Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, J.J.; Barbour, A.G.
1996-11-05
A method is provided for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface proteinmore » A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed. 38 figs.« less
Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7
Dunn, John J.; Barbour, Alan G.
1996-11-05
A method is provided herein for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface protein A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed.
Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7
Dunn, J.J.; Barbour, A.G.
1996-11-05
A method is provided for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface protein A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed. 38 figs.
Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.
Mamat, Uwe; Wilke, Kathleen; Bramhill, David; Schromm, Andra Beate; Lindner, Buko; Kohl, Thomas Andreas; Corchero, José Luis; Villaverde, Antonio; Schaffer, Lana; Head, Steven Robert; Souvignier, Chad; Meredith, Timothy Charles; Woodard, Ronald Wesley
2015-04-16
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. As an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. This paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.
Kim, Moo Woong; Rhee, Sang Ki; Kim, Jeong-Yoon; Shimma, Yoh-ichi; Chiba, Yasunori; Jigami, Yoshifumi; Kang, Hyun Ah
2004-03-01
Presently almost no information is available on the oligosaccharide structure of the glycoproteins secreted from the methylotrophic yeast Hansenula polymorpha, a promising host for the production of recombinant proteins. In this study, we analyze the size distribution and structure of N-linked oligosaccharides attached to the recombinant glycoprotein glucose oxidase (GOD) and the cell wall mannoproteins obtained from H. polymorpha. Oligosaccharide profiling showed that the major oligosaccharide species derived from the H. polymorpha-secreted recombinant GOD (rGOD) had core-type structures (Man(8-12)GlcNAc(2)). Analyses using anti-alpha 1,3-mannose antibody and exoglycosidases specific for alpha 1,2- or alpha 1,6-mannose linkages revealed that the mannose outer chains of N-glycans on the rGOD have very short alpha 1,6 extensions and are mainly elongated in alpha 1,2-linkages without a terminal alpha 1,3-linked mannose addition. The N-glycans released from the H. polymorpha mannoproteins were shown to contain mostly mannose in their outer chains, which displayed almost identical size distribution and structure to those of H. polymorpha-derived rGOD. These results strongly indicate that the outer chain processing of N-glycans by H. polymorpha significantly differs from that by Saccharomyces cerevisiae, thus generating much shorter mannose outer chains devoid of terminal alpha 1,3-linked mannoses.
Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching
2002-08-01
Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.
Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila.
David, Sophia; Sánchez-Busó, Leonor; Harris, Simon R; Marttinen, Pekka; Rusniok, Christophe; Buchrieser, Carmen; Harrison, Timothy G; Parkhill, Julian
2017-06-01
Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.
Identification of Major Outer Surface Proteins of Streptococcus agalactiae
Hughes, Martin J. G.; Moore, Joanne C.; Lane, Jonathan D.; Wilson, Rebecca; Pribul, Philippa K.; Younes, Zabin N.; Dobson, Richard J.; Everest, Paul; Reason, Andrew J.; Redfern, Joanne M.; Greer, Fiona M.; Paxton, Thanai; Panico, Maria; Morris, Howard R.; Feldman, Robert G.; Santangelo, Joseph D.
2002-01-01
To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were sequenced and cloned. These were ornithine carbamoyltransferase, phosphoglycerate kinase, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, purine nucleoside phosphorylase, enolase, and glucose-6-phosphate isomerase. Using a gram-positive expression system, we have overexpressed two of these proteins in an in vitro system. These recombinant, purified proteins were used to raise antisera. The identification of these proteins as residing on the outer surface was confirmed by the ability of the antisera to react against whole, live bacteria. Further, in a neonatal-animal model system, we demonstrate that some of these sera are protective against lethal doses of bacteria. These studies demonstrate the successful application of proteomics as a technique for identifying vaccine candidates. PMID:11854208
Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium.
Fu, Xiang-Yang
2010-09-01
Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli.
Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter
2016-01-01
Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses. PMID:27219467
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, B.C.; Dunn, J.J.; France, L.L.
1995-12-31
Lyme borreliosis, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America and Western Europe. As the major delayed immune response in humans, a better understanding of the major outer surface lipoproteins OspA and OspB are of much interest. These proteins have been shown to exhibit three distinct phylogenetic genotypes based on their DNA sequences. This paper describes the cloning of genomic DNA for each variant and amplification of PCR. DNA sequence data was used to derive computer driven phylogenetic analysis and deduced amino acid sequences. Overproduction of variant OspAs was carried out in E.more » coli using a T7-based expression system. Circular dichroism and fluorescence studies was carried out on the recombinant B31 PspA yielding evidence supporting a B31 protein containing 11% alpha-helix, 34% antiparallel beta-sheet, 12% parallel beta sheet.« less
Murdin, A D; Su, H; Manning, D S; Klein, M H; Parnell, M J; Caldwell, H D
1993-01-01
Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes on the major outer membrane protein (MOMP) of C. trachomatis have been identified as important targets for the development of vaccines. In order to examine the immunogenicity of a recombinant vector expressing a chlamydial epitope, a poliovirus hybrid was constructed in which part of neutralization antigenic site I of poliovirus type 1 Mahoney (PV1-M) was replaced by a sequence from variable domain I of the MOMP of C. trachomatis serovar A. The chlamydial sequence included the neutralization epitope VAGLEK. This hybrid was viable, grew very well compared with PV1-M, and expressed both poliovirus and chlamydial antigenic determinants. When inoculated into rabbits, this hybrid was highly immunogenic, inducing a strong response against both PV1-M and C. trachomatis serovar A. Antichlamydia titers were 10- to 100-fold higher than the titers induced by equimolar amounts of either purified MOMP or a synthetic peptide expressing the VAGLEK epitope. Furthermore, rabbit antisera raised against this hybrid neutralized chlamydial infectivity both in vitro, for hamster kidney cells, and passively in vivo, for conjunctival epithelia of cynomolgus monkeys. Because poliovirus infection induces a strong mucosal immune response in primates and humans, these results indicate that poliovirus-chlamydia hybrids could become powerful tools for the study of mucosal immunity to chlamydial infection and for the development of recombinant chlamydial vaccines. Images PMID:7691749
Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier
2014-06-17
African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W
2016-01-01
The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.
Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying
2008-02-01
To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.
Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli
Kay, Emily J.; Yates, Laura E.; Terra, Vanessa S.; Cuccui, Jon; Wren, Brendan W.
2016-01-01
Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302
Ching, W.-M.; Wang, H.; Eamsila, C.; Kelly, D. J.; Dasch, G. A.
1998-01-01
The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States. PMID:9665960
Ching, W M; Wang, H; Eamsila, C; Kelly, D J; Dasch, G A
1998-07-01
The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States.
Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas
1995-01-01
A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.
Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.
1995-11-07
A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.
Dougan, G; Dowd, G; Kehoe, M
1983-01-01
Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.
USDA-ARS?s Scientific Manuscript database
Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...
Andrews, G P; Strachan, S T; Benner, G E; Sample, A K; Anderson, G W; Adamovicz, J J; Welkos, S L; Pullen, J K; Friedlander, A M
1999-03-01
To evaluate the role of Yersinia outer proteins (Yops) in conferring protective immunity against plague, six yop loci from Yersinia pestis were individually amplified by PCR, cloned, and expressed in Escherichia coli. The recombinant proteins were purified and injected into mice. Most Yop-vaccinated animals succumbed to infection with either wild-type encapsulated Y. pestis or a virulent, nonencapsulated isogenic variant. Vaccination with YpkA significantly prolonged mean survival time but did not increase overall survival of mice infected with the nonencapsulated strain. The only significant protection against death was observed in YopD-vaccinated mice challenged with the nonencapsulated strain.
Fernandes, Cláudia P H; Seixas, Fabiana K; Coutinho, Mariana L; Vasconcellos, Flávia A; Seyffert, Núbia; Croda, Julio; McBride, Alan J; Ko, Albert I; Dellagostin, Odir A; Aleixo, José A G
2007-02-01
Pathogenic serovars of Leptospira have a wide antigenic diversity attributed mainly to the lipopolysaccharide present in the outer membrane. In contrast, antigens conserved among pathogenic serovars are mainly represented by outer membrane proteins. Surface exposure of a major and highly conserved outer membrane lipoprotein (LipL32) was recently demonstrated on pathogenic Leptospira. LipL32 in its recombinant form (rLipL32) was used to immunize BALB/c mice to develop murine monoclonal antibodies (MAbs). Three MAbs against rLipL32 were produced, isotyped, and evaluated for further use in diagnostic tests of leptospirosis using different approaches. MAbs were conjugated to peroxidase and evaluated in a native protein enzyme-linked immunosorbent assay (ELISA) with intact and heat-treated leptospiral cells, conjugated to fluorescein isothiocyanate (FITC) for indirect immunofluorescence with intact and methanol fixed cells and were used for LipL32 immunoprecipitation from leptospiral cells. rLipL32 MAbs conjugated to peroxidase or used as primary antibody bound to intact and heat-treated cells in ELISA, proving that they could be used in enzyme immunoassays for detection of the native protein. In immunofluorescence assay, MAbs labeled bacterial cells either intact or methanol fixed. Two MAbs were able to immunoprecipitate the native protein from live and motile leptospiral cells and, adsorbed onto magnetic beads, captured intact bacteria from artificially contaminated human sera for detection by polymerase chain reaction (PCR) amplification. Results of this study suggest that the MAbs produced can be useful for the development of diagnostic tests based on detection of LipL32 leptospiral antigen in biological fluids.
Ferguson, A D; Breed, J; Diederichs, K; Welte, W; Coulton, J W
1998-07-01
FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).
Recombination of electrons with NH4/+/-/NH3/n-series ions
NASA Technical Reports Server (NTRS)
Huang, C.-M.; Biondi, M. A.; Johnsen, R.
1976-01-01
The paper examines the recombination of electrons with ammonium-series cluster ions, NH4(+)-(NH3)n, for two reasons: (1) NH4(+) may be a significant ion in the lower atmospheres of the earth and the outer planets, and (2) to investigate the weak temperature dependence of the cluster ion's recombination coefficient. A microwave afterglow mass spectrometer was used to determine the recombination coefficients for the first five members of the ammonium series, (18+) through (86+), at temperatures between 200 and 410 K. The electron temperature dependence of the recombination coefficient was determined for (35+) and (52+), the n = 1 and 2 cluster ions, over the temperature range 300-3000 K.
Kuddus, Md Ruhul; Rumi, Farhana; Tsutsumi, Motosuke; Takahashi, Rika; Yamano, Megumi; Kamiya, Masakatsu; Kikukawa, Takashi; Demura, Makoto; Aizawa, Tomoyasu
2016-06-01
Snakin-1 (SN-1) is a small cysteine-rich plant antimicrobial peptide with broad spectrum antimicrobial activity which was isolated from potato (Solanum tuberosum). Here, we carried out the expression of a recombinant SN-1 in the methylotrophic yeast Pichia pastoris, along with its purification and characterization. A DNA fragment encoding the mature SN-1 was cloned into pPIC9 vector and introduced into P. pastoris. A large amount of pure recombinant SN-1 (approximately 40 mg/1L culture) was obtained from a fed-batch fermentation culture after purification with a cation exchange column followed by RP-HPLC. The identity of the recombinant SN-1 was verified by MALDI-TOF MS, CD and (1)H NMR experiments. All these data strongly indicated that the recombinant SN-1 peptide had a folding with six disulfide bonds that was identical to the native SN-1. Our findings showed that SN-1 exhibited strong antimicrobial activity against test microorganisms and produced very weak hemolysis of mammalian erythrocytes. The mechanism of its antimicrobial action against Escherichia coli was investigated by both outer membrane permeability assay and cytoplasmic membrane depolarization assay. These assays demonstrated that SN-1 is a membrane-active antimicrobial peptide which can disrupt both outer and cytoplasmic membrane integrity. This is the first report on the recombinant expression and purification of a fully active SN-1 in P. pastoris. Copyright © 2016 Elsevier Inc. All rights reserved.
Gong, Wenping; Wang, Pengcheng; Xiong, Xiaolu; Jiao, Jun; Yang, Xiaomei; Wen, Bohai
2015-01-01
The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR) extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii. PMID:25909586
Wang, Jin; Edmondson, Dale E.
2011-01-01
TEMPO-substituted pargyline analogues differentially inhibit recombinant human Monoamine Oxidase A (MAO A) and B (MAO B) in intact yeast mitochondria suggesting these membrane-bound enzymes are located on differing faces of the mitochondrial outer membrane (Upadhyay, A. and Edmondson, D.E., Biochemistry 48, 3928, 2009). This approach is extended to the recombinant rat enzymes and to rat liver mitochondria. The differential specificities exhibited for human MAO A and MAO B by the meta- and para-amido TEMPO pargylines are not as absolute with the rat enzymes. Similar patterns of reactivity are observed for rat MAO A and B in mitochondrial outer membrane preparations expressed in Pichia pastoris or isolated from rat liver. In intact yeast mitochondria, recombinant rat MAO B is inhibited by the pargyline analogue whereas MAO A activity shows no inhibition. Intact rat liver mitochondria exhibit an opposite inhibition pattern to that observed in yeast where MAO A is inhibited and MAO B activity is unaffected. Protease inactivation studies show specificity in that MAO A is sensitive to trypsin whereas MAO B is sensitive to β-chymotrypsin. In intact mitochondrial preparations, MAO A is readily inactivated in rat liver but not in yeast on trypsin treatment and MAO B is readily inactivated by β-chymotrypsin in yeast but not in rat liver. These data show MAO A is oriented on the cytosolic face and MAO B is situated on the surface facing the intermembrane space of the mitochondrial outer membrane in rat liver. The differential mitochondrial outer membrane topology of MAO A and MAO B is relevant to their inhibition by drugs designed to be cardio-protectants or neuro-protectants. PMID:21341713
Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang
2015-01-01
Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection. Copyright © 2014 Elsevier Inc. All rights reserved.
High rates of recombination in otitis media isolates of non-typeable Haemophilus influenzae✩
Cody, Alison J.; Field, Dawn; Feil, Edward J.; Stringer, Suzanna; Deadman, Mary E.; Tsolaki, Anthony G.; Gratz, Brett; Bouchet, Valérie; Goldstein, Richard; Hood, Derek W.; Moxon, E. Richard
2008-01-01
Non-typeable (NT) or capsule-deficient, Haemophilus influenzae (Hi) is a common commensal of the upper respiratory tract of humans and can be pathogenic resulting in diseases such as otitis media, sinusitis and pneumonia. The lipopolysaccharide (LPS) of NTHi is a major virulence factor that displays substantial intra-strain and inter-strain variation of its oligosaccharide structures. To investigate the genetic basis of LPS variation we sequenced internal regions of each of seven genes required for the biosynthesis of either the inner or the outer core oligosaccharide structures. These sequences were obtained from 25 representative NTHi isolates from episodes of otitis media. We found abundant evidence of recombination among LPS genes of NTHi, a finding in marked contrast to previous analyses of biosynthetic genes for capsular polysaccharide, a well-documented virulence factor of Hi. We found mosaic sequences, linkage equilibrium between loci and a lack of congruence between gene trees. These high rates were not confined to LPS genes since evidence for similar amounts of recombination was also found in eight housekeeping genes in a subset of the same 25 isolates. These findings provide a population based foundation for a better understanding of the role of NTHi LPS as a virulence factor and its potential as a candidate vaccine. PMID:12797973
Huang, Shun-Ping; Lin, Po-Kang; Liu, Jorn-Hon; Khor, Chin-Ni; Lee, Yih-Jing
2004-01-01
Ciliary neurotrophic factor (CNTF) is known as an important factor in the regulation of retinal cell growth. We used both recombinant CNTF and an adenovirus carrying the CNTF gene to regulate retinal photoreceptor expression in a retinal degenerative animal, Royal College of Surgeons (RCS) rats. Cells in the outer nuclear layer of the retinae from recombinant-CNTF-treated, adenoviral-CNTF-treated, saline-operated, and contralateral untreated preparations were examined for those exhibiting CNTF photoreceptor protective effects. Cell apoptosis in the outer nuclear layer of the retinae was also detected. It was found that CNTF had a potent effect on delaying the photoreceptor degeneration process in RCS rats. Furthermore, adenovirus CNTF gene transfer was proven to be better at rescuing photoreceptors than that when using recombinant CNTF, since adenoviral CNTF prolonged the photoreceptor protection effect. The function of the photoreceptors was also examined by taking electroretinograms of different animals. Adenoviral-CNTF-treated eyes showed better retinal function than did the contralateral control eyes. This study indicates that adenoviral CNTF effectively rescues degenerating photoreceptors in RCS rats. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel
Deveson Lucas, Deanna S; Lo, Miranda; Bulach, Dieter M; Quinsey, Noelene S; Murray, Gerald L; Allen, Andy; Adler, Ben
2014-03-14
Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis (Hardjobovis) is the main causative agent of bovine leptospirosis in Australia, New Zealand, North America and elsewhere. Bovine leptospirosis can result in spontaneous abortion, stillbirth and reduced milk output. The organism is shed in the urine of infected animals and contact with contaminated materials can result in zoonotic infections in humans. Protective immunity in cattle against Hardjobovis involves stimulation of a Th1 cell mediated immune response, which can be characterized by the production of IFN-γ when blood from vaccinated animals is exposed to Hardjobovis antigens. However, the leptospiral components involved in stimulating this response have yet to be identified. In this study, 238 recombinant leptospiral proteins were evaluated for their ability to stimulate IFN-γ production in blood of cattle vaccinated with a commercial monovalent Hardjobovis vaccine. The conserved lipoprotein LipL32 is the major outer membrane protein of pathogenic Leptospira spp. A pool of soluble recombinant proteins which included LipL32, as well as LipL32 alone, stimulated significant IFN-γ production in blood of vaccinated cattle. A number of recombinant LipL32 fragments was generated, which identified the amino acids between 20 and 200 as containing the bovine T-cell reactive regions of LipL32. However, whether LipL32 plays a role in stimulating protective immunity in mammals has yet to be conclusively determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Kumar, Abhinendra; Yogisharadhya, Revanaiah; Ramakrishnan, Muthannan A; Viswas, K N; Shivachandra, Sathish B
2013-12-01
Pasteurella multocida serogroup B:2, a causative agent of haemorrhagic septicaemia (HS) in cattle and buffalo especially in tropical regions of Asian and African countries, is known to possess several outer membrane proteins (OMPs) as immunogenic antigens. In the present study, omp87 gene encoding for 87 kDa OMP (Omp87) protein of P. multocida serogroup B:2 strain P52, has been amplified (∼2304 bp), cloned in to pET32a vector and over-expressed in recombinant Escherichia coli as fusion protein. The recombinant Omp87 protein (∼102 kDa) including N-terminus hexa-histidine tag was purified under denaturing condition. Immunization of mice with rOmp87 resulted in increased antigen specific IgG titres in serum and provided protection of 66.6 and 83.3% following homologous (B:2) and heterologous (A:1) challenge, respectively. A homology model of Omp87 revealed the presence of two distinct domains; N-terminal domain with four POTRA repeats in the periplasmic space and a pore forming C-terminal β-barrel domain (β1- β16) in the outer membrane of P. multocida, which belong to Omp85-TpsB transporter superfamily of OMPs. The study indicated the potential possibilities to use rOmp87 protein along with suitable adjuvant in developing subunit vaccine for haemorrhagic septicaemia and pasteurellosis in livestock. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Tao; Zhang, Caixia; Cao, Xiuqin; Yang, Zhiwei
2013-12-01
To express and purify the recombinant major outer membrane protein (MOMP) of Legionella pneumophila (Lp) as diagnostic antigen, and explore its practical value in the serological diagnosis of Lp infection. The recombinant plasmid pET-momp was transformed into the E.coli BL21 competent cells. The recombinant MOMP was induced to express, and then analyzed by SDS-PAGE electrophoresis, purified by affinity chromatography. We screened and obtained 58 positive blood serum and 32 negative blood serum using the DRG (Germany, IgG/IgM/IgA) Lp kit. The blood serum samples were detected for IgG, IgM, IgA antibody levels by indirect ELISA that we had established with the purified MOMP as the coating antigen, as well as by R&D (USA, IgG/IgM/IgA) Lp kit. Then using the receiver operating characteristic (ROC) curve, we compared these two methods in the sensitivity, specificity and consistency of the test results, for evaluating the application value of the indirect ELISA of recombinant MOMP. The approximately 45 000 recombinant MOMP was successfully expressed and purified. Compared with the indirect ELISA we established with the R&D Lp kit for detecting Lp antibody IgG, IgM and IgA in blood serum, the sensitivity of the indirect ELISA of recombinant MOMP to IgG was 90.9%, the specificity was 91.7%, the Kappa value was 0.784 (P < 0.05), and the area under the ROC curve was 0.913; the sensitivity to IgM was 91.4% and the specificity was 90.6%, the Kappa value was 0.809 (P < 0.05), and the area under the ROC curve was 0.910; the sensitivity to IgA was 92.1% and the specificity was 88.9%, the Kappa value was 0.793(P < 0.05), and the area under the ROC curve was 0.905. The recombinant MOMP was successfully induced to express and purified. The indirect ELISA we established with the recombinant MOMP protein as a diagnostic antigen showed good specificity, sensitivity and consistency, which laid a foundation for the development of serological diagnosis kit of Legionnaires' disease.
Cloning, Expression, and Purification of Brucella suis Outer Membrane Proteins
2005-01-01
13-09-20061 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cloning, expression and purification of Brucella suis outer membrane proteins 5b. GRANT NUMBER...attractive for this purpose. In this study, we cloned, expressed and purified seven predicted OMPs of Brucella suis . The recombinant proteins were...fused with 6-his and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based
A new potential secretion pathway for recombinant proteins in Bacillus subtilis.
Wang, Guangqiang; Xia, Yongjun; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Haiqin; Ai, Lianzhong; Chen, Wei
2015-11-10
Secretion of cytoplasmic expressed proteins into growth media has significant advantages. Due to the lack of an outer membrane, Bacillus subtilis is considered as a desirable 'cell factory' for the secretion of recombinant proteins. However, bottlenecks in the classical pathway for the secretion of recombinant proteins limit its use on a wide scale. In this study, we attempted to use four typical non-classically secreted proteins as signals to export three recombinant model proteins to the culture medium. All four non-classically secreted proteins can direct the export of the intrinsically disordered nucleoskeletal-like protein (Nsp). Two of them can guide the secretion of alkaline phosphatase (PhoA). One can lead the secretion of the thermostable β-galactosidase BgaB, which cannot be secreted with the aid of typical Sec-dependent signal peptides. Our results show that the non-classically secreted proteins lead the recombinant proteins to the culture medium, and thus non-classical protein secretion pathways can be exploited as a novel secretion pathway for recombinant proteins.
NASA Astrophysics Data System (ADS)
Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei
2011-06-01
Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.
Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R
1992-01-01
Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the Asd+ vector pYA292, and the construct was introduced into the avirulent delta cya delta crp delta asd S. typhimurium chi 3987 for oral immunization of birds. The gene encoding the 21-kDa protein was expressed equivalently in B. avium 197, delta asd E. coli chi 6097, and S. typhimurium chi 3987 and was localized primarily in the cytoplasmic membrane and outer membrane. In preliminary studies on oral inoculation of turkey poults with S. typhimurium chi 3987 expressing the gene encoding the B. avium 21-kDa protein, it was determined that a single dose of the recombinant Salmonella vaccine failed to elicit serum antibodies against the 21-kDa protein and challenge with wild-type B. avium 197 resulted in colonization of the trachea and thymus with B. avium 197. Images PMID:1447140
Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C
2009-04-01
Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.
Erova, Tatiana E; Rosenzweig, Jason A; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; van Lier, Christina J; Telepnev, Maxim V; Motin, Vladimir L; Chopra, Ashok K
2013-02-01
Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.
Koeberling, Oliver; Seubert, Anja; Santos, George; Colaprico, Annalisa; Ugozzoli, Mildred; Donnelly, John; Granoff, Dan M.
2011-01-01
We previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin. An adjuvant effect in mice of the mutant endotoxin would be expected to be much less in humans, and may have contributed to the broad mouse bactericidal responses. Here we show that as previously reported for humans, rhesus primate peripheral blood mononuclear cells incubated with a NOMV vaccine from ΔLpxL1 recombinant strains had lower proinflammatory cytokine responses than with a control wildtype NOMV vaccine. The cytokine responses to the mutant vaccine were similar to those elicited by a detergent-treated, wildtype outer membrane vesicle vaccine that had been safely administered to humans. Monkeys (N=4) were immunized beginning at ages 2 to 3 months with three doses of a NOMV vaccine prepared from ΔLpxL1 recombinant strains with over-expressed fHbp in the variant 1 and 2 groups. The mutant NOMV vaccine elicited serum bactericidal titers ≥1:4 against all 10 genetically diverse strains tested, including 9 with heterologous PorA to those in the vaccine. Negative-control animals had serum bactericidal titers <1:4. Thus, the mutant NOMV vaccine elicited broadly protective serum antibodies in a non-human infant primate model that is more relevant for predicting human antibody responses than mice. PMID:21571025
Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.
2013-01-01
Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803
Gruss, Fabian; Hiller, Sebastian; Maier, Timm
2015-01-01
TamA is an Omp85 protein involved in autotransporter assembly in the outer membrane of Escherichia coli. It comprises a C-terminal 16-stranded transmembrane β-barrel as well as three periplasmic POTRA domains, and is a challenging target for structure determination. Here, we present a method for crystal structure determination of TamA, including recombinant expression in E. coli, detergent extraction, chromatographic purification, and bicelle crystallization in combination with seeding. As a result, crystals in space group P21212 are obtained, which diffract to 2.3 Å resolution. This protocol also serves as a template for structure determination of other outer membrane proteins, in particular of the Omp85 family.
Guzmán-Brambila, Carolina; Rojas-Mayorquín, Argelia E; Flores-Samaniego, Beatriz; Ortuño-Sahagún, Daniel
2012-11-01
Histophilus somni is an economically important pathogen of cattle and other ruminants and is considered one of the key components of the bovine respiratory disease (BRD) complex, the leading cause of economic loss in the livestock industry. BRD is a multifactorial syndrome, in which a triad of agents, including bacteria, viruses, and predisposing factors or "stressors," combines to induce disease. Although vaccines against H. somni have been used for many decades, traditional bacterins have failed to demonstrate effective protection in vaccinated animals. Hence, the BRD complex continues to produce strong adverse effects on the health and well-being of stock and feeder cattle. The generation of recombinant proteins may facilitate the development of more effective vaccines against H. somni, which could confer better protection against BRD. In the present study, primers were designed to amplify, clone, express, and purify two recombinant lipoproteins from H. somni, p31 (Plp4) and p40 (LppB), which are structural proteins of the outer bacterial membrane. The results presented here demonstrate, to our knowledge for the first time, that when formulated, an experimental vaccine enriched with these two recombinant lipoproteins generates high antibody titers in rabbits and sheep and exerts a protective effect in mice against septicemia induced by H. somni bacterial challenge.
Production of Recombinant Injectosome and Outer Membrane Proteins from Yersinia Pestis KIM5
2009-06-01
Overview ........................................................................ 45 20. Test Ammonium Sulfate Precipitation Overview...52 24. LcrV and YscF Test Expressions .................................................................. 53...coli modify the proteins’ primary structure post - translationally? 1.5 Significance of Results The study of VHH as immunotherapeutics for combating
CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR
King, L.D.P.
1960-07-01
A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.
Desclozeaux, Marion; Robbins, Amy; Jelocnik, Martina; Khan, Shahneaz Ali; Hanger, Jon; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Timms, Peter
2017-01-01
We assessed the effects of two different single-dose anti-Chlamydia pecorum (C. pecorum) vaccines (containing either Major Outer Membrane Protein (3MOMP) or Polymorphic Membrane Protein (Pmp) as antigens) on the immune response of a group of wild koalas. Both vaccines elicited a systemic humoral response as seen by the production of anti-chlamydial IgG antibodies in more than 90% of vaccinated koalas. A mucosal immune response was also observed, with an increase in Chlamydia-specific mucosal IgG and/or IgA antibodies in some koalas post-vaccination. Both vaccines elicited a cell-mediated immune response as measured by the production of the cytokines IFN-γ and IL-17 post-vaccination. To determine the level of protection provided by the vaccines under natural conditions we assessed C. pecorum infection loads and chlamydial disease status of all vaccinated koalas pre- and post-vaccination, compared to a non-vaccinated cohort from the same habitat. The MOMP vaccinated koalas that were infected on the day of vaccination showed significant clearance of their infection at 6 months post-vaccination. In contrast, the number of new infections in the PMP vaccine was similar to the control group, with some koalas progressing to disease. Genotyping of the ompA gene from the C. pecorum strains infecting the vaccinated animals, identified genetic variants of ompA-F genotype and a new genotype ompA-O. We found that those animals that were the least well protected became infected with strains of C. pecorum not covered by the vaccine. In conclusion, a single dose vaccine formulated with either recombinant PmpG or MOMP can elicit both cell-mediated and humoral (systemic and mucosal) immune responses, with the MOMP vaccine showing clearance of infection in all infected koalas. Although the capability of our vaccines to stimulate an adaptive response and be protective needs to be fully evaluated, this work illustrates the necessity to combine epitopes most relevant to a large panel of variable strains with an efficient adjuvant.
Ching, W.-M.; Rowland, D.; Zhang, Z.; Bourgeois, A. L.; Kelly, D.; Dasch, G. A.; Devine, P. L.
2001-01-01
The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. We developed a rapid immunochromatographic flow assay (RFA) for the detection of immunoglobulin M (IgM) and IgG antibodies to O. tsutsugamushi. The RFA employs a truncated recombinant 56-kDa protein from the Karp strain as the antigen. The performance of the RFA was evaluated with a panel of 321 sera (serial bleedings of 85 individuals suspected of scrub typhus) which were collected in the Pescadore Islands, Taiwan, from 1976 to 1977. Among these 85 individuals, IgM tests were negative for 7 cases by both RFA and indirect fluorescence assay (IFA) using Karp whole-cell antigen. In 29 cases specific responses were detected by the RFA earlier than by IFA, 44 cases had the same detection time, and 5 cases were detected earlier by IFA than by RFA. For IgG responses, 4 individuals were negative with both methods, 37 cases exhibited earlier detection by RFA than IFA, 42 cases were detected at the same time, and 2 cases were detected earlier by IFA than by RFA. The sensitivities of RFA detection of antibody in sera from confirmed cases were 74 and 86% for IgM and IgG, respectively. When IgM and IgG results were combined, the sensitivity was 89%. A panel of 78 individual sera collected from patients with no evidence of scrub typhus was used to evaluate the specificity of the RFA. The specificities of the RFA were 99% for IgM and 97% for IgG. The sensitivities of IFA were 53 and 73% for IgM and IgG, respectively, and were 78% when the results of IgM and IgG were combined. The RFA test was significantly better than the IFA test for the early detection of antibody to scrub typhus in primary infections, while both tests were equally sensitive with reinfected individuals. PMID:11238230
Kim, Gwanghun; Ha, Na-Young; Min, Chan-Ki; Kim, Hong-Il; Yen, Nguyen Thi Hai; Lee, Keun-Hwa; Oh, Inbo; Kang, Jae-Seung; Choi, Myung-Sik; Kim, Ik-Sang
2017-01-01
Background Scrub typhus is a mite-borne febrile disease caused by O. tsutsugamushi infection. Recently, emergence of scrub typhus has attracted considerable attention in several endemic countries in Asia and the western Pacific. In addition, the antigenic diversity of the intracellular pathogen has been a serious obstacle for developing effective diagnostics and vaccine. Methodology/Principal findings To understand the evolutionary pathway of genotypic diversification of O. tsutsugamushi and the environmental factors associated with the epidemiological features of scrub typhus, we analyzed sequence data, including spatiotemporal information, of the tsa56 gene encoding a major outer membrane protein responsible for antigenic variation. A total of 324 tsa56 sequences covering more than 85% of its open reading frame were analyzed and classified into 17 genotypes based on phylogenetic relationship. Extensive sequence analysis of tsa56 genes using diverse informatics tools revealed multiple intragenic recombination events, as well as a substantially higher mutation rate than other house-keeping genes. This suggests that genetic diversification occurred via frequent point mutations and subsequent genetic recombination. Interestingly, more diverse bacterial genotypes and dominant vector species prevail in Taiwan compared to other endemic regions. Furthermore, the co-presence of identical and sub-identical clones of tsa56 gene in geographically distant areas implies potential spread of O. tsutsugamushi genotypes. Conclusions/Significance Fluctuation and diversification of vector species harboring O. tsutsugamushi in local endemic areas may facilitate genetic recombination among diverse genotypes. Therefore, careful monitoring of dominant vector species, as well as the prevalence of O. tsutsugamushi genotypes may be advisable to enable proper anticipation of epidemiological changes of scrub typhus. PMID:28248956
Boonsathorn, Naphatsawan; Konghom, Ganokrot; Mongkolsiri, Kaveewan; Jirapongwattana, Chanin; Balachandra, Kruavon; Naigowit, Pimjai; Sawanpanyalert, Pathom
2009-01-01
Leptospira interrogans serovar autumnalis, a causative agent of leptospirosis in Thailand, was isolated from a patient for DNA extraction and amplification of LipL32 gene by polymerase chain reaction (PCR). The 782 bp PCR product was obtained, which was inserted into pAE plasmid with polyhistidine (His6 tag) to construct pAE-LipL32. This recombinant plasmid was transfected into E. coli BL21 (DE3). His6-LipL32 was purified by Ni-NTA affinity chromatography. The recombinant protein was used as antigen for testing with sera from leptospirosis and syphilis patients by dot-ELISA technique. It reacted positively with leptospirosis patient sera and negatively with syphilis and healthy sera.
Evolution of recombination in a constant environment
Feldman, Marcus W.; Christiansen, Freddy B.; Brooks, Lisa D.
1980-01-01
The theory of evolution at a selectively neutral locus that controls the recombination between two major loci that are under selection is studied. If the major loci are at a stable equilibrium in linkage disequilibrium under selection and recombination, then a mutation at the modifier locus will increase in frequency when rare if and only if it decreases the recombination fraction. If the major loci are in disequilibrium at a balance between selection against deleterious alleles and mutation towards them, then two new phenomena are observed. First, a recombination increasing mutation will succeed if the disequilibrium is negative and the modifier is sufficiently tightly linked to the major loci. Second, depending on the strength of selection, even if the disequilibrium is negative, recombination reduction may occur for looser linkage between the major and modifier loci. PMID:16592864
Guzmán-Brambila, Carolina; Rojas-Mayorquín, Argelia E.; Flores-Samaniego, Beatriz
2012-01-01
Histophilus somni is an economically important pathogen of cattle and other ruminants and is considered one of the key components of the bovine respiratory disease (BRD) complex, the leading cause of economic loss in the livestock industry. BRD is a multifactorial syndrome, in which a triad of agents, including bacteria, viruses, and predisposing factors or “stressors,” combines to induce disease. Although vaccines against H. somni have been used for many decades, traditional bacterins have failed to demonstrate effective protection in vaccinated animals. Hence, the BRD complex continues to produce strong adverse effects on the health and well-being of stock and feeder cattle. The generation of recombinant proteins may facilitate the development of more effective vaccines against H. somni, which could confer better protection against BRD. In the present study, primers were designed to amplify, clone, express, and purify two recombinant lipoproteins from H. somni, p31 (Plp4) and p40 (LppB), which are structural proteins of the outer bacterial membrane. The results presented here demonstrate, to our knowledge for the first time, that when formulated, an experimental vaccine enriched with these two recombinant lipoproteins generates high antibody titers in rabbits and sheep and exerts a protective effect in mice against septicemia induced by H. somni bacterial challenge. PMID:22971783
Hanada, Katsuhiro; Yamaoka, Yoshio
2014-10-01
Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Mostowy, Rafal; Croucher, Nicholas J; Hanage, William P; Harris, Simon R; Bentley, Stephen; Fraser, Christophe
2014-05-01
The bacterium Streptococcus pneumoniae (pneumococcus) is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes.
Hanage, William P.; Harris, Simon R.; Bentley, Stephen; Fraser, Christophe
2014-01-01
The bacterium Streptococcus pneumoniae (pneumococcus) is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes. PMID:24786281
NASA Technical Reports Server (NTRS)
Cody, R. J.; Payne, W. A.; Thorn, R. P., Jr.; Romani, P. N.; Stief, L. J.; Nesbitt, F. L.; Iannone, M. A.; Tardy, D. C.
2002-01-01
The methyl free radical (CH3) has been observed in the atmospheres of Saturn and Neptune by the ISO satellite. There are discrepancies between the column densities for the CH3 radical derived from the ISO observations and the column densities derived from atmospheric photochemical models. For Neptune the model column density is 1.5 times that derived from ISO. For Saturn the model is 6 times that from ISO. The recombination of methyl radicals is the major loss process for methyl in these atmospheres. The serious disagreement between observed and calculated levels of CH3 has led to suggestions that the atmospheric models greatly underestimated the loss of CH3 due to poor knowledge of the rate of the reaction (1) CH3 + CH3 + M goes to C2H6 + M at the low temperatures and pressures of these atmospheric systems. Although the reaction CH3 + CH3 + M goes to C2H6 + M has been extensively studied both theoretically and experimentally, the laboratory conditions have been, with only a few exceptions, higher temperatures (T greater than 298K), higher pressures (P greater than or equal to 10 Torr - 13.3 mbar) or M=Ar rather than H2 or He as the bath gas.
Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S
2015-09-01
The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine.
Liu, Dai-Fang; Mason, Kathryn W.; Mastri, Maria; Pazirandeh, Mehran; Cutter, David; Fink, Doran L.; St. Geme, Joseph W.; Zhu, Duzhang; Green, Bruce A.
2004-01-01
Nontypeable Haemophilus influenzae is a major causative agent of bacterial otitis media in children. H. influenzae Hap autotransporter protein is an adhesin composed of an outer membrane Hapβ region and a moiety of an extracellular internal 110-kDa passenger domain called HapS. The HapS moiety promotes adherence to human epithelial cells and extracellular matrix proteins, and it also mediates bacterial aggregation and microcolony formation. A recent work (D. L. Fink, A. Z. Buscher, B. A. Green, P. Fernsten, and J. W. St. Geme, Cell. Microbiol. 5:175-186, 2003) demonstrated that HapS adhesive activity resides within the C-terminal 311 amino acids (the cell binding domain) of the protein. In this study, we immunized mice subcutaneously with recombinant proteins corresponding to the C-terminal region of HapS from H. influenzae strains N187, P860295, and TN106 and examined the resulting immune response. Antisera against the recombinant proteins from all three strains not only recognized native HapS purified from strain P860295 but also inhibited H. influenzae Hap-mediated adherence to Chang epithelial cells. Furthermore, when mice immunized intranasally with recombinant protein plus mutant cholera toxin CT-E29H were challenged with strain TN106, they were protected against nasopharyngeal colonization. These observations demonstrate that the C-terminal region of HapS is capable of eliciting cross-reacting antibodies that reduce nasopharyngeal colonization, suggesting utility as a vaccine antigen for the prevention of nontypeable H. influenzae diseases. PMID:15557618
Murdin, A D; Su, H; Klein, M H; Caldwell, H D
1995-01-01
Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes from the variable domains of the major outer membrane protein are candidates for vaccine development. We have constructed hybrid polioviruses expressing sequences from major outer membrane protein variable domains I and IV. Antisera to the hybrids could, in combination, strongly neutralize 8 of the 12 C. trachomatis serovars most commonly associated with oculogenital infections and weakly neutralize the others. PMID:7532625
Karothia, B S; Athmaram, T N; D, Thavaselvam; Ashu, Kumar; Tiwari, Sapna; Singh, Anil K; Sathyaseelan, K; Gopalan, N
2013-07-01
Brucellosis is a disease caused by bacteria belonging to the genus Brucella. It affects cattle, goat, sheep, dog and humans. The serodiagnosis of brucellosis involves detection of antibodies generated against the LPS or whole cell bacterial extracts, however these tests lack sensitivity and specificity. The present study was performed to optimize the culture condition for the production of recombinant Brucella melitensis outer membrane protein 28 kDa protein in E.coli via fed batch fermentation. Expression was induced with 1.5mM isopropyl β thiogalactoside and the expressed recombinant protein was purified using Ni-NTA affinity chromatography. After fed-batch fermentation the dry cell weight of 17.81 g/L and a purified protein yield of 210.10 mg/L was obtained. The purified Brucella melitensis recombinant Omp 28 kDa protein was analyzed through SDS- poly acrylamide gel electrophoresis and western blotting. The obtained recombinant protein was evaluated for its diagnostic application through Indirect ELISA using brucellosis suspected human sera samples. Our results clearly indicate that recombinant Omp28 produced via fed batch fermentation has immense potential as a diagnostic reagent that could be employed in sero monitoring of brucellosis.
A dominant sulfhydryl-containing protein in the outer membrane of Neisseria gonorrhoeae.
Norrod, E P; Browne, S L; Feldweg, A; Leonard, J
1993-01-01
By using a method that labels sulfhydryl-containing proteins in situ, we have detected a major outer membrane protein of Neisseria gonorrhoeae at 41 kDa. A protein of this molecular mass has not previously been shown to be a major outer membrane protein in gonococci. In addition, a minor protein rich in cysteinyl residues was detected at 31.5 kDa. Images PMID:8432710
ERIC Educational Resources Information Center
Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai
2017-01-01
Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and…
Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A
2013-01-01
Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681
Wang, Shijie; Huang, Weiwei; Li, Kui; Yao, Yufeng; Yang, Xu; Bai, Hongmei; Sun, Wenjia; Liu, Cunbao; Ma, Yanbing
2017-01-01
Currently, therapeutic tumor vaccines under development generally lack significant effects in human clinical trials. Exploring a powerful antigen delivery system is a potential approach to improve vaccine efficacy. We sought to explore engineered bacterial outer membrane vesicles (OMVs) as a new vaccine carrier for efficiently delivering tumor antigens and provoking robust antitumor immune responses. First, the tumoral antigen human papillomavirus type 16 early protein E7 (HPV16E7) was presented on Escherichia coli -derived OMVs by genetic engineering methods, acquiring the recombinant OMV vaccine. Second, the ability of recombinant OMVs delivering their components and the model antigen green fluorescent protein to antigen-presenting cells was investigated in the macrophage Raw264.7 cells and in bone marrow-derived dendritic cells in vitro. Third, it was evaluated in TC-1 graft tumor model in mice that the recombinant OMVs displaying HPV16E7 stimulated specific cellular immune response and intervened the growth of established tumor. E. coli DH5α-derived OMVs could be taken up rapidly by dendritic cells, for which vesicle structure has been proven to be important. OMVs significantly stimulated the expression of dendritic cellmaturation markers CD80, CD86, CD83 and CD40. The HPV16E7 was successfully embedded in engineered OMVs through gene recombinant techniques. Subcutaneous immunization with the engineered OMVs induced E7 antigen-specific cellular immune responses, as shown by the increased numbers of interferon-gamma-expressing splenocytes by enzyme-linked immunospot assay and interferon-gamma-expressing CD4 + and CD8 + cells by flow cytometry analyses. Furthermore, the growth of grafted TC-1 tumors in mice was significantly suppressed by therapeutic vaccination. The recombinant E7 proteins presented by OMVs were more potent than those mixed with wild-type OMVs or administered alone for inducing specific cellular immunity and suppressing tumor growth. The results indicated that the nano-grade OMVs might be a useful vaccine platform for antigen delivery in cancer immunotherapy.
Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan
Chen, Yue; Hora, Bhavna; DeMarco, Todd; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M.; Su, Chang; Carter, Meredith; Stone, Mars; Hasan, Rumina; Hasan, Zahra; Busch, Michael P.; Denny, Thomas N.; Gao, Feng
2016-01-01
A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan. PMID:27973597
Tiwari, Sapana; Kumar, Ashu; Mangalgi, Smita; Rathod, Vedika; Prakash, Archana; Barua, Anita; Arora, Sonia; Sathyaseelan, Kannusamy
2013-01-01
Brucellosis is an important zoonotic infectious disease of humans and livestock with worldwide distribution and is caused by bacteria of the genus Brucella. The diagnosis of brucellosis always requires laboratory confirmation by either isolation of pathogens or detection of specific antibodies. The conventional serological tests available for the diagnosis of brucellosis are less specific and show cross-reactivity with other closely related organisms. These tests also necessitate the handling of Brucella species for antigen preparation. Therefore, there is a need to develop reliable, rapid, and user-friendly systems for disease diagnosis and alternatives to vaccine approaches. Keeping in mind the importance of brucellosis as an emerging infection and the prevalence in India, we carried out the present study to compare the recombinant antigens with the native antigens (cell envelope and sonicated antigen) of Brucella for diagnosis of human brucellosis by an indirect plate enzyme-linked immunosorbent assay (ELISA). Recombinant outer membrane protein 28 (rOmp28) and rOmp31 antigens were cloned, expressed, and purified in the bacterial expression system, and the purified proteins were used as antigens. Indirect plate ELISAs were then performed and standardized for comparison of the reactivities of recombinant and native antigens against the 433 clinical samples submitted for brucellosis testing, 15 culture-positive samples, and 20 healthy donor samples. The samples were separated into four groups based on their positivity to rose bengal plate agglutination tests (RBPTs), standard tube agglutination tests (STATs), and 2-mercaptoethanol (2ME) tests. The sensitivities and specificities of all the antigens were calculated, and the rOmp28 antigen was found to be more suitable for the clinical diagnosis of brucellosis than the rOmp31 antigen and native antigens. The rOmp28-based ELISA showed a very high degree of agreement with the conventional agglutination tests and promising results for further use in clinical screening and serodiagnosis of human brucellosis. PMID:23761658
NASA Astrophysics Data System (ADS)
Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin
2016-11-01
Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes ( IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon ( IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.
High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex
Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary
2002-01-01
Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984
Kowata, Hikaru; Tochigi, Saeko; Takahashi, Hideyuki
2017-01-01
ABSTRACT The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli. The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients. IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is markedly less permeable to organic nutrients, with >20-fold lower permeability than the outer membrane of Escherichia coli. Such permeability appears to fit the cyanobacterial lifestyle, in which the diffusion pathway for inorganic solutes may suffice to sustain the autotrophic physiology, illustrating a link between outer membrane permeability and the cellular lifestyle. PMID:28696278
Ishida, Hiroaki; Garcia-Herrero, Alicia; Vogel, Hans J
2014-12-01
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation. Copyright © 2014 Elsevier B.V. All rights reserved.
Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.
Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P
2009-12-01
Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.
NASA Technical Reports Server (NTRS)
Jupen, C.; Meigs, A.; Bhatia, A. K.; Brezinsek, S.; OMullane, M.
2004-01-01
Plasma volume recombination in the divertor, a process in which charged particles recombine to neutral atoms, contributes to plasma detachment and hence cooling at the divertor target region. Detachment has been observed at JET and other tokamaks and is known to occur at low electron temperatures (T(sub e)<1 eV) and at high electron density (n(sub e)>10(exp 20)/m(exp 3)). The ability to measure such low temperatures is therefore of interest for modelling the divertor. In present work we report development of a new spectroscopic technique for investigation of local electron density (n(sub e)) and temperature (T,) in the outer divertor at JET.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas... for oil and gas, and sulphur, in submerged lands of the outer Continental Shelf (OCS). The Act... major oil and gas producers. [64 FR 72795, Dec. 28, 1999] ...
Use of IgY antibody to recombinant avian reovirus σC protein in the virus diagnostics.
Jung, K M; Bae, E H; Jung, Y T; Kim, J W
2014-01-01
Avian reovirus (ARV) is an important agent of several diseases causing considerable losses in poultry farming. An outer capsid protein (σC) of ARV, is known as a virus-cell attachment protein essential for virus infectivity. In this study, the σC gene of ARV was cloned and expressed in Escherichia coli. The expressed recombinant protein was used as immunogen for raising a specific IgY antibody in laying hens. At 14 weeks post immunization, the antibody titers in serum and egg yolk reached 302,000 and 355,000, respectively. The IgY antibody was capable to neutralize ARV in BHK-21 cells and it strongly reacted in ELISA with ARV but not with heterologous viruses. The IgY antibody detected ARV in field samples of infected animal tissues in dot blot assay. These results suggest that an efficient, economic and rapid diagnostics of ARV can be performed routinely using the IgY antibody against a recombinant ARV σC protein.
Chao, Chien-Chung; Huber, Erin S; Porter, Terrisita B; Zhang, Zhiwen; Ching, Wei-Mei
2011-06-01
Orientia tsutsugamushi, the etiologic agent of scrub typhus, has a highly expressed and immunodominant 56-kD outer membrane protein. This protein is one of the leading candidates for diagnosis and vaccine development for scrub typhus. Previous studies using recombinant 56-kD protein (r56s) derived from Karp strain (Kpr56) in a mouse model have shown good homologous protection but only moderate to poor heterologous protection. We evaluated the cross-reactivity of recombinant 56-kD proteins from Karp, Kato, Gilliam, TA763, and three chimeric 56-kD proteins. Not all r56s are equally reactive with strain-specific serum samples. These data provide a first glance of how reactive these r56s are toward the antiserum of different strains and which r56 exhibits the broadest reactivity. A formulation of this combination has the potential to provide broad protection against the heterologous challenge and to be used in a highly sensitive diagnostic assay.
Scale-up of recombinant Opc protein production in Escherichia coli for a meningococcal vaccine.
Pérez, Raúl Espinosa; Lasa, Alexis Musacchio; Rodríguez, Ricardo Silva; Menéndez, Evelin Caballero; Suárez, José García; Balaguer, Héctor Díaz
2006-12-15
Opc is an outer membrane protein from Neisseria meningitidis present in meningococcal vaccine preparations. The opc gene, codifying for this protein, was cloned in to Escherichia coli and the Opc protein was expressed under the control of a tryptophan promoter. The recombinant strain was grown in batch cultures. Opc was expressed as inclusion bodies at about 32% of the total cellular protein. We examined the scale-up culture conditions for the production of the recombinant Opc. The scale-up process was performed from 1.5 l to 50 l culture, using first, the constant power per unit of volume (P/V) as main scaling criteria, and then the oxygen mass transfer coefficient (K(L)a) scaling criteria to adjust the optimal aeration conditions. A final productivity of 52 mgl(-1)h(-1) was obtained at the 50l culture scale compared with the 49 mgl(-1)h(-1) productivity at 1.5l laboratory scale.
Bianco, M I; Jacobs, M; Salinas, S R; Salvay, A G; Ielmini, M V; Ielpi, L
2014-09-01
This study investigated the structural and biophysical characteristics of GumB and GumC, two Xanthomonas campestris membrane proteins that are involved in xanthan biosynthesis. Xanthan is an exopolysaccharide that is thought to be a virulence factor that contributes to bacterial in planta growth. It also is one of the most important industrial biopolymers. The first steps of xanthan biosynthesis are well understood, but the polymerization and export mechanisms remain unclear. For this reason, the key proteins must be characterized to better understand these processes. Here we characterized, by biochemical and biophysical techniques, GumB, the outer membrane polysaccharide export protein, and GumC, the polysaccharide co-polymerase protein of the xanthan biosynthesis system. Our results suggested that recombinant GumB is a tetrameric protein in solution. On the other hand, we observed that both native and recombinant GumC present oligomeric conformation consistent with dimers and higher-order oligomers. The transmembrane segments of GumC are required for GumC expression and/or stability. These initial results provide a starting point for additional studies that will clarify the roles of GumB and GumC in the xanthan polymerization and export processes and further elucidate their functions and mechanisms of action. Copyright © 2014 Elsevier Inc. All rights reserved.
Divertor heat flux mitigation in the National Spherical Torus Experimenta)
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team
2009-02-01
Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.
Site-specific genetic recombination: hops, flips, and flops.
Sadowski, P D
1993-06-01
Genetic recombination plays a key role in the life of organisms as diverse as bacteriophages and humans. Contrary to our idea that chromosomes are stable structures, studies of recombination over the past few decades have shown that in fact DNA replicons are remarkably plastic, undergoing frequent recombination-induced rearrangements. This review summarizes our recent knowledge of the biochemistry of the two major classes of site-specific recombination: 1) transpositional recombination, and 2) conservative site-specific recombination.
Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage λ
Kuzminov, Andrei
1999-01-01
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage λ recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation. PMID:10585965
Recombination rate variation in mice from an isolated island.
Wang, Richard J; Gray, Melissa M; Parmenter, Michelle D; Broman, Karl W; Payseur, Bret A
2017-01-01
Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. © 2016 John Wiley & Sons Ltd.
Recombination rate variation in mice from an isolated island
Wang, Richard J.; Gray, Melissa M.; Parmenter, Michelle D.; Broman, Karl W.; Payseur, Bret A.
2016-01-01
Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1,212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including sub-chromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genome-wide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbor a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. PMID:27864900
Zhang, Yongbing; Yang, Shifa; Zhao, Xue; Yang, Ya; Li, Bing; Zhu, Fujie; Zhu, Ruiliang
2014-09-01
This study was conducted to evaluate the effects of Taishan Robinia pseudoacacia polysaccharide (TRPPS) on immune responses of chickens immunized with Proteus mirabilis outer membrane protein A (OmpA) recombinant protein vaccine. OmpA was expressed in Pichia pastoris and mixed with TRPPS. 360 chickens were randomly divided into six groups. Groups I to IV were treated with OmpA which contained TRPPS of three different dosages, Freund's adjuvant, respectively. Groups V and VI were treated with pure OmpA and physiological saline, respectively. The data showed that the antibody titers against OmpA, the concentration of IL-2, CD4 +, and CD8 +, T lymphocyte proliferation rate in Group II were significantly higher (P < 0.05) than those in the other groups, little difference in SIgA content was observed among groups I to VI. These results indicated that TRPPS strengthened humoral and cellular immune responses against recombinant OmpA vaccine. Moreover, 200 mg/mL TRPPS showed significance (P < 0.05) compared with Freund's adjuvant. Therefore, TRPPS can be developed into an adjuvant for recombinant subunit vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.
Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko
2015-01-01
Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV–LACK, rCDV–TSA, and rCDV–LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV–LACK showed markedly smaller nodules without ulceration. Although the rCDV–TSA- and rCDV–LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV–LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094
Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko
2015-01-01
Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, H.D.; Kromhout, J.; Schachter, J.
1981-03-01
Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtainedmore » after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms.« less
Munford, R S; Gotschlich, E C
1977-01-01
Iodination of Escherichia coli cells with chloramine T preferentially labels the free and murein-bound forms of the outer membrane lipoprotein. Iodination for 15 s at 15 degrees C labels the two forms of the lipoprotein almost exclusively, whereas iodination for 60 s at 25 degrees C also labels the other major outer membrane proteins. Chloramine T iodination is a rapid, simple technique for labeling the outer membrane lipoprotein. PMID:400793
Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.
2015-01-01
Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285
He, Wei; Felderman, Martina; Evans, Angela C.; ...
2017-07-24
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Wei; Felderman, Martina; Evans, Angela C.
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less
Tegos, G; Vargas, C; Perysinakis, A; Koukkou, A I; Christogianni, A; Nieto, J J; Ventosa, A; Drainas, C
2000-11-01
Release of ice nuclei in the growth medium of recombinant Halomonas elongata cells expressing the inaZ gene of Pseudomonas syringae was studied in an attempt to produce cell-free active ice nuclei for biotechnological applications. Cell-free ice nuclei were not retained by cellulose acetate filters of 0.2 microm pore size. Highest activity of cell-free ice nuclei was obtained when cells were grown in low salinity (0.5-5% NaCl, w/v). Freezing temperature threshold, estimated to be below -7 degrees C indicating class C nuclei, was not affected by medium salinity. Their density, as estimated by Percoll density centrifugation, was 1.018 +/- 0.002 gml(-1) and they were found to be free of lipids. Ice nuclei are released in the growth medium of recombinant H. elongata cells probably because of inefficient anchoring of the ice-nucleation protein aggregates in the outer membrane. The ice+ recombinant H. elongata cells could be useful for future use as a source of active cell-free ice nucleation protein.
Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion.
Brayton, Kelly A; Palmer, Guy H; Lundgren, Anna; Yi, Jooyoung; Barbet, Anthony F
2002-03-01
The rickettsial pathogen Anaplasma marginale establishes lifelong persistent infection in the mammalian reservoir host, during which time immune escape variants continually arise in part because of variation in the expressed copy of the immunodominant outer membrane protein MSP2. A key question is how the small 1.2 Mb A. marginale genome generates sufficient variants to allow long-term persistence in an immunocompetent reservoir host. The recombination of whole pseudogenes into the single msp2 expression site has been previously identified as one method of generating variants, but is inadequate to generate the number of variants required for persistent infection. In the present study, we demonstrate that recombination of a whole pseudogene is followed by a second level of variation in which small segments of pseudogenes recombine into the expression site by gene conversion. Evidence for four short sequential changes in the hypervariable region of msp2 coupled with the identification of nine pseudogenes from a single strain of A. marginale provides for a combinatorial number of possible expressed MSP2 variants sufficient for lifelong persistence.
Smoldovskaya, Olga; Feyzkhanova, Guzel; Arefieva, Alla; Voloshin, Sergei; Ivashkina, Olga; Reznikov, Yuriy; Rubina, Alla
2016-01-01
Immunological test systems for diagnostics of type I hypersensitivity involve the following types of antigens: whole allergen extracts, individual highly purified proteins and their recombinant analogues. The goal of this study was to compare the results obtained with whole allergen extracts (birch pollen, cat dander, and timothy grass pollen) and their respective recombinant proteins in biochip-based immunoassay. Multiplex fluorescent immunoassay of 139 patients' blood serum samples was carried out using biological microchips (biochips). sIgE concentrations for the chosen allergens and their recombinant components were measured. ROC analysis was used for comparison of the results and determination of diagnostic accuracy. The results for the birch pollen extract and its recombinant allergens have shown that the diagnostic accuracy of the methods utilizing the whole allergen extract, its major component Bet v 1 and the combination of major and minor components (Bet v 1 and Bet v 2) was the same. Values for diagnostic accuracy for the cat dander extract and its major recombinant component Fel d 1 were equal. In contrast with birch pollen and cat dander allergens, using of recombinant components of timothy grass pollen (Phl p 1, Phl p 5, Phl p 7 and Phl p 12) did not allow reaching the diagnostic accuracy of using natural extract. Multiplex analysis of samples obtained from patients with allergy to birch pollen and cat dander using biological microchips has shown that comparable accuracy was observed for the assay with natural extracts and recombinant allergens. In the case of timothy grass allergen, using the recombinant components may be insufficient.
Development of the National Institutes of Health Guidelines for Recombinant DNA Research.
Talbot, B
1983-01-01
Recombinant DNA is a technique of major importance in basic biomedical research and, increasingly, in industrial applications. Although the risks of this research remain hypothetical, scientists working in the field have spearheaded discussions of safety. The original National Institutes of Health (NIH) Guidelines for Recombinant DNA Research were issued in June 1976. They assigned each type of recombinant DNA experiment a specific level of "physical containment" and of "biological containment." Responsibility for overseeing the application of the guidelines belongs to the NIH Recombinant DNA Advisory Committee (RAC)--composed of scientists and laymen, including non-voting representatives from many Federal agencies--and local institutional biosafety committees at each university where recombinant DNA research is conducted. The NIH guidelines were subsequently adopted by other Federal agencies, but congressional proposals aimed at extending the guidelines to private industry did not result in national legislation. Some States and localities regulate recombinant DNA research, however, and many private companies have voluntarily submitted information on their recombinant DNA work for RAC and NIH approval. The NIH guidelines underwent a major revision in December 1978 and have been revised approximately every 3 months since then. NIH supports experiments to assess recombinant DNA risks and publishes and updates a plan for a risk assessment program. PMID:6611823
Asai, Y; Katayose, Y; Hikita, C; Ohta, A; Shibuya, I
1989-01-01
The Escherichia coli pgsA3 allele encoding a defective phosphatidylglycerophosphate synthase is lethal for all but certain strains. Genetic analysis of such strains has revealed that the lethal effect is fully suppressed by the lack of the major outer membrane lipoprotein that consumes phosphatidylglycerol for its maturation. Images PMID:2556377
Pioneer spacecraft operation at low and high spin rates
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility of executing major changes upward or downward from the nominal spin rate for which the Pioneer F&G spacecraft was designed was investigated along with the extent of system and subsystem modifications required to implement these mode changes in future spacecraft evolving from the baseline Pioneer F and G. Results of a previous study are re-examined and updated for an extended range of spin rate variations for missions that include outer planet orbiters, outer planet flyby and outer planet probe delivery. However, in the interest of design simplicity and cost economy, major modifications of the baseline Pioneer system and subsystem concept were avoided.
Population-specific recombination sites within the human MHC region.
Lam, T H; Shen, M; Chia, J-M; Chan, S H; Ren, E C
2013-08-01
Genetic rearrangement by recombination is one of the major driving forces for genome evolution, and recombination is known to occur in non-random, discreet recombination sites within the genome. Mapping of recombination sites has proved to be difficult, particularly, in the human MHC region that is complicated by both population variation and highly polymorphic HLA genes. To overcome these problems, HLA-typed individuals from three representative populations: Asian, European and African were used to generate phased HLA haplotypes. Extended haplotype homozygosity (EHH) plots constructed from the phased haplotype data revealed discreet EHH drops corresponding to recombination events and these signatures were observed to be different for each population. Surprisingly, the majority of recombination sites detected are unique to each population, rather than being common. Unique recombination sites account for 56.8% (21/37 of total sites) in the Asian cohort, 50.0% (15/30 sites) in Europeans and 63.2% (24/38 sites) in Africans. Validation carried out at a known sperm typing recombination site of 45 kb (HLA-F-telomeric) showed that EHH was an efficient method to narrow the recombination region to 826 bp, and this was further refined to 660 bp by resequencing. This approach significantly enhanced mapping of the genomic architecture within the human MHC, and will be useful in studies to identify disease risk genes.
Lee, Tae-Young; Kim, Chang-Ung; Bae, Eun-Hye; Seo, Sang-Hwan; Jeong, Dae Gwin; Yoon, Sun-Woo; Chang, Kyu-Tae; Kim, Young Sang; Kim, Sang-Hyun; Kim, Doo-Jin
2017-01-23
Influenza is an acute respiratory disease and a major health problem worldwide. Since mucosal immunity plays a critical role in protection against influenza virus infection, mucosal immunization is considered a promising vaccination route. However, except for live-attenuated vaccines, there are no effective killed or recombinant mucosal influenza vaccines to date. Outer membrane vesicles (OMVs) are nano-sized vesicles produced by gram-negative bacteria, and contain various bacterial components capable of stimulating the immune system of the host. We generated an OMV with low endotoxicity (fmOMV) by modifying the structure of the lipid A moiety of lipopolysaccharide and investigated its effect as an intranasal vaccine adjuvant in an influenza vaccine model. In this model, fmOMV exhibited reduced toll-like receptor 4-stimulating activity and attenuated endotoxicity compared to that of native OMV. Intranasal injection of the vaccine antigen with fmOMV significantly increased systemic antibody and T cell responses, mucosal IgA levels, and the frequency of lung-resident influenza-specific T cells. In addition, the number of antigen-bearing CD103 + dendritic cells in the mediastinal lymph nodes was significantly increased after fmOMV co-administration. Notably, the mice co-immunized with fmOMV showed a significantly higher protection rate against challenge with a lethal dose of homologous or heterologous influenza viruses without adverse effects. These results show the potential of fmOMV as an effective mucosal adjuvant for intranasal vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis
NASA Astrophysics Data System (ADS)
Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.
2017-07-01
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Desclozeaux, Marion; Jelocnik, Martina; Whitting, Katrina; Saifzadeh, Siamak; Bommana, Sankhya; Potter, Andrew; Gerdts, Volker; Timms, Peter; Polkinghorne, Adam
2017-06-14
Arthritis and kerato-conjunctivitis caused by Chlamydia pecorum in lambs are difficult to diagnose and treat. We tested the ability of a prototype C. pecorum vaccine (SC-vaccine), comprised of C. pecorum major outer membrane protein (MOMP-G) and polymorphic membrane protein G (PmpG), to trigger a Chlamydia-specific humoral and cell-mediated immune response in lambs and pregnant ewes. Vaccinations with the SC-vaccine (one and two injections) were very well tolerated by all ewes and lambs. Although the overall immune responses of ewes to SC-vaccination was poor, their lambs showed stronger antigen-specific immune response than lambs from control vaccine ewes. SC-vaccination in lambs triggered production of systemic anti-MOMP-G and anti-PmpG IgG antibodies and secretory IgA in the ocular mucosa. Double vaccination caused statistically significant increases in the height and duration of the humoral response. Antigen-specific IFN-γ was produced in the peripheral blood mononuclear cells of vaccinated lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Initial results from the NSTX Real-Time Velocity diagnostic
NASA Astrophysics Data System (ADS)
Podesta, M.; Bell, R. E.
2011-10-01
A new diagnostic for fast measurements of plasma rotation through active charge-exchange recombination spectroscopy (CHERS) was installed on NSTX. The diagnostic infers toroidal rotation from carbon ions undergoing charge-exchange with neutrals from a heating Neutral Beam (NB). Each of the 4 channels, distributed along the outer major radius, includes active views intercepting the NB and background views missing the beam. Estimated uncertainties in the measured velocity are <5% at the maximum sampling rate of 5000 Hz (or <1% at 1000 Hz), to be compared with <0.5% and 100 Hz of the main NSTX CHERS system. Signals are acquired on 2 CCD detectors, each controlled by a dedicated PC. Spectra are fitted in real-time through a C++ processing code and velocities are made available to the Plasma Control System for future implementation of feedback on velocity. Results from the initial operation during the 2011 run are discussed, emphasizing the fast dynamics of toroidal rotation, e . g . during L-H mode transition and breaking caused by instabilities and by externally-imposed magnetic perturbations. Work supported by USDOE Contract No. DE-AC02-09CH11466.
Niemann, Moritz; Harsman, Anke; Mani, Jan; Peikert, Christian D; Oeljeklaus, Silke; Warscheid, Bettina; Wagner, Richard; Schneider, André
2017-09-12
Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.
Detection of Iss and Bor on the surface of Escherichia coli.
Lynne, A M; Skyberg, J A; Logue, C M; Nolan, L K
2007-03-01
To confirm the presence of Iss and Bor on the outer membrane of Escherichia coli using Western blots of outer membrane protein (OMP) preparations and fluorescence microscopy, and explore the use of fluorescence microscopy for the detection of avian pathogenic E. coli (APEC) and diagnosis of avian colibacillosis. Knockout mutants of iss and bor were created using a one-step recombination of target genes with PCR-generated antibiotic resistance cassettes. Anti-Iss monoclonal antibodies (Mabs) that cross-react with Bor protein were used to study the mutants relative to the wild-type organism. These Mabs were used as reagents to study OMP preparations of the mutants with Western blotting and intact E. coli cells with fluorescence microscopy. Iss and Bor were detected in Western blots of OMP preparations of the wild type. Also, Iss was detected on Deltabor mutants, and Bor was detected on Deltaiss mutants. Iss and Bor were also detected on the surface of the intact, wild-type cells and mutants using fluorescence microscopy. These results demonstrate that Bor and Iss are exposed on E. coli's outer membrane where they may be recognized by the host's immune system. To our knowledge, this is the first report confirming Iss' location in the outer membrane of an E. coli isolate. Such surface exposure has implications for the use of these Mabs for APEC detection and colibacillosis control.
The Role of Ring Current on Slot Region Penetration
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Elkington, Scot
2006-01-01
During magnetic quiet times, the inner belt, slot region and the outer belt are well defined regions. However, during some major storms, outer belt particles penetrate inward and significantly fill the slot region. In some extreme events, the outer belt particles travel through the slot and create a new belt in the inner region that persists from months to years. In this paper, we examine the role of the ring current on this radiation belt penetration into the slot region. The storm-time intensification of the ring current produces strong magnetic depression in the inner magnetosphere. This perturbation and its fluctuation enhance the radial transport and diffusion of the outer radiation belt particles. We perform kinetic and test-particle calculations to quantitatively assess the effects of the ring current field on filling of the slot region. Simulation results during major storms will be presented and discussed.
Menke, J.R.
1963-06-11
This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)
Albrecht, Melanie; Alessandri, Stefano; Conti, Amedeo; Reuter, Andreas; Lauer, Iris; Vieths, Stefan; Reese, Gerald
2008-11-01
Well-characterised and immunologically active recombinant allergens are of eminent importance for improvement of diagnostic tools and immunotherapy of allergic diseases. The use of recombinant allergens has several advantages such as the more precise quantification of the active substance compared to allergen extracts and the reduced risk of contamination with other allergenic proteins compared to purified natural allergens. Optimised standard protocols for expression and purification and a detailed physico-chemical characterisation of such recombinant allergens are necessary to ensure consistent quality and comparability of results obtained with recombinant material. In this study the major allergen Pen a 1 of brown shrimp (Penaeus aztecus) was expressed in E. coli and purified in two steps by immobilised metal chelate-affinity chromatography (IMAC) and size-exclusion chromatography. Identity and purity were verified with N-terminal sequencing and peptide mass fingerprinting. Circular dichroism and NMR-spectroscopy indicated an alpha-helical flexible structure of rPen a 1 which is in accordance with the known structure of tropomyosins. Finally, the recombinant allergen proved to be immunologically reactive in IgE Western blot analysis and ELISA. This study provides a protocol for the preparation of recombinant shrimp tropomyosin in standardised quality.
Effect of Leptospira interrogans outer membrane proteins LipL32 on HUVEC.
Sun, Zhan; Bao, Lang; Li, DaoKun; Huang, Bi; Wu, Bingting
2010-09-01
Leptospira cause disease through a toxin-mediated process by inducing vascular injury, particularly a small-vessel vasculitis. Breakdown of vessel endothelial cell integrity may increase vessel permeability which is correlated with the changes of tight junction and/or apoptosis in vessel endothelial cells. The specific toxin responsible remains unidentified. In this study, we amplified outer membrane protein LipL32 from the genome of Leptospira interrogans serovar Lai, and it was subcloned in pET32a(+) vector to express thioredoxin(Trx)-LipL32 fusion protein in Escherichia coli BL21(DE3). The protein was expressed and purified, and Trx-LipL32 was administered to culture with human umbilical vein endothelial cells (HUVEC) to elucidate the role of leptospiral outer membrane proteins in vessel endothelial cell. The purified recombinant protein was capable to increase the permeability of HUVECs. And the protein was able to decrease the expression of ZO-1 and induce F-actin in HUVECs display thickening and clustering. Moreover, apoptosis of HUVEC was significantly accelerated. But the fusion partner had no effect in these regards. It is possible that LipL32 is involved in the vessel lesions. Copyright 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Meiotic recombination is a major driving force in promoting genetic and phenotypic variations in sexually reproducing organisms. Although PRDM9 is known to modulate the binding-specificity and location of recombination hotspots in humans and mice, its role, especially in domesticated animals like ca...
Population Demographic History Can Cause the Appearance of Recombination Hotspots
Johnston, Henry R.; Cutler, David J.
2012-01-01
Although the prevailing view among geneticists suggests that recombination hotspots exist ubiquitously across the human genome, there is only limited experimental evidence from a few genomic regions to support the generality of this claim. A small number of true recombination hotspots are well supported experimentally, but the vast majority of hotspots have been identified on the basis of population genetic inferences from the patterns of linkage disequilibrium (LD) seen in the human population. These inferences are made assuming a particular model of human history, and one of the assumptions of that model is that the effective population size of humans has remained constant throughout our history. Our results show that relaxation of the constant population size assumption can create LD and variation patterns that are qualitatively and quantitatively similar to human populations without any need to invoke localized hotspots of recombination. In other words, apparent recombination hotspots could be an artifact of variable population size over time. Several lines of evidence suggest that the vast majority of hotspots identified on the basis of LD information are unlikely to have elevated recombination rates. PMID:22560089
Characterization of a major 31-kilodalton peptidoglycan-bound protein of Legionella pneumophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, C.A.; Hoffman, P.S.
1990-05-01
A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled ((35S)cysteine or (35S)methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid permore » mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus.« less
The 3 micron spectrum of the classical Be star Beta Monocerotis A
NASA Technical Reports Server (NTRS)
Sellgren, K.; Smith, R. G.
1992-01-01
A 3.1-3.7-micron spectrum of the classical Be star Beta Mon A is presented at a resolution of lambda/Delta-lambda of 700-800. The spectrum shows strong hydrogen recombination lines, including Pf-delta and a series of Humphreys lines from Hu 19 to Hu 28. The relative recombination line strengths suggest that Pf-delta has a large optical depth. The Humphreys lines have relative strengths consistent with case B and may be optically thin. The line widths observed are broader than the Balmer lines and similar in width to Fe II lines, consistent with a disk model in which optically thinner lines arise primarily from a faster rotating inner disk, while optically thicker lines come mainly from a slower rotating outer disk. The apparent lack of Stark broadening of the Humphreys lines is used to place an upper limit on the circumstellar electron density of about 10 exp 12/cu cm.
Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts.
Kassmannhuber, Johannes; Rauscher, Mascha; Schöner, Lea; Witte, Angela; Lubitz, Werner
2017-09-03
In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between -5.6 °C and -6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs).
Palmer, Guy H; Futse, James E; Knowles, Donald P; Brayton, Kelly A
2006-10-01
Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick-borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer-membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon-linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long-term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.
Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts
Kassmannhuber, Johannes; Rauscher, Mascha; Schöner, Lea; Witte, Angela; Lubitz, Werner
2017-01-01
ABSTRACT In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between −5.6 °C and −6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs). PMID:28121482
The Recent Recombinant Evolution of a Major Crop Pathogen, Potato virus Y
Visser, Johan Christiaan; Bellstedt, Dirk Uwe; Pirie, Michael David
2012-01-01
Potato virus Y (PVY) is a major agricultural disease that reduces crop yields worldwide. Different strains of PVY are associated with differing degrees of pathogenicity, of which the most common and economically important are known to be recombinant. We need to know the evolutionary origins of pathogens to prevent further escalations of diseases, but putatively reticulate genealogies are challenging to reconstruct with standard phylogenetic approaches. Currently available phylogenetic hypotheses for PVY are either limited to non-recombinant strains, represent only parts of the genome, and/or incorrectly assume a strictly bifurcating phylogenetic tree. Despite attempts to date potyviruses in general, no attempt has been made to date the origins of pathogenic PVY. We test whether diversification of the major strains of PVY and recombination between them occurred within the time frame of the domestication and modern cultivation of potatoes. In so doing, we demonstrate a novel extension of a phylogenetic approach for reconstructing reticulate evolutionary scenarios. We infer a well resolved phylogeny of 44 whole genome sequences of PVY viruses, representative of all known strains, using recombination detection and phylogenetic inference techniques. Using Bayesian molecular dating we show that the parental strains of PVY diverged around the time potatoes were first introduced to Europe, that recombination between them only occurred in the last century, and that the multiple recombination events that led to highly pathogenic PVYNTN occurred within the last 50 years. Disease causing agents are often transported across the globe by humans, with disastrous effects for us, our livestock and crops. Our analytical approach is particularly pertinent for the often small recombinant genomes involved (e.g. HIV/influenza A). In the case of PVY, increased transport of diseased material is likely to blame for uniting the parents of recombinant pathogenic strains: this process needs to be minimised to prevent further such occurrences. PMID:23226339
Barbosa, Angela S.; Monaris, Denize; Silva, Ludmila B.; Morais, Zenaide M.; Vasconcellos, Sílvio A.; Cianciarullo, Aurora M.; Isaac, Lourdes; Abreu, Patricia A. E.
2010-01-01
We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis. PMID:20404075
Ma, Li; Ding, Qinfeng; Feng, Xiping; Li, Fei
2013-10-01
A number of studies have shown that the outer membrane protein FomA found in Fusobacterium nucleatum demonstrates great potential as an immune target for combating periodontitis. Lactobacillus acidophilus is a useful antigen delivery vehicle for mucosal immunisation, and previous studies by our group have shown that L. acidophilus acts as a protective factor in periodontal health. In this study, making use of the immunogenicity of FomA and the probiotic properties of L. acidophilus, we constructed a recombinant form of L. acidophilus expressing the FomA protein and detected the FomA-specific IgG in the serum and sIgA in the saliva of mice through oral administration with the recombinant strains. When serum containing FomA-specific antibodies was incubated with the F. nucleatum in vitro, the number of Porphyromonas gingivalis cells that coaggregated with the F. nucleatum cells was significantly reduced. Furthermore, a mouse gum abscess model was successfully generated, and the range of gingival abscesses in the immune mice was relatively limited compared with the control group. The level of IL-1β in the serum and local gum tissues of the immune mice was consistently lower than in the control group. Our findings indicated that oral administration of the recombinant L. acidophilus reduced the risk of periodontal infection with P. gingivalis and F. nucleatum.
Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I
2015-01-01
None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).
Detecting and Analyzing Genetic Recombination Using RDP4.
Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev
2017-01-01
Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.
Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales
NASA Astrophysics Data System (ADS)
Bhérer, Claude; Campbell, Christopher L.; Auton, Adam
2017-04-01
In humans, males have lower recombination rates than females over the majority of the genome, but the opposite is usually true near the telomeres. These broad-scale differences have been known for decades, yet little is known about differences at the fine scale. By combining data sets, we have collected recombination events from over 100,000 meioses and have constructed sex-specific genetic maps at a previously unachievable resolution. Here we show that, although a substantial fraction of the genome shows some degree of sexually dimorphic recombination, the vast majority of hotspots are shared between the sexes, with only a small number of putative sex-specific hotspots. Wavelet analysis indicates that most of the differences can be attributed to the fine scale, and that variation in rate between the sexes can mostly be explained by differences in hotspot magnitude, rather than location. Nonetheless, known recombination-associated genomic features, such as THE1B repeat elements, show systematic differences between the sexes.
Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai
2017-07-08
Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Martínez-Torrecuadrada, J L; Díaz-Laviada, M; Roy, P; Sánchez, C; Vela, C; Sánchez-Vizcaíno, J M; Casal, J I
1996-06-01
African horsesickness virus serotype 4 (AHSV-4) outer capsid protein VP2, or VP2 and VP5 plus inner capsid protein VP7, derived from single or dual recombinant baculovirus expression vectors were used in different combinations to immunize horses. When the proteins were purified by affinity chromatography, the combination of all three proteins induced low levels of neutralizing antibodies and conferred protection against virulent virus challenge. However, purified VP2 or VP2 and VP5 in the absence of VP7 failed to induce neutralizing antibodies and protection. Immunization with non-purified proteins enhanced the titres of neutralizing antibodies. Again, the combination of the three proteins was able to confer total protection to immunized horses, which showed absence of viraemia. The antigenicity of recombinant VP2 was analysed with a collection of 30 MAbs. Both purified and unpurified recombinant VP2 proteins showed different antigenic patterns in comparison to that of VP2 on virions. An immunization experiment with four more horses confirmed these results. The vaccine described here would not only prevent the disease, but would drastically reduce the propagation of the virus by vectors.
de Been, Mark; van Schaik, Willem; Cheng, Lu; Corander, Jukka; Willems, Rob J.
2013-01-01
Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species’ rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen. PMID:23882129
Holyoak, G R; Smith, C M; Boyette, R; Montelongo, M; Wray, J H; Ayalew, S; Duggan, V E; Confer, A W
2007-08-15
Actinobacillus equuli is carried in the alimentary tract of mares and can cause severe septicemia of neonatal foals. A hemolytic subspecies, A. equuli subsp. haemolyticus, and a non-hemolytic subspecies, A. equuli subsp. equuli, have been identified. Hemolytic strains produce the RTX toxin Aqx. The purpose of this study was to demonstrate sequentially in two sets of mare-foal pairs antibodies to A. equuli whole bacterial cells, outer membrane proteins, and recombinant Aqx and to compare the transfer of antibodies to these antigens between mares and their foals. Two mare/foal sets of sera were evaluated. Cohort A consisted of 18 mare-foal pairs obtained in the spring of 2005. Cohort B consisted of 10 mare-foal pairs obtained in the spring of 2006. For both sets, mare and foal sera were obtained immediately after foaling and prior to nursing (time 0) as well as at 12 and 24h and daily thereafter for 7 days. For Cohort B, sera were also obtained 30 days after birth. At parturition all mares had detectable antibodies to A. equuli whole cells and outer membranes; however, of those mares, two in Cohort A had undetectable antibodies to Aqx and their foals likewise had undetectable anti-Aqx antibodies. Antibodies against whole cells, outer membrane proteins, and Aqx were readily transferred from mares to foals. In most cases, there were significant correlations (p<0.05) between antibodies against whole cells, outer membrane proteins, and Aqx in mares' sera at the time of parturition and foal sera 24 after birth. Antibodies against the three antigen preparations had declined insignificantly (p>0.05) by day 30.
NASA Technical Reports Server (NTRS)
Holman, Matthew J.; Boyce, J. (Technical Monitor)
2003-01-01
We feel that at the present moment the available theoretical models of the Kuiper belt are still in advance of the data, and thus our main task has been to conduct observational work guided by theoretical motivations. Our efforts over the past year can be divided into four categories: A) Wide-field Searches for Kuiper Belt Objects; B) Pencil-beam Searches for Kuiper Belt Objects; C) Wide-field Searches for Moons of the Outer Planets; D) Pencil-beam Searches for Faint Uranian and Neptunian Moons; E) Recovery Observations. As of April 2002, we have conducted several searches for Kuiper belt objects using large-format mosaic CCD camera on 4-meter class telescopes. In May 1999, we used the Kitt Peak 4-meter with the NOAO Mosaic camera we attempted a search for KBOs at a range of ecliptic latitudes. In addition to our wide-field searches, we have conducted three 'pencil-beam' searches in the past year. In a pencil-beam search we take repeated integrations of the same field throughout a night. After preprocessing the resulting images we shift and recombine them along a range of rates and directions consistent with the motion of KBOs. Stationary objects then smear out, while objects moving at near the shift rate appear as point sources. In addition to our searches for Kuiper belt objects, we are completing the inventory of the outer solar system by search for faint satellites of the outer planets. In August 2001 we conducted pencil beam searches for faint Uranian and Neptunian satellites at CFHT and CTIO. These searches resulted in the discover of two Neptunian and four Uranian satellite candidates. The discovery of Kuiper belt objects and outer planet satellites is of little use if the discoveries are not followed by systematic, repeated astrometric observations that permit reliable estimates of their orbits.
Bou Raad, Roland; Méniche, Xavier; de Sousa-d'Auria, Celia; Chami, Mohamed; Salmeron, Christophe; Tropis, Marielle; Labarre, Cecile; Daffé, Mamadou; Houssin, Christine; Bayan, Nicolas
2010-01-01
Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum. PMID:20363942
Soo, Benjamin P C; Tay, Julian; Ng, Shirelle; Ho, Steven C L; Yang, Yuansheng; Chao, Sheng-Hao
2017-08-01
Role of epigenetic regulation in the control of gene expression is well established. The impact of several epigenetic mechanisms, such as DNA methylation and histone acetylation, on recombinant protein production in mammalian cells has been investigated recently. Here we investigate the correlation between the selected epigenetic markers and five trastuzumab biosimilar-producing Chinese hamster ovary (CHO) cell lines in which the expression of trastuzumab is driven by human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. We chose the producing clones in which transcription was the determinative step for the production of recombinant trastuzumab. We found that the abundance of trimethylation of histone 3 at lysine 4 (H3K4Me3) on the enhancer of HCMV MIE promoter correlated well with the relative titers of recombinant trastuzumab among the clones. Such close correlation was not observed between the recombinant protein and other epigenetic markers examined in our study. Our results demonstrate that the HCMV MIE enhancer-bound H3K4Me3 epigenetic marker may be used as the epigenetic indicator to predict the relative production of recombinant proteins between the producing CHO cell lines.
SELECTIVE ADVANTAGE OF RECOMBINATION IN EVOLVING PROTEIN POPULATIONS: A LATTICE MODEL STUDY
WILLIAMS, PAUL D.; POLLOCK, DAVID D.
2010-01-01
Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population. PMID:25473139
Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study
NASA Astrophysics Data System (ADS)
Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.
Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.
Dilernia, Dario A.; Jones, Leandro R.; Pando, Maria A.; Rabinovich, Roberto D.; Damilano, Gabriel D.; Turk, Gabriela; Rubio, Andrea E.; Pampuro, Sandra; Gomez-Carrillo, Manuel
2011-01-01
Abstract HIV-1 epidemics in South America are believed to have originated in part from the subtype B epidemic initiated in the Caribbean/North America region. However, circulation of BF recombinants in similar proportions was extensively reported. Information currently shows that many BF recombinants share a recombination structure similar to that found in the CRF12_BF. In the present study, analyzing a set of 405 HIV sequences, we identified the most likely origin of the BF epidemic in an early event of recombination. We found that the subtype B epidemics in South America analyzed in the present study were initiated by a founder event that occurred in the early 1970s, a few years after the introduction of these strains in the Americas. Regarding the F/BF recombinant epidemics, by analyzing a subtype F genomic segment within the viral gene gag present in the majority of the BF recombinants, we found evidence of a geographic divergence very soon after the introduction of subtype F strains in South America. Moreover, through analysis of a subtype B segment present in all the CRF12_BF-like recombination structure, we estimated the circulation of the subtype B strain that gave rise to that recombinant structure around the same time period estimated for the introduction of subtype F strains. The HIV epidemics in South America were initiated in part through a founder event driven by subtype B strains coming from the previously established epidemic in the north of the continent. A second introduction driven by subtype F strains is likely to have encountered the incipient subtype B epidemic that soon after their arrival recombined with them, originating the BF epidemic in the region. These results may explain why in South America the majority of F sequences are found as BF recombinants. PMID:20919926
Complexity of genetic mechanisms conferring nonuniformity of recombination in maize.
Pan, Qingchun; Deng, Min; Yan, Jianbing; Li, Lin
2017-04-26
Recombinations occur nonuniformly across the maize genome. To dissect the genetic mechanisms underlying the nonuniformity of recombination, we performed quantitative trait locus (QTL) mapping using recombinant inbred line populations. Genome-wide QTL scan identified hundreds of QTLs with both cis-prone and trans- effects for recombination number variation. To provide detailed insights into cis- factors associated with recombination variation, we examined the genomic features around recombination hot regions, including density of genes, DNA transposons, retrotransposons, and some specific motifs. Compared to recombination variation in whole genome, more QTLs were mapped for variations in recombination hot regions. The majority QTLs for recombination hot regions are trans-QTLs and co-localized with genes from the recombination pathway. We also found that recombination variation was positively associated with the presence of genes and DNA transposons, but negatively related to the presence of long terminal repeat retrotransposons. Additionally, 41 recombination hot regions were fine-mapped. The high-resolution genotyping of five randomly selected regions in two F 2 populations verified that they indeed have ultra-high recombination frequency, which is even higher than that of the well-known recombination hot regions sh1-bz and a1-sh2. Taken together, our results further our understanding of recombination variation in plants.
Genome-wide recombination dynamics are associated with phenotypic variation in maize.
Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing
2016-05-01
Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.
Harner, Max; Neupert, Walter; Deponte, Marcel
2011-07-15
The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.
Rakitin, Andrey L; Ermakova, Alexandra Y; Ravin, Nikolai V
2015-09-01
Three endoxylanase-encoding genes from the moderately themophilic chemoorganotrophic bacterium Melioribacter roseus were cloned and expressed in Escherichia coli. Genes xyl2091 (Mros_2091) and xyl2495 (Mros_2495) encode GH10 family hydrolases, whereas xyl2090 (Mros_2090) represents the GH30 family. In addition to catalytic domains, Xyl2090 and Xyl2091 contain carbohydrate-binding modules that could facilitate their binding to xylans and Por sorting domains associated with the sorting of proteins from the periplasm to the outer membrane, where they are covalently attached. Recombinant endoxylanase Xyl2495 exhibited a high specific activity of 1,920 U/mg on birchwood xylan at 40°C. It is active at low temperatures, exhibiting more than 30% of the maximal activity even at 0°C. Endoxylanases Xyl2090 and Xyl2091 have lower specific activities but higher temperature optima at 80°C and 65°C, respectively. Analysis of xylan hydrolysis products revealed that Xyl2090 generates xylo-oligosaccharides longer than xylopentaose. Xylose and xylobiose are the major products of xylan hydrolysis by the recombinant Xyl2091 and Xyl2495. No activity against cellulose was observed for all enzymes. The presence of three xylanases ensures efficient xylan hydrolysis by M. roseus. The highly processive "free" endoxylanase Xyl2495 could hydrolyze xylan under moderate temperatures. Xylan hydrolysis at elevated temperatures could be accomplished by concerted action of two cell-bound xylanases; Xyl2090 that probably degrades xylans to long xylo-oligosaccharides, and Xyl2091 hydrolyzing them to xylose and xylobiose. The new endoxylanases could be useful for saccharification of lignocellulosic biomass in biofuels production, bleaching of paper pulp, and obtaining low molecular weight xylooligosaccharides.
Martins, Paula; Machado, Daisy; Theizen, Thais Holtz; Guarnieri, João Paulo Oliveira; Bernardes, Bruno Gaia; Gomide, Gabriel Piccirillo; Corat, Marcus Alexandre Finzi; Abbehausen, Camilla; Módena, José Luiz Proença; Melo, Carlos Fernando Odir Rodrigues; Morishita, Karen Noda; Catharino, Rodrigo Ramos; Arns, Clarice Weis; Lancellotti, Marcelo
2018-05-29
The increase of Zika virus (ZIKV) infections in Brazil in the last two years leaves a prophylactic measures on alert for this new and emerging pathogen. Concerning of our positive experience, we developed a new prototype using Neisseria meningitidis outer membrane vesicles (OMV) on ZIKV cell growth in a fusion of OMV in the envelope of virus particles. The fusion of nanoparticles resulting from outer membrane vesicles of N. meningitidis with infected C6/36 cells line were analyzed by Nano tracking analysis (NTA), zeta potential, differential light scattering (DLS), scan and scanning transmission eletronic microscopy (SEM and STEM) and high resolution mass spectometry (HRMS) for nanostructure characterization. Also, the vaccination effects were viewed by immune response in mice protocols immunization (ELISA and inflammatory chemokines) confirmed by Zika virus soroneutralization test. The results of immunizations in mice showed that antibody production had a titer greater than 1:160 as compared to unvaccinated mice. The immune response of the adjuvant and non-adjuvant formulation activated the cellular immune response TH1 and TH2. In addition, the serum neutralization was able to prevent infection of virus particles in the glial tumor cell model (M059J). This research shows efficient strategies without recombinant technology or DNA vaccines.
Cases, Bárbara; Pastor-Vargas, Carlos; Dones, Félix Gil; Perez-Gordo, Marina; Maroto, Aroa S; de las Heras, Manuel; Vivanco, Fernando; Cuesta-Herranz, Javier
2010-01-01
Plant profilins have been reported as minor allergens. They are a well-known pan-allergen family responsible for cross-reactivity between plant-derived foods and pollens. Watermelon profilin has been reported to be a major allergen in watermelon (Citrullus lanatus).The aim of this study was to characterize recombinant watermelon profilin, confirming its reactivity for diagnostic purposes and the development of immunotherapy. Native profilin was purified from watermelon extract by affinity chromatography using poly-L-proline. Recombinant His-tagged profilin was produced in Pichia pastoris yeast using pPICZαA vector and purified by metal chelate affinity chromatography. ELISA and immunoblot were carried out with sera from 17 watermelon-allergic patients. Biological activity was tested by the basophil activation test. Native profilin and recombinant profilin were purified and identified by mass spectrometry. Both show similar IgE reactivity in vitro and are biologically active. Similarities were found in the IgE-binding patterns and biological activity of recombinant profilin and native profilin. Recombinant profilin may be a powerful tool for specific diagnosis. Copyright © 2010 S. Karger AG, Basel.
Qin, Junling; Huang, Hainan; Ruan, Yang; Hou, Xiaoqiang; Yang, Songtao; Wang, Chengyu; Huang, Geng; Wang, Tiecheng; Feng, Na; Gao, Yuwei; Xia, Xianzhu
2012-01-01
Peste des petits ruminants (PPR) is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV) expresses a hemagglutinin (H) glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2) expressing the H gene of PPRV (China/Tibet strain) was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach).
Use of luciferase probes to measure ATP in living cells and animals.
Morciano, Giampaolo; Sarti, Alba Clara; Marchi, Saverio; Missiroli, Sonia; Falzoni, Simonetta; Raffaghello, Lizzia; Pistoia, Vito; Giorgi, Carlotta; Di Virgilio, Francesco; Pinton, Paolo
2017-08-01
ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.
Liao, Fang; He, Chao; Liu, Hai-Peng; Song, Qi-Fa; Yan, Jie
2006-11-01
To clone PIB gene of Neisseria gonorrhoeae, and to construct a recombinant eukaryotic expression vector pCI-PIB and to understand the effects of pCI-PIB vaccination in mice to induce specific humoral and cellular immune responses. The entire PIB gene of Neisseria gonorrhoeae (960 bp) was amplified by using PCR. An eukaryotic eukaryotic vector pCI-PIB was then constructed. BALB/c mice (n = 65, 100 microg/time/mouse) were immunized with pCI-PIB by intramuscular injection. ABC assay was employed to examine the PIB expression in muscular cells of the pCI-PIB-immunized mice (n = 10). ELISA and MTT assays were used to measure the effects of humoral and cellular immune responses of the remaining pCI-PIB-immunized mice. By using slide agglutination test and complement bacteriolytic test, the serum anti-bacterial activity of the pCI-PIB immunized mice was determined. The entire PIB gene amplification fragment of the expected size (960 bp) was successfully obtained by PCR. In comparison with the reported PIB gene sequence (GenBank No: AF090801), the homology of nucleotide sequence of the target inserted fragment in the recombinant plasmid pCI-PIB was as high as 99.28%. The muscular cells of the immunized mice could take in pCI-PIB and then express PIB. In the pCI-PIB immunized mice, the higher titer (1:4000) of specific serum IgG and the specific T lymphocyte response were found. The proliferation index (4.031) was significantly higher than that of the controls (1.127) (t = 71.71, P < 0.05). The sera and washings from the pCI-PIB immunized mice could agglutinate Neisseria gonorrhoeae and kill this microbe in presence of complements. In this study we successfully constructed a recombinant eukaryotic expression vector pCI-PIB. The mice inoculated with pCI-PIB might efficiently produce the specific humoral and cellular immune responses, suggesting that pCI-PIB should be potential service as a candidate of Neisseria gonorrhoeae DNA vaccines.
Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Linxiao; Valentine, Jenny L.; Huang, Chung-Jr
The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. In this paper, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Usingmore » this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS–specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Finally, given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.« less
Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies
Chen, Linxiao; Valentine, Jenny L.; Huang, Chung-Jr; ...
2016-06-06
The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. In this paper, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Usingmore » this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS–specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Finally, given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.« less
Hennig, Anna; Bonfig, Katharina; Roitsch, Thomas; Warzecha, Heribert
2007-11-01
Bacterial lipoproteins play crucial roles in host-pathogen interactions and pathogenesis and are important targets for the immune system. A prominent example is the outer surface protein A (OspA) of Borrelia burgdorferi, which has been efficiently used as a vaccine for the prevention of Lyme disease. In a previous study, OspA could be produced in tobacco chloroplasts in a lipidated and immunogenic form. To further explore the potential of chloroplasts for the production of bacterial lipoproteins, the role of the N-terminal leader sequence was investigated. The amount of recombinant OspA could be increased up to ten-fold by the variation of the insertion site in the chloroplast genome. Analysis of OspA mutants revealed that replacement of the invariant cysteine residue as well as deletion of the leader sequence abolishes palmitolyation of OspA. Also, decoration of OspA with an N-terminal eukaryotic lipidation motif does not lead to palmitoylation in chloroplasts. Strikingly, the bacterial signal peptide of OspA efficiently targets the protein to thylakoids, and causes a mutant phenotype. Plants accumulating OspA at 10% total soluble protein could not grow without exogenously supplied sugars and rapidly died after transfer to soil under greenhouse conditions. The plants were found to be strongly affected in photosystem II, as revealed by the analyses of temporal and spatial dynamics of photosynthetic activity by chlorophyll fluorescence imaging. Thus, overexpression of OspA in chloroplasts is limited by its concentration-dependent interference with essential functions of chloroplastic membranes required for primary metabolism.
EXAMINATION OF Zr AND Ti RECOMBINER LOOP SPECIMENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittenhouse, P.L.
1958-12-19
Cold-worked specimens of iodide zirconium, Zircaloy-2, iodide titanium, and A-55 titanium were tested in a high-pressure recombiner loop in an attempt to duplicate anomalous results obtained in a prior recombiner loop. Hydrogen analyses and metallographic examinations were made on all specimens. The titanium materials and Zircaloy-2 picked up major amounts of hydrogen in the cell section. None of the materials tested showed appreciable hydrogen absorption in the recombiner section. Complete recrystallization occurred in all cell specimens while only Zircaloy-2, of the recombiner specimens, showed any degree of recrystallization. No explanation for this behavior can be given. A survnnary of themore » data obtained in previous recombiner loops is compared with the results of this loop. Conclusions were based on the results of three recombiner loops. Primarlly because of the hydrogen absorption data obtained in all three recombiner loops it is recommended that the zirconium and titunium materials tested not be used in environments similar to those encountered in high pressure recombiner loops. (auth)« less
Magnarelli, Louis A.; Ijdo, Jacob W.; Padula, Steven J.; Flavell, Richard A.; Fikrig, Erol
2000-01-01
Class-specific enzyme-linked immunosorbent assays (ELISAs) with purified recombinant antigens of Borrelia burgdorferi sensu stricto and Western blot analyses with whole cells of this spirochete were used to test human sera to determine which antigens were diagnostically important. In analyses for immunoglobulin M (IgM) antibodies, 14 (82%) of 17 serum samples from persons who had erythema migrans reacted positively by an ELISA with one or more recombinant antigens. There was frequent antibody reactivity to protein 41-G (p41-G), outer surface protein C (OspC), and OspF antigens. In an ELISA for IgG antibodies, 13 (87%) of 15 serum samples had antibodies to recombinant antigens; reactivity to p22, p39, p41-G, OspC, and OspF antigens was frequent. By both ELISAs, serum specimens positive for OspB, OspE, and p37 were uncommon. Analyses of sera obtained from persons who were suspected of having human granulocytic ehrlichiosis (HGE) but who lacked antibodies to ehrlichiae revealed IgM antibodies to all recombinant antigens of B. burgdorferi except OspB and IgG antibodies to all antigens except OspE. Immunoblotting of sera from the study group of individuals suspected of having HGE reaffirmed antibody reactivity to multiple antigens of B. burgdorferi. There was minor cross-reactivity when sera from healthy subjects or persons who had syphilis, oral infections, or rheumatoid arthritis were tested by ELISAs with p37, p41-G, OspB, OspC, OspE, and OspF antigens. Although the results of class-specific ELISAs with recombinant antigens were comparable to those recorded for assays with whole-cell antigen and for individuals with confirmed clinical diagnoses of Lyme borreliosis, immunoblotting is still advised as an adjunct procedure, particularly when there are low antibody titers by an ELISA. PMID:10790090
Ma, Sun-Ting; Ding, Guo-Jie; Huang, Xue-Wei; Wang, Zi-Wei; Wang, Li; Yu, Mei-Ling; Shi, Wen; Jiang, Yan-Ping; Tang, Li-Jie; Xu, Yi-Gang; Li, Yi-Jing
2018-03-01
Avian colibacillosis is responsible for economic losses to poultry producers worldwide. To combat this, we aimed to develop an effective oral vaccine for chicken against O78 avian pathogenic Escherichia coli (APEC) infection through a Lactobacillus delivery system. Eight Lactobacillus strains isolated from the intestines of broiler chickens were evaluated based on their in vitro adherence ability to assess their potential as a delivery vector. Fimbrial subunit A (FimA) and outer-membrane protein C (OmpC) of APEC with and without fusion to dendritic cell-targeting peptide (DCpep) and microfold cell-targeting peptide (Co1) were displayed on the surface of Lactobacillus saerimneri M-11 and yielded vaccine groups (pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, respectively). The colonization of the recombinant strains in vivo was assessed and the immunogenicity and protective efficacy of orally administered recombinant strains in chickens were evaluated. The colonization of the recombinant strains in vivo revealed no significant differences between the recombinant and wild-type strains. Chickens orally administered with vaccine groups showed significantly higher levels of OmpC/FimA-specific IgG in serum and mucosal IgA in cecum lavage, nasal lavage and stool compared to the pPG/M-11 group. After challenge with APEC CVCC1553, better protective efficacy was observed in chickens orally immunized with pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, but no significant differences were observed between the two groups. Recombinant chicken-borne L. saerimneri M-11 showed good immunogenicity in chickens, suggesting that it may be a promising vaccine candidate against APEC infections. However, the activity of mammalian DCpep and Co1 was not significant in chickens.
Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C
2009-11-01
Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.
Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori
2016-11-28
H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.
King, L.D.P.
1960-11-22
As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.
Senthilkumar, T M A; Subathra, M; Ramadass, P; Ramaswamy, V
2010-02-01
The efficacy of a recombinant leptospiral outer membrane protein LipL41 as an antigen for conducting IgG-Enzyme linked immunosorbent assay (ELISA) and latex agglutination test (LAT) for serodiagnosis of bovine leptospirosis was evaluated. The recombinant LipL41 antigen developed and used for detecting the antibodies was specific in detection of the pathogenic serovars of Leptospira, as the expression of the LipL41 antigen is restricted only to pathogenic leptospires. A total of 430 bovine serum samples were subjected to IgG-ELISA and LAT, and the sensitivity and specificity were assessed in comparison with microscopic agglutination test (MAT). The sensitivity and specificity of IgG-ELISA and LAT were 86.84% and 93.16%, and 95.42% and 98.33% respectively. Both the tests are found to be sensitive, specific and concurred with the standard MAT. The study concluded that the rLipL41 protein could be used as a potential diagnostic antigen in different assay formats for bovine leptospirosis.
Brown, Simon David; Jarosinska, Olga Dorota; Lorenz, Alexander
2018-03-17
Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.
Wang, Pan; He, Jie; Sun, Yufei; Reynolds, Matthew; Zhang, Li; Han, Shuangyan; Liang, Shuli; Sui, Haixin; Lin, Ying
2016-01-01
To modify the Pichia pastoris cell surface, two classes of hydrophobins, SC3 from Schizophyllum commune and HFBI from Trichoderma reesei, were separately displayed on the cell wall. There was an observable increase in the hydrophobicity of recombinant strains. Candida antarctica lipase B (CALB) was then co-displayed on the modified cells, generating strains GS115/SC3-61/CALB-51 and GS115/HFBI-61/CALB-51. Interestingly, the hydrolytic and synthetic activities of strain GS115/HFBI-61/CALB-51 increased by 37% and 109%, respectively, but decreased by 26% and 43%, respectively, in strain GS115/SC3-61/CALB-51 compared with the hydrophobin-minus recombinant strain GS115/CALB-GCW51. The amount of glycerol by-product from the transesterification reaction adsorbed on the cell surface was significantly decreased following hydrophobin modification, removing the glycerol barrier and allowing substrates to access the active sites of lipases. Electron micrographs indicated that the cell wall structures of both recombinant strains appeared altered, including changes to the inner glucan layer and outer mannan layer. These results suggest that the display of hydrophobins can change the surface structure and hydrophobic properties of P. pastoris, and affect the catalytic activities of CALB displayed on the surface of P. pastoris cells. PMID:26969039
Raffoux, Xavier; Bourge, Mickael; Dumas, Fabrice; Martin, Olivier C; Falque, Matthieu
2018-06-01
Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores. Copyright © 2018 John Wiley & Sons, Ltd.
The transcriptome landscape of early maize meiosis
USDA-ARS?s Scientific Manuscript database
Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...
Hoolahan, Angelique H; Blok, Vivian C; Gibson, Tracey; Dowton, Mark
2012-03-01
Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.
Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner
2010-10-01
Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.
Zhang, Ting; Xu, Zheng; Liu, Ran; Teng, Feng; Wang, Yongsheng; Xu, Xurong
2007-12-01
The carrier transport capability and luminescence efficiency of poly(2-methoxy-5-(2-ethyl hexyloxy)-p-phenylene vinylene) (MEH-PPV) films are enhanced by doping with dehydrated nanotubed titanic acid (DNTA). MEH-PPV molecules, either wrapped on the outer surface of or encapsulated into DNTA pores, have a more open, straighter conformation than undoped molecules, which induces a longer conjugated backbone and stronger interchain interactions, thereby, enhancing carrier mobility. MEH-PPV molecules within DNTA pores have higher exciton recombination efficiency owing to quantum confinement and the antenna effect.
Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad
2017-09-01
The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Age-Dependent Recombination Rates in Human Pedigrees
Hussin, Julie; Roy-Gagnon, Marie-Hélène; Gendron, Roxanne; Andelfinger, Gregor; Awadalla, Philip
2011-01-01
In humans, chromosome-number abnormalities have been associated with altered recombination and increased maternal age. Therefore, age-related effects on recombination are of major importance, especially in relation to the mechanisms involved in human trisomies. Here, we examine the relationship between maternal age and recombination rate in humans. We localized crossovers at high resolution by using over 600,000 markers genotyped in a panel of 69 French-Canadian pedigrees, revealing recombination events in 195 maternal meioses. Overall, we observed the general patterns of variation in fine-scale recombination rates previously reported in humans. However, we make the first observation of a significant decrease in recombination rates with advancing maternal age in humans, likely driven by chromosome-specific effects. The effect appears to be localized in the middle section of chromosomal arms and near subtelomeric regions. We postulate that, for some chromosomes, protection against non-disjunction provided by recombination becomes less efficient with advancing maternal age, which can be partly responsible for the higher rates of aneuploidy in older women. We propose a model that reconciles our findings with reported associations between maternal age and recombination in cases of trisomies. PMID:21912527
The evolution of recombination rates in finite populations during ecological speciation.
Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan
2016-10-26
Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).
MosaicSolver: a tool for determining recombinants of viral genomes from pileup data
Wood, Graham R.; Ryabov, Eugene V.; Fannon, Jessica M.; Moore, Jonathan D.; Evans, David J.; Burroughs, Nigel
2014-01-01
Viral recombination is a key evolutionary mechanism, aiding escape from host immunity, contributing to changes in tropism and possibly assisting transmission across species barriers. The ability to determine whether recombination has occurred and to locate associated specific recombination junctions is thus of major importance in understanding emerging diseases and pathogenesis. This paper describes a method for determining recombinant mosaics (and their proportions) originating from two parent genomes, using high-throughput sequence data. The method involves setting the problem geometrically and the use of appropriately constrained quadratic programming. Recombinants of the honeybee deformed wing virus and the Varroa destructor virus-1 are inferred to illustrate the method from both siRNAs and reads sampling the viral genome population (cDNA library); our results are confirmed experimentally. Matlab software (MosaicSolver) is available. PMID:25120266
Novel canine circovirus strains from Thailand: Evidence for genetic recombination.
Piewbang, Chutchai; Jo, Wendy K; Puff, Christina; van der Vries, Erhard; Kesdangsakonwut, Sawang; Rungsipipat, Anudep; Kruppa, Jochen; Jung, Klaus; Baumgärtner, Wolfgang; Techangamsuwan, Somporn; Ludlow, Martin; Osterhaus, Albert D M E
2018-05-14
Canine circoviruses (CanineCV's), belonging to the genus Circovirus of the Circoviridae family, were detected by next generation sequencing in samples from Thai dogs with respiratory symptoms. Genetic characterization and phylogenetic analysis of nearly complete CanineCV genomes suggested that natural recombination had occurred among different lineages of CanineCV's. Similarity plot and bootscaning analyses indicated that American and Chinese viruses had served as major and minor parental viruses, respectively. Positions of recombination breakpoints were estimated using maximum-likelihood frameworks with statistical significant testing. The putative recombination event was located in the Replicase gene, intersecting with open reading frame-3. Analysis of nucleotide changes confirmed the origin of the recombination event. This is the first description of naturally occurring recombinant CanineCV's that have resulted in the circulation of newly emerging CanineCV lineages.
Expression of cathepsin S antisense transcripts by adenovirus in retinal pigment epithelial cells.
Rakoczy, P E; Lai, M C; Baines, M G; Spilsbury, K; Constable, I J
1998-10-01
To show the production of sense or antisense transcripts by recombinant adenoviruses, to investigate whether the transcripts produced were suitable for downregulating the expression of the targeted gene, cathepsin S (CatS), and to examine the effect of antisense transcript production on the biologic function of retinal pigment epithelial (RPE) cells, including the regulation of endogenous aspartic protease expression. Ad.MLP.CatSAS, Ad.RSV.CatSAS, and Ad.MLP.CatSS recombinant viruses were produced by homologous recombination. The recombinant viruses were tested by restriction enzyme digestion to confirm the orientation of the inserts. The expression of antisense transcripts was tested by northern blot analysis. Western blot analysis was used to study the regulation of the endogenous CatS protein in ARPE19 cells. The biologic effect of CatS downregulation in ARPE19 cells was tested by proliferation and phagocytosis assays, de novo cathepsin D (CatD) synthesis, and measurement of aspartic protease activity. After characterization of the recombinant adenovirus constructs, the production of antisense and sense CatS transcripts was shown in ARPE19 cells. The transcripts appeared at approximately 1.9 kb 48 hours after transduction, and the expression of the antisense transcripts was similar in constructs carrying either the MLP or the RSV promoter. Western blot analysis showed that ARPE19 cells transduced with Ad.MLP.CatSAS and Ad.RSV.CatSAS had no detectable CatS. In contrast, there was a strong signal appearing at 24 kDa in ARPE19 cells transduced with Ad.MLP.CatSS. ARPE19 cells were transduced to a high level. The transduction of ARPE19 cells with the recombinant adenoviruses did not affect the morphologic appearance of the cells, their proliferation, or their phagocytosing ability. However, ARPE19 cells transduced by Ad.MLP.CatSAS recombinant adenovirus showed a significant downregulation of de novo CatD synthesis and a twofold decrease in aspartic protease activity. Recombinant adenoviruses were shown to be suitable for producing antisense CatS transcripts to modulate endogenous CatS expression in RPE cells. It is proposed that CatS may play an important role, directly or indirectly, in the lysosomal digestion of outer segments through the regulation of other lysosomal enzyme activity, such as the expression of CatD.
Thermoelectric Outer Planets Spacecraft (TOPS)
NASA Technical Reports Server (NTRS)
1973-01-01
The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.
Trombert, A
2015-01-01
Lactic acid bacteria (LABs) are good candidates for the development of new oral vaccines and are attractive alternatives to attenuated pathogens. This review focuses on the use of wild-type and recombinant lactococci and lactobacilli with emphasis on their molecular design, immunomodulation and treatment of bacterial infections. The majority of studies related to recombinant LABs have focused on Lactococcus lactis, however, molecular tools have been successfully used for Lactobacillus spp. Recombinant lactobacilli and lactococci have several health benefits, such as immunomodulation, restoration of the microbiota, synthesis of antimicrobial substances and inhibition of virulence factors. In addition, protective immune responses that are well tolerated are induced by the expression of heterologous antigens from recombinant probiotics.
Bárcena, J; Morales, M; Vázquez, B; Boga, J A; Parra, F; Lucientes, J; Pagès-Manté, A; Sánchez-Vizcaíno, J M; Blasco, R; Torres, J M
2000-02-01
We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.
Bárcena, Juan; Morales, Mónica; Vázquez, Belén; Boga, José A.; Parra, Francisco; Lucientes, Javier; Pagès-Manté, Albert; Sánchez-Vizcaíno, José M.; Blasco, Rafael; Torres, Juan M.
2000-01-01
We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals. PMID:10627521
FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori
USDA-ARS?s Scientific Manuscript database
A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they h...
Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs.
Farahmand, Mahin; Nahrevanian, Hossein
2016-07-01
Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs.
Dissociative recombination of N2/+/ in the ionosphere
NASA Technical Reports Server (NTRS)
Torr, M. R.; Torr, D. G.
1979-01-01
N2(+) ion measurements are examined which were made with the Atmospheric Explorer-C satellite during a phase of solar activity in 1978 that was significantly higher than near the earlier minimum. It is found that the major source of N2(+) is photoionization, rather than charge exchange with O(+) (2D), and that the major loss process above 300 km is dissociative recombination with electrons. A data sample for which the electron temperature (T sub e) covered the range from 1000 to 3400 K is used to evaluate the rate constant, alpha, for the dissociative-recombination process. The results show good agreement with laboratory measurements given by the expression: alpha = 1.8 x 10 to the -7th (T sub e/300) to the -0.39th cu cm/sec.
Li, Hanjie; Ye, Congting; Ji, Guoli; Wu, Xiaohui; Xiang, Zhe; Li, Yuanyue; Cao, Yonghao; Liu, Xiaolong; Douek, Daniel C; Price, David A; Han, Jiahuai
2012-09-01
Overlap of TCR repertoires among individuals provides the molecular basis for public T cell responses. By deep-sequencing the TCRβ repertoires of CD4+CD8+ thymocytes from three individual mice, we observed that a substantial degree of TCRβ overlap, comprising ∼10-15% of all unique amino acid sequences and ∼5-10% of all unique nucleotide sequences across any two individuals, is already present at this early stage of T cell development. The majority of TCRβ sharing between individual thymocyte repertoires could be attributed to the process of convergent recombination, with additional contributions likely arising from recombinatorial biases; the role of selection during intrathymic development was negligible. These results indicate that the process of TCR gene recombination is the major determinant of clonotype sharing between individuals.
NASA Astrophysics Data System (ADS)
Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing
2016-11-01
Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.
Humphryes, P C; Weeks, M E; AbuOun, M; Thomson, G; Núñez, A; Coldham, N G
2014-04-01
The Leptospira interrogans vaccines currently available are serovar specific and require regular booster immunizations to maintain protection of the host. In addition, a hamster challenge batch potency test is necessary to evaluate these vaccines prior to market release, requiring the use of a large number of animals, which is ethically and financially undesirable. Our previous work showed that the N terminus of the outer membrane protein LipL32 was altered in Leptospira interrogans serovar Canicola vaccines that fail the hamster challenge test, suggesting that it may be involved in the protective immune response. The aim of this study was to determine if vaccination with LipL32 protein alone could provide a protective response against challenge with L. interrogans serovar Canicola to hamsters. Recombinant LipL32, purified from an Escherichia coli expression system, was assessed for protective immunity in five groups of hamsters (n = 5) following a challenge with the virulent L. interrogans serovar Canicola strain Kito as a challenge strain. However, no significant survival against the L. interrogans serovar Canicola challenge was observed compared to that of unvaccinated negative controls. Subsequent histological analysis revealed reduced amounts of L. interrogans in the kidneys from the hamsters vaccinated with recombinant LipL32 protein prior to challenge; however, no significant survival against the L. interrogans serovar Canicola challenge was observed compared to that of unvaccinated negative controls. This finding corresponded to a noticeably reduced severity of renal lesions. This study provides evidence that LipL32 is involved in the protective response against L. interrogans serovar Canicola in hamsters and is the first reported link to LipL32-induced protection against kidney invasion.
Zhang, Zhifei; Yang, Jing; Wei, Junfei; Yang, Yaping; Chen, Xiaoqin; Zhao, Xi; Gu, Yuan; Cui, Shijuan; Zhu, Xinping
2011-01-01
Background Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin (Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated. Methods and Findings In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(rTs-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). rTs-Pmy also inhibited the lysis of rabbit erythrocytes (ER) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti-Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML. Conclusion These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack. PMID:21750743
Fu, Shulin; Zhang, Minmin; Xu, Juan; Ou, Jiwen; Wang, Yan; Liu, Huazhen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng
2013-01-02
Haemophilus parasuis (H. parasuis), the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. Little vaccines currently exist that have a significant effect on infections with all pathogenic serovars of H. parasuis. H. parasuis putative outer membrane proteins (OMPs) are potentially essential components of more effective vaccines. Recently, the genomic sequence of H. parasuis serovar 5 strain SH0165 was completed in our laboratory, which allow us to target OMPs for the development of recombinant vaccines. In this study, we focused on 10 putative OMPs and all the putative OMPs were cloned, expressed and purified as HIS fusion proteins. Primary screening for immunoprotective potential was performed in mice challenged with an LD50 challenge. Out of these 10 OMPs three fusion proteins rGAPDH, rOapA, and rHPS-0675 were found to be protective in a mouse model of H. parasuis infection. We further evaluated the immune responses and protective efficacy of rGAPDH, rOapA, and rHPS-0675 in pig models. All three proteins elicited humoral antibody responses and conferred different levels of protection against challenge with a lethal dose of H. parasuis SH0165 in pig models. In addition, the antisera against the three individual proteins and the synergistic protein efficiently inhibited bacterial growth in a whole blood assay. The data demonstrated that the three proteins showed high value individually and the combination of rGAPDH, rOapA, and rHPS-0675 offered the best protection. Our results indicate that rGAPDH, rOapA, and rHPS-0675 induced protection against H. parasuis SH0165 infection, which may facilitate the development of a multi-component vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.
SongLin, Guo; PanPan, Lu; JianJun, Feng; JinPing, Zhao; Peng, Lin; LiHua, Duan
2015-04-01
The immogenicity of a novel vaccine antigen was evaluated after immunized American eels (Anguilla rostrata) with a recombinant bivalent expressed outer membrane protein (OMP) of Vibrio vulnificus and Aeromonas hydrophila. Three groups of eels were intraperitoneal (i.p) injected with phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila and V. vulnificus (FKC group) or the bivalent OMP (OMP group). On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody and lysozyme activities of experimental eels were detected. On 28 day post-vaccination, eels from three groups were challenged by i.p injection of live A. hydrophila or V. vulnificus. The results showed that, compared with the PBS group, proliferation of whole blood cells in OMP group was significant enhanced on 28 days, and the serum titers of anti-A.hydrophila and anti-V. vulnificus antibody in eels of FKC and OMP group were significant increased on 14, 21 and 28d. Lysozyme Activities in serum, skin mucus, liver and kidney were significant changed between the three groups. Relative Percent Survival (RPS) after challenged A. hydrophila in KFC vs. PBS group and OMP vs. PBS group were 62.5% and 50% respectively, and the RPS challenged V. vulnificus in FKC and OMP vs. PBS group were 37.5% and 50% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in fresh water farming. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dentilisin activity affects the organization of the outer sheath of Treponema denticola.
Ishihara, K; Kuramitsu, H K; Miura, T; Okuda, K
1998-08-01
Prolyl-phenylalanine-specific serine protease (dentilisin) is a major extracellular protease produced by Treponema denticola. The gene, prtP, coding for the protease was recently cloned and sequenced (K. Ishihara, T. Miura, H. K. Kuramitsu, and K. Okuda, Infect. Immun. 64:5178-5186, 1996). In order to determine the role of this protease in the physiology and virulence of T. denticola, a dentilisin-deficient mutant, K1, was constructed following electroporation with a prtP-inactivated DNA fragment. No chymotrypsin-like protease activity was detected in the dentilisin-deficient mutant. In addition, the high-molecular-mass oligomeric protein characteristic of the outer sheath of the organism decreased in the mutant. Furthermore, the hydrophobicity of the mutant was decreased, and coaggregation of the mutant with Fusobacterium nucleatum was enhanced compared to that of the wild-type organism. The results obtained with a mouse abscess model system indicated that the virulence of the mutant was attenuated relative to that of the wild-type organism. These results suggest that dentilisin activity plays a major role in the structural organization of the outer sheath of T. denticola. The loss of dentilsin activity and the structural change in the outer sheath affect the pathogenicity of T. denticola.
Panfoli, I; Calzia, D; Ravera, S; Morelli, A M; Traverso, C E
2012-04-01
Vertebrate retinal rods are photoreceptors for dim-light vision. They display extreme sensitivity to light thanks to a specialized subcellular organelle, the rod outer segment. This is filled with a stack of membranous disks, expressing the proteins involved in visual transduction, a very energy demanding process. Our previous proteomic and biochemical studies have shed new light on the chemical energy processes that supply ATP to the outer segment, suggesting the presence of an extra-mitochondrial aerobic metabolism in rod outer segment, devoid of mitochondria, which would account for a quantitatively adequate ATP supply for phototransduction. Here the functional presence of an oxidative phosphorylation in the rod outer limb is examined for its relationship to many physiological and pathological data on the rod outer segment. We hypothesize that the rod outer limb is at risk of oxidative stress, in any case of impairment in the respiratory chain functioning, or of blood supply. In fact, the electron transfer chain is a major source of reactive O(2) species, known to produce severe alteration to the membrane lipids, especially those of the outer segment that are rich in polyunsaturated fatty acids. We propose that the disk membrane may become the target of reactive oxygen species that may be released by the electron transport chain under pathologic conditions. For example, during aging reactive oxygen species production increases, while cellular antioxidant capacity decreases. Also the apoptosis of the rod observed after exposure to bright or continuous illumination can be explained considering that an overfunctioning of phototransduction may damage the disk membrane to a point at which cytochrome c escapes from the intradiskal space, where it is presently supposed to be, activating a putative caspase 9 and the apoptosome. A pathogenic mechanism for many inherited and acquired retinal degenerations, representing a major problem in clinical ophthalmology, is proposed: a number of rod pathologies would be promoted by impairment of energy supply and/or oxidative stress in the rod outer segment. In conclusion we suppose that the damaging role of oxygen, be it hypoxia or hyperoxia invoked in most of the blinding diseases, acquired and even hereditary is to be seeked for inside the photoreceptor outer segment that would conceal a potential for cell death that is still to be recognized. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sex in a test tube: testing the benefits of in vitro recombination.
Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M
2016-10-19
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
The solar system/interstellar medium connection - Gas phase abundances
NASA Technical Reports Server (NTRS)
Lutz, Barry L.
1987-01-01
Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.
Ultrafast recombination dynamics in dye-sensitized SnO 2/TiO 2 core/shell films
Gish, Melissa K.; Lapides, Alexander M.; Brennaman, M. Kyle; ...
2016-12-02
In dye-sensitized photoelectrosynthesis cells (DSPECs), molecular chromophores and catalysts are integrated on a semiconductor surface to perform water oxidation or CO 2 reduction after a series of light-induced electron transfer events. Unfortunately, recombination of the charge separated state (CSS) is competitive with productive catalysis. To overcome this major obstacle, implementation of photoanodic core/shell films within these devices improve electrochemical behavior and slow recombination through the introduction of an energetic barrier between the semiconductor core and oxidized species on the surface. In this study, interfacial dynamics are investigated in SnO 2/TiO 2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([RuII(bpy)2(4,4'-(PO 3Hmore » 2) 2bpy)] 2+, RuP) using transient absorption methods. Electron injection from the chromophore into the TiO 2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived CSS depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO 2 core and must tunnel through the TiO 2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of DSPECs.« less
Recombination and Transfection Mapping of Cistron 5 of Bacteriophage Sp82g
Green, D. MacDonald; Urban, Margeret I.
1972-01-01
Recombination between transfecting SP82G DNA molecules has been studied in Bacillus subtilis. Recombinant progeny issuing from transfected cells show many of the features that characterize progeny production in multiplicity reactivated bacteriophage, such as: majority recombinant clones, non-reciprocity of recombinant clones and the frequent absence of input alleles. While transfection substantially lowers the linkage observed between markers in normal phage crosses, linkage is observed at small map distances in transfection either by plating transfected bacteria or the progeny phage. Maps constructed from transfection crosses are identical to those of normal phage crosses, except in magnitude.—Examination of the concentration response of two marker biparental crosses, and three marker triparental crosses using transfecting DNA leads to the conclusion that at all concentrations, transfective centers are saturated with respect to the number of molecules that can be taken up. Thus, the frequency of recombinant infective centers, or recombinant progeny is independent of concentration effects. PMID:17248556
Theoretical prediction of the impact of Auger recombination on charge collection from an ion track
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
1991-01-01
A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.
Boulila, Moncef
2010-06-01
To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funato, Mitsuru, E-mail: funato@kuee.kyoto-u.ac.jp; Banal, Ryan G.; Kawakami, Yoichi
2015-11-15
Screw dislocations in Al-rich AlGaN/AlN quantum wells cause growth spirals with an enhanced Ga incorporation, which create potential minima. Although screw dislocations and their surrounding potential minima suggest non-radiative recombination processes within growth spirals, in reality, screw dislocations are not major non-radiative sinks for carriers. Consequently, carriers localized within growth spirals recombine radiatively without being captured by non-radiative recombination centers, resulting in intense emissions from growth spirals.
NASA Astrophysics Data System (ADS)
Douguet, N.; Fonseca dos Santos, S.; Kokoouline, V.; Orel, A. E.
2015-01-01
We present results of a theoretical study on dissociative recombination of the HCNH+, HCO+ and N2H+ linear polyatomic ions at low energies using a simple theoretical model. In the present study, the indirect mechanism for recombination proceeds through the capture of the incoming electron in excited vibrational Rydberg states attached to the degenerate transverse modes of the linear ions. The strength of the non-adiabatic coupling responsible for dissociative recombination is determined directly from the near-threshold scattering matrix obtained numerically using the complex Kohn variational method. The final cross sections for the process are compared with available experimental data. It is demonstrated that at low collision energies, the major contribution to the dissociative recombination cross section is due to the indirect mechanism.
Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.
2012-01-01
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956
Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.
Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie
2012-06-21
The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.
Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots
2012-01-01
The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots. PMID:22759569
Evolution of meiotic recombination genes in maize and teosinte.
Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P
2017-01-25
Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, Shunfu; Xu, Yongbin; Ha, Nam-Chul, E-mail: hnc@pusan.ac.kr
2008-05-01
A periplasmic membrane-fusion protein MacA from Actinobacillus actinomycetemcomitans, an essential component of the multidrug efflux pump in Gram-negative bacteria, was crystallized. Periplasmic membrane-fusion proteins (MFPs) are an essential component of the multidrug efflux pump in Gram-negative bacteria. They play a crucial role in bridging the outer membrane porin TolC and two distinct types of inner membrane transporters. The MFP MacA bridges the inner membrane ABC-type multidrug transporter MacB and the outer membrane porin TolC. MacA from the pathogenic bacterium Actinobacillus actinomycetemcomitans was expressed in Escherichia coli B834 (DE3) and the recombinant protein was purified using Ni–NTA affinity, Q anion-exchange andmore » gel-filtration chromatography. The purified MacA protein was crystallized using the vapour-diffusion method. A MAD diffraction data set was collected to a resolution of 3.0 Å at 100 K. The crystal belongs to space group P622, with unit-cell parameters a = b = 109.2, c = 255.4 Å, α = β = 90, γ = 120°, and contains one molecule in the asymmetric unit.« less
Li, Peng; Bai, Juan; Li, Jun-xing; Zhang, Guo-long; Song, Yan-hua; Li, Yu-feng; Wang, Xian-wei; Jiang, Ping
2012-10-01
Haemophilus parasuis is the etiological agent of Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis in young pigs. But it is difficult to develop universal serological diagnostic tools and effective vaccines against this disease because of the serovar diversity of the isolates. In this study, enterobacterial repetitive intergenic consensus-polymerase chain reaction, were performed to investigate the gene profile of 111 isolates of H. parasuis from China. And a specific common gene of H. parasuis was cloned and identified as the outer-membrane protein (OMP) P2 gene. Sequencing results of OMP P2 genes of 22 isolates showed that they had high homology and could be divided into 2 genetic types. Moreover, the OMPP2 protein was expressed in Escherichia coli expressing system. And the purified recombinant protein provided partial protection against H. parasuis infection in mice. It suggested the OMP P2 was an immunogenic protein and had great potential to serve as a vaccine and diagnostic antigen. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, Miao; Cai, Ru-Jian; Song, Shuai; Jiang, Zhi-Yong; Li, Yan; Gou, Hong-Chao; Chu, Pin-Pin; Li, Chun-Ling; Qiu, Hua-Ji
2017-01-01
Glässer's disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926) identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC), rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ) in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease.
Azizi, Armaghan; Arora, Arinder; Markiv, Anatoliy; Lampe, David J.; Miller, Thomas A.
2012-01-01
Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules. PMID:22327580
Feodorova, Valentina A; Lyapina, Anna M; Khizhnyakova, Maria A; Zaitsev, Sergey S; Sayapina, Lidiya V; Arseneva, Tatiana E; Trukhachev, Alexey L; Lebedeva, Svetlana A; Telepnev, Maxim V; Ulianova, Onega V; Lyapina, Elena P; Ulyanov, Sergey S; Motin, Vladimir L
2018-06-01
To establish correlates of human immunity to the live plague vaccine (LPV), we analyzed parameters of cellular and antibody response to the plasminogen activator Pla of Y. pestis. This outer membrane protease is an essential virulence factor that is steadily expressed by Y. pestis. PBMCs and sera were obtained from a cohort of naïve (n = 17) and LPV-vaccinated (n = 34) donors. Anti-Pla antibodies of different classes and IgG subclasses were determined by ELISA and immunoblotting. The analysis of antibody response was complicated with a strong reactivity of Pla with normal human sera. The linear Pla B-cell epitopes were mapped using a library of 15-mer overlapping peptides. Twelve peptides that reacted specifically with sera of vaccinated donors were found together with a major cross-reacting peptide IPNISPDSFTVAAST located at the N-terminus. PBMCs were stimulated with recombinant Pla followed by proliferative analysis and cytokine profiling. The T-cell recall response was pronounced in vaccinees less than a year post-immunization, and became Th17-polarized over time after many rounds of vaccination. The Pla protein can serve as a biomarker of successful vaccination with LPV. The diagnostic use of Pla will require elimination of cross-reactive parts of the antigen.
Homologous Recombination—Experimental Systems, Analysis and Significance
Kuzminov, Andrei
2014-01-01
Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506
Choi, Hyun-Il; Kim, Moonjeong; Jeon, Jinseong; Han, Jin Kwan; Kim, Kwang-Sun
2017-08-26
Outer membrane vesicles (OMVs) derived from bacteria are promising candidates for subunit vaccines. Stresses that modulate the composition of outer membrane proteins (OMPs) are important for OMV synthesis. Small RNAs (sRNAs) expressed in response to stress regulate OMPs, although the mechanism underlying sRNA-mediated OMV biogenesis and its utility for developing vaccine platforms remains to be elucidated. Here, we characterized the role of a sRNA, MicA, which regulates OmpA, a major OMP involved in both production of OMVs and reactive immunity against Salmonella challenge. A Salmonella strain overexpressing MicA generated more OMVs than a control strain. In addition, OmpC was the major component of MicA-derived OMV proteins. MicA-derived OMVs induced Th1- and Th17-type immune responses in vitro and reduced Salmonella-mediated lethality in a mouse model. Thus, OmpA-regulatory sRNA-derived OMVs may facilitate production of Salmonella-protective vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.
Riquet, Franck B; Blanchard, Claire; Jegouic, Sophie; Balanant, Jean; Guillot, Sophie; Vibet, Marie-Anne; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis
2008-09-01
Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.
Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong
2015-09-09
Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.
The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen
Croll, Daniel; Lendenmann, Mark H.; Stewart, Ethan; McDonald, Bruce A.
2015-01-01
Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. PMID:26392286
Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?
NASA Astrophysics Data System (ADS)
Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.
2017-12-01
Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.
Controlled Release from Recombinant Polymers
Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza
2014-01-01
Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486
Influence of vaccine strains on the evolution of canine distemper virus.
da Fontoura Budaszewski, Renata; Streck, André Felipe; Nunes Weber, Matheus; Maboni Siqueira, Franciele; Muniz Guedes, Rafael Lucas; Wageck Canal, Cláudio
2016-07-01
Canine distemper virus (CDV) is a major dog pathogen belonging to the genus Morbillivirus of the family Paramyxoviridae. CDV causes disease and high mortality in dogs and wild carnivores. Although homologous recombination has been demonstrated in many members of Paramyxoviridae, these events have rarely been reported for CDV. To detect potential recombination events, the complete CDV genomes available in GenBank up to June 2015 were screened using distinct algorithms to detect genetic conversions and incongruent phylogenies. Eight putative recombinant viruses derived from different CDV genotypes and different hosts were detected. The breakpoints of the recombinant strains were primarily located on fusion and hemagglutinin glycoproteins. These results suggest that homologous recombination is a frequent phenomenon in morbillivirus populations under natural replication, and CDV vaccine strains might play an important role in shaping the evolution of this virus.
Bill, Roslyn M; von der Haar, Tobias
2015-06-01
Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.
1983-01-01
Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.
Electrophysiological and Genetic Analysis of Chemosensory Mechanisms in Spirochaeta Aurantia
1988-05-01
Ghiorse, and E. P. Greenberg. 1987. Isolation of the outer membrane and characterization of the major outer membrane protein from Spirochaeta... proteins which at least in part constitute the flagella. Three proteins in the 60-65 kdaltons range predominate in preparations consisting of HBBs...the filaments can be solubilized by acid treatment) and thus, these proteins have been assigned as HBB components. Six proteins in the 30-38 kdalton
Metagenomic Insights into the Fibrolytic Microbiome in Yak Rumen
Song, Lei; Liu, Di; Liu, Li; Chen, Furong; Wang, Min; Li, Jiabao; Zeng, Xiaowei; Dong, Zhiyang; Hu, Songnian; Li, Lingyan; Xu, Jian; Huang, Li; Dong, Xiuzhu
2012-01-01
The rumen hosts one of the most efficient microbial systems for degrading plant cell walls, yet the predominant cellulolytic proteins and fibrolytic mechanism(s) remain elusive. Here we investigated the cellulolytic microbiome of the yak rumen by using a combination of metagenome-based and bacterial artificial chromosome (BAC)-based functional screening approaches. Totally 223 fibrolytic BAC clones were pyrosequenced and 10,070 ORFs were identified. Among them 150 were annotated as the glycoside hydrolase (GH) genes for fibrolytic proteins, and the majority (69%) of them were clustered or linked with genes encoding related functions. Among the 35 fibrolytic contigs of >10 Kb in length, 25 were derived from Bacteroidetes and four from Firmicutes. Coverage analysis indicated that the fibrolytic genes on most Bacteroidetes-contigs were abundantly represented in the metagenomic sequences, and they were frequently linked with genes encoding SusC/SusD-type outer-membrane proteins. GH5, GH9, and GH10 cellulase/hemicellulase genes were predominant, but no GH48 exocellulase gene was found. Most (85%) of the cellulase and hemicellulase proteins possessed a signal peptide; only a few carried carbohydrate-binding modules, and no cellulosomal domains were detected. These findings suggest that the SucC/SucD-involving mechanism, instead of one based on cellulosomes or the free-enzyme system, serves a major role in lignocellulose degradation in yak rumen. Genes encoding an endoglucanase of a novel GH5 subfamily occurred frequently in the metagenome, and the recombinant proteins encoded by the genes displayed moderate Avicelase in addition to endoglucanase activities, suggesting their important contribution to lignocellulose degradation in the exocellulase-scarce rumen. PMID:22808161
Cossu, Rosa Maria; Casola, Claudio; Giacomello, Stefania; Vidalis, Amaryllis
2017-01-01
Abstract The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content. PMID:29228262
mtDNA recombination in a natural population.
Saville, B J; Kohli, Y; Anderson, J B
1998-02-03
Variation in mtDNA has been used extensively to draw inferences in phylogenetics and population biology. In the majority of eukaryotes investigated, transmission of mtDNA is uniparental and clonal, with genotypic diversity arising from mutation alone. In other eukaryotes, the transmission of mtDNA is biparental or primarily uniparental with the possibility of "leakage" from the minority parent. In these cases, heteroplasmy carries the potential for recombination between mtDNAs of different descent. In fungi, such mtDNA recombination has long been documented but only in laboratory experiments and only under conditions in which heteroplasmy is ensured. Despite this experimental evidence, mtDNA recombination has not been to our knowledge documented in a natural population. Because evidence from natural populations is prerequisite to understanding the evolutionary impact of mtDNA recombination, we investigated the possibility of mtDNA recombination in an organism with the demonstrated potential for heteroplasmy in laboratory matings. Using nucleotide sequence data, we report here that the genotypic structure of mtDNA in a natural population of the basidiomycete fungus Armillaria gallica is inconsistent with purely clonal mtDNA evolution and is fully consistent with mtDNA recombination.
Livnat, Tami; Shenkman, Boris; Spectre, Galia; Tamarin, Ilia; Dardik, Rima; Israeli, Amnon; Rivkind, Avraham; Shabtai, Moshe; Marinowitz, Uri; Salomon, Ophira
2012-07-01
Factor VII deficiency is the most common among the rare autosomal recessive coagulation disorders worldwide. In factor VII deficient patients, the severity and clinical manifestations cannot be reliably determined by factor VII levels. Severe bleeding tends to occur in individuals with factor VII activity levels of 2% or less of normal. Patients with 2-10% factor VII vary between asymptomatic to severe life threatening haemorrhages behaviour. Recombinant factor VIIa (rFVIIa) is the most common replacement therapy for congenital factor VII deficiency. However, unlike haemophilia patients for whom treatment protocols are straight forward, in asymptomatic factor VII deficiency patients it is still debatable. In this study, we demonstrate that a single and very low dose of recombinant factor VIIa enabled asymptomatic patients with factor VII deficiency to go through major surgery safely. This suggestion was also supported by thrombin generation, as well as by thromboelastometry.
Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus
Thor, Sharmi W.; Hilt, Deborah A.; Kissinger, Jessica C.; Paterson, Andrew H.; Jackwood, Mark W.
2011-01-01
Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV) isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus. PMID:21994806
The BCL11A Transcription Factor Directly Activates RAG Gene Expression and V(D)J Recombination
Lee, Baeck-seung; Dekker, Joseph D.; Lee, Bum-kyu; Iyer, Vishwanath R.; Sleckman, Barry P.; Shaffer, Arthur L.; Ippolito, Gregory C.
2013-01-01
Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11alox/lox deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination. PMID:23438597
Haddad-Boubaker, S; Ould-Mohamed-Abdallah, M V; Ben-Yahia, A; Triki, H
2010-12-01
Recombination is one of the major mechanisms of evolution in poliovirus. In this work, recombination was assessed in children during vaccination with OPV and among circulating vaccine strains isolated in Tunisia during the last 15 years in order to identify a possible role of recombination in the response to the vaccine or the acquisition of an increased transmissibility. This study included 250 poliovirus isolates: 137 vaccine isolates, excreted by children during primary vaccination with OPV and 113 isolates obtained from acute flaccid paralytic (AFP) cases and healthy contacts. Recombination was first assessed using a double PCR-RFLP, and sequencing. Nineteen per cent of recombinant strains were identified: 20% of strains excreted by vaccinees among 18% of circulating strains. The proportion of recombinant in isolates of serotype1 was very low in the two groups while the proportions of recombinants in serotypes 2 and 3 were different. In vaccinees, the frequency of recombinants in serotype3 decreased during the course of vaccination: 54% after the first dose, 32% after the second and 14% after the third dose. These results suggest that recombination enhances the ability of serotype3 vaccine strains to induce an immune response. Apart from recent vaccination, it may contribute to a more effective transmissibility of vaccine strains among human population. Copyright © 2009 Elsevier Masson SAS. All rights reserved.
Resurrecting Inactive Antimicrobial Peptides from the Lipopolysaccharide Trap
Mohanram, Harini
2014-01-01
Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, “trapped” by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding β-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action. PMID:24419338
NASA Astrophysics Data System (ADS)
Taha, Murtada A.; Singh, Shree R.; Dennis, Vida A.
2012-08-01
Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml-1 maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (˜200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 μg ml -1 to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (˜98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml -1 of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml-1) and IL-12p40 (674 pg ml-1) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.
Rueppell, Olav; Kuster, Ryan; Miller, Katelyn; Fouks, Bertrand; Rubio Correa, Sara; Collazo, Juan; Phaincharoen, Mananya; Tingek, Salim; Koeniger, Nikolaus
2016-12-01
Western honey bees (Apis mellifera) far exceed the commonly observed 1–2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species.
Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.
2016-01-01
In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303
Radiative and Auger recombination of degenerate carriers in InN
NASA Astrophysics Data System (ADS)
McAllister, Andrew; Bayerl, Dylan; Kioupakis, Emmanouil
Group-III nitrides find applications in many fields - energy conversion, sensors, and solid-state lighting. The band gaps of InN, GaN and AlN alloys span the infrared to ultraviolet spectral range. However, nitride optoelectronic devices suffer from a drop in efficiency as carrier density increases. A major component of this decrease is Auger recombination, but its influence is not fully understood, particularly for degenerate carriers. For nondegenerate carriers the radiative rate scales as the carrier density squared, while the Auger rate scales as the density cubed. However, it is unclear how these power laws decrease as carriers become degenerate. Using first-principles calculations we studied the dependence of the radiative and Auger recombination rates on carrier density in InN. We found a more complex dependence on the Auger rate than expected. The power law of the Auger rate changes at different densities depending on the type of Auger process involved and the type of carriers that have become degenerate. In contrast, the power law of the radiative rate changes when either carrier type becomes degenerate. This creates problems in designing devices, as Auger remains a major contributor to carrier recombination at densities for which radiative recombination is suppressed by phase-space filling. This work was supported by NSF (GRFP DGE 1256260 and CAREER DMR-1254314). Computational resources provided by the DOE NERSC facility (DE-AC02-05CH11231).
Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W.A.
2012-01-01
The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp− parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines. PMID:23137753
Hartley, Carol A.; Vaz, Paola K.; Diaz-Méndez, Andrés; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M.
2017-01-01
ABSTRACT Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease. PMID:28939604
Low Surface Recombination Velocity in Solution-Grown CH 3NH 3PbBr 3 Perovskite Single Crystal
Yang, Ye; Yan, Yong; Yang, Mengjin; ...
2015-08-06
Organic-inorganic hybrid perovskites are attracting intense research effort due to their impressive performance in solar cells. While the carrier transport parameters such as mobility and bulk carrier lifetime shows sufficient characteristics, the surface recombination, which can have major impact on the solar cell performance, has not been studied. Here we measure surface recombination dynamics in CH 3NH 3PbBr 3 perovskite single crystals using broadband transient reflectance spectroscopy. The surface recombination velocity is found to be 3.4±0.1 10 3 cm s -1, B2–3 orders of magnitude lower than that in many important unpassivated semiconductors employed in solar cells. Our result suggestsmore » that the planar grain size for the perovskite thin films should be larger thanB30 mm to avoid the influence of surface recombination on the effective carrier lifetime.« less
A reanalysis of the indirect evidence for recombination in human mitochondrial DNA.
Piganeau, G; Eyre-Walker, A
2004-04-01
In an attempt to resolve the controversy about whether recombination occurs in human mtDNA, we have analysed three recently published data sets of complete mtDNA sequences along with 10 RFLP data sets. We have analysed the relationship between linkage disequilibrium (LD) and distance between sites under a variety of conditions using two measures of LD, r2 and /D'/. We find that there is a negative correlation between r2 and distance in the majority of data sets, but no overall trend for /D'/. Five out of six mtDNA sequence data sets show an excess of homoplasy, but this could be due to either recombination or hypervariable sites. Two additional recombination detection methods used, Geneconv and Maximum Chi-Square, showed nonsignificant results. The overall significance of these findings is hard to quantify because of nonindependence, but our results suggest a lack of evidence for recombination in human mtDNA.
Apitz, Janina; Weihe, Andreas; Pohlheim, Frank; Börner, Thomas
2013-02-01
While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.
Lewis, L A
1982-01-01
The temporal frequencies of different stages of prophase I were determined cytologically in Sordaria brevicollis (Olive and Fantini) as the basis for ascertaining the degree of synchrony in meiosis in this ascomycete. Croziers, karyogamy-zygotene and pachytene asci were shown to be in significant majorities at three distinct periods of the meiotic cycle. The response of recombination frequency to ionizing radiation was examined for the entire meiotic cycle. Three radiosensitive periods were determined. This response, which correlated temporally with each of the three peaks in ascal frequency, is interpreted as showing that the meiotic cycle of this organism is divided into periods of recombination commitment (radiation reduced frequencies) during the pre-meiotic S phase and recombination consummation (radiation induced frequencies) during zygotene and pachytene. The results are discussed in the context of the time at which recombination is consummated in eukaryotes such as yeast and Drosophila.
Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S
2017-03-01
The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the glycosaminoglycan content was higher in both the inner and outer mECM groups compared with the control group. These results showed that the inner mECM enhances the fibrocartilaginous differentiation of hBMSCs, while the outer mECM promotes a more fibroblastic phenotype. Our findings support the feasibility of fabricating bioactive scaffolds using region-specific mECM preparations for meniscus tissue engineering. This is the first report to demonstrate the feasibility of applying region-specific mECMs for the engineering of meniscus implants capable of reproducing the biphasic, anatomic, and biochemical characteristics of the meniscus, features that should contribute to the feasibility of their clinical application.
Garlipp, Mary Alice; Gonzalez-Fernandez, Federico
2013-08-01
The close packing of vertebrate photoreceptors presents a challenge to the exchange of molecules between the outer segments, retinal pigmented epithelium (RPE), and Müller glia. An extracellular hyaluronan scaffold separates these cells while soluble interphotoreceptor matrix (IPM) proteins traffic visual cycle retinoids, fatty acids, and other molecules between them. In the IPM, retinoids and fatty acids are carried by interphotoreceptor retinoid-binding protein (IRBP). The fact that much of the retina's IRBP can be extracted by saline wash has led to the notion that IRBP does not bind to the retina, but freely distributes itself within the subretinal space. In this study, we challenge this idea by asking if there are specialized IPM domains that bind IRBP, perhaps facilitating its ability to target delivery/uptake of its ligands. Xenopus is an ideal animal model to study the role of the IPM in RPE-photoreceptor interactions. Here, we took advantage of the large size of its photoreceptors, ability to detach the retina in light, sustainability of the retina in short term organ culture, and the availability of recombinant full-length Xenopus IRBP and antisera directed against Xenopus IRBP. We compared the distribution of wash resistant native IRBP, and that of IRBP-Alexa 647 binding in Xenopus retina. IRBP and cone opsin were localized using anti-Xenopus IRBP serum, and monoclonal COS-1 respectively. Cone matrix sheath proteoglycans were localized with wheat germ agglutinin (WGA), and diffuse IPM proteoglycans with peanut agglutinin (PNA). Wholemounts and frozen sections were compared by immunofluorescence from retinas detached under Ringer's followed by additional washes, or detached directly under 4% paraformaldehyde without Ringer's wash. Undetached Lowicryl embedded retinas were subjected to IRBP immunogold electron microscopy (EM). Immunogold labeled a diffuse network of filamentous structures, and a separate distinct flocculant material directly coating the outer segments, filling the rod periciliary ridge, and associated with Müller microvilli. By immunofluorescence, Ringer's wash removed most of the diffuse IRBP, but not that coating the outer segments. IRBP-Alexa 647 bound to the cone outer segments and Müller villi region, and comparably less to rod outer segments. Co-incubation with unlabeled IRBP markedly reduced this binding; ovalbumin-Alexa 647 and Alexa 647 dye alone showed no binding. Our data suggest that the pericellular matrix of the cone outer segments and Müller microvilli provide specialized domains that facilitate IRBP's functions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Law and politics in outer space: A bibliography.
NASA Technical Reports Server (NTRS)
White, I. L.; Wilson, C. E.; Vosburgh, J. A.
1972-01-01
The materials are categorized by specific topics and by types of materials. The sources are books, articles, reports, United Nations materials, U.S. Government documents, etc. Books are listed by geographical areas, and articles are divided into what are considered to be the major space topics. Book and article sections are also divided into English and foreign language entries. A bibliographical essay introduces the literature to those unacquainted with law and politics of outer space.
The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.
Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A
2015-11-01
Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. Copyright © 2015 by the Genetics Society of America.
USDA-ARS?s Scientific Manuscript database
Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines (e.g. expressing AI genes) are gaining us...
The outer magnetosphere. [composition and comparison with earth
NASA Technical Reports Server (NTRS)
Schardt, A. W.; Behannon, K. W.; Lepping, R. P.; Carbary, J. F.; Eviatar, A.; Siscoe, G. L.
1984-01-01
Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.
Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin
Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwasmore » prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.« less
Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il
2017-01-01
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.
Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi
2012-01-01
TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.
Raghavan, Sathees C.; Hsieh, Chih-Lin; Lieber, Michael R.
2005-01-01
The t(14;18) chromosomal translocation is the most common translocation in human cancer, and it occurs in all follicular lymphomas. The 150-bp bcl-2 major breakpoint region (Mbr) on chromosome 18 is a fragile site, because it adopts a non-B DNA conformation that can be cleaved by the RAG complex. The non-B DNA structure and the chromosomal translocation can be recapitulated on intracellular human minichromosomes where immunoglobulin 12- and 23-signals are positioned downstream of the bcl-2 Mbr. Here we show that either of the two coding ends in these V(D)J recombination reactions can recombine with either of the two broken ends of the bcl-2 Mbr but that neither signal end can recombine with the Mbr. Moreover, we show that the rejoining is fully dependent on DNA ligase IV, indicating that the rejoining phase relies on the nonhomologous DNA end-joining pathway. These results permit us to formulate a complete model for the order and types of cleavage and rejoining events in the t(14;18) translocation. PMID:16024785
Krainer, Florian W; Glieder, Anton
2015-02-01
Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge-the efficient recombinant production of horseradish peroxidase enzymes.
NASA Astrophysics Data System (ADS)
Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.
2018-07-01
Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the coastal waters, and therefore enhance the likelihood of eutrophication in this environment.
LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.
Guo, Jing; Chen, Hao; Yang, Peng; Lee, Yew Ti; Wu, Min; Przytycka, Teresa M; Kwoh, Chee Keong; Zheng, Jie
2018-04-20
Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. DATABASE URL: http://histone.scse.ntu.edu.sg/LDSplitDB.
Kawakami, Takeshi; Mugal, Carina F; Suh, Alexander; Nater, Alexander; Burri, Reto; Smeds, Linnéa; Ellegren, Hans
2017-08-01
Recombination rate is heterogeneous across the genome of various species and so are genetic diversity and differentiation as a consequence of linked selection. However, we still lack a clear picture of the underlying mechanisms for regulating recombination. Here we estimated fine-scale population recombination rate based on the patterns of linkage disequilibrium across the genomes of multiple populations of two closely related flycatcher species (Ficedula albicollis and F. hypoleuca). This revealed an overall conservation of the recombination landscape between these species at the scale of 200 kb, but we also identified differences in the local rate of recombination despite their recent divergence (<1 million years). Genetic diversity and differentiation were associated with recombination rate in a lineage-specific manner, indicating differences in the extent of linked selection between species. We detected 400-3,085 recombination hotspots per population. Location of hotspots was conserved between species, but the intensity of hotspot activity varied between species. Recombination hotspots were primarily associated with CpG islands (CGIs), regardless of whether CGIs were at promoter regions or away from genes. Recombination hotspots were also associated with specific transposable elements (TEs), but this association appears indirect due to shared preferences of the transposition machinery and the recombination machinery for accessible open chromatin regions. Our results suggest that CGIs are a major determinant of the localization of recombination hotspots, and we propose that both the distribution of TEs and fine-scale variation in recombination rate may be associated with the evolution of the epigenetic landscape. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations
Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R.; Servin, Bertrand
2017-01-01
Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. PMID:28978774
Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.
Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand
2017-10-01
Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society of America.
Assessing the complex architecture of polygenic traits in diverged yeast populations.
Cubillos, Francisco A; Billi, Eleonora; Zörgö, Enikö; Parts, Leopold; Fargier, Patrick; Omholt, Stig; Blomberg, Anders; Warringer, Jonas; Louis, Edward J; Liti, Gianni
2011-04-01
Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. © 2011 Blackwell Publishing Ltd.
Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆
Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.
2014-01-01
Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190
Li, Miao; Cai, Ru-Jian; Song, Shuai; Jiang, Zhi-Yong; Li, Yan; Gou, Hong-Chao; Chu, Pin-Pin; Li, Chun-Ling; Qiu, Hua-Ji
2017-01-01
Glässer’s disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926) identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC), rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ) in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease. PMID:28448603
Feldt, Sandra M; Gibson, Elizabeth A; Gabrielsson, Erik; Sun, Licheng; Boschloo, Gerrit; Hagfeldt, Anders
2010-11-24
Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.
Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.
2014-01-01
Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306
Dreissig, Steven; Fuchs, Jörg; Himmelbach, Axel; Mascher, Martin; Houben, Andreas
2017-01-01
Meiotic recombination is a fundamental mechanism to generate novel allelic combinations which can be harnessed by breeders to achieve crop improvement. The recombination landscape of many crop species, including the major crop barley, is characterized by a dearth of recombination in 65% of the genome. In addition, segregation distortion caused by selection on genetically linked loci is a frequent and undesirable phenomenon in double haploid populations which hampers genetic mapping and breeding. Here, we present an approach to directly investigate recombination at the DNA sequence level by combining flow-sorting of haploid pollen nuclei of barley with single-cell genome sequencing. We confirm the skewed distribution of recombination events toward distal chromosomal regions at megabase resolution and show that segregation distortion is almost absent if directly measured in pollen. Furthermore, we show a bimodal distribution of inter-crossover distances, which supports the existence of two classes of crossovers which are sensitive or less sensitive to physical interference. We conclude that single pollen nuclei sequencing is an approach capable of revealing recombination patterns in the absence of segregation distortion. PMID:29018459
Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Aquino, Adriano; Cervantes, Cesar; Carrilho, Emanuel
2016-09-07
We present here a critical review covering conventional analytical tools of recombinant drug analysis and discuss their evolution towards miniaturized systems foreseeing a possible unique recombinant drug-on-a-chip device. Recombinant protein drugs and/or pro-drug analysis require sensitive and reproducible analytical techniques for quality control to ensure safety and efficacy of drugs according to regulatory agencies. The versatility of miniaturized systems combined with their low-cost could become a major trend in recombinant drugs and bioprocess analysis. Miniaturized systems are capable of performing conventional analytical and proteomic tasks, allowing for interfaces with other powerful techniques, such as mass spectrometry. Microdevices can be applied during the different stages of recombinant drug processing, such as gene isolation, DNA amplification, cell culture, protein expression, protein separation, and analysis. In addition, organs-on-chips have appeared as a viable alternative to testing biodrug pharmacokinetics and pharmacodynamics, demonstrating the capabilities of the miniaturized systems. The integration of individual established microfluidic operations and analytical tools in a single device is a challenge to be overcome to achieve a unique recombinant drug-on-a-chip device. Copyright © 2016 Elsevier B.V. All rights reserved.
Propagation of Interplanetary Disturbances in the Outer Heliosphere
NASA Technical Reports Server (NTRS)
Wang, Chi
2005-01-01
Contents include the following: 1. We have developed a one-dimensional, spherically symmetric, multi-fluid MHD model that includes solar wind protons and electrons, pickup ions, and interstellar neutral hydrogen. This model advances the existing solar wind models for the outer heliosphere in two important ways: one is that it distinguishes solar wind protons from pickup ions, and the other is that it allows for energy transfer from pickup ions to the solar wind protons. Model results compare favorably with the Voyager 2 observations. 2. 2. Solar wind slowdown and interstellar neutral density. The solar wind in the outer heliosphere is fundamentally different from that in the inner heliosphere since the effects of interstellar neutrals become significant. 3. ICME propagation from the inner to outer heliosphere. Large coronal mass ejections (CMEs) have major effects on the structure of the solar wind and the heliosphere. The plasma and magnetic field can be compressed ahead of interplanetary CMEs. 4. During the current solar cycle (Cycle 23), several major CMEs associated with solar flares produced large transient shocks which were observed by widely-separated spacecraft such as Wind at Earth and Voyager 2 beyond 60 AU. Using data from these spacecraft, we use the multi-fluid model to investigate shock propagation and interaction in the heliosphere. Specifically, we studied the Bastille Day 2000, April 2001 and Halloween 2003 events. 5. Statistical properties of the solar wind in the outer heliosphere. In a collaboration with L.F. Burlaga of GSFC, it is shown that the basic statistical properties of the solar wind in the outer heliosphere can be well produced by our model. We studied the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, using our numerical model with observations made at 1 AU during 1995 as input. 6. Radial heliospheric magnetic field events. The heliospheric magnetic field (HMF) direction, on average, conforms well to the Parker spiral.
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann
2017-01-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950
Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L
2018-01-01
Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720
Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary
2011-01-01
Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world. PMID:21199707
USDA-ARS?s Scientific Manuscript database
This study tested the hypothesis that removal of maltose binding protein from recombinant antigen used for plate coating would improve the specificity of Anaplasma antibody competitive ELISA. Three hundred and eight sera with significant MBP antibody binding (=30%I) in Anaplasma negative herds was 1...
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation.
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation. PMID:24251105
Zhu, Yongtao; Kwiatkowski, Kurt J; Yang, Tengteng; Kharade, Sampada S; Bahr, Constance M; Koropatkin, Nicole M; Liu, Weifeng; McBride, Mark J
2015-08-01
Cytophaga hutchinsonii, a member of the phylum Bacteroidetes, employs a novel collection of cell-associated proteins to digest crystalline cellulose. Other Bacteroidetes rely on cell surface proteins related to the starch utilization system (Sus) proteins SusC and SusD to bind oligosaccharides and import them across the outer membrane for further digestion. These bacteria typically produce dozens of SusC-like porins and SusD-like oligosaccharide-binding proteins to facilitate utilization of diverse polysaccharides. C. hutchinsonii specializes in cellulose digestion and its genome has only two susC-like genes and two susD-like genes. Single and multiple gene deletions were constructed to determine if the susC-like and susD-like genes have roles in cellulose utilization. A mutant lacking all susC-like and all susD-like genes digested cellulose and grew on cellulose as well as wild-type cells. Further, recombinantly expressed SusD-like proteins CHU_0547 and CHU_0554 failed to bind cellulose or β-glucan hemicellulosic polysaccharides. The results suggest that the Bacteroidetes Sus paradigm for polysaccharide utilization may not apply to the cellulolytic bacterium C. hutchinsonii.
Siroy, Axel; Molle, Virginie; Lemaître-Guillier, Christelle; Vallenet, David; Pestel-Caron, Martine; Cozzone, Alain J.; Jouenne, Thierry; Dé, Emmanuelle
2005-01-01
It has been recently shown that resistance to both imipenem and meropenem in multidrug-resistant clinical strains of Acinetobacter baumannii is associated with the loss of a heat-modifiable 25/29-kDa outer membrane protein, called CarO. This study aimed to investigate the channel-forming properties of CarO. Mass spectrometry analyses of this protein band detected another 25-kDa protein (called Omp25), together with CarO. Both proteins presented similar physicochemical parameters (Mw and pI). We overproduced and purified the two polypeptides as His-tagged recombinant proteins. Circular dichroism analyses demonstrated that the secondary structure of these proteins was mainly a β-strand conformation with spectra typical of porins. We studied the channel-forming properties of proteins by reconstitution into artificial lipid bilayers. In these conditions, CarO induced ion channels with a conductance value of 110 pS in 1 M KCl, whereas the Omp25 protein did not form any channels, despite its suggested porin function. The pores formed by CarO showed a slight cationic selectivity and no voltage closure. No specific imipenem binding site was found in CarO, and this protein would rather form unspecific monomeric channels. PMID:16304148
Epistasis and the selective advantage of sex and recombination
NASA Astrophysics Data System (ADS)
de Oliveira, Viviane M.; da Silva, Juliana K.; Campos, Paulo R. A.
2008-09-01
The understanding of the central mechanisms favoring sex and recombination in real populations is one of the fundamental issues in evolutionary biology. Based on a previous stochastic formulation for the study of sex, here we aim to investigate the conditions under which epistasis favors the fixation of the sexual mode of reproduction in a given population. In addition, we try to identify the evolutionary forces which contribute to this process. One considers a finite population model which assumes the existence of a recombination modifier allele that can activate the recombination mechanism. We have found that sex is very little favored in a scenario of antagonistic epistasis, and this advantage only occurs in a narrow range of values of the selection coefficient sd . On the other hand, synergistic epistasis favors recombination in a very broad domain. However, the major mechanism contributing to the spreading of the modifier allele depends on the range of values of sd . At large sd , background selection favors recombination since it increases the efficacy of selection, while at low sd Muller’s ratchet is the leading mechanism.
The evolutionary turnover of recombination hot spots contributes to speciation in mice.
Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R Daniel; Petukhova, Galina V
2016-02-01
Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. Published by Cold Spring Harbor Laboratory Press.
The evolutionary turnover of recombination hot spots contributes to speciation in mice
Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R. Daniel; Petukhova, Galina V.
2016-01-01
Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. PMID:26833728
Lee, Baeck-Seung; Lee, Bum-Kyu; Iyer, Vishwanath R.; Sleckman, Barry P.; Shaffer, Arthur L.; Ippolito, Gregory C.
2017-01-01
ABSTRACT Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the RAG1 promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells. We employed BCL11A overexpression with recombination substrates to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination. PMID:29038163
Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins.
Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E
2015-03-01
Campylobacter jejuni is a Gram-negative spiral rod bacterium and is the leading but underreported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated in colonization and adhesion to the mucosal surface of chicken gastrointestinal tracts. Therefore, flagellar proteins would be the excellent targets for further investigation. In this report, we used the recombinant technology to generate a battery of C. jejuni flagellar proteins, which were purified by His tag affinity chromatography and determined antigenic profiles of these recombinant flagellar proteins using sera from chickens older than 6 weeks of age. The immunoblot results demonstrate that each chicken serum reacted to various numbers of recombinant flagellar proteins. Among these recombinant proteins, chicken sera reacted predominantly to the FlgE1, FlgK, FlhF, FliG and FliY proteins. These antibody screening results provide a rationale for further evaluation of these recombinant flagellar proteins as potential vaccines for chickens to improve food safety as well as investigation of host immune response to C. jejuni.
SequenceLDhot: detecting recombination hotspots.
Fearnhead, Paul
2006-12-15
There is much local variation in recombination rates across the human genome--with the majority of recombination occurring in recombination hotspots--short regions of around approximately 2 kb in length that have much higher recombination rates than neighbouring regions. Knowledge of this local variation is important, e.g. in the design and analysis of association studies for disease genes. Population genetic data, such as that generated by the HapMap project, can be used to infer the location of these hotspots. We present a new, efficient and powerful method for detecting recombination hotspots from population data. We compare our method with four current methods for detecting hotspots. It is orders of magnitude quicker, and has greater power, than two related approaches. It appears to be more powerful than HotspotFisher, though less accurate at inferring the precise positions of the hotspot. It was also more powerful than LDhot in some situations: particularly for weaker hotspots (10-40 times the background rate) when SNP density is lower (< 1/kb). Program, data sets, and full details of results are available at: http://www.maths.lancs.ac.uk/~fearnhea/Hotspot.
Daniel, C; Repa, A; Wild, C; Pollak, A; Pot, B; Breiteneder, H; Wiedermann, U; Mercenier, A
2006-07-01
Probiotic lactic acid bacteria (LAB) are able to modulate the host immune system and clinical trials have demonstrated that specific strains have the capacity to reduce allergic symptoms. Therefore, we aimed to evaluate the potential of recombinant LAB producing the major birch pollen allergen Bet v 1 for mucosal vaccination against birch pollen allergy. Recombinant Bet v 1-producing Lactobacillus plantarum and Lactococcus lactis strains were constructed. Their immunogenicity was compared with purified Bet v 1 by subcutaneous immunization of mice. Intranasal application of the live recombinant strains was performed to test their immunomodulatory potency in a mouse model of birch pollen allergy. Bet v 1 produced by the LAB was recognized by monoclonal anti-Bet v 1 and IgE antibodies from birch pollen-allergic patients. Systemic immunization with the recombinant strains induced significantly lower IgG1/IgG2a ratios compared with purified Bet v 1. Intranasal pretreatment led to reduced allergen-specific IgE vs enhanced IgG2a levels and reduced interleukin (IL)-5 production of splenocytes in vitro, indicating a shift towards non-allergic T-helper-1 (Th1) responses. Airway inflammation, i.e. eosinophils and IL-5 in lung lavages, was reduced using either Bet v 1-producing or control strains. Allergen-specific secretory IgA responses were enhanced in lungs and intestines after pretreatment with only the Bet v 1-producing strains. Mucosal vaccination with live recombinant LAB, leading to a shift towards non-allergic immune responses along with enhanced allergen-specific mucosal IgA levels offers a promising approach to prevent systemic and local allergic immune responses.
Guiraldelli, Michel F.; Eyster, Craig; Wilkerson, Joseph L.; Dresser, Michael E.; Pezza, Roberto J.
2013-01-01
Faithful chromosome segregation during meiosis requires that homologous chromosomes associate and recombine. Chiasmata, the cytological manifestation of recombination, provide the physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Formation of most crossover (CO) events requires the assistance of a group of proteins collectively known as ZMM. HFM1/Mer3 is in this group of proteins and is required for normal progression of homologous recombination and proper synapsis between homologous chromosomes in a number of model organisms. Our work is the first study in mammals showing the in vivo function of mouse HFM1. Cytological observations suggest that initial steps of recombination are largely normal in a majority of Hfm1−/− spermatocytes. Intermediate and late stages of recombination appear aberrant, as chromosomal localization of MSH4 is altered and formation of MLH1foci is drastically reduced. In agreement, chiasma formation is reduced, and cells arrest with subsequent apoptosis at diakinesis. Our results indicate that deletion of Hfm1 leads to the elimination of a major fraction but not all COs. Formation of chromosome axial elements and homologous pairing is apparently normal, and Hfm1−/− spermatocytes progress to the end of prophase I without apparent developmental delay or apoptosis. However, synapsis is altered with components of the central region of the synaptonemal complex frequently failing to extend the full length of the chromosome axes. We propose that initial steps of recombination are sufficient to support homology recognition, pairing, and initial chromosome synapsis and that HFM1 is required to form normal numbers of COs and to complete synapsis. PMID:23555294
Grönlund, Hans; Bergman, Tomas; Sandström, Kristofer; Alvelius, Gunvor; Reininger, Renate; Verdino, Petra; Hauswirth, Alexander; Liderot, Karin; Valent, Peter; Spitzauer, Susanne; Keller, Walter; Valenta, Rudolf; van Hage-Hamsten, Marianne
2003-10-10
Dander from the domestic cat (Felis domesticus) is one of the most common causes of IgE-mediated allergy. Attempts to produce tetrameric folded major allergen Fel d 1 by recombinant methods with structural features similar to the natural allergen have been only partially successful. In this study, a recombinant folded Fel d 1 with molecular and biological properties similar to the natural counterpart was produced. A synthetic gene coding for direct fusion of the Fel d 1 chain 2 N-terminally to chain 1 was constructed by overlapping oligonucleotides in PCR. Escherichia coli expression resulted in a non-covalently associated homodimer with an apparent molecular mass of 30 kDa defined by size exclusion chromatography. Furthermore, each 19,177-Da subunit displayed a disulfide pattern identical to that found in the natural Fel d 1, i.e. Cys3(1) Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), as determined by electrospray mass spectrometry after tryptic digestion. Circular dichroism analysis showed identical folds of natural and recombinant Fel d 1. Furthermore, recombinant Fel d l reacted specifically with serum IgE, inducing expression of CD203c on basophils and lymphoproliferative responses in cat-allergic patients. The results show that the overall fold and immunological properties of the recombinant Fel d 1 are very similar to those of natural Fel d 1. Moreover, the recombinant Fel d 1 construct provides a tool for defining the three-dimensional structure of Fel d 1 and represents a reagent for diagnosis and allergen-specific immunotherapy of cat allergy.
Loncoman, Carlos A; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Diaz-Méndez, Andrés; Browning, Glenn F; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M
2017-12-01
Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1 ) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease. Copyright © 2017 American Society for Microbiology.
Sunderasan, E; Bahari, A; Arif, S A M; Zainal, Z; Hamilton, R G; Yeang, H Y
2005-11-01
Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information. We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding. The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients. The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue. The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.
Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun
2015-12-29
In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C. glutamicum, emphasizing the importance of developing IS element free host strains.
Tripathi, Prabhanshu; Nair, Smitha; Singh, B P; Arora, Naveen
2011-03-01
Serine protease from numerous sources have been identified and characterized as major allergens. The present study aimed to clone, express and characterize a serine protease from Curvularia lunata. cDNA library screening identified partial protease clones. A clone showed significant homology to subtilisin like serine proteases from Aspergillus and Penicillium species. Full length sequence was generated by RACE PCR, subcloned in pET vector, protein expressed in Escherichia coli and purified from inclusion bodies yielding 0.5 mg/L of culture. Bioinformatic analysis identified serine protease motifs of subtilase family, catalytic triad and N-glycosylation sites on the primary sequence. The protein resolved at 54-kDa on SDS-PAGE and was recognized as a major allergen on immunoblot with 13/16 C. lunata sensitive patients' sera in ELISA and immunoblot. Recombinant protein reacted with rabbit polyclonal antibodies against alkaline serine proteases from C. lunata. Recombinant protein required 50-56 ng of same protein for 50% inhibition of IgE binding in competitive ELISA. In addition, 13 of 16 patients' samples showed significant basophil histamine release upon stimulation with purified recombinant protein. In conclusion, a 54 kDa major allergen of C. lunata was cloned, expressed, characterized and showed biological activity. It has potential to be used in molecule based approach for allergy diagnosis and therapy. Copyright © 2010 Elsevier GmbH. All rights reserved.
Kim, Hak; Kim, Kisoon; Kim, Dae-Won; Jung, Hee-Dong; Min Cheong, Hyang; Kim, Ki Hwan; Soo Kim, Dong; Kim, You-Jin
2013-01-01
Human rhinoviruses (HRVs), in the Enterovirus genus within the family Picornaviridae, are a highly prevalent cause of acute respiratory infection (ARI). Enteroviruses are genetically highly variable, and recombination between serotypes is known to be a major contribution to their diversity. Recently it was reported that recombination events in HRVs cause the diversity of HRV-C. This study analyzed parts of the viral genes spanning the 5′ non- coding region (NCR) through to the viral protein (VP) encoding sequences of 105 HRV field isolates from 51 outpatient cases of Acute Respiratory Infectious Network (ARINET) and 54 inpatient cases of severe lower respiratory infection (SLRI) surveillance, in order to identify recombination in field samples. When analyzing parts of the 5′NCR and VP4/VP2 encoding sequences, we found intra- and interspecies recombinants in field strains of HRV-A and -C. Nineteen cases of recombination events (18.1%) were found among 105 field strains. For HRV-A, there were five cases (4.8%) of intraspecies recombination events and three cases (2.8%) of interspecies recombination events. For HRV-C, there were four cases (3.8%) of intraspecies recombination events and seven cases (6.7%) of interspecies recombination events. Recombination events were significantly more frequently observed in the ARINET samples (18 cases) than in the SLRI samples (1 case; P< 0.0001). The recombination breakpoints were located in nucleotides (nt) 472–554, which comprise stem-loop 5 in the internal ribosomal entry site (IRES), based on the HRV-B 35 sequence (accession no. FJ445187). Our findings regarding genomic recombination in circulating HRV-A and -C strains suggest that recombination might play a role in HRV fitness and could be a possible determinant of disease severity caused by various HRV infections in patients with ARI. PMID:23826363
Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.
Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh
2016-10-01
Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a cost-effective, rapid, and reliable avenue for the purification of recombinant proteins in heterologous hosts. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.
1991-01-01
A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.
NASA Astrophysics Data System (ADS)
Luo, L.; Cheng, Z.
2017-12-01
Secondary inorganic aerosols (SNA), i.e., sulfate, nitrate and ammonium, account for over 50% of fine particulate matter (PM2.5) during heavy haze episodes over Yangtze River Delta (YRD) region of China. Understanding the origin and transport of SNA is crucial for alleviating haze pollution over YRD. The long range transport from outer-YRD regions had significant influence on SNA during haze episodes over YRD, especially in winter. However, previous studies only using single domain for source analysis are limited on quantifying the local and transported sources in province scale altogether. In this study, the Integrated Source Apportionment Method (ISAM) based on the Weather Research and Forecasting and Community Multi-scale Air Quality (WRF-CMAQ) models was performed to two nested domains, one covering east of China and the other embracing YRD, for source apportionment of SNA in YRD during January, 2015. The results indicated that the outer-YRD transport mainly from upwind northwestern provinces, Shandong and Henan, was the dominant contributor accounting for 36.2% of sulfate during pollution episodes. For nitrate, inner-YRD and outer-YRD transport were the two evenly major regional sources, contributing 51.9% of nitrate during hazes. However, local accumulation was the first contributor accounting for 73.9% of ammonium. The long lifetime of formation process for sulfate and nitrate caused the conspicuous transport effect driven by wind when adjacent regions under severe pollution. Although the total effects of long and short distant transport played a major role for the level of sulfate and nitrate, the extent of contribution from local accumulation was similar with them even larger in province scale. Industry followed by power plant were two principal sources of sulfate for all three types of regional contribution. The main sectoral sources of nitrate were industry and transport for local accumulation while power plant besides them for inner-YRD and outer-YRD transport. For ammonium, volatile sources were major origin for local accumulation while agriculture for inner-YRD transport. These results demonstrate the importance for outer-YRD control during haze episodes for sulfate and nitrate while local emission control for ammonium in YRD.
Chung, Wen-Hsin; Lai, Kung-Ming; Hsu, Kuo-chiang
2010-02-10
The histological structures of the vitelline membranes (VM) of hen and duck eggs were observed by cryo-scanning electron microscopy (cryo-SEM), and the chemical characteristics were also compared. The outer layer surface (OLS) of duck egg VM showed networks constructed by fibrils and sheets (0.1-5.2 microm in width), and that of hen egg presented networks formed only by sheets (2-6 microm in width). Thicker fibrils (0.5-1.5 microm in width) with different arrangement were observed on the inner layer surface (ILS) of duck egg VM as compared to those (0.3-0.7 microm in width) of hen egg VM. Upon separation, the outer surface of the outer layer (OSOL) and the inner surface of the inner layer (ISIL) of hen and duck egg VMs were quite similar to fresh VM except that the OSOL of duck egg VM showed networks constructed only by sheets. Thin fibrils interlaced above a bumpy or flat structure were observed at the exposed surface of the outer layer (ESOL) of hen and duck egg VMs. The exposed surfaces of inner layers (ESIL) of hen and duck egg VMs showed similar structures of fibrils, which joined, branched, and ran in straight lines for long distances up to 30 microm; however, the widths of the fibrils shown in ESOL and ESIL of duck egg VM were 0.1 and 0.7-1.4 microm, respectively, and were greater than those (<0.1 and 0.5-0.8 microm) of hen egg VM. The continuous membranes of both hen and duck egg VMs were still attached to the outer layers when separated. The content of protein, the major component of VM, was higher in duck egg VM (88.6%) than in hen egg VM (81.6%). Four and six major SDS-soluble protein patterns with distinct localization were observed in hen and duck egg VMs, respectively. Overall, the different histological structures of hen and duck egg VMs were suggested to be majorly attributable to the diverse protein components.
Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions
NASA Astrophysics Data System (ADS)
Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin
2018-04-01
We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.
NASA Astrophysics Data System (ADS)
Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.
2015-12-01
In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.
Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.
Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin
2018-04-25
We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.
Lin, Kuo Hsing; Chin, Wei Chih; Lee, Ang Hsuan; Huang, Chieh Chen
2011-01-01
Cysteine-rich metallothioneins (MTs) have been reported to possess the capacity to scavenge reactive oxygen species in vitro and in vivo. Recombinant strains of Escherichia coli expressing outer membrane protein C (OmpC) fused with MTs from human, mouse and tilapia displayed the ability for such surface-localized MTs to scavenge extracellular free radicals, but the benefits of the possible applications of this capacity have not yet been demonstrated. Because the intrinsic butanol tolerance of microbes has become an impediment for biological butanol production, we examined whether surface-displayed MTs could contribute to butanol tolerance. The results show that strains expressing OmpC-MT fusion proteins had higher butanol tolerance than strains with cytoplasmically expressed MTs. Furthermore, the OmpC-tilapia MT fusion protein enhanced butanol tolerance more strongly than other recombinant constructs. Although the enhanced level of tolerance was not as high as that provided by OmpC-tilapia MT, over-expression of OmpC was also found to contribute to butanol tolerance. These results suggest that free-radical scavenging by MT and OmpC-related osmoregulation enhance butanol tolerance. Our results shed new light on methods for engineering bacteria with higher butanol tolerance. © 2011 Landes Bioscience
Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes
Kirkpatrick, Mark; Guerrero, Rafael F.
2014-01-01
Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. PMID:24578352
The kinetochore prevents centromere-proximal crossover recombination during meiosis
Vincenten, Nadine; Kuhl, Lisa-Marie; Lam, Isabel; Oke, Ashwini; Kerr, Alastair RW; Hochwagen, Andreas; Fung, Jennifer; Keeney, Scott; Vader, Gerben; Marston, Adèle L
2015-01-01
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10850.001 PMID:26653857
Cloning and expression of recombinant, functional ricin B chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, M.S.; Russell, D.W.; Uhr, J.W.
1987-08-01
The cDNA encoding the B chain of the plant toxin ricin has been cloned and expressed in monkey kidney COS-M6 cells. The recombinant B chain was detected by labeling the transfected cells with (/sup 35/S)methionine and (/sup 35/S)-cysteine and demonstrating the secretion of a protein with a M/sub r/ of 30,000-32,000 that was not present in the medium of mock-transfected COS-M6 cells. This protein was specifically immunoprecipitated by an anti-ricin or anti-B-chain antibody and the amount of recombinant B chain secreted by the COS-M6 cells was determined by a radioimmunoassay. Virtually all of the recombinant B chain formed active ricinmore » when mixed with native A chain; it could also bind to the galactose-containing glycoprotein asialofetuin as effectively as native B chain.These results indicate that the vast majority of recombinant B chains secreted into the medium of the COS-M6 cells retain biological function« less
Yeast synthetic biology for the production of recombinant therapeutic proteins.
Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah
2015-02-01
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.
Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A
2006-06-21
Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.
Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain
Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J.; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M.; Pypaert, Marc; Hardwick, J. Marie; Sensi, Stefano L.; Zukin, R. Suzanne; Jonas, Elizabeth A.
2015-01-01
Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear.Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔNBCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria. PMID:16793892
Outer membrane vesicles shield Moraxella catarrhalis β-lactamase from neutralization by serum IgG.
Schaar, Viveka; Paulsson, Magnus; Mörgelin, Matthias; Riesbeck, Kristian
2013-03-01
The aim of this study was to detect the presence of IgG against Moraxella catarrhalis β-lactamase in healthy adults, and to determine whether outer membrane vesicles (OMVs) could protect the enzyme from inhibition by anti-β-lactamase IgG. Transmission electron microscopy was used to detect the presence of β-lactamase in OMVs. Sera were examined by ELISA for specific IgG directed against recombinant M. catarrhalis β-lactamase in addition to the outer membrane adhesins MID/Hag, UspA1 and A2. Binding of anti-β-lactamase IgG from serum to OMVs was analysed by flow cytometry. The chromogenic substrate nitrocefin was used to quantify β-lactamase enzyme activity. The presence of β-lactamase was determined in OMVs from a 9-year-old child suffering from M. catarrhalis sinusitis. Furthermore, anti-β-lactamase IgG was detected in sera obtained from healthy adults. Out of 40 adult blood donors (aged 18-65 years) tested, 6 (15.0%) carried anti-β-lactamase IgG. No correlation between IgG titres against β-lactamase and the adhesins was found. Flow cytometry analyses revealed that anti-β-lactamase IgG from serum bound to β-lactamase-positive OMVs. By comparing the β-lactamase activity of intact OMV with OMV that were permeabilized with saponin we found that OMVs shielded active β-lactamase from the anti-β-lactamase IgG. Moraxella catarrhalis β-lactamase is found in, or associated with, OMVs, providing clinical relevance for the vesicles in the spread of antibiotic resistance. Furthermore, OMVs protect β-lactamase from specific IgG.
The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster.
Wiley, Sandra E; Paddock, Mark L; Abresch, Edward C; Gross, Larry; van der Geer, Peter; Nechushtai, Rachel; Murphy, Anne N; Jennings, Patricia A; Dixon, Jack E
2007-08-17
The outer mitochondrial membrane protein mitoNEET was discovered as a binding target of pioglitazone, an insulin-sensitizing drug of the thiazolidinedione class used to treat type 2 diabetes (Colca, J. R., McDonald, W. G., Waldon, D. J., Leone, J. W., Lull, J. M., Bannow, C. A., Lund, E. T., and Mathews, W. R. (2004) Am. J. Physiol. 286, E252-E260). We have shown that mitoNEET is a member of a small family of proteins containing a 39-amino-acid CDGSH domain. Although the CDGSH domain is annotated as a zinc finger motif, mitoNEET was shown to contain iron (Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P., and Dixon, J. E. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 5318-5323). Optical and electron paramagnetic resonance spectroscopy showed that it contained a redox-active pH-labile Fe-S cluster. Mass spectrometry showed the loss of 2Fe and 2S upon cofactor extrusion. Spectroscopic studies of recombinant proteins showed that the 2Fe-2S cluster was coordinated by Cys-3 and His-1. The His ligand was shown to be involved in the observed pH lability of the cluster, indicating that loss of this ligand via protonation triggered release of the cluster. mitoNEET is the first identified 2Fe-2S-containing protein located in the outer mitochondrial membrane. Based on the biophysical data and domain fusion analysis, mitoNEET may function in Fe-S cluster shuttling and/or in redox reactions.
Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef; Blatt, Katharina; Valent, Peter; Valenta, Rudolf
2015-05-01
Grass pollen is one of the most important sources of respiratory allergies worldwide. This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Recombination rate plasticity: revealing mechanisms by design
Sefick, Stephen; Rushton, Chase
2017-01-01
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222
Resuscitative Thoracotomy following Wartime Injury
2013-01-01
0.9 [0.1] vs. 0.7 [0.4], p = 0.051). There was no significant difference in the use of tranexamic acid or recombinant factor 7a. The majority of deaths...FreshWhole Blood, mean (SD), U 0 2.5 (5.7) 0.003 Tranexamic acid use, n (%) 9 (17.6) 3 (21.4) 0.711 Recombinant factor 7a use, n (%) 10 (19.6) 6 (42.9) 0.090
Takeuchi, M; Inoue, N; Strickland, T W; Kubota, M; Wada, M; Shimizu, R; Hoshi, S; Kozutsumi, H; Takasaki, S; Kobata, A
1989-01-01
Two forms of erythropoietin, EPO-bi and EPO-tetra, with different biological activities were isolated from the culture medium of a recombinant Chinese hamster ovary cell line, B8-300, into which the human erythropoietin gene had been introduced. EPO-bi, an unusual form, showed only one-seventh the in vivo activity and 3 times higher in vitro activity of the previously described recombinant human EPO (standard EPO). In contrast, EPO-tetra showed both in vivo and in vitro activities comparable to those of the standard EPO. EPO-bi, EPO-tetra, and the standard EPO had the same amino acid composition and immunoreactivity. However, structural analyses of their N-linked sugar chains revealed that EPO-bi contains the biantennary complex type as the major sugar chain, while EPO-tetra and the standard EPO contain the tetraantennary complex type as the major sugar chain. From examination of various preparations of recombinant human EPO, we found a positive correlation between the in vivo activity of EPO and the ratio of tetraantennary to biantennary oligosaccharides. These results suggest that higher branching of the N-linked sugar chains is essential for effective expression of in vivo biological activity of EPO. PMID:2813359
Alamgir, A S M; Owens, Nick; Lavignon, Marc; Malik, Frank; Evans, Leonard H
2005-04-01
Polytropic murine leukemia viruses (MuLVs) are generated by recombination of ecotropic MuLVs with env genes of a family of endogenous proviruses in mice, resulting in viruses with an expanded host range and greater virulence. Inbred mouse strains contain numerous endogenous proviruses that are potential donors of the env gene sequences of polytropic MuLVs; however, the precise identification of those proviruses that participate in recombination has been elusive. Three different structural groups of proviruses in NFS/N mice have been described and different ecotropic MuLVs preferentially recombine with different groups of proviruses. In contrast to other ecotropic MuLVs such as Friend MuLV or Akv that recombine predominantly with a single group of proviruses, Moloney MuLV (M-MuLV) recombines with at least two distinct groups. In this study, we determined that only three endogenous proviruses, two of one group and one of another group, are major participants in recombination with M-MuLV. Furthermore, the distinction between the polytropic MuLVs generated by M-MuLV and other ecotropic MuLVs is the result of recombination with a single endogenous provirus. This provirus exhibits a frameshift mutation in the 3' region of the surface glycoprotein-encoding sequences that is excluded in recombinants with M-MuLV. The sites of recombination between the env genes of M-MuLV and endogenous proviruses were confined to a short region exhibiting maximum homology between the ecotropic and polytropic env sequences and maximum stability of predicted RNA secondary structure. These observations suggest a possible mechanism for the specificity of recombination observed for different ecotropic MuLVs.
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul
2017-04-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Transcription and Recombination: When RNA Meets DNA
Aguilera, Andrés; Gaillard, Hélène
2014-01-01
A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription–replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. PMID:25085910
Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.
2001-01-01
Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399
Miyata, Naoko; Isaka, Mitsuhiro; Kojima, Hideaki; Maniwa, Tomohiro; Takahashi, Shoji; Takamiya, Osamu; Ohde, Yasuhisa
2016-03-01
Inherited factor VII (FVII) deficiency is a rare recessive inherited coagulation disorder with limited available information, especially in patients undergoing major thoracic surgery. In addition, an optimal management strategy for the disease has not been defined. We herein report a case involving a 61-year-old man with asymptomatic FVII deficiency who underwent a right middle and lower lobectomy to treat lung cancer. To the best of our knowledge, the present report is the first to describe the use of recombinant activated FVII continuous infusion for bleeding control after a major thoracic surgery in a patient with inherited FVII deficiency.
NASA Astrophysics Data System (ADS)
Summerer, Leopold
2014-08-01
In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.
Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki
2016-10-01
The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.
Cornman, Robert S.
2017-01-01
Deformed wing virus (DWV) is a major pathogen of concern to apiculture, and recent reports have indicated the local predominance and potential virulence of recombinants between DWV and a related virus, Varroa destructor virus 1 (VDV). However, little is known about the frequency and titer of VDV and recombinants relative to DWV generally. In this study, I assessed the relative occurrence and titer of DWV and VDV in public RNA-seq accessions of honey bee using a rapid, kmer-based approach. Three recombinant types were detectable graphically and corroborated by de novo assembly. Recombination breakpoints did not disrupt the capsid-encoding region, consistent with previous reports, and both VDV- and DWV-derived capsids were observed in recombinant backgrounds. High abundance of VDV kmers was largely restricted to recombinant forms. Non-metric multidimensional scaling identified genotypic clusters among DWV isolates, which was corroborated by read mapping and consensus generation. The recently described DWV-C lineage was not detected in the searched accessions. The data further highlight the utility of high-throughput sequencing to monitor viral polymorphisms and statistically test biological predictors of titer, and point to the need for consistent methodologies and sampling schemes.
RPA homologs and ssDNA processing during meiotic recombination.
Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle
2016-06-01
Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.
Araj, G F; Kaufmann, A F
1989-01-01
An enzyme-linked immunosorbent assay was used to compare Brucella melitensis major outer membrane proteins (MOMP) and whole-cell heat-killed antigens (HK) in measuring antibrucella immunoglobulin G (IgG), IgM, and IgA in sera of brucellosis patients and controls. Antibodies to MOMP were generally similar to those against HK, and the correlation coefficients between the two antigens and IgG, IgM, and IgA in patients varied between 0.73 and 0.94. Both antigens are comparably suitable in detecting antibrucella immunoglobulin isotypes for the serologic diagnosis of patients with brucellosis, with high (greater than or equal to 95%) sensitivity and specificity. PMID:2768476
Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.
Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P
2014-03-01
Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Identification and characterization of Vibrio cholerae surface proteins by radioiodination.
Richardson, K; Parker, C D
1985-01-01
Whole cells and isolated outer membrane from Vibrio cholerae (Classical, Inaba) were radiolabeled with Iodogen or Iodo-beads as catalyst. Radiolabeling of whole cells was shown to be surface specific by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis of whole cells and cell fractions. Surface-labeled whole cells regularly showed 16 distinguishable protein species, of which nine were found in radiolabeled outer membrane preparations obtained by a lithium chloride-lithium acetate procedure. Eight of these proteins were found in outer membranes prepared by sucrose density gradient centrifugation and Triton X-100 extraction of radiolabeled whole cells. The mobility of several proteins was shown to be affected by temperature, and the major protein species exposed on the cell surface was shown to consist of at least two different peptides. Images PMID:3980099
Aziminia, Parastoo; Pilehchian-Langroudi, Reza; Esmaeilnia, Kasra
2016-08-01
Clostridium perfringens, a Gram-positive obligate anaerobic bacterium, is able to form resistant spores which are widely distributed in the environment. C. perfringens is subdivided into five types A to E based on its four major alpha, beta, epsilon and iota toxins. The aim of the present study was cloning and expression of C. perfringens type D vaccine strain epsilon toxin gene. Genomic DNA was extracted and the epsilon toxin gene was amplified using Pfu DNA polymerase. The PCR product was cloned into pJET1.2/blunt cloning vector. The recombinant vector (pJETε) was sequenced using universal primers. At the next step epsilon toxin gene was subcloned into pET22b(+) expression vector and transformed into E. coli Rosetta (DE3) host strain. The recombinant protein has been expressed in E. coli Rosetta (DE3) cells after subcloning of C. perfringens etx gene (1008 bp) into the expression vector. We concluded that E. coli Rosetta strain was suitable for the expression of recombinant C. perfringens epsilon toxin protein from pET22ε expression vector. This recombinant cell can be used for further research on recombinant vaccine development.
Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.
Kingston, Anthony W; Roussel-Rossin, Chloé; Dupont, Claire; Raleigh, Elisabeth A
2015-01-01
In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour.
Near Full-Length Identification of a Novel HIV-1 CRF01_AE/B/C Recombinant in Northern Myanmar.
Zhou, Yan-Heng; Chen, Xin; Liang, Yue-Bo; Pang, Wei; Qin, Wei-Hong; Zhang, Chiyu; Zheng, Yong-Tang
2015-08-01
The Myanmar-China border appears to be the "hot spot" region for the occurrence of HIV-1 recombination. The majority of the previous analyses of HIV-1 recombination were based on partial genomic sequences, which obviously cannot reflect the reality of the genetic diversity of HIV-1 in this area well. Here, we present a near full-length characterization of a novel HIV-1 CRF01_AE/B/C recombinant isolated from a long-distance truck driver in Northern Myanmar. It is the first description of a near full-length genomic sequence in Myanmar since 2003, and might be one of the most complicated HIV-1 chimeras ever detected in Myanmar, containing four CRF01_AE, six B segments, and five C segments separated by 14 breakpoints throughout its genome. The discovery and characterization of this new CRF01_AE/B/C recombinant indicate that intersubtype recombination is ongoing in Myanmar, continuously generating new forms of HIV-1. More work based on near full-length sequence analyses is urgently needed to better understand the genetic diversity of HIV-1 in these regions.
Laux, Holger; Romand, Sandrine; Nuciforo, Sandro; Farady, Christopher J; Tapparel, Joel; Buechmann-Moeller, Stine; Sommer, Benjamin; Oakeley, Edward J; Bodendorf, Ursula
2018-05-19
An increasing number of non-antibody format proteins are entering the clinical development. However, one of the major hurdles for the production of non-antibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics and genetic knockdowns we have identified, out of the more than 700 known proteases in rodents, Matriptase-1 as the major protease involved in degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently Matriptase-1 was deleted in CHO-K1 cells using "Transcription Activator-Like Effector Nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase knockout (KO) cell line with strongly reduced or no proteolytic degradation activity towards a panel of recombinantly-expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments, and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next generation sequencing screening methods and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Anoopraj, R; Rajkhowa, Tridib K; Cherian, Susan; Arya, Rahul S; Tomar, Neelam; Gupta, Ashish; Ray, Pradeep K; Somvanshi, R; Saikumar, G
2015-04-01
Porcine circovirus type 2 (PCV2), the necessary agent in pathogenesis of porcine circovirus diseases (PCVDs), has a worldwide distribution and is considered as one of the most important emerging viral pathogens of economic importance. PCV2 has been divided into four major genotypes namely PCV2a with five clusters or subtypes (2A-2E), PCV2b with three clusters (1A-1C), PCV2c and PCV2d, based on capsid (cap) gene analysis. PCV2 genome is rapidly evolving through events of recombination and mutation. Though, PCV2a was the predominant genotype initially, PCV2b shared majority of PCV2 sequences submitted to GenBank since 2003. In India, data regarding molecular characterisation of PCV2 is scant or absent. In the present study, we thoroughly analysed genetic heterogeneity of PCV2 strains circulating in Indian pig population. The results revealed that pigs in this region harboured PCV2 viruses of different genotypes including PCV2a-2D, PCV2b-1C and PCV2d. More interestingly, two isolates (PCV2Izn-89-13 and PCV2Izn-218-13) were classified as recombinant strains. Further detailed analysis suggested that these strains evolved from inter-genotypic recombination between PCV2a-2C and PCV2b-1C genotypes within cap gene. This study reports for the first time, the emergence of recombinant PCV2 strains in the Indian pig population. Copyright © 2015 Elsevier B.V. All rights reserved.
The carbon budget in the outer solar nebula.
Simonelli, D P; Pollack, J B; McKay, C P; Reynolds, R T; Summers, A L
1989-01-01
Detailed models of the internal structures of Pluto and Charon, assuming rock and water ice as the only constituents, indicate that the mean silicate mass fraction of this two-body system is on the order of 0.7; thus the Pluto/Charon system is significantly "rockier" than the satellites of the giant planets (silicate mass fraction approximately 0.55). This compositional contrast reflects different formation mechanisms: it is likely that Pluto and Charon formed directly from the solar nebula, while the circumplanetary nebulae that produced the giant planet satellites were derived from envelopes that surrounded the forming giant planets (envelopes in which icy planetesimals dissolved more readily than rocky planetesimals). Simple cosmic abundance calculations, and the assumption that the Pluto/Charon system formed directly from solar nebula condensates, strongly suggest that the majority of the carbon in the outer solar nebula was in the form of carbon monoxide; these results are consistent with (1) inheritance from the dense molecular clouds in the interstellar medium (where CH4/CO < 10(-2) in the gas phase) and/or (2) of the Lewis and Prinn kinetic inhibition model of solar nebula chemistry. Theoretical predictions of the C/H enhancements in the atmospheres of the giant planets, when compared to the actual observed enhancements, suggest that 10%, or slightly more, of the carbon in the outer solar nebula was in the form of condensed materials (although the amount of condensed C may have dropped slightly with increasing heliocentric distance). Strict compositional limits computed for the Pluto/Charon system using the densities of CH4 and CO ices indicate that these pure ices are at best minor components in the interiors of these bodies, and imply that CH4 and CO ices were not the dominant C-bearing solids in the outer nebula. Clathrate-hydrates could not have appropriated enough CH4 or CO to be the major form of condensed carbon, although such clathrates may be necessary to explain the presence of methane on Pluto after its formation from a CO-rich nebula. Laboratory studies of carbonaceous chondrites, and spacecraft observations of Comet Halley, strongly suggest that of the remaining possibilities, organic material, rather than elemental carbon, is the most likely candidate for the dominant C-bearing solid in the outer solar nebula. We conclude that the majority of the carbon in the outer solar nebula was in gaseous CO; 10% to a few tens of percent of the C was in condensed organic materials; and at least a trace amount of carbon was in methane gas.
Molecular basis for photoreceptor outer segment architecture
Goldberg, Andrew F. X.; Moritz, Orson L.; Williams, David S.
2016-01-01
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ~10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained. PMID:27260426
Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon
2016-08-31
Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.
Chen, Hongyu; Kandel, Prem P; Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo
2017-11-01
MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a β-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.
Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.
Worrall, L J; Hong, C; Vuckovic, M; Deng, W; Bergeron, J R C; Majewski, D D; Huang, R K; Spreter, T; Finlay, B B; Yu, Z; Strynadka, N C J
2016-12-14
The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.
Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong
2010-07-01
Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behar, Ehud; Jacobs, Verne L.; Oreg, Joseph
Total cross sections for electron-ion photorecombination (PR) processes are calculated using a projection-operator and resolvent-operator approach. This approach provides a unified quantum-mechanical description of the combined electron-ion PR process, including radiative and dielectronic recombination as coherent, interfering components. An especially adapted version of the Hebrew-University Lawrence-Livermore Atomic Code HULLAC is developed and employed for the calculations. In particular, PR cross sections for He-like argon and iron ions are calculated for incident-electron energies in the vicinity of the 1s2l2l{sup '} and 1s2l3l{sup '} doubly-excited, autoionizing levels of the Li-like ions. Significant effects of quantum interference between radiative and dielectronic recombination, inmore » the form of asymmetric PR cross-section profiles, are predicted, especially for weak transitions. The general behavior of the interference effect, as a function of the ion charge q and as a function of the principal quantum number n{sup '} of the outer electron in the autoionizing state, is investigated using a hydrogenic-scaling analysis. It is found that the degree of asymmetry in the PR cross-section profile can be substantial for close-to-neutral ions and also for very highly-charged ions. In the intermediate-charge regime, on the other hand, the asymmetry is anticipated to be less prominent. The dependence of the quantum-interference effect on n{sup '} is predicted to be much weaker.« less
Haake, David A.; Suchard, Marc A.; Kelley, Melissa M.; Dundoo, Manjula; Alt, David P.; Zuerner, Richard L.
2004-01-01
Leptospires belong to a genus of parasitic bacterial spirochetes that have adapted to a broad range of mammalian hosts. Mechanisms of leptospiral molecular evolution were explored by sequence analysis of four genes shared by 38 strains belonging to the core group of pathogenic Leptospira species: L. interrogans, L. kirschneri, L. noguchii, L. borgpetersenii, L. santarosai, and L. weilii. The 16S rRNA and lipL32 genes were highly conserved, and the lipL41 and ompL1 genes were significantly more variable. Synonymous substitutions are distributed throughout the ompL1 gene, whereas nonsynonymous substitutions are clustered in four variable regions encoding surface loops. While phylogenetic trees for the 16S, lipL32, and lipL41 genes were relatively stable, 8 of 38 (20%) ompL1 sequences had mosaic compositions consistent with horizontal transfer of DNA between related bacterial species. A novel Bayesian multiple change point model was used to identify the most likely sites of recombination and to determine the phylogenetic relatedness of the segments of the mosaic ompL1 genes. Segments of the mosaic ompL1 genes encoding two of the surface-exposed loops were likely acquired by horizontal transfer from a peregrine allele of unknown ancestry. Identification of the most likely sites of recombination with the Bayesian multiple change point model, an approach which has not previously been applied to prokaryotic gene sequence analysis, serves as a model for future studies of recombination in molecular evolution of genes. PMID:15090524
Unraveling the Helix Nebula: Its Structure and Knots
NASA Astrophysics Data System (ADS)
O'Dell, C. R.; McCullough, Peter R.; Meixner, Margaret
2004-11-01
Through Hubble Space Telescope (HST) imaging of the inner part of the main ring of the Helix Nebula, together with CTIO 4 m images of the fainter outer parts, we have a view of unprecedented quality of the nearest bright planetary nebula. These images have allowed us to determine that the main ring of the nebula is composed of an inner disk of about 499" diameter (0.52 pc) surrounded by an outer ring (in reality a torus) of 742" diameter (0.77 pc) whose plane is highly inclined to the plane of the disk. This outer ring is surrounded by an outermost ring of 1500" (1.76 pc) diameter, which is flattened on the side colliding with the ambient interstellar medium. The inner disk has an extended distribution of low-density gas along its rotational axis of symmetry, and the disk is optically thick to ionizing radiation, as is the outer ring. Published radial velocities of the knots provide support for the two-component structure of the main ring of the nebula and for the idea that the knots found there are expanding along with the nebular material from which they recently originated. These velocities indicate a spatial expansion velocity of the inner disk of 40 and 32 km s-1 for the outer ring, which yields expansion ages of 6560 and 12,100 yr, respectively. The outermost ring may be partially ionized through scattered recombination continuum from the inner parts of the nebula, but shocks certainly are occurring in it. This outermost ring probably represents a third period of mass loss by the central star. There is one compact, outer object that is unexplained, showing shock structures indicating a different orientation of the gas flow from that of the nebula. There is a change in the morphology of the knots as a function of the distance from the local ionization front. This supports a scenario in which the knots are formed in or near the ionization front and are then sculpted by the stellar radiation from the central star as the ionization front advances beyond them. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a Cooperative Agreement with the National Science Foundation.
Ramírez, Laura; Santos, Diego M; Souza, Ana P; Coelho, Eduardo A F; Barral, Aldina; Alonso, Carlos; Escutia, Marta R; Bonay, Pedro; de Oliveira, Camila I; Soto, Manuel
2013-02-18
Four new antigenic proteins located in Leishmania ribosomes have been characterized: S4, S6, L3 and L5. Recombinant versions of the four ribosomal proteins from Leishmania major were recognized by sera from human and canine patients suffering different clinical forms of leishmaniasis. The prophylactic properties of these proteins were first studied in the experimental model of cutaneous leishmaniasis caused by L. major inoculation into BALB/c mice. The administration of two of them, LmL3 or LmL5 combined with CpG-oligodeoxynucleotides (CpG-ODN) was able to protect BALB/c mice against L. major infection. Vaccinated mice showed smaller lesions and parasite burden compared to mice inoculated with vaccine diluent or vaccine adjuvant. Protection was correlated with an antigen-specific increased production of IFN-γ paralleled by a decrease of the antigen-specific IL-10 mediated response in protected mice relative to non-protected controls. Further, it was demonstrated that BALB/c mice vaccinated with recombinant LmL3 or LmL5 plus CpG-ODN were also protected against the development of cutaneous lesions following inoculation of L. braziliensis. Together, data presented here indicate that LmL3 or LmL5 ribosomal proteins combined with Th1 inducing adjuvants, may be relevant components of a vaccine against cutaneous leishmaniasis caused by distinct species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse
Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri
2016-01-01
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744
Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.
Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri
2016-04-01
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.
Functional bottlenecks for generation of HIV-1 intersubtype Env recombinants.
Bagaya, Bernard S; Vega, José F; Tian, Meijuan; Nickel, Gabrielle C; Li, Yuejin; Krebs, Kendall C; Arts, Eric J; Gao, Yong
2015-05-23
Intersubtype recombination is a powerful driving force for HIV evolution, impacting both HIV-1 diversity within an infected individual and within the global epidemic. This study examines if viral protein function/fitness is the major constraint shaping selection of recombination hotspots in replication-competent HIV-1 progeny. A better understanding of the interplay between viral protein structure-function and recombination may provide insights into both vaccine design and drug development. In vitro HIV-1 dual infections were used to recombine subtypes A and D isolates and examine breakpoints in the Env glycoproteins. The entire env genes of 21 A/D recombinants with breakpoints in gp120 were non-functional when cloned into the laboratory strain, NL4-3. Likewise, cloning of A/D gp120 coding regions also produced dead viruses with non-functional Envs. 4/9 replication-competent viruses with functional Env's were obtained when just the V1-V5 regions of these same A/D recombinants (i.e. same A/D breakpoints as above) were cloned into NL4-3. These findings on functional A/D Env recombinants combined with structural models of Env suggest a conserved interplay between the C1 domain with C5 domain of gp120 and extracellular domain of gp41. Models also reveal a co-evolution within C1, C5, and ecto-gp41 domains which might explain the paucity of intersubtype recombination in the gp120 V1-V5 regions, despite their hypervariability. At least HIV-1 A/D intersubtype recombination in gp120 may result in a C1 from one subtype incompatible with a C5/gp41 from another subtype.
Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S
2016-05-01
Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis.
Impacts of Bt crops on non-target organisms and insecticide use patterns
USDA-ARS?s Scientific Manuscript database
Bacillus thuringiensis (Bt), a bacterium capable of producing insecticidal proteins is ubiquitous in the environment, and the genes coding for these proteins are now becoming ubiquitous in major crop plants via recombinant DNA technology where they provide host plant resistance to major lepidopteran...
Major psychological factors affecting acceptance of gene-recombination technology.
Tanaka, Yutaka
2004-12-01
The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.
Wang, Bing; Shang, Jinyan; Liu, Xunli; Cui, Weizheng; Wu, Xiaofeng; Zhao, Na
2007-01-01
The low efficiency of the oral infectivity of recombinant polyhedrin-negative baculovirus is a major bottleneck in the application of the baculovirus expression system in the silkworm (Bombyx mori L). In this study, the effects of a fluorescent whitening agent on improving the oral infection for the recombinant Bombyx mori nuclear polyhedrosis virus in silkworm larva and their possible mechanism were investigated. The results showed that the peroral infection can be remarkably enhanced by adding VBL into the larval artificial diet. The maximum infection rate reached as high as 90% with the concentration of VBL (1%), which was then considered as optimal. The total protease activity and pH value of the larval intestinal juice were found to be lower when compared to the control, indicating an abnormal physiological change of the larval digestive system by VBL, which, in turn, resulted in improved peroral infection of recombinant virus.
Deng, Lei; Linero, Florencia; Saelens, Xavier
2016-01-01
Viruslike particles often combine high physical stability with robust immunogenicity. Furthermore, when such particles are based on bacteriophages, they can be produced in high amounts at minimal cost and typically will require only standard biologically contained facilities. We provide protocols for the characterization and purification of recombinant viruslike particles derived from filamentous bacteriophages. As an example, we focus on filamentous Escherichia coli fd phage displaying a conserved influenza A virus epitope that is fused genetically to the N-terminus of the major coat protein of this phage. A step-by-step procedure to obtain a high-titer, pure recombinant phage preparation is provided. We also describe a quality control experiment based on a biological readout of the purified fd phage preparation. These protocols together with the highlighted critical steps may facilitate generic implementation of the provided procedures for the display of other epitopes by recombinant fd phages.
Transcription and recombination: when RNA meets DNA.
Aguilera, Andrés; Gaillard, Hélène
2014-08-01
A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Mobile DNA in the pathogenic Neisseria
Obergfell, Kyle P.; Seifert, H. Steven
2015-01-01
The genus Neisseria contains two pathogenic species of notable public health concern: Neisseria gonorrhoeae and Neisseria meningitidis. These pathogens display a notable ability to undergo frequent programmed recombination events. The recombination mediated pathways of transformation and pilin antigenic variation in the Neisseria are well studied systems that are critical for pathogenesis. Here we will detail the conserved and unique aspects of transformation and antigenic variation in the Neisseria. Transformation will be followed from initial DNA binding through recombination into the genome with consideration to the factors necessary at each step. Additional focus is paid to the unique type IV secretion system that mediates donation of transforming DNA in the pathogenic Neisseria. The pilin antigenic variation system uses programed recombinations to alter a major surface determinant which allows immune avoidance and promotes infection. We discuss the trans- and cis- acting factors which facilitate pilin antigenic variation and present the current understanding of the mechanisms involved in the process. PMID:25866700
Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic.
Burzyński, Artur; Zbawicka, Małgorzata; Skibinski, David O F; Wenne, Roman
2003-03-01
A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.
Berg, Michael G; Adams, Robert J; Gambhira, Ratish; Siracusa, Mark C; Scott, Alan L; Roden, Richard B S; Ketner, Gary
2014-09-01
Immunization with human papillomavirus (HPV) L1 virus-like particles (VLPs) prevents infection with HPV. However, the expense and logistical demands of current VLP vaccines will limit their widespread use in resource-limited settings, where most HPV-induced cervical cancer occurs. Live oral adenovirus vaccines have properties that are well-suited for use in such settings. We have described a live recombinant adenovirus vaccine prototype that produces abundant HPV16 L1 protein from the adenovirus major late transcriptional unit and directs the assembly of HPV16 VLPs in tissue culture. Recombinant-derived VLPs potently elicit neutralizing antibodies in mice. Here, we characterize the immune response to the recombinant after dual oral and intranasal immunization of pigtail macaques, in which the virus replicates as it would in immunized humans. The immunization of macaques induced vigorous humoral responses to adenovirus capsid and nonstructural proteins, although, surprisingly, not against HPV L1. In contrast, immunization elicited strong T-cell responses to HPV VLPs as well as adenovirus virions. T-cell responses arose immediately after the primary immunization and were boosted by a second immunization with recombinant virus. T-cell immunity contributes to protection against a wide variety of pathogens, including many viruses. The induction of a strong cellular response by the recombinant indicates that live adenovirus recombinants have potential as vaccines for those agents. These studies encourage and will inform the continued development of viable recombinant adenovirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Measuring the magnetic fields of Jupiter and the outer solar system
NASA Technical Reports Server (NTRS)
Smith, E. J.; Connor, B. V.; Foster, G. T., Jr.
1975-01-01
The vector helium magnetometer, one of the Pioneer-Jupiter experiments, has measured the magnetic field of Jupiter and the interplanetary magnetic field in the outer solar system. The comprehensive scientific objectives of the investigations are explained and are then translated into the major instrument requirements. The principles of operation of the magnetometer, which involve the optical pumping of metastable helium, are discussed and the Pioneer instrument is described. The in-flight performance of the magnetometer is discussed and principal scientific results obtained thus far by the Pioneer investigation are summarized.
Robert, S; Van Huynegem, K; Gysemans, C; Mathieu, C; Rottiers, P; Steidler, L
2015-01-01
Type 1 diabetes (T1D) is a chronic autoimmune disease characterised by excessive immune reactions against auto-antigens of pancreatic β-cells. Restoring auto-antigen tolerance remains the superior therapeutic strategy. Oral auto-antigen administration uses the tolerogenic nature of the gut-associated immune system to induce antigen-specific tolerance. However, due to gastric degradation, proper mucosal product delivery often imposes a challenge. Recombinant Lactococcus lactis have proven to be effective and safe carriers for gastrointestinal delivery of therapeutic products: L. lactis secreting diabetes-associated auto-antigens in combination with interleukin (IL)-10 have demonstrated therapeutic efficacy in a well-defined mouse model for T1D. Here, we describe the construction of recombinant L. lactis secreting the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and tyrosine phosphatase-like protein ICA512 (IA-2), two major T1D-related auto-antigens. Attempts to secrete full size human GAD65 and IA-2 protein by L. lactis were unsuccessful. Trimming of GAD65 and IA-2 was investigated to optimise antigen secretion while maintaining sufficient bacterial growth. GAD65370-575 and IA-2635-979 showed to be efficiently secreted by recombinant L. lactis. Antigen secretion was verified by immunoblotting. Plasmid-derived GAD65 and IA-2 expression was combined in single strains with human IL-10 expression, a desired combination to allow tolerance induction. This study reports the generation of recombinant L. lactis secreting two major diabetes-related auto-antigens: human GAD65 and IA-2, by themselves or combined with the anti-inflammatory cytokine human IL-10. Prohibitive sequence obstacles hampering antigen secretion were resolved by trimming the full size proteins.
Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara
2009-09-23
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48% of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA(-) strain were G:C --> T:A transversions, occurring within the sequence which in recA(+) strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C --> A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.
Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara
2009-01-01
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations. PMID:19834545
Spuesens, Emiel B M; Oduber, Minoushka; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis
2009-07-01
The gene encoding major adhesin protein P1 of Mycoplasma pneumoniae, MPN141, contains two DNA sequence stretches, designated RepMP2/3 and RepMP4, which display variation among strains. This variation allows strains to be differentiated into two major P1 genotypes (1 and 2) and several variants. Interestingly, multiple versions of the RepMP2/3 and RepMP4 elements exist at other sites within the bacterial genome. Because these versions are closely related in sequence, but not identical, it has been hypothesized that they have the capacity to recombine with their counterparts within MPN141, and thereby serve as a source of sequence variation of the P1 protein. In order to determine the variation within the RepMP2/3 and RepMP4 elements, both within the bacterial genome and among strains, we analysed the DNA sequences of all RepMP2/3 and RepMP4 elements within the genomes of 23 M. pneumoniae strains. Our data demonstrate that: (i) recombination is likely to have occurred between two RepMP2/3 elements in four of the strains, and (ii) all previously described P1 genotypes can be explained by inter-RepMP recombination events. Moreover, the difference between the two major P1 genotypes was reflected in all RepMP elements, such that subtype 1 and 2 strains can be differentiated on the basis of sequence variation in each RepMP element. This implies that subtype 1 and subtype 2 strains represent evolutionarily diverged strain lineages. Finally, a classification scheme is proposed in which the P1 genotype of M. pneumoniae isolates can be described in a sequence-based, universal fashion.
Baumann, Kristin; Dato, Laura; Graf, Alexandra B; Frascotti, Gianni; Dragosits, Martin; Porro, Danilo; Mattanovich, Diethard; Ferrer, Pau; Branduardi, Paola
2011-05-09
Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains.In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production.
Washington, O R; Deslauriers, M; Stevens, D P; Lyford, L K; Haque, S; Yan, Y; Flood, P M
1993-01-01
Fimbrillin is the major subunit protein of fimbriae from the human periodontal pathogen Porphyromonas (Bacteroides) gingivalis. We describe here the generation and initial characterization of recombinant fimbrillin (r-fimbrillin) isolated from P. gingivalis 381. A fragment of DNA encoding the gene for fimbrillin was generated by polymerase chain reaction and cloned into the expression vector pET11b. Plasmids containing the recombinant gene were transfected into Escherichia coli. Clones were selected on plates for ampicillin resistance and individually screened by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for protein production after activation with IPTG (isopropyl-beta-D- thiogalactopyranoside). One clone, OW0.2, produced significant amounts of a 42-kDa protein after induction with IPTG. This clone contained the pET11b plasmid with a 1-kb insert that had sequence homology to the gene encoding fimbrillin. The majority of recombinant protein from clone OW0.2 was found in the cytoplasm within inclusion bodies. Protein aggregates were solubilized in 8 M urea, and SDS-PAGE analysis showed two major protein bands, one at 42 kDa and the other at 17 kDa. These two proteins coeluted from a DEAE-Sepharose column at 0.15 M NaCl and were reactive to rabbit antiserum to fimbrillin in a Western blot (immunoblot). A preparation giving a single protein band at 42 kDa in SDS-PAGE was obtained by size fractionation by using continuous-elution electrophoresis. Lymph node cells from animals immunized with either fimbrillin from P. gingivalis or r-fimbrillin showed antigen-specific proliferation to both P. gingivalis fimbrillin and r-fimbrillin in an in vitro recall assay. Therefore, it appears that r-fimbrillin is chemically, antigenically, and serologically identical to fimbrillin isolated from P. gingivalis 381. Images PMID:8094377
Characterization of recombinant MSP5 Anaplasma marginale Havana isolate
Corona, B.; Machado, H.; Rodríguez, M.; Martínez, S.
2009-01-01
Anaplasma marginale is the causative agent of bovine anaplasmosis, a disease of worldwide economic importance. Major surface proteins (MSPs) are involved in host-pathogen and tick-pathogen interactions and they have been used as markers for the genetic characterization of A. marginale strains and phylogenetic studies. The major surface protein 5 (MSP5) is highly conserved in the genus Anaplasma and in all isolates of A. marginale. The aim of the present work was to carry out the cloning, sequencing and characterization of the recombinant MSP5 Anaplasma marginale Havana isolate. The sequence of the msp5 gene of Anaplasma marginale Havana isolate with a size of 633 pb was determined (Acc. No. AY527217). This gene was cloned into pRSETB vector and expressed in Escherichia coli. The MSP5 protein was recognized by the monoclonal antibody ANAF16C1 and it showed a high similitude percent with the gene sequence described for other Anaplasma marginale isolates. These data are very important for the development of a diagnostic test for A. marginale using the MSP5 recombinant protein. PMID:24031449
Cai, Ruibo; Shafer, Aaron B A; Laguardia, Alice; Lin, Zhenzhen; Liu, Shuqiang; Hu, Defu
2015-11-25
The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.
Mechanisms of mutagenesis in human cells exposed to 55 MeV protons
NASA Technical Reports Server (NTRS)
Gauny, S.; Wiese, C.; Kronenberg, A.
2001-01-01
Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.
Passivation of Si solar cells by hetero-epitaxial compound semiconductor coatings
NASA Technical Reports Server (NTRS)
Vernon, S. M.; Spitzer, M. B.; Keavney, C. J.; Haven, V. E.; Sekula, P. A.
1986-01-01
A development status evaluation is made for high efficiency Si solar cells, with emphasis on the suppression of the deleterious effects of surface recombination. ZnS(0.9)Se(0.1) and GaP are identified as candidates for the reduction of surface recombination. Attention is given to methods developed for the deposition of heteroepitaxial compounds designed to block minority carrier transport to the Si solar cell surface without interfering with the majority carrier flow.
Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex.
Shiroishi, T; Hanzawa, N; Sagai, T; Ishiura, M; Gojobori, T; Steinmetz, M; Moriwaki, K
1990-01-01
The wm7 haplotype of the major histocompatibility complex (MHC), derived from the Japanese wild mouse Mus musculus molossinus, enhances recombination specific to female meiosis in the K/A beta interval of the MHC. We have mapped crossover points of fifteen independent recombinants from genetic crosses of the wm7 and laboratory haplotypes. Most of them were confined to a short segment of approximately 1 kilobase (kb) of DNA between the A beta 3 and A beta 2 genes, indicating the presence of a female-specific recombinational hotspot. Its location overlaps with a sex-independent hotspot previously identified in the Mus musculus castaneus CAS3 haplotype. We have cloned and sequenced DNA fragments surrounding the hotspot from the wm7 haplotype and the corresponding regions from the hotspot-negative B10.A and C57BL/10 strains. There is no significant difference between the sequences of these three strains, or between these and the published sequences of the CAS3 and C57BL/6 strains. However, a comparison of this A beta 3/A beta 2 hotspot with a previously characterized hotspot in the E beta gene revealed that they have a very similar molecular organization. Each hotspot consists of two elements, the consensus sequence of the mouse middle repetitive MT family and the tetrameric repeated sequences, which are separated by 1 kb of DNA.
van Kuppeveld, Frank J M; de Jong, Arjan; Dijkman, Henri B P M; Andino, Raul; Melchers, Willem J G
2002-11-15
Development of human cervical carcinomas is associated with infection by certain human papillomavirus (HPV) types. Thus, protection against HPV infection through vaccination may prevent development of cervical cancer. The purpose of this study was to investigate the possibility of using a poliovirus recombinant vector to induce immunity against HPV. A poliovirus recombinant was constructed which contained the complete coding sequence of the HPV 16 major capsid protein L1, between the P1 and P2 region of the poliovirus polyprotein. A replication-competent virus was obtained after transfection of the recombinant RNA into tissue culture cells. Electron microscopically examination of cells infected with the poliovirus-HPV L1 recombinant indicated that HPV 16 L1 self-assembles into virus-like particles. To investigate the immunological response in vivo, susceptible transgenic mice carrying the poliovirus receptor were infected with the recombinant poliovirus. In all mice a modest but consistent immune response against HPV 16 was observed. Based on these results, the potential for picornavirus-derived vectors in vaccine development against HPV infection is discussed.
Signatures of sex-antagonistic selection on recombining sex chromosomes.
Kirkpatrick, Mark; Guerrero, Rafael F
2014-06-01
Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. Copyright © 2014 by the Genetics Society of America.
Zhang, Chunyan; Zhu, Shanshan; Wei, Li; Yan, Xu; Wang, Jing; Quan, Rong; She, Ruiping; Hu, Fengjiao; Liu, Jue
2015-01-01
The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without adjuvant to BALB/c mice, the flagellin-Cap fusion protein elicited stronger PCV2-specific IgG antibody response, higher neutralizing antibody levels, milder histopathological changes and lower viremia, as well as higher secretion of cytokines such as TNF-α and IFN-γ that conferred better protection against virus challenge than those in the recombinant Cap alone-inoculated mice. These results suggest that the recombinant Cap protein when fused to flagellin could elicit better humoral and cellular immune responses against PCV2 infection in a mouse model, thereby acting as an attractive candidate vaccine for control of the PCV2-associated diseases. PMID:26070075
Mookerjee, Shona A; Sia, Elaine A
2006-03-20
The mechanisms that govern mutation avoidance in the mitochondrial genome, though believed to be numerous, are poorly understood. The identification of individual genes has implicated mismatch repair and several recombination pathways in maintaining the fidelity and structural stability of mitochondrial DNA. However, the majority of genes in these pathways have not been identified and the interactions between different pathways have not been extensively studied. Additionally, the multicopy presence of the mitochondrial genome affects the occurrence and persistence of mutant phenotypes, making mitochondrial DNA transmission and sorting important factors affecting mutation accumulation. We present new evidence that the putative recombination genes CCE1, DIN7, and MHR1 have overlapping function with the mismatch repair homolog MSH1 in point mutation avoidance and suppression of aberrant recombination events. In addition, we demonstrate a novel role for Msh1p in mtDNA transmission, a role not predicted by studies of its nuclear homologs.
NASA Astrophysics Data System (ADS)
Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard
1985-05-01
In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.
Tamošiūnas, Paulius Lukas; Petraitytė-Burneikienė, Rasa; Lasickienė, Rita; Sereika, Vilimas; Lelešius, Raimundas; Žvirblienė, Aurelija; Sasnauskas, Kęstutis
2014-01-01
Porcine parvovirus (PPV) is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs). Nine monoclonal antibodies (MAbs) against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance. PMID:25045718
Charlesworth, Deborah
2018-01-01
Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution. PMID:29783761
Ultrafast Recombination Dynamics in Dye-Sensitized SnO2/TiO2 Core/Shell Films.
Gish, Melissa K; Lapides, Alexander M; Brennaman, M Kyle; Templeton, Joseph L; Meyer, Thomas J; Papanikolas, John M
2016-12-15
Interfacial dynamics are investigated in SnO 2 /TiO 2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([Ru II (bpy) 2 (4,4'-(PO 3 H 2 ) 2 bpy)] 2+ , RuP) using transient absorption methods. Electron injection from the chromophore into the TiO 2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived charge-separated states (CSS) depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO 2 core and must tunnel through the TiO 2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of dye-sensitized photoelectrosynthesis cells (DSPECs).
Medhi, Darpan; Goldman, Alastair Sh; Lichten, Michael
2016-11-18
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1 -derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions.
Patil, Aarti; Orjuela-Sánchez, Pamela; da Silva-Nunes, Mônica; Ferreira, Marcelo U.
2010-01-01
The circumsporozoite protein (CSP) of Plasmodium vivax, a major target for malaria vaccine development, has immunodominant B-cell epitopes mapped to central nonapeptide repeat arrays. To determine whether rearrangements of repeat motifs during mitotic DNA replication of parasites create significant CSP diversity under conditions of low effective meiotic recombination rates, we examined csp alleles from sympatric P. vivax isolates systematically sampled from an area of low malaria endemicity in Brazil over a period of 14 months. Nine unique csp types, comprising six different nonapeptide repeats, were observed in 45 isolates analyzed. Identical or nearly identical repeats predominated in most arrays, consistent with their recent expansion. We found strong linkage disequilibrium at sites across the chromosome 8 segment flanking the csp locus, consistent with rare meiotic recombination in this region. We conclude that CSP repeat diversity may not be severely constrained by rare meiotic recombination in areas of low malaria endemicity. New repeat variants may be readily created by nonhomologous recombination even when meiotic recombination is rare, with potential implications for CSP-based vaccine development. PMID:20097310
Genetic diversity and recombination analysis of sweepoviruses from Brazil
2012-01-01
Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767
Papaneophytou, Christos P; Kontopidis, George
2014-02-01
The supply of many valuable proteins that have potential clinical or industrial use is often limited by their low natural availability. With the modern advances in genomics, proteomics and bioinformatics, the number of proteins being produced using recombinant techniques is exponentially increasing and seems to guarantee an unlimited supply of recombinant proteins. The demand of recombinant proteins has increased as more applications in several fields become a commercial reality. Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, producing soluble proteins in E. coli is still a major bottleneck for structural biology projects. One of the most challenging steps in any structural biology project is predicting which protein or protein fragment will express solubly and purify for crystallographic studies. The production of soluble and active proteins is influenced by several factors including expression host, fusion tag, induction temperature and time. Statistical designed experiments are gaining success in the production of recombinant protein because they provide information on variable interactions that escape the "one-factor-at-a-time" method. Here, we review the most important factors affecting the production of recombinant proteins in a soluble form. Moreover, we provide information about how the statistical design experiments can increase protein yield and purity as well as find conditions for crystal growth. Copyright © 2013 Elsevier Inc. All rights reserved.
Bolatti, Elisa M; Chouhy, Diego; Casal, Pablo E; Pérez, Germán R; Stella, Emma J; Sanchez, Adriana; Gorosito, Mario; Bussy, Ramón Fernandez; Giri, Adriana A
2016-08-01
Gammapapillomavirus (γ-PV) is a diverse and rapidly expanding genus, currently consisting of 79 fully characterized human PV (HPV) types. In this study, three novel types, HPV157, HPV158 and HPV205, obtained from healthy sun-exposed skin of two immunocompetent individuals, were amplified by the "Hanging droplet" long PCR technique, cloned, sequenced and characterized. HPV157, HPV158 and HPV205 genomes comprise 7154-bp, 7192-bp and 7298-bp, respectively, and contain four early (E1, E2, E6 and E7) and two late genes (L1 and L2). Phylogenetic analysis of the L1 ORF placed all novel types within the γ-PV genus: HPV157 was classified as a new member of species γ-12 while HPV158 and HPV205 belong to species γ-1. We then explored potential recombination events in genus γ-PV with the RDP4 program in a dataset of 74 viruses (71 HPV types with available full-length genomes and the 3 novel types). Two events, both located in the E1 ORF, met the inclusion criterion (p-values <0.05 with at least four methods) and persisted in different ORF combinations: an inter-species recombination in species γ-8 (major and minor parents: species γ-24 and γ-11, respectively), and an intra-species recombination in species γ-7 (recombinant strain: HPV170; major and minor parents: HPV-109 and HPV-149, respectively). These findings were confirmed by phylogenetic tree incongruence analysis. An additional incongruence was found in members of species γ-9 but it was not detected by the RDP4. This report expands our knowledge of the family Papillomaviridae and provides for the first time in silico evidence of recombination in genus γ-PV. Copyright © 2016 Elsevier B.V. All rights reserved.
Nimmo, G R; Steen, J A; Monecke, S; Ehricht, R; Slickers, P; Thomas, J C; Appleton, S; Goering, R V; Robinson, D A; Coombs, G W
2015-05-01
Typing of healthcare-associated methicillin-resistant Staphylococcus aureus (MRSA) from Australia in the 1970s revealed a novel clone, ST2249-MRSA-III (CC45), present from 1973 to 1979. This clone was present before the Australian epidemic caused by the recombinant clone, ST239-MRSA-III. This study aimed to characterize the genome of ST2249-MRSA-III to establish its relationship to other MRSA clones. DNA microarray analysis was conducted and a draft genome sequence of ST2249 was obtained. The recombinant structure of the ST2249 genome was revealed by comparisons to publicly available ST239 and ST45 genomes. Microarray analysis of genomic DNA of 13 ST2249 isolates showed gross similarities with the ST239 chromosome in a segment around the origin of replication and with ST45 for the remainder of the chromosome. Recombination breakpoints were precisely determined by the changing pattern of nucleotide polymorphisms in the genome sequence of ST2249 isolate SK1585 compared with ST239 and ST45. One breakpoint was identified to the right of oriC, between sites 1014 and 1065 of the gene D484_00045. Another was identified to the left of oriC, between sites 1185 and 1248 of D484_01632. These results indicate that ST2249 inherited approximately 35.3% of its chromosome from an ST239-like parent and 64.7% from an ST45-like parent. ST2249-MRSA-III resulted from a major recombination between parents that resemble ST239 and ST45. Although only limited Australian archival material is available, the oldest extant isolate of ST2249 predates the oldest Australian isolate of ST239 by 3 years. It is therefore plausible that these two recombinant clones were introduced into Australia separately. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Ilk, Nicola; Völlenkle, Christine; Egelseer, Eva M.; Breitwieser, Andreas; Sleytr, Uwe B.; Sára, Margit
2002-01-01
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices. PMID:12089001
Quantum changes in Helicobacter pylori gene expression accompany host-adaptation
Wise, Michael J.; Khosravi, Yalda; Seow, Shih-Wee; Amoyo, Arlaine A.; Pettersson, Sven; Peters, Fanny; Tay, Chin-Yen; Perkins, Timothy T.; Loke, Mun-Fai; Marshall, Barry J.; Vadivelu, Jamuna
2017-01-01
Abstract Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium. PMID:27803027
Gómez, Ricardo M; Vieira, Monica L; Schattner, Mirta; Malaver, Elisa; Watanabe, Monica M; Barbosa, Angela S; Abreu, Patricia A E; de Morais, Zenaide M; Cifuente, Javier O; Atzingen, Marina V; Oliveira, Tatiane R; Vasconcellos, Silvio A; Nascimento, Ana L T O
2008-01-01
Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L. interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L. interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauguière, Frédéric A. L., E-mail: frederic.mauguiere@bristol.ac.uk; Collins, Peter, E-mail: peter.collins@bristol.ac.uk; Wiggins, Stephen, E-mail: stephen.wiggins@mac.com
We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariantmore » manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.« less
Crystallization of Proteins from Crude Bovine Rod Outer Segments☆
Baker, Bo Y.; Gulati, Sahil; Shi, Wuxian; Wang, Benlian; Stewart, Phoebe L.; Palczewski, Krzysztof
2015-01-01
Obtaining protein crystals suitable for X-ray diffraction studies comprises the greatest challenge in the determination of protein crystal structures, especially for membrane proteins and protein complexes. Although high purity has been broadly accepted as one of the most significant requirements for protein crystallization, a recent study of the Escherichia coli proteome showed that many proteins have an inherent propensity to crystallize and do not require a highly homogeneous sample (Totir et al., 2012). As exemplified by RPE65 (Kiser, Golczak, Lodowski, Chance, & Palczewski, 2009), there also are cases of mammalian proteins crystallized from less purified samples. To test whether this phenomenon can be applied more broadly to the study of proteins from higher organisms, we investigated the protein crystallization profile of bovine rod outer segment (ROS) crude extracts. Interestingly, multiple protein crystals readily formed from such extracts, some of them diffracting to high resolution that allowed structural determination. A total of seven proteins were crystallized, one of which was a membrane protein. Successful crystallization of proteins from heterogeneous ROS extracts demonstrates that many mammalian proteins also have an intrinsic propensity to crystallize from complex biological mixtures. By providing an alternative approach to heterologous expression to achieve crystallization, this strategy could be useful for proteins and complexes that are difficult to purify or obtain by recombinant techniques. PMID:25950977
Sen, Bhaswati
2014-01-01
Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore–ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used 55Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. 55Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore–ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation. PMID:24307666
Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.
2015-01-01
Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107
Mouriño, Susana; Rodríguez-Ares, Isabel; Osorio, Carlos R.; Lemos, Manuel L.
2005-01-01
The ability to utilize heme compounds as iron sources was investigated in Vibrio anguillarum strains belonging to serotypes O1 to O10. All strains, regardless of their serotype or isolation origin could utilize hemin and hemoglobin as sole iron sources. Similarly, all of the isolates could bind hemin and Congo red, and this binding was mediated by cell envelope proteins. PCR and Southern hybridization were used to assay the occurrence of heme transport genes huvABCD, which have been previously described in serotype O1. Of 23 strains studied, two serotype O3 isolates proved negative for all huvABCD genes, whereas nine strains included in serotypes O2, O3, O4, O6, O7, and O10 tested negative for the outer membrane heme receptor gene huvA. A gene coding for a novel outer membrane heme receptor was cloned and characterized in a V. anguillarum serotype O3 strain lacking huvA. The new heme receptor, named HuvS, showed significant similarity to other outer membrane heme receptors described in Vibrionaceae, but little homology (39%) to HuvA. This heme receptor was present in 9 out of 11 of the V. anguillarum strains that tested negative for HuvA. Furthermore, complementation experiments demonstrated that HuvS could substitute for the HuvA function in Escherichia coli and V. anguillarum mutants. The huvS and huvA sequences alignment, as well as the analysis of their respective upstream and downstream DNA sequences, suggest that horizontal transfer and recombination might be responsible for generating this genetic diversity. PMID:16332832
NASA Astrophysics Data System (ADS)
Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.
2011-01-01
A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron based light sources. Work on other atomic species is in progress.
Kojima, Yoko; Kawahata, Takuya; Mori, Haruyo; Furubayashi, Keiichi; Taniguchi, Yasushi; Itoda, Ichiro; Komano, Jun
2015-07-01
The rare hepatitis B virus (HBV) genotype G (HBV/G) coinfects HIV-1-positive individuals along with HBV/A and generates recombinants. However, the circulation of HBV A/G recombinants remains poorly understood. This molecular epidemiologic study examined HBV A/G recombinants in Japanese HIV-1-positive men who have sex with men (MSM). Initially, blood specimens submitted for confirmatory tests of HIV infection in Osaka and Tokyo, Japan, from 2006 to 2013 were examined for HIV-1, and HIV-1-positive specimens were screened for HBV. Among 817 specimens from HIV-1-positive individuals, HBsAg was detected in 59 specimens; of these, HBV/Ae (alternatively A2), a subgenotype of HBV/A prevalent in Europe and North America, was identified in 70.2%, HBV/C in 17.5%, and HBV/G in 10.5%, and HBV/E in 1.8% according to the core gene sequence. The full-length genome analysis of HBV was performed on HBV/G-positive specimens because some HBV A/G recombinants were historically overlooked by genotyping based on a partial genome analysis. It revealed that five of the specimens contained novel Ae/G recombinants, the core gene of which had a high sequence similarity to HBV/G. Detailed analyses showed that novel recombinants were coinfected with HBV/Ae in a recombinant-dominant fashion. No major drug-resistant mutations were found in the newly identified HBV Ae/G recombinants. Some of the individuals asymptomatically coinfected with HIV/HBV suffered mild liver injury. This study demonstrated that novel Ae/G HBV recombinants were identified in Japanese HIV-1-positive MSM. The pathogenicity of novel HBV Ae/G recombinants should be examined in a future longitudinal study. Surveillance of such viruses in HIV-1-positive individuals should be emphasized.
Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie
2014-02-17
As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of recombination hotspots among individuals, opening a new avenue for motif finding. Tested on an established motif and simulated datasets, LDsplit shows promise to discover novel DNA motifs for meiotic recombination hotspots.
2014-01-01
Background As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Results Recently, an algorithm called “LDsplit” has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. Conclusions LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of recombination hotspots among individuals, opening a new avenue for motif finding. Tested on an established motif and simulated datasets, LDsplit shows promise to discover novel DNA motifs for meiotic recombination hotspots. PMID:24533858
Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H
2016-01-01
Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.
Bowhead whale, balaena mysticetus bibliography. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setzler-Hamilton, E.M.; Oliver, G.W.
1987-01-01
This report categorizes the research literature on bowhead whales according to major research topics, issues of concern to Outer Continental Shelf oil and gas development, and geographic areas. The report has an extensive cross index.
Adams, Maurice V.; John, C.B.; Kelly, R.F.; LaPointe, A.E.; Meurer, R.W.
1975-01-01
An important function of the Geological Survey is the evaluation and management of the mineral resources of the Outer Continental Shelf, particularly with respect to oil and gas, salt, and sulfur. Production of oil and gas from the Outer Continental Shelf of the United States has increased substantially over the past 20 years and represents an increasing percentage of total United States production. As discovery of major onshore production of oil and gas has become more difficult, the search has moved into the surrounding waters where submerged sedimentary formations are conducive to the accumulation of oil and gas. Increased energy demands of recent years have accelerated the pace of offshore operations with a corresponding improvement in technology as exploration and development have proceeded farther from shore and into deeper water. While improved technology and enforcement of more stringent regulations have made offshore operations safer, it is unrealistic to believe that completely accident-free operations can ever be achieved. Only slightly more than six percent of the world's continental terrace is adjacent to the United States, but less than one percent has been explored for oil and gas. Since the lead time for the development of offshore oil and gas resources can be as much as a decade, they do not provide an immediate energy supply but should be viewed in the light of a near-term source with a potential of becoming a medium-range source of supply pending the development of alternative energy sources. Revenues from the Outer Continental Shelf are deposited to the general fund of the United States Treasury. A major portion of these funds is allocated to the Land and Water Conservation Fund, the largest Federal grant-in-aid program of assistance to States, counties, and cities for the acquisition and development of public parks, open space, and recreation lands and water.
Liu, Hong-Mei; Zheng, Du-Ping; Zhang, Li-Bi; Oberste, M. Steven; Pallansch, Mark A.; Kew, Olen M.
2000-01-01
Type 1 wild-vaccine recombinant polioviruses were isolated from poliomyelitis patients in China from 1991 to 1993. We compared the sequences of 34 recombinant isolates over the 1,353-nucleotide (nt) genomic interval (nt 2480 to 3832) encoding the major capsid protein, VP1, and the protease, 2A. All recombinants had a 367-nt block of sequence (nt 3271 to 3637) derived from the Sabin 1 oral poliovirus vaccine strain spanning the 3′-terminal sequences of VP1 (115 nt) and the 5′ half of 2A (252 nt). The remaining VP1 sequences were closely (up to 99.5%) related to those of a major genotype of wild type 1 poliovirus endemic to China up to 1994. In contrast, the non-vaccine-derived sequences at the 3′ half of 2A were more distantly related (<90% nucleotide sequence match) to those of other contemporary wild polioviruses from China. The vaccine-derived sequences of the earliest (April 1991) isolates completely matched those of Sabin 1. Later isolates diverged from the early isolates primarily by accumulation of synonymous base substitutions (at a rate of ∼3.7 × 10−2 substitutions per synonymous site per year) over the entire VP1-2A interval. Distinct evolutionary lineages were found in different Chinese provinces. From the combined epidemiologic and evolutionary analyses, we propose that the recombinant virus arose during mixed infection of a single individual in northern China in early 1991 and that its progeny spread by multiple independent chains of transmission into some of the most populous areas of China within a year of the initiating infection. PMID:11070012
Zhao, Yun; He, Wei; Liu, Wei-Feng; Liu, Chun-Chun; Feng, Li-Kui; Sun, Lei; Yan, Yong-Bin; Hang, Hai-Ying
2012-01-01
The mechanism by which inclusion bodies form is still not well understood, partly because the dynamic processes of the inclusion body formation and its solubilization have hardly been investigated at an individual cell level, and so the important detailed information has not been acquired for the mechanism. In this study, we investigated the in vivo folding and aggregation of Aspergillus phoenicis β-d-galactosidase fused to a red fluorescence protein in individual Escherichia coli cells. The folding status and expression level of the recombinant β-d-galactosidase at an individual cell level was analyzed by flow cytometry in combination with transmission electron microscopy and Western blotting. We found that individual E. coli cells fell into two distinct states, one containing only inclusion bodies accompanied with low galactosidase activity and the other containing the recombinant soluble galactosidase accompanied with high galactosidase activity. The majority of the E. coli cells in the later state possessed no inclusion bodies. The two states of the cells were shifted to a cell state with high enzyme activity by culturing the cells in isopropyl 1-thio-β-d-galactopyranoside-free medium after an initial protein expression induction in isopropyl 1-thio-β-d-galactopyranoside-containing medium. This shift of the cell population status took place without the level change of the β-d-galactosidase protein in individual cells, indicating that the factor(s) besides the crowdedness of the recombinant protein play a major role in the cell state transition. These results shed new light on the mechanism of inclusion body formation and will facilitate the development of new strategies in improving recombinant protein quality. PMID:22303013
Yasumura, Yuko; Ishida, Atsushi
2011-01-01
We examined temporal changes in the amount of nitrogenous compounds in leaves from the outer and inner parts of the crown of Quercus myrsinaefolia growing in a seasonal climate. Throughout the leaf life span, metabolic protein and Rubisco content closely correlated with total nitrogen content, while structural protein content was relatively stable after full leaf expansion. Chlorophyll content was affected by shading as well as total nitrogen content in outer leaves that were overtopped by new shoots in the second year. Outer leaves showed a large seasonal variation in photosynthetic nitrogen-use efficiency (PNUE; the light-saturated photosynthetic rate per unit leaf nitrogen content) during the first year of their life, with PNUE decreasing from the peak in summer towards winter. Outer and inner leaves both showed age-related decline in PNUE in the second year. There were no such drastic changes in leaf nitrogen partitioning that could explain seasonal and yearly variations in PNUE. Nitrogen resorption occurred in overwintering leaves in spring. Metabolic protein explained the majority of nitrogen being resorbed, whereas structural protein, which was low in degradability, contributed little to nitrogen resorption.
Muslin, Claire; Joffret, Marie-Line; Pelletier, Isabelle; Blondel, Bruno; Delpeyroux, Francis
2015-01-01
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species' C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5' untranslated region (5' UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5' UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5' UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5' UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5' UTR. By contrast to the recombination of the cVDPV with the 5' UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5' UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages.
Temporal evolution and potential recombination events in PRRSV strains of Sonora Mexico.
Burgara-Estrella, Alexel; Reséndiz-Sandoval, Mónica; Cortey, Martí; Mateu, Enric; Hernández, Jesús
2014-12-05
The aim of this work was to examine the evolution and potential existence of intragenic recombinations of PRRSV strains in Sonora, Mexico. In this study, 142 serum samples from farms located in Hermosillo (HMO), Cd. Obregón (OBR) and Navojoa (NAV) were sequenced from 2002 to 2012. Ninety non-redundant sequences of ORF5 gene were analyzed for temporal and spatial relationships among strains and the probability of a recombination event. The phylogenetic analysis showed 30 strains grouped into eight groups; 16 strains were closely related among the farms, while 14 were un-related. The first strain in this study was observed in 2002. A number of farms were infected with one or more strains, and in the majority of the strains, the virus was replaced by a new strain. The recombination analysis suggested the presence of four viruses as products of a recombination event; in one case, a virus close related with MLV vaccine was involved as the parent virus. This work shows the evolution of PRRSV in the field, the viral dissemination between farms and the potential recombination events. Our data suggest that PRRSV in Sonora has a specific genetic nature compared with other PRRSV. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, Christoper; Stajich, Jason; Jacobson, David
2011-05-16
A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated withmore » the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.« less
1994-01-01
HSV envelopment and egress . Gross structures of the genomes of tbe buman herpesviruses . Layout of genes in the genome of HSV - 1 ........... . A... HSV - 1 capsid maturation . Seletion of recombinant vaccinia viruses Protein fusion and purification system . Generation of tbe recombinant plasmid...with purified HSV -I virions Effect of detergent treatment on the association of the UL37 protein with purified HSV - 1 vIrIons
Fairley, Stacie J; Singh, Shree R; Yilma, Abebayehu N; Waffo, Alain B; Subbarayan, Praseetha; Dixit, Saurabh; Taha, Murtada A; Cambridge, Chino D; Dennis, Vida A
2013-01-01
We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide) potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice, which are desirable prerequisites for a C. trachomatis candidate nanovaccine. Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta potential (-14.30 mV), apparent spherical smooth morphology, and continuous slow release pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40 (Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized with rMOMP in Freund's adjuvant had only a four-fold higher Th1 than Th2 antibody titer, suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly desirable candidate nanovaccine against C. trachomatis.
Atzingen, Marina V; Gonçales, Amane P; de Morais, Zenaide M; Araújo, Eduardo R; De Brito, Thales; Vasconcellos, Silvio A; Nascimento, Ana L T O
2010-09-01
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of Leptospira interrogans serovar Copenhageni together with bioinformatic tools allow us to search for novel antigen candidates suitable for improved vaccines against leptospirosis. This study focused on three genes encoding conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from six predominant pathogenic serovars in Brazil. The genes were cloned and expressed in Escherichia coli strain BL21-SI using the expression vector pDEST17. The recombinant proteins tagged with N-terminal 6xHis were purified by metal-charged chromatography. The proteins were recognized by antibodies present in sera from hamsters that were experimentally infected. Immunization of hamsters followed by challenge with a lethal dose of a virulent strain of Leptospira showed that the recombinant protein rLIC12730 afforded statistically significant protection to animals (44 %), followed by rLIC10494 (40 %) and rLIC12922 (30 %). Immunization with these proteins produced an increase in antibody titres during subsequent boosters, suggesting the involvement of a T-helper 2 response. Although more studies are needed, these data suggest that rLIC12730 and rLIC10494 are promising candidates for a multivalent vaccine for the prevention of leptospirosis.
Du, Z Q; Wang, J Y
2015-10-27
Brucella, an intracellular parasite that infects some livestock and humans, can damage or destroy the reproductive system of livestock. The syndrome is referred to as brucellosis and often occurs in pastoral areas; it is contagious from livestock to humans. In this study, the intact Brucella suis outer membrane protein 31 (omp31) gene was cloned, recombinantly expressed, and examined as a subunit vaccine candidate. The intact Brucella lumazine synthase (bls) gene was cloned and recombinantly expressed to study polymerization function in vitro. Non-reducing gel electrophoresis showed that rBs-BLS existed in different forms in vitro, including as a dimer and a pentamer. An enzyme-linked immunosorbent assay result showed that rOmp31 protein could induce production of an antibody in rabbits. However, the rOmp31-BLS fusion protein could elicit a much higher antibody titer in rabbits; this construct involved fusion of the Omp31 molecule with the BLS molecule. Our results indicate that Omp31 is involved in immune stimulation, while BLS has a polymerizing function based on rOmp31-BLS fusion protein immunogenicity. These data suggest that Omp31 is an ideal subunit vaccine candidate and that the BLS molecule is a favorable transport vector for antigenic proteins.
Golshani, Maryam; Rafati, Sima; Dashti, Amir; Gholami, Elham; Siadat, Seyed Davar; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid
2015-06-01
Brucellosis is the most common bacterial zoonotic disease worldwide and no vaccine is available for the prevention of human brucellosis. In humans, brucellosis is mostly caused by Brucella melitensis and Brucella abortus. The Outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens. In the present study, we evaluated the humoral and cellular immune responses induced by a fusion protein designed based on the Truncated form of Omp31 (TOmp31) and L7-L12 antigens. Vaccination of BALB/c mice with the recombinant fusion protein (rL7/L12-TOmp31) provided the significant protection level against B. melitensis and B. abortus challenge. Moreover, rL7/L12-TOmp31 elicited a strong specific IgG response (higher IgG2a titers) and significant IFN-γ/IL2 production and T-cell proliferation was also observed. The T helper1 (Th1) oriented response persisted for 12 weeks after the first immunization. The rL7/L12-TOmp31 could be a new potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Breau, Cathy; Cameron, D William; Desjardins, Marc; Lee, B Craig
2012-01-31
Chancroid, a sexually transmitted genital ulcer disease caused by the Gram-negative bacterium Haemophilus ducreyi, facilitates the acquisition and transmission of HIV. An effective vaccine against chancroid has not been developed. In this preliminary study, the gene encoding the H. ducreyi outer membrane hemoglobin receptor HgbA was cloned into the plasmid pTETnir15. The recombinant construct was introduced into the attenuated Salmonella typhimurium SL3261 strain and stable expression was induced in vitro under anaerobic conditions. The vaccine strain was delivered into the temperature-dependent rabbit model of chancroid by intragastric immunization as a single dose, or as three doses administered at two-weekly intervals. No specific antibody to HgbA was elicited after either dose schedule. Although the plasmid vector survived in vivo passage for up to 15 days following single oral challenge, HgbA expression was restricted to plasmid isolates recovered one day after immunization. Rabbits inoculated with the 3-dose booster regimen achieved no protective immunity from homologous challenge. These results emphasize that refinements in plasmid design to enhance a durable heterologous protein expression are necessary for the development of a live oral vaccine against chancroid. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Miao; Li, Chunling; Song, Shuai; Kang, Huahua; Yang, Dongxia; Li, Guoqing
2016-04-27
Haemophilus parasuis is the causative agent of Glässer's disease, which causes high morbidity and mortality in piglets, leading to severe economic losses. The lack of a commercial vaccine against a broad spectrum of strains has limited the disease control. H. parasuis outer membrane proteins (OMPs) are potentially essential components for vaccine formulation. In this study, seven putative OMPs were selected from the annotated H. parasuis serovar 5 genome; they were predicted by bioinformatics and annotated as potential virulence-related factors. These proteins were cloned, expressed, and purified as His-tagged proteins. Antigenicity of the candidate proteins was assessed using Western blotting with convalescent sera against H. parasuis serovar 5. The immunogenicity of the seven OMPs was assessed in a guinea pig model. Except VacJ, all the other six recombinant proteins elicited a detectable antibody response. Antisera against four of the selected proteins effectively killed the bacteria in vitro. Three proteins (Omp26, VacJ, and HAPS_0742) were found to confer significant protection against challenge with a lethal dose of H. parasuis in a guinea pig model. The results suggest that these three proteins have a strong potential to be vaccine candidates against Glässer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Birth and death of genes linked to chromosomal inversion
Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo
2011-01-01
The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362
Yebra, Gonzalo; de Mulder, Miguel; Martín, Leticia; Rodríguez, Carmen; Labarga, Pablo; Viciana, Isabel; Berenguer, Juan; Alemán, María Remedios; Pineda, Juan Antonio; García, Federico
2012-01-01
HIV-1 group M is classified into 9 subtypes, as well as recombinants favored by coinfection and superinfection events with different variants. Although HIV-1 subtype B is predominant in Europe, intersubtype recombinants are increasing in prevalence and complexity. In this study, phylogenetic analyses of pol sequences were performed to detect the HIV-1 circulating and unique recombinant forms (CRFs and URFs, respectively) in a Spanish cohort of antiretroviral treatment-naïve HIV-infected patients included in the Research Network on HIV/AIDS (CoRIS). Bootscanning and other methods were used to define complex recombinants not assigned to any subtype or CRF. A total of 670 available HIV-1 pol sequences from different patients were collected, of which 588 (87.8%) were assigned to HIV-1 subtype B and 82 (12.2%) to HIV-1 non-B variants. Recombinants caused the majority (71.9%) of HIV-1 non-B infections and were found in 8.8% of CoRIS patients. Eleven URFs (accounting for 13.4% of HIV-1 non-B infections), presenting complex mosaic patterns, were detected. Among them, 10 harbored subtype B fragments. Four of the 11 URFs were found in Spanish natives. A cluster of three B/CRF02_AG recombinants was detected. We conclude that complex variants, including unique recombinant forms, are being introduced into Spain through both immigrants and natives. An increase in the frequency of mosaic viruses, reflecting the increasing heterogeneity of the HIV epidemic in our country, is expected. PMID:22162552
Yebra, Gonzalo; de Mulder, Miguel; Martín, Leticia; Rodríguez, Carmen; Labarga, Pablo; Viciana, Isabel; Berenguer, Juan; Alemán, María Remedios; Pineda, Juan Antonio; García, Federico; Holguín, Africa
2012-02-01
HIV-1 group M is classified into 9 subtypes, as well as recombinants favored by coinfection and superinfection events with different variants. Although HIV-1 subtype B is predominant in Europe, intersubtype recombinants are increasing in prevalence and complexity. In this study, phylogenetic analyses of pol sequences were performed to detect the HIV-1 circulating and unique recombinant forms (CRFs and URFs, respectively) in a Spanish cohort of antiretroviral treatment-naïve HIV-infected patients included in the Research Network on HIV/AIDS (CoRIS). Bootscanning and other methods were used to define complex recombinants not assigned to any subtype or CRF. A total of 670 available HIV-1 pol sequences from different patients were collected, of which 588 (87.8%) were assigned to HIV-1 subtype B and 82 (12.2%) to HIV-1 non-B variants. Recombinants caused the majority (71.9%) of HIV-1 non-B infections and were found in 8.8% of CoRIS patients. Eleven URFs (accounting for 13.4% of HIV-1 non-B infections), presenting complex mosaic patterns, were detected. Among them, 10 harbored subtype B fragments. Four of the 11 URFs were found in Spanish natives. A cluster of three B/CRF02_AG recombinants was detected. We conclude that complex variants, including unique recombinant forms, are being introduced into Spain through both immigrants and natives. An increase in the frequency of mosaic viruses, reflecting the increasing heterogeneity of the HIV epidemic in our country, is expected.
Heterogeneous recombination among Hepatitis B virus genotypes.
Castelhano, Nadine; Araujo, Natalia M; Arenas, Miguel
2017-10-01
The rapid evolution of Hepatitis B virus (HBV) through both evolutionary forces, mutation and recombination, allows this virus to generate a large variety of adapted variants at both intra and inter-host levels. It can, for instance, generate drug resistance or the diverse viral genotypes that currently exist in the HBV epidemics. Concerning the latter, it is known that recombination played a major role in the emergence and genetic diversification of novel genotypes. In this regard, the quantification of viral recombination in each genotype can provide relevant information to devise expectations about the evolutionary trends of the epidemic. Here we measured the amount of this evolutionary force by estimating global and local recombination rates in >4700 HBV complete genome sequences corresponding to nine (A to I) HBV genotypes. Counterintuitively, we found that genotype E presents extremely high levels of recombination, followed by genotypes B and C. On the other hand, genotype G presents the lowest level, where recombination is almost negligible. We discuss these findings in the light of known characteristics of these genotypes. Additionally, we present a phylogenetic network to depict the evolutionary history of the studied HBV genotypes. This network clearly classified all genotypes into specific groups and indicated that diverse pairs of genotypes are derived from a common ancestor (i.e., C-I, D-E and, F-H) although still the origin of this virus presented large uncertainty. Altogether we conclude that the amount of observed recombination is heterogeneous among HBV genotypes and that this heterogeneity can influence on the future expansion of the epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.
Hidden Charge States in Soft-X-Ray Laser-Produced Nanoplasmas Revealed by Fluorescence Spectroscopy
NASA Astrophysics Data System (ADS)
Schroedter, L.; Müller, M.; Kickermann, A.; Przystawik, A.; Toleikis, S.; Adolph, M.; Flückiger, L.; Gorkhover, T.; Nösel, L.; Krikunova, M.; Oelze, T.; Ovcharenko, Y.; Rupp, D.; Sauppe, M.; Wolter, D.; Schorb, S.; Bostedt, C.; Möller, T.; Laarmann, T.
2014-05-01
Highly charged ions are formed in the center of composite clusters by strong free-electron laser pulses and they emit fluorescence on a femtosecond time scale before competing recombination leads to neutralization of the nanoplasma core. In contrast to mass spectrometry that detects remnants of the interaction, fluorescence in the extreme ultraviolet spectral range provides fingerprints of transient states of high energy density matter. Spectra from clusters consisting of a xenon core and a surrounding argon shell show that a small fraction of the fluorescence signal comes from multiply charged xenon ions in the cluster core. Initially, these ions are as highly charged as the ions in the outer shells of pure xenon clusters with charge states up to at least 11+.
Alves, Nathan J; Moore, Martin; Johnson, Brandy J; Dean, Scott N; Turner, Kendrick B; Medintz, Igor L; Walper, Scott A
2018-05-09
While technologies for the remediation of chemical contaminants continue to emerge, growing interest in green technologies has led researchers to explore natural catalytic mechanisms derived from microbial species. One such method, enzymatic degradation, offers an alternative to harsh chemical catalysts and resins. Recombinant enzymes, however, are often too labile or show limited activity when challenged with nonideal environmental conditions that may vary in salinity, pH, or other physical properties. Here, we demonstrate how phosphotriesterase encapsulated in a bacterial outer membrane vesicle can be used to degrade the organophosphate chemical warfare agent (CWA) simulant paraoxon in environmental water samples. We also carried out remediation assays on solid surfaces, including glass, painted metal, and fabric, that were selected as representative materials, which could potentially be contaminated with a CWA.
Effect of the Edge Radial Electric Field on Neutral Particle Measurements
NASA Astrophysics Data System (ADS)
Guldi, C.; Heidbrink, W. W.; Beitzel, T. A.; Burrell, K. H.
2000-10-01
Neutral particle measurements in ASDEX were originally interpreted as evidence that the edge radial electric field Er changes gradually at the L-H transition.(W. Herrmann et al.), Phys. Rev. Lett. 75 (1995) 4401. We have relocated an analyzer to an orientation similar to the ASDEX analyzer: at the outer midplane viewing perpendicular ions midway between toroidal field coils. The electric field is measured by charge-exchange recombination and motional stark effect diagnostics. The passive charge exchange signal from the relocated analyzer is usually undetectable but, in discharges with large E_r, the flux of 5 keV neutrals can resemble ASDEX signals. The combined effects of ripple trapping and E_r× B_φ drifts(J.A. Heikkinen et al.), Plasma Phys. Contr. Fusion 40 (1998) 679. may explain the results.
Evaluation of pile repair splice design.
DOT National Transportation Integrated Search
2015-12-01
The Oregon Department of Transportation (ODOT) Major Bridge Maintenance Engineer has proposed an in-house pile repair scheme for decayed piles. This repair scheme involves removing decayed area within the pile leaving a 2 outer shell, filling it u...
Isolation and characterization of major histocompatibility complex class II B genes in cranes.
Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi
2015-11-01
In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.
Nick McElhinny, Stephanie A; Ramsden, Dale A
2004-08-01
The nonhomologous end-joining pathway is a major means for repairing double-strand breaks (DSBs) in all mitotic cell types. This repair pathway is also the only efficient means for resolving DSB intermediates in V(D)J recombination, a lymphocyte-specific genome rearrangement required for assembly of antigen receptors. A role for polymerases in end-joining has been well established. They are a major factor in determining the character of repair junctions but, in contrast to 'core' end-joining factors, typically appear to have a subtle impact on the efficiency of end-joining. Recent work implicates several members of the Pol X family in end-joining and suggests surprising complexity in the control of how these different polymerases are employed in this pathway.
NASA Technical Reports Server (NTRS)
Russell, E. E.; Chandos, R. A.; Kodak, J. C.; Pellicori, S. F.; Tomasko, M. G.
1974-01-01
The constraints that are imposed on the Outer Planet Missions (OPM) imager design are of critical importance. Imager system modeling analyses define important parameters and systematic means for trade-offs applied to specific Jupiter orbiter missions. Possible image sequence plans for Jupiter missions are discussed in detail. Considered is a series of orbits that allow repeated near encounters with three of the Jovian satellites. The data handling involved in the image processing is discussed, and it is shown that only minimal processing is required for the majority of images for a Jupiter orbiter mission.
Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.
OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp.
Fernandes, Luis G. V.; Vieira, Monica L.; Kirchgatter, Karin; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Romero, Eliete C.
2012-01-01
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection. PMID:22802342
OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp.
Fernandes, Luis G V; Vieira, Monica L; Kirchgatter, Karin; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O
2012-10-01
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.
Yin, Ji-Yuan; Guo, Chao-Qun; Wang, Zi; Yu, Mei-Ling; Gao, Shuai; Bukhari, Syed M; Tang, Li-Jie; Xu, Yi-Gang; Li, Yi-Jing
2016-11-01
Using two-step plasmid integration in the presence of 5-fluorouracil (5-FU), we developed a stable and markerless Lactobacillus casei strain for vaccine antigen expression. The upp of L. casei, which encodes uracil phosphoribosyltransferase (UPRTase), was used as a counterselection marker. We employed the Δupp isogenic mutant, which is resistant to 5-FU, as host and a temperature-sensitive suicide plasmid bearing upp expression cassette as counterselectable integration vector. Extrachromosomal expression of UPRTase complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. The resultant genotype can either be wild type or recombinant. The efficacy of the system was demonstrated by insertion and expression of porcine rotavirus (PRV) VP4. To improve VP4 expression, we analyzed L. casei transcriptional profiles and selected the constitutive highly expressed enolase gene (eno). The VP4 inserted after the eno termination codon were screened in the presence of 5-FU. Using genomic PCR amplification, we confirmed that VP4 was successfully integrated and stably inherited for at least 50 generations. Western blot demonstrated that VP4 was steadily expressed in medium with different carbohydrates. RT-qPCR and ELISA analysis showed that VP4 expression from the chromosomal location was similar to that achieved by a plasmid expression system. Applying the recombinant strain to immunize BALB/c mice via oral administration revealed that the VP4-expressing L. casei could induce both specific local and systemic humoral immune responses in mice. Overall, the improved gene replacement system represents an efficient method for chromosome recombination in L. casei and provides a safe tool for vaccine production.
Cassataro, Juliana; Pasquevich, Karina; Bruno, Laura; Wallach, Jorge C.; Fossati, Carlos A.; Baldi, Pablo C.
2004-01-01
Group 3 of outer membrane proteins (OMPs) of Brucella includes Omp25 and Omp31, which share 34% identity. Omp25 is highly conserved in Brucella species, and Omp31 is present in all Brucella species, except Brucella abortus. Antibodies to Brucella melitensis Omp31 have been sought only in infected sheep, and Western blotting of sera from infected sheep did not reveal anti-Omp31 reactivity. We obtained recombinant purified Omp31 (B. melitensis) and tested its recognition by sera from humans and animals suffering from brucellosis by an indirect enzyme-linked immunosorbent assay (ELISA). Serum samples from 74 patients, 57 sheep, and 47 dogs were analyzed; brucellosis was confirmed by bacteriological isolation in all ovine and canine cases and 31 human cases of brucellosis. Thirty-five patients (47%) were positive for antibodies to Omp31, including seven cases of Brucella suis infection, two cases of B. abortus infection, and three cases of B. melitensis infection. Of 39 sheep naturally infected with B. melitensis (biovars 1 and 3), 23 (59%) were positive for antibodies to Omp31. Anti-Omp31 antibodies were also detected in 12 of 18 rams (67%) in which Brucella ovis was isolated from semen. Antibodies to Omp31 were also found in 41 (87%) of the 47 dogs, including 13 with recent infection. These results suggest that an indirect ELISA using recombinant purified Omp31 from B. melitensis would be of limited value for the diagnosis of human and animal brucellosis. Nevertheless, the potential usefulness of this antigen in combination with other recombinant proteins from Brucella should not be dismissed. PMID:14715555
NASA Technical Reports Server (NTRS)
Hora, Joseph L.; Latter, William B.
1994-01-01
High-resolution near-infrared images and moderate resolution spectra were obtained of the bipolar nebulae M2-9 and AFGL 2688. The ability to spatially and spectrally resolve the various components of the nebulae has proved to be important in determining their physical structure and characteristics. In M2-9, the lobes are found to have a double-shell structure. The inner shell is dominated by emission from hydrogen recombination lines, and the outer shell is primarily emission from H2 lines in teh 2-2.5 micron region. Analysis of H2 line ratios indicates that the H2 emission is radiatively excited. A well-resolved photodissociation region is observed in the lobes. The spectrum of the central source is dominated by H recombination lines and a strong continuum rising toward longer wavelengths consistent with a T = 795 K blackbody. Also present are lines of He I and Fe II. In contrast, the N knot and E lobe of M2-9 show little continuum emission. The N knot spectrum consists of lines of (Fe II) and hydrogen recombination lines. In AGFL 2688, the emission from the bright lobes is mainly continuum reflected from the central star. Several molecular features from C2 and CN are present. In the extreme end of the N lobe and in the E equatorial region, the emission is dominated by lines of H2 in the 2-2.5 region. The observed H2 line ratios indicate that the emission is collisionally excited, with an excitation temperature T(sub ex) approixmately = 1600 +/- 100 K.
Aissa, Nejla; Mayer, Noémie; Bert, Fréderic; Labia, Roger; Lozniewski, Alain; Nicolas-Chanoine, Marie-Hélène
2016-01-01
So far, two types of mechanism are known to be involved in carbapenem non-susceptibility of Escherichia coli clinical isolates: reduced outer membrane permeability associated with production of ESBLs and/or overproduction of class C β-lactamases; and production of carbapenemases. Non-susceptibility to only imipenem observed in two clinical isolates suggested a new mechanism, described in the present study. The ST was determined for the two isolates of E. coli (strains LSNy and VSBj), and their chromosomal region encoding the penicillin-binding domain of PBP2 was amplified, sequenced and then used for recombination experiments in E. coli K12 C600. Antibiotic MICs were determined using the Etest method. Strains LSNy and VSBj, which displayed ST23 and ST345, respectively, showed amino acid substitutions in their PBP2 penicillin-binding domain. Substitution Ala388Ser located in motif 2 (SXD) was common to the two strains. Two additional substitutions (Ala488Thr and Leu573Val) located outside the two other motifs were identified in strain LSNy, whereas another one (Thr331Pro) located in motif 1 was identified in strain VSBj. Recombination experiments to reproduce non-susceptibility to imipenem in E. coli K12 C600 were not successful when only the common substitution was transferred, whereas recombination with DNA fragments including either the three substitutions (strain LSNy) or the two substitutions (strain VSBj) were successful. Substitution of amino acids in the penicillin-binding domain of PBP2 is a new mechanism by which E. coli clinical isolates specifically resist imipenem. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H
2016-07-03
Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally. We identified recombination breakpoints corresponding to two distinct recombination events within W cc11: A 8.4-kb recombinant region likely acquired from W cc22 including the sialic acid/glycosyl-transferase gene, csw resulted in a C→W change in capsular phenotype and a 13.7-kb recombinant segment likely acquired from Y cc23 lineage includes 4.5 kb of cps genes and 8.2 kb downstream of the cps cluster resulting in allelic changes in capsule translocation genes. A vast majority of W cc11 strains (497/524, 94.8%) retain both recombination events as evidenced by sharing identical or very closely related capsular allelic profiles. These data suggest that the W cc11 capsular switch involved two separate recombination events and that current global W cc11 meningococcal disease is caused by strains bearing this mosaic capsular switch. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A Multi-Omics Analysis of Recombinant Protein Production in Hek293 Cells
Dietmair, Stefanie; Hodson, Mark P.; Quek, Lake-Ee; Timmins, Nicholas E.; Gray, Peter; Nielsen, Lars K.
2012-01-01
Hek293 cells are the predominant hosts for transient expression of recombinant proteins and are used for stable expression of proteins where post-translational modifications performed by CHO cells are inadequate. Nevertheless, there is little information available on the key cellular features underpinning recombinant protein production in Hek293 cells. To improve our understanding of recombinant protein production in Hek293 cells and identify targets for the engineering of an improved host cell line, we have compared a stable, recombinant protein producing Hek293 cell line and its parental cell line using a combination of transcriptomics, metabolomics and fluxomics. Producer cultures consumed less glucose than non-producer cultures while achieving the same growth rate, despite the additional burden of recombinant protein production. Surprisingly, there was no indication that producer cultures compensated for the reduction in glycolytic energy by increasing the efficiency of glucose utilization or increasing glutamine consumption. In contrast, glutamine consumption was lower and the majority of genes involved in oxidative phosphorylation were downregulated in producer cultures. We observed an overall downregulation of a large number of genes associated with broad cellular functions (e.g., cell growth and proliferation) in producer cultures, and therefore speculate that a broad adaptation of the cellular network freed up resources for recombinant protein production while maintaining the same growth rate. Increased abundance of genes associated with endoplasmic reticulum stress indicated a possible bottleneck at the point of protein folding and assembly. PMID:22937046
NASA Astrophysics Data System (ADS)
Tai, Kong Fai; Kamada, Rui; Yagioka, Takeshi; Kato, Takuya; Sugimoto, Hiroki
2017-08-01
Certified efficiency of 22.3% has been achieved for Cu(In,Ga)(Se,S)2 solar cell. Compared to our previous record cell with 20.9% efficiency, the major breakthrough is due to the increased V oc, benefited from potassium treatment. A lower reverse saturation current and a longer carrier collection length deduced from electron-beam induced current indicate that the degree of carrier recombination at the heterojunction and depletion region for the 22.3% cell is lower. Further characterizations (capacitance-voltage profiling, temperature-dependent V oc, Suns-V oc) and analysis indicate that the recombination coefficients at all regions were reduced, especially for the interface and depletion regions. Device simulation was performed assuming varying defect densities to model the current-voltage curve for the 22.3% cell. The best model was also used to estimate the achievable V oc if defect densities were further reduced. Furthermore, by using higher bandgap Cd-free buffer layers, a higher J sc was achieved which gives an in-house solar cell efficiency of 22.8%. Recombination analysis on the 22.8% cell indicates that the interface recombination is further reduced, but the recombination coefficients at the depletion region was higher, pointing out that further improvement on the depletion region recombination could help to achieve a higher V oc and therefore an efficiency beyond 23%.
Mitochondrial Recombination and Introgression during Speciation by Hybridization.
Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R
2017-08-01
Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2013-01-01
Background Phage-encoded serine integrases, such as φC31 integrase, are widely used for genome engineering. Fifteen such integrases have been described but their utility for genome engineering has not been compared in uniform assays. Results We have compared fifteen serine integrases for their utility for DNA manipulations in mammalian cells after first demonstrating that all were functional in E. coli. Chromosomal recombination reporters were used to show that seven integrases were active on chromosomally integrated DNA in human fibroblasts and mouse embryonic stem cells. Five of the remaining eight enzymes were active on extra-chromosomal substrates thereby demonstrating that the ability to mediate extra-chromosomal recombination is no guide to ability to mediate site-specific recombination on integrated DNA. All the integrases that were active on integrated DNA also promoted DNA integration reactions that were not mediated through conservative site-specific recombination or damaged the recombination sites but the extent of these aberrant reactions varied over at least an order of magnitude. Bxb1 integrase yielded approximately two-fold more recombinants and displayed about two fold less damage to the recombination sites than the next best recombinase; φC31 integrase. Conclusions We conclude that the Bxb1 and φC31 integrases are the reagents of choice for genome engineering in vertebrate cells and that DNA damage repair is a major limitation upon the utility of this class of site-specific recombinase. PMID:24139482
Jegouic, Sophie; Joffret, Marie-Line; Blanchard, Claire; Riquet, Franck B.; Perret, Céline; Pelletier, Isabelle; Colbere-Garapin, Florence; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis
2009-01-01
Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence. PMID:19412342
The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.
Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M
1997-09-01
Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.
[Analysis of the 4th generation outer space bred Angelica dahurica by FTIR spectroscopy].
Zhu, Yan-ying; Wu, Peng-le; Liu, Mei-yi; Wang, Zhi-zhou; Guo, Xi-hua; Guan, Ying
2012-03-01
The major components of the 4th generation outer space bred angelica and the ground group were determined and analyzed by Fourier transform infrared spectroscopy (FTIR) and second derivative spectrum, considering the large mutation of the plants with space mutagenesis. The results show that the content of the coumarin (1741 cm(-1)), which is the main active components of the space angelica dahurica increased, and the content of the protein (1 459, 1 419 cm(-1)) and the fat (930 cm(-1)) increased slightly, whereas the content of the starch and the dietary fiber reduced drastically. There are obvious differences between the peak values of the second derivative spectra of the plants, revealing that the outer space angelica dahurica contained amine component at 1 279 cm(-1). Space mutation breeding is favor of breeding angelica with better idiosyncrasy.
Ultra high performance connectors for power transmission applications
Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao
2014-03-04
Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.
Molecular cloning and expression in mammalian cells of ricin B chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, M.
1987-01-01
In these studies, the cDNA encoding the B chain of ricin has been cloned and expressed in monkey kidney COS-M6 cells. The recombinant B chain was detected by labeling the transfected cells with {sup 35}S-methionine and {sup 35}S-cysteine and demonstrating secretion of a protein with a Mr of 30-32,000 which was not present in the medium of mock-transfected COS-M6 cells. This protein was specifically immunoprecipitated by an anti-ricin or anti-B chain antibody. The amount of recombinant B chain secreted by the COS-M6 cells was determined by radioimmunoassay to be 1-10 ng/ml of media. Virtually all the recombinant B chain formedmore » active ricin when mixed with native A chain; it could also bind as effectively as native B chain to the galactose-containing glycoprotein, asialofetuin. These results indicate that the vast majority of recombinant B chains secreted into the medium of the COS-M6 cells retain biological function.« less
Gauci, Charles; Jayashi, César; Lightowlers, Marshall W
2013-01-01
Taenia solium is a zoonotic parasite that causes cysticercosis. The parasite is a major cause of human disease in impoverished communities where it is transmitted to humans from pigs which act as intermediate hosts. Vaccination of pigs to prevent transmission of T. solium to humans is an approach that has been investigated to control the disease. A recombinant vaccine antigen, TSOL18, has been remarkably successful at reducing infection of pigs with T. solium in several experimental challenge trials. The vaccine has been shown to eliminate transmission of naturally acquired T. solium in a field trial conducted in Africa. We recently reported that the vaccine was also effective in a field trial conducted in Peru. The TSOL18 recombinant antigen for each of these trials has been produced by expression in Escherichia coli. Here we discuss research that has been undertaken on the TSOL18 antigen and related antigens with a focus on improved methods of preparation of recombinant TSOL18 and optimized expression in Escherichia coli.
Recombinant snakebite antivenoms: A cost-competitive solution to a neglected tropical disease?
Laustsen, Andreas H; Johansen, Kristoffer H; Engmark, Mikael; Andersen, Mikael R
2017-02-01
Snakebite envenoming is a major public health burden in tropical parts of the developing world. In sub-Saharan Africa, neglect has led to a scarcity of antivenoms threatening the lives and limbs of snakebite victims. Technological advances within antivenom are warranted, but should be evaluated not only on their possible therapeutic impact, but also on their cost-competitiveness. Recombinant antivenoms based on oligoclonal mixtures of human IgG antibodies produced by CHO cell cultivation may be the key to obtaining better snakebite envenoming therapies. Based on industry data, the cost of treatment for a snakebite envenoming with a recombinant antivenom is estimated to be in the range USD 60-250 for the Final Drug Product. One of the effective antivenoms (SAIMR Snake Polyvalent Antivenom from the South African Vaccine Producers) currently on the market has been reported to have a wholesale price of USD 640 per treatment for an average snakebite. Recombinant antivenoms may therefore in the future be a cost-competitive alternative to existing serum-based antivenoms.
Great majority of recombination events in Arabidopsis are gene conversion events
Yang, Sihai; Yuan, Yang; Wang, Long; Li, Jing; Wang, Wen; Liu, Haoxuan; Chen, Jian-Qun; Hurst, Laurence D.; Tian, Dacheng
2012-01-01
The evolutionary importance of meiosis may not solely be associated with allelic shuffling caused by crossing-over but also have to do with its more immediate effects such as gene conversion. Although estimates of the crossing-over rate are often well resolved, the gene conversion rate is much less clear. In Arabidopsis, for example, next-generation sequencing approaches suggest that the two rates are about the same, which contrasts with indirect measures, these suggesting an excess of gene conversion. Here, we provide analysis of this problem by sequencing 40 F2 Arabidopsis plants and their parents. Small gene conversion tracts, with biased gene conversion content, represent over 90% (probably nearer 99%) of all recombination events. The rate of alteration of protein sequence caused by gene conversion is over 600 times that caused by mutation. Finally, our analysis reveals recombination hot spots and unexpectedly high recombination rates near centromeres. This may be responsible for the previously unexplained pattern of high genetic diversity near Arabidopsis centromeres. PMID:23213238
Theivendirarajah, K; Whitehouse, H L
1983-01-01
Crosses were made between buff spore colour mutants in Sordaria brevicollis in the presence of flanking markers. Recombinant asci with one or more wild-type spores were isolated and the spores germinated and scored for buff and flanking marker genotype. The buff genotype was determined by back-crossing to each parent and looking for recombinants. It was found that the majority of the recombinant asci had aberrant segregation at one or other mutant site but not both. It was inferred that in the recombinants hybrid DNA rarely extended to both sites. When the aberrant segregation was associated with crossing-over, the crossovers were situated at either end of the gene rather than between the allelic sites where the hybrid DNA was believed to terminate. Thus, some of the crossovers were separated from the site of the aberrant segregation by a site apparently not involved in hybrid DNA and none was in the position predicted by the Meselson-Radding model, that is, where the hybrid DNA terminates.
Recombinant snakebite antivenoms: A cost-competitive solution to a neglected tropical disease?
Johansen, Kristoffer H.; Engmark, Mikael; Andersen, Mikael R.
2017-01-01
Snakebite envenoming is a major public health burden in tropical parts of the developing world. In sub-Saharan Africa, neglect has led to a scarcity of antivenoms threatening the lives and limbs of snakebite victims. Technological advances within antivenom are warranted, but should be evaluated not only on their possible therapeutic impact, but also on their cost-competitiveness. Recombinant antivenoms based on oligoclonal mixtures of human IgG antibodies produced by CHO cell cultivation may be the key to obtaining better snakebite envenoming therapies. Based on industry data, the cost of treatment for a snakebite envenoming with a recombinant antivenom is estimated to be in the range USD 60–250 for the Final Drug Product. One of the effective antivenoms (SAIMR Snake Polyvalent Antivenom from the South African Vaccine Producers) currently on the market has been reported to have a wholesale price of USD 640 per treatment for an average snakebite. Recombinant antivenoms may therefore in the future be a cost-competitive alternative to existing serum-based antivenoms. PMID:28158193
Recombinant factor VIIa in major abdominal surgery and liver transplantation.
da Silva Viana, J
2006-04-01
The author reviewed the literature regarding recombinant activated Factor VII (rFVIIa) in major abdominal surgery and liver transplantation and concluded that, on the basis of evidence-based medicine, there is no evidence to support an extensive use of rFVIIa. Nevertheless, various case reports suggest the usefulness of rFVIIa to treat life-threatening bleeding after failure of conventional therapies. It appears that there is a consensus that rFVIIa can be used with good results as a rescue therapy in extremely severe situations. Economic cost and potential thrombosis risk remain arguments against more widespread use of rFVIIa. Doses from 5 to 120 kg/kg in each administration have been reported without clear evidence to support a specific protocol. Efficacy of 15 to 20 kg/kg in surgical settings has been reported, but higher doses are more frequently used. The majority of the reviewed investigators accepted the use of rFVIIa after or simultaneously with the use of aprotinin; no data refute the safety of this association.
Boumaiza, Mohamed; Jaouen, Maryse; Deschemin, Jean-Christophe; Ezzine, Aymen; Ben Khalaf, Noureddine; Vaulont, Sophie; Marzouki, Mohamed Nèjib; Sari, Marie Agnès
2015-11-01
Hepcidin, a 25-amino-acid and highly disulfide bonded antimicrobial peptide, is the central regulator of iron homeostasis. This hormone is expressed in response to iron and inflammation and interacts with ferroportin1 (FPN1), the only known iron exporter in vertebrates, inducing its internalization and degradation. Thus, the export of iron from cells to plasma will be significantly diminished. Thereby, hepcidin has become the target of intense research studies due to its profound biomedical significance. This study describes the functional expression of recombinant camel hepcidin in Escherichia coli. Biologically active recombinant camel hepcidin was obtained thanks to the production of a hepcidin-thioredoxin fusion protein (TRX-HepcD) and a purified camel hepcidin, with an extra methionine at the N-terminus, was obtained after enterokinase cleavage of the fusion protein. Presence of the four disulfide bridges was verified using MALDI-ToF spectrometry. The recombinant camel hepcidin was compared to related synthetic bioactive peptides, including human hepcidin, and was found equally able to promote ferroportin degradation of mouse macrophages. Furthermore, camel hepcidins exhibits a high capacity to inhibit the growth of Leishmania major promastigotes. These results proved that production of functional camel hepcidin can be achieved in E. coli, this is a major interest for the production of cysteine rich peptides or proteins that can be purified under their functional form without the need of a refolding process. Copyright © 2015 Elsevier Inc. All rights reserved.
Vanier, Gaëtan; Hempel, Franziska; Chan, Philippe; Rodamer, Michael; Vaudry, David; Maier, Uwe G; Lerouge, Patrice; Bardor, Muriel
2015-01-01
Monoclonal antibodies (mAbs) represent actually the major class of biopharmaceuticals. They are produced recombinantly using living cells as biofactories. Among the different expression systems currently available, microalgae represent an emerging alternative which displays several biotechnological advantages. Indeed, microalgae are classified as generally recognized as safe organisms and can be grown easily in bioreactors with high growth rates similarly to CHO cells. Moreover, microalgae exhibit a phototrophic lifestyle involving low production costs as protein expression is fueled by photosynthesis. However, questions remain to be solved before any industrial production of algae-made biopharmaceuticals. Among them, protein heterogeneity as well as protein post-translational modifications need to be evaluated. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals including mAbs are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. In this paper, we assess the quality of the first recombinant algae-made mAbs produced in the diatom, Phaeodactylum tricornutum. We are focusing on the characterization of their C- and N-terminal extremities, their signal peptide cleavage and their post-translational modifications including N-glycosylation macro- and microheterogeneity. This study brings understanding on diatom cellular biology, especially secretion and intracellular trafficking of proteins. Overall, it reinforces the positioning of P. tricornutum as an emerging host for the production of biopharmaceuticals and prove that P. tricornutum is suitable for producing recombinant proteins bearing high mannose-type N-glycans.
Kyriakopoulou, Zaharoula; Dedepsidis, Evaggelos; Pliaka, Vaia; Tsakogiannis, Dimitris; Pratti, Anastassia; Levidiotou-Stefanou, Stamatina; Markoulatos, Panayotis
2010-01-01
An echovirus 3 (Echo3) strain (strain LR31G7) was isolated from a sewage treatment plant in Greece in 2005. Full-genome molecular, phylogenetic, and SimPlot analyses were conducted in order to reveal the evolutionary pathways of the isolate. Nucleotide and phylogenetic analyses of part of the VP1 genomic region revealed that the isolated strain correlates with Echo3 strains isolated during the same year in France and Japan, implying that the same virus circulated in Europe and Asia. LR31G7 was found to be a recombinant that shares the 3′ part of its genome with an Echo25 strain isolated from asymptomatic infants in Norway in 2003. Nucleotide and SimPlot analyses of the VP1-2A junction, where the recombination was located, revealed the exact recombination breakpoint (nucleotides 3357 to 3364). Moreover, there is evidence that recombination events had occurred in 3B-3D region in the evolutionary history of the isolate. Our study indicates that recombination events play major roles in enterovirus evolution and that the circulation of multirecombinant strains with unknown properties could be potentially dangerous for public health. PMID:20129960
Kateneva, Anna V.; Konovchenko, Anton A.; Guacci, Vincent; Dresser, Michael E.
2005-01-01
Sister chromatid cohesion and interhomologue recombination are coordinated to promote the segregation of homologous chromosomes instead of sister chromatids at the first meiotic division. During meiotic prophase in Saccharomyces cerevisiae, the meiosis-specific cohesin Rec8p localizes along chromosome axes and mediates most of the cohesion. The mitotic cohesin Mcd1p/Scc1p localizes to discrete spots along chromosome arms, and its function is not clear. In cells lacking Tid1p, which is a member of the SWI2/SNF2 family of helicase-like proteins that are involved in chromatin remodeling, Mcd1p and Rec8p persist abnormally through both meiotic divisions, and chromosome segregation fails in the majority of cells. Genetic results indicate that the primary defect in these cells is a failure to resolve Mcd1p-mediated connections. Tid1p interacts with recombination enzymes Dmc1p and Rad51p and has an established role in recombination repair. We propose that Tid1p remodels Mcd1p-mediated cohesion early in meiotic prophase to facilitate interhomologue recombination and the subsequent segregation of homologous chromosomes. PMID:16230461
Medhi, Darpan; Goldman, Alastair SH; Lichten, Michael
2016-01-01
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions. DOI: http://dx.doi.org/10.7554/eLife.19669.001 PMID:27855779
Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, Veeranki V
2017-01-01
Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Regardless of producing high protein titers, various cellular and process level bottlenecks restrict the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large-scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed-batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Advances in Biological Science.
ERIC Educational Resources Information Center
Oppenheimer, Steven B.; And Others
1988-01-01
Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)
Flipping chromosomes in deep-sea archaea
Catchpole, Ryan; Gadelle, Danièle; Marguet, Evelyne; Barbe, Valérie; Forterre, Patrick
2017-01-01
One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We present a model in which genomic inversions are catalyzed by the integrase enzyme encoded by a family of mobile genetic elements. We characterized the integrase from Thermococcus nautili plasmid pTN3 and showed that besides canonical site-specific reactions, it catalyzes low sequence specificity recombination reactions with the same outcome as homologous recombination events on DNA segments as short as 104bp both in vitro and in vivo, in contrast to other known tyrosine recombinases. Through serial culturing, we showed that the integrase-mediated divergence of T. nautili strains occurs at an astonishing rate, with at least four large-scale genomic inversions appearing within 60 generations. Our results and the ubiquitous distribution of pTN3-like integrated elements suggest that a major mechanism of evolution of an entire order of Archaea results from the activity of a selfish mobile genetic element. PMID:28628615
D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David
2016-02-04
We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.
Gornicka, Agnieszka; Bragoszewski, Piotr; Chroscicki, Piotr; Wenz, Lena-Sophie; Schulz, Christian; Rehling, Peter; Chacinska, Agnieszka
2014-12-15
Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex. © 2014 Gornicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Dental Faculty Accuracy When Using Diagnostic Codes: A Pilot Study.
Sutton, Jeanne C; Fay, Rose-Marie; Huynh, Carolyn P; Johnson, Cleverick D; Zhu, Liang; Quock, Ryan L
2017-05-01
The aim of this study was to examine the accuracy of dental faculty members' utilization of diagnostic codes and resulting treatment planning based on radiographic interproximal tooth radiolucencies. In 2015, 50 full-time and part-time general dentistry faculty members at one U.S. dental school were shown a sequence of 15 bitewing radiographs; one interproximal radiolucency was highlighted on each bitewing. For each radiographic lesion, participants were asked to choose the most appropriate diagnostic code (from a concise list of five codes, corresponding to lesion progression to outer/inner halves of enamel and outer/middle/pulpal thirds of dentin), acute treatment (attempt to arrest/remineralize non-invasively, operative intervention, or no treatment), and level of confidence in choices. Diagnostic and treatment choices of participants were compared to "gold standard" correct responses, as determined by expert radiology and operative faculty members, respectively. The majority of the participants selected the correct diagnostic code for lesions in the outer one-third of dentin (p<0.0001) and the pulpal one-third of dentin (p<0.0001). For lesions in the outer and inner halves of enamel and the middle one-third of dentin, the correct rates were moderate. However, the majority of the participants chose correct treatments on all types of lesions (correct rate 63.6-100%). Faculty members' confidence in their responses was generally high for all lesions, all above 90%. Diagnostic codes were appropriately assigned by participants for the very deepest lesions, but they were not assigned accurately for more incipient lesions (limited to enamel). Paradoxically, treatment choices were generally correct, regardless of diagnostic choices. Further calibration is needed to improve faculty use and teaching of diagnostic codes.
NASA Astrophysics Data System (ADS)
Dahl, Carl Eric
2009-06-01
The WIMP limit set by the Xenon10 experiment in 2007 signals a new era in direct detection of dark matter, with several large-scale liquid target detectors now under construction. A major challenge in these detectors will be to understand backgrounds at the level necessary to claim a positive WIMP signal. In liquid xenon, these backgrounds are dominated by electron recoils, which may be distinguished from the WIMP signal (nuclear recoils) by their higher charge-to-light ratio. During the construction and operation of Xenon10, the prototype detector Xed probed the physics of this discrimination. Particle interactions in liquid xenon both ionize and excite xenon atoms, giving charge and scintillation signals, respectively. Some fraction of ions recombine, reducing the charge signal and creating additional scintillation. The charge-to-light ratio, determined by the initial exciton-ion ratio and the ion recombination fraction, provides the basis for discrimination between electron and nuclear recoils. Intrinsic fluctuations in the recombination fraction limit discrimination. Changes in recombination induce an exact anti-correlation between charge and light, and when calibrated this anti-correlation distinguishes recombination fluctuations from uncorrelated fluctuations in the measured signals. We determine the mean recombination and recombination fluctuations as a function of energy and applied field for electron and nuclear recoils, finding that recombination fluctuations are already the limiting factor for discrimination above ~12 keVr (nuclear recoil energy). Below 12 keVr statistical fluctuations in the number of scintillation photons counted dominate, and we project a x6 improvement in background rejection with a x2 increase in light collection efficiency. We also build a simple recombination model that successfully reproduces the mean recombination in electron and nuclear recoils, including the surprising reversal of the expected trend for recombination with ionization density in low energy electron recoils. The model also reproduces the measured recombination fluctuations to within a factor of two at high energies. Surprisingly, the model suggests that recombination at low energies is independent of ionization density, and our observed discrimination is due not to the different stopping powers of electrons and nuclei as was thought, but rather to a different initial exciton-ion ratio. We suggest two possible physical models for this new result.
Leuzzi, Rosanna; Nesta, Barbara; Monaci, Elisabetta; Cartocci, Elena; Serino, Laura; Soriani, Marco; Rappuoli, Rino; Pizza, Mariagrazia
2013-11-09
Protein PIII is one of the major outer membrane proteins of Neisseria gonorrhoeae, 95% identical to RmpM (reduction modifiable protein M) or class 4 protein of Neisseria meningitidis. RmpM is known to be a membrane protein associated by non-covalent bonds to the peptidoglycan layer and interacting with PorA/PorB porin complexes resulting in the stabilization of the bacterial membrane. The C-terminal domain of PIII (and RmpM) is highly homologous to members of the OmpA family, known to have a role in adhesion/invasion in many bacterial species. The contribution of PIII in the membrane architecture and its role in the interaction with epithelial cells has never been investigated. We generated a ΔpIII knock-out mutant strain and evaluated the effects of the loss of PIII expression on bacterial morphology and on outer membrane composition. Deletion of the pIII gene does not cause any alteration in bacterial morphology or sensitivity to detergents. Moreover, the expression profile of the main membrane proteins remains the same for the wild-type and knock-out strains, with the exception of the NG1873 which is not exported to the outer membrane and accumulates in the inner membrane in the ΔpIII knock-out mutant strain.We also show that purified PIII protein is able to bind human cervical and urethral cells and that the ΔpIII knock-out mutant strain has a lower ability to adhere to human cervical and urethral cells. Here we demonstrated that the PIII protein does not play a key structural role in the membrane organization of gonococcus and does not induce major effects on the expression of the main outer membrane proteins. However, in the PIII knock-out strain, the NG1873 protein is not localized in the outer membrane as it is in the wild-type strain suggesting a possible interaction of PIII with NG1873. The evidence that PIII binds to human epithelial cells derived from the female and male genital tract highlights a possible role of PIII in the virulence of gonococcus and suggests that the structural homology to OmpA is conserved also at functional level.
van Loenhout, Rhiannon B; Tseu, Irene; Fox, Emily K; Huang, Zhen; Tibboel, Dick; Post, Martin; Keijzer, Richard
2012-01-01
Despite modern treatments, congenital diaphragmatic hernia (CDH) remains associated with variable survival and significant morbidity. The associated pulmonary hypoplasia is a major determinant of outcome. To develop better treatments, improved comprehension of the pathogenesis of lung hypoplasia is warranted. We developed an in vitro cell recombinant model to mimic pulmonary hypoplasia and specifically to investigate epithelial-mesenchymal interactions and to decipher which tissue layer is primarily defective in nitrofen-induced CDH-associated lung hypoplasia. Epithelial cells (E) and fibroblasts (F) were isolated from E19 control ((C)) and nitrofen-induced hypoplastic rat lungs ((N)). Cells were recombined and cultured as either homotypic [(F(C))(E(C)) and (F(N))(E(N))] or heterotypic [(F(C))(E(N)) and (F(N))(E(C))] recombinants. Recombinants containing F(N) fibroblasts had a thickened fibroblast tissue layer and there were fewer organized alveolar-like epithelial structures compared with those in control (F(C))(E(C)) recombinants. These F(N) recombinants exhibited a decrease in terminal deoxynucleotidyl transferase dUTP nick end labeling and cleaved caspase-3 positive cells. Cell proliferation was arrested in recombinants containing F(N) fibroblasts, which also exhibited increased p27(Kip1) and p57(Kip2) expression. In conclusion, fibroblasts, and not epithelial cells, appear to be the defective cell type in nitrofen-induced hypoplastic lungs due to a decreased ability to undergo apoptosis and maintain overall proliferation. This may explain the characteristic pulmonary interstitial thickening and hypoplasia observed in both nitrofen-induced hypoplastic lungs as well as human hypoplastic CDH lungs. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
McWilliam Leitch, E. C.; Cabrerizo, M.; Cardosa, J.; Harvala, H.; Ivanova, O. E.; Koike, S.; Kroes, A. C. M.; Lukashev, A.; Perera, D.; Roivainen, M.; Susi, P.; Trallero, G.; Evans, D. J.
2012-01-01
Enterovirus 71 (EV71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease worldwide and represent a major etiological agent of severe, sometimes fatal neurological disease. EV71 variants have been classified into three genogroups (GgA, GgB, and GgC), and the latter two are further subdivided into subgenogroups B1 to B5 and C1 to C5. To investigate the dual roles of recombination and evolution in the epidemiology and transmission of EV71 worldwide, we performed a large-scale genetic analysis of isolates (n = 308) collected from 19 countries worldwide over a 40-year period. A series of recombination events occurred over this period, which have been identified through incongruities in sequence grouping between the VP1 and 3Dpol regions. Eleven 3Dpol clades were identified, each specific to EV71 and associated with specific subgenogroups but interspersed phylogenetically with clades of coxsackievirus A16 and other EV species A serotypes. The likelihood of recombination increased with VP1 sequence divergence; mean half-lives for EV71 recombinant forms (RFs) of 6 and 9 years for GgB and GgC overlapped with those observed for the EV-B serotypes, echovirus 9 (E9), E30, and E11, respectively (1.3 to 9.8 years). Furthermore, within genogroups, sporadic recombination events occurred, such as the linkage of two B4 variants to RF-W instead of RF-A and of two C4 variants to RF-H. Intriguingly, recombination events occurred as a founding event of most subgenogroups immediately preceding their lineage expansion and global emergence. The possibility that recombination contributed to their subsequent spread through improved fitness requires further biological and immunological characterization. PMID:22205739
Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima
2011-05-01
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Wallberg, Andreas; Glémin, Sylvain; Webster, Matthew T.
2015-01-01
Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC), which we infer to generate an allele fixation bias 5 – 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution. PMID:25902173
Kuzmanović, N; Biondi, E; Bertaccini, A; Obradović, A
2015-09-01
To analyse genetic diversity and epidemiological relationships among 54 strains of Allorhizobium vitis isolated in Europe during an 8-year period and to assess the relative contribution of mutation and recombination in shaping their diversity. By using random amplified polymorphic DNA (RAPD) PCR, strains studied were distributed into 12 genetic groups. Sequence analysis of dnaK, gyrB and recA housekeeping genes was employed to characterize a representative subcollection of 28 strains. A total of 15 different haplotypes were found. Nucleotide sequence analysis suggested the presence of recombination events in A. vitis, particularly affecting dnaK locus. Although prevalence of mutation over recombination was found, impact of recombination was about two times greater than mutation in the evolution of the housekeeping genes analysed. The RAPD analysis indicated high degree of genetic diversity among the strains. However, the most abundant RAPD group was composed of 35 strains, which could lead to the conclusion that they share a common origin and were distributed by the movement of infected grapevine planting material as a most common way of crossing long distances. Furthermore, it seems that recombination is acting as an important driving force in the evolution of A. vitis. As no substantial evidence of recombination was detected within recA gene fragment, this phylogenetic marker could be reliable to characterize phylogenetic relationships among A. vitis strains. We demonstrated clear epidemiological relationship between majority of strains studied, suggesting a need for more stringent phytosanitary measures in international trade. Moreover, this is the first study to report recombination in A. vitis. © 2015 The Society for Applied Microbiology.
High genetic variability of HIV-1 in female sex workers from Argentina.
Pando, María A; Eyzaguirre, Lindsay M; Carrion, Gladys; Montano, Silvia M; Sanchez, José L; Carr, Jean K; Avila, María M
2007-08-13
A cross-sectional study on 625 Female Sex Workers (FSWs) was conducted between 2000 and 2002 in 6 cities in Argentina. This study describes the genetic diversity and the resistance profile of the HIV-infected subjects. Seventeen samples from HIV positive FSWs were genotyped by env HMA, showing the presence of 9 subtype F, 6 subtype B and 2 subtype C. Sequence analysis of the protease/RT region on 16 of these showed that 10 were BF recombinants, three were subtype B, two were subtype C, and one sample presented a dual infection with subtype B and a BF recombinant. Full-length genomes of five of the protease/RT BF recombinants were also sequenced, showing that three of them were CRF12_BF. One FSW had a dual HIV-1 infection with subtype B and a BF recombinant. The B sections of the BF recombinant clustered closely with the pure B sequence isolated from the same patient. Major resistance mutations to antiretroviral drugs were found in 3 of 16 (18.8%) strains. The genetic diversity of HIV strains among FSWs in Argentina was extensive; about three-quarters of the samples were infected with diverse BF recombinants, near twenty percent had primary ART resistance and one sample presented a dual infection. Heterosexual transmission of genetically diverse, drug resistant strains among FSWs and their clients represents an important and underestimated threat, in Argentina.
Recombination in Eukaryotic Single Stranded DNA Viruses
Martin, Darren P.; Biagini, Philippe; Lefeuvre, Pierre; Golden, Michael; Roumagnac, Philippe; Varsani, Arvind
2011-01-01
Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution. PMID:21994803
Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina
2014-01-01
Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348
Viral vectors for production of recombinant proteins in plants.
Lico, Chiara; Chen, Qiang; Santi, Luca
2008-08-01
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.
Lakowitz, Antonia; Godard, Thibault; Biedendieck, Rebekka; Krull, Rainer
2018-05-01
Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production. Copyright © 2017. Published by Elsevier B.V.
Multiplication of VHS virus in insect cells.
Lorenzen, N; Olesen, N J
1995-01-01
Viral haemorrhagic septicaemia virus (VHSV) belongs to the rhabdovirus family and is a major pathogen in farmed rainbow trout. An insect cell culture traditionally used for production of recombinant proteins was found to be susceptible to VHS virus. At pH 6.2, VHSV multiplication induced formation of large syncytia similar to those obtained by baculovirus-induced expression of recombinant VHSV glycoprotein. The VHSV G protein produced in insect cells was smaller than G protein derived from fish cells. VHS virus produced in insect cells was still pathogenic to rainbow trout after 2 cell culture passages.
Bolhaar, S T H P; Zuidmeer, L; Ma, Y; Ferreira, F; Bruijnzeel-Koomen, C A F M; Hoffmann-Sommergruber, K; van Ree, R; Knulst, A C
2005-12-01
Allergen-specific immunotherapy for food allergy has been hindered by severe side-effects in the past. Well-characterized hypo-allergenic recombinant food allergens potentially offer a safe solution. To demonstrate hypo-allergenicity of a mutated major food allergen from apple, Mal d 1, in vitro and in vivo. A mutant of the major apple allergen, Mal d 1, was obtained by site-directed mutagenesis exchanging five amino acid residues. Fourteen patients with combined birch pollen-related apple allergy were included in the study. Hypo-allergenicity of the mutant rMal d 1 (rMal d 1mut) compared with rMal d 1 was assessed by in vitro methods, i.e. RAST (inhibition), immunoblotting and basophil histamine release (BHR) and in vivo by skin prick test and double-blind placebo-controlled food challenge (DBPCFC). RAST analysis (n = 14) revealed that IgE reactivity to rMal d 1mut was twofold lower than that of the wild-type molecule (95% confidence interval (CI): 1.7-2.4). RAST inhibition (n = 6) showed a 7.8-fold decrease in IgE-binding potency (95% CI: 3.0-12.6). In contrast to this moderate decrease in IgE-binding potency, the biological activity of rMal d 1mut assessed by SPT and BHR decreased 10-200-fold. Hypo-allergenicity was confirmed by DBPCFC (n = 2) with both recombinant molecules. A moderate decrease in IgE-binding potency translates into a potent inhibition of biological activity. This is the first study that confirms by DBPCFC that a mutated recombinant major food allergen is clinically hypo-allergenic. This paves the way towards safer immunotherapy for the treatment of food-allergic patients.
NASA Technical Reports Server (NTRS)
Lund, Kurt O.
1991-01-01
The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.
A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua
Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less
Major uncertainties influencing entry probe heat shield design
NASA Technical Reports Server (NTRS)
Congdon, W.
1974-01-01
Factors influencing the design of an outer planet probe heat shield are discussed. Major factors included are: uncertainties in composition and scale height of the planet atmospheres; the augmentation/attenuation of entry heating by ablation products requires more computer study and testing; carbon heat shields, especially carbon phenolic, possessing improved resistance to spallation need developing; and white silica reflecting heat shields with improved resistance to bulk vitrification need further developing.
Corvo, Laura; Garde, Esther; Ramírez, Laura; Iniesta, Virginia; Bonay, Pedro; Gómez-Nieto, Carlos; González, Víctor M.; Martín, M. Elena; Alonso, Carlos; Coelho, Eduardo A. F.; Barral, Aldina; Barral-Netto, Manoel
2015-01-01
Background Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Methodology/Principal Findings Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. Conclusion/Significance The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis. PMID:25955652
Santagostino, Elena; Escobar, Miguel; Ozelo, Margareth; Solimeno, Luigi; Arkhammar, Per; Lee, Hye Youn; Rosu, Gabriela; Giangrande, Paul
2015-06-01
The availability of recombinant activated factor VII (rFVIIa, eptacog alfa activated) has greatly advanced the care of patients with haemophilia A or B who have developed inhibitors against the infused replacement factor. Recombinant FVIIa is licensed for the on-demand treatment of bleeding episodes and the prevention of bleeding in surgery or invasive procedures in patients with congenital haemophilia with inhibitors. This article attempts to review in detail the extensive evidence of rFVIIa in congenital haemophilia patients with inhibitors. Patients with acute bleeding episodes are best treated on demand at home, to achieve the short- and long-term benefits of rapid bleed control. Key prospective studies have shown that rFVIIa achieves consistently high efficacy rates in the management of acute (including joint) bleeds in inhibitor patients in the home treatment setting. Substantial post-approval data from key registries also support the on-demand efficacy profile of rFVIIa established by the prospective clinical trials. The availability of rFVIIa has allowed major surgery to become a reality for inhibitor patients. Studies in key surgery, including orthopaedic procedures, have found that rFVIIa provides consistently high efficacy rates. Importantly, the wealth of data does not raise any unexpected safety concerns surrounding rFVIIa use; this is likely because rFVIIa is a recombinant product with a localised mechanism of action at the site of vascular injury. In summary, rFVIIa is established as an effective and well-tolerated first-line treatment for on-demand bleeding control and bleed prevention during minor and major (including elective orthopaedic) surgery in inhibitor patients. Use of rFVIIa has been a major step towards narrowing the gap in outcomes between inhibitor patients and non-inhibitor patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Madill, Rebecca; Badland, Hannah; Mavoa, Suzanne; Giles-Corti, Billie
2018-04-13
Melbourne, Australia is experiencing rapid population growth, with much of this occurring in metropolitan outer suburban areas, also known as urban growth areas. Currently little is known about differences in travel times when using private and public transport to access primary and secondary services across Melbourne's urban growth areas. Plan Melbourne Refresh, a recent strategic land use document has called for a 20 min city, which is where essential services including primary health care, can be accessed within a 20 min journey. Type 2 diabetes mellitus (T2DM) is a major chronic condition in Australia, with some of Melbourne's growth areas having some of the highest prevalence across Australia. This study explores travel times to diabetic health care services for populations residing in inner, middle and outer suburbs of metropolitan Melbourne. Geographic information systems (GIS) software were used to map the location of selected diabetic primary and secondary health care service providers across metropolitan inner, middle, outer established, outer urban growth and outer fringe areas of Melbourne. An origin-destination matrix was used to estimate travel distances from point of origin (using a total of approximately 50,000 synthetic residential addresses) to the closest type of each diabetic health care service provider (destinations) across Melbourne. ArcGIS was used to estimate travel times for private transport and public transport; comparisons were made by area. Our study indicated increased travel times to diabetic health services for people living in Melbourne's outer growth and outer fringe areas compared with the rest of Melbourne (inner, middle and outer established). Compared with those living in inner city areas, the median time spent travelling to diabetic services was between 2.46 and 23.24 min (private motor vehicle) and 12.01 and 43.15 min (public transport) longer for those living in outer suburban areas. Irrespective of travel mode used, results indicate that those living in inner and middle suburbs of Melbourne have shorter travel times to access diabetic health services, compared with those living in outer areas of Melbourne. Private motor vehicle travel times were approximately 4 to 5 times faster than public transport modes to access diabetic health services in all areas. Those living in new urban growth communities spend considerably more time travelling to access diabetic health services - particularly specialists - than those living in established areas across Melbourne.
Vigne, Emmanuelle; Komar, Véronique; Fuchs, Marc
2004-04-01
One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.
Long term stability of c-Si surface passivation using corona charged SiO2
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Reichel, Christian; Hermle, Martin; Hamer, Phillip; Wilshaw, Peter R.
2017-08-01
Recombination at the semiconductor surface continues to be a major limit to optoelectronic device performance, in particular for solar cells. Passivation films reduce surface recombination by a combination of chemical and electric field effect components. Dielectric films used for this purpose, however, must also accomplish optical functions at the cell surface. In this paper, corona charge is seen as a potential method to enhance the passivation properties of a dielectric film while maintaining its optical characteristics. It is observed that corona charge can produce extreme reductions in surface recombination via field effect, in the best case leading to lifetimes exceeding 5 ms at an injection of 1015 cm-3. For a 200 μm n-type 1 Ω cm c-Si wafer, this equates to surface recombination velocities below 0.65 cm/s and J0e values of 0.92 fA/cm2. The average improvement in passivation after corona charging gave lifetimes of 1-3 ms. This was stabilised for a period of 3 years by chemically treating the films to prevent water absorption. Surface recombination was kept below 7 cm/s, and J0e < 16.28 fA/cm2 for 3 years, with a decay time constant of 8.7 years. Simulations of back-contacted n-type cells show that front surface recombination represents less than 2% of the total internally generated power in the cell (the loss in power output) when the passivation is kept better than 16 fA/cm2, and as high as 10% if front recombination is worse than 100 fA/cm2.
Homologous and heterologous recombination between adenovirus vector DNA and chromosomal DNA.
Stephen, Sam Laurel; Sivanandam, Vijayshankar Ganesh; Kochanek, Stefan
2008-11-01
Adenovirus vector DNA is perceived to remain as episome following gene transfer. We quantitatively and qualitatively analysed recombination between high capacity adenoviral vector (HC-AdV) and chromosomal DNA following gene transfer in vitro. We studied homologous and heterologous recombination with a single HC-AdV carrying (i) a large genomic HPRT fragment with the HPRT CHICAGO mutation causing translational stop upon homologous recombination with the HPRT locus and (ii) a selection marker to allow for clonal selection in the event of heterologous recombination. We analysed the sequences at the junctions between vector and chromosomal DNA. In primary cells and in cell lines, the frequency of homologous recombination ranged from 2 x 10(-5) to 1.6 x 10(-6). Heterologous recombination occurred at rates between 5.5 x 10(-3) and 1.1 x 10(-4). HC-AdV DNA integrated via the termini mostly as intact molecules. Analysis of the junction sequences indicated vector integration in a relatively random manner without an obvious preference for particular chromosomal regions, but with a preference for integration into genes. Integration into protooncogenes or tumor suppressor genes was not observed. Patchy homologies between vector termini and chromosomal DNA were found at the site of integration. Although the majority of integrations had occurred without causing mutations in the chromosomal DNA, cases of nucleotide substitutions and insertions were observed. In several cases, deletions of even relative large chromosomal regions were likely. These results extend previous information on the integration patterns of adenovirus vector DNA and contribute to a risk-benefit assessment of adenovirus-mediated gene transfer.
NASA Astrophysics Data System (ADS)
Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten
2016-05-01
Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patwe, P; Mhatre, V; Dandekar, P
Purpose: Indigenous Farmer type chamber FAR 65 GB is a reference class 0.6 cc ion chamber. It can be used for dosimetric evaluation of photon and high energy electron beams. We studied dosimetric characteristics of the chamber for 6MV and 10MV Flattening filter free FFF photon beams available on trueBEAM STx Linac. Methods: The study was carried out on trueBEAM STx Linac having 6 and 10 MV FFF photon beam with maximum dose rate 1400 and 2400 MU per min respectively. The dosimetric device to be evaluated is Rosalina Instruments FAR 65-GB Ion Chamber with active volume 0.65 cc, totalmore » active length 23.1cm, inner diameter of cylinder 6.2mm, wall thickness 0.4mm, inner electrode diameter 1mm. Inner and outer electrodes are made from Aluminium 2.7 gm per cc and graphite 1.82 gm per cc respectively. The ion chamber was placed along central axis of beam at 10cm depth and irradiated for 10cm × 10cm field size at SAD of 100 cm in plastic phantom. We studied Precision, Dose Linearity, Dose Rate dependence, directional dependence, Recombination effect. Recombination effect was determined using standard two-voltage method. Results: 1. Measurements were reproducible std deviation of 0.0105 and type A uncertainty 0.003265 under same set of reference conditions 2. Chamber exhibit dose linearity over a wider dose range. 3. Chamber shows dose rate independence for all available dose rate range. 4. Response of chamber with the angle of incidence of radiation is constant. 5. Recombination correction factors were 1.01848 and 1.02537 for dose rate 1400 and 2400 MU per min resp. Conclusion: Our study reveals that the chamber is prone to saturation effect at dose rate of 2400 MU per min. FAR 65-GB can be used for reference dosimetry of FFF MV photon beam with proper calculation of recombination effect.« less
Synthesis of Multiwall Carbon Nanotubes by Inductive Heating CCVD
NASA Technical Reports Server (NTRS)
Biris, A. R.; Biris, A. S.; Lupu, D.; Trigwell, S.; Rahman, Z. U.; Aldea, N.; Marginean, P.
2005-01-01
The CCVD syntheses of MWCNTs from acetylene on Fe:Co:CaCO 3 and Fe:Co:CaO were performed using two different methods of heating: outer furnace and inductive heating. The comparative analysis of the MWCNTs obtained by the two methods show that the tubes grown in inductive heating have smaller diameters (5-25 nm), with fewer walls and aspect ratio of the order of hundreds. The ratio of outer to inner diameter (od/id) is ranging between 2 and 2.5. Inductively assisted CCVD is a very attractive method because of the major advantages that it presents, like low energetic consumption, thinner, well crystallized and more uniform tubes.
Liu, Baoming; Yang, Jing-Xian; Yan, Ling; Zhuang, Hui; Li, Tong
2018-01-01
As one of the major global public health concerns, hepatitis B virus (HBV) can be divided into at least eight genotypes, which may be related to disease severity and treatment response. We previously demonstrated that genotypes B and C HBV, with distinct geographical distribution in China, had divergent genotype-dependent amino acid polymorphisms and variations in reverse transcriptase (RT) gene region, a target of antiviral therapy using nucleos(t)ide analogues. Recently recombination between HBV genotypes B and C was reported to occur in the RT region. However, their frequency and clinical significance is poorly understood. Here full-length HBV RT sequences from 201 Chinese chronic hepatitis B (CHB) patients were amplified and sequenced, among which 31.34% (63/201) were genotype B whereas 68.66% (138/201) genotype C. Although no intergenotypic recombination was detected among C-genotype HBV, 38.10% (24/63) of B-genotype HBV had recombination with genotype C in the 3'-terminal RT sequences. The patients with B/C intergenotypic recombinants had significantly (P<0.05) higher serum HBV DNA level than the "pure" B-genotype cohort did. Moreover, the B/C intergenotypic recombinants were prone to more substitutions at several specific residues in the RT region than genotype B or C. Besides, unlike their parental genotypes, the recombinant HBV appeared to display an altered geographic distribution feature in China. Our findings provide novel insight into the virological, clinical and epidemiological features of new HBV B/C intergenotypic recombinants at the 3' end of RT sequences among Chinese CHB patients. The highly complex genetic background of the novel recombinant HBV carrying new mutations affecting RT protein may contribute to an enhanced heterogeneity in treatment response or prognosis among CHB patients. Published by Elsevier B.V.
Muslin, Claire; Joffret, Marie-Line; Pelletier, Isabelle; Blondel, Bruno; Delpeyroux, Francis
2015-01-01
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. PMID:26562151
Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity*
Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K.; Makino, Clint L.
2015-01-01
By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca2+]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mm for ROS-GC1 and 39 mm for ROS-GC2. The effect required neither Ca2+ nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca2+]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. PMID:25767116
Coherent anti-stokes Raman scattering (CARS) microscopy: a novel technique for imaging the retina.
Masihzadeh, Omid; Ammar, David A; Kahook, Malik Y; Lei, Tim C
2013-05-01
To image the cellular and noncellular structures of the retina in an intact mouse eye without the application of exogenous fluorescent labels using noninvasive, nondestructive techniques. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Cross sectional transverse sections and sequential flat (en face) sagittal sections were collected from a region of sclera approximately midway between the limbus and optic nerve. Imaging proceeded from the surface of the sclera to a depth of ∼60 μm. The fluorescent signal from collagen fibers within the sclera was evident in the TPAF channel; the scleral collagen fibers showed no organization and appeared randomly packed. The sclera contained regions lacking TPAF and CARS fluorescence of ∼3 to 15 μm in diameter that could represent small vessels or scleral fibroblasts. Intense punctate CARS signals from the retinal pigment epithelial layer were of a size and shape of retinyl storage esters. Rod outer segments could be identified by the CARS signal from their lipid-rich plasma membranes. CARS microscopy can be used to image the outer regions of the mammalian retina without the use of a fluorescent dye or exogenously expressed recombinant protein. With technical advancements, CARS/TPAF may represent a new avenue for noninvasively imaging the retina and might complement modalities currently used in clinical practice.
Carel, Clément; Marcoux, Julien; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Demange, Pascal; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G; Renault, Marie A M
2017-04-18
The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum , a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum , we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O -mycoloylation, pyroglutamylation, and N -formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O -acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment.
Carel, Clément; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G.; Renault, Marie A. M.
2017-01-01
The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum, a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum, we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O-mycoloylation, pyroglutamylation, and N-formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O-acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment. PMID:28373551
Gray whale, Eschrichtius robustus, bibliography. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setzler-Hamilton, E.; Oliver, G.W.
1987-01-01
The report categorizes the research literature on gray whales according to major research topics, issues of concern to Outer Continental Shelf oil and gas development, and geographic areas. The report has an extensive cross-index. Selected references are depicted on an accompanying poster.
Right whale, Balaena glacialis, bibliography. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setzler-Hamilton, E.M.; Oliver, G.W.
1989-12-01
The report categorizes the research literature on right whales according to major research topics, issues of concern to Outer Continental Shelf oil and gas development, and geographic areas. The report has an extensive cross index. Selected references are depicted on an accompanying poster.
Perez, D E; Wu, C I; Johnson, N A; Wu, M L
1993-05-01
In this study, we address the question of whether there exist major genes that cause complete male sterility in the interspecific hybrids of Drosophila and, if they do, how these genes may be characterized at the molecular level. Our approach is to introgress small segments of the X chromosome from Drosophila mauritiana (or Drosophila sechellia) into Drosophila simulans by repeated backcrosses for more than 20 generations. The introgressions are monitored by both visible mutations and a series of DNA markers. We compare the extent of introgressions that cause male sterility with those that do not. If a major sterility factor exists, there should be a sharp boundary between these two classes of introgressions and their breakpoints should demarcate such a gene. Furthermore, if male sterility is the only major fitness effect associated with the introgression, recombination analysis should yield a pattern predicted by the classical three-point cross. Both the genetic and molecular analyses suggest the presence of a major sterility factor from D. mauritiana, which we named Odysseus (Ods), in the cytological interval of 16D. We thus formalize three criteria for inferring the existence of a major gene within an introgression: (1) complete penetrance of sterility, (2) complementarity in recombination analysis, and (3) physical demarcation. Introgressions of Ods from D. sechellia do not cause sterility. Twenty-two introgressions in our collection have breakpoints in this interval of about 500 kb, making it possible to delineate Ods more precisely for molecular identification. The recombination analysis also reveals the complexity of the introgressed segments--even relatively short ones may contain a second male sterility factor and partial viability genes and may also interfere with crossovers. The spermatogenic defects associated with Ods and/or a second factor were characterized by phase-contrast microscopy.
Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton
NASA Astrophysics Data System (ADS)
Woo, J.; Chough, S. K.
2010-07-01
Microbes started constructing shallow marine stromatolitic bioherms in the Archean, but they transferred their role as a major buildup maker to metazoans in Phanerozoic. Microbial buildups often recovered their predominance in the carbonate platform when reefal metazoan communities collapsed. Epiphyton, an extinct taxon of calcified microbe that possessed branching filamentous trichomes, was an important reef builder in the shallow marine carbonate platform during Middle Cambrian, aftermath of an extinction of archaeocyath sponges which were major reef-building sessile organisms in the Early Cambrian. Here we present direct evidence of phototropism of Epiphyton, found from fossilized behavior in micro- and macro-structures of meter-scale microbial bioherms of the Zhangxia Formation (Middle Cambrian), North China Platform, Shandong Province, China. The bioherms consist of stacked growth layers with the inner and outer divisions divided by distinct boundary. The inner division of growth layers of the Epiphyton bioherm is dominated by dense uniform bush-shaped Epiphyton thalli, whereas the curved outer division has layered texture normal to the surface, comprised of elongated and chambered thalli. It suggests that photosynthetic Epiphyton reacted actively to the spatial changes in intensity of sunlight, controlled by angle of illumination on the curved growth surface of the bioherm. The inner and the outer divisions comprise different morpho-types of Epiphyton. The spatial distributions of different morpho-types in variously illuminated divisions of Epiphyton might have caused further speciation of Epiphyton.
Bolla, J M; Dé, E; Dorez, A; Pagès, J M
2000-01-01
A novel pore-forming protein identified in Campylobacter was purified by ion-exchange chromatography and named Omp50 according to both its molecular mass and its outer membrane localization. We observed a pore-forming ability of Omp50 after re-incorporation into artificial membranes. The protein induced cation-selective channels with major conductance values of 50-60 pS in 1 M NaCl. N-terminal sequencing allowed us to identify the predicted coding sequence Cj1170c from the Campylobacter jejuni genome database as the corresponding gene in the NCTC 11168 genome sequence. The gene, designated omp50, consists of a 1425 bp open reading frame encoding a deduced 453-amino acid protein with a calculated pI of 5.81 and a molecular mass of 51169.2 Da. The protein possessed a 20-amino acid leader sequence. No significant similarity was found between Omp50 and porin protein sequences already determined. Moreover, the protein showed only weak sequence identity with the major outer-membrane protein (MOMP) of Campylobacter, correlating with the absence of antigenic cross-reactivity between these two proteins. Omp50 is expressed in C. jejuni and Campylobacter lari but not in Campylobacter coli. The gene, however, was detected in all three species by PCR. According to its conformation and functional properties, the protein would belong to the family of outer-membrane monomeric porins. PMID:11104668
ERIC Educational Resources Information Center
Talbot, Chris; And Others
1991-01-01
Twenty science experiments are presented. Topics include recombinant DNA, physiology, nucleophiles, reactivity series, molar volume of gases, spreadsheets in chemistry, hydrogen bonding, composite materials, radioactive decay, magnetism, speed, charged particles, compression waves, heat transfer, Ursa Major, balloons, current, and expansion of…
The synthesis of recombinant membrane proteins in yeast for structural studies.
Routledge, Sarah J; Mikaliunaite, Lina; Patel, Anjana; Clare, Michelle; Cartwright, Stephanie P; Bawa, Zharain; Wilks, Martin D B; Low, Floren; Hardy, David; Rothnie, Alice J; Bill, Roslyn M
2016-02-15
Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hori, Hisae; Hattori, Shunji; Inouye, Sakae; Kimura, Akinori; Irie, Shinkichi; Miyazawa, Hiroshi; Sakaguchi, Masahiro
2002-10-01
Anaphylaxis to measles, mumps, and rubella vaccines has been reported. It has been found that most of these reactions to live vaccines are caused by type I allergy with the bovine gelatin present in the vaccines as an allergen. Gelatin mainly includes denatured type I collagen, which consists of alpha1 and alpha2 chains. We previously reported that allergic reactions to gelatin are caused by the type I collagen alpha2 (alpha2[I]) chain. To aid in the development of gelatin that has little or no allergenicity in human subjects, we investigated epitopes of bovine alpha2(I) chain with use of IgE in gelatin-sensitive children. Serum samples were collected from 15 patients who had systemic allergic reactions to vaccines and high levels of specific IgE to bovine gelatin. Eleven overlapping recombinant proteins that cover bovine alpha2(I) were prepared with a bacterial expression vector. We examined IgE reactivity to these recombinant proteins by means of ELISA. Fifteen peptides covering a major reactive recombinant protein were synthesized. The IgE-reacting epitope was identified by means of IgE-ELISA inhibition with these synthetic peptides and pooled serum from the patients. We found that of the 15 patients, 13 showed IgE reactivity to a recombinant protein (no. 3) spanning the central region of the collagenous domain ((418)Gly-(662)Pro). Furthermore, all 13 patients showed IgE reactivity to the 4-kd recombinant protein (no. 3a) spanning the region from (461)Pro to (500)Glu. In IgE-ELISA inhibition we found that a minimum IgE epitope of gelatin allergen was composed of the 10-amino-acid sequence (485)Ile-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro(494). This sequence is not observed in the human type I collagen alpha1 and alpha2 chains, nor is it found in the bovine type I collagen alpha1 chain. We found that Ile-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro is a major IgE epitope of the alpha2 chain of bovine type I collagen in patients with gelatin allergy. The degree of anaphylaxis to gelatin in vaccines might be reduced by digestion of this IgE-binding site in gelatin.
Goel, Shailendra; Chen, Zhenbang; Akiyama, Yukio; Conner, Joann A.; Basu, Manojit; Gualtieri, Gustavo; Hanna, Wayne W.; Ozias-Akins, Peggy
2006-01-01
In gametophytic apomicts of the aposporous type, each cell of the embryo sac is genetically identical to somatic cells of the ovule because they are products of mitosis, not of meiosis. The egg of the aposporous embryo sac follows parthenogenetic development into an embryo; therefore, uniform progeny result even from heterozygous plants, a trait that would be valuable for many crop species. Attempts to introgress apomixis from wild relatives into major crops through traditional breeding have been hindered by low or no recombination within the chromosomal region governing this trait (the apospory-specific genomic region or ASGR). The lack of recombination also has been a major obstacle to positional cloning of key genes. To further delineate and characterize the nonrecombinant ASGR, we have identified eight new ASGR-linked, AFLP-based molecular markers, only one of which showed recombination with the trait for aposporous embryo sac development. Bacterial artificial chromosome (BAC) clones identified with the ASGR-linked AFLPs or previously mapped markers, when mapped by fluorescence in situ hybridization in Pennisetum squamulatum and Cenchrus ciliaris, showed almost complete macrosynteny between the two apomictic grasses throughout the ASGR, although with an inverted order. A BAC identified with the recombinant AFLP marker mapped most proximal to the centromere of the ASGR-carrier chromosome in P. squamulatum but was not located on the ASGR-carrier chromosome in C. ciliaris. Exceptional regions where synteny was disrupted probably are nonessential for expression of the aposporous trait. The ASGR appears to be maintained as a haplotype even though its position in the genome can be variable. PMID:16547108
Muñoz-Fuentes, Violeta; Di Rienzo, Anna; Vilà, Carles
2011-01-01
Meiotic recombination is a fundamental process needed for the correct segregation of chromosomes during meiosis in sexually reproducing organisms. In humans, 80% of crossovers are estimated to occur at specific areas of the genome called recombination hotspots. Recently, a protein called PRDM9 was identified as a major player in determining the location of genome-wide meiotic recombination hotspots in humans and mice. The origin of this protein seems to be ancient in evolutionary time, as reflected by its fairly conserved structure in lineages that diverged over 700 million years ago. Despite its important role, there are many animal groups in which Prdm9 is absent (e.g. birds, reptiles, amphibians, diptera) and it has been suggested to have disruptive mutations and thus to be a pseudogene in dogs. Because of the dog's history through domestication and artificial selection, we wanted to confirm the presence of a disrupted Prdm9 gene in dogs and determine whether this was exclusive of this species or whether it also occurred in its wild ancestor, the wolf, and in a close relative, the coyote. We sequenced the region in the dog genome that aligned to the last exon of the human Prdm9, containing the entire zinc finger domain, in 4 dogs, 17 wolves and 2 coyotes. Our results show that the three canid species possess mutations that likely make this gene non functional. Because these mutations are shared across the three species, they must have appeared prior to the split of the wolf and the coyote, millions of years ago, and are not related to domestication. In addition, our results suggest that in these three canid species recombination does not occur at hotspots or hotspot location is controlled through a mechanism yet to be determined.
Boulila, Moncef
2011-02-01
In an effort to enhance the knowledge on molecular evolution of currently the known members of the families Luteoviridae and Tymoviridae, in-depth molecular investigations in the entire genome of 147 accessions retrieved from the international databases, were carried out. Two algorithms (RECCO and RDP version 3.31β) adapted to the mosaic structure of viruses were utilized. The recombination frequency along the sequences was dissected and demonstrated that the three virus genera of the family Luteoviridae comprise numerous members subjected to recombination. It has pointed out that the major viruses swapped a few but long genomic segments. In addition, in Barley yellow dwarf virus, heredity material might be exchanged between two different serotypes. Even more, putative recombination events occurred between two different genera. Based on Fisher's Exact Test of Neutrality, positive selection acting on protein expression was detected only in the poleroviruses Cereal yellow dwarf virus, Potato leafroll virus and Wheat yellow dwarf virus. In contrast, several components of the family Tymoviridae were highly recombinant. Genomic portion exchange arose in many positions consisting of short fragments. Furthermore, no positive selection was detected. The evolutionary history showed, in the Luteoviridae, that all screened isolates split into three clusters corresponding to the three virus genera forming this family. Moreover, in the serotype PAV of Barley yellow dwarf virus, two major clades corresponding to PAV-USA and PAV-China, were delineated. Similarly, in the Tymoviridae, all analyzed isolates fell into four groups corresponding to the three virus genera composing this family along with the unclassified Tymoviridae. Inferred phylogenies reshuffled the existing classification and showed that Wheat yellow dwarf virus-RPV was genetically closely related to Cereal yellow dwarf virus and the unclassified Tymoviridae Grapevine syrah virus-1 constituted an integral part of the genus Marafivirus. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Cangi, Nídia; Gordon, Jonathan L; Bournez, Laure; Pinarello, Valérie; Aprelon, Rosalie; Huber, Karine; Lefrançois, Thierry; Neves, Luís; Meyer, Damien F; Vachiéry, Nathalie
2016-01-01
The disease, Heartwater, caused by the Anaplasmataceae E. ruminantium , represents a major problem for tropical livestock and wild ruminants. Up to now, no effective vaccine has been available due to a limited cross protection of vaccinal strains on field strains and a high genetic diversity of Ehrlichia ruminantium within geographical locations. To address this issue, we inferred the genetic diversity and population structure of 194 E. ruminantium isolates circulating worldwide using Multilocus Sequence Typing based on lipA, lipB, secY, sodB , and sucA genes . Phylogenetic trees and networks were generated using BEAST and SplitsTree, respectively, and recombination between the different genetic groups was tested using the PHI test for recombination. Our study reveals the repeated occurrence of recombination between E. ruminantium strains, suggesting that it may occur frequently in the genome and has likely played an important role in the maintenance of genetic diversity and the evolution of E. ruminantium . Despite the unclear phylogeny and phylogeography, E. ruminantium isolates are clustered into two main groups: Group 1 (West Africa) and a Group 2 (worldwide) which is represented by West, East, and Southern Africa, Indian Ocean, and Caribbean strains. Some sequence types are common between West Africa and Caribbean and between Southern Africa and Indian Ocean strains. These common sequence types highlight two main introduction events due to the movement of cattle: from West Africa to Caribbean and from Southern Africa to the Indian Ocean islands. Due to the long branch lengths between Group 1 and Group 2, and the propensity for recombination between these groups, it seems that the West African clusters of Subgroup 2 arrived there more recently than the original divergence of the two groups, possibly with the original waves of domesticated ruminants that spread across the African continent several thousand years ago.
NASA Astrophysics Data System (ADS)
Edwards, J. H.; Kluesner, J. W.; Silver, E. A.
2015-12-01
3D seismic reflection data (CRISP) collected across the southern Costa Rica forearc reveals broad, survey-wide erosional events in the upper ~1 km of slope sediments in the mid-slope to outer shelf. The upper 0-280 m of continuous, weakly deformed sediments, designated by IODP Expedition 344 as structural domain I, is bounded by a major erosional event, (CRISP-U1, dated near 1 Ma), suggesting wave-plain erosion from the present shelf break out to 25 km seaward, to a present-day water depth of 900-1300 m. The eastern toe of its surface is characterized by a large drainage system, likely including submarine channels that eroded to depths >1500 m below present-day water depth. CRISP-U1 is variably uplifted by a series of fault propagation folds and cut by an intersecting array of normal faults. Another, major erosional event, (CRISP-M1, approximately 2 Ma) extended from the outer shelf to the mid slope and removed 500-1000 m of material. Overlying CRISP-M1 is up to 1 km of sediments that are more deformed by fault propagation folds, back thrusts, and intersecting arrays of normal faults. Unconformities with smaller areal extent are variably found in these overlying sediments across the mid-slope to outer shelf, at present-day water depths >220 m. Below CRISP-M1, sediments are more densely deformed and also contain major unconformities that extend survey-wide. Both unconformities, CRISP-U1 and CRISP-M1, are encountered in well U1413 and are demarcated by major benthic foraminifera assemblage changes at 149 mbsf and ~504 mbsf (Harris et al., 2013, Proceeding of the IODP, Volume 344).CRISP-M1 is likely correlative to the major sediment facies and benthic foraminifera assemblage change found in U1379 at ~880 mbsf (Vannuchi et al., 2013). The unconformities and intersecting array of normal faults may demarcate the passing of topography on the downgoing Cocos plate, episodically lifting and then subsiding the Costa Rica margin, with amplitudes up to about 1 km.
Impact of Profiling Technologies in the Understanding of Recombinant Protein Production
NASA Astrophysics Data System (ADS)
Vijayendran, Chandran; Flaschel, Erwin
Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.
Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle
2015-01-01
Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294
Sutrisna, Aang; Vossenaar, Marieke; Poonawala, Alia; Mallipu, Agnes; Izwardy, Doddy; Menon, Ravi; Tumilowicz, Alison
2018-06-08
The objective of this study was to examine the influence of improved information and educational messages on outer packaging of a micronutrient powder (MNP), locally known as “ Taburia ”, on knowledge and adherence to recommended use. A community-based cluster randomized controlled trial was conducted among 1149 caregivers and their children aged 6⁻36 months. Caregiver⁻child dyads were randomized by their villages to receive 30 sachets of Taburia with the: (i) original outer packaging; (ii) improved outer packaging; or (iii) improved outer packaging combined with cooking demonstrations. Adherence to Taburia use was assessed through caregiver interviews and observation of unused sachets during home visits; “high” adherence was defined as consuming 13⁻17 sachets in the previous month. Data collection included surveys and focus groups discussions. The majority of caregivers (>80%) preferred the improved packaging because it was more attractive and contained more comprehensive information. Caregivers who received the improved packaging had better knowledge regarding the recommended use of Taburia ( p < 0.001) and higher adherence with the prescribed use of Taburia (43% with “high” adherence) ( p < 0.001) than those who received the original packaging (29% with “high” adherence). Caregivers who participated in cooking demonstrations generally had better knowledge regarding the benefits of Taburia and recommended use, but this did not lead to higher adherence to recommended use. “Underconsumption” of Taburia (≤7 sachets) was much less prevalent than “overconsumption” (≥23 sachets), and original packaging users were more likely to consume Taburia daily instead of every two days as recommended. We conclude that the design of the outer packaging and comprehensiveness of information provided are important influencers of recommended MNP use by caregivers.
The evolution of forearc structures along an oblique convergent margin, central Aleutian Arc
Ryan, H.F.; Scholl, D. W.
1989-01-01
Multichannel seismic reflection data were used to determine the evolutionary history of the forearc region of the central Aleutian Ridge. Since at least late Miocene time this sector of the ridge has been obliquely underthrust 30?? west of orthogonal convergence by the northwestward converging Pacific plate at a rate of 80-90 km/m.y. Our data indicate that prior to late Eocene time the forearc region was composed of rocks of the arc massif thinly mantled by slope deposits. Beginning in latest Miocene or earliest Pliocene time, a zone of outer-arc structural highs and a forearc basin began to form. Initial structures of the zone of outer-arc highs formed as the thickening wedge underran, compressively deformed, and uplifted the seaward edge of the arc massive above a landward dipping backstop thrust. Forearc basin strata ponded arcward of the elevating zone of outer-arc highs. However, most younger structures of the zone of outer-arc highs cannot be ascribed simply to the orthogonal effects of an underrunning wedge. Oblique convergence created a major right-lateral shear zone (the Hawley Ridge shear zone) that longitudinally disrupted the zone of outer-arc highs, truncating the seaward flank of the forearc basin and shearing the southern limb of Hawley Ridge, an exceptionally large antiformal outer-arc high structure. Uplift of Hawley Ridge may be related to the thickening of the arc massif by westward directed basement duplexes. Great structural complexity, including the close juxtaposition of coeval structures recording compression, extension, differential vertical movements, and strike-slip displacement, should be expected, even within areas of generally kindred tectonostratigraphic terranes. -from Authors
Stellar populations, stellar masses and the formation of galaxy bulges and discs at z < 3 in CANDELS
NASA Astrophysics Data System (ADS)
Margalef-Bentabol, Berta; Conselice, Christopher J.; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Kennedy, Rebecca; Kocevski, Dale D.; Hasinger, Guenther
2018-02-01
We present a multicomponent structural analysis of the internal structure of 1074 high-redshift massive galaxies at 1 < z < 3 from the CANDELS HST Survey. In particular, we examine galaxies best fitted by two structural components, and thus likely forming discs and bulges. We examine the stellar mass, star formation rates (SFRs) and colours of both the inner 'bulge' and outer 'disc' components for these systems using Spectral Energy Distribution (SED) information from the resolved ACS+WFC3 HST imaging. We find that the majority of both inner and outer components lie in the star-forming region of UVJ space (68 and 90 per cent, respectively). However, the inner portions, or the likely forming bulges, are dominated by dusty star formation. Furthermore, we show that the outer components of these systems have a higher SFR than their inner regions, and the ratio of SFR between 'disc' and 'bulge' increases at lower redshifts. Despite the higher SFR of the outer component, the stellar mass ratio of inner to outer component remains constant through this epoch. This suggests that there is mass transfer from the outer to inner components for typical two-component-forming systems, thus building bulges from discs. Finally, using Chandra data we find that the presence of an active galactic nucleus is more common in both one-component spheroid-like galaxies and two-component systems (13 ± 3 and 11 ± 2 per cent) than in one-component disc-like galaxies (3 ± 1 per cent), demonstrating that the formation of a central inner component likely triggers the formation of central massive black holes in these galaxies.
NASA Astrophysics Data System (ADS)
Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.
2017-12-01
We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.
Jacquet, Maxime; Durand, Jonas; Rais, Olivier; Voordouw, Maarten J
2015-12-01
Cross-reactive acquired immunity in the vertebrate host induces indirect competition between strains of a given pathogen species and is critical for understanding the ecology of mixed infections. In vector-borne diseases, cross-reactive antibodies can reduce pathogen transmission at the vector-to-host and the host-to-vector lifecycle transition. The highly polymorphic, immunodominant, outer surface protein C (OspC) of the tick-borne spirochete bacterium Borrelia afzelii induces a strong antibody response in the vertebrate host. To test how cross-immunity in the vertebrate host influences tick-to-host and host-to-tick transmission, mice were immunized with one of two strain-specific recombinant OspC proteins (A3, A10), challenged via tick bite with one of the two B. afzelii ospC strains (A3, A10), and infested with xenodiagnostic ticks. Immunization with a given rOspC antigen protected mice against homologous strains carrying the same major ospC group allele but provided little or no cross-protection against heterologous strains carrying a different major ospC group allele. There were cross-immunity effects on the tick spirochete load but not on the probability of host-to-tick transmission. The spirochete load in ticks that had fed on mice with cross-immune experience was reduced by a factor of two compared to ticks that had fed on naive control mice. In addition, strain-specific differences in mouse spirochete load, host-to-tick transmission, tick spirochete load, and the OspC-specific IgG response revealed the mechanisms that determine variation in transmission success between strains of B. afzelii. This study shows that cross-immunity in infected vertebrate hosts can reduce pathogen load in the arthropod vector with potential consequences for vector-to-host pathogen transmission. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Jianye; Ling, Jueyi; Wang, Zhixian; Huang, Yu; Zhu, Jianzhong; Zhu, Guoqiang
2017-11-09
Muscovy duck parvovirus (MDPV) and Goose parvovirus (GPV) are important etiological agents for Muscovy duck parvoviral disease and Derzsy's disease, respectively; both of which can cause substantial economic losses in waterfowl industry. In contrast to GPV, the complete genomic sequence data of MDPV isolates are still limited and their phylogenetic relationships largely remain unknown. In this study, the entire genome of a pathogenic MDPV strain ZW, which was isolated from a deceased Muscovy duckling in 2006 in China, was cloned, sequenced, and compared with that of other classical MDPV and GPV strains. The genome of strain ZW comprises of 5071 nucleotides; this genome was shorter than that of the pathogenic MDPV strain YY (5075 nt). All the four deleted nucleotides produced in strain ZW are located at the base-pairing positions in the palindromic stem of inverted terminal repeats (ITR) without influencing the formation of a hairpin structure. Recombination analysis revealed that strain ZW originated from genetic recombination between the classical MDPV and GPV strain. The YY strain of MDPV acts as the major parent, whereas the virulent strains YZ99-6 and B and the vaccine strain SYG61v of GPV act as the minor parents in varying degrees. Two recombination sites were detected in strain ZW, with the small recombination site surrounding the P9 promoter, and the large recombination site situated in the middle of the VP3 gene. The SYG61V strain is a vaccine strain used for preventing goose parvoviral disease. This strain was found to be solely involved in the recombination event detected in the P9 promoter region. Phylogenetic analyses between strain ZW and other classical strains of MDPV and GPV were performed. The results supported the in silico recombination analysis conclusion. MDPV Strain ZW is a novel recombinant parvovirus, and the bulk of its genome originates from the classical MDPV strain. Two virulent strains and a vaccine strain of GPV were involved in the recombination process in varying degrees.
Zhou, Peng; Wang, Xin; Yan, Shicheng; Zou, Zhigang
2016-08-23
Decreasing the recombination of photogenerated carriers is a major challenge for efficiently converting solar energy into chemical energy by photocatalysis. Here, we have demonstrated that growth of a polar GaN:ZnO solid solution single crystal along its polarization axis is beneficial to efficient separation of photogenerated carriers, owing to the periodic potential barriers and wells generated from the periodically positive and negative atom arrangements in crystal structure. Local charge imbalance caused by replacing Ga(3+) with Zn(2+) leads to a polarization vector in the {0 0 0 1} planes of GaN:ZnO solid solution, thus forming a 1 D electron transport path along [2 1‾ 1‾ 0] in the {0 0 0 1} planes of GaN:ZnO solid solution to decrease recombination. Shorting the hole-transport distance by synthesizing porous nanoplates can further decrease recombination under the polarization field and improve the performance of polar photocatalyst in photoreduction of CO2 into CH4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei
2016-02-02
Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.
Recombinant vaccine for canine parvovirus in dogs.
López de Turiso, J A; Cortés, E; Martínez, C; Ruiz de Ybáñez, R; Simarro, I; Vela, C; Casal, I
1992-05-01
VP2 is the major component of canine parvovirus (CPV) capsids. The VP2-coding gene was engineered to be expressed by a recombinant baculovirus under the control of the polyhedrin promoter. A transfer vector that contains the lacZ gene under the control of the p10 promoter was used in order to facilitate the selection of recombinants. The expressed VP2 was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 shows also the capability to self-assemble, forming viruslike particles similar in size and appearance to CPV virions. These viruslike particles have been used to immunize dogs in different doses and combinations of adjuvants, and the anti-CPV responses have been measured by enzyme-linked immunosorbent assay, monolayer protection assays, and an assay for the inhibition of hemagglutination. A dose of ca. 10 micrograms of VP2 was able to elicit a good protective response, higher than that obtained with a commercially available, inactivated vaccine. The results indicate that these viruslike particles can be used to protect dogs from CPV infection.
Recombinant vaccine for canine parvovirus in dogs.
López de Turiso, J A; Cortés, E; Martínez, C; Ruiz de Ybáñez, R; Simarro, I; Vela, C; Casal, I
1992-01-01
VP2 is the major component of canine parvovirus (CPV) capsids. The VP2-coding gene was engineered to be expressed by a recombinant baculovirus under the control of the polyhedrin promoter. A transfer vector that contains the lacZ gene under the control of the p10 promoter was used in order to facilitate the selection of recombinants. The expressed VP2 was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 shows also the capability to self-assemble, forming viruslike particles similar in size and appearance to CPV virions. These viruslike particles have been used to immunize dogs in different doses and combinations of adjuvants, and the anti-CPV responses have been measured by enzyme-linked immunosorbent assay, monolayer protection assays, and an assay for the inhibition of hemagglutination. A dose of ca. 10 micrograms of VP2 was able to elicit a good protective response, higher than that obtained with a commercially available, inactivated vaccine. The results indicate that these viruslike particles can be used to protect dogs from CPV infection. Images PMID:1313899
Development of an Improved Mammalian Overexpression Method for Human CD62L
Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.
2014-01-01
We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402
Recombinant cathepsin E has no proteolytic activity at neutral pH.
Zaidi, Nousheen; Herrmann, Timo; Voelter, Wolfgang; Kalbacher, Hubert
2007-08-17
Cathepsin E (CatE) is a major intracellular aspartic protease reported to be involved in cellular protein degradation and several pathological processes. Distinct cleavage specificities of CatE at neutral and acidic pH have been reported previously in studies using CatE purified from human gastric mucosa. Here, in contrast, we have analyzed the proteolytic activity of recombinant CatE at acidic and neutral pH using two separate approaches, RP-HPLC and FRET-based proteinase assays. Our data clearly indicate that recombinant CatE does not possess any proteolytic activity at all at neutral pH and was unable to cleave the peptides glucagon, neurotensin, and dynorphin A that were previously reported to be cleaved by CatE at neutral pH. Even in the presence of ATP, which is known to stabilize CatE, no proteolytic activity was observed. These discrepant results might be due to some contaminating factor present in the enzyme preparations used in previous studies or may reflect differences between recombinant CatE and the native enzyme.
Wang, Yi-Ting; Huang, Hsing-Yen; Tsai, Ming-An; Wang, Pei-Chi; Jiang, Bo-Huang; Chen, Shih-Chu
2014-12-01
Streptococcus agalactiae is a Gram-positive bacterium and a severe aquaculture pathogen that can infect a wide range of warmwater fish species. The outer-surface proteins in bacterial pathogens play an important role in pathogenesis. We evaluated the immunogenicity of two of the identified surface proteins namely phosphoglycerate kinase (PGK) and ornithine carbamoyl-transferase (OCT). PGK and OCT were over-expressed and purified from Escherichia coli and used as the subunit vaccines in tilapia. Tilapia immunized with the S. agalactiae modified bacteria vaccine (whole cell preparations with recombinant PGK and OCT proteins) individually were tested for the efficacy. OCT and PGK combined with WC had a higher survival rate. A high-level protection and significant specific antibody responses against S. agalactiae challenge was observed upon the vaccinated tilapia with the purified PGK protein and S. agalactiae whole cells. The specific antibody titer against S. agalactiae antigen suggested that increased antibody titers were correlated with post-challenge survival rate. Il-1β expression profile was higher in PGK + WC-treated group. Tnf-α expression in the PGK + WC group was significantly increased. Taken together, our results suggested the combinations of recombinant protein and whole cell may elicit immune responses that reach greater protection than that of individual S. agalactiae components. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meiotic recombination counteracts male-biased mutation (male-driven evolution).
Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo
2016-01-27
Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations. © 2016 The Author(s).
Fitzpatrick, J; Kricka, W; James, T C; Bond, U
2014-07-01
To compare the production of recombinant cellulase enzymes in two Saccharomyces species so as to ascertain the most suitable heterologous host for the degradation of cellulose-based biomass and its conversion into bioethanol. cDNA copies of genes representing the three major classes of cellulases (Endoglucanases, Cellobiohydrolases and β-glucosidases) from Trichoderma reesei were expressed in Saccharomyces pastorianus and Saccharomyces cerevisiae. The recombinant enzymes were secreted by the yeast hosts into the medium and were shown to act in synergy to hydrolyse cellulose. The conditions required to achieve maximum release of glucose from cellulose by the recombinant enzymes were defined and the activity of the recombinant enzymes was compared to a commercial cocktail of T. reesei cellulases. We demonstrate that significantly higher levels of cellulase activity were achieved by expression of the genes in S. pastorianus compared to S. cerevisiae. Hydrolysis of cellulose by the combined activity of the recombinant enzymes was significantly better at 50°C than at 30°C, the temperature used for mesophilic yeast fermentations, reflecting the known temperature profiles of the native enzymes. The results demonstrate that host choice is important for the heterologous production of cellulases. On the basis of the low activity of the T. reesei recombinant enzymes at fermentation temperatures, we propose a two-step process for the hydrolysis of cellulose and its fermentation into alcohol using cellulases produced in situ. © 2014 The Society for Applied Microbiology.
Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Kudryavtseva, Anna; Mitrofanova, Irina
2018-04-01
Field isolates of Plum pox virus (PPV), belonging to the strain Rec, have been found for the first time in Russia. Full-size genomes of the isolates K28 and Kisl-1pl from myrobalan and plum, respectively, were sequenced on the 454 platform. Analysis of all known PPV-Rec complete genomes using the Recombination Detection Program (RDP4) revealed yet another recombination event in the 5'-terminal region. This event was detected by seven algorithms, implemented in the RDP4, with statistically significant P values and supported by a phylogenetic analysis with the bootstrap value of 87%. A putative PPV-M-derived segment, encompassing the C-terminus of the P1 gene and approximately two-thirds of the HcPro gene, is bordered by breakpoints at positions 760-940 and 1838-1964, depending on the recombinant isolate. The predicted 5'-distal breakpoint for the isolate Valjevka is located at position 2804. The Dideron (strain D) and SK68 (strain M) isolates were inferred as major and minor parents, respectively. Finding of another recombination event suggests more complex evolutionary history of PPV-Rec than previously assumed. Perhaps the first recombination event led to the formation of a PPV-D variant harboring the PPV-M-derived fragment within the 5'-proximal part of the genome. Subsequent recombination of its descendant with PPV-M in the 3'-proximal genomic region resulted in the emergence of the evolutionary successful strain Rec.
NASA Astrophysics Data System (ADS)
Drexler, Wolfgang; Hermann, Boris; Unterhuber, Angelika; Sattmann, Harald; Wirtitsch, Matthias; Stur, Michael; Scholda, Christoph; Ergun, Erdem; Anger, Elisabeth; Ko, Tony H.; Schubert, Christian; Ahnelt, Peter K.; Fujimoto, James G.; Fercher, Adolf F.
2004-07-01
In vivo ultrahigh resolution ophthalmic OCT has been performed in more than 300 eyes of 200 patients with several retinal pathologies, demonstrating unprecedented visualization of all major intraretinal layers, in particular the photoreceptor layer. Visualization as well as quantification of the inner and outer segment of the photoreceptor layer especially in the foveal region has been acvhieved. In normal subjects the photoreceptor layer thickness in the center of the fovea is about of 90 μm, approximately equally distributed to the inner and the outer photoreceptor segment. In the parafoveal region this thickness is reduced to ~50 μm (~30 μm for the inner and ~20 μm for the outer segment). This is in good agreement with well known increase of cone outer segments in the central foveal region. Photoreceptor layer impairment in different macular pathologies like macular hole, central serous chorioretinopathy, age related macular degeneration, foveomacular dystrophies, Stargardt dystrophy as well as retinitis pigmentosa has been investigated. Photoreceptor layer loss significantly correlated with visual acuity (R2 = 0.6, p < 0.001) and microperimetry findings for the first time in 22 eyes with Stargardt dystrophy. Visualization and quantification of photoreceptor inner and outer segment using ultrahigh resolution OCT has the potential to improve early ophthalmic diagnosis, contributes to a better understanding of pathogenesis of retinal diseases as well as might have impact in the development and monitoring of novel therapy approaches.
Schneider, Christian; von Aulock, Sonja; Zedler, Siegfried; Schinkel, Christian; Hartung, Thomas; Faist, Eugen
2004-01-01
To examine the effects of perioperative rhG-CSF administration on immune function in patients subjected to major surgery. Severe trauma, such as major surgery, initiates acute immunodysfunction which predisposes the patient towards infectious complications. Sixty patients undergoing elective surgery received either recombinant human granulocyte colony-stimulating factor/rh G-CSF (Filgrastim) or a placebo perioperatively. At several time points before and after the surgical intervention immunofunctional parameters were assessed. RESULTS Leukocyte counts and serum levels of anti-inflammatory mediators (IL-1ra and TNF-R) were increased in Filgrastim-treated patients, while the post-operative acute phase response was attenuated. Monocyte deactivation (reduced TNF-alpha release and HLA-DR expression) and lymphocyte anergy (impaired mitogenic proliferation and reduced TH1 lymphokine release) were blunted and the incidence and severity of infectious complications were reduced. These results suggest that Filgrastim treatment reinforces innate immunity, enabling better prevention of infection. Thus, this unique combination of hematopoietic, anti-inflammatory and anti-infectious effects on the innate immune system warrants further study of clinical efficacy and sepsis prophylaxis.
Schneider, Christian; von Aulock, Sonja; Zedler, Siegfried; Schinkel, Christian; Hartung, Thomas; Faist, Eugen
2004-01-01
Objective: To examine the effects of perioperative rhG-CSF administration on immune function in patients subjected to major surgery. Summary Background Data: Severe trauma, such as major surgery, initiates acute immunodysfunction which predisposes the patient towards infectious complications. Methods: Sixty patients undergoing elective surgery received either recombinant human granulocyte colony-stimulating factor/rh G-CSF (Filgrastim) or a placebo perioperatively. At several time points before and after the surgical intervention immunofunctional parameters were assessed. Results: Leukocyte counts and serum levels of anti-inflammatory mediators (IL-1ra and TNF-R) were increased in Filgrastim-treated patients, while the post-operative acute phase response was attenuated. Monocyte deactivation (reduced TNF-α release and HLA-DR expression) and lymphocyte anergy (impaired mitogenic proliferation and reduced TH1 lymphokine release) were blunted and the incidence and severity of infectious complications were reduced. Conclusions: These results suggest that Filgrastim treatment reinforces innate immunity, enabling better prevention of infection. Thus, this unique combination of hematopoietic, anti-inflammatory and anti-infectious effects on the innate immune system warrants further study of clinical efficacy and sepsis prophylaxis. PMID:14685103
Pearston, Douglas H.; Gordon, Mairi; Hardman, Norman
1985-01-01
A family of long, highly-repetitive sequences, referred to previously as `HpaII-repeats', dominates the genome of the eukaryotic slime mould Physarum polycephalum. These sequences are found exclusively in scrambled clusters. They account for about one-half of the total complement of repetitive DNA in Physarum, and represent the major sequence component found in hypermethylated, 20-50 kb segments of Physarum genomic DNA that fail to be cleaved using the restriction endonuclease HpaII. The structure of this abundant repetitive element was investigated by analysing cloned segments derived from the hypermethylated genomic DNA compartment. We show that the `HpaII-repeat' forms part of a larger repetitive DNA structure, ∼8.6 kb in length, with several structural features in common with recognised eukaryotic transposable genetic elements. Scrambled clusters of the sequence probably arise as a result of transposition-like events, during which the element preferentially recombines in either orientation with target sites located in other copies of the same repeated sequence. The target sites for transposition/recombination are not related in sequence but in all cases studied they are potentially capable of promoting the formation of small `cruciforms' or `Z-DNA' structures which might be recognised during the recombination process. ImagesFig. 3.Fig. 4. PMID:16453652
Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino
2015-01-01
Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.
Tetteh, Kevin K A; Conway, David J
2011-10-13
Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Paul, Matthew J; Thangaraj, Harry; Ma, Julian K-C
2015-10-01
The 1980s and 1990s saw a major expansion of biotechnology into new areas of science including genomics and recombinant technologies. This was coupled to the widespread emergence of academics into the commercial sector as they were encouraged to spin out companies or commercialize their intellectual property. There were many opportunities to raise investment, and extraordinary success stories were prominent across many areas of technology. The field of plant biotechnology for manufacturing recombinant pharmaceuticals (molecular pharming) emerged and was developed in this period. Like other biotechnologies, this was an exciting new development which offered some very obvious benefits and commercial advantages. In particularly, plant molecular pharming represented a highly novel and potentially disruptive manufacturing technology for recombinant proteins. Twenty-five years on, a series of interviews with senior members of sixteen of the most prominent companies involved in the field provides insight into the original drivers for commercialization, strategic thinking and planning behind key commercial decisions and an insider view into the major reasons for commercial success or failure. These observations and recurring themes identified across a number of commercial ventures remain relevant today, as new biotech companies continue to spin out of the world of academia. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Lee, Junho; Kim, Dae Heon; Hwang, Inhwan
2014-01-01
Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904
Hadis, Mohammed; Alderwick, Luke
2017-01-01
Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections. PMID:29186191