulmonary capillary wedge pressure (PCWP) 1 h after infusion was the co-primary endpoint for catheterized patients. Overall, 477 patients were randomized: 358 (93 catheterized) patients received rhANP and 118 (28 catheterized) received placebo. The percentage of patients with dyspnea improvement at 12 h was higher, although not statistically significant, in the rhANP group than in the placebo group (32.0% vs 25.4%, odds ratio=1.382, 95% confidence interval [CI]: 0.863–2.212, P = 0.17). Reduction in PCWP at 1 h was significantly greater in patients treated with rhANP than in patients treated with placebo (−7.74 ± 5.95 vs −1.82 ± 4.47 mm Hg, P < 0.001). The frequencies of adverse events and renal impairment within 3 days of treatment were similar between the 2 groups. Mortality at 1 month was 3.1% in the rhANP group vs 2.5% in the placebo group (hazard ratio = 1.21, 95% CI: 0.34–4.26; P > 0.99). 1-h rhANP infusion appears to result in prompt, transient hemodynamic improvement with a small, nonsignificant, effect on dyspnea in ADHF patients receiving standard therapy. The safety of 1-h infusion of rhANP seems to be acceptable. (WHO International Clinical Trials Registry Platform [ICTRP] number, ChiCTR-IPR-14005719.) PMID:26945407

  8. ANEPIII, a new recombinant neurotoxic polypeptide derived from scorpion peptide, inhibits delayed rectifier, but not A-type potassium currents in rat primary cultured hippocampal and cortical neurons.

    PubMed

    Li, Chun-Li; Zhang, Jing-Hai; Yang, Bao-Feng; Jiao, Jun-Dong; Wang, Ling; Wu, Chun-Fu

    2006-01-15

    A new recombinant neurotoxic polypeptide ANEPIII (BmK ANEPIII) derived from Scorpion peptide, which was demonstrated with antineuroexcitation properties in animal models, was examined for its action on K+ currents in primary cultured rat hippocampal and cortical neurons using the patch clamp technique in the whole-cell configuration. The delayed rectifier K+ current (I(k)) was inhibited by externally applied recombinant BmK ANEPIII, while the transient A-current (I(A)) remained virtually unaffected. BmK ANEPIII 3 microM, reduced the delayed rectifier current by 28.2% and 23.6% in cultured rat hippocampal and cortical neurons, respectively. The concentration of half-maximal block was 155.1 nM for hippocampal neurons and 227.2 nM for cortical neurons, respectively. These results suggest that BmK ANEPIII affect K+ currents, which may lead to a reduction in neuronal excitability.

  9. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.

    PubMed

    Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William

    2016-03-10

    Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation.

  10. Novel signal peptides improve the secretion of recombinant Staphylococcus aureus Alpha toxinH35L in Escherichia coli.

    PubMed

    Han, SooJin; Machhi, Shushil; Berge, Mark; Xi, Guoling; Linke, Thomas; Schoner, Ronald

    2017-12-01

    Secretion of heterologous proteins into Escherichia coli cell culture medium offers significant advantages for downstream processing over production as inclusion bodies; including cost and time savings, and reduction of endotoxin. Signal peptides play an important role in targeting proteins for translocation across the cytoplasmic membrane to the periplasmic space and release into culture medium during the secretion process. Alpha toxinH35L (ATH35L) was selected as an antigen for vaccine development against Staphylococcus aureus infections. It was successfully secreted into culture medium of E. coli by using bacterial signal peptides linked to the N-terminus of the protein. In order to improve the level of secreted ATH35L, we designed a series of novel signal peptides by swapping individual domains of modifying dsbA and pelB signal peptides and tested them in a fed-batch fermentation process. The data showed that some of the modified signal peptides improved the secretion efficiency of ATH35L compared with E. coli signal peptides from dsbA, pelB and phoA proteins. Indeed, one of the novel signal peptides improved the yield of secreted ATH35L by 3.5-fold in a fed-batch fermentation process and at the same time maintained processing at the expected site for signal peptide cleavage. Potentially, these new novel signal peptides can be used to improve the secretion efficiency of other heterologous proteins in E. coli. Furthermore, analysis of the synthetic signal peptide amino acid sequences provides some insight into the sequence features within the signal peptide that influence secretion efficiency.

  11. A convenient method for europium-labeling of a recombinant chimeric relaxin family peptide R3/I5 for receptor-binding assays.

    PubMed

    Zhang, Wei-Jie; Jiang, Qian; Wang, Xin-Yi; Song, Ge; Shao, Xiao-Xia; Guo, Zhan-Yun

    2013-06-01

    Relaxin family peptides have important biological functions, and so far, four G-protein-coupled receptors have been identified as their receptors (RXFP1-4). A chimeric relaxin family peptide R3/I5, containing the B-chain of relaxin-3 and the A-chain of INSL5, is a selective agonist for both RXFP3 and RXFP4. In a previous study, europium-labeled R3/I5, as a nonradioactive and low-background receptor-binding tracer, was prepared through a chemical synthesis approach. In the present study, we established a convenient alternative approach for preparing the europium-labeled R3/I5 tracer based on a recombinant R3/I5 designed to carry a solubilizing tag at the A-chain N-terminus and a pyroglutamate residue at the B-chain N-terminus. Because of the presence of a single primary amine moiety, the recombinant R3/I5 peptide was site-specifically mono-labeled at the A-chain N-terminus by a diethylenetriaminepentaacetic acid/europium moiety through a convenient one-step procedure. The diethylenetriaminepentaacetic acid/Eu3+-labeled R3/I5 bound both receptors RXFP3 and RXFP4 with high binding affinities and low nonspecific binding. Thus, we have presented a valuable nonradioactive tracer for future interaction studies on RXFP3 and RXFP4 with various natural or designed ligands. The present approach could also be adapted for preparing and labeling of other chimeric relaxin family peptides.

  12. Demonstration of Calreticulin Expression in Hamster Pancreatic Adenocarcinoma with the Use of Fluorescent Gold Quantum Dots.

    PubMed

    Giorgakis, Emmanouil; Ramesh, Bala; Kamali-Dashtarzheneh, Ashkan; Fusai, Giuseppe Kito; Imber, Charles; Tsironis, Dimitrios; Loizidou, Marilena

    2016-03-01

    There is dire need for discovery of novel pancreatic cancer biomarkers and of agents with the potential for simultaneous diagnostic and therapeutic capacity. This study demonstrates calreticulin expression on hamster pancreatic adenocarcinoma via bio-conjugated gold quantum dots (AuQDs). Hamster pancreatic adenocarcinoma cells were cultured, fixed and incubated with fluorescent AuQDs, bio-conjugated to anti-calreticulin antibodies. Anti-calreticulin and AuQDs were produced in-house. AuQDs were manufactured to emit in the near-infrared. Cells were further characterized under confocal fluorescence. AuQDs were confirmed to emit in the near-infrared. AuQD bio-conjugation to calreticulin was confirmed via dot-blotting. Upon laser excitation and post-incubation with bio-conjugated AuQDs, pancreatic cancer cell lines emitted fluorescence in near-infrared. Hamster pancreatic cancer cells express calreticulin, which may be labelled with AuQDs. This study demonstrates the application of nanoparticle-based theranostics in pancreatic cancer. Such biomarker-targeting nanosystems are anticipated to play a significant role in the management of pancreatic cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Calreticulin secures calcium-dependent nuclear pore competency required for cardiogenesis.

    PubMed

    Faustino, Randolph S; Behfar, Atta; Groenendyk, Jody; Wyles, Saranya P; Niederlander, Nicolas; Reyes, Santiago; Puceat, Michel; Michalak, Marek; Terzic, Andre; Perez-Terzic, Carmen

    2016-03-01

    Calreticulin deficiency causes myocardial developmental defects that culminate in an embryonic lethal phenotype. Recent studies have linked loss of this calcium binding chaperone to failure in myofibrillogenesis through an as yet undefined mechanism. The purpose of the present study was to identify cellular processes corrupted by calreticulin deficiency that precipitate dysregulation of cardiac myofibrillogenesis related to acquisition of cardiac phenotype. In an embryonic stem cell knockout model, calreticulin deficit (crt(-/-)) compromised nucleocytoplasmic transport of nuclear localization signal-dependent and independent pathways, disrupting nuclear import of the cardiac transcription factor MEF2C. The expression of nucleoporins and associated nuclear transport proteins in derived crt(-/-) cardiomyocytes revealed an abnormal nuclear pore complex (NPC) configuration. Altered protein content in crt(-/-) cells resulted in remodeled NPC architecture that caused decreased pore diameter and diminished probability of central channel occupancy versus wild type counterparts. Ionophore treatment of impaired calcium handling in crt(-/-) cells corrected nuclear pore microarchitecture and rescued nuclear import resulting in normalized myofibrillogenesis. Thus, calreticulin deficiency alters nuclear pore function and structure, impeding myofibrillogenesis in nascent cardiomyocytes through a calcium dependent mechanism. This essential role of calreticulin in nucleocytoplasmic communication competency ties its regulatory action with proficiency of cardiac myofibrillogenesis essential for proper cardiac development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Engineering a Recombinant Baculovirus with a Peptide Hormone Gene and its Effect on the Corn Earworm, Helicoverpa zea

    USDA-ARS?s Scientific Manuscript database

    The helicokinins are peptides identified from Helicoverpa zea that when injected into the larvae were found to cause excessive diuresis and loss of feeding activity. Of the three peptides, helicokinin II (HezK-II) was found to be most potent. A synthetic gene encoding HezK-II was constructed based o...

  15. Characterisation and evaluation of antiviral recombinant peptides based on the heptad repeat regions of NDV and IBV fusion glycoproteins

    SciTech Connect

    Wang Xiaojia Li Chuangen; Chi Xiaojing; Wang Ming

    2011-06-20

    Mixed virus infections can cause livestock losses that are more devastating than those caused by single virus infections. Newcastle disease virus (NDV) and infectious bronchitis virus (IBV), serious threats to the poultry industry, can give rise to complex mixed infections that hinder diagnosis and prevention. In this study, we show that newly designed peptides, which are based on the heptad repeat (HR) region of the fusion glycoproteins from NDV and IBV, have more potent antiviral activity than the mother HR peptides. Plaque formation and chicken embryo infectivity assays confirmed these results. The novel peptides completely inhibited single virus infections and mixed infections caused by NDV and IBV. Furthermore, we assessed cell toxicity and possible targets for the peptides, thereby strengthening the notion that HR2 is an attractive site for therapeutic intervention. These results suggest the possibility of designing a relatively broad-spectrum class of antiviral peptides that can reduce the effects of mixed-infections.

  16. A novel assay to detect calreticulin mutations in myeloproliferative neoplasms

    PubMed Central

    Rosso, Valentina; Petiti, Jessica; Bracco, Enrico; Pedrola, Roberto; Carnuccio, Francesca; Signorino, Elisabetta; Carturan, Sonia; Calabrese, Chiara; Bot-Sartor, Giada; Ronconi, Michela; Serra, Anna; Saglio, Giuseppe; Frassoni, Francesco; Cilloni, Daniela

    2017-01-01

    The myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive (Ph+), chronic myeloid leukemia, or negative: polycythemia vera (PV) essential thrombocythemia (ET), and primary myelofibrosis (PMF). Most Ph negative cases have an activating JAK2 or MPL mutation. Recently, somatic mutations in the calreticulin gene (CALR) were detected in 56–88% of JAK2/MPL-negative patients affected by ET or PMF. The most frequent mutations in CARL gene are type-1 and 2. Currently, CALR mutations are evaluated by sanger sequencing. The evaluation of CARL mutations increases the diagnostic accuracy in patients without other molecular markers and could represent a new therapeutic target for molecular drugs. We developed a novel detection assay in order to identify type-1 and 2 CALR mutations by PNA directed PCR clamping. Seventy-five patients affected by myeloproliferative neoplasms and seven controls were examined by direct DNA sequencing and by PNA directed PCR clamping. The assay resulted to be more sensitive, specific and cheaper than sanger sequencing and it could be applied even in laboratory not equipped for more sophisticated analysis. Interestingly, we report here a case carrying both type 1 and type2 mutations in CALR gene. PMID:28031530

  17. Calreticulin mutation profile in Indian patients with primary myelofibrosis.

    PubMed

    Sazawal, Sudha; Singh, Neha; Mahapatra, Manoranjan; Saxena, Renu

    2015-12-01

    Somatic mutations in Calreticulin (CALR) have been recently discovered in JAK2/MPL unmutated patients with primary myelofibrosis (PMF) or essential thrombocythemia. Clinical and hematologic features were obtained for 80 patients with PMF. JAK2V617F mutation was analyzed by DNA tetra-primer amplification refractory mutation system (ARMS-PCR). CALR and MPL mutations were identified by bi-directional Sanger sequencing. CALR mutations were detected in 11.2% (9/80) of all PMF patients and 25.7% (9/35) of all JAK2V617F and MPL unmutated patients all of which were Type I mutation or deletions. A novel CALR mutation pattern (c.1241_1288del) was identified in one (1/9) patient. No case of Type II mutations or scattered point mutations was found in any of these patients. Uni-variate analysis at presentation showed that CALR mutations were significantly associated with younger age (P = 0.003) and larger spleen size (P = 0.001). No significant correlation was found between CALR mutation and clinico-hematologic characteristics or international prognostic scoring system (IPSS) scoring of the PMF patients. CALR mutations have a distinct molecular profile in Indian patients, different from that of other studies worldwide. Larger prospective studies need to be designed to establish the impact of paucity of Type II mutations in contributing to disease phenotype and prognostic outcome of patients.

  18. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.

  19. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages.

    PubMed

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-05-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. © The American Society of Tropical Medicine and Hygiene.

  20. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages

    PubMed Central

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-01-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. PMID:25758653

  1. Emerging roles of calreticulin in cancer: implications for therapy.

    PubMed

    Venkateswaran, Kavya; Verma, Amit; Bhatt, Anant Narayan; Shrivastava, Anju; Manda, Kailash; Raj, Hanumantharao G; Prasad, Ashok; Len, Christophe; Parmar, Virinder S; Dwarakanath, Bilikere

    2017-01-11

    Calreticulin (CRT), initially identified as a ubiquitous calcium-binding protein in the endoplasmic reticulum, has emerged as a multifunctional protein with roles in calcium homeostasis, molecular chaperoning and cell adhesion. Emerging evidence suggests its involvement in tumorigenesis facilitating proliferation, migration, and adhesion. CRT translocated to the cell surface (ecto-CRT) serves as a phagocytic signal for immunogenic cell death (ICD) mediated through dendritic cells (DCs) and cytotoxic T-cell activation thereby making tumors susceptible to immunotherapy-based anti-cancer strategies. CRT is now regarded as one of the most potent danger-associated molecular patterns (DAMPs) with the ecto-CRT triggering restoration of homeostasis by immune stimulation. A recently identified novel transacetylase activity of CRT adds a new dimension to its multi-faceted involvement in cancer by virtue of polyphenolic acetates (PA): CRT transacetylase (CRTase) system which results in hyperacetylation of target proteins, thereby mimicking the effects of Histone deacetylase inhibitors (HDACi). Since protein acetylation is one of the crucial post-translational modifications (PTMs) influencing the epigenetic regulation and signal transduction, CRT can be a potential target for developing anticancer therapeutics and preventive strategies by employing pharmacologically compatible semi-synthetic acetyl donors like polyphenolic acetates and other agents.

  2. Entamoeba histolytica and E. dispar Calreticulin: Inhibition of Classical Complement Pathway and Differences in the Level of Expression in Amoebic Liver Abscess

    PubMed Central

    Ximénez, Cecilia; González, Enrique; Nieves, Miriam E.; Silva-Olivares, Angélica; Shibayama, Mineko; Galindo-Gómez, Silvia; Escobar-Herrera, Jaime; García de León, Ma del Carmen; Morán, Patricia; Valadez, Alicia; Rojas, Liliana; Hernández, Eric G.; Partida, Oswaldo; Cerritos, René

    2014-01-01

    The role of calreticulin (CRT) in host-parasite interactions has recently become an important area of research. Information about the functions of calreticulin and its relevance to the physiology of Entamoeba parasites is limited. The present work demonstrates that CRT of both pathogenic E. histolytica and nonpathogenic E. dispar species specifically interacted with human C1q inhibiting the activation of the classical complement pathway. Using recombinant EhCRT protein, we demonstrate that CRT interaction site and human C1q is located at the N-terminal region of EhCRT. The immunofluorescence and confocal microscopy experiments show that CRT and human C1q colocalize in the cytoplasmic vesicles and near to the surface membrane of previously permeabilized trophozoites or are incubated with normal human serum which is known to destroy trophozoites. In the presence of peripheral mononuclear blood cells, the distribution of EhCRT and C1q is clearly over the surface membrane of trophozoites. Nevertheless, the level of expression of CRT in situ in lesions of amoebic liver abscess (ALA) in the hamster model is different in both Entamoeba species; this molecule is expressed in higher levels in E. histolytica than in E. dispar. This result suggests that EhCRT may modulate some functions during the early moments of the host-parasite relationship. PMID:24860808

  3. Entamoeba histolytica and E. dispar Calreticulin: inhibition of classical complement pathway and differences in the level of expression in amoebic liver abscess.

    PubMed

    Ximénez, Cecilia; González, Enrique; Nieves, Miriam E; Silva-Olivares, Angélica; Shibayama, Mineko; Galindo-Gómez, Silvia; Escobar-Herrera, Jaime; García de León, Ma Del Carmen; Morán, Patricia; Valadez, Alicia; Rojas, Liliana; Hernández, Eric G; Partida, Oswaldo; Cerritos, René

    2014-01-01

    The role of calreticulin (CRT) in host-parasite interactions has recently become an important area of research. Information about the functions of calreticulin and its relevance to the physiology of Entamoeba parasites is limited. The present work demonstrates that CRT of both pathogenic E. histolytica and nonpathogenic E. dispar species specifically interacted with human C1q inhibiting the activation of the classical complement pathway. Using recombinant EhCRT protein, we demonstrate that CRT interaction site and human C1q is located at the N-terminal region of EhCRT. The immunofluorescence and confocal microscopy experiments show that CRT and human C1q colocalize in the cytoplasmic vesicles and near to the surface membrane of previously permeabilized trophozoites or are incubated with normal human serum which is known to destroy trophozoites. In the presence of peripheral mononuclear blood cells, the distribution of EhCRT and C1q is clearly over the surface membrane of trophozoites. Nevertheless, the level of expression of CRT in situ in lesions of amoebic liver abscess (ALA) in the hamster model is different in both Entamoeba species; this molecule is expressed in higher levels in E. histolytica than in E. dispar. This result suggests that EhCRT may modulate some functions during the early moments of the host-parasite relationship.

  4. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein.

    PubMed

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M O; Rajan, Binoy; Tinsley, John W; Bickerdike, Ralph; Martin, Samuel A M; Bowman, Alan S

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  5. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein

    PubMed Central

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M. O.; Rajan, Binoy; Tinsley, John W.; Bickerdike, Ralph

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts. PMID:28046109

  6. Calreticulin is a secreted BMP antagonist, expressed in Hensen's node during neural induction.

    PubMed

    De Almeida, Irene; Oliveira, Nidia M M; Randall, Rebecca A; Hill, Caroline S; McCoy, John M; Stern, Claudio D

    2017-01-15

    Hensen's node is the "organizer" of the avian and mammalian early embryo. It has many functions, including neural induction and patterning of the ectoderm and mesoderm. Some of the signals responsible for these activities are known but these do not explain the full complexity of organizer activity. Here we undertake a functional screen to discover new secreted factors expressed by the node at this time of development. Using a Signal Sequence Trap in yeast, we identify several candidates. Here we focus on Calreticulin. We show that in addition to its known functions in intracellular Calcium regulation and protein folding, Calreticulin is secreted, it can bind to BMP4 and act as a BMP antagonist in vivo and in vitro. Calreticulin is not sufficient to account for all organizer functions but may contribute to the complexity of its activity.

  7. Calreticulin-like molecule in trophozoites of Entamoeba histolytica HM1:IMSS (Swissprot: accession P83003).

    PubMed

    González, Enrique; Rico, Guadalupe; Mendoza, Guillermo; Ramos, Fernando; García, Gabriela; Morán, Patricia; Valadez, Alicia; Melendro, Emma I; Ximénez, Cecilia

    2002-12-01

    In this work, we report the partial sequence of a 51 kDa protein of Entamoeba histolytica that is highly immunogenic in humans. Partial sequencing of the N-terminal end showed that 18 of the first 20 amino acid residues of the protein were identified uniquely, indicating that the final product was a homogeneous protein preparation. The N-terminal sequence that was found was: KVYFEETFENGWKXIWSKW. Comparing the 19-amino acid sequence of the protein in automated databases shows significant similarity with amino acid sequences of the calreticulin-like protein of spinach leaves (77%) and of the calreticulin precursor of Dictyostelium discoideum (60%).

  8. Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis.

    PubMed

    Morato do Canto, Amanda; Ceciliato, Paulo H O; Ribeiro, Bianca; Ortiz Morea, Fausto Andrés; Franco Garcia, Antonio Augusto; Silva-Filho, Marcio C; Moura, Daniel S

    2014-02-01

    RALF is a small (5 kDa) and ubiquitous plant peptide signal. It was first isolated from tobacco leaf protein extracts owing to its capacity to alkalinize the extracellular media of cell suspensions. RALFs inhibit root growth and hypocotyl elongation, and a role for RALFs in cell expansion has also been proposed. Arabidopsis has 37 RALF isoforms (AtRALF), but only a small group of nine has high primary structure identity to the original RALF peptide isolated from tobacco. Herein, we report the heterologous production of these nine peptides in Escherichia coli and the evaluation of their activity in five biological assays. All AtRALF peptides produced showed strong alkalinizing activities, with the exception of the pollen-specific isoform AtRALF4. Although it exhibited no inhibitory activity in the root growth and hypocotyl elongation assays, AtRALF4 is a strong inhibitor of pollen germination. Our data demonstrate that the divergence in the tissue specificity and gene expression patterns of the different AtRALFs does not change the fact that their main role seems to be the regulation of cell expansion. Furthermore, different activities in the alkalinization assays upon the addition of two consecutive and saturating doses of the peptides suggest that the peptides are likely being sensed by specific receptors.

  9. Cutting edge: recombinant Listeria monocytogenes expressing a single immune-dominant peptide confers protective immunity to herpes simplex virus-1 infection.

    PubMed

    Orr, Mark T; Orgun, Nural N; Wilson, Christopher B; Way, Sing Sing

    2007-04-15

    The vast majority of the world's population is infected with HSV. Although antiviral therapy can reduce the incidence of reactivation and asymptomatic viral shedding, and limit morbidity and mortality from active disease, it cannot cure infection. Therefore, the development of an effective vaccine is an important global health priority. In this study, we demonstrate that recombinant Listeria monocytogenes (Lm) expressing the H-2K(b) glycoprotein B (gB)(498-505) peptide from HSV-1 triggers a robust CD8 T cell response to this Ag resulting in protective immunity to HSV infection. Following challenge with HSV-1, immune-competent mice primed with recombinant Lm-expressing gB(498-505) Ag were protected from HSV-induced paralysis. Protection was associated with dramatic reductions in recoverable virus, and early expansion of HSV-1-specific CD8 T cells in the regional lymph nodes. Thus, recombinant Lm-expressing Ag from HSV represents a promising new class of vaccines against HSV infection.

  10. Efficient production of recombinant cystatin C using a peptide-tag, 4AaCter, that facilitates formation of insoluble protein inclusion bodies in Escherichia coli.

    PubMed

    Hayashi, Masahiro; Iwamoto, Shigehisa; Sato, Shinya; Sudo, Shigeo; Takagi, Mari; Sakai, Hiroshi; Hayakawa, Tohru

    2013-04-01

    Cystatin C is a cysteine protease inhibitor produced by a variety of human tissues. The blood concentration of cystatin C depends on the glomerular filtration rate and is an endogenous marker of renal dysfunction. Recombinant cystatin C protein with high immunogenicity is therefore in demand for the diagnostic market. In this study, to establish an efficient production system, a synthetic cystatin C gene was designed and synthesized in accordance with the codon preference of Escherichia coli genes. Recombinant cystatin C was expressed as a fusion with a peptide-tag, 4AaCter, which facilitates formation of protein inclusion bodies in E. coli cells. Fusion with 4AaCter-tag dramatically increased the production level of cystatin C, and highly purified protein was obtained without the need for complicated purification steps. The purity and yield of the final product was estimated as 87 ± 5% and 7.1 ± 1.1 mg/l culture, respectively. The recombinant cystatin C prepared by our method was as reactive against anti-cystatin C antibodies as native human cystatin C. Our results suggest that protein production systems using 4AaCter-tag could be a powerful means of preparing significant amounts of antigen protein.

  11. Bactericidal properties of the antimicrobial peptide Ib-AMP4 from Impatiens balsamina produced as a recombinant fusion-protein in Escherichia coli.

    PubMed

    Fan, Xiaobo; Schäfer, Holger; Reichling, Jürgen; Wink, Michael

    2013-10-01

    Antimicrobial peptides (AMPs) represent a novel class of powerful natural antimicrobial agents. As AMPs are bactericidal, production of AMPs in recombinant bacteria is far from trivial. We report the production of Impatiens balsamina antimicrobial peptide 4 (Ib-AMP4, originally isolated from Impatiens balsamina) in Escherichia coli as a fusion protein and investigate Ib-AMP4's antimicrobial effects on human pathogens. A plasmid vector pET32a-Trx-Ib-AMP4 was constructed and transferred into E. coli. After induction, a soluble fusion protein was expressed successfully. The Ib-AMP4 peptide was obtained with a purity of over 90% after nickel affinity chromatography, ultrafiltration, enterokinase cleavage and sephadex size exclusion chromatography. For maximum activity, Ib-AMP4, which possesses two disulfide bonds, required activation with 5 μg/mL H2 O2 . Antimicrobial assays showed that Ib-AMP4 could efficiently target clinical multiresistant isolates including methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing E. coli. Time kill experiments revealed that Ib-AMP4 is bactericidal within 10 min after application. Haemolysis and cytotoxicity assays implied selectivity towards bacteria, an important prerequisite for clinical applications. Ib-AMP4 might be an interesting candidate for clinical studies involving patients with septicemia or for coating clinical devices, such as catheters. The method described here may be applicable for expression and purification of other AMPs with multiple disulfide bridges.

  12. Calreticulin Mutations in Myeloproliferative Neoplasms: Comparison of Three Diagnostic Methods

    PubMed Central

    Park, Ji-Hye; Sevin, Margaux; Ramla, Selim; Truffot, Aurélie; Verrier, Tiffany; Bouchot, Dominique; Courtois, Martine; Bas, Mathilde; Benali, Sonia; Bailly, François; Favre, Bernardine; Guy, Julien; Martin, Laurent; Maynadié, Marc; Carillo, Serge; Girodon, François

    2015-01-01

    Calreticulin (CALR) mutations have recently been reported in 70–84% of JAK2V617F-negative myeloproliferative neoplasms (MPN), and this detection has become necessary to improve the diagnosis of MPN. In a large single-centre cohort of 298 patients suffering from Essential Thrombocythemia (ET), the JAK2V617F, CALR and MPL mutations were noted in 179 (60%), 56 (18.5%) and 13 (4.5%) respectively. For the detection of the CALR mutations, three methods were compared in parallel: high-resolution melting-curve analysis (HRM), product-sizing analysis and Sanger sequencing. The sensitivity for the HRM, product-sizing analysis and Sanger sequencing was 96.4%, 98.2% and 89.3% respectively, whereas the specificity was 96.3%, 100% and 100%. In our cohort, the product-sizing analysis was the most sensitive method and was the easiest to interpret, while the HRM was sometimes difficult to interpret. In contrast, when large series of samples were tested, HRM provided results more quickly than did the other methods, which required more time. Finally, the sequencing method, which is the reference method, had the lowest sensitivity but can be used to describe the type of mutation precisely. Altogether, our results suggest that in routine laboratory practice, product-sizing analysis is globally similar to HRM for the detection of CALR mutations, and that both may be used as first-line screening tests. If the results are positive, Sanger sequencing can be used to confirm the mutation and to determine its type. Product-sizing analysis provides sensitive and specific results, moreover, with the quantitative measurement of CALR, which might be useful to monitor specific treatments. PMID:26501981

  13. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide.

    PubMed

    Yang, Guilian; Yao, Jiayun; Yang, Wentao; Jiang, Yanlong; Du, Jinfen; Huang, Haibin; Gu, Wei; Hu, Jingtao; Ye, Liping; Shi, Chunwei; Shan, Baolong; Wang, Chunfeng

    2017-03-15

    The coccidiosis caused by Eimeria tenella (coccidian) and other species is a serious parasitic disease that affects the global poultry breeding industry. Lactobacillus strains exhibit a number of properties that make them attractive candidates as delivery vehicles for presentation to the mucosa of compounds with pharmaceutical interest, particularly vaccines. Here, the recombinant Lactobacillus plantarum (co-expressing SO7 and DCpep gene) was constructed, and its efficacy against E. tenella challenge was evaluated in this study. Broiler chickens were orally immunized with live recombinant L. plantarum NC8-pSIP409-SO7-DCpep for two weeks and were then challenged with 5×10(4)E.tenella sporulated oocysts per chicken. During the experiment, body weight gains, cecum lesion scores, fecal oocyst shedding and antibody responses in serum and intestinal washes were assessed as measures of protective immunity. The results indicated that chickens immunized with live recombinant L. plantarum can increase body weight gains and serum antibody responses compared to the control groups. Meanwhile, fecal oocyst shedding in the immunized group was significantly reduced (p<0.01). Moreover, recombinant L. plantarum can significantly relieve pathological damage in cecum, according to lesion scores and histopathologic cecum sections (p<0.01). Therefore, these results indicate that recombinant L. plantarum NC8-pSIP409-SO7-DCpep could become a promising oral vaccine candidate against E. tenella infection.

  14. Recombinant Adenovirus Delivery of Calreticulin–ESAT-6 Produces an Antigen-Specific Immune Response but no Protection Against a Mycobacterium Tuberculosis Challenge

    PubMed Central

    Esparza-González, S. C.; Troy, A.; Troudt, J.; Loera-Arias, M. J.; Villatoro-Hernández, J.; Torres-López, E.; Ancer-Rodríguez, J.; Gutiérrez-Puente, Y.; Muñoz-Maldonado, G.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.; Izzo, A.

    2015-01-01

    Bacillus Calmette–Guerin (BCG) has failed to efficaciously control the worldwide spread of the disease. New vaccine development targets virulence antigens of Mycobacterium tuberculosis that are deleted in Mycobacterium bovis BCG. Immunization with ESAT-6 and CFP10 provides protection against M. tuberculosis in a murine infection model. Further, previous studies have shown that calreticulin increases the cell-mediated immune responses to antigens. Therefore, to test whether calreticulin enhances the immune response against M. tuberculosis antigens, we fused ESAT-6 to calreticulin and constructed a recombinant replication-deficient adenovirus to express the resulting fusion protein (AdCRT–ESAT-6). The adjuvant effect of calreticulin was assayed by measuring cytokine responses specific to ESAT-6. Recombinant adenovirus expressing the fusion protein produced higher levels of interferon-γ and tumour necrosis factor-α in response to ESAT-6. This immune response was not improved by the addition of CFP-10 to the CRT-ESAT-6 fusion protein (AdCRT–ESAT-6–CFP10). Mice immunized with these recombinant adenoviruses did not decrease the mycobacterial burden after low-dose aerosol infection with M. tuberculosis. We conclude that calreticulin can be used as an adjuvant to enhance the immune response against mycobacterial antigens, but it is not enough to protect against tuberculosis. PMID:22010821

  15. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping.

    PubMed

    Bongers, Jacob; Devincentis, John; Fu, Jinmei; Huang, Peiqing; Kirkley, David H; Leister, Kirk; Liu, Peiran; Ludwig, Richard; Rumney, Kathleen; Tao, Li; Wu, Wei; Russell, Reb J

    2011-11-11

    Liquid chromatography mass spectrometry (LC-MS) peptide mapping can be a versatile technique for characterizing protein glycosylation sites without the need to remove the attached glycans as in conventional oligosaccharide mapping methods. In this way, both N-linked and O-linked sites of glycosylation can each be directly identified, characterized, and quantified by LC-MS as intact glycopeptides in a single experiment. LC-MS peptide mapping of the individual glycosylation sites avoids many of the limitations of preparing and analyzing an entire pool of released N-linked oligosaccharides from all sites mixed together. In this study, LC interfaced to a linear ion trap mass spectrometer (ESI-LIT-MS) were used to characterize the glycosylation of a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein with multiple sites of N-and O-glycosylation. Samples were reduced, S-carboxyamidomethylated, and cleaved with either trypsin or endoproteinase Asp-N. Enhanced detection for minor IgG1 glycoforms (∼0.1 to 1.0 mol% level) was obtained by LC-MS of the longer 32-residue Asp-N glycopeptide (4+ protonated ion) compared to the 9-residue tryptic glycopeptide (2+ ion). LC-MS peptide mapping was run according to a general procedure: (1) Locate N-linked and/or O-linked sites of glycosylation by selected-ion-monitoring of carbohydrate oxonium fragment ions generated by ESI in-source collision-induced dissociation (CID), i.e. 204, 366, and 292 Da marker ions for HexNAc, HexNAc-Hex, and NeuAc, respectively; (2) Characterize oligosaccharides at each site via MS and MSMS. Use selected ion currents (SIC) to estimate relative amounts of each glycoform; and (3) Measure the percentage of site-occupancy by searching for any corresponding nonglycosylated peptide. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. [Heterogeneity of canine immune responses to Borrelia burgdorferi in a line immunoassay comprising recombinant VlsE and C6 peptide].

    PubMed

    Breu, Doris; Müller, Elisabeth

    2017-09-13

    The study aimed to investigate the distribution of specific immune responses (IgG) to Borrelia burgdorferi using a line immunoassay with recombinant VlsE (variable major protein-like sequence, expressed) protein and synthetic C peptide among other antigens. We compared the immune responses to VlsE protein and C6 peptide, because both antigens have been considered specific for a Borrelia infection. A total of 1355 blood samples from dogs suspected of Borrelia infection were analysed. The line immunoassay employed nine antigens. A total of 64.4% of all samples tested negative, 16.4% were positive for an infection and 17.4% were positive for vaccination. Band patterns specific for both infection and vaccination were observed in 1.2% of the dogs. The bands that most frequently tested positive were p100 (24.3%), p31/OspA (18.5%), C6 (16.3%) and VlsE (13.9%). A total of 236 dogs (17.4% of the population) had antibodies to VlsE and/or C6 peptide. In 73.3% of these dogs, results for VlsE and C6 peptide were consistent, whereas this was not the case for 26.7% of these animals. Testing using a line immunoassay allows for qualitative analyses of different immune responses to various antigens used as probes. In our study, >  26% of the dogs displayed discrepant results with regard to VlsE and C6, the two antigens considered specific for Borrelia burgdorferi infection. To confirm or rule out infection, the results of several band patterns, thought to be specific for infection, need to be taken into consideration.

  17. A comparative proteomic study identified calreticulin and prohibitin up-regulated in adrenocortical carcinomas

    PubMed Central

    2013-01-01

    Background Identifying novel tumor biomarkers to develop more effective diagnostic and therapeutic strategies for patients with ACC is urgently needed. The aim of the study was to compare the proteomic profiles between adrenocortical carcinomas (ACC) and normal adrenocortical tissues in order to identify novel potential biomarkers for ACC. Methods The protein samples from 12 ACC tissues and their paired adjacent normal adrenocortical tissues were profiled with two-dimensional electrophoresis; and differentially expressed proteins were identified by mass spectrometry. Expression patterns of three differently expressed proteins calreticulin, prohibitin and HSP60 in ACC, adrenocortical adenomas (ACA) and normal adrenocortical tissues were further validated by immunohistochemistry. Results In our proteomic study, we identified 20 up-regulated and 9 down-regulated proteins in ACC tissues compared with paired normal controls. Most of the up-regulated proteins were focused in protein binding and oxidoreductase activity in Gene Ontology (GO) molecular function classification. By immunohistochemistry, two biomarkers calreticulin and prohibitin were validated to be overexpressed in ACC compared with adrenocortical adenomas (ACA) and normal tissues, but also calreticulin overexpression was significantly associated with tumor stages of ACC. Conclusion For the first time, calreticulin and prohibitin were identified to be novel candidate biomarkers for ACC, and their roles during ACC carcinogenesis and clinical significance deserves further investigation. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1897372598927465 PMID:23587357

  18. Transient dissociation of polyribosomes and concurrent recruitment of calreticulin and calmodulin transcripts in gravistimulated maize pulvini

    NASA Technical Reports Server (NTRS)

    Heilmann, I.; Shin, J.; Huang, J.; Perera, I. Y.; Davies, E.

    2001-01-01

    The dynamics of polyribosome abundance were studied in gravistimulated maize (Zea mays) stem pulvini. During the initial 15 min of gravistimulation, the amount of large polyribosomes transiently decreased. The transient decrease in polyribosome levels was accompanied by a transient decrease in polyribosome-associated mRNA. After 30 min of gravistimulation, the levels of polyribosomes and the amount of polyribosome-associated mRNA gradually increased over 24 h up to 3- to 4-fold of the initial value. Within 15 min of gravistimulation, total levels of transcripts coding for calreticulin and calmodulin were elevated 5-fold in maize pulvinus total RNA. Transcripts coding for calreticulin and calmodulin were recruited into polyribosomes within 15 min of gravistimulation. Over 4 h of gravistimulation, a gradual increase in the association of calreticulin and calmodulin transcripts with polyribosomes was seen predominantly in the lower one-half of the maize pulvinus; the association of transcripts for vacuolar invertase with polyribosomes did not change over this period. Our results suggest that within 15 min of gravistimulation, the translation of the majority of transcripts associated with polyribosomes decreased, resembling a general stress response. Recruitment of calreticulin and calmodulin transcripts into polyribosomes occurred predominantly in the lower pulvinus one-half during the first 4 h when the presentation time for gravistimulation in the maize pulvinus is not yet complete.

  19. Transient dissociation of polyribosomes and concurrent recruitment of calreticulin and calmodulin transcripts in gravistimulated maize pulvini

    NASA Technical Reports Server (NTRS)

    Heilmann, I.; Shin, J.; Huang, J.; Perera, I. Y.; Davies, E.

    2001-01-01

    The dynamics of polyribosome abundance were studied in gravistimulated maize (Zea mays) stem pulvini. During the initial 15 min of gravistimulation, the amount of large polyribosomes transiently decreased. The transient decrease in polyribosome levels was accompanied by a transient decrease in polyribosome-associated mRNA. After 30 min of gravistimulation, the levels of polyribosomes and the amount of polyribosome-associated mRNA gradually increased over 24 h up to 3- to 4-fold of the initial value. Within 15 min of gravistimulation, total levels of transcripts coding for calreticulin and calmodulin were elevated 5-fold in maize pulvinus total RNA. Transcripts coding for calreticulin and calmodulin were recruited into polyribosomes within 15 min of gravistimulation. Over 4 h of gravistimulation, a gradual increase in the association of calreticulin and calmodulin transcripts with polyribosomes was seen predominantly in the lower one-half of the maize pulvinus; the association of transcripts for vacuolar invertase with polyribosomes did not change over this period. Our results suggest that within 15 min of gravistimulation, the translation of the majority of transcripts associated with polyribosomes decreased, resembling a general stress response. Recruitment of calreticulin and calmodulin transcripts into polyribosomes occurred predominantly in the lower pulvinus one-half during the first 4 h when the presentation time for gravistimulation in the maize pulvinus is not yet complete.

  20. Transient dissociation of polyribosomes and concurrent recruitment of calreticulin and calmodulin transcripts in gravistimulated maize pulvini.

    PubMed

    Heilmann, I; Shin, J; Huang, J; Perera, I Y; Davies, E

    2001-11-01

    The dynamics of polyribosome abundance were studied in gravistimulated maize (Zea mays) stem pulvini. During the initial 15 min of gravistimulation, the amount of large polyribosomes transiently decreased. The transient decrease in polyribosome levels was accompanied by a transient decrease in polyribosome-associated mRNA. After 30 min of gravistimulation, the levels of polyribosomes and the amount of polyribosome-associated mRNA gradually increased over 24 h up to 3- to 4-fold of the initial value. Within 15 min of gravistimulation, total levels of transcripts coding for calreticulin and calmodulin were elevated 5-fold in maize pulvinus total RNA. Transcripts coding for calreticulin and calmodulin were recruited into polyribosomes within 15 min of gravistimulation. Over 4 h of gravistimulation, a gradual increase in the association of calreticulin and calmodulin transcripts with polyribosomes was seen predominantly in the lower one-half of the maize pulvinus; the association of transcripts for vacuolar invertase with polyribosomes did not change over this period. Our results suggest that within 15 min of gravistimulation, the translation of the majority of transcripts associated with polyribosomes decreased, resembling a general stress response. Recruitment of calreticulin and calmodulin transcripts into polyribosomes occurred predominantly in the lower pulvinus one-half during the first 4 h when the presentation time for gravistimulation in the maize pulvinus is not yet complete.

  1. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides

    PubMed Central

    Hoarau, Marie; Hureau, Christelle; Faller, Peter; Gras, Emmanuel; André, Isabelle; Remaud-Siméon, Magali

    2016-01-01

    An improved production and purification method for Alzheimer’s disease related methionine-modified amyloid-β 1–40 and 1–42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloid-β peptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies. PMID:27532547

  2. Genotoxicity induced by Taenia solium and its reduction by immunization with calreticulin in a hamster model of taeniosis.

    PubMed

    Salazar, Ana María; Mendlovic, Fela; Cruz-Rivera, Mayra; Chávez-Talavera, Oscar; Sordo, Monserrat; Avila, Guillermina; Flisser, Ana; Ostrosky-Wegman, Patricia

    2013-06-01

    Genotoxicity induced by neurocysticercosis has been demonstrated in vitro and in vivo in humans. The adult stage of Taenia solium lodges in the small intestine and is the main risk factor to acquire neurocysticercosis, nevertheless its carcinogenic potential has not been evaluated. In this study, we determined the genotoxic effect of T. solium infection in the hamster model of taeniosis. In addition, we assessed the effect of oral immunization with recombinant T. solium calreticulin (rTsCRT) plus cholera toxin as adjuvant on micronuclei induction, as this protein has been shown to induce 33-44% protection in the hamster model of taeniosis. Blood samples were collected from the orbital venous plexus of noninfected and infected hamsters at different days postinfection, as well as from orally immunized animals, to evaluate the frequency of micronucleated reticulocytes as a measure of genotoxicity induced by parasite exposure and rTsCRT vaccination. Our results indicate that infection with T. solium caused time-dependent DNA damage in vivo and that rTsCRT immunization reduced the genotoxic damage induced by the presence of the tapeworms.

  3. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis)

    PubMed Central

    Huang, Ying; Hui, Kaimin; Jin, Min; Yin, Shaowu; Wang, Wen; Ren, Qian

    2016-01-01

    Calnexin (Cnx) and calreticulin (Crt), which are important chaperones in the endoplasmic reticulum (ER), participate in the folding and quality control of client proteins. Cnx and Crt identified from Chinese mitten crab (Eriocheir sinensis) are designated as EsCnx and EsCrt, respectively. EsCnx and EsCrt are expressed in the hemocyte, hepatopancrea, gill, and intestine at the mRNA and protein level. Immunofluorescence analysis indicated that EsCnx and EsCRT are located in the ER. Moreover, the mRNA and protein expression levels of EsCnx and EsCrt were altered by challenge with lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, and Vibrio parahaemolyticus. Recombinant EsCnx and EsCrt (rEsCnx and rEsCrt, respectively) proteins can bind to various Gram-positive and Gram-negative bacteria, as well as to different polysaccharides (LPS and PGN). rEsCnx and rEsCrt assisted in the clearance of V. parahaemolyticus in vivo, and the clearance efficiency was impaired after silencing of EsCnx and EsCrt. Our results suggest that the two ER proteins are involved in anti-bacterial immunity in E. sinensis. PMID:27279413

  4. Immunological mechanisms involved in the protection against intestinal taeniosis elicited by oral immunization with Taenia solium calreticulin.

    PubMed

    Leon-Cabrera, Sonia; Cruz-Rivera, Mayra; Mendlovic, Fela; Romero-Valdovinos, Mirza; Vaughan, Gilberto; Salazar, Ana María; Avila, Guillermina; Flisser, Ana

    2012-11-01

    Oral immunization with functional recombinant Taenia solium calreticulin (rTsCRT) induces 37% reduction in tapeworm burden in the experimental model of intestinal taeniosis in hamsters. Furthermore, tapeworms recovered from vaccinated animals exhibit diminished length, being frequently found in more posterior parts of the small intestine. The aim of this study was to analyze the immunological mechanisms involved in protection in response to rTsCRT oral immunization. Hamsters were orally immunized with rTsCRT using cholera toxin (CT) as adjuvant, weekly for 4 weeks. Fifteen days after the last boost animals were challenged with four T. solium cysticerci. Reduction in the adult worm recovery and increased transcription of mRNA for IL-4 and IFN-γ in the mucosa of rTsCRT+CT immunized animals were observed. Immunization also induced goblet cell hyperplasia in the mucosa surrounding the implantation site of the parasite. Specific IgG and IgA antibodies in serum and fecal supernatants were detected after the second immunization, being more pronounced after challenge. Our data suggest that oral vaccination with rTsCRT+CT regulates a local expression of IL-4 and IFN-γ, stimulating secretion of IgA that, together with the increase of goblet cells and mucin production, could result in an unfavorable environment for T. solium promoting an impaired tapeworm development.

  5. Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition.

    PubMed

    Antunes, Sandra; Merino, Octávio; Lérias, Joana; Domingues, Nuno; Mosqueda, Juan; de la Fuente, José; Domingos, Ana

    2015-02-01

    Ticks are obligate haematophagous ectoparasites considered the principal vectors of disease among animals. Rhipicephalus microplus and R. annulatus ticks are the most important vectors for Babesia bigemina and B. bovis, two of the most important intraerythrocytic protozoan parasites species in cattle, responsible for babesiosis which together with anaplasmosis account for substantial economic losses in the livestock industry worldwide. Anti-tick vaccines are a proved alternative to traditional tick and tick borne diseases control methods but are still limited primarily due to the lack of effective antigens. Subsequently to the identification of antigens the validation is a laborious work often expensive. Tick artificial feeding, is a low cost alternative to test antigens allowing achieving critical data. Herein, R. microplus females were successfully artificially fed using capillary tubes. Calreticulin (CRT) protein, which in a previous study has been identified as being involved in B. bigemina infection in R. annulatus ticks, was expressed as recombinant protein (rCRT) in an E. coli expression system and antibodies raised against rCRT. Anti-rCRT serum was supplemented to a blood meal, offered to partially engorged R. microplus females and their effect in feeding process as well as infection by B. bigemina was analyzed. No significant reductions in tick and egg weight were observed when ticks fed with anti-rCRT serum. Furthermore, B. bigemina infection levels did not show a statistically significant decrease when ticks fed with anti-rCRT antibodies. Results suggest that CRT is not a suitable candidate for cattle vaccination trials.

  6. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Subramaniyam Ramesh, Bala; Giorgakis, Emmanouil; Lopez-Davila, Victor; Kamali Dashtarzheneha, Ashkan; Loizidou, Marilena

    2016-07-01

    Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800-850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.

  7. The Interaction of Classical Complement Component C1 with Parasite and Host Calreticulin Mediates Trypanosoma cruzi Infection of Human Placenta

    PubMed Central

    Castillo, Christian; Ramírez, Galia; Valck, Carolina; Aguilar, Lorena; Maldonado, Ismael; Rosas, Carlos; Galanti, Norbel; Kemmerling, Ulrike; Ferreira, Arturo

    2013-01-01

    Background 9 million people are infected with Trypanosoma cruzi in Latin America, plus more than 300,000 in the United States, Canada, Europe, Australia, and Japan. Approximately 30% of infected individuals develop circulatory or digestive pathology. While in underdeveloped countries transmission is mainly through hematophagous arthropods, transplacental infection prevails in developed ones. Methodology/Principal Findings During infection, T. cruzi calreticulin (TcCRT) translocates from the endoplasmic reticulum to the area of flagellum emergence. There, TcCRT acts as virulence factor since it binds maternal classical complement component C1q that recognizes human calreticulin (HuCRT) in placenta, with increased parasite infectivity. As measured ex vivo by quantitative PCR in human placenta chorionic villi explants (HPCVE) (the closest available correlate of human congenital T. cruzi infection), C1q mediated up to a 3–5-fold increase in parasite load. Because anti-TcCRT and anti-HuCRT F(ab′)2 antibody fragments are devoid of their Fc-dependent capacity to recruit C1q, they reverted the C1q-mediated increase in parasite load by respectively preventing its interaction with cell-bound CRTs from both parasite and HPCVE origins. The use of competing fluid-phase recombinant HuCRT and F(ab′)2 antibody fragments anti-TcCRT corroborated this. These results are consistent with a high expression of fetal CRT on placental free chorionic villi. Increased C1q-mediated infection is paralleled by placental tissue damage, as evidenced by histopathology, a damage that is ameliorated by anti-TcCRT F(ab′)2 antibody fragments or fluid-phase HuCRT. Conclusions/Significance T. cruzi infection of HPCVE is importantly mediated by human and parasite CRTs and C1q. Most likely, C1q bridges CRT on the parasite surface with its receptor orthologue on human placental cells, thus facilitating the first encounter between the parasite and the fetal derived placental tissue. The results

  8. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain

    SciTech Connect

    Wiedermann, C.J.

    1989-02-01

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behavior in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level.

  9. A nano particle vector comprised of poly lactic-co-glycolic acid and monophosphoryl lipid A and recombinant Mycobacterium avium subsp paratuberculosis peptides stimulate a pro-immune profile in bovine macrophages

    USDA-ARS?s Scientific Manuscript database

    Current research and development of antigens for vaccination often center on purified recombinant proteins, viral vectored subunits, and synthetic peptides, most of which suffer from poor immunogenicity and are subject to degradation. For these reasons, efficient delivery systems and potent immunost...

  10. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection?

    PubMed

    Abello-Cáceres, Paula; Pizarro-Bauerle, Javier; Rosas, Carlos; Maldonado, Ismael; Aguilar-Guzmán, Lorena; González, Carlos; Ramírez, Galia; Ferreira, Jorge; Ferreira, Arturo

    2016-09-13

    For several decades now an antagonism between Trypanosoma cruzi infection and tumor development has been detected. The molecular basis of this phenomenon remained basically unknown until our proposal that T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum-resident chaperone, translocated-externalized by the parasite, may mediate at least an important part of this effect. Thus, recombinant TcCRT (rTcCRT) has important in vivo antiangiogenic and antitumor activities. However, the relevant question whether the in vivo antitumor effect of T. cruzi infection is indeed mediated by the native chaperone (nTcCRT), remains open. Herein, by using specific modified anti-rTcCRT antibodies (Abs), we have neutralized the antitumor activity of T. cruzi infection and extracts thereof, thus identifying nTcCRT as a valid mediator of this effect. Polyclonal anti-rTcCRT F(ab')2 Ab fragments were used to reverse the capacity of rTcCRT to inhibit EAhy926 endothelial cell (EC) proliferation, as detected by BrdU uptake. Using these F(ab')2 fragments, we also challenged the capacity of nTcCRT, during T. cruzi infection, to inhibit the growth of an aggressive mammary adenocarcinoma cell line (TA3-MTXR) in mice. Moreover, we determined the capacity of anti-rTcCRT Abs to reverse the antitumor effect of an epimastigote extract (EE). Finally, the effects of these treatments on tumor histology were evaluated. The rTcCRT capacity to inhibit ECs proliferation was reversed by anti-rTcCRT F(ab')2 Ab fragments, thus defining them as valid probes to interfere in vivo with this important TcCRT function. Consequently, during infection, these Ab fragments also reversed the in vivo experimental mammary tumor growth. Moreover, anti-rTcCRT Abs also neutralized the antitumor effect of an EE, again identifying the chaperone protein as an important mediator of this anti mammary tumor effect. Finally, as determined by conventional histological parameters, in infected animals and in those treated with EE

  11. Human Survivin and Trypanosoma cruzi Calreticulin Act in Synergy against a Murine Melanoma In Vivo

    PubMed Central

    Aguilar-Guzmán, Lorena; Lobos-González, Lorena; Rosas, Carlos; Vallejos, Gerardo; Falcón, Cristián; Sosoniuk, Eduardo; Coddou, Francisca; Leyton, Lisette; Lemus, David; Quest, Andrew F. G.; Ferreira, Arturo

    2014-01-01

    Immune-based anti-tumor or anti-angiogenic therapies hold considerable promise for the treatment of cancer. The first approach seeks to activate tumor antigen-specific T lymphocytes while, the second, delays tumor growth by interfering with blood supply. Tumor Associated Antigens are often employed to target tumors with therapeutic drugs, but some are also essential for tumor viability. Survivin (Surv) is a member of the inhibitor of apoptosis protein family that is considered a Tumor Associated Antigen important for cancer cell viability and proliferation. On the other hand, Trypanosoma cruzi (the agent of Chagas’ disease) calreticulin (TcCRT) displays remarkable anti-angiogenic properties. Because these molecules are associated with different tumor targets, we reasoned that immunization with a Surv-encoding plasmid (pSurv) and concomitant TcCRT administration should generate a stronger anti-tumor response than application of either treatment separately. To evaluate this possibility, C57BL/6 mice were immunized with pSurv and challenged with an isogenic melanoma cell line that had been pre-incubated with recombinant TcCRT (rTcCRT). Following tumor cell inoculation, mice were injected with additional doses of rTcCRT. For the combined regimen we observed in mice that: i). Tumor growth was impaired, ii). Humoral anti-rTcCRT immunity was induced and, iii). In vitro rTcCRT bound to melanocytes, thereby promoting the incorporation of human C1q and subsequent macrophage phagocytosis of tumor cells. These observations are interpreted to reflect the consequence of the following sequence of events: rTcCRT anti-angiogenic activity leads to stress in tumor cells. Murine CRT is then translocated to the external membrane where, together with rTcCRT, complement C1 is captured, thus promoting tumor phagocytosis. Presentation of the Tumor Associated Antigen Surv induces the adaptive anti-tumor immunity and, independently, mediates anti-endothelial cell immunity leading to an

  12. Human survivin and Trypanosoma cruzi calreticulin act in synergy against a murine melanoma in vivo.

    PubMed

    Aguilar-Guzmán, Lorena; Lobos-González, Lorena; Rosas, Carlos; Vallejos, Gerardo; Falcón, Cristián; Sosoniuk, Eduardo; Coddou, Francisca; Leyton, Lisette; Lemus, David; Quest, Andrew F G; Ferreira, Arturo

    2014-01-01

    Immune-based anti-tumor or anti-angiogenic therapies hold considerable promise for the treatment of cancer. The first approach seeks to activate tumor antigen-specific T lymphocytes while, the second, delays tumor growth by interfering with blood supply. Tumor Associated Antigens are often employed to target tumors with therapeutic drugs, but some are also essential for tumor viability. Survivin (Surv) is a member of the inhibitor of apoptosis protein family that is considered a Tumor Associated Antigen important for cancer cell viability and proliferation. On the other hand, Trypanosoma cruzi (the agent of Chagas' disease) calreticulin (TcCRT) displays remarkable anti-angiogenic properties. Because these molecules are associated with different tumor targets, we reasoned that immunization with a Surv-encoding plasmid (pSurv) and concomitant TcCRT administration should generate a stronger anti-tumor response than application of either treatment separately. To evaluate this possibility, C57BL/6 mice were immunized with pSurv and challenged with an isogenic melanoma cell line that had been pre-incubated with recombinant TcCRT (rTcCRT). Following tumor cell inoculation, mice were injected with additional doses of rTcCRT. For the combined regimen we observed in mice that: i). Tumor growth was impaired, ii). Humoral anti-rTcCRT immunity was induced and, iii). In vitro rTcCRT bound to melanocytes, thereby promoting the incorporation of human C1q and subsequent macrophage phagocytosis of tumor cells. These observations are interpreted to reflect the consequence of the following sequence of events: rTcCRT anti-angiogenic activity leads to stress in tumor cells. Murine CRT is then translocated to the external membrane where, together with rTcCRT, complement C1 is captured, thus promoting tumor phagocytosis. Presentation of the Tumor Associated Antigen Surv induces the adaptive anti-tumor immunity and, independently, mediates anti-endothelial cell immunity leading to an

  13. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination

    PubMed Central

    2013-01-01

    Background Calreticulin (CRT) is a chaperone protein, which aids correct folding of glycosylated proteins in the endoplasmic reticulum (ER). Under conditions of ER stress, CRT is upregulated and may be displayed on the surface of cells or be secreted. This ‘ecto-CRT’ may activate the innate immune response or it may aid clearance of apoptotic cells. Our and other studies have demonstrated upregulation of ER stress markers CHOP, BiP, ATF4, XBP1 and phosphorylated e-IF2 alpha (p-eIF2 alpha) in biopsy and post-mortem human multiple sclerosis (MS) samples. We extend this work by analysing changes in expression of CRT, BiP, CHOP, XBP1 and p-eIF2 alpha in a rat model of inflammatory demyelination. Demyelination was induced in the spinal cord by intradermal injection of recombinant mouse MOG mixed with incomplete Freund’s adjuvant (IFA) at the base of the tail. Tissue samples were analysed by semi-quantitative scoring of immunohistochemically stained frozen tissue sections. Data generated following sampling of tissue from animals with spinal cord lesions, was compared to that obtained using tissue derived from IFA- or saline-injected controls. CRT present in rat serum and in a cohort of human serum derived from 14 multiple sclerosis patients and 11 healthy controls was measured by ELISA. Results Stained tissue scores revealed significantly (p<0.05) increased amounts of CRT, CHOP and p-eIF2 alpha in the lesion, lesion edge and normal-appearing white matter when compared to controls. CHOP and p-eIF2 alpha were also significantly raised in regions of grey matter and the central canal (p<0.05). Immunofluorescent dual-label staining confirmed expression of these markers in astrocytes, microglia or neurons. Dual staining of rat and human spinal cord lesions with Oil Red O and CRT antibody showed co-localisation of CRT with the rim of myelin fragments. ELISA testing of sera from control and EAE rats demonstrated significant down-regulation (p<0.05) of CRT in the serum of

  14. Construction and immunogenicity of a recombinant swinepox virus expressing a multi-epitope peptide for porcine reproductive and respiratory syndrome virus

    PubMed Central

    Lin, Huixing; Ma, Zhe; Hou, Xin; Chen, Lei; Fan, Hongjie

    2017-01-01

    To characterize neutralizing mimotopes, phages were selected from a 12-mer phage display library using three anti-porcine reproductive and respiratory syndrome virus (PRRSV) neutralizing monoclonal antibodies: (1) A1; (2) A2; and (3) A7. Of these, A2 and A7 recognize the mimotope, P2, which contains the SRHDHIH motif, which has conserved consensus sequences from amino acid positions 156 to 161 in the N-terminal ectodomain of GP3. The artificial multi-epitope gene, mp2, was designed by combining three repeats of the mimotope P2. The resulting sequence was inserted into the swinepox virus (SPV) genome to construct a recombinant swinepox virus (rSPV-mp2). The rSPV-mp2 was able to stably express the multi-epitope peptide, mP2, in vitro. The rSPV-mp2 immunized pigs exhibited a significantly shorter fever duration compared with the wtSPV treated group (P < 0.05). There was an enhanced humoral and cellular immune response, decreased number of PRRSV genomic copies, and a significant reduction in the gross lung pathology (P < 0.05) was observed following PRRSV infection in rSPV-mp2-immunized animals. The results suggest that the recombinant rSPV-mp2 provided pigs with significant protection against PRRSV infection. PMID:28272485

  15. Recombinant adeno-associated virus expressing a p53-derived apoptotic peptide (37AA) inhibits HCC cells growth in vitro and in vivo.

    PubMed

    Zhang, Hongyong; Wang, Yufeng; Bai, Yanxia; Shao, Yuan; Bai, Jigang; Ma, Zhenhua; Liu, Qingguang; Wu, Shengli

    2017-02-06

    Recent studies have confirmed that a p53-derived apoptotic peptide (37AA) could act as a tumor suppressor inducing apoptosis in multiple tumor cells through derepressing p73. However, the tumor suppressive effects of recombinant adeno-associated virus (rAAV) expressing 37AA on HCC cells are still unknown. In this study, we successfully constructed a recombinant rAAV expressing 37AA. In vitro and in vivo assays showed that transfection of NT4-37AA/rAAV in HCC cells strongly suppressed cell proliferation, induced apoptosis, and up-regulated the cellular expression of p73. NT4-37AA/rAAV transfection markedly slowed Huh-7 xenografted tumor growth in murine. Pretreatment of HCC cells with p73 siRNA abrogated these effects of NT4-37AA/rAAV. Furthermore, we found that expression of p73 was upregulated and the formation of P73/iASSP complex was prevented when 37AA was introduced into HCC cells. Taken together, these results indicate that introduction of 37AA into HCC cells with a rAAV vector may lead to the development of broadly applicable agents for the treatment of HCC, and the mechanism may, at least in part, be associated with the upregulation of p73 expression and reduced level of P73/iASSP complex.

  16. Effect of culture conditions and signal peptide on production of human recombinant N-acetylgalactosamine-6-sulfate sulfatase in Escherichia coli BL21.

    PubMed

    Hernández, Alejandra; Velásquez, Olga; Leonardi, Felice; Soto, Carlos; Rodríguez, Alexander; Lizaraso, Lina; Mosquera, Ángela; Bohórquez, Jorge; Coronado, Alejandra; Espejo, Ángela; Sierra, Rocio; Sánchez, Oscar F; Alméciga-Díaz, Carlos J; Barrera, Luis A

    2013-05-01

    The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.

  17. Single-step purification of recombinant proteins using elastin-like peptide-mediated inverse transition cycling and self-processing module from Neisseria meningitides FrpC.

    PubMed

    Liu, Wen-Jun; Wu, Qian; Xu, Bi; Zhang, Xin-Yu; Xia, Xiao-Li; Sun, Huai-Chang

    2014-06-01

    Purification of recombinant proteins is a major task and challenge in biotechnology and medicine. In this paper we report a novel single-step recombinant protein purification system which was based on elastin-like peptide (ELP)-mediated reversible phase transition and FrpC self-processing module (SPM)-mediated cleavage. After construction of a SPM-ELP fusion expression vector, we cloned the coding sequence for green fluorescent protein (GFP), the Fc portion of porcine IgG (pFc) or human β defensin 3 (HBD3) into the vector, transformed the construct into Escherichia coli, and induced the fusion protein expression with IPTG. The target-SPM-ELP fusion proteins GFP-SPM-ELP, Fc-SPM-ELP and HBD3-SPM-ELP were expressed in a soluble form and efficiently purified from the clarified cell extracts by two rounds of inverse transition cycling (ITC). Under the optimized conditions, the SPM-mediated cleavage efficiencies for the three fusion proteins ranged from 92% to 93%. After an additional round of ITC, the target proteins GFP, pFc and HBD3 were recovered with purities ranging from 90% to 100% and yields ranging from 1.1 to 36mg/L in shake flasks. The endotoxin levels in all of the three target proteins were <0.03EU/mg. The three target proteins were functionally active with the expected molecular weights. These experimental results confirmed the high specificity and efficiency of SPM-mediated cleavage, and suggested the applicability of SPM-ELP fusion system for purification of recombinant proteins.

  18. Expression of an optimized Argopecten purpuratus antimicrobial peptide in E. coli and evaluation of the purified recombinant protein by in vitro challenges against important plant fungi.

    PubMed

    Tapia, Eduardo; Montes, Christian; Rebufel, Patricia; Paradela, Alberto; Prieto, Humberto; Arenas, Gloria

    2011-09-01

    Antimicrobial peptides (AMP) have been widely described in several organisms from different kingdoms. We recently designed and evaluated a synthetic version of an AMP isolated and characterized from Argopecten purpuratus hemocytes. This study describes the generation of a chimaeric gene encoding for Ap-S, the use of this construct to transform E. coli strain BL21, and the evaluation of the purified recombinant Ap-S (rApS) as an antifungal agent. The proposed gene coding for rAp-S consists of 93 nucleotides arranged downstream from the IPTG-inducible T7 promoter. The best synthesis conditions were obtained after E. coli cultivation at 26°C for 3h, which allowed for the production of an rAp-S-enriched fraction containing the peptide at 249μM. Mass spectrometry analysis of the purified rAp-S (3085.80Da) showed the addition of a glycine residue on its N-terminal end derived from vector design and peptide purification. The purified rApS fraction was assayed for antifungal activity by direct addition of purified rApS elution to potato dextrose agar media at a final concentration of 81nM. These assays showed important growth inhibitions of both biotrophic (Fusarium oxysporum, Trichoderma harzianum) and necrotrophic (Botrytis cinerea, Alternaria spp.) fungi in that the hyphae structures and spore count were affected in all cases. The strategy of cloning and expressing rAp-S in E. coli, the high yield obtained and its successful use for controlling pathogenic fungi suggest that this molecule could be applied to agricultural crops using various management strategies.

  19. Protamine coated proliposomes of recombinant human insulin encased in Eudragit S100 coated capsule offered improved peptide delivery and permeation across Caco-2 cells.

    PubMed

    Sharma, Shiva; Jyoti, Kiran; Sinha, Richa; Katyal, Anju; Jain, Upendra Kumar; Madan, Jitender

    2016-10-01

    In present investigation, recombinant human insulin loaded proliposomes and protamine sulphate coated proliposomes (rh insulin-proliposomes and Pt-rh insulin proliposomes) were encased in Eudragit S100 coated capsule to offer peptide release in simulated intestinal conditions. The particle size and zeta potential of Pt-rh insulin proliposomes were measured to be 583.2±10.2nm/+28.3±3.7mV significantly (P<0.05) higher than 569.7±14.9nm/-37.9±4.3mV and 534.6±24.6nm/-42.7±2.8mV of rh insulin proliposomes and proliposomes, respectively. Next, shape and surface morphology analysis pointed out the successful transformation of proliposomes in to spherical shaped liposomes. Furthermore, in vitro release study specified that free rh insulin solution encapsulated in uncoated gelatine capsule released 97.8% of peptide within 1h in SGF (pH~1.2). On other hand, rh insulin-proliposomes and Pt-rh insulin proliposomes encased in Eudragit S100 coated capsule released 93.2% and 81.6% of peptide, up to 24 h in SIF (pH~7.2). SDS-PAGE and circular dichroism (CD) ascertained the stability and intactness of isolated rh insulin from tailored dosage forms. In last, cellular uptake in Caco-2 cells indicating the superiority of Pt-rh insulin proliposomes in comparison to rh-insulin proliposomes and free rh insulin solution, respectively. In conclusion, Pt-rh insulin proliposomes displayed promising results and may be considered for further investigations.

  20. Protection against Multiple Influenza A Virus Strains Induced by Candidate Recombinant Vaccine Based on Heterologous M2e Peptides Linked to Flagellin

    PubMed Central

    Kovaleva, Anna A.; Potapchuk, Marina V.; Korotkov, Alexandr V.; Sergeeva, Mariia V.; Kasianenko, Marina A.; Kuprianov, Victor V.; Ravin, Nikolai V.; Tsybalova, Liudmila M.; Skryabin, Konstantin G.; Kiselev, Oleg I.

    2015-01-01

    Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek). Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1) and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1) and A/Chicken/Kurgan/05/05 RG (H5N1) to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2) and avian influenza virus (H5N1). Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins. PMID:25799221

  1. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  2. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  3. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand

    SciTech Connect

    Hirano, Makoto; Adachi, Yuka; Ito, Yukishige; Totani, Kiichiro

    2015-10-23

    Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (–OH, –Gly–NH{sub 2}, and –Gly–Glu–{sup t}Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis. The results showed that CRT binds strongly to a G1M9-ligand in the order –Gly–Glu–{sup t}Bu > –Gly–NH{sub 2} > –OH, which is the same as that of the reglucosylation of Man9GlcNAc2 (M9)-derivatives by the folding sensor enzyme UGGT (UDP-glucose: glycoprotein glucosyltransferase). Our results indicate that, similar to UGGT, CRT discriminates the proximal region at the N-glycosylation site, suggesting a similar mechanism mediating the recognition of aglycone moieties in the ER glycoprotein quality control system. - Highlights: • Glc1Man9GlcNAc2 (G1M9) ligands with different aglycones were chemically prepared. • Calreticulin (CRT) discriminates the aglycone of Glc1Man9GlcNAc2 (G1M9) ligand. • CRT binds with G1M9 ligands in a similar manner to folding sensor enzyme.

  4. Calreticulin mutation burden--is it a stable clone in patients with essential thrombocythemia and myelofibrosis?

    PubMed

    Shuly, Yulia; Nagar, Meital; Ben-Asaf, Lior; Kneller, Abraham; Steinberg, David M; Amariglio, Ninette; Salomon, Ophira

    2015-12-01

    Calreticulin mutation represents the second most frequent mutation after JAK2 V617F in myeloproliferative disorder and is considered to be a driving mutation. Herein the mutation burden was evaluated in patients with essential thrombocythemia or myelofibrosis and found to increase by 5.7% over time unrelated to the time elapsed from the initial to the final positive test. The longer the course of the disease when first tested (range 0-30 years, mean 7.9 years) the lower mutation burden was observed. The mutated clone was larger in type II in comparison with type I mutation when first tested but the difference in mutation burden from the final to the first positive test was significantly higher in those with type I. Similarly, the difference in mutation burden was higher in patients with essential thrombocythemia reaching almost 8% in comparison to 1.3% in post-essential thrombocythemia myelofibrosis. Thus a repeat calreticulin quantitative test is not warranted.

  5. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk.

    PubMed

    Feng, Mingye; Chen, James Y; Weissman-Tsukamoto, Rachel; Volkmer, Jens-Peter; Ho, Po Yi; McKenna, Kelly M; Cheshier, Samuel; Zhang, Michael; Guo, Nan; Gip, Phung; Mitra, Siddhartha S; Weissman, Irving L

    2015-02-17

    Macrophage-mediated programmed cell removal (PrCR) is an important mechanism of eliminating diseased and damaged cells before programmed cell death. The induction of PrCR by eat-me signals on tumor cells is countered by don't-eat-me signals such as CD47, which binds macrophage signal-regulatory protein α to inhibit phagocytosis. Blockade of CD47 on tumor cells leads to phagocytosis by macrophages. Here we demonstrate that the activation of Toll-like receptor (TLR) signaling pathways in macrophages synergizes with blocking CD47 on tumor cells to enhance PrCR. Bruton's tyrosine kinase (Btk) mediates TLR signaling in macrophages. Calreticulin, previously shown to be an eat-me signal on cancer cells, is activated in macrophages for secretion and cell-surface exposure by TLR and Btk to target cancer cells for phagocytosis, even if the cancer cells themselves do not express calreticulin.

  6. Biochemical characterization of recombinant Enterovirus 71 3C protease with fluorogenic model peptide substrates and development of a biochemical assay.

    PubMed

    Shang, Luqing; Zhang, Shumei; Yang, Xi; Sun, Jixue; Li, Linfeng; Cui, Zhengjie; He, Qiuhong; Guo, Yu; Sun, Yuna; Yin, Zheng

    2015-04-01

    Enterovirus 71 (EV71), a primary pathogen of hand, foot, and mouth disease (HFMD), affects primarily infants and children. Currently, there are no effective drugs against HFMD. EV71 3C protease performs multiple tasks in the viral replication, which makes it an ideal antiviral target. We synthesized a small set of fluorogenic model peptides derived from cleavage sites of EV71 polyprotein and examined their efficiencies of cleavage by EV71 3C protease. The novel peptide P08 [(2-(N-methylamino)benzoyl) (NMA)-IEALFQGPPK(DNP)FR] was determined to be the most efficiently cleaved by EV71 3C protease, with a kinetic constant kcat/Km of 11.8 ± 0.82 mM(-1) min(-1). Compared with literature reports, P08 gave significant improvement in the signal/background ratio, which makes it an attractive substrate for assay development. A Molecular dynamics simulation study elaborated the interactions between substrate P08 and EV71 3C protease. Arg39, which is located at the bottom of the S2 pocket of EV71 3C protease, may participate in the proteolysis process of substrates. With an aim to evaluate EV71 3C protease inhibitors, a reliable and robust biochemical assay with a Z' factor of 0.87 ± 0.05 was developed. A novel compound (compound 3) (50% inhibitory concentration [IC50] = 1.89 ± 0.25 μM) was discovered using this assay, which effectively suppressed the proliferation of EV 71 (strain Fuyang) in rhabdomyosarcoma (RD) cells with a highly selective index (50% effective concentration [EC50] = 4.54 ± 0.51 μM; 50% cytotoxic concentration [CC50] > 100 μM). This fast and efficient assay for lead discovery and optimization provides an ideal platform for anti-EV71 drug development targeting 3C protease.

  7. Biochemical Characterization of Recombinant Enterovirus 71 3C Protease with Fluorogenic Model Peptide Substrates and Development of a Biochemical Assay

    PubMed Central

    Shang, Luqing; Zhang, Shumei; Yang, Xi; Sun, Jixue; Li, Linfeng; Cui, Zhengjie; He, Qiuhong; Guo, Yu

    2014-01-01

    Enterovirus 71 (EV71), a primary pathogen of hand, foot, and mouth disease (HFMD), affects primarily infants and children. Currently, there are no effective drugs against HFMD. EV71 3C protease performs multiple tasks in the viral replication, which makes it an ideal antiviral target. We synthesized a small set of fluorogenic model peptides derived from cleavage sites of EV71 polyprotein and examined their efficiencies of cleavage by EV71 3C protease. The novel peptide P08 [(2-(N-methylamino)benzoyl) (NMA)-IEALFQGPPK(DNP)FR] was determined to be the most efficiently cleaved by EV71 3C protease, with a kinetic constant kcat/Km of 11.8 ± 0.82 mM−1 min−1. Compared with literature reports, P08 gave significant improvement in the signal/background ratio, which makes it an attractive substrate for assay development. A Molecular dynamics simulation study elaborated the interactions between substrate P08 and EV71 3C protease. Arg39, which is located at the bottom of the S2 pocket of EV71 3C protease, may participate in the proteolysis process of substrates. With an aim to evaluate EV71 3C protease inhibitors, a reliable and robust biochemical assay with a Z′ factor of 0.87 ± 0.05 was developed. A novel compound (compound 3) (50% inhibitory concentration [IC50] = 1.89 ± 0.25 μM) was discovered using this assay, which effectively suppressed the proliferation of EV 71 (strain Fuyang) in rhabdomyosarcoma (RD) cells with a highly selective index (50% effective concentration [EC50] = 4.54 ± 0.51 μM; 50% cytotoxic concentration [CC50] > 100 μM). This fast and efficient assay for lead discovery and optimization provides an ideal platform for anti-EV71 drug development targeting 3C protease. PMID:25421478

  8. A recombinant peptide model of the first nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator: comparison of wild-type and delta F508 mutant forms.

    PubMed Central

    Yike, I.; Ye, J.; Zhang, Y.; Manavalan, P.; Gerken, T. A.; Dearborn, D. G.

    1996-01-01

    A series of recombinant peptides, each including the sequence proposed to be the first nucleotide-binding fold of cystic fibrosis transmembrane conductance regulator (CFTR), has been produced in an attempt to find a model peptide that would autologously fold into a soluble structure with native-like properties. The peptide NBDIF, which contains the 267-amino acid sequence of CFTR from 384 to 650, meets these requirements. The peptide was produced with a high expression bacterial plasmid pRSET, purified from inclusion bodies following solubilization with 6 M guanidine-HCl and refolded from 8 M urea. Competitive displacement of trinitrophenol-ATP by nucleotides reveals binding of ATP and related nucleotides with KDs in the low micromolar range; the KD for ATP gamma S is 1.0 +/- 0.4 microM and for ADP 8.8 +/- 3.1 microM. The native-like character of the model peptide's structure is further supported by the findings that the KD for the ATP analog, 5'-adenylimidodiphosphate, is fourfold lower than the KD for the methylene analog, 5'-adenylmethylenediphosphonate, and that ATP binding slows the trypsin proteolysis of NBDIF. The CD spectra of NBDIF and the parallel peptide containing the most common cystic fibrosis mutation, deletion of Phe 508, are essentially indistinguishable, both spectra indicating 28% alpha-helix and 23% beta-sheet, with insignificant differences in the amounts of beta-turns and random structure. Extensive investigation using multiple conditions with highly purified preparations of the model peptides demonstrates that they do not support ATP hydrolysis. These large recombinant peptides offer practical models for the investigation of the first nucleotide-binding domain of CFTR. PMID:8771200

  9. Calreticulin and Jak2 as Chaperones for MPL: Insights into MPN Pathogenesis

    DTIC Science & Technology

    2016-09-01

    major myeloproliferative neoplasms (MPNs) as classified by the world health organization. One of the biggest challenges is to understand how Jak2 , MPL...myelofibrosis (PMF), two of the 8 major myeloproliferative neoplasms (MPNs) as classified by the WHO. One of the biggest challenges is to understand how Jak2 ...Thrombopoietin Receptor (Mpl) - Janus kinase 2 ( Jak2 ) - Calreticulin (CALR) - Myeloproliferative Neoplasms (MPN) - Essential Thrombocythemia (ET

  10. Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells.

    PubMed

    Yeh, Tzyy-Harn; Chen, Yun-Ru; Chen, Szu-Ying; Shen, Wei-Chiang; Ann, David K; Zaro, Jennica L; Shen, Li-Jiuan

    2016-01-04

    Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with p

  11. Molecular characterisation and expression analysis of a novel calreticulin (CRT) gene in the dinoflagellate Prorocentrum minimum.

    PubMed

    Ponmani, Thangaraj; Guo, Ruoyu; Suh, Young Sang; Ki, Jang-Seu

    2015-03-01

    Calreticulin is a multifunctional Ca(2+)-binding protein that has been well characterised in mammalian cells. Here, we characterised a novel calreticulin (CRT2) gene in the dinoflagellate Prorocentrum minimum, which codes for a calcium binding protein and examined its expression pattern following the addition of calcium and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). PmCRT2 is encoded in the nuclear genome of P. minimum without introns. The full length cDNA of PmCRT2 was found to be 1,493 base pairs (bp) in length, which ranges from the dinoflagellate spliced leader sequence to the poly (A) tail and contains a 1,173-bp open reading frame, a 70-bp 5'-untranslated region (UTR), and a 207-bp 3'-UTR. On the basis of in silico analyses that revealed the distinct domain architectures of PmCRT2, we classified this protein under the calreticulin family. PmCRT2 gene expression was up-regulated in the presence of excess calcium in a dose-dependent manner; however, PmCRT2 expression was down-regulated by the addition of EGTA. These results clearly indicate that PmCRT2 plays a vital role in calcium regulation and this may be involved in the stress response of P. minimum.

  12. Nuclear export of the glucocorticoid receptor is accelerated by cell fusion-dependent release of calreticulin.

    PubMed

    Walther, Rhian F; Lamprecht, Claudia; Ridsdale, Andrew; Groulx, Isabelle; Lee, Stephen; Lefebvre, Yvonne A; Haché, Robert J G

    2003-09-26

    Nucleocytoplasmic exchange of nuclear hormone receptors is hypothesized to allow for rapid and direct interactions with cytoplasmic signaling factors. In addition to recycling between a naïve, chaperone-associated cytoplasmic complex and a liganded chaperone-free nuclear form, the glucocorticoid receptor (GR) has been observed to shuttle between nucleus and cytoplasm. Nuclear export of GR and other nuclear receptors has been proposed to depend on direct interactions with calreticulin, which is predominantly localized to the lumen of the endoplasmic reticulum. We show that rapid calreticulin-mediated nuclear export of GR is a specific response to transient disruption of the endoplasmic reticulum that occurs during polyethylene glycol-mediated cell fusion. Using live and digitonin-permeabilized cells we demonstrate that, in the absence of cell fusion, GR nuclear export occurs slowly over a period of many hours independent of direct interaction with calreticulin. Our findings temper expectations that nuclear receptors respond rapidly and directly to cytoplasmic signals in the absence of additional regulatory control. These results highlight the importance of verifying findings of nucleocytoplasmic trafficking using techniques in addition to heterokaryon cell fusion.

  13. Agarose gel shift assay reveals that calreticulin favors substrates with a quaternary structure in solution.

    PubMed

    Boelt, Sanne Grundvad; Houen, Gunnar; Højrup, Peter

    2015-07-15

    Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation, and prefractionation of protein interactions in solution independent of isoelectric point. We demonstrate that this assay is compatible with immunochemical methods and mass spectrometry. The assay was used to investigate interactions with several potential substrates for calreticulin, a chaperone that is involved in different biological aspects through interaction with other proteins. The current analytical assays used to investigate these interactions are mainly spectroscopic aggregation assays or solid phase assays that do not provide a direct visualization of the stable protein complex but rather provide an indirect measure of interactions. Therefore, no interaction studies between calreticulin and substrates in solution have been investigated previously. The results presented here indicate that calreticulin has a preference for substrates with a quaternary structure and primarily β-sheets in their secondary structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis.

  14. A NEW RECOMBINANT ADENO-ASSOCIATED VIRUS (AAV)-BASED RANDOM PEPTIDE DISPLAY LIBRARY SYSTEM: INFECTION-DEFECTIVE AAV1.9-3 AS A NOVEL DETARGETED PLATFORM FOR VECTOR EVOLUTION*

    PubMed Central

    Adachi, Kei; Nakai, Hiroyuki

    2011-01-01

    Directed evolution through genetic engineering of viral capsids followed by selection has emerged as a powerful means to create novel recombinant adeno-associated virus (rAAV) vectors with desired tropism and enhanced properties. One of the most effective approaches uses rAAV-based random peptide display libraries. Here we report a novel system based on an infection-defective rAAV1.9-3 as a platform for random peptide display, and show that biopanning of the libraries in vitro effectively identifies the peptides that restore and enhance rAAV transduction. rAAV1.9-3 has a genetically engineered AAV1 capsid with amino acids 445–568 being replaced with those of AAV9, and has been identified as a variant exhibiting significantly impaired infectivity and delayed blood clearance when infused into mice. In this study, we generated rAAV1.9-3 variant libraries in which 7- or 12-mer random peptides were expressed at the capsid amino acid position 590. Three rounds of positive selection for primary human dermal fibroblasts successfully identified new rAAV-peptide variants that transduce them more efficiently than the prototype rAAV2. Thus our study demonstrates that an infection-defective rAAV variant serves as a novel detargeted platform for random peptide display libraries. We also describe a brief review of recent progress in rAAV-based random peptide display library approaches. PMID:21603583

  15. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments.

    PubMed

    Knappik, A; Plückthun, A

    1994-10-01

    The commercially available monoclonal antibodies M1 and M2 were raised against and bind the FLAG sequence DYKDDDDK with high specificity. Using the calcium-dependent M1 antibody and the FLAG tag attached to the N terminus of various fragments of the antibody McPC603 expressed in Escherichia coli, we found that the M1 antibody binds with almost the same affinity to a much shorter version of this sequence (DYKD). Since most antibody light chains start with an aspartate, the addition of only three additional amino acids to the N terminus is sufficient to detect and quantify the expressed antibody fragments using standard immunological methods. Similarly, the heavy chain can be detected specifically with the sequence DYKD, which requires four additional amino acids since most heavy chains do not start with Asp. The signal sequence of both chains that is necessary for the transport of the chains to the periplasm of E. coli is processed correctly. Furthermore, we investigated the influence of the amino acid at the fifth position of the FLAG sequence on the binding affinity of the M1 antibody and found that a glutamate at this position increased the sensitivity in Western blots sixfold over the original long FLAG sequence containing an aspartate residue at this position. Together, the improved FLAG is a versatile tool for both sensitive detection and one-step purification of recombinant proteins.

  16. Establishment and characterization of monoclonal and polyclonal antibodies against human intestinal fatty acid-binding protein (I-FABP) using synthetic regional peptides and recombinant I-FABP.

    PubMed

    Kajiura, Satoshi; Yashiki, Tetsuya; Funaoka, Hiroyuki; Ohkaru, Yasuhiko; Nishikura, Ken; Kanda, Tatsuo; Ajioka, Yoichi; Igarashi, Michihiro; Hatakeyama, Katsuyoshi; Fujii, Hiroshi

    2008-01-01

    We have succeeded in raising highly specific anti-human intestinal fatty acid-binding protein (I-FABP) monoclonal antibodies by immunizing animals with three synthetic regional peptides, i.e., the amino terminal (RP-1: N-acetylated 1-19-cysteine), middle portion (RP-2: cysteinyl-91-107) and carboxylic terminal (RP-3: cysteinyl-121-131) regions of human I-FABP, and the whole I-FABP molecule as antigens. We also raised a polyclonal antibody by immunizing with a recombinant (r) I-FABP. To ascertain the specificity of these antibodies for human I-FABP, the immunological reactivity of each was examined by a binding assay using rI-FABP, partially purified native I-FABP and related proteins such as liver-type (L)-FABP, heart-type (H)-FABP, as well as the regional peptides as reactants, and by Western blot analysis. In addition, the expression and distribution of I-FABP in the human gastrointestinal tract were investigated by an immunohistochemical technique using a carboxylic terminal region-specific monoclonal antibody, 8F9, and a polyclonal antibody, DN-R2. Our results indicated that both the monoclonal and polyclonal antibodies established in this study were highly specific for I-FABP, but not for L-FABP and H-FABP. Especially, the monoclonal antibodies raised against the regional peptides, showed regional specificity for the I-FABP molecule. Immunoreactivity of I-FABP was demonstrated in the mucosal epithelium of the jejunum and ileum by immunohistochemical staining, and the immunoreactivity was based on the presence of the whole I-FABP molecule but not the presence of any precursors or degradation products containing a carboxylic terminal fragment. It is concluded that some of these monoclonal and polyclonal antibodies, such as 8F9, 4205, and DN-R2, will be suitable for use in research on the immunochemistry and clinical chemistry of I-FABP because those antibodies can recognize both types of native and denatured I-FABP. In order to detect I-FABP in blood samples, it

  17. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein.

    PubMed

    Komatsu, Nobukazu; Jackson, Heather M; Chan, Kok-fei; Oveissi, Sara; Cebon, Jonathan; Itoh, Kyogo; Chen, Weisan

    2013-07-01

    The tumor antigen NY-ESO-1 is one of the most antigenic cancer-testis antigens, first identified by serologic analysis of a recombinant cDNA expression library (SEREX). NY-ESO-1 is expressed in different types of cancers including melanoma. NY-ESO-1-specific spontaneous humoral and cellular immune responses are detected in a large proportion of patients with advanced NY-ESO-1-expressing cancers. Therefore NY-ESO-1 is a good candidate antigen for immunotherapy. Although cellular immune responses to NY-ESO-1 are well characterized, much less is known about the humoral immune responses. In this study, we finely mapped linear antibody epitopes using sera from melanoma patients and shorter overlapping peptide sets. We have shown that melanoma patients' humoral immune systems responded to NY-ESO-1 differently in each individual with widely differing antibody specificity, intensity and antibody subtypes. This knowledge will help us further understand anti-tumor immunity and may also help us to monitor cancer progress and cancer vaccine efficacy in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A Shark Liver Gene-Derived Active Peptide Expressed in the Silkworm, Bombyx mori: Preliminary Studies for Oral Administration of the Recombinant Protein

    PubMed Central

    Liu, Yunlong; Chen, Ying; Chen, Jianqing; Zhang, Wenping; Sheng, Qing; Chen, Jian; Yu, Wei; Nie, Zuoming; Zhang, Yaozhou; Wu, Wutong; Wang, Lisha; Indran, Inthrani Raja; Li, Jun; Qian, Lian; Lv, Zhengbing

    2013-01-01

    Active peptide from shark liver (APSL) is a cytokine from Chiloscyllium plagiosum that can stimulate liver regeneration and protects the pancreas. To study the effect of orally administered recombinant APSL (rAPSL) on an animal model of type 2 diabetes mellitus, the APSL gene was cloned, and APSL was expressed in Bombyx mori N cells (BmN cells), silkworm larvae and silkworm pupae using the silkworm baculovirus expression vector system (BEVS). It was demonstrated that rAPSL was able to significantly reduce the blood glucose level in mice with type 2 diabetes induced by streptozotocin. The analysis of paraffin sections of mouse pancreatic tissues revealed that rAPSL could effectively protect mouse islets from streptozotocin-induced lesions. Compared with the powder prepared from normal silkworm pupae, the powder prepared from pupae expressing rAPSL exhibited greater protective effects, and these results suggest that rAPSL has potential uses as an oral drug for the treatment of diabetes mellitus in the future. PMID:23652883

  19. Subunit-dependent inhibition of recombinant rodent N-methyl-D-aspartate receptors by a HIV-1 glycoprotein 120 derived peptide.

    PubMed

    Wittekindt, B; Betz, H; Laube, B

    2000-02-18

    Considerable evidence suggests that low (picomolar) concentrations of the HIV-1 envelope glycoprotein gp120 induce neuronal cell death by stimulating the release of microglial toxins, which in turn activate N-methyl-D-aspartate (NMDA) receptors. Conversely, high (micromolar) concentrations of gp120 have been reported to directly inhibit NMDA receptor-mediated currents and do not induce neurotoxicity. Here we show that micromolar concentrations of a synthetic peptide corresponding to the V3-loop of gp120 (V3-pep) inhibited agonist responses of recombinant heteromeric rodent NMDA receptors expressed in Xenopus laevis oocytes by decreasing their apparent glycine affinity. Different combinations of NMDA receptor subunits displayed differential sensitivities to inhibition by V3-pep, with a potency rank order of NR1/2B > NR1/2D > NR1/2C > or = NR1/2A. Our observations may provide an explanation for the reduced neurotoxicity of high doses of gp120 in cell cultures and may be useful for the pharmacological discrimination of NMDA receptor subtypes.

  20. Immunocontraceptive potential of recombinant bonnet monkey (Macaca radiata) zona pellucida glycoprotein-C expressed in Escherichia coli and its corresponding synthetic peptide.

    PubMed

    Kaul, Renuka; Sivapurapu, Neela; Afzalpurkar, Abhijit; Srikanth, V.; Govind, Chhabi K.; Gupta, Satish K.

    2001-01-01

    Zona pellucida (ZP) glycoproteins have been proposed as candidate antigens for development of immunocontraceptive vaccines. In this study, the efficacy to block fertility by immunization with recombinant bonnet monkey (Macaca radiata) zona pellucida glycoprotein-C (r-bmZPC) expressed in Escherichia coli and its synthetic peptide (P(4): KGDCGTPSHSRRQPHVVSQWSRSA, aa residues 324-347) conjugated to diphtheria toxoid (DT) has been evaluated in a homologous system. Female bonnet monkeys, immunized with P(4)-DT conjugate showed better immunocontraceptive potential as compared to an r-bmZPC-DT immunized group. In spite of high anti-P(4) antibody titres, animals continued to have ovulatory cycles and showed no disturbance in cyclicity (except summer amenorrhoea). No ovarian pathology was observed in the P(4) immunized group. These results suggest that immunization with the P(4) may lead to block in fertility without obvious ovarian dysfunction. However, further inputs are required to identify additional ZP based B-cell epitopes to enhance the contraceptive efficacy.

  1. A recombinant single-chain human class II MHC molecule (HLA-DR1) as a covalently linked heterotrimer of alpha chain, beta chain, and antigenic peptide, with immunogenicity in vitro and reduced affinity for bacterial superantigens.

    PubMed

    Zhu, X; Bavari, S; Ulrich, R; Sadegh-Nasseri, S; Ferrone, S; McHugh, L; Mage, M

    1997-08-01

    Major histocompatibility complex (MHC) class II molecules bind to numerous peptides and display these on the cell surface for T cell recognition. In a given immune response, receptors on T cells recognize antigenic peptides that are a minor population of MHC class II-bound peptides. To control which peptides are presented to T cells, it may be desirable to use recombinant MHC molecules with covalently bound antigenic peptides. To study T cell responses to such homogeneous peptide-MHC complexes, we engineered an HLA-DR1 cDNA coding for influenza hemagglutinin, influenza matrix, or HIV p24 gag peptides covalently attached via a peptide spacer to the N terminus of the DR1 beta chain. Co-transfection with DR alpha cDNA into mouse L cells resulted in surface expression of HLA-DR1 molecules that reacted with monoclonal antibodies (mAb) specific for correctly folded HLA-DR epitopes. This suggested that the spacer and peptide did not alter expression or folding of the molecule. We then engineered an additional peptide spacer between the C terminus of a truncated beta chain (without transmembrane or cytoplasmic domains) and the N terminus of full-length DR alpha chain. Transfection of this cDNA into mouse L cells resulted in surface expression of the entire covalently linked heterotrimer of peptide, beta chain, and alpha chain with the expected molecular mass of approximately 66 kDa. These single-chain HLA-DR1 molecules reacted with mAb specific for correctly folded HLA-DR epitopes, and identified one mAb with [MHC + peptide] specificity. Affinity-purified soluble secreted single-chain molecules with truncated alpha chain moved in electrophoresis as compact class II MHC dimers. Cell surface two-chain or single-chain HLA-DR1 molecules with a covalent HA peptide stimulated HLA-DR1-restricted HA-specific T cells. They were immunogenic in vitro for peripheral blood mononuclear cells. The two-chain and single-chain HLA-DR1 molecules with covalent HA peptide had reduced binding

  2. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade

    PubMed Central

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2014-01-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it’s plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it’s current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation aggregation. We discuss our findings in the context of tick feeding physiology. PMID:25454607

  3. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes

    PubMed Central

    1993-01-01

    Cytolytic T lymphocytes (CTL), natural killer cells, and lymphokine- activated killer (LAK) cells are cytolytic cells known to release the cytolytic protein perforin and a family of proteases, named granzymes, from cytoplasmic stores upon interaction with target cells. We now report the purification of an additional major 60-kD granule-associated protein (grp 60) from human LAK cells and from mouse cytolytic T cells. The NH2-terminal amino acid sequence of the polypeptide was found to be identical to calreticulin. Calreticulin is a calcium storage protein and carries a COOH-terminal KDEL sequence, known to act as a retention signal for proteins destined to the lumen of the endoplasmic reticulum. In CTLs, however, calreticulin colocalizes with the lytic perforin to the lysosome-like secretory granules, as confirmed by double label immunofluorescence confocal microscopy. Moreover, when the release of granule-associated proteins was triggered by stimulation of the T cell receptor complex, calreticulin was released along with granzymes A and D. Since perforin is activated and becomes lytic in the presence of calcium, we propose that the role of calreticulin is to prevent organelle autolysis due to the protein's calcium chelator capacity. PMID:8418194

  4. Isolation and characterization of a resistant core peptide of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF); confirmation of the GM-CSF amino acid sequence by mass spectrometry.

    PubMed Central

    Tsarbopoulos, A.; Pramanik, B. N.; Labdon, J. E.; Reichert, P.; Gitlin, G.; Patel, S.; Sardana, V.; Nagabhushan, T. L.; Trotta, P. P.

    1993-01-01

    A trypsin-resistant core peptide of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) was isolated and analyzed by high-energy Cs+ liquid secondary-ion (LSI) mass spectrometric analysis. This analysis provided successful detection of the high-mass disulfide-linked core peptide as well as information confirming the existence of disulfide pairing. Similarly, LSI mass spectrometric analysis of the peptide fragments isolated chromatographically from a Staphylococcus aureus V8 protease digest of rhGM-CSF provided rapid confirmation of the cDNA-derived sequence and determination of the existing disulfide bonds between cysteine residues 54-96 and 88-121. Electrospray ionization mass spectrometry was employed to measure the molecular weight of the intact protein and to determine the number of the disulfide bonds in the protein molecule by comparative analysis of the protein before and after reduction with beta-mercaptoethanol. PMID:8268804

  5. Interaction of HTLV-1 Tax protein with the calreticulin: Implications for Tax nuclear export and secretion

    PubMed Central

    Alefantis, Timothy; Flaig, Katherine E.; Wigdahl, Brian; Jain, Pooja

    2007-01-01

    Summary Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 transcriptional transactivator protein Tax plays an integral role in virus replication and disease progression. Traditionally, Tax is described as a nuclear protein where it performs its primary role as a transcriptional transactivator. However, recent studies have clearly shown that Tax can also be localized to the cytoplasm where it has been shown to interact with a number of host transcription factors most notably NF-κB, constitutive expression of which is directly related to the T cell transforming properties of Tax in ATL patients. The presence of a functional nuclear export signal (NES) within Tax and the secretion of full-length Tax have also been demonstrated previously. Additionally, release of Tax from HTLV-1-infected cells and the presence of cell-free Tax was demonstrated in the CSF of HAM/TSP patients suggesting that the progression of HAM/TSP might be mediated by the ability of Tax to work as an extracellular cytokine. Therefore, in both ATL and HAM/TSP Tax nuclear export and nucleocytoplasmic shuttling may play a critical role, the mechanism of which remains unknown. In this study, we have demonstrated that the calcium binding protein calreticulin interacts with Tax by coimmunoprecipitation. This interaction was found to localize to a region at or near the nuclear membrane. In addition, differential expression of calreticulin was demonstrated in various cell types that correlated with their ability to retain cytoplasmic Tax, particularly in astrocytes. Finally, a comparison of a number of HTLV-1-infected T cell lines to non-infected T cells revealed higher expression of calreticulin in infected cells implicating a direct role for this protein in HTLV-1 infection. PMID:17395420

  6. Synthesis and characterization of water-soluble silk peptides and recombinant silk protein containing polyalanine, the integrin binding site, and two glutamic acids at each terminal site as a possible candidate for use in bone repair materials.

    PubMed

    Asakura, Tetsuo; Suzuki, Yu; Nagano, Aya; Knight, David; Kamiya, Masakatsu; Demura, Makoto

    2013-10-14

    The recombinant proteins [EE(A)12EETGRGDSPAAS]n (n = 5,10) were prepared as a potential scaffold material for bone repair. The construct was based on Antheraea perni silk fibroin to which cells adhere well and combined poly(alanine), the integrin binding site TGRGDSPA, and a pair of glutamic acids (E2) at both the N- and C-terminal sites to render the construct water-soluble and with the hope that it might enhance mineralization with hydroxyapatite. Initially, two peptides E2(A)nE2TGRGDSPAE2(A)nE2 (n = 6, 12) were prepared by solid state synthesis to examine the effect of size on conformation and on cell binding. The larger peptide bound osteoblasts more readily and had a higher helix content than the smaller one. Titration of the side chain COO(-) to COOH of the E2 and D units in the peptide was monitored by solution NMR. On the basis of these results, we produced the related recombinant His tagged protein [EE(A)12EETGRGDSPAAS]n (n = 5,10) by expression in Escherichia coli . The solution NMR spectra of the recombinant protein indicated that the poly(alanine) regions are helical, and one E2 unit is helical and the other is a random coil. A molecular dynamics simulation of the protein supports these conclusions from NMR. We showed that the recombinant protein, especially, [EE(A)12EETGRGDSPAAS]10 has some of the properties required for bone tissue engineering scaffold including insolubility, and evidence of enhanced cell binding through focal adhesions, and enhanced osteogenic expression of osteoblast-like cells bound to it, and has potential for use as a bone repair material.

  7. Immunogenic targeting of recombinant peptide vaccines to human antigen-presenting cells by chimeric anti-HLA-DR and anti-surface immunoglobulin D antibody Fab fragments in vitro.

    PubMed Central

    Baier, G; Baier-Bitterlich, G; Looney, D J; Altman, A

    1995-01-01

    To increase the inherently weak immunogenicity of synthetic peptide vaccines, we used recombinant DNA techniques to generate chimeras between immunogenic determinants of human immunodeficiency virus type 1 (HIV-1) gp120 and antibody Fab fragments reactive with surface structures displayed specifically on human antigen-presenting cells (APCs), including surface immunoglobulin D (sIgD) and class II major histocompatibility complex (MHC) molecules. Hybridomas producing anti-human MHC class II (HLA-DR) or surface immunoglobulin D monoclonal antibodies (MAbs) that recognize nonpolymorphic determinants were used to clone chimeric Fab gene fragments by employing an established procedure to generate antigen-binding Fab libraries in phagemid vector pComb3. Molecular and immunochemical analysis indicated that the expected chimeric Fab fragments expressing the HIV-1 epitopes were correctly cloned and expressed in Escherichia coli and retained the binding specificity of the native (hybridoma-derived) MAb. The chimeric Fab fragments targeted the linked HIV-1-derived antigenic determinants to the surface of human APCs in vitro, as evidenced by fluorescence-activated cell sorter analysis. Furthermore, such recombinant immunotargeted HIV-1 peptide antigens demonstrated improved immunogenicity over equivalent nonimmunotargeted control antigens, as shown by their ability to stimulate interleukin-2 production by CD4+ T-helper cells from human donors exposed to HIV-1 antigens. These data suggest that immunotargeting of recombinant peptide antigens via the attached Fab fragments facilitates uptake by human APCs with subsequent access to the MHC class II processing pathway, thereby validating the immunotargeting concept for such recombinant subunit vaccines in an in vitro human system. PMID:7533857

  8. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm.

  9. Thyroid Hormone Receptor α1 Follows a Cooperative CRM1/Calreticulin-mediated Nuclear Export Pathway*

    PubMed Central

    Grespin, Matthew E.; Bonamy, Ghislain M. C.; Roggero, Vincent R.; Cameron, Nicole G.; Adam, Lindsay E.; Atchison, Andrew P.; Fratto, Victoria M.; Allison, Lizabeth A.

    2008-01-01

    The thyroid hormone receptor α1 (TRα) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T3). Previously, we have shown that TRα, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRα is its ability to exit the nucleus through the nuclear pore complex. TRα export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRα. We show that, in addition to shuttling in heterokaryons, TRα shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRα directly interacts with calreticulin, and point to the intriguing possibility that TRα follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRα from the nucleus to cytoplasm. PMID:18641393

  10. Hijacking of host calreticulin is required for the white spot syndrome virus replication cycle.

    PubMed

    Watthanasurorot, Apiruck; Guo, Enen; Tharntada, Sirinit; Lo, Chu-Fang; Söderhäll, Kenneth; Söderhäll, Irene

    2014-07-01

    We have previously shown that multifunctional calreticulin (CRT), which resides in the endoplasmic reticulum (ER) and is involved in ER-associated protein processing, responds to infection with white spot syndrome virus (WSSV) by increasing mRNA and protein expression and by forming a complex with gC1qR and thereby delaying apoptosis. Here, we show that CRT can directly interact with WSSV structural proteins, including VP15 and VP28, during an early stage of virus infection. The binding of VP28 with CRT does not promote WSSV entry, and CRT-VP15 interaction was detected in the viral genome in virally infected host cells and thus may have an effect on WSSV replication. Moreover, CRT was detected in the viral envelope of purified WSSV virions. CRT was also found to be of high importance for proper oligomerization of the viral structural proteins VP26 and VP28, and when CRT glycosylation was blocked with tunicamycin, a significant decrease in both viral replication and assembly was detected. Together, these findings suggest that CRT confers several advantages to WSSV, from the initial steps of WSSV infection to the assembly of virions. Therefore, CRT is required as a "vital factor" and is hijacked by WSSV for its replication cycle. Importance: White spot syndrome virus (WSSV) is a double-stranded DNA virus and the cause of a serious disease in a wide range of crustaceans that often leads to high mortality rates. We have previously shown that the protein calreticulin (CRT), which resides in the endoplasmic reticulum (ER) of the cell, is important in the host response to the virus. In this report, we show that the virus uses this host protein to enter the cell and to make the host produce new viral structural proteins. Through its interaction with two viral proteins, the virus "hijacks" host calreticulin and uses it for its own needs. These findings provide new insight into the interaction between a large DNA virus and the host protein CRT and may help in understanding

  11. Establishment of a mammalian expression system for recombinant [-2]proPSA and a specific antibody against the truncated leader peptide.

    PubMed

    Hwang, Dobeen; Yoon, Aerin; Kim, Soohyun; Kim, Hyori; Chung, Junho

    2017-05-01

    A truncated precursor form of prostate-specific antigen (PSA), [-2]proPSA, is a well-known biomarker for prostate cancer. To develop a biomarker assay, highly purified [-2]proPSA is required as a standard reference and for generation of a specific antibody. In this study, we generated an efficient mammalian expression system for producing a recombinant [-2]proPSA-human kappa constant domain (Cκ ) fusion protein. N-terminal amino acid sequencing using Edman degradation demonstrated that over 95% of the recombinant protein produced is [-2]proPSA, thereby showing for the first time that recombinant [-2]proPSA can be produced as a major fraction. We also generated a recombinant chicken antibody specific to [-2]proPSA but not cross-reactive to recombinant [-7]proPSA-Cκ , [-5]proPSA-Cκ , and PSA purified from human seminal fluid in enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Also, the recombinant chicken antibody reacted to recombinant [-2]proPSA protein bound to an anti-PSA antibody coated on the micrometer plate in a sandwich ELISA. All of these results suggest that the N-terminus of the [-2]proPSA-Cκ fusion protein resides on the exterior of the protein, thus allowing exposure to the antibody. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Preliminary X-ray diffraction analysis of crystals from the recombinantly expressed human major histocompatibility antigen HLA-B*2704 in complex with a viral peptide and with a self-peptide

    SciTech Connect

    Loll, Bernhard; Biesiadka, Jacek; Saenger, Wolfram

    2005-10-01

    Crystallization of HLA-B*2704 in complex with two peptides. The product of the human leukocyte antigen (HLA) gene HLA-B*2704 differs from that of the prototypical subtype HLA-B*2705 by three amino acids at heavy-chain residues 77 (Ser instead of Asp), 152 (Glu instead of Val) and 211 (Gly instead of Ala). In contrast to the ubiquitous HLA-B*2705 subtype, HLA-B*2704 occurs only in orientals. Both subtypes are strongly associated with spondyloarthropathies and the peptides presented by these subtypes are suspected to play a role in disease pathogenesis. HLA-B*2704 was crystallized in complex with a viral peptide and with a self-peptide using the hanging-drop vapour-diffusion method with PEG as a precipitant. Both crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}. Data sets were collected to 1.60 Å (complex with the self-peptide pVIPR) or to 1.90 Å (complex with the viral peptide pLMP2) resolution using synchrotron radiation. With HLA-B*2705 complexed with pVIPR as a search model, unambiguous molecular-replacement solutions were found for the complexes of HLA-B*2704 with both peptides.

  13. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum.

    PubMed Central

    Di Jeso, Bruno; Ulianich, Luca; Pacifico, Francesco; Leonardi, Antonio; Vito, Pasquale; Consiglio, Eduardo; Formisano, Silvestro; Arvan, Peter

    2003-01-01

    During its initial folding in the endoplasmic reticulum (ER), newly synthesized thyroglobulin (Tg) is known to interact with calnexin and other ER molecular chaperones, but its interaction with calreticulin has not been examined previously. In the present study, we have investigated the interactions of endogenous Tg with calreticulin and with several other ER chaperones. We find that, in FRTL-5 and PC-Cl3 cells, calnexin and calreticulin interact with newly synthesized Tg in a carbohydrate-dependent manner, with largely overlapping kinetics that are concomitant with the maturation of Tg intrachain disulphide bonds, preceding Tg dimerization and exit from the ER. Calreticulin co-precipitates more newly synthesized Tg than does calnexin; however, using two different experimental approaches, calnexin and calreticulin were found in ternary complexes with Tg, making this the first endogenous protein reported in ternary complexes with calnexin and calreticulin in the ER of live cells. Depletion of Ca(2+) from the ER elicited by thapsigargin (a specific inhibitor of ER Ca(2+)-ATPases) results in retention of Tg in this organelle. Interestingly, thapsigargin treatment induces the premature exit of Tg from the calnexin/calreticulin cycle, while stabilizing and prolonging interactions of Tg with BiP (immunoglobulin heavy chain binding protein) and GRP94 (glucose-regulated protein 94), two chaperones whose binding is not carbohydrate-dependent. Our results suggest that calnexin and calreticulin, acting in ternary complexes with a large glycoprotein substrate such as Tg, might be engaged in the folding of distinct domains, and indicate that lumenal Ca(2+) strongly influences the folding of exportable glycoproteins, in part by regulating the balance of substrate binding to different molecular chaperone systems within the ER. PMID:12401114

  14. Novel germline mutations in the calreticulin gene: implications for the diagnosis of myeloproliferative neoplasms.

    PubMed

    Szuber, Natasha; Lamontagne, Bruno; Busque, Lambert

    2016-07-27

    Mutations in the calreticulin (CALR) gene are found in the majority of Janus kinase 2-negative myeloproliferative neoplasms MPN and, thus far, have exclusively been reported as acquired, somatic mutations. We assessed the mutational status of exon 9 of the CALR gene in 2000 blood samples submitted to our centre and identified 12 subjects (0.6%) harbouring distinctive CALR mutations, all with an allelic frequency of 50% and all involving indels occurring as multiples of 3 bp. Buccal cell samples obtained from these patients confirmed the germline nature of the mutations. Importantly, these germline mutations were not diagnostic of MPN. We thus report for the first time the identification and confirmation of germline mutations in CALR distinct from those somatic mutations that define classical MPN. The finding of a non-standard CALR mutation with an allelic frequency of 50% should raise suspicion of the possibility of a germline CALR mutation and these cases investigated further.

  15. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation

    PubMed Central

    Elf, Shannon; Abdelfattah, Nouran S.; Chen, Edwin; Perales-Patón, Javier; Rosen, Emily A.; Ko, Amy; Peisker, Fabian; Florescu, Natalie; Giannini, Silvia; Wolach, Ofir; Morgan, Elizabeth A.; Tothova, Zuzana; Losman, Julie-Aurore; Schneider, Rebekka K.; Al-Shahrour, Fatima; Mullally, Ann

    2016-01-01

    Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN) but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of CALR-mutant MPN patients. We further show that the thrombopoietin receptor, MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. PMID:26951227

  16. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses.

    PubMed

    Jia, Xiao-Yun; Xu, Chong-Yi; Jing, Rui-Lian; Li, Run-Zhi; Mao, Xin-Guo; Wang, Ji-Ping; Chang, Xiao-Ping

    2008-01-01

    Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca(2+)-binding protein in multicellular eukaryotes. CRT plays a crucial role in many cellular processes including Ca(2+) storage and release, protein synthesis, and molecular chaperone activity. To elucidate the function of CRTs in plant responses against drought, a main abiotic stress limiting cereal crop production worldwide, a full-length cDNA encoding calreticulin protein namely TaCRT was isolated from wheat (Triticum aestivum L.). The deduced amino acid sequence of TaCRT shares high homology with other plant CRTs. Phylogenetic analysis indicates that TaCRT cDNA clone encodes a wheat CRT3 isoform. Southern analysis suggests that the wheat genome contains three copies of TaCRT. Subcellular locations of TaCRT were the cytoplasm and nucleus, evidenced by transient expression of GFP fused with TaCRT in onion epidermal cells. Enhanced accumulation of TaCRT transcript was observed in wheat seedlings in response to PEG-induced drought stress. To investigate further whether TaCRT is involved in the drought-stress response, transgenic plants were constructed. Compared to the wild-type and GFP-expressing plants, TaCRT-overexpressing tobacco (Nicotiana benthamiana) plants grew better and exhibited less wilt under the drought stress. Moreover, TaCRT-overexpressing plants exhibited enhanced drought resistance to water deficit, as shown by their capacity to maintain higher WUE (water use efficiency), WRA (water retention ability), RWC (relative water content), and lower MDR (membrane damaging ratio) (P < or = 0.01) under water-stress conditions. In conclusion, a cDNA clone encoding wheat CRT was successfully isolated and the results suggest that TaCRT is involved in the plant response to drought stress, indicating a potential in the transgenic improvements of plant water-stress.

  17. Calreticulin is highly expressed in pancreatic cancer stem-like cells.

    PubMed

    Matsukuma, Satoshi; Yoshimura, Kiyoshi; Ueno, Tomio; Oga, Atsunori; Inoue, Moeko; Watanabe, Yusaku; Kuramasu, Atsuo; Fuse, Masanori; Tsunedomi, Ryouichi; Nagaoka, Satoshi; Eguchi, Hidetoshi; Matsui, Hiroto; Shindo, Yoshitaro; Maeda, Noriko; Tokuhisa, Yoshihiro; Kawano, Reo; Furuya-Kondo, Tomoko; Itoh, Hiroshi; Yoshino, Shigefumi; Hazama, Shoichi; Oka, Masaaki; Nagano, Hiroaki

    2016-11-01

    Cancer stem-like cells (CSLCs) in solid tumors are thought to be resistant to conventional chemotherapy or molecular targeting therapy and to contribute to cancer recurrence and metastasis. In this study, we aimed to identify a biomarker of pancreatic CSLCs (P-CSLCs). A P-CSLC-enriched population was generated from pancreatic cancer cell lines using our previously reported method and its protein expression profile was compared with that of parental cells by 2-D electrophoresis and tandem mass spectrometry. The results indicated that a chaperone protein calreticulin (CRT) was significantly upregulated in P-CSLCs compared to parental cells. Flow cytometry analysis indicated that CRT was mostly localized to the surface of P-CSLCs and did not correlate with the levels of CD44v9, another P-CSLC biomarker. Furthermore, the side population in the CRT(high) /CD44v9(low) population was much higher than that in the CRT(low) /CD44v9(high) population. Calreticulin expression was also assessed by immunohistochemistry in pancreatic cancer tissues (n = 80) obtained after radical resection and was found to be associated with patients' clinicopathological features and disease outcomes in the Cox proportional hazard regression model. Multivariate analysis identified CRT as an independent prognostic factor for pancreatic cancer patients, along with age and postoperative therapy. Our results suggest that CRT can serve as a biomarker of P-CSLCs and a prognostic factor associated with poorer survival of pancreatic cancer patients. This novel biomarker can be considered as a therapeutic target for cancer immunotherapy.

  18. An induced hypersensitive-like response limits expression of foreign peptides via a recombinant TMV-based vector in a susceptible tobacco.

    PubMed

    Li, Mangmang; Li, Ping; Song, Rentao; Xu, Zhengkai

    2010-11-29

    By using tobacco mosaic virus (TMV)-based vectors, foreign epitopes of the VP1 protein from food-and-month disease virus (FMDV) could be fused near to the C-terminus of the TMV coat protein (CP) and expressed at high levels in susceptible tobacco plants. Previously, we have shown that the recombinant TMV vaccines displaying FMDV VP1 epitopes could generate protection in guinea pigs and swine against the FMDV challenge. Recently, some recombinant TMV, such as TMVFN20 that contains an epitope FN20 from the FMDV VP1, were found to induce local necrotic lesions (LNL) on the inoculated leaves of a susceptible tobacco, Nicotiana tabacum Samsun nn. This hypersensitive-like response (HLR) blocked amplification of recombinant TMVFN20 in tobacco and limited the utility of recombinant TMV vaccines against FMDV. Here we investigate the molecular mechanism of the HLR in the susceptible Samsun nn. Histochemical staining analyses show that these LNL are similar to those induced in a resistant tobacco Samsun NN inoculated with wild type (wt) TMV. The recombinant CP subunits are specifically related to the HLR. Interestingly, this HLR in Samsun nn (lacking the N/N'-gene) was able to be induced by the recombinant TMV at both 25°C and 33°C, whereas the hypersensitive response (HR) in the resistant tobacco plants induced by wt TMV through the N/N'-gene pathways only at a permissive temperature (below 30°C). Furthermore, we reported for the first time that some of defense response (DR)-related genes in tobacco were transcriptionally upregulated during HLR. Unlike HR, HLR is induced in the susceptible tobacco through N/N'-gene independent pathways. Induction of the HLR is associated with the expression of the recombinant CP subunits and upregulation of the DR-related genes.

  19. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  20. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  1. Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin.

    PubMed

    Cheng, Yuanyuan; Yang, Chuanbin; Zhao, Jia; Tse, Hung Fat; Rong, Jianhui

    2015-02-01

    Amygdalin is a fruit-derived glycoside with the potential for treating neurodegenerative diseases. This study was designed to identify the neuroprotective and neuritogenic activities of amygdalin. We initially demonstrated that amygdalin enhanced nerve growth factor (NGF)-induced neuritogenesis and attenuated 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat dopaminergic PC12 cells. To define protein targets for amygdalin, we selected a total of 11 mostly regulated protein spots from two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels for protein identification by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. We verified the effect of amygdalin on six representative proteins (i.e., calreticulin, Hsp90β, Grp94, 14-3-3η, 14-3-3ζ/δ and Rab GDI-α) for biological relevance to neuronal survival and differentiation. Calcium-binding chaperone calreticulin is of special interest for its activities to promote folding, oligomeric assembly and quality control of proteins that modulate cell survival and differentiation. We transiently knocked down calreticulin expression by specific siRNA and studied its effect on the neuroprotective and neuritogenic activities of amygdalin. We found that amygdalin failed to enhance NGF-induced neuritogenesis in calreticulin-siRNA transfected cells. On the other hand, amygdalin rescued 6-OHDA-induced loss of calreticulin expression. We also found that amygdalin increased the intracellular calcium concentration possibly via inducing calreticulin. Collectively, our results demonstrated the role of calreticulin in mediating the neuroprotective and neuritogenic activities of amygdalin.

  2. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class I complex (SLA-I).

    PubMed

    Oleksiewicz, M B; Kristensen, B; Ladekjaer-Mikkelsen, A-S; Nielsen, J

    2002-05-01

    The extracellular domains of swine leukocyte antigen class I (SLA-I, major histocompatibility complex protein class I) were cloned and sequenced for two haplotypes (H4 and H7) which do not share any alleles based on serological typing, and which are the most important in Danish farmed pigs. The extracellular domain of SLA-I was connected to porcine beta2 microglobulin by glycine-rich linkers. The engineered single-chain proteins, consisting of fused SLA-I and beta2 microglobulin, were overexpressed as inclusion bodies in Escherichia coli. Also, variants were made of the single-chain proteins, by linking them through glycine-rich linkers to peptides representing T-cell epitopes from classical swine fever virus (CSFV) and foot-and-mouth disease virus (FMDV). An in vitro refold assay was developed, using a monoclonal anti-SLA antibody (PT85A) to gauge refolding. The single best-defined, SLA-I restricted porcine CD8(+) T-cell epitope currently known is a 9-residue peptide from the polyprotein of CSFV (J. Gen. Virol. 76 (1995) 3039). Based on results with the CSFV epitope and two porcine haplotypes (H4 and H7), the in vitro refold assay appeared able to discriminate between peptide-free and peptide-occupied forms of SLA-I. It remains to be seen whether the rapid and technically very simple in vitro refold assay described here will prove generally applicable for the screening of virus-derived peptides for SLA-I binding.

  3. [Analytical biotechnology of recombinant peptides and proteins. II. Primary structure of the fusion protein containing human proinsulin and optimization of its proteolysis by trypsin].

    PubMed

    Sergeev, N V; Glukhova, N S; Nazimov, I V; Guliaev, V A; Donetskiĭ, I A; Miroshnikov, A I

    2000-07-01

    The kinetics of trypsin proteolysis of the fusion protein (FP) containing human proinsulin was studied by a set of analytical micromethods. These were the microcolumn reversed-phase HPLC and the qualitative identification by MALDI-TOF mass spectrometry and amino acid sequencing. The first stage of the proteolysis was shown to be the cleavage of FP into the leader fragment and proinsulin. The subsequent splitting off of C-peptide from proinsulin results in the formation of ArgB31-ArgB32-insulin. The effect of temperature on the formation of de-ThrB30-insulin, a by-product, was also studied. The structure of FP was confirmed by the peptide mapping technique, and the leader fragment was shown to contain no N-terminal Met residue.

  4. Calnexin and calreticulin bind to enzymically active tissue-type plasminogen activator during biosynthesis and are not required for folding to the native conformation.

    PubMed Central

    Allen, S; Bulleid, N J

    1997-01-01

    The roles of the endoplasmic-reticulum lectins calnexin and calreticulin in the folding of tissue-type plasminogen activator (tPA) have been investigated using an in vitro translation system that reconstitutes these processes as they would occur in the intact cell. Using co-immunoprecipitation of newly synthesized tPA with antibodies to calnexin and calreticulin, it was demonstrated that the interaction of tPA with both lectins was dependent upon tPA glycosylation and glucosidase trimming. When tPA was synthesized in the presence of semi-permeabilized cells under conditions preventing complex formation with calnexin and calreticulin, the translation product had a specific plasminogenolytic activity identical with that when synthesized under conditions permitting interactions with both lectins. Furthermore, complexes of tPA bound to calnexin and calreticulin were shown to be enzymically active. These results demonstrate that calnexin and calreticulin can form a stable interaction with correctly folded tPA; however, such interactions are not required for the synthesis of enzymically active tPA. PMID:9359841

  5. Plasmodesmata without callose and calreticulin in higher plants - open channels for fast symplastic transport?

    PubMed

    Demchenko, Kirill N; Voitsekhovskaja, Olga V; Pawlowski, Katharina

    2014-01-01

    Plasmodesmata (PD) represent membrane-lined channels that link adjacent plant cells across the cell wall. PD of higher plants contain a central tube of endoplasmic reticulum (ER) called desmotubule. Membrane and lumen proteins seem to be able to move through the desmotubule, but most transport processes through PD occur through the cytoplasmic annulus (Brunkard etal., 2013). Calreticulin (CRT), a highly conserved Ca(2+)-binding protein found in all multicellular eukaryotes, predominantly located in the ER, was shown to localize to PD, though not all PD accumulate CRT. In nitrogen-fixing actinorhizal root nodules of the Australian tree Casuarina glauca, the primary walls of infected cells containing the microsymbiont become lignified upon infection. TEM analysis of these nodules showed that during the differentiation of infected cells, PD connecting infected cells, and connecting infected and adjacent uninfected cells, were reduced in number as well as diameter (Schubert etal., 2013). In contrast with PD connecting young infected cells, and most PD connecting mature infected and adjacent uninfected cells, PD connecting mature infected cells did not accumulate CRT. Furthermore, as shown here, these PD were not associated with callose, and based on their diameter, they probably had lost their desmotubules. We speculate that either this is a slow path to PD degradation, or that the loss of callose accumulation and presumably also desmotubules leads to the PD becoming open channels and improves metabolite exchange between cells.

  6. Role of calreticulin mutations in the aetiological diagnosis of splanchnic vein thrombosis.

    PubMed

    Turon, Fanny; Cervantes, Francisco; Colomer, Dolors; Baiges, Anna; Hernández-Gea, Virginia; Garcia-Pagán, Juan Carlos

    2015-01-01

    Myeloproliferative neoplasms are the most common aetiological cause of splanchnic vein thrombosis (SVT). In these patients, the JAK2V617F mutation has facilitated the diagnosis of an underlying myeloproliferative neoplasm (MPN). Recently, somatic mutations of the calreticulin (CALR) gene have been identified in MPN patients lacking the JAK2 mutation. The aim of the present study was to ascertain whether CALR mutations could also play a role in the diagnosis of masked MPN in SVT. We included 209 patients with SVT (140 with PVT and 69 with Budd-Chiari syndrome) who had a complete aetiological diagnostic work-out. They were investigated for CALR mutations. CALR mutations were found in 4 of the 209 patients (1.9%). They represented 5.4% of patients with an underlying MPN of whom all had already been diagnosed with a MPN using conventional criteria including bone marrow biopsy findings. In the screening of underlying MPNs in patients with SVT, given its high frequency in these disorders, the JAK2 mutation must be evaluated first and, if negative, CALR mutations should also be investigated. This approach would increase the diagnostic yield of masked MPNs by reducing the need for additional studies. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. The Mutation Profile of Calreticulin in Patients with Myeloproliferative Neoplasms and Acute Leukemia

    PubMed Central

    Wang, Jingyi; Hao, Jianguo; He, Na; Ji, Chunyan; Ma, Daoxin

    2016-01-01

    Objective: Calreticulin (CALR) plays important roles in cell proliferation, apoptosis, and immune responses. CALR mutations were described recently in Janus kinase 2 gene (JAK2)-negative or MPL-negative primary myelofibrosis (PMF) and essential thrombocythemia (ET) patients. CALR trails JAK2 as the second most mutated gene in myeloproliferative neoplasms (MPNs). However, little is known about CALR mutation in Chinese patients with leukemia. In the present study, a cohort of 305 Chinese patients with hematopoietic neoplasms was screened for CALR mutations, with the aim of uncovering the frequency of CALR mutations in leukemia and MPNs. Materials and Methods: Polymerase chain reaction and direct sequencing were performed to analyze mutations of CALR in 305 patients with hematopoietic malignancies, including 135 acute myeloid leukemia patients, 57 acute lymphoblastic leukemia patients, and 113 MPN patients. Results: CALR mutations were found in 10.6% (12 of 113) of samples from patients with MPNs. CALR mutations were determined in 11.3% (6 of 53), 21.7% (5 of 23), and 9.1% (1/11) of patients with ET, PMF, and unclassifiable MPN, respectively. Conclusion: We showed that MPN patients carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels compared to those with mutated JAK2. However, all of the leukemia patients had negative results for CALR mutations. PMID:26377485

  8. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.

    PubMed

    Araki, Marito; Yang, Yinjie; Masubuchi, Nami; Hironaka, Yumi; Takei, Hiraku; Morishita, Soji; Mizukami, Yoshihisa; Kan, Shin; Shirane, Shuichi; Edahiro, Yoko; Sunami, Yoshitaka; Ohsaka, Akimichi; Komatsu, Norio

    2016-03-10

    Recurrent somatic mutations of calreticulin (CALR) have been identified in patients harboring myeloproliferative neoplasms; however, their role in tumorigenesis remains elusive. Here, we found that the expression of mutant but not wild-type CALR induces the thrombopoietin (TPO)-independent growth of UT-7/TPO cells. We demonstrated that c-MPL, the TPO receptor, is required for this cytokine-independent growth of UT-7/TPO cells. Mutant CALR preferentially associates with c-MPL that is bound to Janus kinase 2 (JAK2) over the wild-type protein. Furthermore, we demonstrated that the mutant-specific carboxyl terminus portion of CALR interferes with the P-domain of CALR to allow the N-domain to interact with c-MPL, providing an explanation for the gain-of-function property of mutant CALR. We showed that mutant CALR induces the phosphorylation of JAK2 and its downstream signaling molecules in UT-7/TPO cells and that this induction was blocked by JAK2 inhibitor treatment. Finally, we demonstrated that c-MPL is required for TPO-independent megakaryopoiesis in induced pluripotent stem cell-derived hematopoietic stem cells harboring the CALR mutation. These findings imply that mutant CALR activates the JAK2 downstream pathway via its association with c-MPL. Considering these results, we propose that mutant CALR promotes myeloproliferative neoplasm development by activating c-MPL and its downstream pathway.

  9. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) calreticulin.

    PubMed

    Pinto, Rute D; Moreira, Ana R; Pereira, Pedro J B; dos Santos, Nuno M S

    2013-06-01

    Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin.

    PubMed

    Tufi, R; Panaretakis, T; Bianchi, K; Criollo, A; Fazi, B; Di Sano, F; Tesniere, A; Kepp, O; Paterlini-Brechot, P; Zitvogel, L; Piacentini, M; Szabadkai, G; Kroemer, G

    2008-02-01

    Some chemotherapeutic agents can elicit apoptotic cancer cell death, thereby activating an anticancer immune response that influences therapeutic outcome. We previously reported that anthracyclins are particularly efficient in inducing immunogenic cell death, correlating with the pre-apoptotic exposure of calreticulin (CRT) on the plasma membrane surface of anthracyclin-treated tumor cells. Here, we investigated the role of cellular Ca(2+) homeostasis on CRT exposure. A neuroblastoma cell line (SH-SY5Y) failed to expose CRT in response to anthracyclin treatment. This defect in CRT exposure could be overcome by the overexpression of Reticulon-1C, a manipulation that led to a decrease in the Ca(2+) concentration within the endoplasmic reticulum lumen. The combination of Reticulon-1C expression and anthracyclin treatment yielded more pronounced endoplasmic reticulum Ca(2+) depletion than either of the two manipulations alone. Chelation of intracellular (and endoplasmic reticulum) Ca(2+), targeted expression of the ligand-binding domain of the IP(3) receptor and inhibition of the sarco-endoplasmic reticulum Ca(2+)-ATPase pump reduced endoplasmic reticulum Ca(2+) load and promoted pre-apoptotic CRT exposure on the cell surface, in SH-SY5Y and HeLa cells. These results provide evidence that endoplasmic reticulum Ca(2+) levels control the exposure of CRT.

  11. Is the Antitumor Property of Trypanosoma cruzi Infection Mediated by Its Calreticulin?

    PubMed Central

    Ramírez-Toloza, Galia; Abello, Paula; Ferreira, Arturo

    2016-01-01

    Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas’ disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the classical complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host. PMID:27462315

  12. Serum calreticulin as a novel biomarker of juvenile idiopathic arthritis disease activity

    PubMed Central

    Hashaad, Nashwa Ismail; Fawzy, Rasha Mohamed; Elazem, Abeer Ahmed Abo; Youssef, Mohamed Ibrahim

    2017-01-01

    Objective This study aimed to investigate the relations between calreticulin (CRT) serum level and both disease activity and severity parameters in juvenile idiopathic arthritis (JIA). Material and Methods In this study, 60 children with JIA and 50 age-and-sex-matched healthy subjects were enrolled. The assessment of the disease activity was done using juvenile arthritis disease activity score 27 (JADAS-27). The assessment of disease severity was done via gray-scale ultrasonography (US) and power Doppler US (PDUS). Enzyme-linked immunosorbent assay (ELISA) was used to assay the serum level of human CRT. Results The mean serum CRT levels in JIA patients was 8.6±1.2 ng/mL and showed a highly significant increase (p=0.001) as compared to the mean serum levels in the controls (5.02±0.77 ng/mL). There were statistically significant positive correlations between the serum CRT levels and disease duration, tender joint count, swollen joint count, visual analog scale, erythrocyte sedimentation rate, JADAS-27, C-reactive protein, rheumatoid factor titer, and ultrasonographic grading for synovitis and neovascularization. Conclusion Elevated serum CRT levels in JIA patients and its correlations with JIA disease activity and severity parameters signified that CRT might be used as a novel biomarker for disease activity and severity in JIA. PMID:28293448

  13. The Thrombopoietin Receptor: Structural Basis of Traffic and Activation by Ligand, Mutations, Agonists, and Mutated Calreticulin

    PubMed Central

    Varghese, Leila N.; Defour, Jean-Philippe; Pecquet, Christian; Constantinescu, Stefan N.

    2017-01-01

    A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms. PMID:28408900

  14. Detection of elevated antibody against calreticulin by ELISA in aged cynomolgus monkey plasma.

    PubMed

    Higashino, Atsunori; Kageyama, Takashi; Kantha, Sachi Sri; Terao, Keiji

    2011-02-01

    Calreticulin (Crt) is a molecular chaperone ubiquitously present in the endoplasmic reticulum. In non-human primates, age-related occurrence of anti-Crt antibody has not been reported. We developed an ELISA assay for an anti-Crt antibody and determined the age-related increase in the levels of anti-Crt antibody in three groups of cynomolgus monkeys: juvenile (1.5 yr), young adults (5-10 yr) and aged adults (20-34 yr). Mean ± SD auto-antibody levels at 450 nm in juvenile, young adults and aged groups were 0.23 ± 0.18, 0.30 ± 0.28, and 0.55 ± 0.33, respectively. Statistically significant differences were noted in the autoantibody levels to Crt among the aged group and juvenile or young adults. This is the first report to demonstrate the expression of anti-Crt autoantibody in aged monkeys and indicates that cynomologous monkeys may serve as an appropriate nonhuman primate model for studies of age-related alteration of immune function in elderly humans. Though preliminary, this finding merits further investigation to determine the relationship between immunosenescence and expression of antibodies to Crt.

  15. Calreticulin Release at an Early Stage of Death Modulates the Clearance by Macrophages of Apoptotic Cells

    PubMed Central

    Osman, Rim; Tacnet-Delorme, Pascale; Kleman, Jean-Philippe; Millet, Arnaud; Frachet, Philippe

    2017-01-01

    Calreticulin (CRT) is a well-known “eat-me” signal harbored by dying cells participating in their recognition by phagocytes. CRT is also recognized to deeply impact the immune response to altered self-cells. In this study, we focus on the role of the newly exposed CRT following cell death induction. We show that if CRT increases at the outer face of the plasma membrane and is well recognized by C1q even when phosphatidylserine is not yet detected, CRT is also released in the surrounding milieu and is able to interact with phagocytes. We observed that exogenous CRT is endocytosed by THP1 macrophages through macropinocytosis and that internalization is associated with a particular phenotype characterized by an increase of cell spreading and migration, an upregulation of CD14, an increase of interleukin-8 release, and a decrease of early apoptotic cell uptake. Importantly, CRT-induced pro-inflammatory phenotype was confirmed on human monocytes-derived macrophages by the overexpression of CD40 and CD274, and we found that monocyte-derived macrophages exposed to CRT display a peculiar polarization notably associated with a downregulation of the histocompatibility complex of class II molecules hampering its description through the classical M1/M2 dichotomy. Altogether our results highlight the role of soluble CRT with strong possible consequences on the macrophage-mediated immune response to dying cell. PMID:28878781

  16. Phylogenetic conservation of the preapoptotic calreticulin exposure pathway from yeast to mammals.

    PubMed

    Madeo, Frank; Durchschlag, Michael; Kepp, Oliver; Panaretakis, Theocharis; Zitvogel, Laurence; Fröhlich, Kai-Uwe; Kroemer, Guido

    2009-02-15

    The pre-apoptotic exposure of calreticulin (CRT) on the cell surface determines the efficient engulfment of mouse or human tumor cells by antigen-presenting dendritic cells. CRT exposure is rapidly induced by anthracyclins and ionizing irradiation and follows a complex signal transduction pathway that is interrupted by depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs, as well as by knock-in mutation of eIF2alpha (to make it non-phosphorylable by PERK) or BAP31 (to render it uncleavable by caspase-8). Here, we show that yeast (Saccharomyces cerevisiae) can expose the CRT orthologue CNE1 on the surface in response to cell death induced by the anthracylin mitoxantrone (MTX). This MTX-triggered CNE1 translocation is abolished by knockout of the yeast orthologues of PERK (Gcn2), BAP31 (Yet3) and SNAREs (Nyv1, Sso1). Altogether, our data point to the existence of an ancestral and cell death-related CRT exposure pathway with conserved elements shared between unicellular fungi and mammals.

  17. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway.

    PubMed

    Zitvogel, Laurence; Kepp, Oliver; Senovilla, Laura; Menger, Laurie; Chaput, Nathalie; Kroemer, Guido

    2010-06-15

    In response to some chemotherapeutic agents such as anthracyclines and oxaliplatin, cancer cells undergo immunogenic apoptosis, meaning that their corpses are engulfed by dendritic cells and that tumor cell antigens are presented to tumor-specific CD8(+) T cells, which then control residual tumor cells. One of the peculiarities of immunogenic apoptosis is the early cell surface exposure of calreticulin (CRT), a protein that usually resides in the lumen of the endoplasmic reticulum (ER). When elicited by anthracyclines or oxaliplatin, the CRT exposure pathway is activated by pre-apoptotic ER stress and the phosphorylation of the eukaryotic translation initiation factor eIF2alpha by the kinase PERK, followed by caspase-8-mediated proteolysis of the ER-sessile protein BAP31, activation of the pro-apoptotic proteins Bax and Bak, anterograde transport of CRT from the ER to the Golgi apparatus and exocytosis of CRT-containing vesicles, finally resulting in CRT translocation onto the plasma membrane surface. Interruption of this complex pathway abolishes CRT exposure, annihilates the immunogenicity of apoptosis, and reduces the immune response elicited by anticancer chemotherapies. We speculate that human cancers that are incapable of activating the CRT exposure pathway are refractory to the immune-mediated component of anticancer therapies.

  18. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide.

    PubMed

    Zhou, Jing; Guo, Xiaodong; Zheng, Qixin; Wu, Yongchao; Cui, Fuzai; Wu, Bin

    2017-04-01

    An ideal bone substitute should be biocompatible, biodegradable, osteoinductive and osteoconductive. In our previous work, we fabricated a three-dimensional porous scaffold based on mineralized recombinant human-like collagen, nano-hydroxyapatite/recombinant human-like collagen/poly(lactic acid) (nHA/RHLC/PLA). Like other HA/collagen scaffolds, the nHA/RHLC/PLA scaffold lacked osteoinductive bioactivity. The purpose of the present study was to develop a polydopamine (pDA)-assisted BMP-2-derived peptide (designated as P24) surface modification strategy for improving the osteogenesis of the nHA/RHLC/PLA scaffold. The immobilization efficiency and release kinetics of P24, and in vitro osteoinductive activity of the nHA/RHLC/PLA-pDA-P24 scaffold were examined. The in vivo osteoinductive activity of the scaffold was evaluated usinga rat criticalsize calvarial defect model. Our results showed that pDA-assisted surface modification could more efficiently mediate the immobilization of P24 peptide onto the scaffold surfaces than physical adsorption. The in vitro release study showed that the P24 peptide was released slowly and steadily from the nHA/RHLC/PLA-pDA-P24 scaffold in a sustained manner, with a short initial burst release only during the first day, while the physisorbed nHA/RHLC/PLA-P24 group showed a sharp burst P24 release followed by a plateau phase. In vitro osteogenesis assay, the ALP activitiy and mRNA expression of osteo-specific markers of rat-derived mesenchymal stem cells (rMSCs) in the nHA/RHLC/PLA-pDA-P24 group were significantly higher than those of the nHA/RHLC/PLA-P24 and non-P24-loaded nHA/RHLC/PLA groups. In vivo, three-dimensional CT evaluation and histological examination demonstrated the nHA/RHLC/PLA-pDA-P24 scaffolds significantly enhanced bone regeneration of rat cranial defects to a much greater extent than physisorbed nHA/RHLC/PLA-P24 and non-P24-loaded nHA/RHLC/PLA scaffolds. Our findings indicated that the pDA-assisted surface modification

  19. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells.

    PubMed

    Wu, Fe-Lin Lin; Yeh, Tzyy-Harn; Chen, Ying-Luen; Chiu, Yu-Chin; Cheng, Ju-Chen; Wei, Ming-Feng; Shen, Li-Jiuan

    2014-08-04

    Recombinant arginine deiminase (rADI) has been used in clinical trials for arginine-auxotrophic cancers. However, the emergence of rADI resistance, due to the overexpression of argininosuccinate synthetase (AS), has introduced an obstacle in its clinical application. Here, we have proposed a strategy for the intracellular delivery of rADI, which depletes both extracellular and intracellular arginine, to restore the sensitivity of rADI-resistant cancer cells. In this study, the C terminus of heparin-binding hemagglutinin adhesion protein from Mycobacterium tuberculosis (HBHAc), which contains 23 amino acids, was used to deliver rADI into rADI-resistant human breast adenocarcinoma cells (MCF-7). Chemical conjugates (l- and d-HBHAc-SPDP-rADI) and a recombinant fusion protein (rHBHAc-ADI) were produced. l- and d-HBHAc-SPDP-rADI showed a significantly higher cellular uptake of rADI by MCF-7 cells compared to that of rADI alone. Cell viability was significantly decreased in a dose-dependent manner in response to l- and d-HBHAc-SPDP-rADI treatments. In addition, the ratio of intracellular concentration of citrulline to arginine in cells treated with l- and d-HBHAc-SPDP-rADI was significantly increased by 1.4- and 1.7-fold, respectively, compared with that obtained in cells treated with rADI alone (p < 0.001). Similar results were obtained with the recombinant fusion protein rHBHAc-ADI. Our study demonstrates that the increased cellular uptake of rADI by HBHAc modification can restore the sensitivity of rADI treatment in MCF-7 cells. rHBHAc-ADI may represent a novel class of antitumor enzyme with an intracellular mechanism that is independent of AS expression.

  20. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide

    PubMed Central

    Scafetta, Gaia; Renzi, Anastasia; De Canio, Michele; Sicilia, Francesca; Nevi, Lorenzo; Casa, Domenico; Panetta, Rocco; Berloco, Pasquale Bartolomeo; Reid, Lola M.; Federici, Giorgio; Gaudio, Eugenio; Maroder, Marella; Alvaro, Domenico

    2015-01-01

    Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs) towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1) has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells. PMID:26252949

  1. Calreticulin associates with non-HLA-A,-B class I proteins in the human choriocarcinoma cell lines JEG-3 and BeWo.

    PubMed Central

    Wainwright, S D; Simpson, K L; Holmes, C H

    1998-01-01

    Human placental trophoblast expresses as unusual repertoire of major histocompatibility complex (MHC) class I products that appears to reflect the unique role of this epithelium in mediating feto-maternal relations during pregnancy. Trophoblast is devoid of human leucocyte antigen (HLA)-A,-B antigens but can express one or more non-HLA-A,-B class I proteins. The human choriocarcinoma cell lines JEG-3, BeWo and JAR are widely used as models to study trophoblast. During attempts to isolate non-HLA-A,-B class I from JEG-3 and BeWo by immunoaffinity chromatography using a monoclonal antibody to beta 2-microglobulin we observed a 55,000 MW protein co-purifying with class I. N-terminal amino acid sequencing and immunoblotting using a specific antiserum identified this product as calreticulin, a molecule recently shown to be involved in the assembly of classical class I in human B-lymphoblastoid cells. In our hands JEG-3 and BeWo were found to express 45,000 MW non-HLA-A,-B class I proteins while the 40,000 MW HLA-G product was identified only in JEG-3. Our data suggest that calreticulin associates with non-HLA-A,-B class I heterodimers and with free 45,000 MW non-HLA-A,-B class I H chains in JEG-3. JAR was found to be devoid of detectable class I H chains but contained beta 2-microglobulin and calreticulin. However, calreticulin-beta 2-microglobulin complexes were not detected in JAR. Calreticulin and class I were apparently co-localized within the endoplasmic reticulum of JEG-3 cells whereas only class I was expressed at the cell surface. These studies demonstrate that calreticulin is associated with non-HLA-A,-B class I products in human choriocarcinoma cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9640257

  2. Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers for spinal muscular atrophy

    PubMed Central

    2013-01-01

    Background Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations in the survival motor neuron 1 (SMN1) gene. Recent breakthroughs in preclinical research have highlighted several potential novel therapies for SMA, increasing the need for robust and sensitive clinical trial platforms for evaluating their effectiveness in human patient cohorts. Given that most clinical trials for SMA are likely to involve young children, there is a need for validated molecular biomarkers to assist with monitoring disease progression and establishing the effectiveness of therapies being tested. Proteomics technologies have recently been highlighted as a potentially powerful tool for such biomarker discovery. Methods We utilized label-free proteomics to identify individual proteins in pathologically-affected skeletal muscle from SMA mice that report directly on disease status. Quantitative fluorescent western blotting was then used to assess whether protein biomarkers were robustly changed in muscle, skin and blood from another mouse model of SMA, as well as in a small cohort of human SMA patient muscle biopsies. Results By comparing the protein composition of skeletal muscle in SMA mice at a pre-symptomatic time-point with the muscle proteome at a late-symptomatic time-point we identified increased expression of both Calreticulin and GRP75/Mortalin as robust indicators of disease progression in SMA mice. We report that these protein biomarkers were consistently modified in different mouse models of SMA, as well as across multiple skeletal muscles, and were also measurable in skin biopsies. Furthermore, Calreticulin and GRP75/Mortalin were measurable in muscle biopsy samples from human SMA patients. Conclusions We conclude that label-free proteomics technology provides a powerful platform for biomarker identification in SMA, revealing Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers capable of reporting on disease progression in

  3. Novel distribution of calreticulin to cardiomyocyte mitochondria and its increase in a rat model of dilated cardiomyopathy

    SciTech Connect

    Zhang, Ming; Wei, Jin; Li, Yali; Shan, Hu; Yan, Rui; Lin, Lin; Zhang, Qiuhong; Xue, Jiahong

    2014-06-20

    Highlights: • Calreticulin can also be found in cardiomyocyte mitochondria. • The mitochondrial content of calreticulin is increased in DCM hearts. • Increased expression of mitochondrial CRT may induce mitochondrial damage. • Mitochondrial CRT may inhibit the phosphorylation of mitochondrial STAT3. - Abstract: Background: Calreticulin (CRT), a Ca{sup 2+}-binding chaperone of the endoplasmic reticulum, can also be found in several other locations including the cytosol, nucleus, secretory granules, the outer side of the plasma membrane, and the extracellular matrix. Whether CRT is localized at mitochondria of cardiomyocytes and whether such localization is affected under DCM are still unclear. Methods and results: The DCM model was generated in rats by the daily oral administration of furazolidone for thirty weeks. Echocardiographic and hemodynamic studies demonstrated enlarged left ventricular dimensions and reduced systolic and diastolic function in DCM rats. Immuno-electron microscopy and Western blot showed that CRT was present in cardiomyocyte mitochondria and the mitochondrial content of CRT was increased in DCM hearts (P < 0.05). Morphometric analysis showed notable myocardial apoptosis and mitochondrial swelling with fractured or dissolved cristae in the DCM hearts. Compared with the control group, the mitochondrial membrane potential level of the freshly isolated cardiac mitochondria and the enzyme activities of cytochrome c oxidase and succinate dehydrogenase in the model group were significantly decreased (P < 0.05), and the myocardial apoptosis index and the caspase activities of caspase-9 and caspase-3 were significantly increased (P < 0.05). Pearson linear correlation analysis showed that the mitochondrial content of CRT had negative correlations with the mitochondrial function, and a positive correlation with myocardial apoptosis index (P < 0.001). The protein expression level of cytochrome c and the phosphorylation activity of STAT3 in the

  4. Association of calreticulin expression with disease activity and organ damage in systemic lupus erythematosus patients.

    PubMed

    Wang, Yichao; Xie, Jiaogui; Liu, Zhili; Fu, Hongwei; Huo, Qianyu; Gu, Yajun; Liu, Yunde

    2017-05-01

    Measurement of disease activity in patients with systemic lupus erythematosus (SLE) is important for monitoring disease progression and evaluating the therapeutic effects. The severity of organ damage correlates with clinical status and prognosis. Therefore, it is imperative to find an effective biomarker measuring disease activity and organ damage for SLE management. The present study investigated the possibility of serum calreticulin (CRT) in the assessment of disease activity and organ damage in SLE patients. Serum CRT levels from 80 patients with SLE, 55 patients with other autoimmune diseases and 60 healthy controls (HC) were measured by ELISA. Disease activity was assessed using the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) scores. Organ damage was evaluated with the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index. CRT levels in SLE were significantly higher than that in other autoimmune diseases and HC. CRT was correlated with SLEDAI-2K score (r=0.3345, P=0.0024), and with anti-double-stranded DNA (anti-dsDNA) (r=0.4483, P<0.0001). A significant negative correlation of CRT levels with complement 3 (r=-0.3635, P=0.0009) and complement 4 (r=-0.3507, P=0.0014) was observed in patients with SLE. Furthermore, the patients with SLE and a positive anti-Ro52 result had higher levels of CRT compared with those with a negative anti-Ro52 result (P<0.001). Elevated levels of CRT were also reported among patients with SLE who also indicated the presence of cumulative organ damage. In addition, increased expression of CRT correlated with the presence of lupus nephritis. In conclusion, the results of the current report provided that CRT may be used as a potential biomarker for clinical diagnosis and of prognosis, providing additional information regarding disease activity and organ damage alongside other traditional indices.

  5. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp

    PubMed Central

    Siebert, Aisha L.; Wheeler, David; Werren, John H.

    2015-01-01

    A new method is developed to investigate functions of venom components, using venom gene RNA interference knockdown in the venomous animal coupled with RNA sequencing in the envenomated host animal. The vRNAi/eRNA-Seq approach is applied to the venom calreticulin component (v-crc) of the parasitoid wasp Nasonia vitripennis. Parasitoids are common, venomous animals that inject venom proteins into host insects, where they modulate physiology and metabolism to produce a better food resource for the parasitoid larvae. vRNAi/eRNA-Seq indicates that v-crc acts to suppress expression of innate immune cell response, enhance expression of clotting genes in the host, and up-regulate cuticle genes. V-crc KD also results in an increased melanization reaction immediately following envenomation. We propose that v-crc inhibits innate immune response to parasitoid venom and reduces host bleeding during adult and larval parasitoid feeding. Experiments do not support the hypothesis that v-crc is required for the developmental arrest phenotype observed in envenomated hosts. We propose that an important role for some venom components is to reduce (modulate) the exaggerated effects of other venom components on target host gene expression, physiology, and survival, and term this venom mitigation. A model is developed that uses vRNAi/eRNA-Seq to quantify the contribution of individual venom components to total venom phenotypes, and to define different categories of mitigation by individual venoms on host gene expression. Mitigating functions likely contribute to the diversity of venom proteins in parasitoids and other venomous organisms. PMID:26359852

  6. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice

    PubMed Central

    Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid

    2016-01-01

    Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789

  7. Calreticulin Transacetylase mediated activation of human platelet nitric oxide synthase by acetyl group donor compounds.

    PubMed

    Kumar, Ajit; Sushama, Anupam; Manral, Sushma; Sinha, Rajesh; Joshi, Rini; Singh, Usha; Rohil, Vishwajeet; Prasad, Ashok K; Parmar, Virinder S; Raj, Hanumantharao G

    2012-01-01

    Polyphenols have attracted immense interest because of their diverse biological and pharmacological activities. Surprisingly, not much is documented about the biological activities of acetoxy derivatives of polyphenol called polyphenolic acetates (PA). In our previous reports, we have conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed activation of neuronal nitric oxide synthase (nNOS) and tumor necrosis factor-α (TNF-α) induced nitric oxide synthase (iNOS) by PA. In the present work, specificity of CRTAase to various classes of PA was characterized in human platelet. The effect of PA, on platelet NOS and intracellular cyclic guanosine monophosphate (cGMP), and adenosine diphosphate (ADP)-induced platelet aggregation were studied in an elaborated manner. Platelet CRTAase exhibited differential specificities to polyphenolic acetates upon incubation with l-arginine leading to activation of NOS. The intraplatelet generation of NO was studied by flowcytometry using DCFH-DA. The differential specificities of CRTAase to PA were found to positively correlate with increased production of NO upon incubation of PRP with PA and l-arginine. Further, the inhibitory effect of l-NAME on PA induced NO formation in platelets substantiated the CRTAase catalyzed activation of NOS. The real-time RT-PCR profile of NOS isoforms confirmed the preponderance of eNOS over iNOS in human platelets on treatment with PA. Western blot analysis also reiterated the differential pattern of acetylation of eNOS by PA. PA were also found effective in increasing the intraplatelet cGMP levels and inhibiting ADP-induced platelet aggregation. It is worth mentioning that the effects of PA were found to be in tune with the specificities of platelet CRTAase to PA as the substrates.

  8. Calreticulin Regulates Transforming Growth Factor-β-stimulated Extracellular Matrix Production*

    PubMed Central

    Zimmerman, Kurt A.; Graham, Lauren V.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2013-01-01

    Endoplasmic reticulum (ER) stress is an emerging factor in fibrotic disease, although precise mechanisms are not clear. Calreticulin (CRT) is an ER chaperone and regulator of Ca2+ signaling up-regulated by ER stress and in fibrotic tissues. Previously, we showed that ER CRT regulates type I collagen transcript, trafficking, secretion, and processing into the extracellular matrix (ECM). To determine the role of CRT in ECM regulation under fibrotic conditions, we asked whether CRT modified cellular responses to the pro-fibrotic cytokine, TGF-β. These studies show that CRT−/− mouse embryonic fibroblasts (MEFs) and rat and human idiopathic pulmonary fibrosis lung fibroblasts with siRNA CRT knockdown had impaired TGF-β stimulation of type I collagen and fibronectin. In contrast, fibroblasts with increased CRT expression had enhanced responses to TGF-β. The lack of CRT does not impact canonical TGF-β signaling as TGF-β was able to stimulate Smad reporter activity in CRT−/− MEFs. CRT regulation of TGF-β-stimulated Ca2+ signaling is important for induction of ECM. CRT−/− MEFs failed to increase intracellular Ca2+ levels in response to TGF-β. NFAT activity is required for ECM stimulation by TGF-β. In CRT−/− MEFs, TGF-β stimulation of NFAT nuclear translocation and reporter activity is impaired. Importantly, CRT is required for TGF-β stimulation of ECM under conditions of ER stress, as tunicamycin-induced ER stress was insufficient to induce ECM production in TGF-β stimulated CRT−/− MEFs. Together, these data identify CRT-regulated Ca2+-dependent pathways as a critical molecular link between ER stress and TGF-β fibrotic signaling. PMID:23564462

  9. Norovirus recombination.

    PubMed

    Bull, Rowena A; Tanaka, Mark M; White, Peter A

    2007-12-01

    RNA recombination is a significant driving force in viral evolution. Increased awareness of recombination within the genus Norovirus of the family Calicivirus has led to a rise in the identification of norovirus (NoV) recombinants and they are now reported at high frequency. Currently, there is no classification system for recombinant NoVs and a widely accepted recombinant genotyping system is still needed. Consequently, there is duplication in reporting of novel recombinants. This has led to difficulties in defining the number and types of recombinants in circulation. In this study, 120 NoV nucleotide sequences were compiled from the current GenBank database and published literature. NoV recombinants and their recombination breakpoints were identified using three methods: phylogenetic analysis, SimPlot analysis and the maximum chi2 method. A total of 20 NoV recombinant types were identified in circulation worldwide. The recombination point is the ORF1/2 overlap in all isolates except one, which demonstrated a double recombination event within the polymerase region.

  10. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules.

    PubMed

    Altai, Mohamed; Wållberg, Helena; Orlova, Anna; Rosestedt, Maria; Hosseinimehr, Seyed Jalal; Tolmachev, Vladimir; Ståhl, Stefan

    2012-05-01

    Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

  11. Recombinant bovine growth hormone-induced reduction of atrial natriuretic peptide is associated with improved left ventricular contractility and reverse remodeling in cardiomyopathic UM-X7.1 hamsters with congestive heart failure.

    PubMed

    Mulumba, Mukandila; Céméus, Catia; Dumont, Louis; du Souich, Patrick; Ong, Huy; Marleau, Sylvie

    2007-04-01

    To assess the effect of short-term treatment with GH on left ventricular contractility and remodeling, after the development of heart failure in cardiomyopathic hamsters (CMH). Two groups of 200-day-old UM-X7.1 CMH received daily subcutaneous injections of recombinant bovine (rb) GH (1mg/kg/day) or 0.9% NaCl for 40 days. Golden Syrian hamsters (GSH) were used as controls. At 240-day-old, the hamsters were randomly subjected to (i) assessment of left ventricular systolic function in a Langendorff perfused mode followed by the determination of the passive diastolic pressure-volume relationship and morphometric measurements; (ii) assessment of left ventricular mRNA expression of genes belonging to the fetal gene program including atrial (ANP) and brain (BNP) natriuretic peptides and cardiac myosin heavy chain isoforms and of the circulating levels of the natriuretic peptides. Hearts from CMH were hypertrophied and dilated (p<0.05) compared to hearts from GSH, along with a approximately 10-fold increase in the circulating ANP and BNP levels. Left ventricular BNP and ANP mRNAs were elevated by 2- and 3-fold, respectively, compared to GSH. rbGH reduced both ANP mRNA and ANP circulating levels by 34% (p<0.01) but did not significantly modulate BNP levels. This effect was associated with a preserved systolic function and reverse remodeling as assessed by a leftward shift of the passive diastolic pressure-volume relationship indicating reduced ventricular dilatation. The data show that a short-term administration of GH in the terminal phase of the disease confers cardioprotection by attenuating systolic dysfunction and by inducing beneficial reverse remodeling.

  12. Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses.

    PubMed

    Khan, Shahneaz Ali; Waugh, Courtney; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2014-10-07

    Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  14. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  15. Hard tick calreticulin (CRT) gene coding regions have only one intron with conserved positions and variable sizes.

    PubMed

    Xu, Guang; Fang, Quentin Q; Sun, Yi; Keirans, James E; Durden, Lance A

    2005-12-01

    Calreticulin (CRT) is a unique eukaryotic gene. The CRT gene product, calreticulin, was first identified as a calcium binding protein in 1974, but further investigations have indicated that CRT protein performs many functions in cells, including involvement in evading the host's immune system by parasites. Many studies of CRT have been published since the molecule was first discovered; however, the CRT gene exon-intron structure is only known for a limited number of ectoparasite species. In this study, we compared tick CRT genomic sequences to the corresponding cDNA from 28 species and found that 2 exons and 1 intron are present in the tick CRT gene. The intron position is conserved in 28 hard ticks, but intron size and nucleotide sequences vary. Three tick introns possess duplicated fragments and are twice as long as other introns. All tick CRT introns obey the GT-AG rule in the splice-site junctions and are phase 1 introns. By comparing tick CRT introns to those of fruit fly, mouse, and human, we conclude that tick CRT introns belong to the intron-late type. The number and size of CRT introns have increased through the evolution of eukaryotes.

  16. Collaboration between a soluble C-type lectin and calreticulin facilitates white spot syndrome virus infection in shrimp.

    PubMed

    Wang, Xian-Wei; Xu, Yi-Hui; Xu, Ji-Dong; Zhao, Xiao-Fan; Wang, Jin-Xing

    2014-09-01

    White spot syndrome virus (WSSV) mainly infects crustaceans through the digestive tract. Whether C-type lectins (CLs), which are important receptors for many viruses, participate in WSSV infection in the shrimp stomach remains unknown. In this study, we orally infected kuruma shrimp Marsupenaeus japonicus to model the natural transmission of WSSV and identified a CL (designated as M. japonicus stomach virus-associated CL [MjsvCL]) that was significantly induced by virus infection in the stomach. Knockdown of MjsvCL expression by RNA interference suppressed the virus replication, whereas exogenous MjsvCL enhanced it. Further analysis by GST pull-down and coimmunoprecipitation showed that MjsvCL could bind to viral protein 28, the most abundant and functionally relevant envelope protein of WSSV. Furthermore, cell-surface calreticulin was identified as a receptor of MjsvCL, and the interaction between these proteins was a determinant for the viral infection-promoting activity of MjsvCL. The MjsvCL-calreticulin pathway facilitated virus entry likely in a cholesterol-dependent manner. This study provides insights into a mechanism by which soluble CLs capture and present virions to the cell-surface receptor to facilitate viral infection.

  17. Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in "sCAX1"-expressing tobacco and tomato

    USDA-ARS?s Scientific Manuscript database

    Deregulated expression of an Arabidopsis H(+)/Ca(2+) antiporter (sCAX1) in agricultural crops increases total calcium (Ca(2+)) but may result in yield losses due to Ca(2+) deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca(2+) binding protein located ...

  18. rOv-ASP-1, a recombinant secreted protein of the helminth Onchocercavolvulus, is a potent adjuvant for inducing antibodies to ovalbumin, HIV-1 polypeptide and SARS-CoV peptide antigens.

    PubMed

    MacDonald, Angus J; Cao, Long; He, Yuxian; Zhao, Qian; Jiang, Shibo; Lustigman, Sara

    2005-05-16

    We studied the adjuvanticity of recombinant Onchocerca volvulus activation associated protein-1 (rOv-ASP-1) for ovalbumin (OVA) in mice. After a single immunization and one boost, rOv-ASP-1 exceeded the efficacy of alum or MPL + TDM adjuvants in terms of end-point total IgG or IgG1 and IgG2a anti-OVA titres. Using the helminth-derived adjuvant, IgG isotype responses to OVA were of a mixed Th1/Th2 profile and spleen cell cytokines exclusively Th1-type. The potent adjuvanticity of rOv-ASP-1 was confirmed in mice vaccinated with a 37-mer peptide from the S protein of SARS-CoV and an HIV-1 gp120-CD4 chimeric polypeptide antigen. Unusually for a helminth product, the rOv-ASP-1 adjuvant augmented not only Th2 but also Th1 responses, the latter property being of potential utility in stimulating anti-viral immune responses.

  19. Single Intramammary Infusion of Recombinant Bovine Interleukin-8 at Dry-Off Induces the Prolonged Secretion of Leukocyte Elastase, Inflammatory Lactoferrin-Derived Peptides, and Interleukin-8 in Dairy Cows

    PubMed Central

    Watanabe, Atsushi; Hirota, Jiro; Shimizu, Shinya; Inumaru, Shigeki; Kimura, Kazuhiro

    2012-01-01

    A single intramammary infusion of recombinant bovine interleukin-8 (IL-8) at 50 μg/quarter/head, but not 10 μg/quarter/head, induced clinical mastitis in three of four cows during the dry-off period, resulting in an elevated rectal temperature, redness and swelling of the mammary gland, extensive polymorphonuclear leukocyte (PMNL) infiltration, and milk clot formation from 1 to 28 days post infusion (PI). In the mammary secretions of the mastitic glands, high levels of IL-8 were sustained from 8 hours to 28 days PI, peaking at 1–3 days PI. The levels of leukocyte-derived elastase and inflammatory 22 and 23 kDa lactoferrin derived peptides (LDP) were also increased in the mammary secretions from the mastitic glands. In addition to the experimentally induced mastitis, the mammary secretions from the glands of cattle with spontaneous Staphylococcus aureus dry-period mastitis displayed milk clot formations and significant increases in their levels of PMNL counts, elastase, LDP, and IL-8, compared with those of the mammary secretions from the uninfected glands. These results suggest that after an intramammary infusion of IL-8 has elicited inflammatory responses, it induces the prolonged secretion of elastase, inflammatory LDP, and IL-8, and that long-lasting IL-8-induced inflammatory reactions are involved in the pathogenesis of S. aureus dry-period mastitis. PMID:22919545

  20. Recombinant Atrial Natriuretic Peptide Prevents Aberrant Ca2+ Leakage through the Ryanodine Receptor by Suppressing Mitochondrial Reactive Oxygen Species Production Induced by Isoproterenol in Failing Cardiomyocytes

    PubMed Central

    Susa, Takehisa; Nanno, Takuma; Ishiguchi, Hironori; Myoren, Takeki; Nishimura, Shigehiko; Kato, Takayoshi; Hino, Akihiro; Oda, Tetsuro; Okuda, Shinichi; Yamamoto, Takeshi; Yano, Masafumi

    2016-01-01

    Catecholamines induce intracellular reactive oxygen species (ROS), thus enhancing diastolic Ca2+ leakage through the ryanodine receptor during heart failure (HF). However, little is known regarding the effect of atrial natriuretic peptide (ANP) on ROS generation and Ca2+ handling in failing cardiomyocytes. The aim of the present study was to clarify the mechanism by which an exogenous ANP exerts cardioprotective effects during HF. Cardiomyocytes were isolated from the left ventricles of a canine tachycardia-induced HF model and sham-operated vehicle controls. The degree of mitochondrial oxidized DNA was evaluated by double immunohistochemical (IHC) staining using an anti-VDAC antibody for the mitochondria and an anti-8-hydroxy-2′-deoxyguanosine antibody for oxidized DNA. The effect of ANP on ROS was investigated using 2,7-dichlorofluorescin diacetate, diastolic Ca2+ sparks assessed by confocal microscopy using Fluo 4-AM, and the survival rate of myocytes after 48 h. The double IHC study revealed that isoproterenol (ISO) markedly increased oxidized DNA in the mitochondria in HF and that the ISO-induced DNA damage was markedly inhibited by the co-presence of ANP. ROS production and Ca2+ spark frequency (CaSF) were increased in HF compared to normal controls, and were further increased in the presence of ISO. Notably, ANP significantly suppressed both ISO-induced ROS and CaSF without changing sarcoplasmic reticulum Ca2+ content in HF (p<0.01, respectively). The survival rate after 48 h in HF was significantly decreased in the presence of ISO compared with baseline (p<0.01), whereas it was significantly improved by the co-presence of ANP (p<0.01). Together, our results suggest that ANP strongly suppresses ISO-induced mitochondrial ROS generation, which might correct aberrant diastolic Ca2+ sparks, eventually contributing to the improvement of cardiomyocyte survival in HF. PMID:27657534

  1. Selective testing for calreticulin gene mutations in patients with splanchnic vein thrombosis: A prospective cohort study.

    PubMed

    Poisson, Johanne; Plessier, Aurélie; Kiladjian, Jean-Jacques; Turon, Fanny; Cassinat, Bruno; Andreoli, Annalisa; De Raucourt, Emmanuelle; Goria, Odile; Zekrini, Kamal; Bureau, Christophe; Lorre, Florence; Cervantes, Francisco; Colomer, Dolors; Durand, François; Garcia-Pagan, Juan-Carlos; Casadevall, Nicole; Valla, Dominique-Charles; Rautou, Pierre-Emmanuel; Marzac, Christophe

    2017-09-01

    Myeloproliferative neoplasms (MPN) are the leading cause of splanchnic vein thrombosis (SVT). Janus kinase 2 gene (JAK2)(V617F) mutations are found in 80 to 90% of patients with SVT and MPN. Mutations of the calreticulin (CALR) gene have also been reported. However, as their prevalence ranges from 0 to 2%, the utility of routine testing is questionable. This study aimed to identify a group of patients with SVT at high risk of harboring CALR mutations and thus requiring this genetic testing. CALR, JAK2(V617F) and thrombopoietin receptor gene (MPL) mutations were analysed in a test cohort that included 312 patients with SVT. Criteria to identify patients at high risk of CALR mutations in this test cohort was used and evaluated in a validation cohort that included 209 patients with SVT. In the test cohort, 59 patients had JAK2(V617F), five had CALR and none had MPL mutations. Patients with CALR mutations had higher spleen height and platelet count than patients without these mutations. All patients with CALR mutations had a spleen height ⩾16cm and platelet count >200×10(9)/L. These criteria had a positive predictive value of 56% (5/9) and a negative predictive value of 100% (0/233) for the identification of CALR mutations. In the validation cohort, these criteria had a positive predictive value of 33% (2/6) and a negative predictive value of 99% (1/96). CALR mutations should be tested in patients with SVT, a spleen height ⩾16cm, platelet count >200×10(9)/L, and no JAK2(V617F). This strategy avoids 96% of unnecessary CALR mutations testing. Lay summary: Mutations of the CALR gene are detected in 0 to 2% of patients with SVT, thus the utility of systematic CALR mutation testing to diagnose MPN is questionable. This study demonstrates that CALR mutations testing can be restricted to patients with SVT, a spleen height ⩾16cm, a platelet count >200×10(9)/L, and no JAK2(V617F). This strategy avoids 96% of unnecessary CALR mutations testing. Copyright © 2017

  2. Exon-intron structure and sequence variation of the calreticulin gene among Rhipicephalus sanguineus group ticks.

    PubMed

    Porretta, Daniele; Latrofa, Maria Stefania; Dantas-Torres, Filipe; Mastrantonio, Valentina; Iatta, Roberta; Otranto, Domenico; Urbanelli, Sandra

    2016-12-12

    Calreticulin proteins (CRTs) are important components of tick saliva, which is involved in the blood meal success, pathogen transmission and host allergic responses. The characterization of the genes encoding for salivary proteins, such as CRTs, is pivotal to understand the mechanisms of tick-host interaction during blood meal and to develop tick control strategies based on their inhibition. In hard ticks, crt genes were shown to have only one intron with conserved position among species. In this study we investigated the exon-intron structure and variation of the crt gene in Rhipicephalus spp. ticks in order to assess the crt exon-intron structure and the potential utility of crt gene as a molecular marker. We sequenced the exon-intron region of crt gene in ticks belonging to so-called tropical and temperate lineages of Rhipicephalus sanguineus (sensu lato), Rhipicephalus sp. I, Rhipicephalus sp. III, Rhipicephalus sp. IV, R. guilhoni, R. muhsamae and R. turanicus. Genetic divergence and phylogenetic relationships between the sequences obtained were estimated. All individuals belonging to the tropical lineage of R. sanguineus (s.l.), R. guilhoni, R. muhsamae, R. turanicus, Rhipicephalus sp. III and Rhipicephalus sp. IV analysed showed crt intron-present alleles. However, both crt intron-present and intron-absent alleles were found in Rhipicephalus sp. I and the temperate lineage of R. sanguineus (s.l.), showing the occurrence of an intraspecific intron presence-absence polymorphism. Phylogenetic relationships among the crt intron-present sequences showed distinct lineages for all taxa, with the tropical and temperate lineages of R. sanguineus (s.l.) being more closely related to each other. We expanded previous studies about the characterization of crt gene in hard ticks. Our results highlighted a previously overlooked variation in the crt structure among Rhipicephalus spp., and among hard ticks in general. Notably, the intron presence/absence polymorphism

  3. Programmed cell removal biomarkers calreticulin and CD47 implicated in oral lichen planus.

    PubMed

    Allon, I; Vered, H; Hirshberg, A

    2015-10-01

    To investigate the expression of the programmed cell removal markers, calreticulin (CRT) and CD47, known to be involved in various autoimmune diseases, in patients with oral lichen planus (OLP), and to investigate the association with clinical behavior. Biopsies of 78 patients with OLP were included. The clinical data were collected from patients' charts. The expression of CRT and CD47 was immunomorphometrically analyzed in the epithelial (CRTep, CD47ep) and inflammatory cells (CRTinf, CD47inf), and the results were correlated with the clinical presentation. The epithelial and inflammatory cells expressed CRT (2.83 ± 6.62 and 5.13 ± 3.72) and CD47 (7.92 ± 4.6 and 10.7 ± 7.16). The expressions of CD47ep and CD47inf were associated (R = 0.64, P < 0.0005) with one another. The expressions of CRTinf and CD47ep were higher in atrophic erosive forms (A/ELP) than in the keratotic form of patients with OLP (6.46 ± 0.76 and 9.38 ± 0.87 vs 4.2 ± 0.61 and 6.84 ± 0.91, respectively, P = 0.002 and P = 0.021). The expression of CRTep was associated with more localized lesions (P < 0.009) and more abundant in males (P = 0.049), and the expression of CRTinf was associated with the presence of skin lesions and symptoms (P < 0.034 and P = 0.047, respectively). Only in A/ELP patients, the expression of CRTep was associated with high expression of CD47ep (R = 0.6, P = 0.004), where both CD47ep and CD47inf were associated with lower age of the patients (R = -0.48, P = 0.03 and R = -0.54, P = 0.01). The pattern of expression of CRT and CD47 in OLP suggests a general programmed cell removal response in OLP. Symptomatic patients may benefit from CRT/CD47 targeted therapy in the future. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells

    PubMed Central

    Colangelo, T; Polcaro, G; Ziccardi, P; Muccillo, L; Galgani, M; Pucci, B; Rita Milone, M; Budillon, A; Santopaolo, M; Mazzoccoli, G; Matarese, G; Sabatino, L; Colantuoni, V

    2016-01-01

    Immunogenic cell death (ICD) evoked by chemotherapeutic agents implies emission of selected damage-associated molecular patterns (DAMP) such as cell surface exposure of calreticulin, secretion of ATP and HMGB1. We sought to verify whether miR-27a is implicated in ICD, having demonstrated that it directly targets calreticulin. To this goal, we exposed colorectal cancer cell lines, genetically modified to express high or low miR-27a levels, to two bona fide ICD inducers (mitoxantrone and oxaliplatin). Low miR-27a-expressing cells displayed more ecto-calreticulin on the cell surface and increased ATP and HMGB1 secretion than high miR-27a-expressing ones in time-course experiments upon drug exposure. A calreticulin target protector counteracted the miR-27a effects while specific siRNAs mimicked them, confirming the results reported. In addition, miR-27a negatively influenced the PERK-mediated route and the late PI3K-dependent secretory step of the unfolded protein response to endoplasmic reticulum stress, suggesting that miR-27a modulates the entire ICD program. Interestingly, upon chemotherapeutic exposure, low miR-27a levels associated with an earlier and stronger induction of apoptosis and with morphological and molecular features of autophagy. Remarkably, in ex vivo setting, under the same chemotherapeutic induction, the conditioned media from high miR-27a-expressing cells impeded dendritic cell maturation while increased the secretion of specific cytokines (interleukin (IL)-4, IL-6, IL-8) and negatively influenced CD4+ T-cell interferon γ production and proliferation, all markers of a tumor immunoevasion strategy. In conclusion, we provide the first evidence that miR-27a impairs the cell response to drug-induced ICD through the regulatory axis with calreticulin. PMID:26913599

  5. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  6. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  7. Effects of recombinant human brain natriuretic peptide on the prognosis of patients with acute anterior myocardial infarction undergoing primary percutaneous coronary intervention: a prospective, multi-center, randomized clinical trial

    PubMed Central

    Hou, Ai-Jie; Zang, Hong-Yun; Huang, Ru-Gang; Zheng, Xiao-Qun; Lin, Hai-Long; Wang, Wei; Hou, Ping; Xia, Fei; Li, Zhan-Quan

    2017-01-01

    Background This study aims to investigate the effects of recombinant human brain natriuretic peptide (rhBNP) on serum enzyme data, cardiac function parameters and cardiovascular events in patients with acute anterior myocardial infarction (MI). Methods A total of 421 patients with acute anterior or extensive anterior MI were collected from 20 hospitals. These patients were randomly divided into two groups: rhBNP and control groups. Both groups of patients received primary percutaneous coronary intervention (PCI) within the effective time window. In the rhBNP group, rhBNP administration (0.01 µg/kg/min, 48–72 successive hours) was performed as early as possible after hospital admission. Prior to and one or seven days after PCI, serum concentrations of cardiac troponin (cTnT), creatine kinase-MB (CK-MB) and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured. At seven days and 6 months after PCI, left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDd) and stroke volume (SV) were measured using 2D Doppler echocardiography. MACEs that occurred during hospitalization and within 6 months after PCI were recorded. Results At postoperative days one and seven, serum concentrations of cTnT were significantly lower in the rhBNP group than in the control group. At postoperative day one, serum concentrations of CK-MB were significantly lower in the rhBNP group than in the control group. At postoperative day seven, serum concentrations of NT-proBNP were significantly lower in the rhBNP group than in the control group, and LVEF was significantly greater in the rhBNP group than in the control group. At postoperative 6 months, LVEDd was significantly lower in the rhBNP group compared with the control group. In addition, SV and LVEF were significantly greater in the rhBNP group than in the control group. By postoperative month 6, the incidence of composite cardiovascular events (16.0% vs. 26.0%, P=0.012), cardiac death (7.0% vs.13

  8. Single-chain bifunctional vascular endothelial growth factor (VEGF)-follicle-stimulating hormone (FSH)-C-terminal peptide (CTP) is superior to the combination therapy of recombinant VEGF plus FSH-CTP in stimulating angiogenesis during ovarian folliculogenesis.

    PubMed

    Trousdale, Rhonda K; Pollak, Susan V; Klein, Jeffrey; Lobel, Leslie; Funahashi, Yasuhiro; Feirt, Nikki; Lustbader, Joyce W

    2007-03-01

    Infertility technologies often employ exogenous gonadotropin therapy to increase antral follicle production. In an effort to enhance ovarian response, several long-acting FSH therapies have been developed including an FSH-C-terminal peptide (CTP), where the FSH subunits are linked by the CTP moiety from human chorionic gonadotropin, which is responsible for the increased half-life of human chorionic gonadotropin. We found that administration of FSH-CTP for ovarian hyperstimulation in rats blunted ovarian follicle vascular development. In women, reduced ovarian vasculature has been associated with lower pregnancy rates. We were interested in determining whether vascular endothelial growth factor (VEGF) therapy could enhance ovarian angiogenesis in FSH-CTP-treated rats. Coadministration of systemic FSH-CTP plus recombinant VEGF was compared with treatment with a novel, single-chain bifunctional VEGF-FSH-CTP (VFC) analog. For VFC, the FSH portion targets the protein to the ovary and stimulates follicle growth, whereas VEGF enhances local vascular development. Both in vitro and in vivo studies confirm the dual FSH and VEGF action of the VFC protein. Evaluation of ovarian follicle development demonstrates that administration of combination therapy using VEGF and FSH-CTP failed to increase follicle vasculature above levels seen with FSH-CTP monotherapy. However, treatment with VFC significantly increased follicle vascular development while concurrently increasing the number of large antral follicles produced. In conclusion, we report the production and characterization of a long-acting, bifunctional VEGF-FSH-CTP protein that is superior to combination therapy for enhancing VEGF activity in the ovary and stimulating follicular angiogenesis in rats.

  9. Engineering Streptavidin and a Streptavidin-Binding Peptide with Infinite Binding Affinity and Reversible Binding Capability: Purification of a Tagged Recombinant Protein to High Purity via Affinity-Driven Thiol Coupling

    PubMed Central

    Fogen, Dawson; Wu, Sau-Ching; Ng, Kenneth Kai-Sing; Wong, Sui-Lam

    2015-01-01

    To extend and improve the utility of the streptavidin-binding peptide tag (SBP-tag) in applications ranging from affinity purification to the reversible immobilization of recombinant proteins, a cysteine residue was introduced to the streptavidin mutein SAVSBPM18 and the SBP-tag to generate SAVSBPM32 and SBP(A18C), respectively. This pair of derivatives is capable of forming a disulfide bond through the newly introduced cysteine residues. SAVSBPM32 binds SBP-tag and biotin with binding affinities (Kd ~ 10-8M) that are similar to SAVSBPM18. Although SBP(A18C) binds to SAVSBPM32 more weakly than SBP-tag, the binding affinity is sufficient to bring the two binding partners together efficiently before they are locked together via disulfide bond formation–a phenomenon we have named affinity-driven thiol coupling. Under the condition with SBP(A18C) tags in excess, two SBP(A18C) tags can be captured by a tetrameric SAVSBPM32. The stoichiometry of the disulfide-bonded SAVSBPM32-SBP(A18C) complex was determined using a novel two-dimensional electrophoresis method which has general applications for analyzing the composition of disulfide-bonded protein complexes. To illustrate the application of this reversible immobilization technology, optimized conditions were established to use the SAVSBPM32-affinity matrix for the purification of a SBP(A18C)-tagged reporter protein to high purity. Furthermore, we show that the SAVSBPM32-affinity matrix can also be applied to purify a biotinylated protein and a reporter protein tagged with the unmodified SBP-tag. The dual (covalent and non-covalent) binding modes possible in this system offer great flexibility to many different applications which need reversible immobilization capability. PMID:26406477

  10. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer

    PubMed Central

    Colangelo, T; Polcaro, G; Ziccardi, P; Pucci, B; Muccillo, L; Galgani, M; Fucci, A; Milone, M R; Budillon, A; Santopaolo, M; Votino, C; Pancione, M; Piepoli, A; Mazzoccoli, G; Binaschi, M; Bigioni, M; Maggi, C A; Fassan, M; Laudanna, C; Matarese, G; Sabatino, L; Colantuoni, V

    2016-01-01

    Impairment of the immune response and aberrant expression of microRNAs are emerging hallmarks of tumour initiation/progression, in addition to driver gene mutations and epigenetic modifications. We performed a preliminary survey of independent adenoma and colorectal cancer (CRC) miRnoma data sets and, among the most dysregulated miRNAs, we selected miR-27a and disclosed that it is already upregulated in adenoma and further increases during the evolution to adenocarcinoma. To identify novel genes and pathways regulated by this miRNA, we employed a differential 2DE-DIGE proteome analysis. We showed that miR-27a modulates a group of proteins involved in MHC class I cell surface exposure and, mechanistically, demonstrated that calreticulin is a miR-27a direct target responsible for most downstream effects in epistasis experiments. In vitro miR-27a affected cell proliferation and angiogenesis; mouse xenografts of human CRC cell lines expressing different miR-27a levels confirmed the protein variations and recapitulated the cell growth and apoptosis effects. In vivo miR-27a inversely correlated with MHC class I molecules and calreticulin expression, CD8+ T cells infiltration and cytotoxic activity (LAMP-1 exposure and perforin release). Tumours with high miR-27a, low calreticulin and CD8+ T cells' infiltration were associated with distant metastasis and poor prognosis. Our data demonstrate that miR-27a acts as an oncomiRNA, represses MHC class I expression through calreticulin downregulation and affects tumour progression. These results may pave the way for better diagnosis, patient stratification and novel therapeutic approaches. PMID:26913609

  11. Identification of peptide targets in neuromyelitis optica

    PubMed Central

    Yu, Xiaoli; Green, Miyoko; Gilden, Don; Lam, Chiwah; Bautista, Katherine; Bennett, Jeffrey L

    2011-01-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease that predominantly affects the optic nerves and spinal cord. Recombinant antibodies (rAbs) generated from clonally expanded plasma cells in an NMO patient are specific to AQP4 and pathogenic. We screened phage-displayed peptide libraries with these rAbs, and identified 14 high affinity linear and conformational peptides. The linear peptides shared sequence homologies with NMO autoantigen AQP4 on the extracellular surface. Competitive inhibition ELISA and immunocytochemistry demonstrated that these peptides represent epitopes of NMO autoantigen AQP4. Peptide epitopes/mimotopes may have potential uses for disease prognosis, monitoring, and therapy. PMID:21621279

  12. Recombinant allergens

    PubMed Central

    Jutel, Marek; Solarewicz-Madejek, Katarzyna; Smolinska, Sylwia

    2012-01-01

    Allergen specific immunotherapy (SIT) is the only known causative treatment of allergic diseases. Recombinant allergen-based vaccination strategies arose from a strong need to both to improve safety and enhance efficacy of SIT. In addition, new vaccines can be effective in allergies including food allergy or atopic dermatitis, which poorly respond to the current treatment with allergen extracts. A number of successful clinical studies with both wild-type and hypoallergenic derivatives of recombinant allergens vaccines have been reported for the last decade. They showed high efficacy and safety profile as well as very strong modulation of T and B cell responses to specific allergens. PMID:23095874

  13. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  14. Recombinant gonadotropins.

    PubMed

    Lathi, R B; Milki, A A

    2001-10-01

    Recombinant DNA technology makes it possible to produce large amounts of human gene products for pharmacologic applications, supplanting the need for human tissues. The genes for the alpha and beta subunits of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG) have been characterized and cloned. Recombinant FSH (rFSH) has been shown to be safe and effective in the treatment of fertility disorders. In comparison with the urinary gonadotropin products, human menopausal gonadotropins (HMG), and urinary follitropins (uFSH), rFSH is more potent and better tolerated by patients. Recombinant HCG appears to be as efficacious as urinary HCG with the benefit of improved local tolerance. Recombinant LH (rLH) is likely to be recommended as a supplement to rFSH for ovulation induction in hypogonadotropic women. It may also benefit in vitro fertilization patients undergoing controlled ovarian hyperstimulation with rFSH combined with pituitary suppression, with a gonadotropin-releasing hormone agonist or antagonist.

  15. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  16. Calreticulin down-regulation inhibits the cell growth, invasion and cell cycle progression of human hepatocellular carcinoma cells.

    PubMed

    Feng, Ruo; Ye, Jianwen; Zhou, Chuang; Qi, Lei; Fu, Zhe; Yan, Bing; Liang, Zhiwei; Li, Renfeng; Zhai, Wenlong

    2015-08-27

    Hepatocellular carcinoma (HCC) is one of the most frequent cancers in the world. Calreticulin(CRT) is aberrantly overexpressed in many human cancer cells. The function of CRT in HCC cells remains unclear. We attempted to investigate the effects and the underlying mechanisms of CRT down-regulation on HCC cell growth, apoptosis, cell cycle progression and invasion. To investigate the function of CRT in HCC cells, small interfering RNA (siRNA) was used to knock down the expression of CRT in SMMC7721 and HepG2 HCC cells. CRT expression was examined by Western blot and immunofluorescence. Cell proliferation was detected by CCK-8 assay. Cell cycle and apoptosis were measured by the flow cytometry. The invasion capability was assessed by transwell assay. The phosphorylation level of Akt was evaluated by Western blot. Compared with human hepatic cells L02, CRT was apparently up-regulated in SMMC7721, HepG2 and Huh7 HCC cells. Down-regulation of CRT expression effectively inhibited HCC cell growth and invasion. CRT knockdown induced cell cycle arrest and the apoptosis in SMMC7721 and HepG2 cells. Furthermore, down-regulation of CRT expression significantly decreased the Akt phosphorylation. CRT was aberrantly over-expressed in HCC cell lines. CRT over-expression contributes greatly to HCC malignant behavior, likely via PI3K/Akt pathway. CRT could serve as a potential biomarker and therapeutic target for hepatocellular carcinoma.

  17. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients

    PubMed Central

    Fucikova, Jitka; Truxova, Iva; Hensler, Michal; Becht, Etienne; Kasikova, Lenka; Moserova, Irena; Vosahlikova, Sarka; Klouckova, Jana; Church, Sarah E.; Cremer, Isabelle; Kepp, Oliver; Kroemer, Guido; Galluzzi, Lorenzo; Salek, Cyril

    2016-01-01

    Cancer cell death can be perceived as immunogenic by the host only when malignant cells emit immunostimulatory signals (so-called “damage-associated molecular patterns,” DAMPs), as they die in the context of failing adaptive responses to stress. Accumulating preclinical and clinical evidence indicates that the capacity of immunogenic cell death to (re-)activate an anticancer immune response is key to the success of various chemo- and radiotherapeutic regimens. Malignant blasts from patients with acute myeloid leukemia (AML) exposed multiple DAMPs, including calreticulin (CRT), heat-shock protein 70 (HSP70), and HSP90 on their plasma membrane irrespective of treatment. In these patients, high levels of surface-exposed CRT correlated with an increased proportion of natural killer cells and effector memory CD4+ and CD8+ T cells in the periphery. Moreover, CRT exposure on the plasma membrane of malignant blasts positively correlated with the frequency of circulating T cells specific for leukemia-associated antigens, indicating that ecto-CRT favors the initiation of anticancer immunity in patients with AML. Finally, although the levels of ecto-HSP70, ecto-HSP90, and ecto-CRT were all associated with improved relapse-free survival, only CRT exposure significantly correlated with superior overall survival. Thus, CRT exposure represents a novel powerful prognostic biomarker for patients with AML, reflecting the activation of a clinically relevant AML-specific immune response. PMID:27802968

  18. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen.

    PubMed

    Cheng, W F; Hung, C F; Chai, C Y; Hsu, K F; He, L; Ling, M; Wu, T C

    2001-09-01

    Antigen-specific cancer immunotherapy and antiangiogenesis have emerged as two attractive strategies for cancer treatment. An innovative approach that combines both mechanisms will likely generate the most potent antitumor effect. We tested this approach using calreticulin (CRT), which has demonstrated the ability to enhance MHC class I presentation and exhibit an antiangiogenic effect. We explored the linkage of CRT to a model tumor antigen, human papilloma virus type-16 (HPV-16) E7, for the development of a DNA vaccine. We found that C57BL/6 mice vaccinated intradermally with CRT/E7 DNA exhibited a dramatic increase in E7-specific CD8(+) T cell precursors and an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with wild-type E7 DNA or CRT DNA. Vaccination of CD4/CD8 double-depleted C57BL/6 mice and immunocompromised (BALB/c nu/nu) mice with CRT/E7 DNA or CRT DNA generated significant reduction of lung tumor nodules compared with wild-type E7 DNA, suggesting that antiangiogenesis may have contributed to the antitumor effect. Examination of microvessel density in lung tumor nodules and an in vivo angiogenesis assay further confirmed the antiangiogenic effect generated by CRT/E7 and CRT. Thus, cancer therapy using CRT linked to a tumor antigen holds promise for treating tumors by combining antigen-specific immunotherapy and antiangiogenesis.

  19. Involvement of calreticulin in cell proliferation, invasion and differentiation in diallyl disulfide-treated HL-60 cells.

    PubMed

    Yi, Lan; Shan, Jian; Chen, Xin; Li, Guoqing; Li, Linwei; Tan, Hui; Su, Qi

    2016-09-01

    Diallyl disulfide (DADS) has shown potential as a therapeutic agent in various cancers. Previously, calreticulin (CRT) was found to be downregulated in differentiated HL-60 cells treated with DADS. The present study investigated the role of CRT proteins in DADS-induced proliferation, invasion and differentiation in HL-60 cells. The present study demonstrated that DADS treatment significantly changed the morphology of HL-60 cells and caused the significant time-dependent downregulation of CRT. Small interfering RNA (siRNA)-mediated knockdown of CRT expression significantly inhibited proliferation, decreased invasion ability, increased the expression of cluster of differentiation (CD)11b and reduced the expression of CD33 in DADS-treated HL-60 cells. DADS also significantly affected cell proliferation, invasion and differentiation in CRT-overexpressed HL-60 cells. Nitroblue tetrazolium (NBT) reduction assays showed decreased NBT reduction activity in the CRT overexpression group and increased NBT reduction in the CRT siRNA group. Following treatment with DADS, the NBT reduction abilities in all groups were increased. In conclusion, the present study clearly demonstrates the downregulation of CRT during DADS-induced differentiation in HL-60 cells and indicates that CRT is involved in cell proliferation, invasion and differentiation in DADS-treated HL-60 cells.

  20. Glucocorticoids Prevent Enterovirus 71 Capsid Protein VP1 Induced Calreticulin Surface Exposure by Alleviating Neuronal ER Stress.

    PubMed

    Hu, Dan-Dan; Mai, Jian-Ning; He, Li-Ya; Li, Pei-Qing; Chen, Wen-Xiong; Yan, Jian-Jiang; Zhu, Wei-Dong; Deng, Li; Wei, Dan; Liu, Di-Hui; Yang, Si-Da; Yao, Zhi-Bin

    2017-02-01

    Severe hand-foot-and-mouth disease (HFMD) caused by Enterovirus 71 (EV71) always accompanies with inflammation and neuronal damage in the central nervous system (CNS). During neuronal injuries, cell surface-exposed calreticulin (Ecto-CRT) is an important mediator for primary phagocytosis of viable neurons by microglia. Our data confirmed that brainstem neurons underwent neuronophagia by glia in EV71-induced death cases of HFMD. EV71 capsid proteins VP1, VP2, VP3, or VP4 did not induce apoptosis of brainstem neurons. Interestingly, we found VP1-activated endoplasmic reticulum (ER) stress and autophagy could promote Ecto-CRT upregulation, but ER stress or autophagy alone was not sufficient to induce CRT exposure. Furthermore, we demonstrated that VP1-induced autophagy activation was mediated by ER stress. Meaningfully, we found dexamethasone treatment could attenuate Ecto-CRT upregulation by alleviating VP1-induced ER stress. Altogether, these findings identify VP1-promoted Ecto-CRT upregulation as a novel mechanism of EV71-induced neuronal cell damage and highlight the potential of the use of glucocorticoids to treat severe HFMD patients with CNS complications.

  1. Involvement of calreticulin in cell proliferation, invasion and differentiation in diallyl disulfide-treated HL-60 cells

    PubMed Central

    Yi, Lan; Shan, Jian; Chen, Xin; Li, Guoqing; Li, Linwei; Tan, Hui; Su, Qi

    2016-01-01

    Diallyl disulfide (DADS) has shown potential as a therapeutic agent in various cancers. Previously, calreticulin (CRT) was found to be downregulated in differentiated HL-60 cells treated with DADS. The present study investigated the role of CRT proteins in DADS-induced proliferation, invasion and differentiation in HL-60 cells. The present study demonstrated that DADS treatment significantly changed the morphology of HL-60 cells and caused the significant time-dependent downregulation of CRT. Small interfering RNA (siRNA)-mediated knockdown of CRT expression significantly inhibited proliferation, decreased invasion ability, increased the expression of cluster of differentiation (CD)11b and reduced the expression of CD33 in DADS-treated HL-60 cells. DADS also significantly affected cell proliferation, invasion and differentiation in CRT-overexpressed HL-60 cells. Nitroblue tetrazolium (NBT) reduction assays showed decreased NBT reduction activity in the CRT overexpression group and increased NBT reduction in the CRT siRNA group. Following treatment with DADS, the NBT reduction abilities in all groups were increased. In conclusion, the present study clearly demonstrates the downregulation of CRT during DADS-induced differentiation in HL-60 cells and indicates that CRT is involved in cell proliferation, invasion and differentiation in DADS-treated HL-60 cells. PMID:27588133

  2. Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana.

    PubMed

    Nelson, D E; Glaunsinger, B; Bohnert, H J

    1997-05-01

    Calreticulin (CRT) is a calcium-binding protein in the endoplasmic reticulum (ER) with an established role as a molecular chaper-one. An additional function in signal transduction, specifically in calcium distribution, is suggested but not proven. We have analyzed the expression pattern of Arabidopsis thaliana CRTs for a comparison with these proposed roles. Three CRT genes were expressed, with identities of the encoded proteins ranging from 54 to 86%. Protein motifs with established functions found in CRTs of other species were conserved. CRT was found in all of the cells in low amounts, whereas three distinct floral tissues showed abundant expression: secreting nectaries, ovules early in development, and a set of subepidermal cells near the abaxial surface of the anther. Localization in the developing endosperm, which is characterized by high protein synthesis rates, can be reconciled with a specific chaperone function. Equally, nectar production and secretion, a developmental stage marked by abundant ER, may require abundant CRT to accommodate the traffic of secretory proteins through the ER. Localization of CRT in the anthers, which are degenerating at the time of maximum expression of CRT, cannot easily be reconciled with a chaperone function but may indicate a role for CRT in anther maturation or dehiscence.

  3. Triatoma infestans Calreticulin: Gene Cloning and Expression of a Main Domain That Interacts with the Host Complement System.

    PubMed

    Weinberger, Katherine; Collazo, Norberto; Aguillón, Juan Carlos; Molina, María Carmen; Rosas, Carlos; Peña, Jaime; Pizarro, Javier; Maldonado, Ismael; Cattan, Pedro E; Apt, Werner; Ferreira, Arturo

    2017-02-08

    Triatoma infestans is an important hematophagous vector of Chagas disease, a neglected chronic illness affecting approximately 6 million people in Latin America. Hematophagous insects possess several molecules in their saliva that counteract host defensive responses. Calreticulin (CRT), a multifunctional protein secreted in saliva, contributes to the feeding process in some insects. Human CRT (HuCRT) and Trypanosoma cruzi CRT (TcCRT) inhibit the classical pathway of complement activation, mainly by interacting through their central S domain with complement component C1. In previous studies, we have detected CRT in salivary gland extracts from T. infestans We have called this molecule TiCRT. Given that the S domain is responsible for C1 binding, we have tested its role in the classical pathway of complement activation in vertebrate blood. We have cloned and characterized the complete nucleotide sequence of CRT from T. infestans, and expressed its S domain. As expected, this S domain binds to human C1 and, as a consequence, it inhibits the classical pathway of complement, at its earliest stage of activation, namely the generation of C4b. Possibly, the presence of TiCRT in the salivary gland represents an evolutionary adaptation in hematophagous insects to control a potential activation of complement proteins, present in the massive blood meal that they ingest, with deleterious consequences at least on the anterior digestive tract of these insects.

  4. Calreticulin activates β1 integrin via fucosylation by fucosyltransferase 1 in J82 human bladder cancer cells.

    PubMed

    Lu, Yi-Chien; Chen, Chiung-Nien; Chu, Chia-Ying; Lu, Jenher; Wang, Bo-Jeng; Chen, Chia-Hua; Huang, Min-Chuan; Lin, Tsui-Hwa; Pan, Chin-Chen; Chen, Swey-Shen Alex; Hsu, Wen-Ming; Liao, Yung-Feng; Wu, Pei-Yi; Hsia, Hsin-Yi; Chang, Cheng-Chi; Lee, Hsinyu

    2014-05-15

    Fucosylation regulates various pathological events in cells. We reported that different levels of CRT (calreticulin) affect the cell adhesion and metastasis of bladder cancer. However, the precise mechanism of tumour metastasis regulated by CRT remains unclear. Using a DNA array, we identified FUT1 (fucosyltransferase 1) as a gene regulated by CRT expression levels. CRT regulated cell adhesion through α1,2-linked fucosylation of β1 integrin and this modification was catalysed by FUT1. To clarify the roles for FUT1 in bladder cancer, we transfected the human FUT1 gene into CRT-RNAi stable cell lines. FUT1 overexpression in CRT-RNAi cells resulted in increased levels of β1 integrin fucosylation and rescued cell adhesion to type-I collagen. Treatment with UEA-1 (Ulex europaeus agglutinin-1), a lectin that recognizes FUT1-modified glycosylation structures, did not affect cell adhesion. In contrast, a FUT1-specific fucosidase diminished the activation of β1 integrin. These results indicated that α1,2-fucosylation of β1 integrin was not involved in integrin-collagen interaction, but promoted β1 integrin activation. Moreover, we demonstrated that CRT regulated FUT1 mRNA degradation at the 3'-UTR. In conclusion, the results of the present study suggest that CRT stabilized FUT1 mRNA, thereby leading to an increase in fucosylation of β1 integrin. Furthermore, increased fucosylation levels activate β1 integrin, rather than directly modifying the integrin-binding sites.

  5. Functional characterization of six aspartate (D) recombinant mojastin mutants (r-Moj): A second aspartate amino acid carboxyl to the RGD in r-Moj-D_ peptides is not sufficient to induce apoptosis of SK-Mel-28 cells.

    PubMed

    Ramos, Carla J; Gutierrez, Daniel A; Aranda, Ana S; Koshlaychuk, Melissa A; Carrillo, David A; Medrano, Rafael; McBride, Terri D; U, Andrew; Medina, Stephanie M; Lombardo, Melissa C; Lucena, Sara E; Sanchez, Elda E; Soto, Julio G

    2016-08-01

    Disintegrins are small peptides produced in viper venom that act as integrin antagonists. When bound to integrins, disintegrins induce altered cellular behaviors, such as apoptotic induction. Disintegrins with RGDDL or RGDDM motifs induce apoptosis of normal and cancer cells. We hypothesized that a second aspartate (D) carboxyl to the RGD is sufficient to induce apoptosis. Five recombinant mojastin D mutants were produced by site-directed mutagenesis (r-Moj-DA, r-Moj-DG, r-Moj-DL, r-Moj-DN, and r-Moj-DV). Stable αv integrin knockdown and shRNA scrambled control SK-Mel-28 cell lines were produced to test a second hypothesis: r-Moj-D_ peptides bind to αv integrin. Only r-Moj-DL, r-Moj-DM, and r-Moj-DN induced apoptosis of SK-Mel-28 cells (at 29.4%, 25.6%, and 36.2%, respectively). Apoptotic induction was significantly reduced in SK-Mel-28 cells with a stable αv integrin knockdown (to 2%, 17%, and 2%, respectively), but not in SK-Mel-28 cells with a stable scrambled shRNA. All six r-Moj-D_ peptides inhibited cell proliferation; ranging from 49.56% (r-Moj-DN) to 75.6% (r-Moj-DA). Cell proliferation inhibition by r-Moj-D_ peptides was significantly reduced in SK-Mel-28 cells with a stable αv integrin knockdown. All six r-Moj-D_ peptides inhibited SK-Mel-28 cell migration at high levels (69%-100%). As a consequence, rac-1 mRNA expression levels were significantly reduced as early as 1 h after treatment, suggesting that rac-1 is involved in the cell migration activity of SK-Mel-28. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Functional cooperation between BiP and calreticulin in the folding maturation of a glycoprotein in Trypanosoma cruzi

    PubMed Central

    Labriola, Carlos A.; Villamil Giraldo, Ana M.; Parodi, Armando J.; Caramelo, Julio J.

    2011-01-01

    Proteins may adopt diverse conformations during their folding in vivo, ranging from extended chains when they emerge from the ribosome to compact intermediates near the end of the folding process. Accordingly, a variety of chaperones and folding assisting enzymes have evolved to deal with this diversity. Chaperone selection by a particular substrate depends on the structural features of its folding intermediates. In addition, this process may be modulated by competitive effects between chaperones. Here we address this issue by using TcrCATL as model substrate. TcrCATL is an abundant Trypanosoma cruzi lysosomal protease and it was the first identified endogenous UDP-Glc:glycoprotein glucosyltransferase (UGGT) substrate. We found that TcrCATL associated sequentially with BiP and calreticulin (CRT) during its folding process. Early, extended conformations were bound to BiP, while more advanced and compact folding intermediates associated to CRT. The interaction between TcrCATL and CRT was impeded by deletion of the UGGT-encoding gene but, similarly to what was observed in wild type cells, in mutant cells TcrCATL associated to BiP only when displaying extended conformations. The absence of TcrCATL–CRT interactions in UGGT null cells resulted in a drastic reduction of TcrCATL folding efficiency and triggered the aggregation of TcrCATL through intermolecular disulfide bonds. These observations show that BiP and CRT activities complement each other to supervise a complete and efficient TcrCATL folding process. The present report provides further evidence on the early evolutionary acquisition of the basic tenets of the N-glycan dependent quality control mechanism of glycoprotein folding. PMID:20934456

  7. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis

    PubMed Central

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis. PMID:26061142

  8. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition.

    PubMed

    Liu, Shing-Hwa; Lee, Wen-Jane; Lai, De-Wei; Wu, Sheng-Mao; Liu, Chia-Yu; Tien, Hsing-Ru; Chiu, Chien-Shan; Peng, Yen-Chun; Jan, Yee-Jee; Chao, Te-Hsin; Pan, Hung-Chuan; Sheu, Meei-Ling

    2015-04-01

    Peritoneal dissemination is a major clinical obstacle in gastrointestinal cancer therapy, and it accounts for the majority of cancer-related mortality. Calreticulin (CRT) is over-expressed in gastric tumors and has been linked to poor prognosis. In this study, immunohistochemistry studies revealed that the up-regulation of CRT was associated with lymph node and distant metastasis in patients with gastric cancer specimens. CRT was significantly down-regulated in highly metastatic gastric cancer cell lines and metastatic animal by Honokiol-treated. Small RNA interference blocking CRT by siRNA-CRT was translocated to the cells in the early immunogenic response to Honokiol. Honokiol activated endoplasmic reticulum (ER) stress and down-regulated peroxisome proliferator-activated receptor-γ (PPARγ) activity resulting in PPARγ and CRT degradation through calpain-II activity, which could be reversed by siRNA-calpain-II. The Calpain-II/PPARγ/CRT axis and interaction evoked by Honokiol could be blocked by gene silencing or pharmacological agents. Both transforming growth factor (TGF)-β1 and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced cell migration, invasion and reciprocal down-regulation of epithelial marker E-cadherin, which could be abrogated by siRNA-CRT. Moreover, Honokiol significantly suppressed MNNG-induced gastrointestinal tumor growth and over-expression of CRT in mice. Knockdown CRT in gastric cancer cells was found to effectively reduce growth ability and metastasis in vivo. The present study provides insight into the specific biological behavior of CRT in epithelial-to-mesenchymal transition (EMT) and metastasis. Taken together, our results suggest that the therapeutic inhibition of CRT by Honokiol suppresses both gastric tumor growth and peritoneal dissemination by dictating early translocation of CRT in immunogenic cell death, activating ER stress, and blocking EMT. Copyright © 2015 Federation of European Biochemical Societies. Published by

  9. Role of calreticulin in the sensitivity of myocardiac H9c2 cells to oxidative stress caused by hydrogen peroxide.

    PubMed

    Ihara, Yoshito; Urata, Yoshishige; Goto, Shinji; Kondo, Takahito

    2006-01-01

    Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells.

  10. Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells.

    PubMed

    Obakan-Yerlikaya, Pinar; Arisan, Elif Damla; Coker-Gurkan, Ajda; Adacan, Kaan; Ozbey, Utku; Somuncu, Berna; Baran, Didem; Palavan-Unsal, Narcin

    2017-06-01

    Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca(2+) ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells. © 2017 Wiley Periodicals, Inc.

  11. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants

    NASA Technical Reports Server (NTRS)

    Persson, S.; Wyatt, S. E.; Love, J.; Thompson, W. F.; Robertson, D.; Boss, W. F.; Brown, C. S. (Principal Investigator)

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.

  12. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis.

    PubMed

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis.

  13. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants

    NASA Technical Reports Server (NTRS)

    Persson, S.; Wyatt, S. E.; Love, J.; Thompson, W. F.; Robertson, D.; Boss, W. F.; Brown, C. S. (Principal Investigator)

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.

  14. A calreticulin-dependent nuclear export signal is involved in the regulation of liver receptor homologue-1 protein folding.

    PubMed

    Yang, Feng-Ming; Feng, Shan-Jung; Lai, Tsai-Chun; Hu, Meng-Chun

    2015-10-15

    As an orphan member of the nuclear receptor family, liver receptor homologue-1 (LRH-1) controls a tremendous range of transcriptional programmes that are essential for metabolism and hormone synthesis. Our previous studies have shown that nuclear localization of the LRH-1 protein is mediated by two nuclear localization signals (NLSs) that are karyopherin/importin-dependent. It is unclear whether LRH-1 can be actively exported from the nucleus to the cytoplasm. In the present study, we describe a nuclear export domain containing two leucine-rich motifs [named nuclear export signal (NES)1 and NES2] within the ligand-binding domain (LBD). Mutation of leucine residues in NES1 or NES2 abolished nuclear export, indicating that both NES1 and NES2 motifs are essential for full nuclear export activity. This NES-mediated nuclear export was insensitive to the chromosomal region maintenance 1 (CRM1) inhibitor leptomycin B (LMB) or to CRM1 knockdown. However, knockdown of calreticulin (CRT) prevented NES-mediated nuclear export. Furthermore, our data show that CRT interacts with LRH-1 and is involved in the nuclear export of LRH-1. With full-length LRH-1, mutation of NES1 led to perinuclear accumulation of the mutant protein. Immunofluorescence analysis showed that these perinuclear aggregates were co-localized with the centrosome marker, microtubule-associated protein 1 light chain 3 (LC3), ubiquitin and heat shock protein 70 (Hsp70), indicating that the mutant was misfolded and sequestered into aggresome-like structures via the autophagic clearance pathway. Our study demonstrates for the first time that LRH-1 has a CRT-dependent NES which is not only required for cytoplasmic trafficking, but also essential for correct protein folding to avoid misfolding-induced aggregation. © 2015 Authors; published by Portland Press Limited.

  15. Regulatory steps associated with use of value-added recombinant proteins and peptides screened in high-throughput for expression in genetically engineered starch and cellulosic fuel ethanol yeast strains

    USDA-ARS?s Scientific Manuscript database

    Recombinant proteins expressed in animals have been a public concern as a perceived risk to the consumer. Animals are currently being treated with genetically engineered biologicals, such as growth hormone, or fed genetically modified plants. Similarly, various commercially-valuable proteins or pe...

  16. Heterologous production of peptides in plants: fusion proteins and beyond.

    PubMed

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  17. Poly(I:C) treatment influences the expression of calreticulin and profilin-1 in a human HNSCC cell line: a proteomic study.

    PubMed

    Matijević, Tanja; Pavelić, Jasminka

    2012-08-01

    Polyinosinic:polycytidylic acid (poly (I:C)) has been formerly known to be an interferon inducer but the mechanism of its action was not revealed until the discovery of Toll-like receptors (TLRs). TLRs are members of transmembrane proteins that recognize conserved molecular motifs of viral and bacterial origin and initiate innate immune response. Recent studies have shown that they are also expressed on tumor cells, but their role in these cells is still not clear. TLR3 recognizes double-stranded RNA (poly (I:C)) and is primarily involved in the defense against viruses. TLR3 ligand binding initiates the activation of transcription factors NF-κB, IRF family members, and AP-1, which can induce wide cascading effect on the cell and consequently activate many cellular processes. Since little is known about TLR3 target genes, we have used the proteomic approach to widen the current knowledge. In this study, we have discovered 15 differentially expressed proteins, mostly connected with protein metabolic processes. Furthermore, we have confirmed by Western blot that calreticulin and profilin-1, proteins which have been shown previously to be involved in processes connected with tumor progression, are differentially expressed after poly(I:C) treatment. By using TLR3 small interfering RNA, we showed that calreticulin expression might be TLR3 dependent, unlike profilin-1.

  18. Bioactive Peptides

    PubMed Central

    Daliri, Eric Banan-Mwine; Oh, Deog H.; Lee, Byong H.

    2017-01-01

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development. PMID:28445415

  19. Bioactive Peptides.

    PubMed

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  20. Recombinant baculoviruses for insect control.

    PubMed

    Inceoglu, A B; Kamita, S G; Hinton, A C; Huang, Q; Severson, T F; Kang, K; Hammock, B D

    2001-10-01

    Baculoviruses are double-stranded DNA viruses which are highly selective for several insect groups. They are valuable natural control agents, but their utility in many agricultural applications has been limited by their slow speed of kill and narrow host specificity. Baculoviruses have been genetically modified to express foreign genes under powerful promoters in order to accelerate their speed of kill. In our and other laboratories, the expression of genes coding for insect juvenile hormone esterases and various peptide neurotoxins has resulted in recombinant baculoviruses with promise as biological insecticides. These viruses are efficacious in the laboratory, greenhouse and field and dramatically reduce damage caused by insect feeding. The recombinant viruses synergize and are synergized by classical pesticides such as pyrethroids. Since they are highly selective for pest insects, they can be used without disrupting biological control. Because the recombinant virus produces fewer progeny in infected larvae than the wild-type virus, they are rapidly out-competed in the ecosystem. The viruses can be used effectively with crops expressing endotoxins of Bacillus thuringiensis. They can be produced industrially but also by village industries, indicating that they have the potential to deliver sustainable pest control in developing countries. It remains to be seen, however, whether the current generation of recombinant baculoviruses will be competitive with the new generation of synthetic chemical pesticides. Current research clearly indicates, though, that the use of biological vectors of genes for insect control will find a place in agriculture. Baculoviruses will also prove valuable in testing the potential utility of proteins and peptides for insect control.

  1. [Defensins - natural peptide antibiotics of higher eukaryotes].

    PubMed

    Grishin, D V; Sokolov, N N

    2014-01-01

    The goal of this review is to characterize defensins representing an evolutionary the most ancient family of antimicrobial peptides. It gives general information on functional and structural features of defensins as the main components of the first-line defense of higher eukaryote organisms against infectious agents. The review considers not only current situation in the defensin research but also perspectives of creation of recombinant antimicrobial peptides of biomedical application.

  2. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  3. Discovering and improving novel peptide therapeutics.

    PubMed

    McGregor, Duncan Patrick

    2008-10-01

    Peptides have a number of advantages over small molecules in terms of specificity and affinity for targets, and over antibodies in terms of size. However, sensitivity to serum and tissue proteases coupled with short serum half-life has resulted in few recombinant library derived peptides, making the transition from lead to drug on the market. Recently, a series of technologies have been developed to address both these issues: selection methodologies addressing protease resistance have been developed that when combined with methods such as pegylation antibody Fc attachment and binding to serum albumin look likely to finally turn therapeutic peptides into a widely accepted drug class.

  4. Mannan-binding lectin, a serum collectin, suppresses T-cell proliferation via direct interaction with cell surface calreticulin and inhibition of proximal T-cell receptor signaling.

    PubMed

    Zhao, Na; Wu, Jie; Xiong, Simin; Zhang, Liyun; Lu, Xiao; Chen, Shangliang; Wu, Qifeng; Wang, Hailan; Liu, Ying; Chen, Zhengliang; Zuo, Daming

    2017-06-01

    Mannan binding lectin (MBL), initially reported to activate the complement pathway, is also known to be involved in the pathogenesis of autoimmune diseases. We report a thus far unknown function of MBL as a suppressor of T-cell activation. MBL markedly inhibited T-cell proliferation induced by anti-CD3 and anti-CD28 antibodies. Moreover, the presence of MBL during T-cell priming interfered with proximal T-cell receptor signaling by decreasing phosphorylation of Lck, ZAP-70, and LAT. MBL bound to T cells through interaction between the collagen-like region of MBL and calreticulin (CRT) expressed on the T-cell surface. The neutralizing antibody against CRT abrogated MBL-mediated suppression of T-cell proliferation, suggesting that MBL down-modulates T-cell proliferation via cell surface CRT. We further demonstrated that the feature of MBL-mediated T-cell suppression is shared by other serum collectins (e.g., C1q and collectin 11). The concentrations of MBL correlated negatively with in vivo T-cell activation status in patients with early-stage silicosis. Furthermore, MBL efficiently inhibited activation and proliferation of autoreactive T cells derived from patients with silicosis, indicating that MBL serves as a negative feedback control of the T-cell responses.-Zhao, N., Wu, J., Xiong, S., Zhang, L., Lu, X., Chen, S., Wu, Q., Wang, H., Liu, Y., Chen, Z., Zuo, D. Mannan-binding lectin, a serum collectin, suppresses T-cell proliferation via direct interaction with cell surface calreticulin and inhibition of proximal T-cell receptor signaling. © FASEB.

  5. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation

    PubMed Central

    Malamas, Anthony S.; Gameiro, Sofia R.; Knudson, Karin M.; Hodge, James W.

    2016-01-01

    Radium-223 dichloride (Xofigo®; 223Ra) is an alpha-emitting radiopharmaceutical FDA-approved for the treatment of bone metastases in patients with advanced castration-resistant prostate cancer. It is also being examined clinically in patients with breast and lung carcinoma and patients with multiple myeloma. As with other forms of radiation, the aim of 223Ra is to reduce tumor burden by directly killing tumor cells. External beam (photon) and proton radiation have been shown to augment tumor sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes (CTLs). However, little is known about whether treatment with 223Ra can also induce such immunogenic modulation in tumor cells that survive irradiation. We examined these effects in vitro by exposing human prostate, breast, and lung carcinoma cells to sublethal doses of 223Ra. 223Ra significantly enhanced T cell-mediated lysis of each tumor type by CD8+ CTLs specific for MUC-1, brachyury, and CEA tumor antigens. Immunofluorescence analysis revealed that the increase in CTL killing was accompanied by augmented protein expression of MHC-I and calreticulin in each tumor type, molecules that are essential for efficient antigen presentation. Enhanced tumor-cell lysis was facilitated by calreticulin surface translocation following 223Ra exposure. The phenotypic changes observed after treatment appear to be mediated by induction of the endoplasmic reticulum stress response pathway. By rendering tumor cells more susceptible to T cell-mediated lysis, 223Ra may potentially be effective in combination with various immunotherapies, particularly cancer vaccines that are designed to generate and expand patients’ endogenous antigen-specific T-cell populations against specific tumor antigens. PMID:27893426

  6. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation.

    PubMed

    Malamas, Anthony S; Gameiro, Sofia R; Knudson, Karin M; Hodge, James W

    2016-12-27

    Radium-223 dichloride (Xofigo®; 223Ra) is an alpha-emitting radiopharmaceutical FDA-approved for the treatment of bone metastases in patients with advanced castration-resistant prostate cancer. It is also being examined clinically in patients with breast and lung carcinoma and patients with multiple myeloma. As with other forms of radiation, the aim of 223Ra is to reduce tumor burden by directly killing tumor cells. External beam (photon) and proton radiation have been shown to augment tumor sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes (CTLs). However, little is known about whether treatment with 223Ra can also induce such immunogenic modulation in tumor cells that survive irradiation. We examined these effects in vitro by exposing human prostate, breast, and lung carcinoma cells to sublethal doses of 223Ra. 223Ra significantly enhanced T cell-mediated lysis of each tumor type by CD8+ CTLs specific for MUC-1, brachyury, and CEA tumor antigens. Immunofluorescence analysis revealed that the increase in CTL killing was accompanied by augmented protein expression of MHC-I and calreticulin in each tumor type, molecules that are essential for efficient antigen presentation. Enhanced tumor-cell lysis was facilitated by calreticulin surface translocation following 223Ra exposure. The phenotypic changes observed after treatment appear to be mediated by induction of the endoplasmic reticulum stress response pathway. By rendering tumor cells more susceptible to T cell-mediated lysis, 223Ra may potentially be effective in combination with various immunotherapies, particularly cancer vaccines that are designed to generate and expand patients' endogenous antigen-specific T-cell populations against specific tumor antigens.

  7. Active specific T-cell-based immunotherapy for cancer: nucleic acids, peptides, whole native proteins, recombinant viruses, with dendritic cell adjuvants or whole tumor cell-based vaccines. Principles and future prospects.

    PubMed

    Fernandez, N; Duffour, M T; Perricaudet, M; Lotze, M T; Tursz, T; Zitvogel, L

    1998-03-01

    Whereas tumor cells are poor immunogens, recombinant tumor cells or dendritic cells as well as engineered viruses have been demonstrated to elicit specific antitumor immune responses leading to tumor growth suppression and long-lasting immunity in mouse tumor models. Single cytotoxic T lymphocyte-defined epitope-based strategies have proved useful for immunization in tumor-bearing mice. This strategy is under investigation in human melanoma, along with adjuvants such as cytokines or dendritic cells. Flt3L is an in vivo dendritic-cell growth factor that offers new prospects in the field of active specific immunotherapy. These immunotherapeutic approaches are being tested in clinical trials, and may open up novel avenues for disease-free patients with poor prognostic factors.

  8. Purification and partial characterisation of recombinant human hepcidin.

    PubMed

    Wallace, Daniel F; Jones, Marc D; Pedersen, Palle; Rivas, Lucy; Sly, Lindsay I; Subramaniam, V Nathan

    2006-01-01

    Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays.

  9. Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41.

    PubMed

    Vogel, Erica P; Curtis-Fisk, Jaime; Young, Kaitlin M; Weliky, David P

    2011-11-22

    Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41. © 2011 American Chemical Society

  10. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  11. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  12. The use of multiple-pin peptide synthesis in an analysis of the continuous epitopes recognised by various anti-(recombinant bovine growth hormone) sera. Comparison with predicted regions of immunogenicity and location within the three-dimensional structure of the molecule.

    PubMed

    Beattie, J; Fawcett, H A; Flint, D J

    1992-11-15

    A recently developed technology called epitope scanning permits the rapid and accurate delineation of continuous stretches of amino acids in a protein which constitute the sequential epitopes recognised by an antiserum raised to that protein. In the present report, we describe the use of this technique to identify the epitopes in the recombinant bovine growth-hormone (rbGH) molecule recognised by three polyclonal guinea-pig antisera and two polyclonal rabbit antisera. The results obtained show that, for guinea-pig antisera, 3 or 4, very-well-defined major continuous epitopes are present. As would be expected given the intrinsic genetic factors (major histocompatibility restriction, antigen processing and presentation) controlling the immune response in individual animals, subtle differences are evident in the precise location and relative reactivities of these epitopes in different guinea-pig antisera. Nevertheless, there is a large degree of overlap in these epitopes, such that immunodominant regions of the antigen can be clearly delineated. In a structural sense, these epitopes share a common motif in that they are sited in areas of the protein antigen with little secondary structure (loop/coil), although there is some contribution by neighbouring alpha-helices. For the two rabbit antisera, the response tends to be rather more heterogeneous, with recognition of more peptides and less clearly defined epitopes than was the case with the guinea-pig antiserum. Comparison of the four guinea-pig epitopes, identified by our experimental methods with computer predictions for this molecule (Jameson-Wolf antigenic index), indicate that two are strongly predicted, one is weakly predicted and one is not predicted. These observations, together with the displayed intraspecies and interspecies variation clearly indicate the limitations of these predictive methods. In conclusion, we have demonstrated that, despite the expected variation in the exact location of continuous

  13. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants

    PubMed Central

    2004-01-01

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed. PMID:15560754

  14. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  15. Short peptides allowing preferential detection of Candida albicans hyphae.

    PubMed

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  16. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  17. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  18. Cellular disulfide bond formation in bioactive peptides and proteins.

    PubMed

    Patil, Nitin A; Tailhades, Julien; Hughes, Richard Anthony; Separovic, Frances; Wade, John D; Hossain, Mohammed Akhter

    2015-01-14

    Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.

  19. Cellular Disulfide Bond Formation in Bioactive Peptides and Proteins

    PubMed Central

    Patil, Nitin A.; Tailhades, Julien; Hughes, Richard Anthony; Separovic, Frances; Wade, John D.; Hossain, Mohammed Akhter

    2015-01-01

    Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes—a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor—that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery. PMID:25594871

  20. Safety and immunogenicity of a live recombinant canarypox virus expressing HIV type 1 gp120 MN MN tm/gag/protease LAI (ALVAC-HIV, vCP205) followed by a p24E-V3 MN synthetic peptide (CLTB-36) administered in healthy volunteers at low risk for HIV infection. AGIS Group and L'Agence Nationale de Recherches sur Le Sida.

    PubMed

    Salmon-Céron, D; Excler, J L; Finkielsztejn, L; Autran, B; Gluckman, J C; Sicard, D; Matthews, T J; Meignier, B; Valentin, C; El Habib, R; Blondeau, C; Raux, M; Moog, C; Tartaglia, J; Chong, P; Klein, M; Milcamps, B; Heshmati, F; Plotkin, S

    1999-05-01

    A live recombinant canarypox vector expressing HIV-1 gpl20 MN tm/gag/protease LAI (ALVAC-HIV, vCP205) alone or boosted by a p24E-V3 MN synthetic peptide (CLTB-36) was tested in healthy volunteers at low risk for HIV infection for their safety and immunogenicity. Both antigens were well tolerated. ALVAC-HIV (vCP205) induced low levels of neutralizing antibodies against HIV-1 MN in 33% of the volunteers. None of them had detectable neutralizing antibodies against a nonsyncytium-inducing HIV-1 clade B primary isolate (Bx08). After the fourth injection of vCP205, CTL activity was detected in 33% of the volunteers and was directed against Env, Gag, and Pol. This activity was mediated by both CD4+ and CD8+ lymphocytes. On the other hand, the CLTB-36 peptide was poorly immunogenic and induced no neutralizing antibodies or CTLs. Although the ALVAC-HIV (vCP205) and CLTB-36 prime-boost regimen was not optimal, further studies with ALVAC-HIV (vCP205) are warranted because of its clear induction of a cellular immune response and utility as a priming agent for other subunit antigens such as envelope glycoproteins, pseudoparticles, or new peptides.

  1. IgG Antibody Responses to Recombinant gp120 Proteins, gp70V1/V2 Scaffolds, and a CyclicV2 Peptide in Thai Phase I/II Vaccine Trials Using Different Vaccine Regimens.

    PubMed

    Karasavvas, Nicos; Karnasuta, Chitraporn; Savadsuk, Hathairat; Madnote, Sirinan; Inthawong, Dutsadee; Chantakulkij, Somsak; Rittiroongrad, Surawach; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Thongcharoen, Prasert; Siriyanon, Vinai; Andrews, Charla A; Barnett, Susan W; Tartaglia, James; Sinangil, Faruk; Francis, Donald P; Robb, Merlin L; Michael, Nelson L; Ngauy, Viseth; de Souza, Mark S; Paris, Robert M; Excler, Jean-Louis; Kim, Jerome H; O'Connell, Robert J

    2015-11-01

    RV144 correlates of risk analysis showed that IgG antibodies to gp70V1V2 scaffolds inversely correlated with risk of HIV acquisition. We investigated IgG antibody responses in RV135 and RV132, two ALVAC-HIV prime-boost vaccine trials conducted in Thailand prior to RV144. Both trials used ALVAC-HIV (vCP1521) at 0, 1, 3, and 6 months and HIV-1 gp120MNgD and gp120A244gD in alum (RV135) or gp120SF2 and gp120CM235 in MF59 (RV132) at 3 and 6 months. We assessed ELISA binding antibodies to the envelope proteins (Env) 92TH023, A244gD and MNgD, cyclicV2, and gp70V1V2 CaseA2 (subtype B) and 92TH023 (subtype CRF01_AE), and Env-specific IgG1 and IgG3. Antibody responses to gp120 A244gD, MNgD, and gp70V1V2 92TH023 scaffold were significantly higher in RV135 than in RV132. Antibodies to gp70V1V2 CaseA2 were detected only in RV135 vaccine recipients and IgG1 and IgG3 antibody responses to A244gD were significantly higher in RV135. IgG binding to gp70V1V2 CaseA2 and CRF01_AE scaffolds was higher with the AIDSVAX(®)B/E boost but both trials showed similar rates of antibody decline post-vaccination. MF59 did not result in higher IgG antibody responses compared to alum with the antigens tested. However, notable differences in the structure of the recombinant proteins and dosage used for immunizations may have contributed to the magnitude and specificity of IgG induced by the two trials.

  2. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses

    USDA-ARS?s Scientific Manuscript database

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal po...

  3. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  4. C-Peptide Test

    MedlinePlus

    ... vital for the body to use its main energy source, glucose . Since C-peptide and insulin are produced ... these cases, C-peptide measurement is a useful alternative to testing for insulin. C-peptide measurements can ...

  5. Biochemical and ultrastructural correlations of calreticulin and thioredoxin expression in breast mucinous carcinoma and infiltrating ductal carcinoma non-special type.

    PubMed

    Baltatzis, G E; Gaitanarou, H; Arnogianaki, N; Misitzis, J; Voloudakis-Baltatzis, I E

    2011-02-01

    Mucinous infiltrating invasive ductal adenocarcinoma consists of 2-4% invasive breast cancer, but is a very interesting type due to its macroscopic similarity to non-special-type (NST) ductal carcinoma. The macroscopic similarity of mucinous and infiltrating ductal carcinoma NST adenocarcinomas consists of a loose and edematous stroma, which is often seen in portions of NST carcinoma and may mimic the mucin pools of mucinous carcinoma. In this study the authors examined the ultrastructural differences between mucinous carcinoma and infiltrating ductal carcinoma NST. They also examined the protein expression of the tissues by 2D electrophoresis due to their belief that from the results of these two levels it is possible to understand the changes that take place both in the ultrastructural and biochemical levels in these two types of breast cancer. The ultrastructural results from mucinous carcinoma have shown many changes in cytoplasmic organelles in comparison to normal samples, depending on the grade and the number of metastatic lymph nodes. At the 2D elecrophoresis level the authors studied two interesting polypeptides, calreticulin and thioredoxin. Both of these proteins were found in patterns of fibroadenoma, mucinous carcinoma, and NST carcinoma, but with different quantitative expression among them. In the future the quantitative differences of these two proteins may provide specific tumor markers for these two types of carcinoma.

  6. Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato.

    PubMed

    Wu, Qingyu; Shigaki, Toshiro; Han, Jeung-Sul; Kim, Chang Kil; Hirschi, Kendal D; Park, Sunghun

    2012-12-01

    Deregulated expression of an Arabidopsis H⁺/Ca²⁺ antiporter (sCAX1) in agricultural crops increases total calcium (Ca²⁺) but may result in yield losses due to Ca²⁺ deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca²⁺ binding protein located at endoplasmic reticulum) in sCAX1-expressing tobacco and tomato plants mitigated these adverse effects while maintaining enhanced Ca²⁺ content. Co-expression of CRT and sCAX1 could alleviate the hypersensitivity to ion imbalance in tobacco plants. Furthermore, blossom-end rot (BER) in tomato may be linked to changes in CAX activity and enhanced CRT expression mitigated BER in sCAX1 expressing lines. These findings suggest that co-expressing Ca²⁺ transporters and binding proteins at different intracellular compartments can alter the content and distribution of Ca²⁺ within the plant matrix.

  7. Trypanosoma cruzi carrying a monoallelic deletion of the calreticulin (TcCRT) gene are susceptible to complement mediated killing and defective in their metacyclogenesis.

    PubMed

    Sánchez Valdéz, Fernando J; Pérez Brandán, Cecilia; Zago, M Paola; Labriola, Carlos; Ferreira, Arturo; Basombrío, Miguel Ángel

    2013-03-01

    Trypanosoma cruzi calreticulin (TcCRT) can hijack complement C1, mannan-binding lectin and ficolins from serum thus inhibiting the classical and lectin complement pathway activation respectively. To understand the in vivo biological functions of TcCRT in T. cruzi we generated a clonal cell line lacking one TcCRT allele (TcCRT+/-) and another clone overexpressing it (TcCRT+). Both clones were derived from the TCC T. cruzi strain. As expected, TcCRT+/- epimastigotes showed impairment on TcCRT synthesis, whereas TcCRT+ ones showed increased protein levels. In correlation to this, monoallelic mutant parasites were significantly susceptible to killing by the complement machinery. On the contrary, TcCRT+ parasites showed higher levels of resistance to killing mediate by the classical and lectin but not the alternative pathway. The involvement of surface TcCRT in depleting C1 was demonstrated through restoration of serum killing activity by addition of exogenous C1. In axenic cultures, a reduced propagation rate of TcCRT+/- parasites was observed. Moreover, TcCRT+/- parasites presented a reduced rate of differentiation in in vitro assays. As shown by down- or upregulation of TcCRT expression this gene seems to play a major role in providing T. cruzi with the ability to resist complement system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. OBTAINING OF THE TRANSGENIC HELIANTHUS TUBEROSUS L. PLANTS, CALLUS AND "HAIRY" ROOT CULTURES ABLE TO EXPRESS THE RECOMBINANT HUMAN INTERFERON ALPHA-2b GENE.

    PubMed

    Maistrenko, O M; Luchakivska, Yu S; Zholobak, N M; Spivak, M Ya; Kuchuk, M V

    2015-01-01

    This work is the first to our knowledge to describe the successful attempt of Agrobacterium rhizogenes-mediated transformation of topinambour in order to obtain the transgenic H. tuberosus plants, callus and "hairy" root cultures. The plasmid vectors contained the sequence of interferon gene fused with Nicotiana plumbagenifolia L. calreticulin apoplast targeting signal driven by 35S CaMV promoter or root-specific Mll promoter. Nearly 75% isolated Ri-root lines and callus cultures were proved (by PCR analysis) to contain HuINFa-2b transgene. We also managed to obtain H. tuberosus transgenic plants through somatic embryogenesis on the transgenic "hairy" root culture. The obtained transgenic H. tuberosus cultures exhibited high-level antiviral activity that ranged from 2000 to 54500 IU/g FW that makes this crop considered a promising source of recombinant interferon alpha 2b protein.

  9. Staphylococcal Surface Display of Metal-Binding Polyhistidyl Peptides

    PubMed Central

    Samuelson, Patrik; Wernérus, Henrik; Svedberg, Malin; Ståhl, Stefan

    2000-01-01

    Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni2+- and Cd2+-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to our knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications for such recombinant staphylococci as biosorbents are discussed. PMID:10698802

  10. Recombinant Baculovirus Isolation.

    PubMed

    King, Linda A; Hitchman, Richard; Possee, Robert D

    2016-01-01

    Although there are several different methods available of making recombinant baculovirus expression vectors (reviewed in Chapter 3 ), all require a stage in which insect cells are transfected with either the virus genome alone (Bac-to-Bac(®) or BaculoDirect™, Invitrogen) or virus genome and transfer vector. In the latter case, this allows the natural process of homologous recombination to transfer the foreign gene, under control of the polyhedrin or other baculovirus gene promoter, from the transfer vector to the virus genome to create the recombinant virus. Previously, many methods required a plaque-assay to separate parental and recombinant virus prior to amplification and use of the recombinant virus. Fortunately, this step is no longer required for most systems currently available. This chapter provides an overview of the historical development of increasingly more efficient systems for the isolation of recombinant baculoviruses (Chapter 3 provides a full account of the different systems and transfer vectors available). The practical details cover: transfection of insect cells with either virus DNA or virus DNA and plasmid transfer vector; a reliable plaque-assay method that can be used to separate recombinant virus from parental (nonrecombinant) virus where this is necessary; methods for the small-scale amplification of recombinant virus; and subsequent titration by plaque-assay or real-time polymerase chain reaction (PCR). Methods unique to the Bac-to-Bac(®) system are also covered and include the transformation of bacterial cells and isolation of bacmid DNA ready for transfection of insect cells.

  11. Recombinant expression of hydroxylated human collagen in Escherichia coli.

    PubMed

    Rutschmann, Christoph; Baumann, Stephan; Cabalzar, Jürg; Luther, Kelvin B; Hennet, Thierry

    2014-05-01

    Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.

  12. Designing Smart Materials with Recombinant Proteins.

    PubMed

    Hollingshead, Sydney; Lin, Charng-Yu; Liu, Julie C

    2017-07-01

    Recombinant protein design allows modular protein domains with different functionalities and responsive behaviors to be easily combined. Inclusion of these protein domains can enable recombinant proteins to have complex responses to their environment (e.g., temperature-triggered aggregation followed by enzyme-mediated cleavage for drug delivery or pH-triggered conformational change and self-assembly leading to structural stabilization by adjacent complementary residues). These "smart" behaviors can be tuned by amino acid identity and sequence, chemical modifications, and addition of other components. A wide variety of domains and peptides have smart behavior. This review focuses on protein designs for self-assembly or conformational changes due to stimuli such as shifts in temperature or pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. B-type natriuretic peptide and acute heart failure: Fluid homeostasis, biomarker and therapeutics.

    PubMed

    Torres-Courchoud, I; Chen, H H

    2016-10-01

    Natriuretic peptides are a family of peptides with similar structures, but are genetically distinct with diverse actions in cardiovascular, renal and fluid homeostasis. The family consists of an atrial natriuretic peptide (ANP) and a brain natriuretic peptide (BNP) of myocardial cell origin, a C-type natriuretic peptide (CNP) of endothelial origin, and a urodilatin (Uro) which is processed from a prohormone ANP in the kidney. Nesiritide, a human recombinant BNP, was approved by the Federal Drug Administration (FDA) for the management of acute heart failure (AHF) in 2001. Human recombinant ANP (Carperitide) was approved for the same clinical indication in Japan in 1995, and human recombinant Urodilatin (Ularitide) is currently undergoing phase III clinical trial (TRUE AHF). This review will provide an update on important issues regarding the role of BNP in fluid hemostasis as a biomarker and therapeutics in AHF.

  14. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  15. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  16. TMV recombinants encoding fused foreign transmembrane domains to the CP subunit caused local necrotic response on susceptible tobacco.

    PubMed

    Li, Qiaoli; Li, Mangmang; Jiang, Lubin; Zhang, Qingqi; Song, Rentao; Xu, Zhengkai

    2006-05-10

    With regard to the effects of various foreign peptides fused to the coat protein subunits on the infectivity of corresponding TMV recombinants, some of TMV recombinants were found to induce necrotic local lesions on the inoculated leaves of susceptible tobacco. This paper reported that there existed a group of TMV recombinants in which the fused foreign peptides contained a transmembrane domain according to the predictions by three programs of SOSUI, TMpred and DAS. Further studies showed for the first time that a foreign transmembrane domain in a fused peptide of the corresponding TMV recombinant would result in the local lesions on the susceptible tobacco leaves. In addition, it was concluded that none of the TMV recombinants that systematically infected susceptible tobacco contained a transmembrane domain in the coat protein subunits.

  17. Recombination and Replication

    PubMed Central

    Syeda, Aisha H.; Hawkins, Michelle; McGlynn, Peter

    2014-01-01

    The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA. PMID:25341919

  18. Dissociative recombination in aeronomy

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1989-01-01

    The importance of dissociative recombination in planetary aeronomy is summarized, and two examples are discussed. The first is the role of dissociative recombination of N2(+) in the escape of nitrogen from Mars. A previous model is updated to reflect new experimental data on the electronic states of N produced in this process. Second, the intensity of the atomic oxygen green line on the nightside of Venus is modeled. Use is made of theoretical rate coefficients for production of O (1S) in dissociative recombination from different vibrational levels of O2(+).

  19. In silico analyses of heat shock protein 60 and calreticulin to designing a novel vaccine shifting immune response toward T helper 2 in atherosclerosis.

    PubMed

    Karkhah, Ahmad; Saadi, Mahdiye; Nouri, Hamid Reza

    2017-04-01

    Recent experiments demonstrated that atherosclerosis is a Th1 dominant autoimmune condition, whereas Th2 cells are rarely detected within the atherosclerotic lesions. Several studies have indicated that Th2 type cytokines could be effective in the reduction and stabilization of atherosclerotic plaque. Therefore, the modulation of the adaptive immune response by shifting immune responses toward Th2 cells by a novel vaccine could represent a promising approach to prevent from progression and thromboembolic events in coronary artery disease. In the present study, an in silico approach was applied to design a novel multi-epitope vaccine to elicit a desirable immune response against atherosclerosis. Six novel IL-4 inducing epitopes were selected from HSP60 and calreticulin proteins. To enhance epitope presentation, IL-4 inducing epitopes were linked together by AAY and HEYGAEALERAG linkers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Moreover, cholera toxin B (CTB) was employed as an adjuvant. A multi-epitope construct was designed based on predicted epitopes which was 320 residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this chimeric protein were analyzed using bioinformatics tools and servers. Based on bioinformatics analysis, a soluble, and non-allergic protein with 35.405kDa molecular weight was designed. Expasy ProtParam classified this chimeric protein as a stable protein. In addition, predicted epitopes in the chimeric vaccine indicated strong potential to induce B-cell mediated immune response and shift immune responses toward protective Th2 immune response. Various in silico analyses indicate that this vaccine is a qualified candidate for improvement of atherosclerosis by inducing immune responses toward T helper 2.

  20. Nicotiana benthamiana calreticulin 3a is required for the ethylene-mediated production of phytoalexins and disease resistance against oomycete pathogen Phytophthora infestans.

    PubMed

    Matsukawa, Mizuki; Shibata, Yusuke; Ohtsu, Mina; Mizutani, Aki; Mori, Hitoshi; Wang, Ping; Ojika, Makoto; Kawakita, Kazuhito; Takemoto, Daigo

    2013-08-01

    Mature Nicotiana benthamiana shows strong resistance to the potato late blight pathogen Phytophthora infestans. By screening using virus-induced random gene silencing, we isolated a gene for plant-specific calreticulin NbCRT3a as a required gene for resistance of N. benthamiana against P. infestans. NbCRT3a encodes an endoplasmic reticulum quality-control (ERQC) chaperone for the maturation of glycoproteins, including glycosylated cell-surface receptors. NbCRT3a-silenced plants showed no detectable growth defects but resistance to P. infestans was significantly compromised. Defense responses induced by the treatment with INF1 (a secretory protein of P. infestans), such as production of reactive oxygen species and accumulation of phytoalexins, were suppressed in NbCRT3a-silenced N. benthamiana. Expression of an ethylene-regulated gene for phytoalexin biosynthesis, NbEAS, was reduced in NbCRT3a-silenced plants, whereas the expression of salicylic acid-regulated NbPR-1a was not affected. Consistently, induction of ethylene production by INF1 was suppressed in NbCRT3a-silenced plants. Resistance reactions induced by a hyphal wall components elicitor prepared from P. infestans were also impaired in NbCRT3a-silenced plants. However, cell death induced by active mitogen-activated protein kinase kinase (NbMEK2(DD)) was not affected by the silencing of NbCRT3a. Thus, NbCRT3a is required for the initiation of resistance reactions of N. benthamiana in response to elicitor molecules derived from P. infestans.

  1. The nerve growth factor alters calreticulin translocation from the endoplasmic reticulum to the cell surface and its signaling pathway in epithelial ovarian cancer cells.

    PubMed

    Vera, Carolina Andrea; Oróstica, Lorena; Gabler, Fernando; Ferreira, Arturo; Selman, Alberto; Vega, Margarita; Romero, Carmen Aurora

    2017-02-28

    Ovarian cancer is the seventh most common cancer among women worldwide, causing approximately 120,000 deaths every year. Immunotherapy, designed to boost the body's natural defenses against cancer, appears to be a promising option against ovarian cancer. Calreticulin (CRT) is an endoplasmic reticulum (ER) resident chaperone that, translocated to the cell membrane after ER stress, allows cancer cells to be recognized by the immune system. The nerve growth factor (NGF) is a pro-angiogenic molecule overexpressed in this cancer. In the present study, we aimed to determine weather NGF has an effect in CRT translocation induced by cytotoxic and ER stress. We treated A2780 ovarian cancer cells with NGF, thapsigargin (Tg), an ER stress inducer and mitoxantrone (Mtx), a chemotherapeutic drug; CRT subcellular localization was analyzed by immunofluorescence followed by confocal microscopy. In order to determine NGF effect on Mtx and Tg-induced CRT translocation from the ER to the cell membrane, cells were preincubated with NGF prior to Mtx or Tg treatment and CRT translocation to the cell surface was determined by flow cytometry. In addition, by western blot analyses, we evaluated proteins associated with the CRT translocation pathway, both in A2780 cells and human ovarian samples. We also measured NGF effect on cell apoptosis induced by Mtx. Our results indicate that Mtx and Tg, but not NGF, induce CRT translocation to the cell membrane. NGF, however, inhibited CRT translocation induced by Mtx, while it had no effect on Tg-induced CRT exposure. NGF also diminished cell death induced by Mtx. NGF effect on CRT translocation could have consequences in immunotherapy, potentially lessening the effectiveness of this type of treatment.

  2. Molecular cloning and transcriptional activity of a new Petunia calreticulin gene involved in pistil transmitting tract maturation, progamic phase, and double fertilization.

    PubMed

    Lenartowski, Robert; Suwińska, Anna; Prusińska, Justyna; Gumowski, Krzysztof; Lenartowska, Marta

    2014-02-01

    Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca²⁺-binding protein in multicellular eukaryotes. As an endoplasmic reticulum-resident protein, CRT plays a key role in many cellular processes including Ca²⁺ storage and release, protein synthesis, and molecular chaperoning in both animals and plants. CRT has long been suggested to play a role in plant sexual reproduction. To begin to address this possibility, we cloned and characterized the full-length cDNA of a new CRT gene (PhCRT) from Petunia. The deduced amino acid sequence of PhCRT shares homology with other known plant CRTs, and phylogenetic analysis indicates that the PhCRT cDNA clone belongs to the CRT1/CRT2 subclass. Northern blot analysis and fluorescent in situ hybridization were used to assess PhCRT gene expression in different parts of the pistil before pollination, during subsequent stages of the progamic phase, and at fertilization. The highest level of PhCRT mRNA was detected in the stigma-style part of the unpollinated pistil 1 day before anthesis and during the early stage of the progamic phase, when pollen is germinated and tubes outgrow on the stigma. In the ovary, PhCRT mRNA was most abundant after pollination and reached maximum at the late stage of the progamic phase, when pollen tubes grow into the ovules and fertilization occurs. PhCRT mRNA transcripts were seen to accumulate predominantly in transmitting tract cells of maturing and receptive stigma, in germinated pollen/growing tubes, and at the micropylar region of the ovule, where the female gametophyte is located. From these results, we suggest that PhCRT gene expression is up-regulated during secretory activity of the pistil transmitting tract cells, pollen germination and outgrowth of the tubes, and then during gamete fusion and early embryogenesis.

  3. Synthesis of misfolded glycoprotein dimers through native chemical ligation of a dimeric peptide thioester.

    PubMed

    Izumi, Masayuki; Komaki, Shinji; Okamoto, Ryo; Seko, Akira; Takeda, Yoichi; Ito, Yukishige; Kajihara, Yasuhiro

    2016-07-07

    Glycoprotein quality control processes are very important for an efficient production of glycoproteins and for avoiding the accumulation of unwanted toxic species in cells. These complex processes consist of multiple enzymes and chaperones such as UGGT, calnexin/calreticulin, and glucosidase II. We designed and synthesized monomeric and dimeric misfolded glycoprotein probes. Synthetic homogeneous monomeric glycoproteins proved to be useful substrates for kinetic analyses of the folding sensor enzyme UGGT. For a concise synthesis of a bismaleimide-linked dimer, we examined double native chemical ligation (dNCL) of a dimeric peptide-α-thioester. The dNCL to two equivalents of glycopeptides gave a homodimer. The dNCL to a 1 : 1 mixture of a glycopeptide and a non-glycosylated peptide gave all the three possible ligation products consisting of two homodimers and a heterodimer. Both the homodimer bearing two Man9GlcNAc2 (M9) oligosaccharides and the heterodimer bearing one M9 oligosaccharide were found to be good substrates of UGGT.

  4. Des-(27-31)C-peptide. A novel secretory product of the rat pancreatic beta cell produced by truncation of proinsulin connecting peptide in secretory granules.

    PubMed

    Verchere, C B; Paoletta, M; Neerman-Arbez, M; Rose, K; Irminger, J C; Gingerich, R L; Kahn, S E; Halban, P A

    1996-11-01

    Insulin and connecting peptide (C-peptide) are produced in equimolar amounts during proinsulin conversion in the pancreatic beta cell secretory granule. To determine whether insulin and C-peptide are equally stable in beta cell granules (and thus secreted in equimolar amounts), neonatal and adult rat beta cells were pulse-chased, and radiolabeled insulin and C-peptide analyzed by high performance liquid chromatography. A novel truncated C-peptide was identified and shown by mass spectrometry to be des-(27-31)C-peptide (loss of 5 C-terminal amino acids). Des-(27-31)C-peptide is a major beta cell secretory product, accounting for 37.4 +/- 1.6% (neonatal) and 8.5 +/- 0.6% (adult) of total labeled C-peptide in secretory granules after 10 h of chase. Des-(27-31)C-peptide is also secreted in a glucose-sensitive manner from the perfused adult rat pancreas, accounting for approximately 10% of total C-peptide immunoreactivity secreted. Human C-peptide is also a substrate for truncation in granules. Thus, when human proinsulin was expressed (infection with recombinant adenovirus) in transformed (INS) rat beta cells, human des-(27-31)C-peptide was secreted along with the intact human peptide and both intact and truncated rat C-peptide. In addition to truncation, 33.1 +/- 1.2% of C-peptide in neonatal but not adult rat beta cell granules was further degraded. Such degradation was completely inhibited by ammonium chloride (known to neutralize intra-granular pH), whereas truncation was only partially inhibited by approximately 50%. In conclusion, a novel beta cell secretory product, des-(27-31)C-peptide, has been identified and should be considered as a potential bioactive peptide. Both truncation and degradation of C-peptide are responsible for non-equimolar secretion of insulin and C-peptide in rat beta cells.

  5. Surface recombination in semiconductors

    SciTech Connect

    Langer, J.M.; Walukiewicz, W.

    1995-07-01

    We propose two general criteria for a surface defect state to act as an efficient, nonradiative recombination center. The first is that the thermal ionization energy should not deviate from the mid-gap energy by more than the relaxation energy of the defect, In this case the activation energy for the recombination is given by the barrier for the capture of the first carrier, whereas the second carrier is captured athermally. The second citerion is related to the position of the average dangling bond energy relative to the band edges. If, as in the cases of InP or InAs, it is located close to a band edge, a low surface recombination velocity is expected. However a much faster recombination is predicated and experimentally observed in the materials with the average dangling bond energy located close to the mid-gap. The relevance of these criteria for the novel wide-gap optoelectronic materials is discussed.

  6. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  7. Multiphoton Assisted Recombination

    NASA Astrophysics Data System (ADS)

    Shuman, E. S.; Jones, R. R.; Gallagher, T. F.

    2008-12-01

    We have observed multiphoton assisted recombination in the presence of a 38.8 GHz microwave field. Stimulated emission of up to ten microwave photons results in energy transfer from continuum electrons, enabling recombination. The maximum electron energy loss is far greater than the 2Up predicted by the standard “simpleman’s” model. The data are well reproduced by both an approximate analytic expression and numerical simulations in which the combined Coulomb and radiation fields are taken into account.

  8. Recombination and chromosome segregation.

    PubMed Central

    Sherratt, David J; Søballe, Britta; Barre, François-Xavier; Filipe, Sergio; Lau, Ivy; Massey, Thomas; Yates, James

    2004-01-01

    The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated. PMID:15065657

  9. Regulatory Peptides in Plants.

    PubMed

    Vanyushin, B F; Ashapkin, V V; Aleksandrushkina, N I

    2017-02-01

    Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.

  10. Recombinant Peptides as Biomarkers for Metastatic Breast Cancer Response

    DTIC Science & Technology

    2007-10-01

    fibroblast growth factor receptor 4 (FGFR4) and in thyroglobulin . For FGFR4, it has been shown that a truncated form results in pituitary tumors10; it...transforming growth factor, alpha, isoform CRA_e • fibroblast growth factor receptor 4, isoform CRA_a • Thyroglobulin • Rho guanine nucleotide

  11. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    PubMed Central

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; Boyd, Lisa F.; Jiang, Jiansheng; Dolan, Michael A.; Venna, Ramesh; Norcross, Michael A.; McMurtrey, Curtis P.; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H.

    2016-01-01

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8+ T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  12. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    SciTech Connect

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; Boyd, Lisa F.; Jiang, Jiansheng; Dolan, Michael A.; Venna, Ramesh; Norcross, Michael A.; McMurtrey, Curtis P.; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H.

    2016-02-11

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8+ T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.

  13. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity.

    PubMed

    Risso, A

    2000-12-01

    Antimicrobial peptides are effector molecules of innate immunity that provide a first line of defense against pathogens. In mammals, they are stored in granules of leukocytes and are present in those sites that are exposed to microbial invasion, such as mucosal surfaces and skin. In the last decade, biochemical investigations and recombinant DNA technology have allowed the identification and characterization of several antimicrobial peptides from various animal and vegetal species. Most of the mammalian peptides have been grouped in two broad families: defensins and cathelicidin-derived peptides. Functional studies have shown that the toxicity mechanisms for many peptides consist of a rapid permeabilization of the target cell membrane. In addition to their microbicidal activity, some members of both families are multifunctional molecules, playing a modulating role in the inflammation and the antigen-driven immune response.

  14. The effects of two weeks of recombinant growth hormone administration on the response of IGF-I and N-terminal pro-peptide of collagen type III (P-III-NP) during a single bout of high resistance exercise in resistance trained young men.

    PubMed

    Velloso, C P; Aperghis, M; Godfrey, R; Blazevich, A J; Bartlett, C; Cowan, D; Holt, R I G; Bouloux, P; Harridge, S D R; Goldspink, G

    2013-06-01

    Recombinant human growth hormone (rhGH) is used by some athletes and body builders with the aim of enhancing performance, building muscle and improving physique. Detection of the misuse of rhGH has proved difficult for a number of reasons. One of these is the effect of preceding exercise. In this randomised, double blind placebo-controlled study, we determined the effects of rhGH administration in male amateur athletes on two candidate markers of rhGH abuse, IGF-I and N-terminal pro-peptide of collagen type III (P-III-NP), following a bout of weightlifting exercise. Sixteen men entered a four-week general weight training programme to homogenise their activity profile. They then undertook repeated bouts of standardised leg press weightlifting exercise (AHRET-acute heavy resistance exercise test). Blood samples were taken before and up to one hour after the AHRET. After the first laboratory visit (Test 1), the subjects were randomly assigned to receive daily injections of either rhGH (0.1 IU kg(-1) day(-1)) or placebo for two weeks. The AHRET was repeated after the two-week dosing period (Test 2) and a further test was undertaken following a one-week washout (Test 3). There was no effect of exercise on either IGF-I or P-III-NP in any test. Both markers were markedly elevated at Test 2 (p<0.001), with P-III-NP remaining elevated at Test 3 in the GH administration group (p<0.05). Application of the GH-2000 discriminant function positively identified GH administration in 17 of 40 blood samples taken at Test 2 from the rhGH group and none from the placebo group. The data show that rhGH results in elevated levels of IGF-I and P-III-NP in well-trained individuals and that leg press weightlifting exercise does not affect these markers. The GH-2000 discriminant function identified four of eight subjects taking rhGH with no false positive results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  16. TRH-like peptides.

    PubMed

    Bílek, R; Bičíková, M; Šafařík, L

    2011-01-01

    TRH-like peptides are characterized by substitution of basic amino acid histidine (related to authentic TRH) with neutral or acidic amino acid, like glutamic acid, phenylalanine, glutamine, tyrosine, leucin, valin, aspartic acid and asparagine. The presence of extrahypothalamic TRH-like peptides was reported in peripheral tissues including gastrointestinal tract, placenta, neural tissues, male reproductive system and certain endocrine tissues. Work deals with the biological function of TRH-like peptides in different parts of organisms where various mechanisms may serve for realisation of biological function of TRH-like peptides as negative feedback to the pituitary exerted by the TRH-like peptides, the role of pEEPam such as fertilization-promoting peptide, the mechanism influencing the proliferative ability of prostatic tissues, the neuroprotective and antidepressant function of TRH-like peptides in brain and the regulation of thyroid status by TRH-like peptides.

  17. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  18. Recombinant phage probes for Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    Carnazza, S.; Gioffrè, G.; Felici, F.; Guglielmino, S.

    2007-10-01

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 104 cells ml-1. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  19. Recombinant production of TEV cleaved human parathyroid hormone.

    PubMed

    Audu, Christopher O; Cochran, Jared C; Pellegrini, Maria; Mierke, Dale F

    2013-08-01

    The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of (15) N-enriched human parathyroid hormone, (15) N PTH(1-34), generated via a plasmid vector that gives reasonable yield, low-cost protease cleavage (leaving the native N-terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS.

  20. Expression and purification of recombinant neurotensin in Escherichia coli.

    PubMed

    Williamson, P T; Roth, J F; Haddingham, T; Watts, A

    2000-07-01

    An expression system has been designed for the rapid and economic expression of recombinant neurotensin for biophysical studies. A synthetic gene for neurotensin (Glu(1)-Leu(2)-Tyr(3)-Glu(4)-Asn(5)-Lys(6)-Pro(7)-Arg(8)-Arg(9)-Pro(1 0)-Tyr(11)-Ile(12)-Leu(13)) was cloned into the pGEX-5X-2 vector to allow expression of neurotensin as a glutathione S-transferase (GST) fusion protein. The inclusion of a methionine residue between the glutathione S-transferase and the neurotensin has facilitated the rapid cleavage of the neurotensin from its carrier protein. Purification of recombinant neurotensin was performed by reverse-phase HPLC. This method produced a relatively high yield of peptide and offers the potential for economic partial or uniform labeling of small peptides (<15 amino acids) with isotopes for NMR or other biophysical techniques.

  1. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  2. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  3. High prevalence of antibodies to calreticulin of the IgA class in primary biliary cirrhosis: a possible role of gut-derived bacterial antigens in its aetiology?

    PubMed

    Kreisel, W; Siegel, A; Bahler, A; Spamer, C; Schiltz, E; Kist, M; Seilnacht, G; Klein, R; Berg, P A; Heilmann, C

    1999-06-01

    In a preliminary study we showed that antibodies to the endoplasmic reticulum protein calreticulin (CR) occur in primary biliary cirrhosis (PBC) and autoimmune hepatitis type 1 (AIH). Since anti-CR antibodies have also been found in patients with infectious diseases, we investigated their prevalence and immunoglobulin classes in patients with various hepatic and intestinal diseases, hoping to get some information on a possible relationship between an infectious trigger and the induction of a certain class of anti-CR antibodies. Sera were tested for anti-CR antibodies of the IgA, IgG, and IgM class by Western blotting, using CR isolated from human liver: in autoimmune liver diseases (primary biliary cirrhosis (PBC) (n = 86) and autoimmune hepatitis (AIH) type 1 (n = 57)), alcoholic liver cirrhosis (ALC) (n = 32), viral liver infections (acute hepatitis A (n = 8), acute hepatitis B (n = 20), and chronic hepatitis C (n = 28)), and intestinal diseases (Crohn disease (CD) (n = 30), acute yersiniosis (n = 26)). Sera from 100 healthy individuals served as negative controls. The most prominent finding was the high prevalence of anti-CR antibodies of the IgA class and the similarity in the anti-CR antibody class pattern in PBC (IgA, 62%; IgG, 43%; IgM, 55%) and yersiniosis (IgA, 62%; IgG, 39%; IgM, 42%). Class IgA anti-CR antibodies also occurred frequently in ALC (IgA, 44%; IgG, 41%; IgM, 19%). In contrast, in AIH anti-CR antibodies were predominantly of class IgG (IgA, 28%; IgG, 60%; IgM, 33%). In hepatitis A anti-CR antibodies were absent. In the other diseases they had a low prevalence and were mostly of class IgG (acute hepatitis B: IgA, 0%; IgG, 15%; IgM, 0%; chronic hepatitis C: IgA, 7%; IgG, 21%; IgM, 0%; CD: IgA, 13%; IgG, 20%; IgM, 13%). Of the healthy individuals 7% had anti-CR antibodies exclusively of class IgG. The high prevalence of anti-CR antibodies of class IgA in patients with PBC and yersiniosis as well as in alcoholic liver disease reflects a reactivity

  4. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    PubMed Central

    Ramírez-Toloza, Galia; Ferreira, Arturo

    2017-01-01

    American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay

  5. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin.

    PubMed

    Ramírez-Toloza, Galia; Ferreira, Arturo

    2017-01-01

    American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay

  6. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    PubMed

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  8. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  9. Production of Bioactive Peptides in an In Vitro System

    PubMed Central

    Ozawa, Akihiko; Cai, Yang; Lindberg, Iris

    2007-01-01

    An in vitro system for the preparation of bioactive peptides is described below. This system couples three different post-translational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl α-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE) and human proghrelin were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl α-MSH. For proenkephalin, 75% and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk respectively. Cell-based assays demonstrated that in vitro-generated des-acetyl α-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage as well as to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7, but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system 1) can produce peptides in quantities sufficient to carry out functional analyses; 2) can be used to determine the specificity of proprotein convertases on recombinant precursors; and 3) has the potential to identify novel peptide functions on both known and orphan GPCRs. PMID:17540328

  10. Production of bioactive peptides in an in vitro system.

    PubMed

    Ozawa, Akihiko; Cai, Yang; Lindberg, Iris

    2007-07-15

    An in vitro system for the preparation of bioactive peptides is described. This system couples three different posttranslational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl alpha-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE), and human proghrelin, were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl alpha-melanocyte-stimulating hormone (alpha-MSH). For proenkephalin, 75 and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk, respectively. Cell-based assays demonstrated that in-vitro-generated des-acetyl alpha-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage and to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7 but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system (1) can produce peptides in quantities sufficient to carry out functional analyses, (2) can be used to determine the specificity of proprotein convertases on recombinant precursors, and (3) has the potential to identify novel peptide functions on both known and orphan G-protein-coupled receptors.

  11. Investigation of purification process stresses on erythropoietin peptide mapping profile

    PubMed Central

    Sepahi, Mina; Kaghazian, Hooman; Hadadian, Shahin; Norouzian, Dariush

    2015-01-01

    Background: Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. Materials and Methods: Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. Results: No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. Conclusions: Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance. PMID:26261816

  12. Investigation of purification process stresses on erythropoietin peptide mapping profile.

    PubMed

    Sepahi, Mina; Kaghazian, Hooman; Hadadian, Shahin; Norouzian, Dariush

    2015-01-01

    Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance.

  13. Peptide signaling in Hydra.

    PubMed

    Fujisawa, Toshitaka; Hayakawa, Eisuke

    2012-01-01

    Peptides play a number of crucial roles as signaling molecules in metazoans. In order to elaborate a more complete picture of the roles played by peptides in a single organism, we launched the "Hydra Peptide Project". For this project, we used Hydra magnipapillata, a species belonging to Cnidaria, one of the most basal metazoan phyla, and using a peptidomic approach, we systematically identified a number of peptide signaling molecules, their encoding genes and their functions. In this article, we report the peptides isolated from Hydra and other cnidarians, as well as their synthesis, processing and release from the cells to the target. Possible peptide signaling pathways are overviewed and finally we discuss the evolution of the peptide signaling system.

  14. A switchable stapled peptide.

    PubMed

    Kalistratova, Aleksandra; Legrand, Baptiste; Verdié, Pascal; Naydenova, Emilia; Amblard, Muriel; Martinez, Jean; Subra, Gilles

    2016-03-01

    The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.

  15. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  16. The dissociative recombination of ?

    NASA Astrophysics Data System (ADS)

    Laubé, S.; Lehfaoui, L.; Rowe, B. R.; Mitchell, J. B. A.

    1998-09-01

    The dissociative recombination rate coefficient for 0953-4075/31/18/016/img2 has been measured at 300 K using a flowing afterglow Langmuir probe-mass spectrometer apparatus. A value of 0953-4075/31/18/016/img3 has been found.

  17. Introduction to dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Mitchell, J. Brian A.

    1989-01-01

    Dissociative recombination (DR) of molecular ions with electrons has important consequences in many areas of physical science. Ab-initio calculations coupled with resonant scattering theory and multichannel quantum defect studies have produced detailed results illuminating the role of ion vibrational excitation, the quantum yields of the DR products, and the role of Rydberg states. The theoretical and experimental results are discussed.

  18. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  19. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  20. Recombineering linear BACs.

    PubMed

    Chen, Qingwen; Narayanan, Kumaran

    2015-01-01

    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

  1. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  2. Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein.

    PubMed

    Zhang, Yin; Wei, Xiong; Lu, Zhou; Pan, Zhongli; Gou, Xinhua; Venkitasamy, Chandrasekar; Guo, Siya; Zhao, Liming

    2017-07-15

    Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h.

  3. History and diagnostic significance of C-peptide.

    PubMed

    Brandenburg, Dietrich

    2008-01-01

    Starting with the epoch-making discovery of proinsulin, C-peptide has played an important interdisciplinary role, both as part of the single-chain precursor molecule and as an individual entity. In the pioneering years, fundamental systematic experiments unravelled new biochemical mechanisms and chemical structures. After the first detection of C-peptide in human serum, it quickly became a most useful independent indicator of insulin biosynthesis and secretion, finding application in a rapidly growing number of clinical investigations. A prerequisite was the development of specific immuno assays for proinsulin and C-peptide. Further milestones were: the chemical synthesis of several C-peptides and the accomplishments in the synthesis of proinsulin; the detection of preproinsulin with its bearings on understanding protein biosynthesis; the pioneering role of insulin, proinsulin, C-peptide, and mini-C-peptides in the development of recombinant DNA technology; and the discovery of the enzymes for the endoproteolytic processing of proinsulin into insulin and C-peptide, completing the pathway of biosynthesis. Today, C-peptide continues to serve as a special diagnostic tool in Diabetology and related fields. Thus, its passive role is well established. Evidence for its active role in physiology and pathophysiology is more recent and is subject of the following contributions.

  4. Phage Selection of Chemically Stabilized α-Helical Peptide Ligands.

    PubMed

    Diderich, Philippe; Bertoldo, Davide; Dessen, Pierre; Khan, Maola M; Pizzitola, Irene; Held, Werner; Huelsken, Joerg; Heinis, Christian

    2016-05-20

    Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins.

  5. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food.

    PubMed

    Rai, Mahendra; Pandit, Raksha; Gaikwad, Swapnil; Kövics, György

    2016-09-01

    Antimicrobial peptides (AMPs) are diverse group of natural proteins present in animals, plants, insects and bacteria. These peptides are responsible for defense of host from pathogenic organisms. Chemical, enzymatic and recombinant techniques are used for the synthesis of antimicrobial peptides. These peptides have been found to be an alternative to the chemical preservatives. Currently, nisin is the only antimicrobial peptide, which is widely utilized in the preservation of food. Antimicrobial peptides can be used alone or in combination with other antimicrobial, essential oils and polymeric nanoparticles to enhance the shelf-life of food. This review presents an overview on different types of antimicrobial peptides, purification techniques, mode of action and application in food preservation.

  6. Human T-cells recognise N-terminally Fmoc-modified peptide.

    PubMed

    Mannering, Stuart I; Purcell, Anthony W; Honeyman, Margo C; McCluskey, James; Harrison, Leonard C

    2003-09-08

    We aimed to generate T-cell clones specific for human pre-proinsulin. An HLA DQ8, CD4+ T-cell clone that recognised a 10mer (C65-A9) peptide from pre-proinsulin was isolated. Further analysis revealed that the clone responded neither to recombinant proinsulin nor to re-synthesised C65-A9 peptide. Analysis of the original peptide revealed minor contamination (<0.5%) with an N-terminal Fmoc adduct. This peptide was synthesised and shown to stimulate the clone. Thus, Fmoc-modified peptides, which are common contaminants in synthetic peptides, can stimulate human CD4+ T-cells. This finding has important implications for the use of synthetic peptides in screening and epitope mapping studies and their use as vaccines in humans.

  7. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  8. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  9. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  10. Discovery of Peptide ligands for hepatic stellate cells using phage display.

    PubMed

    Chen, Zhijin; Jin, Wei; Liu, Hao; Zhao, Zhen; Cheng, Kun

    2015-06-01

    Regardless of its cause, liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) in the liver. Hepatic stellate cells (HSCs) are the main producers responsible for the excessive production of ECM and profibrogenic cytokines in fibrotic liver. Therefore, development of HSC-specific delivery systems is essential for the success of antifibrotic agents. The objective of this study is to identify peptide ligands targeting the insulin-like growth factor 2 receptor (IGF2R), which is overexpressed on HSCs. We expect to use the peptide ligands for the future development of HSC-targeted drug delivery system. Protein- and whole cell-based phage display biopannings were conducted to identify phage/peptide candidates. Phage ELISA, cellular uptake, and cell viability assay were employed to evaluate the binding affinity and specificity of these peptide ligands to recombinant human IGF2R and HSCs. IGF2R siRNA was used to silence the IGF2R protein expression in human hepatic stellate cells (LX-2) to confirm the specificity of the identified peptide ligands. Among the identified peptide candidates, peptide-431 shows the highest binding affinity and specificity to recombinant human IGF2R protein and HSCs. The equilibrium dissociation constant (Kd) of peptide-431 is 6.19 μM for LX-2 cells and 12.35 μM for rat hepatic stellate cells HSC-T6. Cellular uptake of peptide-431 in LX-2 cells is significantly reduced after silencing IGF2R with siRNA. Peptide-431 also enhances the uptake of a proapoptotic peptide (KLA peptide) in LX-2 and HSC-T6 cells, indicating that peptide-431 can be used as a targeting ligand to deliver antifibrotic agents into not only rat but also human HSCs. Dimerization of peptide-431 further increase its binding affinity to LX-2 cells by approximately 9-fold.

  11. Opossum peptide that can neutralize rattlesnake venom is expressed in Escherichia coli

    PubMed Central

    Komives, Claire F.; Sanchez, Elda E.; Rathore, Anurag S.; White, Brandon; Suntravat, Montamas; Balderrama, Michael; Cifelli, Angela; Joshi, Varsha

    2016-01-01

    An eleven amino acid ribosomal peptide was shown to completely neutralize Western Diamondback Rattlesnake (Crotalus atrox) venom in mice when a lethal dose of the venom was pre-incubated with the peptide prior to intravenous injection. We have expressed the peptide as a concatenated chain of peptides and cleaved them apart from an immobilized metal affinity column using a protease. After ultrafiltration steps, the mixture was shown to partially neutralize rattlesnake venom in mice. Preliminary experiments are described here that suggest a potential life-saving therapy could be developed. To date, no recombinant therapies targeting cytotoxic envenomation have been reported. PMID:27718338

  12. Peptide affinity chromatography based on combinatorial strategies for protein purification.

    PubMed

    Camperi, Silvia Andrea; Martínez-Ceron, María Camila; Giudicessi, Silvana Laura; Marani, Mariela Mirta; Albericio, Fernando; Cascone, Osvaldo

    2014-01-01

    We describe a method to develop affinity chromatography matrices with short peptide ligands for protein purification. The method entitles the following: (a) synthesis of a combinatorial library on the hydromethylbenzoyl (HMBA)-ChemMatrix resin by the divide-couple-recombine (DCR) method using the Fmoc chemistry, (b) library screening with the protein of interest labeled with a fluorescent dye or biotin, (c) identification of peptides contained on positive beads by tandem matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS/MS), (d) solid-phase peptide ligand synthesis and immobilization in chromatographic supports, and (e) evaluation of protein adsorption on peptide affinity matrices from the equilibrium isotherms and breakthrough curves.

  13. Synthesis of bicyclic organo-peptide hybrids via oxime/intein-mediated macrocyclization followed by disulfide bond formation.

    PubMed

    Smith, Jessica M; Hill, Nicholas C; Krasniak, Peter J; Fasan, Rudi

    2014-02-21

    A new strategy is described to generate bicyclic peptides that incorporate non-peptidic backbone elements starting from recombinant polypeptide precursors. These compounds are produced via a one-pot, two-step sequence, in which peptide macrocyclization by means of a bifunctional oxyamine/1,3-amino-thiol synthetic precursor is followed by intramolecular disulfide formation between the synthetic precursor-borne thiol and a cysteine embedded in the peptide sequence. This approach was found to be compatible with the cysteine residue occupying different positions within 8mer and 10mer target peptide sequences and across different synthetic precursor scaffolds, thereby enabling the formation of a variety of diverse bicyclic scaffolds.

  14. Recombinant canine single chain insulin analogues: insulin receptor binding capacity and ability to stimulate glucose uptake.

    PubMed

    Adams, Jamie P; Holder, Angela L; Catchpole, Brian

    2014-12-01

    Virtually all diabetic dogs require exogenous insulin therapy to control their hyperglycaemia. In the UK, the only licensed insulin product currently available is a purified porcine insulin preparation. Recombinant insulin is somewhat problematic in terms of its manufacture, since the gene product (preproinsulin) undergoes substantial post-translational modification in pancreatic β cells before it becomes biologically active. The aim of the present study was to develop recombinant canine single chain insulin (SCI) analogues that could be produced in a prokaryotic expression system and which would require minimal processing. Three recombinant SCI constructs were developed in a prokaryotic expression vector, by replacing the insulin C-peptide sequence with one encoding a synthetic peptide (GGGPGKR), or with one of two insulin-like growth factor (IGF)-2 C-peptide coding sequences (human: SRVSRRSR; canine: SRVTRRSSR). Recombinant proteins were expressed in the periplasmic fraction of Escherichia coli and assessed for their ability to bind to the insulin and IGF-1 receptors, and to stimulate glucose uptake in 3T3-L1 adipocytes. All three recombinant SCI analogues demonstrated preferential binding to the insulin receptor compared to the IGF-1 receptor, with increased binding compared to recombinant canine proinsulin. The recombinant SCI analogues stimulated glucose uptake in 3T3-L1 adipocytes compared to negligible uptake using recombinant canine proinsulin, with the canine insulin/cIGF-2 chimaeric SCI analogue demonstrating the greatest effect. Thus, biologically-active recombinant canine SCI analogues can be produced relatively easily in bacteria, which could potentially be used for treatment of diabetic dogs.

  15. Chemical Visualization of an Attractant Peptide, LURE

    PubMed Central

    Goto, Hiroaki; Okuda, Satohiro; Mizukami, Akane; Mori, Hitoshi; Sasaki, Narie; Kurihara, Daisuke; Higashiyama, Tetsuya

    2011-01-01

    The pollen tube attractant peptide LUREs of Torenia fournieri are diffusible peptides that attract pollen tubes in vitro. Here, we report a method enabling the direct visualization of a LURE peptide without inhibiting its attraction activity by conjugating it with the Alexa Fluor 488 fluorescent dye. After purifying and refolding the recombinant LURE2 with a polyhistidine tag, its amino groups were targeted for conjugation with the Alexa Fluor dye. Labeling of LURE2 was confirmed by its fluorescence and mass spectrometry. In our in vitro assay using gelatin beads, Alexa Fluor 488-labeled LURE2 appeared to have the same activity as unlabeled LURE2. Using the labeled LURE2, the relationship between the spatiotemporal change of distribution and activity of LURE2 was examined. LURE2 attracted pollen tubes when embedded in gelatin beads, but hardly at all when in agarose beads. Direct visualization suggested that the significant difference between these conditions was the retention of LURE2 in the gelatin bead, which might delay diffusion of LURE2 from the bead. Direct visualization of LURE peptide may open the way to studying the spatiotemporal dynamics of LURE in pollen tube attraction. PMID:21149297

  16. Chemical visualization of an attractant peptide, LURE.

    PubMed

    Goto, Hiroaki; Okuda, Satohiro; Mizukami, Akane; Mori, Hitoshi; Sasaki, Narie; Kurihara, Daisuke; Higashiyama, Tetsuya

    2011-01-01

    The pollen tube attractant peptide LUREs of Torenia fournieri are diffusible peptides that attract pollen tubes in vitro. Here, we report a method enabling the direct visualization of a LURE peptide without inhibiting its attraction activity by conjugating it with the Alexa Fluor 488 fluorescent dye. After purifying and refolding the recombinant LURE2 with a polyhistidine tag, its amino groups were targeted for conjugation with the Alexa Fluor dye. Labeling of LURE2 was confirmed by its fluorescence and mass spectrometry. In our in vitro assay using gelatin beads, Alexa Fluor 488-labeled LURE2 appeared to have the same activity as unlabeled LURE2. Using the labeled LURE2, the relationship between the spatiotemporal change of distribution and activity of LURE2 was examined. LURE2 attracted pollen tubes when embedded in gelatin beads, but hardly at all when in agarose beads. Direct visualization suggested that the significant difference between these conditions was the retention of LURE2 in the gelatin bead, which might delay diffusion of LURE2 from the bead. Direct visualization of LURE peptide may open the way to studying the spatiotemporal dynamics of LURE in pollen tube attraction.

  17. Molecular biology of the peptide hormone families.

    PubMed

    Pearson, R K; Anderson, B; Dixon, J E

    1993-12-01

    The application of recombinant molecular biology has lead to remarkable advances in our understanding of the basic mechanisms of cell function in general and of the polarized GI endocrine cell in particular. This article focuses on some of the advances made towards determining the contribution of peptide hormone gene regulation to the regulation of physiological events in the GI tract. Application of these techniques to other subcellular processes involved in peptide hormone physiology such as subcellular trafficing in the regulated secretory pathway and post-translational processing have been equally impressive. For example, many of the key enzymes in the peptide hormone processing cascade have been cloned and are being studied at a molecular level. We have focused this article on the SS and gastrin peptides because of their known physiologic importance and interactions, and the depth of analysis accomplished to date. Studies using SS and gastrin as models have established principals that cover the spectrum of luminal regulation of gene activity to the identification of a single amino acid residue responsible for cAMP induction of SS gene expression. Many genes in the GI endocrine system have been cloned and the article by Dr. Habener (elsewhere in this issue) discusses progress made in understanding the complex regulation of the glucagon gene. We anticipate similar advances in studies of cholecystokinin, secretin, motilin, VIP, pancreatic polypeptide, and neuropeptide Y, whose genes have been cloned and initially characterized. Finally, as outlined in this article, the mechanisms of regulation of a specific gene often differ between sites of expression, even within the GI tract. Direct studies of the subcellular mechanisms regulating gene expression and other processes in GI endocrine cells await novel methods to maintain and propagate these cells. These studies will almost certainly involve new and creative uses of recombinant molecular biology.

  18. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  19. Identification and immunogenicity of an immunodominant mimotope of Avibacterium paragallinarum from a phage display peptide library.

    PubMed

    Wang, Hongjun; Gao, Yaping; Gong, Yumei; Chen, Xiaoling; Liu, Chuan; Zhou, Xuemei; Blackall, P J; Zhang, Peijun; Yang, Hanchun

    2007-01-31

    Avibacterium paragallinarum is the causative agent of infectious coryza. The protective antigens of this important pathogen have not yet been clearly identified. In this paper, we applied phage display technique to screen the immunodominant mimotopes of a serovar A strain of A. paragallinarum by using a random 12-peptide library, and evaluated the immunogenicity in chickens of the selected mimotope. Polyclonal antibody directed against A. paragallinarum strain 0083 (serovar A) was used as the target antibody and phage clones binding to this target were screened from the 12-mer random peptide library. More than 50% of the phage clones selected in the third round carried the consensus peptide motif sequence A-DP(M)L. The phage clones containing the peptide motif reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by A. paragallinarum. One of the peptide sequences, YGLLAVDPLFKP, was selected and the corresponding oligonucleotide sequence was synthesized and then inserted into the expression vector pFliTrx. The recombinant plasmid was transferred into an expression host Escherichia coli GI826 by electroporation, resulting in a recombinant E. coli expressing the peptide on the bacterial surface. Intramuscular injection of the epitope-expressing recombinant bacteria into chickens induced a specific serological response to serovar A. A. paragallinarum. The chickens given the recombinant E. coli showed significant protection against challenge with A. paragallinarum 0083. These results indicated a potential for the use of the mimotope in the development of molecular vaccines for infectious coryza.

  20. The recombination epoch revisited

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons.

  1. Recombinant human milk proteins.

    PubMed

    Lönnerdal, Bo

    2006-01-01

    Human milk provides proteins that benefit newborn infants. They not only provide amino acids, but also facilitate the absorption of nutrients, stimulate growth and development of the intestine, modulate immune function, and aid in the digestion of other nutrients. Breastfed infants have a lower prevalence of infections than formula-fed infants. Since many women in industrialized countries choose not to breastfeed, and an increasing proportion of women in developing countries are advised not to breastfeed because of the risk of HIV transmission, incorporation of recombinant human milk proteins into infant foods is likely to be beneficial. We are expressing human milk proteins known to have anti-infective activity in rice. Since rice is a normal constituent of the diet of infants and children, limited purification of the proteins is required. Lactoferrin has antimicrobial and iron-binding activities. Lysozyme is an enzyme that is bactericidal and also acts synergistically with lactoferrin. These recombinant proteins have biological activities identical to their native counterparts. They are equally resistant to heat processing, which is necessary for food applications, and to acid and proteolytic enzymes which are needed to maintain their biological activity in the gastrointestinal tract of infants. These recombinant human milk proteins may be incorporated into infant formulas, baby foods and complementary foods, and used with the goal to reduce infectious diseases.

  2. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  3. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Topical peptides as cosmeceuticals.

    PubMed

    Pai, Varadraj Vasant; Bhandari, Prasana; Shukla, Pankaj

    2017-01-01

    Peptides are known to have diverse biological roles, most prominently as signaling/regulatory molecules in a broad variety of physiological processes including defense, immunity, stress, growth, homeostasis and reproduction. These aspects have been used in the field of dermatology and cosmetology to produce short, stable and synthetic peptides for extracellular matrix synthesis, pigmentation, innate immunity and inflammation. The evolution of peptides over the century, which started with the discovery of penicillin, has now extended to their usage as cosmeceuticals in recent years. Cosmeceutical peptides may act as signal modulators of the extracellular matrix component, as structural peptides, carrier peptides and neurotransmitter function modulators. Transdermal delivery of peptides can be made more effective by penetration enhancers, chemical modification or encapsulation of peptides. The advantages of using peptides as cosmeceuticals include their involvement in many physiological functions of the skin, their selectivity, their lack of immunogenicity and absence of premarket regulatory requirements for their use. However, there are disadvantages: clinical evidence for efficacy is often weak, absorption may be poor due to low lipophilicity, high molecular weight and binding to other ingredients, and prices can be quite high.

  5. The natriuretic peptides.

    PubMed

    Baxter, Gary F

    2004-03-01

    The natriuretic peptides are a family of widely distributed, but evolutionarily conserved, polypeptide mediators that exert a range of actions throughout the body. In cardiovascular homeostasis, the endocrine roles of the cardiac-derived atrial and B-type natriuretic peptide (ANP and BNP) in regulating central fluid volume and blood pressure have been recognised for two decades. However, there is a growing realisation that natriuretic peptide actions go far beyond their volume regulating effects. These pleiotropic actions include local (autocrine/paracrine) regulatory actions of ANP and BNP within the heart, and of another natriuretic peptide, CNP, within the vessel wall. Effects on function and growth of the local tissue environment are likely to be of great importance, especially in disease states where tissue and circulating levels of ANP and BNP rise markedly. At present, the relevance of other natriuretic peptides (notably uroguanylin and DNP) to human physiology and pathology remain uncertain. Other articles in this issue of Basic Research in Cardiology review the molecular physiology of natriuretic peptide signalling, with a particular emphasis on the lessons from genetically targetted mice; the vascular activity of natriuretic peptides; the regulation and roles of natriuretic peptides in ischaemic myocardium; and the diagnostic, prognostic and therapeutic roles of natriuretic peptides in heart failure.

  6. Cell biology of mitotic recombination.

    PubMed

    Lisby, Michael; Rothstein, Rodney

    2015-03-02

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.

  7. Cell Biology of Mitotic Recombination

    PubMed Central

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination. PMID:25731763

  8. Enzymic properties of recombinant BACE2.

    PubMed

    Kim, Yong-Tae; Downs, Deborah; Wu, Shili; Dashti, Azar; Pan, Yujun; Zhai, Peng; Wang, Xinjuan; Zhang, Xuejun C; Lin, Xinli

    2002-11-01

    BACE2 (Memapsin 1) is a membrane-bound aspartic protease that is highly homologous with BACE1 (Memapsin 2). While BACE1 processes the amyloid precursor protein (APP) at a key step in generating the beta-amyloid peptide and presumably causes Alzheimer's disease (AD), BACE2 has not been demonstrated to be directly involved in APP processing, and its physiological functions remain to be determined. In vivo, BACE2 is expressed as a precursor protein containing pre-, pro-, protease, transmembrane, and cytosolic domains/peptides. To determine the enzymatic properties of BACE2, two variants of its pro-protease domain, pro-BACE2-T1 (PB2-T1) and pro-BACE2-T2 (PB2-T2), were constructed. They have been expressed in Escherichia coli as inclusion bodies, refolded and purified. These two recombinant proteins have the same N terminus but differ at their C-terminal ends: PB2-T1 ends at Pro466, on the boundary of the postulated transmembrane domain, and PB2-T2 ends at Ser431, close to the homologous ends of other a