Sample records for recombinant reverse transcriptase

  1. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology.

    PubMed

    Collins, Kathleen; Nilsen, Timothy W

    2013-08-01

    Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.

  2. Nevirapine resistance mutation at codon 181 of the HIV-1 reverse transcriptase confers stavudine resistance by increasing nucleotide substrate discrimination and phosphorolytic activity.

    PubMed

    Blanca, Giuseppina; Baldanti, Fausto; Paolucci, Stefania; Skoblov, Alexander Yu; Victorova, Lyubov; Hübscher, Ulrich; Gerna, Giuseppe; Spadari, Silvio; Maga, Giovanni

    2003-05-02

    Recombinant HIV-1 reverse transcriptase (RT) carrying non-nucleoside inhibitors (NNRTIs) resistance mutation at codon 181 showed reduced incorporation and high efficiency of phosphorolytic removal of stavudine, a nucleoside RT inhibitor. These results reveal a new mechanism for cross-resistance between different classes of HIV-1 RT inhibitors.

  3. Suicide Inhibitors of Reverse Transcriptase in the Therapy of AIDS and Other Retroviruses

    DTIC Science & Technology

    1990-07-01

    I and 10 nanonolar) and compared to the E . Coli recombinant HIV-RT (Kindly donated by Dr. Steven Hughes Fort Detrick M.D.) and the wild type HIV-RT...Both the wild type and E . Coli HIV-RT’s were resistant to PFA showing essentially no inhibition at the lOnM level. Previous studies have shown that...10 nanomolar PFA. j, Sentivitv of Recombinant HIV-Reverse Transcriotase to Foscarnet. RECOMBINANT HIV RT ( E . COLI) + FOSCARNET 350001R 300000 PFA .001

  4. Structure-Based Design of Novel Dihydroalkoxybenzyloxopyrimidine Derivatives as Potent Nonnucleoside Inhibitors of the Human Immunodeficiency Virus Reverse Transcriptase

    PubMed Central

    Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.

    1998-01-01

    Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518

  5. Schizosaccharomyces pombe Retrotransposon Tf2 Mobilizes Primarily through Homologous cDNA Recombination

    PubMed Central

    Hoff, Eleanor F.; Levin, Henry L.; Boeke, Jef D.

    1998-01-01

    The Tf2 retrotransposon, found in the fission yeast Schizosaccharomyces pombe, is nearly identical to its sister element, Tf1, in its reverse transcriptase-RNase H and integrase domains but is very divergent in the gag domain, the protease, the 5′ untranslated region, and the U3 domain of the long terminal repeats. It has now been demonstrated that a neo-marked copy of Tf2 overexpressed from a heterologous promoter can mobilize into the S. pombe genome and produce true transposition events. However, the Tf2-neo mobilization frequency is 10- to 20-fold lower than that of Tf1-neo, and 70% of the Tf2-neo events are homologous recombination events generated independently of a functional Tf2 integrase. Thus, the Tf2 element is primarily dependent on homologous recombination with preexisting copies of Tf2 for its propagation. Finally, production of Tf2-neo proteins and cDNA was also analyzed; surprisingly, Tf2 was found to produce its reverse transcriptase as a single species in which it is fused to protease, unlike all other retroviruses and retrotransposons. PMID:9774697

  6. Novel Method for Simultaneous Quantification of Phenotypic Resistance to Maturation, Protease, Reverse Transcriptase, and Integrase HIV Inhibitors Based on 3′Gag(p2/p7/p1/p6)/PR/RT/INT-Recombinant Viruses: a Useful Tool in the Multitarget Era of Antiretroviral Therapy▿†

    PubMed Central

    Weber, Jan; Vazquez, Ana C.; Winner, Dane; Rose, Justine D.; Wylie, Doug; Rhea, Ariel M.; Henry, Kenneth; Pappas, Jennifer; Wright, Alison; Mohamed, Nizar; Gibson, Richard; Rodriguez, Benigno; Soriano, Vicente; King, Kevin; Arts, Eric J.; Olivo, Paul D.; Quiñones-Mateu, Miguel E.

    2011-01-01

    Twenty-six antiretroviral drugs (ARVs), targeting five different steps in the life cycle of the human immunodeficiency virus type 1 (HIV-1), have been approved for the treatment of HIV-1 infection. Accordingly, HIV-1 phenotypic assays based on common cloning technology currently employ three, or possibly four, different recombinant viruses. Here, we describe a system to assess HIV-1 resistance to all drugs targeting the three viral enzymes as well as viral assembly using a single patient-derived, chimeric virus. Patient-derived p2-INT (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) products were PCR amplified as a single fragment (3,428 bp) or two overlapping fragments (1,657 bp and 2,002 bp) and then recombined into a vector containing a near-full-length HIV-1 genome with the Saccharomyces cerevisiae uracil biosynthesis gene (URA3) replacing the 3,428 bp p2-INT segment (Dudley et al., Biotechniques 46:458–467, 2009). P2-INT-recombinant viruses were employed in drug susceptibility assays to test the activity of protease (PI), nucleoside/nucleotide reverse transcriptase (NRTI), nonnucleoside reverse transcriptase (NNRTI), and integrase strand-transfer (INSTI) inhibitors. Using a single standardized test (ViralARTS HIV), this new technology permits the rapid and automated quantification of phenotypic resistance for all known and candidate antiretroviral drugs targeting all viral enzymes (PR, RT, including polymerase and RNase H activities, and IN), some of the current and potential assembly inhibitors, and any drug targeting Pol or Gag precursor cleavage sites (relevant for PI and maturation inhibitors) This novel assay may be instrumental (i) in the development and clinical assessment of novel ARV drugs and (ii) to monitor patients failing prior complex treatment regimens. PMID:21628544

  7. Susceptibility of recombinant porcine endogenous retrovirus reverse transcriptase to nucleoside and non-nucleoside inhibitors.

    PubMed

    Wilhelm, M; Fishman, J A; Pontikis, R; Aubertin, A M; Wilhelm, F X

    2002-12-01

    Transplantation of organs, tissues or cells from pigs to humans could be a potential solution to the shortage of human organs for transplantation. Porcine endogenous retroviruses (PERVs) remain a major safety concern for porcine xenotransplantation. Thus, finding drugs that could be used as virological prophylaxis (or therapy) against PERV replication would be desirable. One of the most effective ways to block retroviral multiplication is to inhibit the enzyme reverse transcriptase (RT) which catalyzes the reverse transcription of viral RNA to proviral double-stranded DNA. We report here the cloning and expression of PERV RT and its susceptibility to several inhibitors. Our data demonstrate PERV susceptibility in vitro to the triphosphorylated nucleoside analog of zidovudine (AZT) and to ddGTP and to a lesser extent to ddTTP but almost no susceptibility to the non-nucleoside RT inhibitors tested.

  8. The Reverse Transcriptase of the Tf1 Retrotransposon Has a Specific Novel Activity for Generating the RNA Self-Primer That Is Functional in cDNA Synthesis▿

    PubMed Central

    Hizi, Amnon

    2008-01-01

    The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5′ end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3′ end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs. PMID:18753200

  9. The reverse transcriptase of the Tf1 retrotransposon has a specific novel activity for generating the RNA self-primer that is functional in cDNA synthesis.

    PubMed

    Hizi, Amnon

    2008-11-01

    The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5' end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3' end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs.

  10. A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro.

    PubMed

    Shen, Wen; Gao, Lu; Balakrishnan, Mini; Bambara, Robert A

    2009-12-04

    The co-packaged RNA genomes of human immunodeficiency virus-1 recombine at a high rate. Recombination can mix mutations to generate viruses that escape immune response. A cell-culture-based system was designed previously to map recombination events in a 459-bp region spanning the primer binding site through a portion of the gag protein coding region. Strikingly, a strong preferential site for recombination in vivo was identified within a 112-nucleotide-long region near the beginning of gag. Strand transfer assays in vitro revealed that three pause bands in the gag hot spot each corresponded to a run of guanosine (G) residues. Pausing of reverse transcriptase is known to promote recombination by strand transfer both in vivo and in vitro. To assess the significance of the G runs, we altered them by base substitutions. Disruption of the G runs eliminated both the associated pausing and strand transfer. Some G-rich sequences can develop G-quartet structures, which were first proposed to form in telomeric DNA. G-quartet structure formation is highly dependent on the presence of specific cations. Incubation in cations discouraging G-quartets altered gel mobility of the gag template consistent with breakdown of G-quartet structure. The same cations faded G-run pauses but did not affect pauses caused by hairpins, indicating that quartet structure causes pausing. Moreover, gel analysis with cations favoring G-quartet structure indicated no structure in mutated templates. Overall, results point to reverse transcriptase pausing at G runs that can form quartets as a unique feature of the gag recombination hot spot.

  11. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    PubMed Central

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801

  12. A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library.

    PubMed

    Waugh, Caryll; Cromer, Deborah; Grimm, Andrew; Chopra, Abha; Mallal, Simon; Davenport, Miles; Mak, Johnson

    2015-04-09

    Massive, parallel sequencing is a potent tool for dissecting the regulation of biological processes by revealing the dynamics of the cellular RNA profile under different conditions. Similarly, massive, parallel sequencing can be used to reveal the complexity of viral quasispecies that are often found in the RNA virus infected host. However, the production of cDNA libraries for next-generation sequencing (NGS) necessitates the reverse transcription of RNA into cDNA and the amplification of the cDNA template using PCR, which may introduce artefact in the form of phantom nucleic acids species that can bias the composition and interpretation of original RNA profiles. Using HIV as a model we have characterised the major sources of error during the conversion of viral RNA to cDNA, namely excess RNA template and the RNaseH activity of the polymerase enzyme, reverse transcriptase. In addition we have analysed the effect of PCR cycle on detection of recombinants and assessed the contribution of transfection of highly similar plasmid DNA to the formation of recombinant species during the production of our control viruses. We have identified RNA template concentrations, RNaseH activity of reverse transcriptase, and PCR conditions as key parameters that must be carefully optimised to minimise chimeric artefacts. Using our optimised RT-PCR conditions, in combination with our modified PCR amplification procedure, we have developed a reliable technique for accurate determination of RNA species using NGS technology.

  13. Emergence of uncommon HIV-1 non-B subtypes and circulating recombinant forms and trends in transmission of antiretroviral drug resistance in patients with primary infection during the 2013-2015 period in Marseille, Southeastern France.

    PubMed

    Tamalet, Catherine; Tissot-Dupont, Hervé; Motte, Anne; Tourrès, Christian; Dhiver, Catherine; Ravaux, Isabelle; Poizot-Martin, Isabelle; Dieng, Thérèse; Tomei, Christelle; Bregigeon, Sylvie; Zaegel-Faucher, Olivia; Laroche, Hélène; Aherfi, Sarah; Mokhtari, Saadia; Chaudet, Hervé; Ménard, Amelie; Brouqui, Philippe; Stein, Andreas; Colson, Philippe

    2018-05-24

    Primary HIV-1 infections (PHI) with non-B subtypes are increasing in developed countries while transmission of HIV-1 harboring antiretroviral resistance-associated mutations (RAMs) remains a concern. This study assessed non-B HIV-1 subtypes and RAMs prevalence among patients with PHI in university hospitals of Marseille, Southeastern France, in 2005-2015 (11 years). HIV-1 sequences were obtained by in-house protocols from 115 patients with PHI, including 38 for the 2013-2015 period. On the basis of the phylogenetic analysis of the reverse transcriptase region, non-B subtypes were identified in 31% of these patients. They included 3 different subtypes (3A, 1C, 4F), 23 circulating recombinant forms (CRFs) (CRF02_AG, best BLAST hits being CRF 36_cpx and CRF30 in 7 and 1 cases, respectively), and 5 unclassified sequences (U). Non-B subtypes proportion increased significantly, particularly in 2011-2013 vs in 2005-2010 (P = .03). CRF02_AG viruses largely predominated in 2005-2013 whereas atypical strains more difficult to classify and undetermined recombinants emerged recently (2014-2015). The prevalence of protease, nucleos(t)ide reverse transcriptase, and first-generation nonnucleoside reverse transcriptase inhibitors-associated RAMs were 1.7% (World Health Organization [WHO] list, 2009/2.6% International AIDS Society [IAS] list, 2017), 5.2%/4.3%, and 5.2%/5.2%, respectively. Etravirine/rilpivirine-associated RAM (IAS) prevalence was 4.3%. Men who have sex with men (MSM) were more frequently infected with drug-resistant viruses than other patients (26% vs 7%; P = .011). The recent increase of these rare HIV-1 strains and the spread of drug-resistant HIV-1 among MSM in Southeastern France might be considered when implementing prevention strategies and starting therapies. © 2018 Wiley Periodicals, Inc.

  14. Prevalence of HIV-1 Subtypes and Drug Resistance-Associated Mutations in HIV-1-Positive Treatment-Naive Pregnant Women in Pointe Noire, Republic of the Congo (Kento-Mwana Project).

    PubMed

    Bruzzone, Bianca; Saladini, Francesco; Sticchi, Laura; Mayinda Mboungou, Franc A; Barresi, Renata; Caligiuri, Patrizia; Calzi, Anna; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio; Bisio, Francesca

    2015-08-01

    The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission.

  15. Novel HBV recombinants between genotypes B and C in 3'-terminal reverse transcriptase (RT) sequences are associated with enhanced viral DNA load, higher RT point mutation rates and place of birth among Chinese patients.

    PubMed

    Liu, Baoming; Yang, Jing-Xian; Yan, Ling; Zhuang, Hui; Li, Tong

    2018-01-01

    As one of the major global public health concerns, hepatitis B virus (HBV) can be divided into at least eight genotypes, which may be related to disease severity and treatment response. We previously demonstrated that genotypes B and C HBV, with distinct geographical distribution in China, had divergent genotype-dependent amino acid polymorphisms and variations in reverse transcriptase (RT) gene region, a target of antiviral therapy using nucleos(t)ide analogues. Recently recombination between HBV genotypes B and C was reported to occur in the RT region. However, their frequency and clinical significance is poorly understood. Here full-length HBV RT sequences from 201 Chinese chronic hepatitis B (CHB) patients were amplified and sequenced, among which 31.34% (63/201) were genotype B whereas 68.66% (138/201) genotype C. Although no intergenotypic recombination was detected among C-genotype HBV, 38.10% (24/63) of B-genotype HBV had recombination with genotype C in the 3'-terminal RT sequences. The patients with B/C intergenotypic recombinants had significantly (P<0.05) higher serum HBV DNA level than the "pure" B-genotype cohort did. Moreover, the B/C intergenotypic recombinants were prone to more substitutions at several specific residues in the RT region than genotype B or C. Besides, unlike their parental genotypes, the recombinant HBV appeared to display an altered geographic distribution feature in China. Our findings provide novel insight into the virological, clinical and epidemiological features of new HBV B/C intergenotypic recombinants at the 3' end of RT sequences among Chinese CHB patients. The highly complex genetic background of the novel recombinant HBV carrying new mutations affecting RT protein may contribute to an enhanced heterogeneity in treatment response or prognosis among CHB patients. Published by Elsevier B.V.

  16. Impact of human immunodeficiency virus type 1 reverse transcriptase inhibitor drug resistance mutation interactions on phenotypic susceptibility.

    PubMed

    Trivedi, Vinod; Von Lindern, Jana; Montes-Walters, Miguel; Rojo, Daniel R; Shell, Elisabeth J; Parkin, Neil; O'Brien, William A; Ferguson, Monique R

    2008-10-01

    The role specific reverse transcriptase (RT) drug resistance mutations play in influencing phenotypic susceptibility to RT inhibitors in virus strains with complex resistance interaction patterns was assessed using recombinant viruses that consisted of RT-PCR-amplified pol fragments derived from plasma HIV-1 RNA from two treatment-experienced patients. Specific modifications of key RT amino acids were performed by site-directed mutagenesis. A panel of viruses with defined genotypic resistance mutations was assessed for phenotypic drug resistance. Introduction of M184V into several different clones expressing various RT resistance mutations uniformly decreased susceptibility to abacavir, lamivudine, and didanosine, and increased susceptibility to zidovudine, stavudine, and tenofovir; replication capacity was decreased. The L74V mutation had similar but slightly different effects, contributing to decreased susceptibility to abacavir, lamivudine, and didanosine and increased susceptibility to zidovudine and tenofovir, but in contrast to M184V, L74V contributed to decreased susceptibility to stavudine. In virus strains with the nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations K101E and G190S, the L74V mutation increased replication capacity, consistent with published observations, but replication capacity was decreased in strains without NNRTI resistance mutations. K101E and G190S together tend to decrease susceptibility to all nucleoside RT inhibitors, but the K103N mutation had little effect on nucleoside RT inhibitor susceptibility. Mutational interactions can have a substantial impact on drug resistance phenotype and replication capacity, and this has been exploited in clinical practice with the development of fixed-dose combination pills. However, we are the first to report these mutational interactions using molecularly cloned recombinant strains derived from viruses that occur naturally in HIV-infected individuals.

  17. Impact of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitor Drug Resistance Mutation Interactions on Phenotypic Susceptibility

    PubMed Central

    Trivedi, Vinod; Von Lindern, Jana; Montes-Walters, Miguel; Rojo, Daniel R.; Shell, Elisabeth J.; Parkin, Neil; O'Brien, William A.

    2008-01-01

    Abstract The role specific reverse transcriptase (RT) drug resistance mutations play in influencing phenotypic susceptibility to RT inhibitors in virus strains with complex resistance interaction patterns was assessed using recombinant viruses that consisted of RT-PCR-amplified pol fragments derived from plasma HIV-1 RNA from two treatment-experienced patients. Specific modifications of key RT amino acids were performed by site-directed mutagenesis. A panel of viruses with defined genotypic resistance mutations was assessed for phenotypic drug resistance. Introduction of M184V into several different clones expressing various RT resistance mutations uniformly decreased susceptibility to abacavir, lamivudine, and didanosine, and increased susceptibility to zidovudine, stavudine, and tenofovir; replication capacity was decreased. The L74V mutation had similar but slightly different effects, contributing to decreased susceptibility to abacavir, lamivudine, and didanosine and increased susceptibility to zidovudine and tenofovir, but in contrast to M184V, L74V contributed to decreased susceptibility to stavudine. In virus strains with the nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations K101E and G190S, the L74V mutation increased replication capacity, consistent with published observations, but replication capacity was decreased in strains without NNRTI resistance mutations. K101E and G190S together tend to decrease susceptibility to all nucleoside RT inhibitors, but the K103N mutation had little effect on nucleoside RT inhibitor susceptibility. Mutational interactions can have a substantial impact on drug resistance phenotype and replication capacity, and this has been exploited in clinical practice with the development of fixed-dose combination pills. However, we are the first to report these mutational interactions using molecularly cloned recombinant strains derived from viruses that occur naturally in HIV-infected individuals. PMID:18844463

  18. New Subtypes and Genetic Recombination in HIV Type 1-Infecting Patients with Highly Active Antiretroviral Therapy in Peru (2008–2010)

    PubMed Central

    Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-01-01

    Abstract HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country. PMID:22559065

  19. New subtypes and genetic recombination in HIV type 1-infecting patients with highly active antiretroviral therapy in Peru (2008-2010).

    PubMed

    Yabar, Carlos Augusto; Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-12-01

    HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country.

  20. HIV type 1 diversity in the Seychelles.

    PubMed

    Razafindratsimandresy, Richter; Hollanda, Justina; Soares, Jean-Louis; Rousset, Dominique; Chetty, Agnes P; Reynes, Jean-Marc

    2007-06-01

    Subtype determination and drug resistance-associated mutations (DRM) detection were performed on 40 HIV-1 Western blot-positive sera detected, obtained from consecutive patients resident in the Seychelles and consulting the Communicable Disease Control Unit, HIV reference center, in Victoria Hospital (Mahe) from October 2005 to June 2006. Amplification and sequencing of at least two of the partial reverse transcriptase, protease, and partial envelope genes were successful for all strains. All three genes sequences were obtained for 39 strains. A high degree of subtype or circulating recombinant forms (CRF) was observed for these 39 strains: A-A1 (17 cases), C (10 cases), B (8 cases), CRF02_AG (2 cases), D (1 case) and CRF01_AE (1 case). According to the ANRS 2006 DRM list and algorithm, none of the 40 isolates was found to be resistant to any protease or reverse transcriptase inhibitors.

  1. Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor.

    PubMed

    Dunham, S P; Onions, D E

    2001-06-21

    A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.

  2. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.

    PubMed

    Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko

    2011-01-01

    HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors. © 2010 John Wiley & Sons A/S.

  3. Mutational analysis of the reverse transcriptase and ribonuclease H domains of the human foamy virus.

    PubMed Central

    Kögel, D; Aboud, M; Flügel, R M

    1995-01-01

    Human foamy or spuma virus (HFV) codes for a distinct set of pol gen products. To determine the minimal requirements for the HFV enzymatic activities, defined residues of the reverse transcriptase (RT) and ribo-nuclease H (RNase H) domain of the HFV pol gene were mutated by site-specific PCR mutagenesis. The mutant gene products were bacterially expressed, purified by Ni2+ chelate affinity chromatography and characterised by Western blotting. The enzymatic activities of the individual recombinant HFV pol mutant proteins were characterised by the situ RT, RNase H and RNase H assays. Two substitution mutants reached RT activity levels higher than that of the intact recombinant HFV RT-RH-His. When the catalytically essential D508 was substituted by A508, 5% of RNase H activity was retained while DNA polymerase activity increased 2-fold. A deletion of 11 amino acid residues in the hinge region completely abolished DNA polymerase while RNase H activity decreased 2-fold. A deletion mutant in the C-terminal RH domain showed no RNase H but retained RNase H activity indicating that the activities are genetically separable. The combined data reveal that the HFV DNA polymerase and RNase H activities are interdependent. Images PMID:7544460

  4. TNF α is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats

    PubMed Central

    Zheng, Xuexing; Ouyang, Handong; Liu, Shue; Mata, Marina; Fink, David J.; Hao, Shuanglin

    2011-01-01

    In patients with HIV/AIDS, neuropathic pain is a common neurological complication. Infection with the HIV itself may lead to neuropathic pain, and painful symptoms are enhanced when patients are treated with nucleoside reverse transcriptase inhibitors (NRTI). The mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In the current studies, we tested the role of TNFα in antiretroviral drug-induced neuropathic pain. We administered 2′,3′-dideoxycytidine (ddC, one of the NRTIs) systemically to induce mechanical allodynia. We found that ddC induced overexpression of both mRNA and proteins of GFAP and TNFα in the spinal dorsal horn. TNFα was colocalized with GFAP in the spinal dorsal horn and with NeuN in the DRG. Knockdown of TNFα with siRNA blocked the mechanical allodynia induced by ddC. Intrathecal administration of glial inhibitor or recombinant TNF soluble receptor, reversed mechanical allodynia induced by ddC. These results suggest that TNFα is involved in NRTI-induced neuropathic pain. PMID:21741472

  5. The mechano-chemistry of a monomeric reverse transcriptase

    PubMed Central

    Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei

    2017-01-01

    Abstract Retroviral reverse transcriptase catalyses the synthesis of an integration-competent dsDNA molecule, using as a substrate the viral RNA. Using optical tweezers, we follow the Murine Leukemia Virus reverse transcriptase as it performs strand-displacement polymerization on a template under mechanical force. Our results indicate that reverse transcriptase functions as a Brownian ratchet, with dNTP binding as the rectifying reaction of the ratchet. We also found that reverse transcriptase is a relatively passive enzyme, able to polymerize on structured templates by exploiting their thermal breathing. Finally, our results indicate that the enzyme enters the recently characterized backtracking state from the pre-translocation complex. PMID:29165701

  6. Expression and characterization of a novel reverse transcriptase of the LTR retrotransposon Tf1.

    PubMed

    Kirshenboim, Noa; Hayouka, Zvi; Friedler, Assaf; Hizi, Amnon

    2007-09-30

    The LTR retrotransposon of Schizosacharomyces pombe, Tf1, has several distinctive properties that can be related to the unique properties of its reverse transcriptase (RT). Consequently, we expressed, purified and studied the recombinant Tf1 RT. This monomeric protein possesses all activities typical to RTs: DNA and RNA-dependent DNA polymerase as well as an inherent ribonuclease H. The DNA polymerase activity shows preference to Mn(+)(2) or Mg(+)(2), depending on the substrate used, whereas the ribonuclease H strongly prefers Mn(+)(2). The most outstanding feature of Tf1 RT is its capacity to add non-templated nucleotides to the 3'-ends of the nascent DNA. This is mainly apparent in the presence of Mn(+)(2), as is the noticeable low fidelity of DNA synthesis. In all, Tf1 RT has a marked infidelity in synthesizing DNA at template ends, a phenomenon that can explain, as discussed herein, some of the features of Tf1 replication in the host cells.

  7. Role of the K101E Substitution in HIV-1 Reverse Transcriptase in Resistance to Rilpivirine and Other Nonnucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Xu, Hong-Tao; Colby-Germinario, Susan P.; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J.

    2013-01-01

    Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV. PMID:24002090

  8. Role of the K101E substitution in HIV-1 reverse transcriptase in resistance to rilpivirine and other nonnucleoside reverse transcriptase inhibitors.

    PubMed

    Xu, Hong-Tao; Colby-Germinario, Susan P; Huang, Wei; Oliveira, Maureen; Han, Yingshan; Quan, Yudong; Petropoulos, Christos J; Wainberg, Mark A

    2013-11-01

    Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.

  9. The baculovirus-integrated retrotransposon TED encodes gag and pol proteins that assemble into viruslike particles with reverse transcriptase.

    PubMed Central

    Lerch, R A; Friesen, P D

    1992-01-01

    TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168

  10. Recombination Creates Novel L1 (Line-1) Elements in Rattus Norvegicus

    PubMed Central

    Hayward, B. E.; Zavanelli, M.; Furano, A. V.

    1997-01-01

    Mammalian L1 (long interspersed repeated DNA, LINE-1) retrotransposons consist of a 5' untranslated region (UTR) with regulatory properties, two protein encoding regions (ORF I, ORF II, which encodes a reverse transcriptase) and a 3' UTR. L1 elements have been evolving in mammals for >100 million years and this process continues to generate novel L1 subfamilies in modern species. Here we characterized the youngest known subfamily in Rattus norvegicus, L1(mlvi2), and unexpectedly found that this element has a dual ancestry. While its 3' UTR shares the same lineage as its nearest chronologically antecedent subfamilies, L1(3) and L1(4), its ORF I sequence does not. The L1(mlvi2) ORF I was derived from an ancestral ORF I sequence that was the evolutionary precursor of the L1(3) and L1(4) ORF I. We suggest that an ancestral ORF I sequence was recruited into the modern L1(mlvi2) subfamily by recombination that possibly could have resulted from template strand switching by the reverse transcriptase during L1 replication. This mechanism could also account for some of the structural features of rodent L1 5' UTR and ORF I sequences including one of the more dramatic features of L1 evolution in mammals, namely the repeated acquisition of novel 5' UTRs. PMID:9178013

  11. Optimization of the expression of a laccase gene from Trametes versicolor in Pichia methanolica.

    PubMed

    Guo, Mei; Lu, Fuping; Du, Lianxiang; Pu, Jun; Bai, Dongqing

    2006-08-01

    A cDNA encoding for laccase (Lcc1) was isolated from the ligninolytic fungus Trametes versicolor by reverse transcriptase polymerase chain reaction. The Lcc1 gene was subcloned into the Pichia methanolica expression vector pMETalphaA and transformed into the P. methanolica strains PMAD11 and PMAD16. The extracellular laccase activity of the PMAD11 recombinants was found to be 1.3-fold higher than that of the PMAD16 recombinants. The identity of the recombinant protein was further confirmed by immunodetection using the Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form. The effects of copper concentration, cultivation temperature, pH and methanol concentration in the BMMY on laccase expression were investigated. The laccase activity in the PMAD11 recombinant was up to 12.6 U ml(-1) by optimization.

  12. Development of Real-Time Reverse Transcriptase PCR Assays for the Detection of Punta Toro Virus and Pichinde Virus

    DTIC Science & Technology

    2016-09-09

    Gowen et al., 2006c; Smee et al., 1993) and guinea pigs (Jahrling et al., 1981; Lucia et al., 1989) 91 as LASV infection in humans. Both PICV and...Moe, J.B., 1981. Pathogenesis of a pichinde virus 281 strain adapted to produce lethal infections in guinea pigs . Infect Immun 32, 872-880. 282... guinea pig model: antiviral 286 therapy with recombinant interferon-alpha, the immunomodulator CL246,738 and ribavirin. Antiviral 287 Res 12, 279-292

  13. Cost-Effectiveness of the Third-Agent Class in Treatment-Naive Human Immunodeficiency Virus-Infected Patients in Portugal

    PubMed Central

    Aragão, Filipa; Vera, José; Vaz Pinto, Inês

    2012-01-01

    Introduction Current Portuguese HIV treatment guidelines recommend initiating antiretroviral therapy with a regimen composed of two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor (2NRTI+NNRTI) or two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor (2NRTI+PI/r). Given the lower daily cost of NNRTI as the third agent when compared to the average daily costs of PI/r, it is relevant to estimate the long term impact of each treatment option in the Portuguese context. Methods We developed a microsimulation discrete events model for cost-effectiveness analysis of HIV treatment, simulating individual paths from ART initiation to death. Four driving forces determine the course of events: CD4+ cell count, viral load, resistance and adherence. Distributions of time to event are conditional to individuals’ characteristics and past history. Time to event was modeled using parametric survival analysis using Stata 11®. Disease progression was structured according to therapy lines and the model was parameterized with cohort Portuguese observational data. All resources were valued at 2009 prices. The National Health Service’s perspective was assumed considering a lifetime horizon and a 5% annual discount rate. Results In this analysis, initiating therapy with two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor reduces the average number of switches by 17%, saves 19.573€ per individual and increases life expectancy by 1.7 months showing to be a dominant strategy in 57% of the simulations when compared to two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor. Conclusion This study suggests that, when clinically valid, initiating therapy with two Nucleoside Reverse Transcriptase Inhibitors plus one Non-nucleoside Reverse Transcriptase Inhibitor is a cost-saving strategy and equally effective when compared to two Nucleoside Reverse Transcriptase Inhibitors plus one boosted protease inhibitor as the first regimen. PMID:23028618

  14. HIV-1 drug resistance in recently HIV-infected pregnant mother's naïve to antiretroviral therapy in Dodoma urban, Tanzania.

    PubMed

    Vairo, Francesco; Nicastri, Emanuele; Liuzzi, Giuseppina; Chaula, Zainab; Nguhuni, Boniface; Bevilacqua, Nazario; Forbici, Federica; Amendola, Alessandra; Fabeni, Lavinia; De Nardo, Pasquale; Perno, Carlo Federico; Cannas, Angela; Sakhoo, Calistus; Capobianchi, Maria Rosaria; Ippolito, Giuseppe

    2013-09-21

    HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-child-transmission. The study aims to assess the prevalence of HIV primary resistance in pregnant women naïve to antiretrovirals. Cross sectional baseline analysis of a cohort of HIV + pregnant women (HPW) enrolled in the study entitled Antiretroviral Management of Antenatal and Natal HIV Infection (AMANI, peace in Kiswahili language). The AMANI study began in May 2010 in Dodoma, Tanzania. In this observational cohort, antiretroviral treatment was provided to all women from the 28th week of gestation until the end of the breastfeeding period. Baseline CD4 cell count, viral load and HIV drug-resistance genotype were collected. Drug-resistance analysis was performed on 97 naïve infected-mothers. The prevalence of all primary drug resistance and primary non-nucleoside reverse-transcriptase inhibitors resistance was 11.9% and 7.5%, respectively. K103S was found in two women with no M184V detection. HIV-1 subtype A was the most commonly identified, with a high prevalence of subtype A1, followed by C, D, C/D recombinant, A/C recombinant and A/D recombinant. HIV drug- resistance mutations were detected in A1 and C subtypes. Our study reports an 11.9% prevalence rate of primary drug resistance in naïve HIV-infected pregnant women from a remote area of Tanzania. Considering that the non-nucleoside reverse-transcriptase inhibitors are part of the first-line antiretroviral regimen in Tanzania and all of Africa, resistance surveys should be prioritized in settings where antiretroviral therapy programs are scaled up.

  15. Molecular Characterization of the Human Immunodeficiency Virus Type 1 in Women and Their Vertically Infected Children.

    PubMed

    Vaz, Sara Nunes; Giovanetti, Marta; Rego, Filipe Ferreira de Almeida; Oliveira, Tulio de; Danaviah, Siva; Gonçalves, Maria Luiza Freire; Alcantara, Luiz Carlos Junior; Brites, Carlos

    2015-10-01

    Approximately 35 million people worldwide are infected with human immunodeficiency virus (HIV) around 3.2 million of whom are children under 15 years. Mother-to-child-transmission (MTCT) of HIV-1 accounts for 90% of all infections in children. Despite great advances in the prevention of MTCT in Brazil, children are still becoming infected. Samples from 19 HIV-1-infected families were collected. DNA was extracted and fragments from gag, pol, and env were amplified and sequenced directly. Phylogenetic reconstruction was performed. Drug resistance analyses were performed in pol and env sequences. We found 82.1% of subtype B and 17.9% of BF recombinants. A prevalence of 43.9% drug resistance-associated mutations in pol sequences was identified. Of the drug-naive children 33.3% presented at least one mutation related to protease inhibitor/nucleoside reverse transcriptase inhibitor/nonnucleoside reverse transcriptase inhibitor (PI/NRTI/NNRTI) resistance. The prevalence of transmitted drug resistance mutations was 4.9%. On env we found a low prevalence of HR1 (4.9%) and HR2 (14.6%) mutations.

  16. Site-directed mutagenesis of the conserved Asp-443 and Asp-498 carboxy-terminal residues of HIV-1 reverse transcriptase.

    PubMed Central

    Mizrahi, V; Usdin, M T; Harington, A; Dudding, L R

    1990-01-01

    Substitution of the conserved Asp-443 residue of HIV-1 reverse transcriptase by asparagine specifically suppressed the ribonuclease H activity of the enzyme without affecting the reverse transcriptase activity, suggesting involvement of this ionizable residue at the ribonuclease H active site. An analogous asparagine substitution of the Asp-498 residue yielded an unstable enzyme that was difficult to enzymatically characterize. However, the instability caused by the Asn-498 mutation was relieved by the introduction of a second distal Asn-443 substitution, yielding an enzyme with wild type reverse transcriptase activity, but lacking ribonuclease H activity. Images PMID:1699202

  17. Synthesis, structure-activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din

    2015-04-01

    The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.

  18. Lectins: production and practical applications

    PubMed Central

    2010-01-01

    Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754

  19. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    PubMed

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  20. Transmitted drug resistance is still low in newly diagnosed human immunodeficiency virus type 1 CRF06_cpx-infected patients in Estonia in 2010.

    PubMed

    Avi, Radko; Huik, Kristi; Pauskar, Merit; Ustina, Valentina; Karki, Tõnis; Kallas, Eveli; Jõgeda, Ene-Ly; Krispin, Tõnu; Lutsar, Irja

    2014-03-01

    The presence of transmitted drug resistance (TDR) in treatment-naive HIV-1-positive subjects is of concern, especially in the countries of the former Soviet Union in which the number of subjects exposed to antiretrovirals (ARV) has exponentially increased during the past decade. We assessed the rate of TDR among newly diagnosed subjects in Estonia in 2010 and compared it to that in 2008. The study included 325 subjects (87% of all subjects tested HIV positive from January 1 to December 31, 2010). Of the 244 sequenced viral genomic RNA in the reverse transcriptase (RT) region 214 were CRF06_cpx, nine were subtype A1, three (one each) were subtype B and subtype C, CRF02_AG, and CRF03_AB; 15 viruses remained unclassified as putative recombinant forms between CRF06_cpx and subtype A1. HIV-1 TDR mutations in 2010 and 2008 (n=145) occurred at similar frequency in 4.5% (95% CI 2.45; 7.98) and 5.5% (95% CI 1.8; 9.24) of the patients, respectively. In 2010, 2.5% (6/244) of the sequences harbored nonnucleoside reverse transcriptase inhibitor (NNRTI) (K103N and K101E), 1.6% (4/244) nucleoside reverse transcriptase inhibitor (NRTI) (M41L, M184I, and K219E), and 0.4% (1/244) protease inhibitor (PI) (V82A) mutations. Our findings indicate that in spite of the increased consumption of ARVs the rate of TDR in Estonia has remained unchanged over the past 3 years. Similar stabilizing or even decreasing trends have been described in Western Europe and North America albeit at higher levels and in different socioeconomic backgrounds.

  1. Antiretroviral drug susceptibility among drug-naive adults with recent HIV infection in Rakai, Uganda

    PubMed Central

    Eshleman, Susan H.; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C.; Serwadda, David; Reynolds, Steven J.; Kiwanuka, Noah; Quinn, Thomas C.; Gray, Ronald; Wawer, Maria

    2009-01-01

    Objective To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Methods Samples obtained at the time of HIV seroconversion (1998–2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Results Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hyper-susceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Conclusion Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection. PMID:19276794

  2. Antiretroviral drug susceptibility among drug-naive adults with recent HIV infection in Rakai, Uganda.

    PubMed

    Eshleman, Susan H; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C; Serwadda, David; Reynolds, Steven J; Kiwanuka, Noah; Quinn, Thomas C; Gray, Ronald; Wawer, Maria

    2009-04-27

    To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Samples obtained at the time of HIV seroconversion (1998-2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hypersusceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection.

  3. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  4. [The effect of retrovirus-mediated hTRT transfection into cultured oral keratinocytes].

    PubMed

    Huang, Ji-yan; Liu, Wei; Zhou, Zeng-tong; Zhou, Hai-wen

    2014-06-01

    Human telomerase reverse transcriptase (hTRT) was transfected into cultured oral keratinocytes (OKC) mediated by pBABE-tert recombined retrovirus to investigate the effect on OKC lifespan. pBABE-tert recombined retrovirus loaded with hTRT gene was amplified by transfected PT67 cells, and then transfected into cultured OKC in vitro. The positive clones of OKC were separated by puromycin and subcultured. Telomerase activity was analyzed by telomerase PCR-ELISA and PCR-PAGE. The hTRT positive clones of OKC showed telomerase expression, with extending lifespan to 8-9 passages. The hTRT transfected OKC can prolong doubly lifespan but not be immortalized, which indicates that cellular immortality mechanism is complicated and multi-controled. Telomerase activity is the key for cell immortalization but not the only impact factor.

  5. The Discovery of Reverse Transcriptase.

    PubMed

    Coffin, John M; Fan, Hung

    2016-09-29

    In 1970 the independent and simultaneous discovery of reverse transcriptase in retroviruses (then RNA tumor viruses) by David Baltimore and Howard Temin revolutionized molecular biology and laid the foundations for retrovirology and cancer biology. In this historical review we describe the formulation of the controversial provirus hypothesis by Temin, which ultimately was proven by his discovery of reverse transcriptase in Rous sarcoma virus virions. Baltimore arrived at the same discovery through his studies on replication of RNA-containing viruses, starting with poliovirus and then moving to vesicular stomatitis virus, where he discovered a virion RNA polymerase. Subsequent studies of reverse transcriptase led to the elucidation of the mechanism of retrovirus replication, the discovery of oncogenes, the advent of molecular cloning, the search for human cancer viruses, and the discovery and treatment of HIV/AIDS.

  6. Homologous recombination occurs in a distinct retroviral subpopulation and exhibits high negative interference.

    PubMed Central

    Hu, W S; Bowman, E H; Delviks, K A; Pathak, V K

    1997-01-01

    Homologous recombination and deletions occur during retroviral replication when reverse transcriptase switches templates. While recombination occurs solely by intermolecular template switching (between copackaged RNAs), deletions can occur by an intermolecular or an intramolecular template switch (within the same RNA). To directly compare the rates of intramolecular and intermolecular template switching, two spleen necrosis virus-based vectors were constructed. Each vector contained a 110-bp direct repeat that was previously shown to delete at a high rate. The 110-bp direct repeat was flanked by two different sets of restriction site markers. These vectors were used to form heterozygotic virions containing RNAs of each parental vector, from which recombinant viruses were generated. By analyses of the markers flanking the direct repeats in recombinant and nonrecombinant proviruses, the rates of intramolecular and intermolecular template switching were determined. The results of these analyses indicate that intramolecular template switching is much more efficient than intermolecular template switching and that direct repeat deletions occur primarily through intramolecular template switching events. These studies also indicate that retroviral recombination occurs within a distinct viral subpopulation and exhibits high negative interference, whereby the selection of one recombination event increases the probability that a second recombination event will be observed. PMID:9223494

  7. Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity

    PubMed Central

    Fowler, Benjamin J.; Gelfand, Bradley D.; Kim, Younghee; Kerur, Nagaraj; Tarallo, Valeria; Hirano, Yoshio; Amarnath, Shoba; Fowler, Daniel H.; Radwan, Marta; Young, Mark T.; Pittman, Keir; Kubes, Paul; Agarwal, Hitesh K.; Parang, Keykavous A.; Hinton, David R.; Bastos-Carvalho, Ana; Li, Shengjian; Yasuma, Tetsuhiro; Mizutani, Takeshi; Yasuma, Reo; Wright, Charles; Ambati, Jayakrishna

    2014-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) are mainstay therapeutics for HIV that block retrovirus replication. Alu (an endogenous retroelement that also requires reverse transcriptase for its life cycle)-derived RNAs activate P2X7 and the NLRP3 inflammasome to cause cell death of the retinal pigment epithelium (RPE) in geographic atrophy, a type of age-related macular degeneration. We found that NRTIs inhibit P2X7-mediated NLRP3 inflammasome activation independent of reverse transcriptase inhibition. Multiple approved and clinically relevant NRTIs prevented caspase-1 activation, the effector of the NLRP3 inflammasome, induced by Alu RNA. NRTIs were efficacious in mouse models of geographic atrophy, choroidal neovascularization, graft-versus-host disease (GVHD), and sterile liver inflammation. Our findings suggest that NRTIs are ripe for drug repurposing in P2X7-driven diseases. PMID:25414314

  8. Evidence for retrovirus infections in green turtles Chelonia mydas from the Hawaiian islands

    USGS Publications Warehouse

    Casey, R.N.; Quackenbush, S.L.; Work, Thierry M.; Balazs, G.H.; Bowser, P.R.; Casey, J.W.

    1997-01-01

    Apparently normal Hawaiian green turtles Chelonia mydas and those displaying fibropapillomas were analyzed for infection by retroviruses. Strikingly, all samples were positive for polymerase enhanced reverse transcriptase (PERT) with levels high enough to quantitate by the conventional reverse transcriptase (RT) assay. However, samples of skin, even from asymptomatic turtles, were RT positive, although the levels of enzyme activity in healthy turtles hatched and raised in captivity were much lower than those observed in asymptomatic free-ranging turtles. Turtles with fibropapillomas displayed a broad range of reverse transcriptase activity. Skin and eye fibropapillomas and a heart tumor were further analyzed and shown to have reverse transcriptase activity that banded in a sucrose gradient at 1.17 g ml-1. The reverse transcriptase activity purified from the heart tumor displayed a temperature optimum of 37??C and showed a preference for Mn2+ over Mg2+. Sucrose gradient fractions of this sample displaying elevated reverse transcriptase activity contained primarily retrovitalsized particles with prominent envelope spikes, when negatively stained and examined by electron microscopy. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of gradient-purified virions revealed a conserved profile among 4 independent tumors and showed 7 prominent proteins having molecular weights of 116, 83, 51, 43, 40, 20 and 14 kDa. The data suggest that retroviral infections are widespread in Hawaiian green turtles and a comprehensive investigation is warranted to address the possibility that these agents cause green turtle fibropapillomatosis (GTFP).

  9. Antiretroviral drug resistance and phylogenetic diversity of HIV-1 in Chile.

    PubMed

    Ríos, Maritza; Delgado, Elena; Pérez-Alvarez, Lucía; Fernández, Jorge; Gálvez, Paula; de Parga, Elena Vázquez; Yung, Verónica; Thomson, Michael M; Nájera, Rafael

    2007-06-01

    This study reports the analysis of human immunodeficiency virus type 1 (HIV-1) protease (PR) and reverse transcriptase (RT) coding sequences from 136 HIV-1-infected subjects from Chile, 66 (49%) of them under antiretroviral (ARV) treatment. The prevalence of mutations conferring high or intermediate resistance levels to ARVs was 77% among treated patients and 2.5% among drug-naïve subjects. The distribution of resistance prevalence in treated patients by drug class was 61% to nucleoside RT inhibitors, 84% to nonnucleoside RT inhibitors, and 46% to PR inhibitors. Phylogenetic analysis revealed that 115 (85%) subjects were infected with subtype B viruses, 1 with a subtype F1 virus, and 20 (15%) carried BF intersubtype recombinants. Most BF recombinants grouped into two clusters, one related to CRF12_BF, while the other could represent a new circulating recombinant form (CRF). In conclusion, this is the first report analysing the prevalence of ARV resistance which includes patients under HAART from Chile. Additionally, phylogenetic analysis of the PR-RT coding sequences reveals the presence of BF intersubtype recombinants. (c) 2007 Wiley-Liss, Inc.

  10. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

    PubMed

    Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L

    2018-06-20

    Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.

  11. A recombinant Toscana virus nucleoprotein in a diagnostic immunoblot test system.

    PubMed

    Schwarz, T F; Gilch, S; Schätzl, H M

    1998-01-01

    Sandfly fever, a vector-borne disease endemic in the Mediterranean region, is caused by Toscana virus (TOS). The disease is increasingly important as a travel-related infection. Serological diagnosis is currently dependent on viral antigens derived from TOS-infected cell cultures. In this study, we report the cloning and expression of the TOS nucleoprotein (N) in Escherichia coli and evaluation of the recombinant (r) TOS N protein as an antigen for immunoblot assays. The TOS N gene was amplified by reverse-transcriptase polymerase chain reaction and cloned into the bacterial expression vector pTrcHis-A. Sera with known TOS antibody status were used to evaluate the immunoblot assay. The expressed rTOS N protein was purified and used as antigen for immunoblots. By recombinant immunoblot, the TOS antibody status (IgM and/or IgG) of the test panel was correctly identified. No cross-reactivity was detected. The rTOS N protein is useful as an antigen for immunoblot assays, and will enable more laboratories to perform TOS antibody diagnosis.

  12. Genetic Diversity of HIV-1 in Tunisia.

    PubMed

    El Moussi, Awatef; Thomson, Michael M; Delgado, Elena; Cuevas, María Teresa; Nasr, Majda; Abid, Salma; Ben Hadj Kacem, Mohamed Ali; Benaissa Tiouiri, Hanene; Letaief, Amel; Chakroun, Mohamed; Ben Jemaa, Mounir; Hamdouni, Hayet; Tej Dellagi, Rafla; Kheireddine, Khaled; Boutiba, Ilhem; Pérez-Álvarez, Lucía; Slim, Amine

    2017-01-01

    In this study, the genetic diversity of HIV-1 in Tunisia was analyzed. For this, 193 samples were collected in different regions of Tunisia between 2012 and 2015. A protease and reverse transcriptase fragment were amplified and sequenced. Phylogenetic analyses were performed through maximum likelihood and recombination was analyzed by bootscanning. Six HIV-1 subtypes (B, A1, G, D, C, and F2), 5 circulating recombinant forms (CRF02_AG, CRF25_cpx, CRF43_02G, CRF06_cpx, and CRF19_cpx), and 11 unique recombinant forms were identified. Subtype B (46.4%) and CRF02_AG (39.4%) were the predominant genetic forms. A group of 44 CRF02_AG sequences formed a distinct Tunisian cluster, which also included four viruses from western Europe. Nine viruses were closely related to isolates collected in other African or in European countries. In conclusion, a high HIV-1 genetic diversity is observed in Tunisia and the local spread of CRF02_AG is first documented in this country.

  13. Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity

    USGS Publications Warehouse

    House, M.L.; Kim, C.H.; Reno, P.W.

    1998-01-01

    Disseminated neoplasia (DN), a proliferative cell disorder of the circulatory system of bivalves, was first reported in oysters in 1969. Since that time, the disease has been determined to be transmissible through water-borne exposure, but the etiological agent has not been unequivocally identified. In order to determine if a viral agent, possibly a retrovirus, could be the causative agent of DN, transmission experiments were performed, using both a cell-free filtrate and a sucrose gradient-purified preparation of a cell-free filtrate of DN positive materials. Additionally, a PCR-enhanced reverse transcriptase assay was used to determine if reverse transcriptase was present in tissues or hemolymph from DN positive soft shell clams Mya arenaria. DN was transmitted to healthy clams by injection with whole DN cells, but not with cell-free flitrates prepared from either tissues from DN positive clams, or DN cells. The cell-free preparations from DN-positive tissues and hemolymph having high levels of DN cells in circulation exhibited positive reactions in the PCR-enhanced reverse transcriptase assay. Cell-free preparations of hemolymph from clams having low levels of DN (<0.1% of cells abnormal), hemocytes from normal soft shell clams, and normal soft shell clam tissues did not produce a positive reaction in the PCR enhanced reverse transcriptase assay.

  14. The Need for Development of New HIV-1 Reverse Transcriptase and Integrase Inhibitors in the Aftermath of Antiviral Drug Resistance

    PubMed Central

    Wainberg, Mark A.

    2012-01-01

    The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679

  15. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    PubMed

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  16. HIV type-1 genotypic resistance profiles in vertically infected patients from Argentina reveal an association between K103N+L100I and L74V mutations.

    PubMed

    Aulicino, Paula C; Rocco, Carlos A; Mecikovsky, Debora; Bologna, Rosa; Mangano, Andrea; Sen, Luisa

    2010-01-01

    Patterns and pathways of HIV type-1 (HIV-1) antiretroviral (ARV) drug resistance-associated mutations in clinical isolates are conditioned by ARV history and factors such as viral subtype and fitness. Our aim was to analyse the frequency and association of ARV drug resistance mutations in a group of long-term vertically infected patients from Argentina. Plasma samples from 71 patients (38 children and 33 adolescents) were collected for genotypic HIV-1 ARV resistance testing during the period between February 2006 and October 2008. Statistically significant pairwise associations between ARV resistance mutations in pol, as well as associations between mutations and drug exposure, were identified using Fisher's exact tests with Bonferroni and false discovery rate corrections. Phylogenetic analyses were performed for subtype assignment. In protease (PR), resistance-associated mutations M46I/L, I54M/L/V/A/S and V82A/F/T/S/M/I were associated with each other and with minor mutations at codons 10, 24 and 71. Mutations V82A/F/T/S/M/I were primarily selected by the administration of ritonavir (RTV) in an historical ARV regimen. In reverse transcriptase, thymidine analogue mutation (TAM)1 profile was more common than TAM2. The non-nucleoside K103N+L100I mutations were observed at high frequency (15.5%) and were significantly associated with the nucleoside mutation L74V in BF recombinants. Associations of mutations at PR sites reflect the frequent use of RTV at an early time in this group of patients and convergent resistance mechanisms driven by the high exposure to protease inhibitors, as well as local HIV-1 diversity. The results provide clinical evidence of a molecular interaction between K103N+L100I and L74V mutations at the reverse transcriptase gene in vivo, limiting the future use of second-generation non-nucleoside reverse transcriptase inhibitors such as etravirine.

  17. HIV-1 transmitted drug resistance and genetic diversity among patients from Piauí State, Northeast Brazil.

    PubMed

    Moura, Maria Edileuza Soares; da Guarda Reis, Mônica Nogueira; Lima, Yanna Andressa Ramos; Eulálio, Kelsen Dantas; Cardoso, Ludimila Paula Vaz; Stefani, Mariane Martins Araújo

    2015-05-01

    HIV-1 transmitted-drug-resistance and genetic diversity are dynamic and may differ in distinct locations/risk groups. In Brazil, increased AIDS incidence and related mortality have been detected in the Northeast region, differently from the epicenter in the Southeast. This cross-sectional study describes transmitted-dru- resistance and HIV-1 subtypes in protease/PR and reverse transcriptase/RT regions among antiretroviral naïve patients from Piauí State, Northeast Brazil. Among 96 patients recruited 89 (92.7%) had HIV-1 PR/RT regions sequenced: 44 females and 45 males, 22 self-declared as men who have sex with men. Transmitted-drug-resistance was investigated by CPR tool (Stanford HIV-1 Drug Resistance/SDRM). HIV-1 subtypes were assigned by REGA and phylogenetic inference. Overall, transmitted-drug-resistance rate was 11.2% (10/89; CI 95%: 5.8-19.1%); 22.7% among men who have sex with men (5/22; CI 95%: 8.8-43.4%), 10% in heterosexual men (2/20; CI 95%: 1.7-29.3%) and 6.8% in women (3/44; CI 95%: 1.8-17.4%). Singleton mutations to protease-inhibitor/PI, nucleoside-reverse-transcriptase-inhibitor/NRTI or non-nucleoside-reverse-transcriptase-inhibitor/NNRTI predominated (8/10): PI mutations (M46L, V82F, L90M); NRTI mutations (M41L, D67N) and NNRTI mutations (K103N/S). Dual class resistance mutations to NRTI and NNRTI were observed: T215L (NRTI), Y188L (NNRTI) and T215N (NRTI), F227L (NNRTI). Subtype B prevailed (86.6%; 77/89), followed by subtype F1 (1.1%, 1/89) and subtype C (1.1%, 1/89). B/F1 and B/C intersubtype recombinants represented 11.2% (10/89). In Piauí State extensive testing of incidence and transmitted-drug-resistance in all populations with risk behaviors may help control AIDS epidemic locally. © 2015 Wiley Periodicals, Inc.

  18. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    PubMed Central

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  19. Coexistence of BRAF V600E and TERT Promoter Mutations in Low-grade Serous Carcinoma of Ovary Recurring as Carcinosarcoma in a Lymph Node: Report of a Case.

    PubMed

    Tavallaee, Mahkam; Steiner, David F; Zehnder, James L; Folkins, Ann K; Karam, Amer K

    2018-04-03

    Low-grade serous carcinomas only rarely coexist with or progress to high-grade tumors. We present a case of low-grade serous carcinoma with transformation to carcinosarcoma on recurrence in the lymph node. Identical BRAF V600E and telomerase reverse transcriptase promoter mutations were identified in both the original and recurrent tumor. Given that telomerase reverse transcriptase promotor mutations are thought to play a role in progression of other tumor types, the function of telomerase reverse transcriptase mutations in BRAF mutated low-grade serous carcinoma deserves investigation.

  20. Elevated Human telomerase reverse transcriptase gene expression in blood cells associated with chronic and arsenic exposure in Inner Mongolia, China

    EPA Science Inventory

    BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...

  1. Reverse transcriptase activity and particles of retroviral density in cultured canine lymphosarcoma supernatants.

    PubMed Central

    Tomley, F. M.; Armstrong, S. J.; Mahy, B. W.; Owen, L. N.

    1983-01-01

    Lymphoid tissue from 43 cases of canine lymphosarcoma and from 40 clinically normal dogs have been examined for markers of retrovirus infection. From 69-76% of culture supernatants from lymphosarcomas were shown to contain particles of retroviral density and to possess poly rC-oligo dG templated polymerase (reverse transcriptase) activity compared with 17-24% of culture supernatants from normal canine lymphoid cells. In 6 culture supernatants from cases of lymphosarcoma, high molecular weight 60-70S RNA was detected and shown to be found in association with this particulate reverse transcriptase activity. No such RNA was detected in 6 culture supernatants from normal canine lymphoid cells. PMID:6186265

  2. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples

    EPA Science Inventory

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since o...

  3. Interaction of aurintricarboxylic acid (ATA) with four nucleic acid binding proteins DNase I, RNase A, reverse transcriptase and Taq polymerase

    NASA Astrophysics Data System (ADS)

    Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.

    2009-12-01

    In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.

  4. Selection and characterization of a mutant of feline immunodeficiency virus resistant to 2',3'-dideoxycytidine.

    PubMed Central

    Medlin, H K; Zhu, Y Q; Remington, K M; Phillips, T R; North, T W

    1996-01-01

    We have selected and plaque purified a mutant of feline immunodeficiency virus (FIV) that is resistant to 2',3'-dideoxycytidine (ddC). This mutant was selected in cultured cells in the continuous presence of 25 microM ddC. The mutant, designated DCR-5c, was fourfold resistant to ddC, threefold resistant to 2',3'-dideoxyinosine, and more than fourfold resistant to phosphonoformic acid. DCR-5c displayed little or no resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine, 3'-azido-3'-deoxythymidine, or 9-(2-phosphonylmethoxyethyl) adenine. Reverse transcriptase purified from DCR-5c was less susceptible to inhibition by ddCTP, phosphonoformic acid, ddATP, or azido-dTTP than the wild-type FIV reverse transcriptase. Sequence analysis of DCR-5c revealed a single base change (G to C at nucleotide 2342) in the reverse transcriptase-encoding region of FIV. This mutation results in substitution of His for Asp at codon 3 of FIV reverse transcriptase. The role of this mutation in ddC resistance was confirmed by site-directed mutagenesis. PMID:8849258

  5. The Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities

    PubMed Central

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner. PMID:23505475

  6. Genetic characterization and antiretroviral resistance mutations among treatment-naive HIV-infected individuals in Jiaxing, China.

    PubMed

    Guo, Jinlei; Yan, Yong; Zhang, Jiafeng; Ji, Jimei; Ge, Zhijian; Ge, Rui; Zhang, Xiaofei; Wang, Henghui; Chen, Zhongwen; Luo, Jianyong

    2017-03-14

    The aim of this study was to characterize HIV-1 genotypes and antiretroviral resistance mutations among treatment-naive HIV-infected individuals in Jiaxing, China. The HIV-1 partial polymerase (pol) genes in 93 of the 99 plasma samples were successfully amplified and analyzed. Phylogenetic analysis revealed the existence of five HIV-1 genotypes, of which the most prevalent genotype was CRF01_AE (38.7%), followed by CRF07_BC (34.4%), CRF08_BC (16.1%), subtype B/B' (5.4%), and CRF55_01B (2.1%). Besides, three types of unique recombination forms (URFs) were also observed, including C/F2/A1, CRF01_AE/B, and CRF08_BC/CRF07_BC. Among 93 amplicons, 46.2% had drug resistance-associated mutations, including 23.7% for protease inhibitors (PIs) mutations, 1.1% for nucleoside reverse transcriptase inhibitors (NRTIs) mutations, and 20.4% for non-nucleoside reverse transcriptase inhibitors (NNRTIs) mutations. Six (6.5%) out of 93 treatment-naive subjects were identified to be resistant to one or more NNRTIs, while resistance to NRTIs or PIs was not observed. Our study showed the genetic diversity of HIV-1 strains circulating in Jiaxing and a relative high proportion of antiretroviral resistance mutations among treatment-naive patients, indicating a serious challenge for HIV prevention and treatment program.

  7. Tyrosine Recombinase Retrotransposons and Transposons.

    PubMed

    Poulter, Russell T M; Butler, Margi I

    2015-04-01

    Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes.

  8. The Application of a Homologous Recombination Assay Revealed Amino Acid Residues in an LTR-Retrotransposon That Were Critical for Integration

    PubMed Central

    Atwood, Angela; Choi, Jeannie; Levin, Henry L.

    1998-01-01

    Retroviruses and their relatives, the LTR-retrotransposons, possess an integrase protein (IN) that is required for the insertion of reverse transcripts into the genome of host cells. Schizosaccharomyces pombe is the host of Tf1, an LTR-retrotransposon with integration activity that can be studied by using techniques of yeast genetics. In this study, we sought to identify amino acid substitutions in Tf1 that specifically affected the integration step of transposition. In addition to seeking amino acid substitutions in IN, we also explored the possibility that other Tf1 proteins contributed to integration. By comparing the results of genetic assays that monitored both transposition and reverse transcription, we were able to seek point mutations throughout Tf1 that blocked transposition but not the synthesis of reverse transcripts. These mutant versions of Tf1 were candidates of elements that possessed defects in the integration step of transposition. Five mutations in Tf1 that resulted in low levels of integration were found to be located in the IN protein: two substitutions in the N-terminal Zn domain, two in the catalytic core, and one in the C-terminal domain. These results suggested that each of the three IN domains was required for Tf1 transposition. The potential role of these five amino acid residues in the function of IN is discussed. Two of the mutations that reduced integration mapped to the RNase H (RH) domain of Tf1 reverse transcriptase. The Tf1 elements with the RH mutations produced high levels of reverse transcripts, as determined by recombination and DNA blot analysis. These results indicated that the RH of Tf1 possesses a function critical for transposition that is independent of the accumulation of reverse transcripts. PMID:9445033

  9. ATM-like kinases and regulation of telomerase: lessons from yeast and mammals

    PubMed Central

    Sabourin, Michelle; Zakian, Virginia A.

    2008-01-01

    Telomeres, the essential structures at the ends of eukaryotic chromosomes, are composed of G-rich DNA and asociated proteins. These structures are crucial for the integrity of the genome, because they protect chromosome ends from degradation and distinguish natural ends from chromosomal breaks. The complete replication of telomeres requires a telomere-dedicated reverse transcriptase called telomerase. Paradoxically, proteins that promote the very activities against which telomeres protect, namely DNA repair, recombination and checkpoint activation, are integral to both telomeric chromatin and telomere elongation. This review focuses on recent findings that shed light on the roles of ATM-like kinases and other checkpoint and repair proteins in telomere maintenance, replication and checkpoint signaling. PMID:18502129

  10. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences.

    EPA Science Inventory

    A complete method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for determining interferences to phage recoveries from water sample concentrates and for detecting interferences to their analysis, was developed for the direct...

  11. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in

  12. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences

    EPA Science Inventory

    A complete method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for determining interferences to phage recoveries from water sample concentrates and for detecting interferences to their analysis, was developed for the direct...

  13. Structure of HIV-1 nonnucleoside reverse transcriptase inhibitors derivatives of N-benzyl-benzimidazole with different substituents in position 4

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-01-01

    The constant development of new drugs against HIV-1 is necessary due to global expansion of AIDS and HIV-1 drug resistance. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic drugs in AIDS therapy. The crystal structures of six nonnucleoside inhibitors of HIV-1 reverse transcriptase (RT) derivatives of N-benzyl-benzimidazole are reported here. The investigated compounds belong to the group of so called "butterfly like" inhibitors with characteristic two π-electron moieties with an angled orientation. The structural data show the influence of the substituents of the benzimidazole ring on the geometry of the molecule and correlation between the structure of the inhibitor and its biological activity.

  14. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2017-12-01

    The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers.

    PubMed

    Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro

    2013-03-01

    Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Telomerase reverse transcriptase (TERT) expression and role of vincristine sulfate in mouse model of malignancy related peritoneal ascites: an experimental metastatic condition.

    PubMed

    Chaklader, M; Das, P; Pereira, J A; Chatterjee, S; Basak, P; Law, A; Banerjee, T; Chauhan, S; Law, S

    2011-06-01

    To evaluate the efficacy of intraperitoneal vincristine administration into ascitic sarcoma-180 bearing mice as a model of human malignant ascites regarding various peritoneal/retroperitoneal sarcomatosis, and to evaluate the flowcytometric telomerase reverse transcriptase expression for the diagnostic and prognostic purposes. Present study included disease induction by intraperitoneal homologous ascitic sarcoma-180 transplantation followed by in vivo intraperitoneal drug administration to study mitotic index, flowcytometric cell cycle and telomerase reverse transcriptase expression pattern, erythrosin-B dye exclusion study for malignant cell viability assessment. Besides, in vitro malignant ascite culture in presence and absence of vincristine sulfate and survival study were also taken into consideration. Intraperitoneal vincristine administration (concentration 0.5 mg/kg body weight) significantly diminished the mitotic index in diseased subjects in comparison to untreated control subjects. Treated group of animals showed increased life span and median survival time. Cell viability assessment during the course of drug administration also revealed gradual depression on cell viability over time. Flowcytometric cell cycle analysis showed a good prognostic feature of chemotherapeutic administration schedule by representing high G2/M phase blocked cells along with reduced telomerase reverse transcriptase positive cells in treated animals. We conclude that long term administration of vincristine sulfate in small doses could be a good pharmacological intervention in case of malignant peritoneal ascites due to sarcomatosis as it indirectly reduced the level of telomerase reverse transcriptase expression in malignant cells by directly regulating cell cycle and simultaneously increased the life expectancy of the diseased subjects.

  17. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    EPA Science Inventory

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  18. Nonnucleoside reverse transcriptase inhibitor phenotypic hypersusceptibility can be demonstrated in different assays.

    PubMed

    Shulman, Nancy S; Delgado, Jamael; Bosch, Ronald J; Winters, Mark A; Johnston, Elizabeth; Shafer, Robert W; Katzenstein, David A; Merigan, Thomas C

    2005-05-01

    HIV-1 isolates harboring multiple nucleoside reverse transcriptase inhibitor (NRTI) resistance mutations are more susceptible ("hypersusceptible") to the nonnucleoside reverse transcriptase inhibitors (NNRTIs) than isolates lacking NRTI resistance mutations, but this has only been reported with a single-cycle replication phenotypic assay. In fact, there was a report that a commercial multicycle assay did not readily detect hypersusceptibility. To see whether NNRTI hypersusceptibility can be demonstrated in other types of phenotypic assays, including multicycle assays and enzyme inhibition assays. The susceptibility of HIV-1 clones derived from different patients in multicycle assays was tested in peripheral blood mononuclear cells (PBMCs) and in an established cell line. In addition, the reverse transcriptase (RT) of many of these clones was expressed and their susceptibility tested in an RT inhibition assay. Nevirapine and efavirenz susceptibilities were tested and compared with a control wild-type virus or RT. Hypersusceptibility to nevirapine and efavirenz was detected using each of the methods described above. R values correlating the other methods with single-cycle assay values were between 0.66 and 0.96. In addition to the high correlations, the different methods gave similar numeric results. NNRTI hypersusceptibility is readily seen in multicycle susceptibility assays and in enzyme inhibition assays.

  19. Discovery of piperidin-4-yl-aminopyrimidine derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Wan, Zheng-Yong; Yao, Jin; Tao, Yuan; Mao, Tian-Qi; Wang, Xin-Long; Lu, Yi-Pei; Wang, Hai-Feng; Yin, Hong; Wu, Yan; Chen, Fen-Er; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe

    2015-06-05

    A novel series of piperidin-4-yl-aminopyrimidine derivatives were designed fusing the pharmacophore templates of etravirine-VRX-480773 hybrids our group previously described and piperidine-linked aminopyrimidines. Most compounds displayed significantly improved activity against wild-type HIV-1 with EC50 values in single-digit nanomolar concentrations compared to etravirine-VRX-480773 hybrids. Selected compounds were also evaluated for activity against reverse transcriptase, and had lower IC50 values than that of nevirapine. The improved potency observed in this in vitro model of HIV RNA replication partly validates the mechanism by which this class of allosteric pyrimidine derivatives inhibits reverse transcriptase, and represents a remarkable step forward in the development of AIDS therapeutics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Clinical comparison of branched DNA and reverse transcriptase-PCR and nucleic acid sequence-based amplification assay for the quantitation of circulating recombinant form_BC HIV-1 RNA in plasma.

    PubMed

    Pan, Pinliang; Tao, Xiaoxia; Zhang, Qi; Xing, Wenge; Sun, Xianguang; Pei, Lijian; Jiang, Yan

    2007-12-01

    To investigate the correlation between three viral load assays for circulating recombinant form (CRF)_BC. Recent studies in HIV-1 molecular epidemiology, reveals that CRF_BC is the dominant subtype of HIV-1 virus in mainland China, representing over 45% of the HIV-1 infected population. The performances of nucleic acid sequence-based amplification (NASBA), branched DNA (bDNA) and reverse transcriptase polymerase chain reaction (RT-PCR) were compared for the HIV-1 viral load detection and quantitation of CRF_BC in China. Sixteen HIV-1 positive and three HIV-1 negative samples were collected. Sequencing of the positive samples in the gp41 region was conducted. The HIV-1 viral load values were determined using bDNA, RT-PCR and NASBA assays. Deming regression analysis with SPSS 12.0 (SPS Inc., Chicago, Illinois, USA) was performed for data analysis. Sequencing and phylogenetic analysis of env gene (gp41) region of the 16 HIV-1 positive clinical specimens from Guizhou Province in southwest China revealed the dominance of the subtype CRF_BC in that region. A good correlation of their viral load values was observed among three assays. Pearson's correlation between RT-PCR and bDNA is 0.969, Lg(VL)RT-PCR = 0.969 * Lg(VL)bDNA + 0.55; Pearson's correlation between RT-PCR and NASBA is 0.968, Lg(VL)RT-PCR = 0.968 * Lg(VL)NASBA + 0.937; Pearson's correlation between NASBA and bDNA is 0.980, Lg(VL)NASBA = 0.980 * Lg(VL)bDNA - 0.318. When testing with 3 different assays, RT-PCR, bDNA and NASBA, the group of 16 HIV-1 positive samples showed the viral load value was highest for RT-PCR, followed by bDNA then NASBA, which is consistent with the former results in subtype B. The three viral load assays are highly correlative for CRF_BC in China.

  1. Novel mutation in the human immunodeficiency virus type 1 reverse transcriptase gene that encodes cross-resistance to 2',3'-dideoxyinosine and 2',3'-dideoxycytidine.

    PubMed Central

    Gu, Z; Gao, Q; Li, X; Parniak, M A; Wainberg, M A

    1992-01-01

    We have used the technique of in vitro selection to generate variants of human immunodeficiency virus type 1 (HIV-1) that are resistant to 2',3'-dideoxyinosine (ddI) and cross-resistant to 2',3'-dideoxycytidine (ddC). The complete reverse transcriptase (RT)-coding regions, plus portions of flanking sequences, of viruses possessing a ddI-resistant phenotype were cloned and sequenced by polymerase chain reaction (PCR)-based methods. We observed that several of these viruses possessed mutations at amino acid sites 184 (Met-->Val; ATG-->GTG) and 294 (Pro-->Ser; CCA-->TCA). These mutations were introduced in the pol gene of infectious, cloned HXB2-D DNA by site-directed mutagenesis. Viral replication assays confirmed the importance of site 184 with regard to resistance to ddI. The recombinant viruses thus generated displayed more than fivefold-greater resistance to ddI than parental HXB2-D did. Moreover, more than fivefold-greater resistance to ddC was also documented; however, the recombinant viruses continued to be inhibited by zidovudine (AZT). No resistance to ddI, ddC, or AZT was introduced by inclusion of mutation site 294 in the pol gene of HXB2-D. PCR analysis performed on viral samples obtained from patients receiving long-term ddI therapy confirmed the presence of mutation site 184 in five of seven cases tested. In three of these five positive cases, the wild-type codon was also detected, indicating that mixtures of viral quasispecies were apparently present. Viruses possessing a ddI resistance phenotype were isolated from both subjects whose viruses contained only the mutated rather than wild-type codon at position 184 as well as from a third individual, whose viruses appeared to be mostly of the mutated variety. Images PMID:1279198

  2. Trends in Drug Resistance Prevalence, HIV-1 Variants and Clinical Status in HIV-1-infected Pediatric Population in Madrid: 1993 to 2015 Analysis.

    PubMed

    Rojas Sánchez, Patricia; Domínguez, Sara; Jiménez De Ory, Santiago; Prieto, Luis; Rojo, Pablo; Mellado, Pepa; Navarro, Marisa; Delgado, Rafael; Ramos, José Tomas; Holguín, África

    2018-03-01

    The expanded use of long-term antiretroviral treatments in infected children may exacerbate the problem of drug resistance mutations selection, which can compromise treatment efficiency. We describe the temporal trends of HIV drug resistance mutations and the HIV-1 variants during 23 years (1993 to March 2016) in the Madrid cohort of HIV-infected children and adolescents. We selected patients with at least one available HIV-1 pol sequence/genotypic resistance profile, establishing different groups according to the sampling year of first resistance data. We determined the prevalence of transmitted drug resistance mutations or acquired drug resistance mutations (DRM), the drug susceptibility among resistant viruses and HIV-1 variants characterized by phylogeny across time. A total of 245 pediatric patients were selected, being mainly female, Spanish native, perinatally infected and carrying HIV-1 subtype B. At first sampling, most pediatric patients were on antiretroviral therapy and heavily pretreated. During 1993 to 2016, transmitted drug resistance mutations was found in 13 (26%) of 50 naive children [non-nucleoside reverse transcriptase inhibitors (NNRTI), 14.6%; nucleoside reverse transcriptase inhibitors (NRTI), 10.4%; protease inhibitors, 8.7%]. DRM appeared in 139 (73.2%) of 190 pretreated patients (NRTI, 64.5%; NNRTI, 36%; protease inhibitors, 35.1%). DRM to NNRTI was higher in last 5 years. Non-B variants infected 14.5% of children and adolescents of the Madrid Cohort, being mainly intersubtype recombinants (76.5%), including complex unique recombinant strains. They caused 3.4% infections before 2000, rising to 85.7% during 2011 to 2016. Periodic surveillance resistance and molecular epidemiology studies in long-term pretreated HIV-infected pediatric populations are required to optimize treatment regimens. Results will permit a better understanding of long-time dynamics of viral resistance and HIV-1 variants in Spain.

  3. HIV-1 transmission networks across Cyprus (2010-2012).

    PubMed

    Kostrikis, Leondios G; Hezka, Johana; Stylianou, Dora C; Kostaki, Evangelia; Andreou, Maria; Kousiappa, Ioanna; Paraskevis, Dimitrios; Demetriades, Ioannis

    2018-01-01

    A molecular epidemiology study of HIV-1 infection was conducted in one hundred diagnosed and untreated HIV-1-infected patients in Cyprus between 2010 and 2012, representing 65.4% of all the reported HIV-1 infections in Cyprus in this three-year period, using a previously defined enrolment strategy. Eighty-two patients were newly diagnosed (genotypic drug resistance testing within six months from diagnosis), and eighteen patients were HIV-1 diagnosed for a longer period or the diagnosis date was unknown. Phylogenetic trees of the pol sequences obtained in this study with reference sequences indicated that subtypes B and A1 were the most common subtypes present and accounted for 41.0 and 19.0% respectively, followed by subtype C (7.0%), F1 (8.0%), CRF02_AG (4.0%), A2 (2.0%), other circulating recombinant forms (CRFs) (7.0%) and unknown recombinant forms (URFs) (12%). Most of the newly-diagnosed study subjects were Cypriots (63%), males (78%) with median age 39 (Interquartile Range, IQR 33-48) reporting having sex with other men (MSM) (51%). A high rate of clustered transmission of subtype B drug-sensitive strains to reverse transcriptase and protease inhibitors was observed among MSM, twenty-eight out of forty-one MSM study subjects (68.0%) infected were implicated in five transmission clusters, two of which are sub-subtype A1 and three of which are subtype B strains. The two largest MSM subtype B clusters included nine and eight Cypriot men, respectively, living in all major cities in Cyprus. There were only three newly diagnosed patients with transmitted drug resistant HIV-1 strains, one study subject from the United Kingdom infected with subtype B strain and one from Romania with sub-subtype A2 strain, both with PI drug resistance mutation M46L and one from Greece with sub-subtype A1 with non-nucleoside reverse transcriptase inhibitors (NNRTI) drug resistance mutation K103N.

  4. Frequent Cross-Resistance to Dapivirine in HIV-1 Subtype C-Infected Individuals after First-Line Antiretroviral Therapy Failure in South Africa.

    PubMed

    Penrose, Kerri J; Wallis, Carole L; Brumme, Chanson J; Hamanishi, Kristen A; Gordon, Kelley C; Viana, Raquel V; Harrigan, P Richard; Mellors, John W; Parikh, Urvi M

    2017-02-01

    A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1 LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC 50 ) from 12 recombinant subtype C HIV-1 LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC 50 s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC 50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring. Copyright © 2017 American Society for Microbiology.

  5. Frequent Cross-Resistance to Dapivirine in HIV-1 Subtype C-Infected Individuals after First-Line Antiretroviral Therapy Failure in South Africa

    PubMed Central

    Penrose, Kerri J.; Wallis, Carole L.; Brumme, Chanson J.; Hamanishi, Kristen A.; Gordon, Kelley C.; Viana, Raquel V.; Harrigan, P. Richard; Mellors, John W.

    2016-01-01

    ABSTRACT A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC50) from 12 recombinant subtype C HIV-1LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC50s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring. PMID:27895013

  6. Phylogenetic analysis of HIV-1 reverse transcriptase sequences from 382 patients recruited in JJ Hospital of Mumbai, India, between 2002 and 2008.

    PubMed

    Deshpande, Alaka; Jauvin, Valerie; Pinson, Patricia; Jeannot, Anne Cecile; Fleury, Herve J

    2009-06-01

    Analysis of reverse transcriptase (RT) sequences of 382 HIV-1 isolates from untreated and treated patients recruited in JJ Hospital (Mumbai, India) between 2002 and 2008 shows that subtype C is largely predominant (98%) and that non-C sequences cluster with A1, B, CRF01_AE, and CRF06_cpx.

  7. Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods.

    PubMed

    Chahorm, Kanchana; Prakitchaiwattana, Cheunjit

    2018-01-02

    The aim of this research was to evaluate the feasibility of PCR-DGGE and Reverse Transcriptase-PCR-DGGE techniques for rapid detection of Vibrio species in foods. Primers GC567F and 680R were initially evaluated for amplifying DNA and cDNA of ten references Vibrio species by PCR method. The GC-clamp PCR amplicons were separated according to their sequences by the DGGE using 10% (w/v) polyacrylamide gel containing 45-70% urea and formamide denaturants. Two pair of Vibrio species, which could not be differentiated on the gel, was Vibrio fluvialis - Vibrio furnissii and Vibrio parahaemolyticus - Vibrio harveyi. To determine the detection limit, in the community of 10 reference strains containing the same viable population, distinct DNA bands of 3 species; Vibrio cholerae, Vibrio mimicus and Vibrio alginolyticus were consistently observed by PCR-DGGE technique. In fact, 5 species; Vibrio cholerae, Vibrio mimicus, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio fluvialis consistently observed by Reverse Transcriptase-PCR-DGGE. In the community containing different viable population increasing from 10 2 to 10 5 CFU/mL, PCR-DGGE analysis only detected the two most prevalent species, while RT-PCR-DGGE detected the five most prevalent species. Therefore, Reverse Transcriptase-PCR-DGGE was also selected for detection of various Vibrio cell conditions, including viable cell (VC), injured cells from frozen cultures (IVC) and injured cells from frozen cultures with pre-enrichment (PIVC). It was found that cDNA band of all cell conditions gave the same migratory patterns, except that multiple cDNA bands of Plesiomonas shigelloides under IVC and PIVC conditions were found. When Reverse Transcriptase-PCR-DGGE was used for detecting Vibrio parahaemolyticus in the pathogen-spiked food samples, Vibrio parahaemolyticus could be detected in the spiked samples containing at least 10 2 CFU/g of this pathogen. The results obtained also corresponded to standard method (USFDA, 2004). In comparison with the detection of the Vibrio profiles in fourteen food samples using standard method, Reverse Transcriptase-PCR-DGGE resulted in 100%, 75% and 50% similarity in 3, 1 and 6 food samples, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    PubMed

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  9. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice.

    PubMed

    Huang, Chun; Li, Runqin; Zhang, Yinglin; Gong, Jianping

    2017-10-01

    Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.

  10. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    PubMed Central

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  11. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    PubMed Central

    2011-01-01

    Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030

  12. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  13. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV.

    PubMed

    De Clercq, Erik

    2009-04-01

    In 2008, 25 years after the human immunodeficiency virus (HIV) was discovered as the then tentative aetiological agent of acquired immune deficiency syndrome (AIDS), exactly 25 anti-HIV compounds have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine, efavirenz and etravirine); protease inhibitors (PIs: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir); cell entry inhibitors [fusion inhibitors (FIs: enfuvirtide) and co-receptor inhibitors (CRIs: maraviroc)]; and integrase inhibitors (INIs: raltegravir). These compounds should be used in drug combination regimens to achieve the highest possible benefit, tolerability and compliance and to diminish the risk of resistance development.

  14. Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads.

    PubMed

    Vadivelan, S; Deeksha, T N; Arun, S; Machiraju, Pavan Kumar; Gundla, Rambabu; Sinha, Barij Nayan; Jagarlapudi, Sarma A R P

    2011-03-01

    The purpose of this study is to identify novel and potent inhibitors against HIV-1 reverse transcriptase (RT). The crystal structure of the most active ligand was converted into a feature-shaped query. This query was used to align molecules to generate statistically valid 3D-QSAR (r(2) = 0.873) and Pharmacophore models (HypoGen). The best HypoGen model consists of three Pharmacophore features (one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic) and further validated using known RT inhibitors. The designed novel inhibitors are further subjected to docking studies to reduce the number of false positives. We have identified and proposed some novel and potential lead molecules as reverse transcriptase inhibitors using analog and structure based studies. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Compaction agent clarification of microbial lysates

    NASA Technical Reports Server (NTRS)

    DeWalt, Brad W.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2003-01-01

    Recombinant proteins are often purified from microbial lysates containing high concentrations of nucleic acids. Pre-purification steps such as nuclease addition or precipitation with polyethyleneimine or ammonium sulfate are normally required to reduce viscosity and to eliminate competing polyanions before anion exchange chromatography. We report that small polycationic compaction agents such as spermine selectively precipitate nucleic acids during or after Escherichia coli lysis, allowing DNA and RNA to be pelleted with the insoluble cell debris. Analysis by spectrophotometry and protein assay confirmed a significant reduction in the concentration of nucleic acids present, with preservation of protein. Lysate viscosity is greatly reduced, facilitating subsequent processing. We have used 5mM spermine to remove nucleic acids from E. coli lysate in the purification of a hexahistidine-tagged HIV reverse transcriptase.

  16. An overview of the molecular and epidemiological features of HIV-1 infection in two major cities of Bahia state, Brazil.

    PubMed

    Amaral, Amanda Gm; Oliveira, Isabele B; Carneiro, Diego C; Alcantara, Luiz Cj; Monteiro-Cunha, Joana P

    2017-06-01

    The high mutation rate of the human immunodeficiency virus (HIV) has created a public health challenge because the use of antiretroviral drugs can generate selective pressure that drives resistance in these viruses. The aim of this work was to characterise the molecular and epidemiological profile of HIV in Bahia, Brazil. DNA sequences from regions of HIV gag, pol, and env genes were obtained from previous studies performed in this area between 2002 and 2012. Their genotype and drug-resistance mutations were identified using bioinformatics tools. Clinical and epidemiological data were analysed. Among 263 individuals (46.4% male), 97.5% were asymptomatic and 49.1% were receiving treatment. Most of the individuals were 31 to 40 years old (36.9%) and infected through heterosexual contact (40.7%). The predominant genotype was B (68.1%) followed by BF recombinants (18.6%). Among the individuals infected with either F or BF genotypes, 68.4% were women and 76.8% were infected through heterosexual transmission. The prevalence of associated mutations conferring antiretroviral resistance was 14.2%, with 3.8% of all mutations conferring resistance to protease inhibitors, 9.43% to nucleoside reverse transcriptase inhibitors, and 8.5% to non-nucleoside reverse transcriptase inhibitors. Drug resistance was higher in individuals receiving treatment (26.1%) than in the drug-naïve (4.3%) individuals. This study will contribute to the understanding and monitoring of HIV epidemic in this Brazilian region.

  17. Two assays for measuring fibrosis: reverse transcriptase-polymerase chain reaction of collagen alpha(1) (III) mRNA is an early predictor of subsequent collagen deposition while a novel serum N-terminal procollagen (III) propeptide assay reflects manifest fibrosis in carbon tetrachloride-treated rats.

    PubMed

    Kauschke, S G; Knorr, A; Heke, M; Kohlmeyer, J; Schauer, M; Theiss, G; Waehler, R; Burchardt, E R

    1999-11-15

    Using a novel quantitative reverse transcriptase-polymerase chain reaction assay, we have determined the amount of specific mRNA for procollagen alpha(1) (III) (PIIIP) in the carbon tetrachloride (CCl(4)) model of liver fibrosis in rats. After a single week of CCl(4) application, the amount of PIIIP mRNA was increased approximately 10 times over the untreated control group and continued to increase to approximately 30 times after 7 weeks of intoxication. In this model substantial fibrosis was demonstrated by computer-aided morphometry after 5 to 7 weeks of treatment. Using recombinant murine N-terminal procollagen alpha(1) (III) propeptide (PIIINP), a novel sensitive immunoassay for the measurement of circulating PIIINP in rodent sera was established. An increase in PIIINP serum levels was observed after 5 to 7 weeks of CCl(4) intoxication. Our results suggest PIIIP gene expression is an early marker of tissue fibrosis. Early PIIIP gene expression is correlated with the extent of the subsequent fibrosis. PIIIP mRNA levels increase much earlier than conventional histological examination or PIIINP levels. PIIINP measurements with our new serum assay, on the other hand, are a good noninvasive marker of manifest fibrosis but are a poor marker of fibrogenesis. Copyright 1999 Academic Press.

  18. Global Comparison of Drug Resistance Mutations After First-Line Antiretroviral Therapy Across Human Immunodeficiency Virus-1 Subtypes

    PubMed Central

    Huang, Austin; Hogan, Joseph W.; Luo, Xi; DeLong, Allison; Saravanan, Shanmugam; Wu, Yasong; Sirivichayakul, Sunee; Kumarasamy, Nagalingeswaran; Zhang, Fujie; Phanuphak, Praphan; Diero, Lameck; Buziba, Nathan; Istrail, Sorin; Katzenstein, David A.; Kantor, Rami

    2016-01-01

    Background. Human immunodeficiency virus (HIV)-1 drug resistance mutations (DRMs) often accompany treatment failure. Although subtype differences are widely studied, DRM comparisons between subtypes either focus on specific geographic regions or include populations with heterogeneous treatments. Methods. We characterized DRM patterns following first-line failure and their impact on future treatment in a global, multi-subtype reverse-transcriptase sequence dataset. We developed a hierarchical modeling approach to address the high-dimensional challenge of modeling and comparing frequencies of multiple DRMs in varying first-line regimens, durations, and subtypes. Drug resistance mutation co-occurrence was characterized using a novel application of a statistical network model. Results. In 1425 sequences, 202 subtype B, 696 C, 44 G, 351 circulating recombinant forms (CRF)01_AE, 58 CRF02_AG, and 74 from other subtypes mutation frequencies were higher in subtypes C and CRF01_AE compared with B overall. Mutation frequency increased by 9%–20% at reverse transcriptase positions 41, 67, 70, 184, 215, and 219 in subtype C and CRF01_AE vs B. Subtype C and CRF01_AE exhibited higher predicted cross-resistance (+12%–18%) to future therapy options compared with subtype B. Topologies of subtype mutation networks were mostly similar. Conclusions. We find clear differences in DRM outcomes following first-line failure, suggesting subtype-specific ecological or biological factors that determine DRM patterns. PMID:27419147

  19. Simultaneous Detection of Rift Valley Fever, Bluetongue, Rinderpest, and Peste des Petits Ruminants Viruses by a Single-Tube Multiplex Reverse Transcriptase-PCR Assay Using a Dual-Priming Oligonucleotide System▿

    PubMed Central

    Yeh, Jung-Yong; Lee, Ji-Hye; Seo, Hyun-Ji; Park, Jee-Yong; Moon, Jin-San; Cho, In-Soo; Choi, In-Soo; Park, Seung-Yong; Song, Chang-Seon; Lee, Joong-Bok

    2011-01-01

    The aim of this study was to develop a highly sensitive and specific one-step multiplex reverse transcriptase PCR assay for the simultaneous and differential detection of Rift Valley Fever virus (RVFV), bluetongue virus (BTV), rinderpest virus (RPV), and Peste des petits ruminants virus (PPRV). These viruses cause mucosal lesions in cattle, sheep, and goats, and they are difficult to differentiate from one another based solely on their clinical presentation in suspected disease cases. In this study, we developed a multiplex reverse transcriptase PCR to detect these viruses using a novel dual-priming oligonucleotide (DPO). The DPO contains two separate priming regions joined by a polydeoxyinosine linker, which blocks extension of nonspecifically primed templates and consistently allows high PCR specificity even under less-than-optimal PCR conditions. A total of 19 DPO primers were designed to detect and discriminate between RVFV, BTV, RPV, and PPRV by the generation of 205-, 440-, 115-, and 243-bp cDNA products, respectively. The multiplex reverse transcriptase PCR described here enables the early diagnosis of these four viruses and may also be useful as part of a testing regime for cattle, sheep, or goats exhibiting similar clinical signs, including mucosal lesions. PMID:21307219

  20. Combination nucleoside/nucleotide reverse transcriptase inhibitors for treatment of HIV infection.

    PubMed

    Akanbi, Maxwell O; Scarsi, Kimberly K; Scarci, Kimberly; Taiwo, Babafemi; Murphy, Robert L

    2012-01-01

    The combination of two nucleoside/nucleotide reverse transcriptase inhibitors (N(t)RTIs) and a third agent from another antiretroviral class is currently recommended for initial antiretroviral therapy. In general, N(t)RTIs remain relevant in subsequent regimens. There are currently six nucleoside reverse transcriptase inhibitors and one nucleotide reverse transcriptase inhibitor drug entities available, and several formulations that include two or more N(t)RTIs in a fixed-dose combination. These entities have heterogeneous pharmacological and clinical properties. Accordingly, toxicity, pill burden, dosing frequency, potential drug-drug interaction, preexisting antiretroviral drug resistance and comorbid conditions should be considered when constructing a regimen. This approach is critical in order to optimize virologic efficacy and clinical outcomes. This article reviews N(t)RTI combinations used in the treatment of HIV-infected adults. The pharmacological properties of each N(t)RTI, and the clinical trials that have influenced treatment guidelines are discussed. It is likely that N(t)RTIs will continue to dominate the global landscape of HIV treatment and prevention, despite emerging interest in N(t)RTI-free combination therapy. Clinical domains where only few alternatives to N(t)RTIs exist include treatment of HIV/HBV coinfection and HIV-2. There is a need for novel N(t)RTIs with enhanced safety and resistance profiles compared with current N(t)RTIs.

  1. Reverse Transcriptase-Containing Particles Induced in Rous Sarcoma Virus-Transformed Rat Cells by Arginine Deprivation

    PubMed Central

    Kotler, Moshe; Weinberg, Eynat; Haspel, Osnat; Becker, Yechiel

    1972-01-01

    Incubation of rat cells transformed by Rous sarcoma virus (RSV) in an arginine-deficient medium resulted in accumulation of particles in the culture medium. Such particles did not appear when the transformed rat cells were incubated in a complete medium nor in the medium of primary rat cells which were incubated either in arginine-deficient or complete media. The particles which were released from the arginine-deprived transformed rat cells resemble C-type particles in their properties. These particles band in sucrose gradients at a density of 1.16 g/ml and contain 35S ribonucleic acid (RNA) molecules and a reverse transcriptase activity. Analysis of the cytoplasm of transformed and primary rat cells, deprived and undeprived of arginine, revealed the presence of reverse transcriptase-containing particles which banded in sucrose gradients at a density of 1.14 g/ml. These particles differed from the particles released into the medium by the arginine-deprived RSV-transformed rat cells. The deoxyribonucleic acid (DNA) molecules synthesized in vitro by the reverse transcriptase present in the particles isolated from the medium of arginine-deprived cells hybridized to RSV RNA, whereas the DNA synthesized by the cell-bound enzyme had no homology to RSV RNA. PMID:4116137

  2. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).

  3. The Role of eIF4E Activity in Breast Cancer

    DTIC Science & Technology

    2010-08-01

    ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less product...have previously shown that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem

  4. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  5. The history of antiretrovirals: key discoveries over the past 25 years.

    PubMed

    De Clercq, Erik

    2009-09-01

    Within 25 years after zidovudine (3'-azido-2',3'-dideoxythymidine, AZT) was first described as an inhibitor of HIV replication, 25 anti-HIV drugs have been formally approved for clinical use in the treatment of HIV infections: seven nucleoside reverse transcriptase inhibitors (NRTIs): zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine; one nucleotide reverse transcriptase inhibitor (NtRTI): tenofovir [in its oral prodrug form: tenofovir disoproxil fumarate (TDF)]; four non-nucleoside reverse transcriptase inhibitors (NNRTIs): nevirapine, delavirdine, efavirenz and etravirine; ten protease inhibitors (PIs): saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir; one fusion inhibitor (FI): enfuvirtide; one co-receptor inhibitor (CRI): maraviroc and one integrase inhibitor (INI): raltegravir. These compounds are used in various drug combination (some at fixed dose) regimens so as to achieve the highest possible benefit and tolerability, and to diminish the risk of virus-drug resistance development. (c) 2009 John Wiley & Sons, Ltd.

  6. The public health approach to identify antiretroviral therapy failure: high-level nucleoside reverse transcriptase inhibitor resistance among Malawians failing first-line antiretroviral therapy

    PubMed Central

    Hosseinipour, Mina C.; van Oosterhout, Joep J.G.; Weigel, Ralf; Phiri, Sam; Kamwendo, Debbie; Parkin, Neil; Fiscus, Susan A.; Nelson, Julie A.E.; Eron, Joseph J.; Kumwenda, Johnstone

    2010-01-01

    Background Over 150 000 Malawians have started antiretroviral therapy (ART), in which first-line therapy is stavudine/lamivudine/nevirapine. We evaluated drug resistance patterns among patients failing first-line ART on the basis of clinical or immunological criteria in Lilongwe and Blantyre, Malawi. Methods Patients meeting the definition of ART failure (new or progressive stage 4 condition, CD4 cell count decline more than 30%, CD4 cell count less than that before treatment) from January 2006 to July 2007 were evaluated. Among those with HIV RNA of more than 1000 copies/ml, genotyping was performed. For complex genotype patterns, phenotyping was performed. Results Ninety-six confirmed ART failure patients were identified. Median (interquartile range) CD4 cell count, log10 HIV-1 RNA, and duration on ART were 68 cells/μl (23–174), 4.72 copies/ml (4.26–5.16), and 36.5 months (26.6–49.8), respectively. Ninety-three percent of samples had nonnucleoside reverse transcriptase inhibitor mutations, and 81% had the M184V mutation. The most frequent pattern included M184V and nonnucleoside reverse transcriptase inhibitor mutations along with at least one thymidine analog mutation (56%). Twenty-three percent of patients acquired the K70E or K65R mutations associated with tenofovir resistance; 17% of the patients had pan-nucleoside resistance that corresponded to K65R or K70E and additional resistance mutations, most commonly the 151 complex. Emergence of the K65R and K70E mutations was associated with CD4 cell count of less than 100 cells/μl (odds ratio 6.1) and inversely with the use of zidovudine (odds ratio 0.18). Phenotypic susceptibility data indicated that the nucleoside reverse transcriptase inhibitor backbone with the highest activity for subsequent therapy was zidovudine/lamivudine/tenofovir, followed by lamivudine/tenofovir, and then abacavir/didanosine. Conclusion When clinical and CD4 cell count criteria are used to monitor first-line ART failure, extensive nucleoside reverse transcriptase inhibitor and nonnucleoside reverse transcriptase inhibitor resistance emerges, with most patients having resistance profiles that markedly compromise the activity of second-line ART. PMID:19417582

  7. The Role of elF4E Activity in Breast Cancer

    DTIC Science & Technology

    2011-08-01

    protein; ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...Reactions were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less...that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem-loop structure6. This

  8. Molecular docking and 3D-QSAR studies on triazolinone and pyridazinone, non-nucleoside inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Sivan, Sree Kanth; Manga, Vijjulatha

    2010-06-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.

  9. The impact of HIV-1 reverse transcriptase polymorphisms on responses to first-line nonnucleoside reverse transcriptase inhibitor-based therapy in HIV-1-infected adults.

    PubMed

    Mackie, Nicola E; Dunn, David T; Dolling, David; Garvey, Lucy; Harrison, Linda; Fearnhill, Esther; Tilston, Peter; Sabin, Caroline; Geretti, Anna M

    2013-09-10

    HIV-1 genetic variability may influence antiretroviral therapy (ART) outcomes. The study aim was to determine the impact of polymorphisms in regions known to harbor major nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations (codons 90-108, 135-138, 179-190, 225-348) on virologic responses to first-line NNRTI-based ART. Reverse transcriptase sequences from ART-naive individuals who commenced efavirenz (EFV) or nevirapine (NVP) with at least two nucleos(t)ide reverse transcriptase inhibitors (NRTIs) without major drug resistance mutations were analyzed. The impact of polymorphisms on week 4 viral load decrease and time to virologic failure was measured over a median 97 weeks. Among 4528 patients, most were infected with HIV-1 subtype B (67%) and commenced EFV-based ART (84%). Overall, 2598 (57%) had at least one polymorphism, most frequently at codons 90, 98, 101, 103, 106, 135, 138, 179, and 238. Virologic failure rates were increased in patients with two (n = 597) or more than two (n = 72) polymorphisms [adjusted hazard ratio 1.43; 95% confidence interval (CI) 1.07-1.92; P = 0.016]. Polymorphisms associated with virologic failure occurred at codons 90 (mostly V90I), 98 (mostly A98S), and 103 (mostly K103R), with adjusted hazard ratios of 1.78 (1.15-2.73; P = 0.009), 1.55 (1.16-2.08; P = 0.003), and 1.75 (1.00-3.05: P = 0.049), respectively. Polymorphisms at codon 179, especially V179D/E/T, predicted reduced week 4 responses (P = 0.001) but not virologic failure. The occurrence of multiple polymorphisms, though uncommon, was associated with a small increase in the risk of NNRTI treatment failure; significant effects were seen with polymorphisms at codon 90, 98, and 103. The mechanisms underlying the slower suppression seen with V179D/E/T deserve further investigation.

  10. Novel Codon Insert in HIV Type 1 Clade B Reverse Transcriptase Associated with Low-Level Viremia During Antiretroviral Therapy

    PubMed Central

    Gianella, Sara; Vazquez, Homero; Ignacio, Caroline; Zweig, Adam C.; Richman, Douglas D.; Smith, Davey M.

    2014-01-01

    Abstract We investigated the pol genotype in two phylogenetically and epidemiologically linked partners, who were both experiencing persistent low-level viremia during antiretroviral therapy. In one partner we identified a new residue insertion between codon 248 and 249 of the HIV-1 RNA reverse transcriptase (RT) coding region (HXB2 numbering). We then investigated the potential impact of identified mutations in RT and antiretroviral binding affinity using a novel computational approach. PMID:24020934

  11. A Cryptosporidium parvum genomic region encoding hemolytic activity.

    PubMed Central

    Steele, M I; Kuhls, T L; Nida, K; Meka, C S; Halabi, I M; Mosier, D A; Elliott, W; Crawford, D L; Greenfield, R A

    1995-01-01

    Successful parasitization by Cryptosporidium parvum requires multiple disruptions in both host and protozoan cell membranes as cryptosporidial sporozoites invade intestinal epithelial cells and subsequently develop into asexual and sexual life stages. To identify cryptosporidial proteins which may play a role in these membrane alterations, hemolytic activity was used as a marker to screen a C. parvum genomic expression library. A stable hemolytic clone (H4) containing a 5.5-kb cryptosporidial genomic fragment was identified. The hemolytic activity encoded on H4 was mapped to a 1-kb region that contained a complete 690-bp open reading frame (hemA) ending in a common stop codon. A 21-kDa plasmid-encoded recombinant protein was expressed in maxicells containing H4. Subclones of H4 which contained only a portion of hemA did not induce hemolysis on blood agar or promote expression of the recombinant protein in maxicells. Reverse transcriptase-mediated PCR analysis of total RNA isolated from excysted sporozoites and the intestines of infected adult mice with severe combined immunodeficiency demonstrated that hemA is actively transcribed during the cryptosporidial life cycle. PMID:7558289

  12. High HIV-1 Diversity and Prevalence of Transmitted Drug Resistance Among Antiretroviral-Naive HIV-Infected Pregnant Women from Rio de Janeiro, Brazil.

    PubMed

    Delatorre, Edson; Silva-de-Jesus, Carlos; Couto-Fernandez, José Carlos; Pilotto, Jose H; Morgado, Mariza G

    2017-01-01

    Antiretroviral (ARV) resistance mutations in human immunodeficiency virus type 1 (HIV-1) infection may reduce the efficacy of prophylactic therapy to prevent mother-to-child transmission (PMTCT) and future treatment options. This study evaluated the diversity and the prevalence of transmitted drug resistance (TDR) in protease (PR) and reverse transcriptase (RT) regions of HIV-1 pol gene among 87 ARV-naive HIV-1-infected pregnant women from Rio de Janeiro, Brazil, between 2012 and 2015. The viral diversity comprised HIV-1 subtypes B (67.8%), F1 (17.2%), and C (4.6%); the circulating recombinant forms 12_BF (2.3%), 28/29_BF, 39_BF, 02_AG (1.1% each) and unique recombinants forms (4.5%). The overall prevalence of any TDR was 17.2%, of which 5.7% for nucleoside RT inhibitors, 5.7% for non-nucleoside RT inhibitors, and 8% for PR inhibitors. The TDR prevalence found in this population may affect the virological outcome of the standard PMTCT ARV-regimens, reinforcing the importance of continuous monitoring.

  13. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis.

    PubMed

    Enyeart, Peter J; Mohr, Georg; Ellington, Andrew D; Lambowitz, Alan M

    2014-01-13

    Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into 'targetrons.' Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and 'cut-and-pastes' (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The high processivity and fidelity of group II intron reverse transcriptases along with their novel template-switching activity, which can directly link RNA-seq adaptor sequences to cDNAs during reverse transcription, open new approaches for RNA-seq and the identification and profiling of non-coding RNAs, with potentially wide applications in research and biotechnology.

  14. Murine Leukemia Virus Reverse Transcriptase: Structural Comparison with HIV-1 Reverse Transcriptase

    PubMed Central

    Coté, Marie L.; Roth, Monica J.

    2008-01-01

    Recent X-ray crystal structure determinations of Moloney murine leukemia virus reverse transcriptase (MoMLV RT) have allowed for more accurate structure/function comparisons to HIV-1 RT than were formerly possible. Previous biochemical studies of MoMLV RT in conjunction with knowledge of sequence homologies to HIV-1 RT and overall fold similarities to RTs in general, provided a foundation upon which to build. In addition, numerous crystal structures of the MoMLV RT fingers/palm subdomain had also shed light on one of the critical functions of the enzyme, specifically polymerization. Now in the advent of new structural information, more intricate examination of MoMLV RT in its entirety can be realized, and thus the comparisons with HIV-1 RT may be more critically elucidated. Here, we will review the similarities and differences between MoMLV RT and HIV-1 RT via structural analysis, and propose working models for the MoMLV RT based upon that information. PMID:18294720

  15. HIV type 1 genotypic variation in an antiretroviral treatment-naive population in southern India.

    PubMed

    Balakrishnan, Pachamuthu; Kumarasamy, Nagalingeswaran; Kantor, Rami; Solomon, Suniti; Vidya, Sundararajan; Mayer, Kenneth H; Newstein, Michael; Thyagarajan, Sadras P; Katzenstein, David; Ramratnam, Bharat

    2005-04-01

    Most studies of HIV-1 drug resistance have examined subtype B viruses; fewer data are available from developing countries, where non-B subtypes predominate. We determined the prevalence of mutations at protease and reverse transcriptase drug resistance positions in antiretroviral drug-naive individuals in southern India. The pol region of the genome was amplified from plasma HIV-1 RNA in 50 patients. All sequences clustered with HIV-1 subtype C. All patients had at least one protease and/or RT mutation at a known subtype B drug resistance position. Twenty percent of patients had mutations at major protease inhibitor resistance positions and 100% had mutations at minor protease inhibitor resistance positions. Six percent and 14% of patients had mutations at nucleoside reverse transcriptase inhibitor and/or nonnucleoside reverse transcriptase inhibitor resistance positions, respectively. Larger scale studies need to be undertaken to better define the genotypic variation of circulating Indian subtype C viruses and their potential impact on drug susceptibility and clinical outcome in treated individuals.

  16. Trends in Transmission of Drug Resistance and Prevalence of Non-B Subtypes in Patients with Acute or Recent HIV-1 Infection in Barcelona in the Last 16 Years (1997-2012).

    PubMed

    Ambrosioni, Juan; Sued, Omar; Nicolas, David; Parera, Marta; López-Diéguez, María; Romero, Anabel; Agüero, Fernando; Marcos, María Ángeles; Manzardo, Christian; Zamora, Laura; Gómez-Carrillo, Manuel; Gatell, José María; Pumarola, Tomás; Miró, José María

    2015-01-01

    To evaluate the prevalence of transmitted drug resistance (TDR) and non-B subtypes in patients with acute/recent HIV-1 infection in Barcelona during the period 1997-2012. Patients from the "Hospital Clínic Primary HIV-1 Infection Cohort" with a genotyping test performed within 180 days of infection were included. The 2009 WHO List of Mutations for Surveillance of Transmitted HIV-1 Drug Resistance was used for estimating the prevalence of TDR and phylogenetic analysis for subtype determination. 189 patients with acute/recent HIV-1 infection were analyzed in 4 time periods (1997-2000, n=28; 2001-4, n=42; 2005-8, n=55 and 2009-12, n=64). The proportion of patients with acute/recent HIV-1 infection with respect to the total of newly HIV-diagnosed patients in our center increased over the time and was 2.18%, 3.82%, 4.15% and 4.55% for the 4 periods, respectively (p=0.005). The global prevalence of TDR was 9%, or 17.9%, 9.5%, 3.6% and 9.4% by study period (p=0.2). The increase in the last period was driven by protease-inhibitor and nucleoside-reverse-transcriptase-inhibitor resistance mutations while non-nucleoside-reverse-transcriptase inhibitor TDR and TDR of more than one family decreased. The overall prevalence of non-B subtypes was 11.1%, or 0%, 4.8%, 9.1% and 20.3 by study period (p=0.01). B/F recombinants, B/G recombinants and subtype F emerged in the last period. We also noticed an increase in the number of immigrant patients (p=0.052). The proportion of men-who-have-sex-with-men (MSM) among patients with acute/recent HIV-1 infection increased over the time (p=0.04). The overall prevalence of TDR in patients with acute/recent HIV-1 infection in Barcelona was 9%, and it has stayed relatively stable in recent years. Non-B subtypes and immigrants proportions progressively increased.

  17. HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells

    PubMed Central

    Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia

    2008-01-01

    Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151

  18. Reverse Transcriptase Activity in Mature Spermatozoa of Mouse

    PubMed Central

    Giordano, Roberto; Magnano, Anna Rosa; Zaccagnini, Germana; Pittoggi, Carmine; Moscufo, Nicola; Lorenzini, Rodolfo; Spadafora, Corrado

    2000-01-01

    We show here that a reverse transcriptase (RT) activity is present in murine epididymal spermatozoa. Sperm cells incubated with human poliovirus RNA can take up exogenous RNA molecules and internalize them in nuclei. Direct PCR amplification of DNA extracted from RNA-incubated spermatozoa indicate that poliovirus RNA is reverse-transcribed in cDNA fragments. PCR analysis of two-cell embryos shows that poliovirus RNA-challenged spermatozoa transfer retrotranscribed cDNA molecules into eggs during in vitro fertilization. Finally, RT molecules can be visualized on sperm nuclear scaffolds by immunogold electron microscopy. These results, therefore, reveal a novel metabolic function in spermatozoa, which may play a role during early embryonic development. PMID:10725323

  19. Unconventional plasticity of HIV-1 reverse transcriptase: how inhibitors could open a connection "gate" between allosteric and catalytic sites.

    PubMed

    Bellucci, Luca; Angeli, Lucilla; Tafi, Andrea; Radi, Marco; Botta, Maurizio

    2013-12-23

    Targeted molecular dynamics (TMD) simulations allowed for identifying the chemical/structural features of the nucleotide-competitive HIV-1 inhibitor DAVP-1, which is responsible for the disruption of the T-shape motif between Try183 and Trp229 of the reverse transcriptase (RT). DAVP-1 promoted the opening of a connection "gate" between allosteric and catalytic sites of HIV-1 RT, thus explaining its peculiar mechanism of action and providing useful insights to develop novel nucleotide-competitive RT inhibitors.

  20. In Vitro Evaluation of Nonnucleoside Reverse Transcriptase Inhibitors UC-781 and TMC120-R147681 as Human Immunodeficiency Virus Microbicides†

    PubMed Central

    Van Herrewege, Yven; Michiels, Jo; Van Roey, Jens; Fransen, Katrien; Kestens, Luc; Balzarini, Jan; Lewi, Paul; Vanham, Guido; Janssen, Paul

    2004-01-01

    The nonnucleoside reverse transcriptase inhibitors UC-781 and TMC120-R147681 (Dapivirine) effectively prevented human immunodeficiency virus (HIV) infection in cocultures of monocyte-derived dendritic cells and T cells, representing primary targets in sexual transmission. Both drugs had a favorable therapeutic index. A 24-h treatment with 1,000 nM UC-781 or 100 nM TMC120-R147681 prevented cell-free HIV infection, whereas 10-fold-higher concentrations blocked cell-associated HIV. PMID:14693562

  1. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  2. Molecular epidemiology of HIV type 1 in Mexico: emergence of BG and BF intersubtype recombinants.

    PubMed

    Vázquez-Valls, Eduardo; Escoto-Delgadillo, Martha; López-Márquez, Francisco Carlos; Castillero-Manzano, Marcelo; Echegaray-Guerrero, Ernesto; Bitzer-Quintero, Oscar Kurt; Kobayashi-Gutiérrez, Antonio; Torres-Mendoza, Blanca Miriam

    2010-07-01

    The molecular epidemiology of subtypes and intersubtype recombinants (IRs) of human immunodeficiency virus type 1 (HIV-1) in Mexico has not been characterized fully. Understanding its regional distribution, prevalence, adaptability, viral fitness, pathogenicity, and immunogenicity is decisive for any design of an effective HIV vaccine. The aim of this study was to describe the presence of IRs types BG and BF in a Mexican population. Protease and reverse transcriptase regions of the pol gene were sequenced using an automated sequencing system. A phylogenic tree was constructed and genetic distances were calculated using MEGA 3.1. Recombination analysis was done by bootscan using SimPlot software. Two hundred and twenty-three HIV-1-positive individuals were enrolled in the study. At baseline, the mean plasma viral load was 285,500 HIV-1 RNA copies/ml and the mean CD4 cell count was 213 cells/ml. Subtype B was found in 220 (98.6%) samples, whereas IRs were found in three patients (1.4%): two (0.9%) with BG and one (0.45%) with BF. IRs were observed in 2/124 (1.6%) samples from treated patients and in 1/99 (1.0%) from naive patients. The presence of these HIV forms at low frequency points to the need for research on the diversity, geographic distribution, and evolution of other subtypes including circulating recombinant forms and IRs to understand the molecular epidemiology and tendencies of the HIV infection in Mexico.

  3. Characteristics of a group of nonnucleoside reverse transcriptase inhibitors with structural diversity and potent anti-human immunodeficiency virus activity.

    PubMed

    Yang, S S; Fliakas-Boltz, V; Bader, J P; Buckheit, R W

    1995-10-01

    Current thrust in controlling the Acquired Immune Deficiency Syndrome (AIDS) focuses on antiviral drug development targeting the infection and replication of the human immunodeficiency virus (HIV), the causative agent of AIDS. To date, treatment of AIDS has relied on nucleoside reverse transcriptase inhibitors such as AZT, ddI, and ddC, which eventually become ineffective upon the emergence of resistant mutants bearing specific nucleotide substitutions. The Anti-AIDS Drug Screening Program of the NCI conducts and coordinates a high-capacity semi-robotic in vitro screening of synthetic or natural compounds submitted by academic, research and pharmaceutical institutions world-wide. About 10,000 synthetic compounds are screened annually for anti-HIV activity. Confirmed active agents are subjected to in-depth studies on range and mechanism of action. Emerging from this intense screening activity were a number of potentially promising categories of nonnucleoside reverse transcriptase inhibitors (NNRTI) with structural diversity but strong and reproducible anti-HIV activity. Over 2500 active compounds were evaluated for their inhibitory activity against a panel of both laboratory and clinical virus isolates in the appropriate established cell line or fresh human peripheral blood leukocyte and macrophage preparations. Out of these, 40 agents could be placed structurally in nine categories with an additional 16 unique compounds that share the characteristics of NNRTI. These NNRTIs were shown to inhibit reverse transcriptase enzymatically using homopolymeric or ribosomal RNA as templates. NNRTIs demonstrated similarity in their inhibitory pattern against the HIV-1 laboratory strains IIIB and RF, and an AZT-resistant strain; all were inactive against HIV-2. These compounds were further tested against NNRTI-resistant HIV-1 isolates. NNRTI-resistant HIV-1 isolates were selected and characterized with respect to the change(s) in the viral reverse transcriptase nucleotide sequence. Also, differential cross-resistance or sensitivity patterns to NNRTIs were studied in detail among NNRTI-resistant mutants. When tested in combination with AZT, all of the NNRTI's uniformly exhibited synergistic inhibition of HIV-1, suggesting that combination antiviral therapy of NNRTIs with AZT may be therapeutically promising for AIDS treatment.

  4. High Potency of Indolyl Aryl Sulfone Nonnucleoside Inhibitors towards Drug-Resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutants Is Due to Selective Targeting of Different Mechanistic Forms of the Enzyme

    PubMed Central

    Cancio, Reynel; Silvestri, Romano; Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Crespan, Emmanuele; Zanoli, Samantha; Hübscher, Ulrich; Spadari, Silvio; Maga, Giovanni

    2005-01-01

    Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation. PMID:16251294

  5. Synthesis, Activity and Structural Analysis of Novel α-Hydroxytropolone Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H

    PubMed Central

    Chung, Suhman; Himmel, Daniel M.; Jiang, Jian-Kang; Wojtak, Krzysztof; Bauman, Joseph D.; Rausch, Jason W.; Wilson, Jennifer A.; Beutler, John A.; Thomas, Craig J.; Arnold, Eddy; Le Grice, Stuart F.J.

    2011-01-01

    The α-hydroxytroplone, manicol (5,7-dihydroxy-2-isopropenyl-9-methyl-1,2,3,4-tetrahydro-benzocyclohepten-6-one) potently and specifically inhibits ribonuclease H (RNase H) activity of human immunodeficiency virus reverse transcriptase (HIV RT) in vitro. However, manicol was ineffective in reducing virus replication in culture. Ongoing efforts to improve the potency and specificity over the lead compound led us to synthesize 14 manicol derivatives that retain the divalent metal-chelating α-hydroxytropolone pharmacophore. These efforts were augmented by a high resolution structure of p66/p51 HIV-1 RT containing the nonnucleoside reverse transcriptase inhibitor (NNRTI), TMC278 and manicol in the DNA polymerase and RNase H active sites, respectively. We demonstrate here that several modified α-hydroxytropolones exhibit antiviral activity at non-cytotoxic concentrations. Inclusion of RNase H active site mutants indicated that manicol analogs can occupy an additional site in or around the DNA polymerase catalytic center. Collectively, our studies will promote future structure-based design of improved α-hydroxytropolones to complement the NRTI and NNRTI currently in clinical use. PMID:21568335

  6. Indolylarylsulfones carrying a heterocyclic tail as very potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Famiglini, Valeria; La Regina, Giuseppe; Coluccia, Antonio; Pelliccia, Sveva; Brancale, Andrea; Maga, Giovanni; Crespan, Emmanuele; Badia, Roger; Riveira-Muñoz, Eva; Esté, José A; Ferretti, Rosella; Cirilli, Roberto; Zamperini, Claudio; Botta, Maurizio; Schols, Dominique; Limongelli, Vittorio; Agostino, Bruno; Novellino, Ettore; Silvestri, Romano

    2014-12-11

    We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.

  7. Structure-based virtual screening efforts against HIV-1 reverse transcriptase to introduce the new potent non-nucleoside reverse transcriptase inhibitor

    NASA Astrophysics Data System (ADS)

    Hosseini, Yaser; Mollica, Adriano; Mirzaie, Sako

    2016-12-01

    The human immunodeficiency virus (HIV) which is strictly related to the development of AIDS, is treated by a cocktail of drugs, but due its high propensity gain drug resistance, the rational development of new medicine is highly desired. Among the different mechanism of action we selected the reverse transcriptase (RT) inhibition, for our studies. With the aim to identify new chemical entities to be used for further rational drug design, a set of 3000 molecules from the Zinc Database have been screened by docking experiments using AutoDock Vina software. The best ranked compounds with respect of the crystallographic inhibitor MK-4965 resulted to be five compounds, and the best among them was further tested by molecular dynamics (MD) simulation. Our results indicate that comp1 has a stronger interaction with the subsite p66 of RT than MK-4965 and that both are able to stabilize specific conformational changes of the RT 3D structure, which may explain their activity as inhibitors. Therefore comp1 could be a good candidate for biological tests and further development.

  8. Recent advances in the development of next generation non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Tarby, Christine M

    2004-01-01

    Since their discovery, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have become one of the cornerstones of highly active anti-retroviral therapy (HAART). Currently, three NNRTI agents, efavirenz, nevirapine and delavirdine are commercially available. Efavirenz and nevirapine, used in combination with nucleoside reverse transcriptase inhibitors (NRTIs), provide durable regimens with efficacy comparable to protease inhibitor (PI) containing therapies. When virological failure occurs following treatment with an NNRTI, the resistance mutations can confer reduced sensitivity to the entire agent class. Therefore, the strategy for the development of next generation NNRTIs has been to focus on compounds which have improved potencies against the clinically relevant viral mutants. Agents with improved virological profiles and which maintain the ease of administration and favorable safety profiles of the current agents should find use in anti-retroviral naïve patients as well as in components of salvage regimens in the anti-retroviral experienced patient. This review summarizes the recent developments with compounds in clinical trials as of January 2002 as well as to summarize information on new agents appearing in the primary and patent literature between January 2001 and December 2002.

  9. Studies on the inhibition of Moloney murine leukemia virus reverse transcriptase by N-tritylamino acids and N-tritylamino acid-nucleotide compounds.

    PubMed

    Hawtrey, Arthur; Pieterse, Anton; van Zyl, Johann; Van der Bijl, Pieter; Van der Merwe, Marichen; Nel, William; Ariatti, Mario

    2008-09-01

    N-Acylated derivatives of 8-(6-aminohexyl) amino-adenosine-5 '-phosphate were prepared and studied with regard to their effect on DNA synthesis by the Moloney leukemia virus reverse transcriptase. N-palmitoyl and N-nicotinyl derivatives and bis-8-(6-aminohexyl) amino-5'-AMP inhibited the enzyme partially using poly (rA).oligo d(pT)(16-18) as template-primer with [(3)H]dTTP. In order to increase hydrophobicity in the acyl component tethered to the 8-(6-aminohexyl) amino group on the adenine nucleotide, N-trityl-L-phenylalanine and the N-trityl derivatives of the o, m, and p-fluoro-DL-phenylalanine were initially examined for inhibition of the enzyme using the above template-primer system. The compounds all inhibited the reverse transcriptase with IC(50) values of approximately 60-80 microM. However, when N-trityl-m-fluoro-DL-phenylalanine was coupled to the nucleotide 8-(6-aminohexyl) amino-adenosine-5'-phosphate, the inhibitory activity of this compound increased significantly (IC(50) = 5 microM).

  10. Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1.

    PubMed

    Gupta, Kavita M; Pearce, Serena M; Poursaid, Azadeh E; Aliyar, Hyder A; Tresco, Patrick A; Mitchnik, Mark A; Kiser, Patrick F

    2008-10-01

    Women-controlled methods for prevention of male-to-female sexual transmission of HIV-1 are urgently needed. Providing inhibitory concentrations of HIV-1 reverse transcriptase inhibitors to impede the replication of the virus in the female genital tissue offers a mechanism for prophylaxis of HIV-1. To this end, an intravaginal ring device that can provide long duration delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1, was developed utilizing a medical-grade polyether urethane. Monolithic intravaginal rings were fabricated and sustained release with cumulative flux linear with time was demonstrated under sink conditions for a period of 30 days. The release rate was directly proportional to the amount of drug loaded. Another release study conducted for a week utilizing liposome dispersions as sink conditions, to mimic the partitioning of dapivirine into vaginal tissue, also demonstrated release rates constant with time. These results qualify polyether urethanes for development of intravaginal rings for sustained delivery of microbicidal agents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  11. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.

    PubMed

    Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon

    2015-08-01

    The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting the in vitro data. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Transmitted Antiretroviral Drug Resistance in Newly HIV-Infected and Untreated Patients in Ségou and Bamako, Mali

    PubMed Central

    Fofana, Djeneba Bocar; Maiga, Aichatou Chehy; Diallo, Fodie; Ait-Arkoub, Zaina; Daou, Fatoumata; Cisse, Mamadou; Sarro, Yaya dit Sadio; Oumar, Aboubacar Alassane; Sylla, Aliou; Katlama, Christine; Taiwo, Babafemi; Murphy, Robert; Tounkara, Anatole; Marcelin, Anne-Genevieve; Calvez, Vincent

    2013-01-01

    Abstract The WHO recommends regular surveillance for transmitted antiretroviral drug-resistant viruses in HIV antiretroviral treatment (ART)-naive patients in resource-limited settings. This study aimed to assess the prevalence of mutations associated with resistance in ART-naive patients newly diagnosed with HIV in Bamako and Ségou in Mali. HIV-positive patients who never received ART were recruited in Bamako and Ségou, Mali. The reverse transcriptase (RT) and protease (PR) genes of these patients were sequenced by the “ViroSeq” method. Analysis and interpretation of the resistance were made according to the WHO 2009 list of drug resistance mutations. In all, 51/54 (94.4%) sample patients were sequenced. The median age (IQR) of our patients was 24 (22–27) years and the median CD4 count was 380 (340–456) cells/mm3. The predominant subtype was recombinant HIV-1 CRF02_AG (66.7%) followed by CRF06_cpx (12%) and CRF09_cpx (4%). Four patients had mutations associated with resistance, giving an overall prevalence of resistance estimated at 7.9%. There were two (4%) patients with nucleoside reverse transcriptase inhibitor (NRTI) mutations (one M184V and one T215Y), two (4%) with non-NRTI mutations (two K103N), and one (2%) with a protease inhibitor mutation (one I54V). The prevalence of primary resistance in newly infected patients in Mali is moderate (7.9%). This indicates that the standard NNRTI-based first-line regimen used in Mali is suboptimal for some patients. This study should be done regularly to inform clinical practice. PMID:22823755

  13. Generation and Characterization of a Defective HIV-1 Virus as an Immunogen for a Therapeutic Vaccine

    PubMed Central

    García-Pérez, Javier; García, Felipe; Blanco, Julia; Escribà-García, Laura; Gatell, Jose Maria; Alcamí, Jose; Plana, Montserrat; Sánchez-Palomino, Sonsoles

    2012-01-01

    Background The generation of new immunogens able to elicit strong specific immune responses remains a major challenge in the attempts to obtain a prophylactic or therapeutic vaccine against HIV/AIDS. We designed and constructed a defective recombinant virus based on the HIV-1 genome generating infective but non-replicative virions able to elicit broad and strong cellular immune responses in HIV-1 seropositive individuals. Results Viral particles were generated through transient transfection in producer cells (293-T) of a full length HIV-1 DNA carrying a deletion of 892 base pairs (bp) in the pol gene encompassing the sequence that codes for the reverse transcriptase (NL4-3/ΔRT clone). The viral particles generated were able to enter target cells, but due to the absence of reverse transcriptase no replication was detected. The immunogenic capacity of these particles was assessed by ELISPOT to determine γ-interferon production in a cohort of 69 chronic asymptomatic HIV-1 seropositive individuals. Surprisingly, defective particles produced from NL4-3/ΔRT triggered stronger cellular responses than wild-type HIV-1 viruses inactivated with Aldrithiol-2 (AT-2) and in a larger proportion of individuals (55% versus 23% seropositive individuals tested). Electron microscopy showed that NL4-3/ΔRT virions display immature morphology. Interestingly, wild-type viruses treated with Amprenavir (APV) to induce defective core maturation also induced stronger responses than the same viral particles generated in the absence of protease inhibitors. Conclusions We propose that immature HIV-1 virions generated from NL4-3/ΔRT viral clones may represent new prototypes of immunogens with a safer profile and stronger capacity to induce cellular immune responses than wild-type inactivated viral particles. PMID:23144996

  14. Prevalence and patterns of HIV transmitted drug resistance in Guatemala.

    PubMed

    Avila-Ríos, Santiago; Mejía-Villatoro, Carlos R; García-Morales, Claudia; Soto-Nava, Maribel; Escobar, Ingrid; Mendizabal, Ricardo; Girón, Amalia; García, Leticia; Reyes-Terán, Gustavo

    2011-12-01

    To assess human immunodeficiency virus (HIV) diversity and the prevalence of transmitted drug resistance (TDR) in Guatemala. One hundred forty-five antiretroviral treatment-naïve patients referred to the Roosevelt Hospital in Guatemala City were enrolled from October 2010 to March 2011. Plasma HIV pol sequences were obtained and TDR was assessed with the Stanford algorithm and the World Health Organization (WHO) TDR surveillance mutation list. HIV subtype B was highly prevalent in Guatemala (96.6%, 140/145), and a 2.8% (4/145) prevalence of BF1 recombinants and 0.7% (1/145) prevalence of subtype C viruses were found. TDR prevalence for the study period was 8.3% (12/145) with the Stanford database algorithm (score > 15) and the WHO TDR surveillance mutation list. Most TDR cases were associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) (83.3%, 10/12); a low prevalence of nucleoside reverse transcriptase inhibitors and protease inhibitors was observed in the cohort (< 1% for both families). Low selection of antiretroviral drug resistance mutations was found, except for NNRTI-associated mutations. Major NNRTI mutations such as K101E, K103N, and E138K showed higher frequencies than expected in ART-naïve populations. Higher literacy was associated with a greater risk of TDR (odds ratio 4.14, P = 0.0264). This study represents one of the first efforts to describe HIV diversity and TDR prevalence and trends in Guatemala. TDR prevalence in Guatemala was at the intermediate level. Most TDR cases were associated with NNRTIs. Further and continuous TDR surveillance is necessary to gain more indepth knowledge about TDR spread and trends in Guatemala and to optimize treatment outcomes in the country.

  15. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.

    PubMed

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H

    2016-07-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  17. Tenofovir-related nephrotoxicity: case report and review of the literature.

    PubMed

    James, Christopher W; Steinhaus, Mary C; Szabo, Susan; Dressier, Robert M

    2004-03-01

    Tenofovir is a nucleotide reverse transcriptase inhibitor for treatment of human immunodeficiency virus (HIV) infection. Several cases of renal failure associated with tenofovir therapy recently have been reported. A 54-year-old man with HIV experienced decreasing renal function and Fanconi's syndrome secondary to tenofovir therapy. His condition gradually improved after discontinuation of the drug. The available medical literature for reported cases of tenofovir-related nephrotoxicity indicates that this complication is apparently rare. However, our case report and literature review underscore the importance of monitoring renal function when treating patients with any nucleotide reverse transcriptase inhibitor.

  18. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach.

    PubMed

    Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto

    2013-11-14

    The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.

  19. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms.

    PubMed

    Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V

    2013-03-04

    Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.

  20. Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein

    PubMed Central

    Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.

    2016-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  1. Simultaneous determination of the HIV nucleoside analogue reverse transcriptase inhibitors lamivudine, didanosine, stavudine, zidovudine and abacavir in human plasma by reversed phase high performance liquid chromatography.

    PubMed

    Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M

    2005-02-25

    A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.

  2. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro.

    PubMed

    Ortega, Joseph T; Suárez, Alirica I; Serrano, Maria L; Baptista, Jani; Pujol, Flor H; Rangel, Hector R

    2017-10-12

    Plant extracts are sources of valuable compounds with biological activity, especially for the anti-proliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. The aim of this study was to evaluate the anti-HIV-1 activity of glycosylated metabolites obtained from Marcetia taxifolia and derived from myricetin: myricetin rhamnoside and myricetin 3-(6-rhamnosylgalactoside). Compounds were obtained from organic extracts by maceration of aerial parts of M. taxifolia. All biological assays were performed in the MT4 cell line. Antiviral activity was measured as inhibition of p24 and reverse transcriptase with a fluorescent assay. Both flavonoids have antiviral activity in vitro, with an EC50 of 120 µM for myricetin 3-rhamnoside (MR) and 45 µM for myricetin 3-(6-rhamnosylgalactoside) (MRG), both significantly lower than the EC50 of myricetin (230 µM). Although both compounds inhibited the reverse transcriptase activity, with an IC50 of 10.6 µM for MR and 13.8 µM for MRG, myricetin was the most potent, with an IC50 of 7.6 µM, and an inhibition greater than 80%. Molecular docking approach showed correlation between the free energy of binding with the assays of enzyme inhibition. The results suggest that glycosylated moiety might enhance the anti-HIV-1 activity of myricetin, probably by favoring the internalization of the flavonoid into the cell. The inhibition of the HIV-1 reverse transcriptase is likely responsible for the antiviral activity.

  3. Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns

    PubMed Central

    Mohr, Georg; Ghanem, Eman; Lambowitz, Alan M.

    2010-01-01

    Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. PMID:20543989

  4. Antiretroviral Drug Use in a Cross-Sectional Population Survey in Africa: NIMH Project Accept (HPTN 043).

    PubMed

    Fogel, Jessica M; Clarke, William; Kulich, Michal; Piwowar-Manning, Estelle; Breaud, Autumn; Olson, Matthew T; Marzinke, Mark A; Laeyendecker, Oliver; Fiamma, Agnès; Donnell, Deborah; Mbwambo, Jessie K K; Richter, Linda; Gray, Glenda; Sweat, Michael; Coates, Thomas J; Eshleman, Susan H

    2017-02-01

    Antiretroviral (ARV) drug treatment benefits the treated individual and can prevent HIV transmission. We assessed ARV drug use in a community-randomized trial that evaluated the impact of behavioral interventions on HIV incidence. Samples were collected in a cross-sectional survey after a 3-year intervention period. ARV drug testing was performed using samples from HIV-infected adults at 4 study sites (Zimbabwe; Tanzania; KwaZulu-Natal and Soweto, South Africa; survey period 2009-2011) using an assay that detects 20 ARV drugs (6 nucleoside/nucleotide reverse transcriptase inhibitors, 3 nonnucleoside reverse transcriptase inhibitors, and 9 protease inhibitors; maraviroc; raltegravir). ARV drugs were detected in 2011 (27.4%) of 7347 samples; 88.1% had 1 nonnucleoside reverse transcriptase inhibitors ± 1-2 nucleoside/nucleotide reverse transcriptase inhibitors. ARV drug detection was associated with sex (women>men), pregnancy, older age (>24 years), and study site (P < 0.0001 for all 4 variables). ARV drugs were also more frequently detected in adults who were widowed (P = 0.006) or unemployed (P = 0.02). ARV drug use was more frequent in intervention versus control communities early in the survey (P = 0.01), with a significant increase in control (P = 0.004) but not in intervention communities during the survey period. In KwaZulu-Natal, a 1% increase in ARV drug use was associated with a 0.14% absolute decrease in HIV incidence (P = 0.018). This study used an objective, biomedical approach to assess ARV drug use on a population level. This analysis identified factors associated with ARV drug use and provided information on ARV drug use over time. ARV drug use was associated with lower HIV incidence at 1 study site.

  5. Update on HIV-1 acquired and transmitted drug resistance in Africa.

    PubMed

    Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise

    2015-01-01

    The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.

  6. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    PubMed

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  7. Antiviral Activity of MK-4965, a Novel Nonnucleoside Reverse Transcriptase Inhibitor▿

    PubMed Central

    Lai, Ming-Tain; Munshi, Vandna; Touch, Sinoeun; Tynebor, Robert M.; Tucker, Thomas J.; McKenna, Philip M.; Williams, Theresa M.; DiStefano, Daniel J.; Hazuda, Daria J.; Miller, Michael D.

    2009-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are the mainstays of therapy for the treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, the effectiveness of NNRTIs can be hampered by the development of resistance mutations which confer cross-resistance to drugs in the same class. Extensive efforts have been made to identify new NNRTIs that can suppress the replication of the prevalent NNRTI-resistant viruses. MK-4965 is a novel NNRTI that possesses both diaryl ether and indazole moieties. The compound displays potency at subnanomolar concentrations against wild-type (WT), K103N, and Y181C reverse transcriptase (RT) in biochemical assays. MK-4965 is also highly potent against the WT virus and two most prevalent NNRTI-resistant viruses (viruses that harbor the K103N or the Y181C mutation), against which it had 95% effective concentrations (EC95s) of <30 nM in the presence of 10% fetal bovine serum. The antiviral EC95 of MK-4965 was reduced approximately four- to sixfold when it was tested in 50% human serum. Moreover, MK-4965 was evaluated with a panel of 15 viruses with NNRTI resistance-associated mutations and showed a superior mutant profile to that of efavirenz but not to that of etravirine. MK-4965 was similarly effective against various HIV-1 subtypes and viruses containing nucleoside reverse transcriptase inhibitor or protease inhibitor resistance-conferring mutations. A two-drug combination study showed that the antiviral activity of MK-4965 was nonantagonistic with each of the 18 FDA-licensed drugs tested vice versa in the present study. Taken together, these in vitro data show that MK-4965 possesses the desired properties for further development as a new NNRTI for the treatment of HIV-1 infection. PMID:19289522

  8. Quantitative Assessment of the Sensitivity of Various Commercial Reverse Transcriptases Based on Armored HIV RNA

    PubMed Central

    Okello, John B. A.; Rodriguez, Linda; Poinar, Debi; Bos, Kirsten; Okwi, Andrew L.; Bimenya, Gabriel S.; Sewankambo, Nelson K.; Henry, Kenneth R.; Kuch, Melanie; Poinar, Hendrik N.

    2010-01-01

    Background The in-vitro reverse transcription of RNA to its complementary DNA, catalyzed by the enzyme reverse transcriptase, is the most fundamental step in the quantitative RNA detection in genomic studies. As such, this step should be as analytically sensitive, efficient and reproducible as possible, especially when dealing with degraded or low copy RNA samples. While there are many reverse transcriptases in the market, all claiming to be highly sensitive, there is need for a systematic independent comparison of their applicability in quantification of rare RNA transcripts or low copy RNA, such as those obtained from archival tissues. Methodology/Principal Findings We performed RT-qPCR to assess the sensitivity and reproducibility of 11 commercially available reverse transcriptases in cDNA synthesis from low copy number RNA levels. As target RNA, we used a serially known number of Armored HIV RNA molecules, and observed that 9 enzymes we tested were consistently sensitive to ∼1,000 copies, seven of which were sensitive to ∼100 copies, while only 5 were sensitive to ∼10 RNA template copies across all replicates tested. Despite their demonstrated sensitivity, these five best performing enzymes (Accuscript, HIV-RT, M-MLV, Superscript III and Thermoscript) showed considerable variation in their reproducibility as well as their overall amplification efficiency. Accuscript and Superscript III were the most sensitive and consistent within runs, with Accuscript and Superscript II ranking as the most reproducible enzymes between assays. Conclusions/Significance We therefore recommend the use of Accuscript or Superscript III when dealing with low copy number RNA levels, and suggest purification of the RT reactions prior to downstream applications (eg qPCR) to augment detection. Although the results presented in this study were based on a viral RNA surrogate, and applied to nucleic acid lysates derived from archival formalin-fixed paraffin embedded tissue, their relative performance on RNA obtained from other tissue types may vary, and needs future evaluation. PMID:21085668

  9. Autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter suppresses human ovarian carcinoma growth in vitro and in mice.

    PubMed

    Song, Yue; Xia, Zhijun; Shen, Keng; Zhai, Xingyue

    2013-05-01

    To construct recombinant adenoviruses AdHT-rev-casp3 and Ad-rev-casp3, which express autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter and cytomegalovirus promoter, respectively; and to investigate their antitumor effects on ovarian cancer in vitro and in vivo. Cell viabilities were determined using the cell counting kit 8 and flow cytometry. Reverse transcriptase polymerase chain reaction and immunoblotting assays were used to detect cellular apoptotic activities after treatments. Tumor growth and survival of mice bearing AO cells were studied. AdHT-rev-casp3 significantly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 60.45% ± 7.8% at an multiplicity of infection (MOI) of 70 and 42.18 ± 5.3% at an MOI of 100, which was somewhat lower than that of the AO cells treated with Ad-rev-casp3 (32.28% ± 5.3% and 21.84% ± 3.4%, respectively). In contrast, AdHT-rev-casp3 induced little human umbilical vein epithelial cell (HUVEC) death with a viability rate of 98.52% ± 6.9% at an MOI of 70, whereas Ad-rev-casp3 induced significant cell death in HUVEC with a viability rate of 27.14% ± 5.4%. Additionally, AdHT-rev-casp3 (MOI = 70) caused significant apoptosis in AO cells with an apoptotic rate of 25.97%, whereas it caused undetectable apoptosis in HUVECs with the rate of only 1.75%. Ad-rev-casp3 (MOI = 70) caused strong apoptosis in both AO and HUVECs, with the rate of 35.82% and 38.12%, respectively. AdHT-rev-casp3 caused markedly higher levels of active caspase-3, causing no detectable active caspase-3 expression in HUVECs. The tumor growth suppression rate of AdHT-rev-casp3 was 54.94%, significantly higher than that of phosphate-buffered saline at the end point of the study. AdHT-rev-casp3 significantly improved the survival of mice receiving intraperitoneal inoculation of AO cells with little liver damage, with the mean survival of 177 ± 12 days. AdHT-rev-casp3 causes effective apoptosis with significant tumor selectivity, suppresses tumor growth, and improves the mouse survival with little liver toxicity. It can be a potent therapeutic agent for the tumor-targeting treatment of ovarian cancer.

  10. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells.

    PubMed

    Ngai, Patrick H K; Ng, T B

    2003-11-14

    From the fruiting bodies of the edible mushroom Lentinus edodes, a novel protein designated lentin with potent antifungal activity was isolated. Lentin was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and Mono S. The N-terminal sequence of lentin manifested similarity to endoglucanase. Lentin, which had a molecular mass of 27.5 kDa, inhibited mycelial growth in a variety of fungal species including Physalospora piricola, Botrytis cinerea and Mycosphaerella arachidicola. Lentin also exerted an inhibitory activity on HIV-1 reverse transcriptase and proliferation of leukemia cells.

  11. HIV Resistance Prediction to Reverse Transcriptase Inhibitors: Focus on Open Data.

    PubMed

    Tarasova, Olga; Poroikov, Vladimir

    2018-04-19

    Research and development of new antiretroviral agents are in great demand due to issues with safety and efficacy of the antiretroviral drugs. HIV reverse transcriptase (RT) is an important target for HIV treatment. RT inhibitors targeting early stages of the virus-host interaction are of great interest for researchers. There are a lot of clinical and biochemical data on relationships between the occurring of the single point mutations and their combinations in the pol gene of HIV and resistance of the particular variants of HIV to nucleoside and non-nucleoside reverse transcriptase inhibitors. The experimental data stored in the databases of HIV sequences can be used for development of methods that are able to predict HIV resistance based on amino acid or nucleotide sequences. The data on HIV sequences resistance can be further used for (1) development of new antiretroviral agents with high potential for HIV inhibition and elimination and (2) optimization of antiretroviral therapy. In our communication, we focus on the data on the RT sequences and HIV resistance, which are available on the Internet. The experimental methods, which are applied to produce the data on HIV-1 resistance, the known data on their concordance, are also discussed.

  12. Chemical system biology based molecular interactions to identify inhibitors against Q151M mutant of HIV-1 reverse transcriptase.

    PubMed

    Pandey, Rajan Kumar; Sharma, Drista; Ojha, Rupal; Bhatt, Tarun Kumar; Prajapati, Vijay Kumar

    2018-05-09

    The emergence of mutations leading to drug resistance is the main cause of therapeutic failure in the human HIV infection. Chemical system biology approach has drawn great attention to discover new antiretroviral hits with high efficacy and negligible toxicity, which can be used as a prerequisite for HIV drug resistance global action plan 2017-21. To discover potential hits, we docked 49 antiretroviral analogs (n = 6294) against HIV-1 reverse transcriptase Q151M mutant & its wild-type form and narrow downed their number in three sequential modes of docking using Schrödinger suite. Later on, 80 ligands having better docking score than reference ligands (tenofovir and lamivudine) were screened for ADME, toxicity prediction, and binding energy estimation. Simultaneously, the area under the curve (AUC) was estimated using receiver operating characteristics (ROC) curve analysis to validate docking protocols. Finally, single point energy and molecular dynamics simulation approaches were performed for best two ligands (L3 and L14). This study reveals the antiretroviral efficacy of obtained two best ligands and delivers the hits against HIV-1 reverse transcriptase Q151M mutant. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase.

    PubMed

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-17

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth.This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors.

  14. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase

    PubMed Central

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-01

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth. This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors. PMID:27926505

  15. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed Central

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-01-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay. PMID:7512096

  16. Chemical crosslinking of the subunits of HIV-1 reverse transcriptase.

    PubMed Central

    Debyser, Z.; De Clercq, E.

    1996-01-01

    The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT. PMID:8745406

  17. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-02-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay.

  18. Do non-nucleoside reverse transcriptase inhibitors contribute to lipodystrophy?

    PubMed

    Nolan, David

    2005-01-01

    Lipodystrophy complications, including lipoatrophy (pathological fat loss) and metabolic complications, have emerged as important long-term toxicities associated with antiretroviral therapy in the current era. The wealth of data that has accumulated over the past 6 years has now clarified the contribution of specific antiretroviral drugs to the risk of these clinical endpoints, with evidence that lipoatrophy is strongly associated with the choice of nucleoside reverse transcriptase inhibitor therapy (specifically, stavudine and to a lesser extent zidovudine). The aetiological basis of metabolic complications of antiretroviral therapy has proven to be complex, in that the risk appears to be modulated by a number of lifestyle factors that have made the metabolic syndrome highly prevalent in the general population, with additional contributions from HIV disease status itself, as well as from individual drugs within the HIV protease inhibitor class. The currently licensed non-nucleoside reverse transcriptase inhibitor (NNRTI) drugs, efavirenz and nevirapine, have been proven to have a favourable safety profile in terms of lipodystrophy complications. However, it must be noted that NNRTI drugs also have individual toxicity profiles that must be accounted for when considering and/or monitoring their use in the treatment of HIV infection.

  19. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M

    2018-01-01

    Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.

  20. copia-like retrotransposons are ubiquitous among plants.

    PubMed Central

    Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R

    1992-01-01

    Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734

  1. [Thyroid dysfunction in adults infected by human immunodeficiency virus].

    PubMed

    Abelleira, Erika; De Cross, Graciela A; Pitoia, Fabián

    2014-01-01

    Patients infected with human immunodeficiency virus (HIV) have a higher prevalence of thyroid dysfunction when compared with the general population. The most frequently observed manifestations are euthyroid sick syndrome, Graves' disease and subclinical hypothyroidism. The relationship between the use of highly active antiretroviral therapy and the increased prevalence of thyroid dysfunction has been demonstrated in several series of patients. Grave's disease is recognized as a consequence of immune restitution syndrome. Besides, several studies have suggested an association between hypothyroidism and the use of nucleoside reverse transcriptase inhibitors, particularly stavudine and non-nucleoside reverse transcriptase inhibitors such as efavirenz. Further studies could provide additional evidence of the need for routine assessment of thyroid function in HIV-infected patients.

  2. In search of a treatment for HIV--current therapies and the role of non-nucleoside reverse transcriptase inhibitors (NNRTIs).

    PubMed

    Reynolds, Chevonne; de Koning, Charles B; Pelly, Stephen C; van Otterlo, Willem A L; Bode, Moira L

    2012-07-07

    The human immunodeficiency virus (HIV) causes AIDS (acquired immune deficiency syndrome), a disease in which the immune system progressively deteriorates, making sufferers vulnerable to all manner of opportunistic infections. Currently, world-wide there are estimated to be 34 million people living with HIV, with the vast majority of these living in sub-Saharan Africa. Therefore, an important research focus is development of new drugs that can be used in the treatment of HIV/AIDS. This review gives an overview of the disease and addresses the drugs currently used for treatment, with specific emphasis on new developments within the class of allosteric non-nucleoside reverse transcriptase inhibitors (NNRTIs).

  3. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase.

    PubMed Central

    Hu, J; Seeger, C

    1996-01-01

    The heat shock protein Hsp90 is known as an essential component of several signal transduction pathways and has now been identified as an essential host factor for hepatitis B virus replication. Hsp90 interacts with the viral reverse transcriptase to facilitate the formation of a ribonucleoprotein (RNP) complex between the polymerase and an RNA ligand. This RNP complex is required early in replication for viral assembly and initiation of DNA synthesis through a protein-priming mechanism. These results thus invoke a role for the Hsp90 pathway in the formation of an RNP. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8577714

  4. In Vitro Cross-Resistance Profiles of Rilpivirine, Dapivirine, and MIV-150, Nonnucleoside Reverse Transcriptase Inhibitor Microbicides in Clinical Development for the Prevention of HIV-1 Infection

    PubMed Central

    Giacobbi, Nicholas S.

    2017-01-01

    ABSTRACT Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. PMID:28507107

  5. Molecular identification and expression analysis of lipocalins from blood feeding taiga tick, Ixodes persulcatus Schulze.

    PubMed

    Konnai, Satoru; Nishikado, Hideto; Yamada, Shinji; Imamura, Saiki; Ito, Takuya; Onuma, Misao; Murata, Shiro; Ohashi, Kazuhiko

    2011-02-01

    Lipocalins have been known for their several biological activities in blood-sucking arthropods. Recently, the identification and characterization of lipocalins from Ixodes ricinus (LIRs) have been reported and functions of lipocalins are well documented. In this study, we have characterized four Ixodes persulcatus lipocalins that were discovered while analyzing I. persulcatus tick salivary gland EST library. We show that the four I. persulcatus lipocalins, here after named LIPERs (lipocalin from I. persulcatus) are 28.8-94.4% identical to LIRs from I. ricinus. Reverse transcriptase-PCR analysis revealed that lipocalin genes were expressed specifically in the salivary glands throughout life cycle stages of the ticks and were up-regulated by blood feeding. The specific expressions were also confirmed by Western blotting analysis. Furthermore, to investigate whether native lipocalins are secreted into the host during tick feeding, the reactivity of anti-serum raised against saliva of adult ticks to recombinant lipocalins was tested by Western blotting. The lipocalins are potentially secreted into the host during tick feeding as revealed by specific reactivity of recombinant lipocalins with mouse antibodies to I. persulcatus tick saliva. Preliminary vaccination of mice with recombinant lipocalins elicited that period to reach engorgement was significantly delayed and the engorgement weight was significantly reduced as compared to the control. Further elucidation of the biological functions of LIPERs are required to fully understand the pathways involved in the modulation of host immune responses. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. A Pragmatic Approach to HIV-1 Drug Resistance Determination in Resource-Limited Settings by Use of a Novel Genotyping Assay Targeting the Reverse Transcriptase-Encoding Region Only

    PubMed Central

    Bronze, Michelle; Wallis, Carole L.; Stuyver, Lieven; Steegen, Kim; Balinda, Sheila; Kityo, Cissy; Stevens, Wendy; Rinke de Wit, Tobias F.; Schuurman, Rob

    2013-01-01

    In resource-limited settings (RLS), reverse transcriptase (RT) inhibitors form the backbone of first-line treatment regimens. We have developed a simplified HIV-1 drug resistance genotyping assay targeting the region of RT harboring all major RT inhibitor resistance mutation positions, thus providing all relevant susceptibility data for first-line failures, coupled with minimal cost and labor. The assay comprises a one-step RT-PCR amplification reaction, followed by sequencing using one forward and one reverse primer, generating double-stranded coverage of RT amino acids (aa) 41 to 238. The assay was optimized for all major HIV-1 group M subtypes in plasma and dried blood spot (DBS) samples using a panel of reference viruses for HIV-1 subtypes A to D, F to H, and circulating recombinant form 01_AE (CRF01_AE) and applied to 212 clinical plasma samples and 25 DBS samples from HIV-1-infected individuals from Africa and Europe. The assay was subsequently transferred to Uganda and applied locally on clinical plasma samples. All major HIV-1 subtypes could be detected with an analytical sensitivity of 5.00E+3 RNA copies/ml for plasma and DBS. Application of the assay on 212 clinical samples from African subjects comprising subtypes A to D, F to H (rare), CRF01_AE, and CRF02_AG at a viral load (VL) range of 6.71E+2 to 1.00E+7 (median, 1.48E+5) RNA copies/ml was 94.8% (n = 201) successful. Application on clinical samples in Uganda demonstrated a comparable success rate. Genotyping of clinical DBS samples, all subtype C with a VL range of 1.02E+3 to 4.49E+5 (median, 1.42E+4) RNA copies/ml, was 84.0% successful. The described assay greatly reduces hands-on time and the costs required for genotyping and is ideal for use in RLS, as demonstrated in a reference laboratory in Uganda and its successful application on DBS samples. PMID:23536405

  7. Functional analysis of the interactions between reovirus particles and various proteases in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargent, M.D.; Long, D.G.; Borsa, J.

    1977-01-01

    The digestion of purified reovirus particles by various proteases including chymotrypsin, trypsin, pronase, papain, bromelain, proteinase K, and fibrinolysin has been examined as it relates to virion transcriptase activation and alteration of infectivity. In every case uncoating to the level of active transcriptase proceeds via two mechanistically distinct steps. All the proteases tested serve to mediate only the first of the two steps, converting intact virions to intermediate subviral particles (ISVP) in which the transcriptase is retained in a latent state. The second step of the uncoating process is mediated by a K/sup +/ ion-triggered, endogenous mechanism and results inmore » conversion of ISVP to cores, concomitant with transcriptase activation and loss of infectivity. All of the tested enzymes, except trypsin, reversibly block the second step of uncoating. These results indicate the generality, with respect to protease employed, of the two-step process for reovirus uncoating and transcriptase activation demonstrated previously with chymotrypsin.« less

  8. An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine.

    PubMed

    Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2014-08-01

    The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.

  9. Dipyridodiazepinone analogs as human immunodeficiency virus type 1-specific non-nucleoside reverse transcriptase inhibitors: an overview.

    PubMed

    Lv, M; Xu, H

    2010-01-01

    According to World Health Organization (WHO)/Joint United Nations Programme on human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) (UNAIDS) Report in 2007, 33.2 million people are living with HIV, 2.5 million ones have been newly infected with HIV, and 2.1 million ones died from AIDS, including 330,000 children. Therefore, HIV/AIDS still remains a public health emergency and a leading cause of mortality worldwide. It is believed that reverse transcriptase (RT) is a crucial enzyme in the life cycle of HIV-1, and thereby RT has been the important drug target for antiretroviral (ARV) chemotherapy against AIDS. To our knowledge, dipyridodiazepinone analogs have been considered as one class of potential non-nucleoside reverse transcriptase inhibitors (NNRTIs), especially the structurally and chemically related nevirapine (Viramune(R)), which was the first NNRTI approved by the U. S. Food and Drug Administration (FDA) for the treatment of HIV-1 infection for adults in 1996 and for children in 1998. This review mainly highlights the progress of synthesis and structure-activity relationship (SAR) of dipyridodiazepinone analogs; in the meantime, the mechanism of action is also presented. It will pave the way for the design and development of novel dipyridodiazepinone analogs as NNRTIs in AIDS chemotherapy in the future.

  10. Immortalization of pig fibroblast cells by transposon-mediated ectopic expression of porcine telomerase reverse transcriptase.

    PubMed

    He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2016-08-01

    Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.

  11. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage.

    PubMed

    Haendeler, Judith; Dröse, Stefan; Büchner, Nicole; Jakob, Sascha; Altschmied, Joachim; Goy, Christine; Spyridopoulos, Ioakim; Zeiher, Andreas M; Brandt, Ulrich; Dimmeler, Stefanie

    2009-06-01

    The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function. Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide-induced damage. TERT increases overall respiratory chain activity, which is most pronounced at complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H(2)O(2)-induced apoptosis. Lung fibroblasts from 6-month-old TERT(-/-) mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT in vivo. Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress-induced damage.

  12. Occurrence of transmitted HIV-1 drug resistance among Drug-naïve pregnant women in selected HIV-care centres in Ghana.

    PubMed

    Martin-Odoom, Alexander; Adiku, Theophilus; Delgado, Elena; Lartey, Margaret; Ampofo, William K

    2017-03-01

    Access to antiretroviral therapy in Ghana has been scaled up across the country over the last decade. This study sought to determine the occurrence of transmitted HIV-1 drug resistance in pregnant HIV-1 positive women yet to initiate antiretroviral therapy at selected HIV Care Centres in Ghana. Plasma specimens from twenty-six (26) HIV seropositive pregnant women who were less than 28weeks pregnant with their first pregnancy and ART naïve were collected from selected HIV care centres in three (3) regions in Ghana. Genotypic testing was done for the reverse transcriptase gene and the sequences generated were analyzed for HIV-1 drug resistance mutations using the Stanford University HIV Drug Resistance Database. Resistance mutations associated with the reverse transcriptase gene were detected in 4 (15.4%) of the participants. At least one major drug resistance mutation in the reverse transcriptase gene was found in 3 (11.5%) of the women. The detection of transmitted HIV-1 drug resistance in this drug-naïve group in two regional HIV care sites is an indication of the need for renewed action in monitoring the emergence of transmitted HIV-1 drug resistance in Ghana. None declared.

  13. Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases

    PubMed Central

    Zajac, Pawel; Islam, Saiful; Hochgerner, Hannah; Lönnerberg, Peter; Linnarsson, Sten

    2013-01-01

    Reverse transcriptases derived from Moloney Murine Leukemia Virus (MMLV) have an intrinsic terminal transferase activity, which causes the addition of a few non-templated nucleotides at the 3´ end of cDNA, with a preference for cytosine. This mechanism can be exploited to make the reverse transcriptase switch template from the RNA molecule to a secondary oligonucleotide during first-strand cDNA synthesis, and thereby to introduce arbitrary barcode or adaptor sequences in the cDNA. Because the mechanism is relatively efficient and occurs in a single reaction, it has recently found use in several protocols for single-cell RNA sequencing. However, the base preference of the terminal transferase activity is not known in detail, which may lead to inefficiencies in template switching when starting from tiny amounts of mRNA. Here, we used fully degenerate oligos to determine the exact base preference at the template switching site up to a distance of ten nucleotides. We found a strong preference for guanosine at the first non-templated nucleotide, with a greatly reduced bias at progressively more distant positions. Based on this result, and a number of careful optimizations, we report conditions for efficient template switching for cDNA amplification from single cells. PMID:24392002

  14. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases

    PubMed Central

    Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.

    2016-01-01

    Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from <1 ng of plasma RNA in <5 h. TGIRT-seq of RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030

  15. [The use of complex interval models for predicting activity of non-nucleoside reverse transcriptase activity].

    PubMed

    Burliaeva, E V; Tarkhov, A E; Burliaev, V V; Iurkevich, A M; Shvets, V I

    2002-01-01

    Searching of new anti-HIV agents is still crucial now. In general, researches are looking for inhibitors of certain HIV's vital enzymes, especially for reverse transcriptase (RT) inhibitors. Modern generation of anti-HIV agents represents non-nucleoside reverse transcriptase inhibitors (NNRTIs). They are much less toxic than nucleoside analogues and more chemically stable, thus being slower metabolized and emitted from the human body. Thus, search of new NNRTIs is actual today. Synthesis and study of new anti-HIV drugs is very expensive. So employment of the activity prediction techniques for such a search is very beneficial. This technique allows predicting the activities for newly proposed structures. It is based on the property model built by investigation of a series of known compounds with measured activity. This paper presents an approach of activity prediction based on "structure-activity" models designed to form a hypothesis about probably activity interval estimate. This hypothesis formed is based on structure descriptor domains, calculated for all energetically allowed conformers for each compound in the studied sef. Tetrahydroimidazobenzodiazipenone (TIBO) derivatives and phenylethyltiazolyltiourea (PETT) derivatives illustrated the predictive power of this method. The results are consistent with experimental data and allow to predict inhibitory activity of compounds, which were not included into the training set.

  16. Structure of a group II intron in complex with its reverse transcriptase.

    PubMed

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-06-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.

  17. Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H.

    PubMed

    Schultz, Sharon J; Zhang, Miaohua; Champoux, James J

    2010-03-19

    The RNase H activity of reverse transcriptase is required during retroviral replication and represents a potential target in antiviral drug therapies. Sequence features flanking a cleavage site influence the three types of retroviral RNase H activity: internal, DNA 3'-end-directed, and RNA 5'-end-directed. Using the reverse transcriptases of HIV-1 (human immunodeficiency virus type 1) and Moloney murine leukemia virus (M-MuLV), we evaluated how individual base preferences at a cleavage site direct retroviral RNase H specificity. Strong test cleavage sites (designated as between nucleotide positions -1 and +1) for the HIV-1 and M-MuLV enzymes were introduced into model hybrid substrates designed to assay internal or DNA 3'-end-directed cleavage, and base substitutions were tested at specific nucleotide positions. For internal cleavage, positions +1, -2, -4, -5, -10, and -14 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV significantly affected RNase H cleavage efficiency, while positions -7 and -12 for HIV-1 and positions -4, -9, and -11 for M-MuLV had more modest effects. DNA 3'-end-directed cleavage was influenced substantially by positions +1, -2, -4, and -5 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV. Cleavage-site distance from the recessed end did not affect sequence preferences for M-MuLV reverse transcriptase. Based on the identified sequence preferences, a cleavage site recognized by both HIV-1 and M-MuLV enzymes was introduced into a sequence that was otherwise resistant to RNase H. The isolated RNase H domain of M-MuLV reverse transcriptase retained sequence preferences at positions +1 and -2 despite prolific cleavage in the absence of the polymerase domain. The sequence preferences of retroviral RNase H likely reflect structural features in the substrate that favor cleavage and represent a novel specificity determinant to consider in drug design. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki, E-mail: y-yasutake@aist.go.jp

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site,more » confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.« less

  19. HIV-1 genetic diversity and primary drug resistance mutations before large-scale access to antiretroviral therapy, Republic of Congo.

    PubMed

    Niama, Fabien Roch; Vidal, Nicole; Diop-Ndiaye, Halimatou; Nguimbi, Etienne; Ahombo, Gabriel; Diakabana, Philippe; Bayonne Kombo, Édith Sophie; Mayengue, Pembe Issamou; Kobawila, Simon-Charles; Parra, Henri Joseph; Toure-Kane, Coumba

    2017-07-05

    In this work, we investigated the genetic diversity of HIV-1 and the presence of mutations conferring antiretroviral drug resistance in 50 drug-naïve infected persons in the Republic of Congo (RoC). Samples were obtained before large-scale access to HAART in 2002 and 2004. To assess the HIV-1 genetic recombination, the sequencing of the pol gene encoding a protease and partial reverse transcriptase was performed and analyzed with updated references, including newly characterized CRFs. The assessment of drug resistance was conducted according to the WHO protocol. Among the 50 samples analyzed for the pol gene, 50% were classified as intersubtype recombinants, charring complex structures inside the pol fragment. Five samples could not be classified (noted U). The most prevalent subtypes were G with 10 isolates and D with 11 isolates. One isolate of A, J, H, CRF05, CRF18 and CRF37 were also found. Two samples (4%) harboring the mutations M230L and Y181C associated with the TAMs M41L and T215Y, respectively, were found. This first study in the RoC, based on WHO classification, shows that the threshold of transmitted drug resistance before large-scale access to antiretroviral therapy is 4%.

  20. Cloning and characterization of the fatty acid-binding protein gene from the protoscolex of Taenia multiceps.

    PubMed

    Nie, Hua-Ming; Xie, Yue; Fu, Yan; Yang, Ying-Dong; Gu, Xiao-Bin; Wang, Shu-Xian; Peng, Xi; Lai, Wei-Ming; Peng, Xue-Rong; Yang, Guang-You

    2013-05-01

    Taenia multiceps (Cestoda: Taeniidae), a worldwide cestode parasite, is emerging as an important helminthic zoonosis due to serious or fatal central nervous system disease commonly known as coenurosis in domestic and wild ruminants including humans. Herein, a fatty acid-binding protein (FABP) gene was identified from transcriptomic data in T. multiceps. This gene, which contains a complete coding sequence, was amplified by reverse-transcriptase polymerase chain reaction. The corresponding protein, which was named TmFABP, had a molecular weight of 14 kDa, and subsequently was recombinantly expressed in Escherichia coli. The fusion protein was purified on Ni-NTA beads (Bio-Rad). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analyses showed that the purified recombinant protein caused immunogenicity. Immunohistochemical studies showed that TmFABP was expressed at the tegumental level in the protoscolices and in the cells between the body wall and parenchyma layer of the cestode. In sections from gravid proglottids, intense staining was detected in the uterus and eggs. Based on this, TmFABP could be switched on during differentiation of germinative layers to protoscoleces and from metacestodes to adult worms. Taken together, our results already reported for T. multiceps suggest the possibility of TmFABP developing a vaccine to control and prevent coenurosis.

  1. An 11-Year Surveillance of HIV Type 1 Subtypes in Nagoya, Japan.

    PubMed

    Fujisaki, Seiichiro; Ibe, Shiro; Hattori, Junko; Shigemi, Urara; Fujisaki, Saeko; Shimizu, Kayoko; Nakamura, Kazuyo; Yokomaku, Yoshiyuki; Mamiya, Naoto; Utsumi, Makoto; Hamaguchi, Motohiro; Kaneda, Tsuguhiro

    2009-01-01

    Abstract To monitor active HIV-1 transmission in Nagoya, Japan, we have been determining the subtypes of HIV-1 infecting therapy-naive individuals who have newly visited the Nagoya Medical Center since 1997. The subtypes were determined by phylogenetic analyses using the base sequences in three regions of the HIV-1 genes including gag p17, pol protease (PR) and reverse transcriptase (RT), and env C2V3. Almost all HIV-1 subtypes from 1997 to 2007 and 93% of all HIV-1 isolates in 2007 were subtype B. HIV-1 subtypes A, C, D, and F have been detected sporadically since 1997, almost all in Africans and South Americans. The first detected circulating recombinant form (CRF ) was CRF01_AE (11-year average annual detection rate, 7.7%). Only two cases of CRF02_AG were detected in 2006. A unique recombinant form (URF ) was first detected in 1998 and the total number of URFs reached 25 by year 2007 (average annual detection rate, 4.7%). Eleven of these 25 were detected from 2000 to 2005 and had subtypes AE/B/AE as determined by base sequencing of the gag p17, pol PR and RT, and env C2V3 genes (average annual detection rate, 3.7%). Unique subtype B has been detected in six cases since 2006. All 17 of these patients were Japanese. Other recombinant HIV-1s have been detected intermittently in eight cases since 1998. During the 11-year surveillance, most HIV-1s in Nagoya, Japan were of subtype B. We expect that subtype B HIV-1 will continue to predominate for the next several years. Active recombination between subtype B and CRF01_AE HIV-1 and its transmission were also shown.

  2. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) using pre-steady-state kinetics.

    PubMed

    Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S

    2014-06-01

    The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) using pre-steady-state kinetics

    PubMed Central

    Muftuoglu, Yagmur; Sohl, Christal D.; Mislak, Andrea C.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Anderson, Karen S.

    2014-01-01

    The novel antiretroviral 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3′-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3′-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. PMID:24632447

  4. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, He, E-mail: herenrh@yahoo.com.cn; Zhao, Tiansuo; Wang, Xiuchao

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breastmore » cancer.« less

  5. Oligonucleotide microarray analysis of gene expression profiles followed by real-time reverse-transcriptase polymerase chain reaction assay in chronic active Epstein-Barr virus infection.

    PubMed

    Ito, Yoshinori; Shibata-Watanabe, Yukiko; Ushijima, Yoko; Kawada, Jun-Ichi; Nishiyama, Yukihiro; Kojima, Seiji; Kimura, Hiroshi

    2008-03-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterized by recurrent infectious mononucleosis-like symptoms and has high mortality and morbidity. To clarify the mechanisms of CAEBV, the gene-expression profiles of peripheral blood obtained from patients with CAEBV were investigated. Twenty genes were differentially expressed in 4 patients with CAEBV. This microarray result was verified using a real-time reverse-transcriptase polymerase chain reaction assay in a larger group of patients with CAEBV. Eventually, 3 genes were found to be significantly upregulated: guanylate binding protein 1, tumor necrosis factor-induced protein 6, and guanylate binding protein 5. These genes may be associated with the inflammatory reaction or with cell proliferation.

  6. The origin and early evolution of nucleic acid polymerases

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Cappello, R.; Valverde, V.; Llaca, V.; Oro, J.

    1992-01-01

    The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the eubacterial RNA-polymerase beta-prime subunit and its homologues is discussed. It is shown that, in the DNA-dependent RNA polymerases from three cellular lineages, a very conserved sequence of eight amino acids, also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein, is present. The optimal conditions for the replicase activity of the avian-myeloblastosis-virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is discussed.

  7. In Vitro Cross-Resistance Profiles of Rilpivirine, Dapivirine, and MIV-150, Nonnucleoside Reverse Transcriptase Inhibitor Microbicides in Clinical Development for the Prevention of HIV-1 Infection.

    PubMed

    Giacobbi, Nicholas S; Sluis-Cremer, Nicolas

    2017-07-01

    Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C. Copyright © 2017 American Society for Microbiology.

  8. Elucidation of the TMab-6 Monoclonal Antibody Epitope Against Telomerase Reverse Transcriptase.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kato, Yukinari

    2018-05-03

    Telomerase reverse transcriptase (TERT) and mutations of the TERT promoter are significant in the pathogenesis of 1p/19q-codeleted oligodendrogliomas and isocitrate dehydrogenase gene wild-type glioblastomas, as well as melanomas and squamous cell carcinomas. We previously developed an antihuman TERT monoclonal antibody (mAb), TMab-6, which is applicable in immunohistochemistry for human tissues. However, the binding epitope of TMab-6 against TERT is yet to be elucidated. In this study, enzyme-linked immunosorbent assay and immunohistochemistry were utilized for investigating the epitope of TMab-6. The findings revealed that the critical epitope of TMab-6 is the TERT sequence PSTSRPPRPWD; Thr310 and Ser311 of TERT are especially significant amino acids for TMab-6 recognition.

  9. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.).

    PubMed

    Landmann, Christian; Hücherig, Stefanie; Fink, Barbara; Hoffmann, Thomas; Dittlein, Daniela; Coiner, Heather A; Schwab, Wilfried

    2011-08-01

    One of the most common types of modification of secondary metabolites is the acylation of oxygen- and nitrogen-containing substrates to produce esters and amides, respectively. Among the known acyltransferases, the members of the plant BAHD family are capable of acylating a wide variety of substrates. Two full-length acyltransferase cDNAs (LaAT1 and 2) were isolated from lavender flowers (Lavandula angustifolia L.) by reverse transcriptase-PCR using degenerate primers based on BAHD sequences. Recombinant LaAT1 exhibited a broad substrate tolerance accepting (hydroxy)cinnamoyl-CoAs as acyl donors and not only tyramine, tryptamine, phenylethylamine and anthranilic acid but also shikimic acid and 4-hydroxyphenyllactic acid as acceptors. Thus, LaLT1 forms esters and amides like its phylogenetic neighbors. In planta LaAT1 might be involved in the biosynthesis of rosmarinic acid, the ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, a major constituent of lavender flowers. LaAT2 is one of three members of clade VI with unknown function.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, O.P.

    Potato leafroll virus (PLRV) was aphid-transmitted from potato (Solanum tuberosum cultivar Russett Burbank) to ground cherry (Physalis floridana), where it was maintained by serial aphid transmission. Serological and plant differential tests indicated that the isolate was not contaminated with beet western yellows virus. Purified PLRV RNA was poly(A)-tailed in vitro and used as a template for reverse transcriptase, primed with oligo(dT). Alkaline gel electrophoresis of /sup 32/P-labeled first-strand complementary DNA (cDNA) indicated a major size range of 0.1 to 3.5 kilobases (kb). A small percentage of transcripts corresponded to full length PLRV RNA. Following RNase H and DNA polymerase I-mediatedmore » second strand synthesis, double-stranded cDNA was cloned into the Pst I site of the plasmid pUC9 using oligo (dC)-oligo(dG) tailing methodology. Escherichia coli JM109 transformants were screened with first-strand /sup 32/P-cDNA in colony hybridization experiments to confirm that recombinants contained PLRV-specific sequences.« less

  11. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase

    PubMed Central

    Kopera, Huira C.; Moldovan, John B.; Morrish, Tammy A.; Moran, John V.

    2011-01-01

    Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase. PMID:21940498

  12. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.

    PubMed

    Kopera, Huira C; Moldovan, John B; Morrish, Tammy A; Garcia-Perez, Jose Luis; Moran, John V

    2011-12-20

    Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase.

  13. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    PubMed

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  14. The HIV-1 epidemic in Bolivia is dominated by subtype B and CRF12_BF "family" strains.

    PubMed

    Guimarães, Monick L; Velarde-Dunois, Ketty G; Segurondo, David; Morgado, Mariza G

    2012-01-16

    Molecular epidemiological studies of HIV-1 in South America have revealed the occurrence of subtypes B, F1 and BF1 recombinants. Even so, little information concerning the HIV-1 molecular epidemiology in Bolivia is available. In this study we performed phylogenetic analyses from samples collected in Bolivia at two different points in time over a 10 year span. We analyzed these samples to estimate the trends in the HIV subtype and recombinant forms over time. Fifty one HIV-1 positive samples were collected in Bolivia over two distinct periods (1996 and 2005). These samples were genetically characterized based on partial pol protease/reverse transcriptase (pr/rt) and env regions. Alignment and neighbor-joining (NJ) phylogenetic analyses were established from partial env (n = 37) and all pol sequences using Mega 4. The remaining 14 env sequences from 1996 were previously characterized based on HMA-env (Heteroduplex mobility assay). The Simplot v.3.5.1 program was used to verify intragenic recombination, and SplitsTree 4.0 was employed to confirm the phylogenetic relationship of the BF1 recombinant samples. Phylogenetic analysis of both env and pol regions confirmed the predominance of "pure" subtype B (72.5%) samples circulating in Bolivia and revealed a high prevalence of BF1 genotypes (27.5%). Eleven out of 14 BF1 recombinants displayed a mosaic structure identical or similar to that described for the CRF12_BF variant, one sample was classified as CRF17_BF, and two others were F1pol/Benv. No "pure" HIV-1 subtype F1 or B" variant of subtype B was detected in the present study. Of note, samples characterized as CRF12_BF-related were depicted only in 2005. HIV-1 genetic diversity in Bolivia is mostly driven by subtype B followed by BF1 recombinant strains from the CRF12_BF "family". No significant temporal changes were detected between the mid-1990s and the mid-2000s for subtype B (76.2% vs 70.0%) or BF1 recombinant (23.8% vs 30.0%) samples from Bolivia.

  15. The HIV-1 epidemic in Bolivia is dominated by subtype B and CRF12_BF "family" strains

    PubMed Central

    2012-01-01

    Background Molecular epidemiological studies of HIV-1 in South America have revealed the occurrence of subtypes B, F1 and BF1 recombinants. Even so, little information concerning the HIV-1 molecular epidemiology in Bolivia is available. In this study we performed phylogenetic analyses from samples collected in Bolivia at two different points in time over a 10 year span. We analyzed these samples to estimate the trends in the HIV subtype and recombinant forms over time. Materials and methods Fifty one HIV-1 positive samples were collected in Bolivia over two distinct periods (1996 and 2005). These samples were genetically characterized based on partial pol protease/reverse transcriptase (pr/rt) and env regions. Alignment and neighbor-joining (NJ) phylogenetic analyses were established from partial env (n = 37) and all pol sequences using Mega 4. The remaining 14 env sequences from 1996 were previously characterized based on HMA-env (Heteroduplex mobility assay). The Simplot v.3.5.1 program was used to verify intragenic recombination, and SplitsTree 4.0 was employed to confirm the phylogenetic relationship of the BF1 recombinant samples. Results Phylogenetic analysis of both env and pol regions confirmed the predominance of "pure" subtype B (72.5%) samples circulating in Bolivia and revealed a high prevalence of BF1 genotypes (27.5%). Eleven out of 14 BF1 recombinants displayed a mosaic structure identical or similar to that described for the CRF12_BF variant, one sample was classified as CRF17_BF, and two others were F1pol/Benv. No "pure" HIV-1 subtype F1 or B" variant of subtype B was detected in the present study. Of note, samples characterized as CRF12_BF-related were depicted only in 2005. Conclusion HIV-1 genetic diversity in Bolivia is mostly driven by subtype B followed by BF1 recombinant strains from the CRF12_BF "family". No significant temporal changes were detected between the mid-1990s and the mid-2000s for subtype B (76.2% vs 70.0%) or BF1 recombinant (23.8% vs 30.0%) samples from Bolivia. PMID:22248191

  16. Mutations in the S gene and in the overlapping reverse transcriptase region in chronic hepatitis B Chinese patients with coexistence of HBsAg and anti-HBs.

    PubMed

    Ding, Feng; Miao, Xi-Li; Li, Yan-Xia; Dai, Jin-Fen; Yu, Hong-Gang

    2016-01-01

    The mechanism underlying the coexistence of hepatitis B surface antigen and antibodies to HBsAg in chronic hepatitis B patients remains unknown. This research aimed to determine the clinical and virological features of the rare pattern. A total of 32 chronic hepatitis B patients infected by HBV genotype C were included: 15 carrying both HBsAg and anti-HBs (group I) and 17 solely positive for HBsAg (group II). S gene and reverse transcriptase region sequences were amplified, sequenced and compared with the reference sequences. The amino acid variability within major hydrophilic region, especially the "a" determinant region, and within reverse transcriptase for regions overlapping the major hydrophilic region in group I is significantly higher than those in group II. Mutation sI126S/T within the "a" determinant was the most frequent change, and only patients from group I had the sQ129R, sG130N, sF134I, sG145R amino acid changes, which are known to alter immunogenicity. In chronic patients, the concurrent HBsAg/anti-HBs serological profile is associated with an increased aa variability in several key areas of HBV genome. Additional research on these genetic mutants are needed to clarify their biological significance for viral persistence. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  17. Trends of drug-resistance-associated mutations in the reverse transcriptase gene of HIV type 1 isolates from North India.

    PubMed

    Azam, Mohd; Malik, Abida; Rizvi, Meher; Rai, Arvind

    2014-04-01

    A major cause of failure of antiretroviral therapy (ART) is the presence of drug-resistance-associated mutations in the polymerase gene of HIV-1. The paucity of data regarding potential drug resistance to reverse transcriptase inhibitors (RTIs) prompted us to carry out this study. This information will shed light on the extent of drug resistance already present in HIV strains and will give future directions in patient treatment and in drug design. Drug resistance genotyping of a partial reverse transcriptase gene was done in 103 HIV-1-infected patients, including the ART-naive and ART-experienced population. The drug resistance pattern was analyzed using the Stanford HIV-DR database, the IAS-USA mutation list and the REGA algorithm-v8.0. Subtyping was done using the REGA HIV-1 subtyping tool-v2.01. The majority of our sequences (96 %) were found to be subtype C, and four (3.8 %) were subtype A1. Significant prevalence of DR mutations (28 %) was observed in the RT gene. Major amino acid substitutions were seen at positions 41, 90, 98, 103, 106, 108, 138, 181, 184, 190, 215, and 219, which confer high/intermediate levels of resistance to most RTIs, independently or together. Our results show that there is an urgent need to tailor ART drug regimens to the individual to achieve optimum therapeutic outcome in North India.

  18. Telomerase reverse transcriptase (TERT) - enhancer of zeste homolog 2 (EZH2) network regulates lipid metabolism and DNA damage responses in glioblastoma.

    PubMed

    Ahmad, Fahim; Patrick, Shruti; Sheikh, Touseef; Sharma, Vikas; Pathak, Pankaj; Malgulwar, Prit Benny; Kumar, Anupam; Joshi, Shanker Datt; Sarkar, Chitra; Sen, Ellora

    2017-12-01

    Elevated expression of enhancer of zeste homolog 2 (EZH2), a histone H3K27 methyltransferase, was observed in gliomas harboring telomerase reverse transcriptase (TERT) promoter mutations. Given the known involvement of TERT and EZH2 in glioma progression, the correlation between the two and subsequently its involvement in metabolic programming was investigated. Inhibition of human telomerase reverse transcriptase either pharmacologically or through genetic manipulation not only decreased EZH2 expression, but also (i) abrogated FASN levels, (ii) decreased de novo fatty acid accumulation, and (iii) increased ataxia-telangiectasia-mutated (ATM) phosphorylation levels. Conversely, diminished TERT and FASN levels upon siRNA-mediated EZH2 knockdown indicated a positive correlation between TERT and EZH2. Interestingly, ATM kinase inhibitor rescued TERT inhibition-mediated decrease in FASN and EZH2 levels. Importantly, TERT promoter mutant tumors exhibited greater microsatellite instability, heightened FASN levels and lipid accumulation. Coherent with in vitro findings, pharmacological inhibition of TERT by costunolide decreased lipid accumulation and elevated ATM expression in heterotypic xenograft glioma mouse model. By bringing TERT-EZH2 network at the forefront as driver of dysregulated metabolism, our findings highlight the non-canonical but distinct role of TERT in metabolic reprogramming and DNA damage responses in glioblastoma. © 2017 International Society for Neurochemistry.

  19. Lower genetic variability of HIV-1 and antiretroviral drug resistance in pregnant women from the state of Pará, Brazil.

    PubMed

    Machado, Luiz Fernando Almeida; Costa, Iran Barros; Folha, Maria Nazaré; da Luz, Anderson Levy Bessa; Vallinoto, Antonio Carlos Rosário; Ishak, Ricardo; Ishak, Marluisa Oliveira Guimarães

    2017-04-12

    The present study aimed to describe the genetic diversity of HIV-1, as well as the resistance profile of the viruses identified in HIV-1 infected pregnant women under antiretroviral therapy in the state of Pará, Northern Brazil. Blood samples were collected from 45 HIV-1 infected pregnant to determine the virus subtypes according to the HIV-1 protease (PR) gene and part of the HIV-1 reverse transcriptase (RT) gene by sequencing the nucleotides of these regions. Drug resistance mutations and susceptibility to antiretroviral drugs were analyzed by the Stanford HIV Drug Resistance Database. Out of 45 samples, only 34 could be amplified for PR and 30 for RT. Regarding the PR gene, subtypes B (97.1%) and C (2.9%) were identified; for the RT gene, subtypes B (90.0%), F (6.7%), and C (3.3%) were detected. Resistance to protease inhibitors (PI) was identified in 5.8% of the pregnant, and mutations conferring resistance to nucleoside reverse transcriptase inhibitors were found in 3.3%, while mutations conferring resistance to non-nucleoside reverse transcriptase inhibitors were found in 3.3%. These results showed a low frequency of strains resistant to antiretroviral drugs, the prevalence of subtypes B and F, and the persistent low transmission of subtype C in pregnant of the state of Pará, Brazil.

  20. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    PubMed

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  1. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  2. The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation

    PubMed Central

    Didierlaurent, Ludovic; Houzet, Laurent; Morichaud, Zakia; Darlix, Jean-Luc; Mougel, Marylène

    2008-01-01

    Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs. PMID:18641038

  3. Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies.

    PubMed

    Nagel, Inga; Szczepanowski, Monika; Martín-Subero, José I; Harder, Lana; Akasaka, Takashi; Ammerpohl, Ole; Callet-Bauchu, Evelyne; Gascoyne, Randy D; Gesk, Stefan; Horsman, Doug; Klapper, Wolfram; Majid, Aneela; Martinez-Climent, José A; Stilgenbauer, Stephan; Tönnies, Holger; Dyer, Martin J S; Siebert, Reiner

    2010-08-26

    Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis.

  4. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    PubMed

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  5. Hepatotoxicity of nucleoside reverse transcriptase inhibitors.

    PubMed

    Montessori, Valentina; Harris, Marianne; Montaner, Julio S G

    2003-05-01

    Hepatotoxicity is an adverse effect of all available classes of antiretrovirals, including nucleoside reverse transcriptase inhibitors (NRTI). A syndrome of hepatic steatosis and lactic acidosis has been recognized as a rare, potentially fatal complication since the advent of NRTI monotherapy in the early 1990s. Today, NRTI remain the backbone of antiretroviral combination regimens, and, with the success of current treatment strategies, exposure to two or more of these agents may occur over a number of years. Hepatic steatosis and lactic acidosis are accordingly being observed more frequently, along with a more recently recognized syndrome of chronic hyperlactatemia. These as well as other adverse effects of NRTI are mediated by inhibition of human DNA polymerase gamma, resulting in mitochondrial dysfunction in the liver and other tissues. Early recognition and intervention are essential to avert serious outcomes.

  6. Herpes Simplex Virus Type 2 Suppressive Therapy with Acyclovir or Valacyclovir Does Not Select for Specific HIV-1 Resistance in HIV-1/HSV-2 Dually Infected Persons

    PubMed Central

    Lingappa, Jairam; Beck, Ingrid; Frenkel, Lisa M.; Pepper, Gregory; Celum, Connie; Wald, Anna; Fife, Kenneth H.; Were, Edwin; Mugo, Nelly; Sanchez, Jorge; Essex, Myron; Makhema, Joseph; Kiarie, James; Farquhar, Carey; Corey, Lawrence

    2011-01-01

    Recent in vitro studies suggest that acyclovir may directly inhibit HIV-1 replication and can select for a specific HIV-1 reverse transcriptase mutation (V75I) with concomitant loss of an anti-HIV-1 effect. We tested for HIV-1 genotypic resistance at reverse transcriptase codon 75 in plasma from 168 HIV-1–infected persons from Botswana, Kenya, Peru, and the United States taking daily acyclovir or valacyclovir for between 8 weeks and 24 months. No V75I cases were detected (95% confidence interval, 0%–2.2%). These prospective in vivo studies suggest that standard-dose acyclovir or valacyclovir does not select for HIV-1 resistance. PMID:21148504

  7. Perinatal exposure of patas monkeys to antiretroviral nucleoside reverse-transcriptase inhibitors induces genotoxicity persistent for up to 3 years of age.

    PubMed

    Olivero, Ofelia A; Torres, Lorangelly Rivera; Gorjifard, Sayeh; Momot, Dariya; Marrogi, Eryney; Divi, Rao L; Liu, Yongmin; Woodward, Ruth A; Sowers, Marsha J; Poirier, Miriam C

    2013-07-15

    Erythrocebus patas (patas) monkeys were used to model antiretroviral (ARV) drug in human immunodeficiency virus type 1-infected pregnant women. Pregnant patas dams were given human-equivalent doses of ARVs daily during 50% of gestation. Mesenchymal cells, cultured from bone marrow of patas offspring obtained at birth and at 1 and 3 years of age, were examined for genotoxicity, including centrosomal amplification, micronuclei, and micronuclei containing whole chromosomes. Compared with controls, statistically significant increases (P < .05) in centrosomal amplification, micronuclei, and micronuclei containing whole chromosomes were found in mesenchymal cells from most groups of offspring at the 3 time points. Transplacental nucleoside reverse-transcriptase inhibitor exposures induced fetal genotoxicity that was persistent for 3 years.

  8. The evolution of HIV-1 group M genetic variability in Southern Cameroon is characterized by several emerging recombinant forms of CRF02_AG and viruses with drug resistance mutations.

    PubMed

    Agyingi, Lucy; Mayr, Luzia M; Kinge, Thompson; Orock, George Enow; Ngai, Johnson; Asaah, Bladine; Mpoame, Mbida; Hewlett, Indira; Nyambi, Phillipe

    2014-03-01

    The HIV epidemic in Cameroon is marked by a broad genetic diversity dominated by circulating recombinant forms (CRFs). Studies performed more than a decade ago in urban settings of Southern Cameroon revealed a dominance of the CRF02_AG and clade A variants in >90% of the infected subjects; however, little is known about the evolving viral variants circulating in this region. To document circulating HIV viral diversity, four regions of the viral genome (gag, PR, reverse transcriptase, env) in 116 HIV-1 positive individuals in Limbe, Southern Cameroon, were PCR-amplified. Sequences obtained at the RT and protease regions were analyzed for mutations that conferred drug resistance using the Stanford Drug Resistance Database. The present study reveals a broad genetic diversity characterized by several unique recombinant forms (URF) accounting for 36% of infections, 48.6% of patients infected with CRF02_AG, and the emergence of CRF22_01A1 in 7.2% of patients. Three out of 15 (20%) treated patients and 13 out of 93 (13.9%) drug naïve patients harbor drug resistance mutations to RT inhibitors, while 3.2% of drug naïve patients harbor drug resistance mutations associated with protease inhibitors. The high proportion (13.9%) of drug resistance mutations among the drug naïve patients reveals the ongoing transmission of these viruses in this region of Cameroon and highlights the need for drug resistance testing before starting treatment for patients infected with HIV-1. © 2013 Wiley Periodicals, Inc.

  9. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    PubMed Central

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  10. Antiretroviral therapy for human immunodeficiency virus infection in 1997.

    PubMed Central

    Katzenstein, D A

    1997-01-01

    It has become clear that the acquired immunodeficiency syndrome follows continuous replication of the human immunodeficiency virus (HIV) and a decrease in immune capability, most obviously a decline in the number of CD4 lymphocytes. An understanding of key elements in the infectious life cycle of HIV has led to the development of potent antiretroviral drugs selectively targeting unique reverse transcriptase and protease enzymes of the virus. Completed clinical trials have shown that antiretroviral therapy for HIV infection, begun early, reduces viral replication and reverses the decline in CD4 lymphocyte numbers. Recent studies of combination therapies have shown that decreases in plasma HIV viremia to low levels and sustained increases in CD4 cell numbers are associated with longer survival. Potent combination regimens including protease inhibitors and non-nucleoside reverse transcriptase inhibitors suppress detectable viral replication and have demonstrated clinical benefits in patients with advanced disease. Progress in antiretroviral therapy and methods to monitor responses to treatment are providing new hope in the treatment of HIV infection. PMID:9217434

  11. HIV/AIDS Medicines

    MedlinePlus

    ... few years. But today, there are many effective medicines to fight the infection, and people with HIV ... healthier lives. There are five major types of medicines: Reverse transcriptase (RT) inhibitors - interfere with a critical ...

  12. Expression of TGF-beta1, osteonectin, and BMP-4 in mandibular distraction osteogenesis with compression stimulation: reverse transcriptase-polymerase chain reaction study and biomechanical test.

    PubMed

    Kim, Uk-Kyu; Park, Seong-Jin; Seong, Wook-Jin; Heo, Jun; Hwang, Dae-Seok; Kim, Yong-Deok; Shin, Sang-Hun; Kim, Gyoo-Cheon

    2010-09-01

    This study compared the levels of transforming growth factor-beta1 (TGF-beta1), osteonectin, and bone morphogenetic protein-4 (BMP-4) expression in regenerated bone in a rabbit mandible that had undergone conventional distraction osteogenesis (DO) with those in regenerated bone from a modified DO technique with compression stimulation. A total of 42 rabbits were used in this reverse transcriptase-polymerase chain reaction study. In the control group, distraction was performed at 1 mm/day for 8 days. In the experimental group, overdistraction was performed for 10 days, followed by a 3-day latency period and 2 days of compression to achieve the same amount of DO. Three rabbits per subgroup were killed at 0, 5, 13, 20, 27, 34, and 41 days after the initial osteotomy. The levels of TGF-beta1, osteonectin, and BMP-4 in the bone regenerates were measured by reverse transcriptase-polymerase chain reaction. A biomechanical microhardness test was also performed in 8 rabbits as a separate experiment. Reverse transcriptase-polymerase chain reaction revealed a greater level of TGF-beta1 in the experimental group immediately after applying the compression force that continued for 2 weeks. The level then decreased to that of the control group at 3 weeks. The greater level of osteonectin in the experimental group after compression than that in the control group continued for 3 weeks. In the experimental group, the level of BMP-4 increased immediately after compression. However, the level in the control group decreased. The microhardness ratio of distracted bone to normal bone on the cortex was statistically different at 0.47 in the control group and 0.80 in the experimental group (P = .049) at 55 days after osteotomy. The effectiveness of the new DO technique with compression stimulation was confirmed by the gene expression study and the biomechanical test findings. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase.

    PubMed

    Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice

    2017-11-01

    Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.

  14. Synthesis and biological evaluation of 2-thioxopyrimidin-4(1H)-one derivatives as potential non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Khalifa, Nagy M; Al-Omar, Mohamed A

    2014-11-12

    A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity.

  15. Synthesis and Biological Evaluation of 2-Thioxopyrimidin-4(1H)-one Derivatives as Potential Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Khalifa, Nagy M.; Al-Omar, Mohamed A.

    2014-01-01

    A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity. PMID:25397597

  16. Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Rios, Adan; Quesada, Jorge; Anderson, Dallas; Goldstein, Allan; Fossum, Theresa; Colby-Germinario, Susan; Wainberg, Mark A

    2011-01-01

    We demonstrate that a photo-labeled derivative of the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine termed DAPY, when used together with exposure to ultraviolet light, was able to completely and irreversibly inactivate both HIV-1 RT activity as well as infectiousness in each of a T cell line and peripheral blood mononuclear cells. Control experiments using various concentrations of DAPY revealed that a combination of exposure to ultraviolet light together with use of the specific, high affinity photo-labeled compound was necessary for complete inactivation to occur. This method of HIV RT inactivation may have applicability toward preservation of an intact viral structure and warrants further investigation in regard to the potential of this approach to elicit a durable, broad protective immune response. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Etravirine and Rilpivirine Drug Resistance Among HIV-1 Subtype C Infected Children Failing Non-Nucleoside Reverse Transcriptase Inhibitor-Based Regimens in South India.

    PubMed

    Saravanan, Shanmugam; Kausalya, Bagavathi; Gomathi, Selvamurthi; Sivamalar, Sathasivam; Pachamuthu, Balakrishnan; Selvamuthu, Poongulali; Pradeep, Amrose; Sunil, Solomon; Mothi, Sarvode N; Smith, Davey M; Kantor, Rami

    2017-06-01

    We have analyzed reverse transcriptase (RT) region of HIV-1 pol gene from 97 HIV-infected children who were identified as failing first-line therapy that included first-generation non-nucleoside RT inhibitors (Nevirapine and Efavirenz) for at least 6 months. We found that 54% and 65% of the children had genotypically predicted resistance to second-generation non-nucleoside RT inhibitors drugs Etravirine (ETR) and Rilpivirine, respectively. These cross-resistance mutations may compromise future NNRTI-based regimens, especially in resource-limited settings. To complement these investigations, we also analyzed the sequences in Stanford database, Monogram weighted score, and DUET weighted score algorithms for ETR susceptibility and found almost perfect agreement between the three algorithms in predicting ETR susceptibility from genotypic data.

  18. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains.

    PubMed

    Monforte, Anna Maria; De Luca, Laura; Buemi, Maria Rosa; Agharbaoui, Fatima E; Pannecouque, Christophe; Ferro, Stefania

    2018-02-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N 1 -aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N 1 -aryl-2-arylthioacetamido-benzimidazoles and N 1 -aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single- and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis and evaluation of "AZT-HEPT", "AZT-pyridinone", and "ddC-HEPT" conjugates as inhibitors of HIV reverse transcriptase.

    PubMed

    Pontikis, R; Dollé, V; Guillaumel, J; Dechaux, E; Note, R; Nguyen, C H; Legraverend, M; Bisagni, E; Aubertin, A M; Grierson, D S; Monneret, C

    2000-05-18

    To test the concept that HIV reverse transcriptase could be effectively inhibited by "mixed site inhibitors", a series of seven conjugates containing both a nucleoside analogue component (AZT 1, ddC 2) and a nonnucleoside type inhibitor (HEPT analogue 12, pyridinone 27) were synthesized and evaluated for their ability to block HIV replication. The (N-3 and C-5)AZT-HEPT conjugates 15, 22, and 23 displayed 2-5 microM anti-HIV activity, but they had no effect on the replication of HIV-2 or the HIV-1 strain with the Y181C mutation. The (C-5)AZT-pyridinone conjugates 34-37 were found to be inactive. In marked contrast, the ddC-HEPT molecule 26 displayed the same potency (EC(50) = 0.45 microM) against HIV-1 (wild type and the Y181C nevirapine-resistant strain) and HIV-2 in cell culture. No synergistic effect was observed for these bis-substrate inhibitors, suggesting that the two individual inhibitor components in these molecules do not bind simultaneously in their respective sites. Interestingly, however, the results indicate that the AZT-HEPT conjugates and the ddC-HEPT derivative 26 inhibit reverse transcriptase (RT) in an opposite manner. One explanation for this difference is that the former compounds interact preferentially with the hydrophobic pocket in RT, whereas 26 (after supposed triphosphorylation) inhibits RT through binding in the catalytic site.

  20. Lack of detection of a putative retrovirus associated with haemic neoplasia in the soft shell clam Mya arenaria.

    PubMed

    AboElkhair, M; Iwamoto, T; Clark, K F; McKenna, P; Siah, A; Greenwood, S J; Berthe, F C J; Casey, J W; Cepica, A

    2012-01-01

    Haemic neoplasia (HN) is a leukemia-like disease that affects at least 20 species of marine bivalves including soft shell clam, Mya arenaria. Since the disease was discovered in 1969, the etiology remains unknown. A retroviral etiology has been suggested based on the detection of reverse transcriptase activity and electron microscopic observation of retroviral-like particles using negative staining. To date, however no virus isolate and no retroviral sequence from HN has been obtained. Moreover, transmission of the disease by cell-free filtrate from affected clams has not been reproduced. In the current study, we reinvestigated the association of HN with a putative retrovirus. Sucrose gradient centrifugation followed by assessment of reverse transcriptase activity, electrophoretic analysis of protein and RNA, and electron microscopic examinations of fractions corresponding to retroviral density were employed. Detection of retroviral pol sequences using degenerate RT-PCR approaches was also attempted. Our results showed visible bands at the expected density of retrovirus in HN-positive and HN-negative clam tissues and both with reverse transcriptase activity. Electron microscopy, RNA analysis, protein analysis, and PCR systems targeting the pol gene of retroviruses did not however provide clear evidence supporting presence of a retrovirus. We point out that the retrovirus etiology of HN of Mya arenaria proposed some 25 years ago should be reconsidered in the absence of a virus isolate or virus sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  2. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the male and female genital tract.

    PubMed

    Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H

    2011-01-01

    HIV resides within anatomical 'sanctuary sites', where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Suboptimal antiretroviral concentrations in the genital tract may result in compartmentalized viral replication, selection of resistant mutations and possible re-entry of wild-type/resistant virus into the systemic circulation. Therefore, achieving adequate antiretroviral exposure in the genital tract has implications for the prevention of sexual and vertical transmission of HIV. Penetration of antiretrovirals in the genital tract is expressed by accumulation ratios derived from the measurement of drug concentrations in time-matched seminal plasma/cervicovaginal fluid and plasma samples. Penetration varies by gender and may be drug (as opposed to class) specific with high interindividual variability. Concentrations in seminal plasma are highest for nucleoside analogues and lowest for protease inhibitors and efavirenz. Seminal accumulation of newer agents, raltegravir and maraviroc, is moderate (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitors [lamivudine/zidovudine/tenofovir/didanosine > stavudine/abacavir] > raltegravir > indinavir/maraviroc/nevirapine > efavirenz/protease inhibitors [amprenavir/atazanavir/darunavir > lopinavir/ritonavir > saquinavir] > enfuvirtide). In the female genital tract, the nucleoside analogues exhibit high accumulation ratios, whereas protease inhibitors have limited penetration; however, substantial variability exists between individuals and study centres. Second generation non-nucleoside reverse transcriptase inhibitor etravirine, and maraviroc and raltegravir, demonstrate effective accumulation in cervicovaginal secretions (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitor [zidovudine/lamivudine/didanosine > emtricitabine/tenofovir] > indinavir > maraviroc/raltegravir/darunavir/etravirine > nevirapine/abacavir > protease inhibitors [amprenavir/atazanavir/ritonavir] > lopinavir/stavudine/efavirenz > saquinavir).

  3. HIV drug resistance in infants increases with changing prevention of mother-to-child transmission regimens.

    PubMed

    Poppe, Lisa K; Chunda-Liyoka, Catherine; Kwon, Eun H; Gondwe, Clement; West, John T; Kankasa, Chipepo; Ndongmo, Clement B; Wood, Charles

    2017-08-24

    The objectives of this study were to determine HIV drug resistance (HIVDR) prevalence in Zambian infants upon diagnosis, and to determine how changing prevention of mother-to-child transmission (PMTCT) drug regimens affect drug resistance. Dried blood spot (DBS) samples from infants in the Lusaka District of Zambia, obtained during routine diagnostic screening, were collected during four different years representing three different PMTCT drug treatment regimens. DNA extracted from dried blood spot samples was used to sequence a 1493 bp region of the reverse transcriptase gene. Sequences were analyzed via the Stanford HIVDRdatabase (http://hivdb.standford.edu) to screen for resistance mutations. HIVDR in infants increased from 21.5 in 2007/2009 to 40.2% in 2014. Nonnucleoside reverse transcriptase inhibitor resistance increased steadily over the sampling period, whereas nucleoside reverse transcriptase inhibitor resistance and dual class resistance both increased more than threefold in 2014. Analysis of drug resistance scores in each group revealed increasing strength of resistance over time. In 2014, children with reported PMTCT exposure, defined as infant prophylaxis and/or maternal treatment, showed a higher prevalence and strength of resistance compared to those with no reported exposure. HIVDR is on the rise in Zambia and presents a serious problem for the successful lifelong treatment of HIV-infected children. PMTCT affects both the prevalence and strength of resistance and further research is needed to determine how to mitigate its role leading to resistance.

  4. In Vitro Resistance Profile of the Candidate HIV-1 Microbicide Drug Dapivirine

    PubMed Central

    Schader, Susan M.; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P.

    2012-01-01

    Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries. PMID:22123692

  5. In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine.

    PubMed

    Schader, Susan M; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P; Wainberg, Mark A

    2012-02-01

    Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries.

  6. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction--positive

    USDA-ARS?s Scientific Manuscript database

    Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...

  7. Strand-specific real-time RT-PCR quantitation of Maize fine streak virus genomic and positive-sense RNAs using high temperature reverse transcription

    USDA-ARS?s Scientific Manuscript database

    Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...

  8. Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers

    PubMed Central

    Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.

    1977-01-01

    DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713

  9. A deletion mutation in the 5' part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins.

    PubMed Central

    Crawford, S; Goff, S P

    1985-01-01

    Deletion mutations in the 5' part of the pol gene of Moloney murine leukemia virus were generated by restriction enzyme site-directed mutagenesis of cloned proviral DNA. DNA sequence analysis indicated that one such deletion was localized entirely within the 5' part of the pol gene, did not affect the region encoding reverse transcriptase, and preserved the translational reading frame downstream of the mutation. The major viral precursor polyproteins (Pr65gag, Pr200gag-pol, and gPr80env) were synthesized at wild-type levels in cell lines carrying the mutant genome. These cell lines assembled and released wild-type levels of virion particles into the medium. Cleavage of both Pr65gag and Pr200gag-pol precursors to the mature proteins was completely blocked in the mutant virions. Surprisingly, these virions contained high levels of active reverse transcriptase; examination of the endogenous reverse transcription products synthesized by the mutant virions revealed normal amounts of minus-strand strong-stop DNA, indicating that the RNA genome was packaged and that reverse transcription in detergent-permeabilized virions was not significantly impaired. Processing of gPr80env to gP70env and P15E was not affected by the mutation, but cleavage of P15E to P12E was not observed. The mutant particles were poorly infectious; analysis indicated that infection was blocked at an early stage. The data are consistent with the idea that the 5' part of the pol gene encodes a protease directly responsible for processing Pr65gag, and possibly Pr200gag-pol, to the structural virion proteins. It appears that cleavage of the gag gene product is not required for budding and release of virions and that complete processing of the pol gene product to the mature form of reverse transcriptase is not required for its functional activation. Images PMID:3882995

  10. Bacterial Group II Introns: Identification and Mobility Assay.

    PubMed

    Toro, Nicolás; Molina-Sánchez, María Dolores; Nisa-Martínez, Rafael; Martínez-Abarca, Francisco; García-Rodríguez, Fernando Manuel

    2016-01-01

    Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities.

  11. The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity.

    PubMed

    Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K

    2018-04-15

    The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family. Copyright © 2018 American Society for Microbiology.

  12. Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase†

    PubMed Central

    Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2009-01-01

    Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161

  13. A novel platform for biologically active recombinant human interleukin-13 production.

    PubMed

    Wang, David J; Brandsma, Martin; Yin, Ziqin; Wang, Aiming; Jevnikar, Anthony M; Ma, Shengwu

    2008-06-01

    Interleukin-13 (IL-13) is a pleiotropic regulatory cytokine with the potential for treating several human diseases, including type-1 diabetes. Thus far, conventional expression systems for recombinant IL-13 production have proven difficult and are limited by efficiency. In this study, transgenic plants were used as a novel expression platform for the production of human IL-13 (hIL-13). DNA constructs containing hIL-13 cDNA were introduced into tobacco plants. Transcriptional expression of the hIL-13 gene in transgenic plants was confirmed by reverse transcriptase-polymerase chain reaction and Northern blotting. Western blot analysis showed that the hIL-13 protein was efficiently accumulated in transgenic plants and present in multiple molecular forms, with an expression level as high as 0.15% of total soluble protein in leaves. The multiple forms of plant-derived recombinant hIL-13 (rhIL-13) are a result of differential N-linked glycosylation, as revealed by enzymatic and chemical deglycosylation, but not of disulphide-linked oligomerization. In vitro trypsin digestion indicated that plant rhIL-13 was more resistant than unglycosylated control rhIL-13 to proteolysis. The stability of plant rhIL-13 to digestion was further supported with simulated gastric and intestinal fluid digestion. In vitro bioassays using a factor-dependent human erythroleukaemic cell line (TF-1 cells) showed that plant rhIL-13 retained the biological functions of the authentic hIL-13 protein. These results demonstrate that transgenic plants are superior to conventional cell-based expression systems for the production of rhIL-13. Moreover, transgenic plants synthesizing high levels of rhIL-13 may prove to be an attractive delivery system for direct oral administration of IL-13 in the treatment of clinical diseases such as type-1 diabetes.

  14. A new subtype (subgenotype) Ac (A3) of hepatitis B virus and recombination between genotypes A and E in Cameroon.

    PubMed

    Kurbanov, Fuat; Tanaka, Yasuhito; Fujiwara, Kei; Sugauchi, Fuminaka; Mbanya, Dora; Zekeng, Leopold; Ndembi, Nicaise; Ngansop, Charlotte; Kaptue, Lazare; Miura, Tomoyuki; Ido, Eiji; Hayami, Masanori; Ichimura, Hiroshi; Mizokami, Masashi

    2005-07-01

    Blood samples (n=544) from two different populations (Pygmies and Bantus) in Cameroon, West Africa, were analysed. Serological tests indicated that the anti-hepatitis C virus (HCV) prevalence in Bantus (20.3 %) was higher than that in Pygmies (2.3 %, P<0.0001), whereas the distribution of hepatitis B virus (HBV) serological markers was equally high in both populations: in total, 9.4, 17.3 and 86.8 % for HBsAg, anti-HBs and anti-HBc, respectively. HBV genotype A (HBV/A) and HBV/E were predominant (43.5 % each) in both populations, and HBV/D was found in a minority (13 %). The preS/S region was sequenced in nine cases (five HBV/A and four HBV/E) and the complete genome in six cases (four HBV/A and two HBV/E). Subsequent phylogenetic analysis revealed that the HBV/A strains were distinct from the subtypes (subgenotypes) described previously, Ae (A2) and Aa (A1), and in the preS/S region they clustered with previously reported sequences from Cameroon. Based on the nucleotide difference from Aa (A1) and Ae (A2), more than 4 % in the complete genome, the Cameroonian strains were suggested to represent a new subtype (subgenotype), designated HBV/Ac (A3). A high (3.9 %) nucleotide divergence in HBV/Ac (A3) strains suggested that the subtype (subgenotype) has a long natural history in the population of Cameroon. One of the HBV/Ac (A3) strains was found to be a recombinant with an HBV/E-specific sequence in the polymerase reverse transcriptase domain. Further cohort studies will be required to assess detailed epidemiological, virological and clinical characteristics of HBV/Ac (A3), as well as its recombinant form.

  15. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.

    PubMed

    Lewis, William

    2003-01-01

    Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)

  16. Towards novel therapeutics for HIV through fragment-based screening and drug design.

    PubMed

    Tiefendbrunn, Theresa; Stout, C David

    2014-01-01

    Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.

  17. Fragment Screening and HIV Therapeutics

    PubMed Central

    Bauman, Joseph D.; Patel, Disha; Arnold, Eddy

    2013-01-01

    Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide-range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target. PMID:21972022

  18. An immortalized goat mammary epithelial cell line induced with human telomerase reverse transcriptase (hTERT) gene transfer.

    PubMed

    He, Y L; Wu, Y H; He, X N; Liu, F J; He, X Y; Zhang, Y

    2009-06-01

    Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo.

  19. An Intravaginal Ring That Releases the NNRTI MIV-150 Reduces SHIV Transmission in Macaques

    PubMed Central

    Rodriguez, Aixa; Kizima, Larisa; Menon, Radhika; Goldman, Daniel; Kenney, Jessica; Aravantinou, Meropi; Seidor, Samantha; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, José A.; Robbiani, Melissa; Zydowsky, Thomas M.

    2015-01-01

    Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150–containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs. PMID:22956201

  20. An intravaginal ring that releases the NNRTI MIV-150 reduces SHIV transmission in macaques.

    PubMed

    Singer, Rachel; Mawson, Paul; Derby, Nina; Rodriguez, Aixa; Kizima, Larisa; Menon, Radhika; Goldman, Daniel; Kenney, Jessica; Aravantinou, Meropi; Seidor, Samantha; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, José A; Robbiani, Melissa; Zydowsky, Thomas M

    2012-09-05

    Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150-containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs.

  1. Practical diagnostic testing for human immunodeficiency virus.

    PubMed Central

    Jackson, J B; Balfour, H H

    1988-01-01

    Since the discovery of human immunodeficiency virus (HIV) as the causative agent of acquired immunodeficiency syndrome in 1983, there has been a proliferation of diagnostic tests. These assays can be used to detect the presence of HIV antibody, HIV antigen, HIV ribonucleic and deoxyribonucleic acids, and HIV reverse transcriptase. Enzyme-linked immunosorbent assays, Western blot, radioimmunoprecipitation assays, indirect immunofluorescence assays, reverse transcriptase assays, and several molecular hybridization techniques are currently available. Enzyme-linked immunosorbent, Western blot, and indirect immunofluorescence assays for HIV antibody are very sensitive, specific, and adaptable to most laboratories. An enzyme-linked immunosorbent assay for HIV antigen is also readily adaptable to most laboratories and will be commercially available soon. While the other assays are more tedious, they are valuable confirmatory tests and are suitable for reference laboratories. The biohazards of performing HIV testing can be minimized with proper biosafety measures. Images PMID:3060241

  2. Telomerase Mechanism of Telomere Synthesis

    PubMed Central

    Wu, R. Alex; Upton, Heather E.; Vogan, Jacob M.; Collins, Kathleen

    2017-01-01

    Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines. PMID:28141967

  3. Human telomerase reverse transcriptase is a promising target for cancer inhibition in squamous cell carcinomas.

    PubMed

    Park, Young-Jin; Kim, Eun-Kyoung; Moon, Sook; Hong, Doo-Pyo; Bae, Jung Yoon; Kim, Jin

    2014-11-01

    The present study aimed to investigate whether the down-regulation of human telomerase reverse transcriptase (hTERT) may induce an anti-invasive effect in oral squamous cell cancer cell lines. A genetically-engineered squamous carcinoma cell line overexpressing hTERT in immortalized oral keratinocytes transfected by human papilloma virus (HPV)-16 E6/E7 (IHOK) was used. In vivo tumorigenicity was examined using an orthotopic xenograft model of nude mice. For evaluating anti-invasive activity by knockdown of hTERT expression, transwell invasion assay and real-time polymerase chain reaction (PCR) for matrix metalloproteinases (MMP) were employed. The down-regulation of hTERT expression reduced the invasive activity and MMP expression. This result was re-confirmed in the HSC3 oral squamous carcinoma cell line. Targeting hTERT may lead to novel therapeutic approaches. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. A full-coordinate model of the polymerase domain of HIV-1 reverse transcriptase and its interaction with a nucleic acid substrate

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Meyer, D. J.; Shibata, M.; Roskwitalski, R.; Ornstein, R. L.; Rein, R.

    1994-01-01

    We present a full-coordinate model of residues 1-319 of the polymerase domain of HIV-I reverse transcriptase. This model was constructed from the x-ray crystallographic structure of Jacobo-Molina et al. (Jacobo-Molina et al., P.N.A.S. USA 90, 6320-6324 (1993)) which is currently available to the degree of C-coordinates. The backbone and side-chain atoms were constructed using the MAXSPROUT suite of programs (L. Holm and C. Sander, J. Mol. Biol. 218, 183-194 (1991)) and refined through molecular modeling. A seven base pair A-form dsDNA was positioned in the nucleic acid binding cleft to represent the template-primer complex. The orientation of the template-primer complex in the nucleic acid binding cleft was guided by the positions of phosphorus atoms in the crystal structure.

  5. Occurrence of etravirine/rilpivirine-specific resistance mutations selected by efavirenz and nevirapine in Kenyan patients with non-B HIV-1 subtypes failing antiretroviral therapy.

    PubMed

    Crawford, Keith W; Njeru, Dorothy; Maswai, Jonah; Omondi, Milton; Apollo, Duncan; Kimetto, Jane; Gitonga, Lawrence; Munyao, James; Langat, Raphael; Aoko, Appolonia; Tarus, Jemutai; Khamadi, Samoel; Hamm, Tiffany E

    2014-01-28

    Resistance to efavirenz and nevirapine has not been associated with mutations at position 138 of reverse transcriptase. In an evaluation of virologic suppression rates in PEPFAR (President's Emergency Plan For AIDS Relief) clinics in Kenya among patients on first-line therapy (RV288), 63% (617/975) of randomly selected patients on antiretroviral therapy were suppressed (HIV RNA<400 copies/ml). Among those with non-nucleoside reverse transcriptase inhibitor resistance (n = 101), 14 (13.8%) had substitutions at 138 (A, G, K or Q), mutations selected only by etravirine and rilpivirine in subtype B viruses. All 14 patients received efavirenz or nevirapine, not etravirine or rilpivirine, and were predominantly subtype A1. This may be the first report of efavirenz and nevirapine selecting these mutations in these subtypes.

  6. Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase.

    PubMed

    Tang, Jing; Vernekar, Sanjeev Kumar V; Chen, Yue-Lei; Miller, Lena; Huber, Andrew D; Myshakina, Nataliya; Sarafianos, Stefan G; Parniak, Michael A; Wang, Zhengqiang

    2017-06-16

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not clinically validated as an antiviral target. 2-Hydroxyisoquinoline-1,3-dione (HID) is known to confer active site directed inhibition of divalent metal-dependent enzymatic functions, such as HIV RNase H, integrase (IN) and hepatitis C virus (HCV) NS5B polymerase. We report herein the synthesis and biochemical evaluation of a few C-5, C-6 or C-7 substituted HID subtypes as HIV RNase H inhibitors. Our data indicate that while some of these subtypes inhibited both the RNase H and polymerase (pol) functions of RT, potent and selective RNase H inhibition was achieved with subtypes 8-9 as exemplified with compounds 8c and 9c. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Transposable elements in sexual and ancient asexual taxa

    PubMed Central

    Arkhipova, Irina; Meselson, Matthew

    2000-01-01

    Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049

  8. Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7.

    PubMed

    Kaur, Simarjot; Mishra, Mukti Nath; Tripathi, Anil K

    2009-10-01

    Carbonic anhydrase (CA; [EC 4.2.1.1]) is a ubiquitous enzyme catalysing the reversible hydration of CO(2) to bicarbonate, a reaction that supports various biochemical and physiological functions. Genome analysis of Azospirillum brasilense, a nonphotosynthetic, nitrogen-fixing, rhizobacterium, revealed an ORF with homology to beta-class carbonic anhydrases (CAs). Biochemical characteristics of the beta-class CA of A. brasilense, analysed after cloning the gene (designated as bca), overexpressing in Escherichia coli and purifying the protein by affinity purification, revealed that the native recombinant enzyme is a homotetramer, inhibited by the known CA inhibitors. CA activity in A. brasilense cell extracts, reverse transcriptase (RT)-PCR and Western blot analyses showed that bca was constitutively expressed under aerobic conditions. Lower beta-galactosidase activity in A. brasilense cells harbouring bca promoter: lacZ fusion during the stationary phase or during growth on 3% CO(2) enriched air or at acidic pH indicated that the transcription of bca was downregulated by the stationary phase, elevated CO(2) levels and acidic pH conditions. These observations were also supported by RT-PCR analysis. Thus, beta-CA in A. brasilense seems to be required for scavenging CO(2) from the ambient air and the requirement of CO(2) hydration seems to be higher for the cultures growing exponentially at neutral to alkaline pH.

  9. Recombinant adenovirus of SEA and CD80 genes driven by MMRE and mouse TERT promoter induce effective antitumor immune responses against different types of tumor cells in vitro and in vivo.

    PubMed

    Si, Shao-Yan; Liu, Jun-Li; Liu, Jun-Lian; Xu, Bing-Xin; Li, Jian-Zhong; Qin, Ya-Ya; Song, Shu-Jun

    2017-05-01

    Staphylococcus enterotoxin A (SEA) is a powerful immunostimulant and can stimulate T cells bearing certain T-cell receptor β-chain variable regions when bound to major histocompatibility complex II molecules. SEA is widely used in research of antitumor therapy. The low affinity T-cell receptor (TCR) interaction with SEA in the absence of MHC class II antigens is sufficient for the induction of cytotoxicity but requires additional CD28/B7 signaling to result in proliferation of resting T cells. In this study, we constructed recombinant adenovirus (named as Ad-MMRE-mTERT-BIS) carrying membrane-expressing SEA (named as SEAtm) and CD80 driven by Myc-Max response elements (MMRE) and mouse telomerase reverse transcriptase (mTERT) promoter to reduce toxicity and to improve safety and efficiency. We demonstrated that Ad-MMRE-mTERT-BIS could make SEAtm and CD80 to co-express highly on the surface of Hepa1-6 and B16 cells, at low level on the surface of CT26 cells, but not in NIH3T3. Hepa1-6 and B16 cells infected by the recombinant adenovirus induced proliferation of CD4+ and CD8+ T cells and increased cytokine [interleukin (IL)-2, tumor necrosis factor (TNF)-α, interferon (IFN)-γ] production in vitro. Intratumoral injection of Ad-MMRE-mTERT-BIS in hepatoma and melanoma mouse models induced tumor-specific cytotoxic T cells in the spleen. Moreover, hepatoma and melanoma xenografts were suppressed by treatment with Ad-MMRE-mTERT-BIS and the survival time of treated mice was prolonged. These findings suggest that recombinant adenovirus of SEA and CD80 genes driven by mTERT promoter could induce effective antitumor immune responses against different kinds of tumor cells in vitro and in vivo.

  10. Genotypic Characterization of Human Immunodeficiency Virus Type 1 Derived from Antiretroviral Therapy-Naive Individuals Residing in Sorong, West Papua.

    PubMed

    Witaningrum, Adiana Mutamsari; Kotaki, Tomohiro; Khairunisa, Siti Qamariyah; Yunifiar M, Muhammad Qushai; Indriati, Dwi Wahyu; Bramanthi, Rendra; Nasronudin; Kameoka, Masanori

    2016-08-01

    Papua and West Papua provinces have the highest prevalence rate of human immunodeficiency virus type 1 (HIV-1) infection in Indonesia; however, data on the molecular epidemiology of HIV-1 are limited. We conducted a genotypic study on HIV-1 genes derived from antiretroviral therapy-naive individuals residing in Sorong, West Papua. HIV-1 genomic fragments were amplified from 43 peripheral blood samples, and sequencing analysis of the genes was carried out. Of the 43 samples, 41 protease (PR), 31 reverse transcriptase (RT), 26 gag, and 25 env genes were sequenced. HIV-1 subtyping revealed that CRF01_AE (48.8%, 21/43) and subtype B (41.9%, 18/43) were the major subtypes prevalent in the region, whereas other recombinant forms were also detected. Major drug resistance-associated mutations for PR inhibitors were not detected; however, mutations for the RT inhibitors, A62V and E138A, appeared in a few samples, indicating the possible emergence of transmitted HIV-1 drug resistance in Sorong, West Papua.

  11. Genotypic Characterization of Human Immunodeficiency Virus Type 1 Derived from Antiretroviral Drug-Treated Individuals Residing in Earthquake-Affected Areas in Nepal.

    PubMed

    Negi, Bharat Singh; Kotaki, Tomohiro; Joshi, Sunil Kumar; Bastola, Anup; Nakazawa, Minato; Kameoka, Masanori

    2017-09-01

    Molecular epidemiological data on human immunodeficiency virus type 1 (HIV-1) are limited in Nepal and have not been available in areas affected by the April 2015 earthquake. Therefore, we conducted a genotypic study on HIV-1 genes derived from individuals on antiretroviral therapy residing in 14 districts in Nepal highly affected by the earthquake. HIV-1 genomic fragments were amplified from 40 blood samples of HIV treatment-failure individuals, and a sequencing analysis was performed on these genes. In the 40 samples, 29 protease, 32 reverse transcriptase, 25 gag, and 21 env genes were sequenced. HIV-1 subtyping revealed that subtype C (84.2%, 32/38) was the major subtype prevalent in the region, while CRF01_AE (7.9%, 3/38) and other recombinant forms (7.9%, 3/38) were also detected. In addition, major drug resistance mutations were identified in 21.9% (7/32) of samples, indicating the possible emergence of HIV-1 drug resistance in earthquake-affected areas in Nepal.

  12. Demonstration of retrotransposition of the Tf1 element in fission yeast.

    PubMed

    Levin, H L; Boeke, J D

    1992-03-01

    Tf1, a retrotransposon from fission yeast, has LTRs and coding sequences resembling the protease, reverse transcriptase and integrase domains of retroviral pol genes. A unique aspect of Tf1 is that it contains a single open reading frame whereas other retroviruses and retrotransposons usually possess two or more open reading frames. To determine whether Tf1 can transpose, we overproduced Tf1 transcripts encoded by a plasmid copy of the element marked with a neo gene. Approximately 0.1-4.0% of the cell population acquired chromosomally inherited resistance to G418. DNA blot analysis demonstrated that such strains had acquired both Tf1 and neo specific sequences within a restriction fragment of the same size; the size of this restriction fragment varied between different isolates. Structural analysis of the cloned DNA flanking the Tf1-neo element of two transposition candidates with the same regions in the parent strain showed that the ability to grow on G418 was due to transposition of Tf1-neo and not other types of recombination events.

  13. Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice.

    PubMed

    Kress, Chantal; Gautier-Courteille, Carole; Osborne, H Beverley; Babinet, Charles; Paillard, Luc

    2007-02-01

    CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1(-/-) mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1(-/-) males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1(-/-) males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis.

  14. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors.

    PubMed

    Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda

    2016-01-01

    Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (<300 Da) screened using primarily biophysical assays. FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs.

  15. Molecular docking of (5E)-3-(2-aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione on HIV-1 reverse transcriptase: novel drug acting on enzyme.

    PubMed

    Seniya, Chandrabhan; Yadav, Ajay; Uchadia, Kuldeep; Kumar, Sanjay; Sagar, Nitin; Shrivastava, Priyanka; Shrivastava, Shilpi; Wadhwa, Gulshan

    2012-01-01

    The study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV. Therefore, inhibition of HIV-1RT enzyme is one of the major and potential targets in the treatment of AIDS. The enzyme (HIV-1RT) was successfully targeted by non nucleotide reverse transcriptase inhibitors (NNRTIs). But frequent application of NNRTIs led drug resistance mutation on HIV infections. Therefore, there is a need to search new NNRTIs with appropriate pharmacophores. For the purpose, a virtually screened 3D model of unliganded HIV-1RT (1DLO) was explored. The unliganded HIV-1RT (1DLO) was docked with 4-thiazolidinone and its derivatives (ChemBank Database) by using AutoDock4. The best seven docking solutions complex were selected and analyzed by Ligplot. The analysis showed that derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) has maximum potential against unliganded HIV-1RT (1DLO). The analysis was done on the basis of scoring and binding ability. The derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) indicated minimum energy score and highest number of interactions with active site residue and could be a promising inhibitor for HIV-1 RT as Drug target.

  16. Antiretroviral therapy in children: recent advances.

    PubMed

    Lodha, Rakesh; Manglani, Mamta

    2012-12-01

    Availability and successful use of various antiretroviral drugs has transformed HIV/AIDS from an incurable to a treatable chronic condition. The antiretroviral therapy can successfully suppress viral replication and preserve the immune system for many years. The implementation of antiretroviral therapy program in resource limited settings using the 'public health approach' of the World Health Organization has had a dramatic impact on the lives of millions of HIV infected individuals. Antiretroviral therapy (ART) in children has many challenges: use of appropriate formulations, regular need for modification of doses as the child grows, adherence issues, etc. To reduce the high morbidity and mortality in HIV infected children, it is currently recommended that all HIV infected children less than 24 mo should receive ART; in older children the indications are based on clinical and/or immunological criteria. Highly active antiretroviral therapy regimens include at least 3 antiretroviral drugs. The first line therapy recommended for children is a combination of two nucleoside reverse transcriptase inhibitors and a non-nucleoside reverse transcriptase inhibitor. Infants who have had exposure to nevirapine should receive a combination of two nucleoside reverse transcriptase inhibitors and a protease inhibitor; the protease inhibitor of choice is ritonavir boosted lopinavir. The success of therapy is dependent on >95 % adherence. The second line regimen, used when the first line therapy fails, is based on a protease inhibitor. The ongoing research focuses on simplification of regimen, discovery of more potent drugs, availability of more pediatric formulations, treatment of drug resistant strains etc. The optimal indications for initiation of therapy in children, are also being studied.

  17. Screening for diverse PDGFRA or PDGFRB fusion genes is facilitated by generic quantitative reverse transcriptase polymerase chain reaction analysis

    PubMed Central

    Erben, Philipp; Gosenca, Darko; Müller, Martin C.; Reinhard, Jelena; Score, Joannah; del Valle, Francesco; Walz, Christoph; Mix, Jürgen; Metzgeroth, Georgia; Ernst, Thomas; Haferlach, Claudia; Cross, Nicholas C.P.; Hochhaus, Andreas; Reiter, Andreas

    2010-01-01

    Background Rapid identification of diverse fusion genes with involvement of PDGFRA or PDGFRB in eosinophilia-associated myeloproliferative neoplasms is essential for adequate clinical management but is complicated by the multitude and heterogeneity of partner genes and breakpoints. Design and Methods We established a generic quantitative reverse transcriptase polymerase chain reaction to detect overexpression of the 3′-regions of PDGFRA or PDGFRB as a possible indicator of an underlying fusion. Results At diagnosis, all patients with known fusion genes involving PDGFRA (n=5; 51 patients) or PDGFRB (n=5; 7 patients) showed significantly increased normalized expression levels compared to 191 patients with fusion gene-negative eosinophilia or healthy individuals (PDGFRA/ABL: 0.73 versus 0.0066 versus 0.0064, P<0.0001; PDGFRB/ABL: 196 versus 3.8 versus 5.85, P<0.0001). The sensitivity and specificity of the activation screening test were, respectively, 100% and 88.4% for PDGFRA and 100% and 94% for PDGFRB. Furthermore, significant overexpression of PDGFRB was found in a patient with an eosinophilia-associated myeloproliferative neoplasm with uninformative cytogenetics and an excellent response to imatinib. Subsequently, a new SART3-PDGFRB fusion gene was identified by 5′-rapid amplification of cDNA ends polymerase chain reaction (5′-RACE-PCR). Conclusions Quantitative reverse transcriptase polymerase chain reaction analysis is a simple and useful adjunct to standard diagnostic assays to detect clinically significant overexpression of PDGFRA and PDGFRB in eosinophilia-associated myeloproliferative neoplasms or related disorders. PMID:20107158

  18. Analytical validation of a reverse transcriptase droplet digital PCR (RT-ddPCR) for quantitative detection of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Jia, Peng; Purcell, Maureen; Pan, Guang; Wang, Jinjin; Kan, Shifu; Liu, Yin; Zheng, Xiaocong; SHi, Xiujie; He, Junqiang; Yu, Li; Hua, Qunyi; Lu, Tikang; Lan, Wensheng; Winton, James; Jin, Ningyi; Liu, Hong

    2017-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples. The RT-ddPCR and RT-qPCR assays detected 13 phylogenetically diverse IHNV strains, but neither assay produced detectable amplification when RNA from other fish viruses was used. The RT-ddPCR assay had a limit of detection (LOD) equating to 2.2 plaque forming units (PFU)/μl while the LOD for the RT-qPCR was 0.2 PFU/μl. Good agreement (69.4–100%) between assays was observed when used to detect IHNV RNA in cell culture supernatant and tissues from IHNV infected rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). Estimates of RNA copy number produced by the two assays were significantly correlated but the RT-qPCR consistently produced higher estimates than the RT-ddPCR. The analytical properties of the N gene RT-ddPCR test indicated that this method may be useful to assess IHNV RNA copy number for research and diagnostic purposes. Future work is needed to establish the within and between laboratory diagnostic performance of the RT-ddPCR assay.

  19. Vaginal Microbicide Film Combinations of Two Reverse Transcriptase Inhibitors, EFdA and CSIC, for the Prevention of HIV-1 Sexual Transmission.

    PubMed

    Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S; Moncla, Bernard; Sarafianos, Stefan G; Parniak, Michael A; Rohan, Lisa C

    2015-09-01

    EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission.

  20. Generation of recombinant rotaviruses expressing fluorescent proteins using an optimized reverse genetics system.

    PubMed

    Komoto, Satoshi; Fukuda, Saori; Ide, Tomihiko; Ito, Naoto; Sugiyama, Makoto; Yoshikawa, Tetsushi; Murata, Takayuki; Taniguchi, Koki

    2018-04-18

    An entirely plasmid-based reverse genetics system for rotaviruses was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 cDNA plasmids for its 11 gene segments under the condition of increasing the ratio of the cDNA plasmids for NSP2 and NSP5 genes. Utilizing this highly efficient system, we then engineered infectious recombinant rotaviruses expressing bioluminescent (NanoLuc luciferase) and fluorescent (EGFP and mCherry) reporters. These recombinant rotaviruses expressing reporters remained genetically stable during serial passages. Our reverse genetics approach and recombinant rotaviruses carrying reporter genes will be great additions to the tool kit for studying the molecular virology of rotavirus, and for developing future next-generation vaccines and expression vectors. IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. In this paper, we describe a robust and simple reverse genetics system based on only rotavirus cDNAs, and its application for engineering infectious recombinant rotaviruses harboring bioluminescent (NanoLuc) and fluorescent (EGFP and mCherry) protein genes. This highly efficient reverse genetics system and recombinant RVAs expressing reporters could be powerful tools for the study of different aspects of rotavirus replication. Furthermore, they may be useful for next-generation vaccine production for this medically important virus. Copyright © 2018 American Society for Microbiology.

  1. TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS

    EPA Science Inventory

    Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...

  2. A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes.

    PubMed

    Spadafora, Corrado

    2008-01-01

    This review summarizes emerging evidence that LINE-1 (Long Interspersed Nuclear Elements) -encoded reverse transcriptase (RT) regulates fundamental biological processes. Earlier studies showed that sperm cells can be used as vectors of both exogenous DNA and RNA molecules in sperm-mediated gene transfer assays. During these studies, a sperm endogenous RT activity was identified, which can reverse-transcribe exogenous RNA directly, or DNA molecules through sequential transcription and reverse transcription. Resulting cDNA copies generated in sperm cells can be delivered to embryos at fertilization, further propagated in tissues as low-copy extrachromosomal structures and transmitted to the progeny in a non-mendelian fashion. Being transcriptionally competent, they can induce phenotypic variations in positive tissues. An RT activity is also present in preimplantation embryos, and its inhibition causes developmental arrest in early preimplantation stages, paralleled by an extensive reprogramming of gene expression. In analogy with this, drug-mediated inhibition of RT activity, or RNA interference-mediated silencing of human LINE-1, reduce cell proliferation and induce differentiation in a variety of cancer cell lines. Furthermore, RT inhibition in vivo antagonizes the growth of human tumors in animal models. As a whole, these data implicate a RT-dependent machinery in the genesis of new genetic information in spermatozoa and in normal and pathological developmental processes.

  3. Ciliate telomerase RNA loop IV nucleotides promote hierarchical RNP assembly and holoenzyme stability.

    PubMed

    Robart, Aaron R; O'Connor, Catherine M; Collins, Kathleen

    2010-03-01

    Telomerase adds simple-sequence repeats to chromosome 3' ends to compensate for the loss of repeats with each round of genome replication. To accomplish this de novo DNA synthesis, telomerase uses a template within its integral RNA component. In addition to providing the template, the telomerase RNA subunit (TER) also harbors nontemplate motifs that contribute to the specialized telomerase catalytic cycle of reiterative repeat synthesis. Most nontemplate TER motifs function through linkage with the template, but in ciliate and vertebrate telomerases, a stem-loop motif binds telomerase reverse transcriptase (TERT) and reconstitutes full activity of the minimal recombinant TERT+TER RNP, even when physically separated from the template. Here, we resolve the functional requirements for this motif of ciliate TER in physiological RNP context using the Tetrahymena thermophila p65-TER-TERT core RNP reconstituted in vitro and the holoenzyme reconstituted in vivo. Contrary to expectation based on assays of the minimal recombinant RNP, we find that none of a panel of individual loop IV nucleotide substitutions impacts the profile of telomerase product synthesis when reconstituted as physiological core RNP or holoenzyme RNP. However, loop IV nucleotide substitutions do variably reduce assembly of TERT with the p65-TER complex in vitro and reduce the accumulation and stability of telomerase RNP in endogenous holoenzyme context. Our results point to a unifying model of a conformational activation role for this TER motif in the telomerase RNP enzyme.

  4. A conserved 19-kDa Eimeria tenella antigen is a profilin-like protein.

    PubMed

    Fetterer, R H; Miska, K B; Jenkins, M C; Barfield, R C

    2004-12-01

    A wide range of recombinant proteins from Eimeria species have been reported to offer some degree of protection against infection and disease, but the specific biological function of these proteins is largely unknown. Previous studies have demonstrated a 19-kDa protein of unknown function designated SZ-1 in sporozoites and merozoites of Eimeria acervulina that can be used to confer partial protection against coccidiosis. Reverse transcriptase-polymerase chain reaction indicated that the gene for SZ-1 is expressed by all the asexual stages of Eimeria tenella. Rabbit antisera to recombinant SZ-1 recognized an approximately 19-kDa protein from extracts of E. tenella sporozoites, merozoites, sporulated oocysts, and oocysts in various stages of sporulation. Immunofluorescence antibody staining indicated specific staining of E. tenella sporozoites and merozoites. Staining was most intense in the cytoplasm of the posterior end of the parasite. The primary amino acid sequence of the gene for E. tenella SZ-1 deduced from the E. tenella genome indicated a conserved domain for the actin-regulatory protein profilin. A conserved binding site for poly-L-proline (PLP), characteristic of profilin was also observed. SZ-1 was separated from soluble extract of E. tenella proteins by affinity chromatography using a PLP ligand, confirming the ability of SZ-1 to bind PLP. SZ-1 also partially inhibited the polymerization of actin. The current results are consistent with the classification of SZ-1 as a profilin-related protein.

  5. Connective tissue growth factor acts as a therapeutic agent and predictor for peritoneal carcinomatosis of colorectal cancer.

    PubMed

    Lin, Been-Ren; Chang, Cheng-Chi; Chen, Robert Jeen-Chen; Jeng, Yung-Ming; Liang, Jin-Tung; Lee, Po-Huang; Chang, King-Jen; Kuo, Min-Liang

    2011-05-15

    Here, we aimed to investigate the role of connective tissue growth factor (CTGF) in peritoneal carcinomatosis (PC) associated with colorectal cancer (CRC) and to characterize the underlying mechanism of CTGF mediating adhesion. A cohort of 136 CRC patient specimens was analyzed in this study. CRC cell lines were used for in vitro adhesion assay and in vivo peritoneal dissemination experiment. Recombinant CTGF protein treatment, transfection of CTGF expression plasmids, and knockdown of CTGF expression in CRC cells were utilized to evaluate the integrin α5, which served as a target of CTGF in inhibiting peritoneal seeding. The analysis of CRC tissues revealed an inverse correlation between CTGF expression and prevalence of PC. Lower CTGF level in CRC patients was associated with higher peritoneal recurrence rate after surgery. Inducing CTGF expression in cancer cells resulted in decreased incidence of PC and increased rate of mice survival. The mice received intraperitoneal injection of recombinant CTGF protein simultaneously with cancer cells or following tumor formation; in both cases, peritoneal tumor dissemination was found to be effectively inhibited in the mouse model. Functional assay revealed that CTGF significantly decreased the CRC cell adhesion ability, and integrin α5 was confirmed by reverse transcriptase PCR and functional blocking assay as a downstream effector in the CTGF-mediated inhibition of CRC cell adhesion. CTGF acts as a molecular predictor of PC and could be a potential therapeutic target for the chemoprevention and treatment of PC in CRC patients. ©2011 AACR.

  6. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor.

    PubMed

    Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique

    2017-05-23

    Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.

  7. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    PubMed

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  8. The accumulation and not the specific activity of telomerase ribonucleoprotein determines telomere maintenance deficiency in X-linked dyskeratosis congenita

    PubMed Central

    Zeng, Xi-Lei; Thumati, Naresh R.; Fleisig, Helen B.; Hukezalie, Kyle R.; Savage, Sharon A.; Giri, Neelam; Alter, Blanche P.; Wong, Judy M.Y.

    2012-01-01

    X-linked dyskeratosis congenita (X-DC) is caused by mutations in the housekeeping nucleolar protein dyskerin. Amino acid changes associated with X-DC are remarkably heterogeneous. Peripheral mononuclear blood cells and fibroblasts isolated from X-DC patients harbor lower steady-state telomerase RNA (TER) levels and shorter telomeres than healthy age-matched controls. Previously, we showed that retroviral expression of recombinant TER, together with expression of recombinant telomerase reverse transcriptase, restored telomere maintenance and proliferative capacity in X-DC patient cells. Using rare X-DC isoforms (▵L37 and A386T dyskerin), we showed that telomere maintenance defects observed in X-DC are solely due to decreased steady-state levels of TER. Disease-associated reductions in steady-state TER levels cause deficiencies in telomere maintenance. Here, we confirm these findings in other primary X-DC patient cell lines coding for the most common (A353V dyskerin) and more clinically severe (K314R and A353V dyskerin) X-DC isoforms. Using cell lines derived from these patients, we also examined the steady-state levels of other hinge-ACA motif RNAs and did not find differences in their in vivo accumulations. We show, for the first time, that purified telomerase holoenzyme complexes from different X-DC cells have normal catalytic activity. Our data confirm that dyskerin promotes TER stability in vivo, endorsing the development of TER supplementation strategies for the treatment of X-DC. PMID:22058290

  9. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations

    PubMed Central

    Brodsky, Arthur Nathan; Caldwell, Mary; Bae, Sooneon; Harcum, Sarah W.

    2014-01-01

    NS0 and Chinese hamster ovary (CHO) cell lines are used to produce recombinant proteins for human therapeutics; however, ammonium accumulation can negatively impact cell growth, recombinant protein production, and protein glycosylation. To improve product quality and decrease costs, the relationship between ammonium and protein glycosylation needs to be elucidated. While ammonium has been shown to adversely affect glycosylation-related gene expression in CHO cells, NS0 studies have not been performed. Therefore, this study sought to determine if glycosylation in NS0 cells were ammonium-sensitive at the gene expression level. Using a DNA microarray that contained mouse glycosylation-related and housekeeping genes, the of these genes was analysed in response to various culture conditions – elevated ammonium, elevated salt, and elevated ammonium with proline. Surprisingly, no significant differences in gene expression levels were observed between the control and these conditions. Further, the elevated ammonium cultures were analysed using real-time quantitative reverse transcriptase PCR (qRT-PCR) for key glycosylation genes, and the qRT-PCR results corroborated the DNA microarray results, demonstrating that NS0 cells are ammonium-insensitive at the gene expression level. Since NS0 are known to have elevated nucleotide sugar pools under ammonium stress, and none of the genes directly responsible for these metabolic pools were changed, consequently cellular control at the translational or substrate-level must be responsible for the universally observed decreased glycosylation quality under elevated ammonium. PMID:25062658

  10. Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics

    PubMed Central

    Kim, Yung Sam; Hochstrasser, Robin M.

    2010-01-01

    Following a survey of 2D IR principles this Feature Article describes recent experiments on the hydrogen-bond dynamics of small ions, amide-I modes, nitrile probes, peptides, reverse transcriptase inhibitors, and amyloid fibrils. PMID:19351162

  11. Evaluation of Four RNA Extraction Methods for Gene Expression Analyses of Cryptosporidium parvum and Toxoplasma gondii Oocys

    EPA Science Inventory

    Cryptosporidium spp. and Toxoplasma gondii are important coccidian parasites that have caused waterborne and foodborne disease outbreaks worldwide. Techniques like subtractive hybridization, microarrays, and quantitative reverse transcriptase real-time polymerase chain reaction (...

  12. Epigenetic Characterization of Ovarian Cancer

    DTIC Science & Technology

    2008-12-01

    Gusberg, A. H., Whitaker, R. S., Gray , J. W., Fujii, S., Berchuck, A. and S. K. Murphy. YY1/E2F3 modulates antimicrotubule drug response in epithelial... GTG GGT TTT TGG TGT TGG GTA TT-3’; and a shared reverse primer that does not anneal to CpGs, 5’-AAC CCC ACT CCC ACC CTA CTC C-3’. PCR was performed...Superscript II RNase H- reverse transcriptase (Invitrogen). Forward primer: 5’-GCG ACA TCG GTG ACT TCA T-3’ and reverse primer 5’-ATA CAT GTC CGC CAG CTT

  13. Simple and simultaneous determination of the hiv-protease inhibitors amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir plus M8 nelfinavir metabolite and the nonnucleoside reverse transcriptase inhibitors efavirenz and nevirapine in human plasma by reversed-phase liquid chromatography.

    PubMed

    Poirier, Jean-Marie; Robidou, Pascal; Jaillon, Patrice

    2005-04-01

    Several studies suggest that therapeutic drug monitoring of protease inhibitors and nonnucleoside reverse transcriptase inhibitors may contribute to the clinical outcome of HIV-infected patients. Because of the growing number of antiretroviral drugs and of drug combinations than can be administered to these patients, an accurate high-performance liquid chromatographic (HPLC) method allowing the simultaneous determination of these drugs may be useful. To date, the authors present the first simultaneous HPLC determination of the new protease inhibitor atazanavir with all the others currently in use (M8 nelfinavir metabolite included) and the 2 widely used nonnucleoside reverse transcriptase inhibitors efavirenz and nevirapine. This simple HPLC method allows the analysis all these drugs at a single ultraviolet wavelength following a 1-step liquid-liquid extraction procedure. A 500-muL plasma sample was spiked with internal standard and subjected to liquid-liquid extraction using by diethyl ether at pH 10. HPLC was performed using a Symmetry Shield RP18 and gradient elution. All the drugs of interest and internal standard were detected with ultraviolet detection at 210 nm. Calibration curves were linear in the range 50-10,000 ng/mL. The observed concentrations of the quality controls at plasma concentrations ranging from 50 to 5000 ng/mL for these drugs showed that the overall accuracy varied from 92% to 104% and 92% to 106% for intraday and day-to-day analysis, respectively. No metabolites of the assayed compounds or other drugs commonly coadministered to HIV-positive patients were found to coelute with the drugs of interest or with the internal standard. This assay was developed for the purpose of therapeutic monitoring (TDM) in HIV-infected patients.

  14. Problem-Solving Test: Catalytic Activities of a Human Nuclear Enzyme

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    Terms to be familiar with before you start to solve the test: ion exchange chromatography, polynucleotides, oligonucleotides, radioactive labeling, template, primer, DNA polymerase, reverse transcriptase, helicase, nucleoside triphosphates, nucleoside diphosphates, nucleoside monophosphates, nucleosides, 5'-end and 3'-end, bacteriophage,…

  15. Literature Reference for Influenza H5N1 (Emerging Infectious Diseases. 2005. 11(8): 1303–1305)

    EPA Pesticide Factsheets

    Procedures are described for analysis of clinical samples and may be adapted for assessment of solid, particulate, aerosol, liquid and water samples. This is a two-step, real-time reverse transcriptase-PCR multiplex assay.

  16. Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element.

    PubMed Central

    Mathews, D H; Banerjee, A R; Luan, D D; Eickbush, T H; Turner, D H

    1997-01-01

    RNA transcripts corresponding to the 250-nt 3' untranslated region of the R2 non-LTR retrotransposable element are recognized by the R2 reverse transcriptase and are sufficient to serve as templates in the target DNA-primed reverse transcription (TPRT) reaction. The R2 protein encoded by the Bombyx mori R2 can recognize this region from both the B. mori and Drosophila melanogaster R2 elements even though these regions show little nucleotide sequence identity. A model for the RNA secondary structure of the 3' untranslated region of the D. melanogaster R2 retrotransposon was developed by sequence comparison of 10 species aided by free energy minimization. Chemical modification experiments are consistent with this prediction. A secondary structure model for the 3' untranslated region of R2 RNA from the R2 element from B. mori was obtained by a combination of chemical modification data and free energy minimization. These two secondary structure models, found independently, share several common sites. This study shows the utility of combining free energy minimization, sequence comparison, and chemical modification to model an RNA secondary structure. PMID:8990394

  17. Vaginal microbicide film combinations of two reverse transcriptase inhibitors, EFdA and CSIC, for the prevention of HIV-1 sexual transmission

    PubMed Central

    Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S.; Moncla, Bernard; Sarafianos, Stefan G.; Parniak, Michael A.; Rohan, Lisa C.

    2015-01-01

    Purpose EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Methods Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. Results No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Conclusions Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission. PMID:25794967

  18. Dynamics of drug resistance-associated mutations in HIV-1 DNA reverse transcriptase sequence during effective ART.

    PubMed

    Nouchi, A; Nguyen, T; Valantin, M A; Simon, A; Sayon, S; Agher, R; Calvez, V; Katlama, C; Marcelin, A G; Soulie, C

    2018-05-29

    To investigate the dynamics of HIV-1 variants archived in cells harbouring drug resistance-associated mutations (DRAMs) to lamivudine/emtricitabine, etravirine and rilpivirine in patients under effective ART free from selective pressure on these DRAMs, in order to assess the possibility of recycling molecules with resistance history. We studied 25 patients with at least one DRAM to lamivudine/emtricitabine, etravirine and/or rilpivirine identified on an RNA sequence in their history and with virological control for at least 5 years under a regimen excluding all drugs from the resistant class. Longitudinal ultra-deep sequencing (UDS) and Sanger sequencing of the reverse transcriptase region were performed on cell-associated HIV-1 DNA samples taken over the 5 years of follow-up. Viral variants harbouring the analysed DRAMs were no longer detected by UDS over the 5 years in 72% of patients, with viruses susceptible to the molecules of interest found after 5 years in 80% of patients with UDS and in 88% of patients with Sanger. Residual viraemia with <50 copies/mL was detected in 52% of patients. The median HIV DNA level remained stable (2.4 at baseline versus 2.1 log10 copies/106 cells 5 years later). These results show a clear trend towards clearance of archived DRAMs to reverse transcriptase inhibitors in cell-associated HIV-1 DNA after a long period of virological control, free from therapeutic selective pressure on these DRAMs, reflecting probable residual replication in some reservoirs of the fittest viruses and leading to persistent evolution of the archived HIV-1 DNA resistance profile.

  19. A decade of HIV-1 drug resistance in the United States: trends and characteristics in a large protease/reverse transcriptase and co-receptor tropism database from 2003 to 2012.

    PubMed

    Paquet, Agnes C; Solberg, Owen D; Napolitano, Laura A; Volpe, Joseph M; Walworth, Charles; Whitcomb, Jeannette M; Petropoulos, Christos J; Haddad, Mojgan

    2014-01-01

    Drug resistance testing and co-receptor tropism determination are key components of the management of antiretroviral therapy for HIV-1-infected individuals. The purpose of this study was to examine trends of HIV-1 resistance and viral evolution in the past decade by surveying a large commercial patient testing database. Temporal trends of drug resistance, viral fitness and co-receptor usage among samples submitted for routine phenotypic and genotypic resistance testing to protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), as well as for tropism determination were investigated. Within 62,397 resistant viruses reported from 2003 to 2012, we observed a decreasing trend in the prevalence of three-class resistance (from 25% to 9%) driven by decreased resistance to PIs (43% to 21%) and NRTIs (79% to 57%), while observing a slight increase in NNRTI resistance (68% to 75%). The prevalence of CXCR4-mediated entry among tropism testing samples (n=52,945) declined over time from 47% in 2007 to 40% in 2012. A higher proportion of CXCR4-tropic viruses was observed within samples with three-class resistance (50%) compared with the group with no resistance (36%). Decreased prevalence of three-class resistance and increased prevalence of one-class resistance was observed within samples reported between 2003 and 2012. The fraction of CXCR4-tropic viruses has decreased over time; however, CXCR4 usage was more prevalent among multi-class-resistant samples, which may be due to the more advanced disease stage of treatment-experienced patients. These trends have important implications for clinical practice and future drug discovery and development.

  20. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.

    PubMed

    Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A

    1997-11-01

    Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.

  1. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme.

    PubMed Central

    Burke, W D; Calalang, C C; Eickbush, T H

    1987-01-01

    Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905

  2. Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres.

    PubMed

    Arkhipova, Irina R; Yushenova, Irina A; Rodriguez, Fernando

    2017-09-01

    Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3'-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3'-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Expression of Connexin 43 in Synovial Tissue of Patients With Rheumatoid Arthritis

    PubMed Central

    MATSUKI, Tomohiro; TSUCHIDA, Shinji; TERAUCHI, Ryu; ODA, Ryo; FUJIWARA, Hiroyoshi; MAZDA, Osam; KUBO, Toshikazu

    2016-01-01

    Objectives This study aims to identify the distribution and expression level of connexin 43 (Cx43) in synovial tissue in patients with rheumatoid arthritis (RA). Patients and methods The expression of Cx43 in synovial tissue from eight patients with RA (2 males, 6 females; mean age 59.5±2.7 years; range 52 to 71 years), five patients with osteoarthritis (2 males, 3 females; mean age 68.4±2.7 years; range 61 to 81 years), and one normal female subject (mean age 61 year) was analyzed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry of tissue sections. Induction of Cx43 following stimulation of human RA synovial fibroblasts with tumor necrosis factor-alpha (TNF-a) cultures was examined by quantitative reverse transcriptase polymerase chain reaction. The effect of small interfering ribonucleic acid targeting Cx43 (siCx43) on the expression of TNF-a and interleukin-6 was examined using quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assays. Results Connexin 43 was highly expressed in RA synovial tissue, which also expressed TNF-a, but was expressed lower in osteoarthritis and normal synovial tissue. Expression of Cx43 was markedly up-regulated in RA synovial fibroblasts after stimulation with TNF-a. The over-expression of pro- inflammatory cytokines was suppressed by transfection of siCx43. Conclusion This study shows that Cx43 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNF-a. The expression of the pro-inflammatory cytokines was inhibited by transfection of siCx43. Cx43 may be a novel marker of inflammation in RA synovial tissue. PMID:29900991

  4. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells.

    PubMed

    Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie

    2004-04-02

    Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.

  5. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.

    PubMed

    Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc

    2017-02-17

    There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Comparative analysis of drug resistance mutations in the human immunodeficiency virus reverse transcriptase gene in patients who are non-responsive, responsive and naive to antiretroviral therapy.

    PubMed

    Misbah, Mohammad; Roy, Gaurav; Shahid, Mudassar; Nag, Nalin; Kumar, Suresh; Husain, Mohammad

    2016-05-01

    Drug resistance mutations in the Pol gene of human immunodeficiency virus 1 (HIV-1) are one of the critical factors associated with antiretroviral therapy (ART) failure in HIV-1 patients. The issue of resistance to reverse transcriptase inhibitors (RTIs) in HIV infection has not been adequately addressed in the Indian subcontinent. We compared HIV-1 reverse transcriptase (RT) gene sequences to identify mutations present in HIV-1 patients who were ART non-responders, ART responders and drug naive. Genotypic drug resistance testing was performed by sequencing a 655-bp region of the RT gene from 102 HIV-1 patients, consisting of 30 ART-non-responding, 35 ART-responding and 37 drug-naive patients. The Stanford HIV Resistance Database (HIVDBv 6.2), IAS-USA mutation list, ANRS_09/2012 algorithm, and Rega v8.02 algorithm were used to interpret the pattern of drug resistance. The majority of the sequences (96 %) belonged to subtype C, and a few of them (3.9 %) to subtype A1. The frequency of drug resistance mutations observed in ART-non-responding, ART-responding and drug-naive patients was 40.1 %, 10.7 % and 20.58 %, respectively. It was observed that in non-responders, multiple mutations were present in the same patient, while in responders, a single mutation was found. Some of the drug-naive patients had more than one mutation. Thymidine analogue mutations (TAMs), however, were found in non-responders and naive patients but not in responders. Although drug resistance mutations were widely distributed among ART non-responders, the presence of resistance mutations in the viruses of drug-naive patients poses a big concern in the absence of a genotyping resistance test.

  7. RNA–protein binding interface in the telomerase ribonucleoprotein

    PubMed Central

    Bley, Christopher J.; Qi, Xiaodong; Rand, Dustin P.; Borges, Chad R.; Nelson, Randall W.; Chen, Julian J.-L.

    2011-01-01

    Telomerase is a specialized reverse transcriptase containing an intrinsic telomerase RNA (TR) which provides the template for telomeric DNA synthesis. Distinct from conventional reverse transcriptases, telomerase has evolved a unique TR-binding domain (TRBD) in the catalytic telomerase reverse transcriptase (TERT) protein, integral for ribonucleoprotein assembly. Two structural elements in the vertebrate TR, the pseudoknot and CR4/5, bind TERT independently and are essential for telomerase enzymatic activity. However, the details of the TR–TERT interaction have remained elusive. In this study, we employed a photoaffinity cross-linking approach to map the CR4/5-TRBD RNA–protein binding interface by identifying RNA and protein residues in close proximity. Photoreactive 5-iodouridines were incorporated into the medaka CR4/5 RNA fragment and UV cross-linked to the medaka TRBD protein fragment. The cross-linking RNA residues were identified by alkaline partial hydrolysis and cross-linked protein residues were identified by mass spectrometry. Three CR4/5 RNA residues (U182, U187, and U205) were found cross-linking to TRBD amino acids Tyr503, Phe355, and Trp477, respectively. This CR4/5 binding pocket is distinct and separate from the previously proposed T pocket in the Tetrahymena TRBD. Based on homologous structural models, our cross-linking data position the essential loop L6.1 adjacent to the TERT C-terminal extension domain. We thus propose that stem-loop 6.1 facilitates proper TERT folding by interacting with both TRBD and C-terminal extension. Revealing the telomerase CR4/5-TRBD binding interface with single-residue resolution provides important insights into telomerase ribonucleoprotein architecture and the function of the essential CR4/5 domain. PMID:22123986

  8. Drug Susceptibility and Resistance Mutations After First-Line Failure in Resource Limited Settings

    PubMed Central

    Wallis, Carole L.; Aga, Evgenia; Ribaudo, Heather; Saravanan, Shanmugam; Norton, Michael; Stevens, Wendy; Kumarasamy, Nagalingeswaran; Bartlett, John; Katzenstein, David

    2014-01-01

    Background. The development of drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) has been associated with baseline human immunodeficiency virus (HIV)-1 RNA level (VL), CD4 cell counts (CD4), subtype, and treatment failure duration. This study describes drug resistance and levels of susceptibility after first-line virologic failure in individuals from Thailand, South Africa, India, Malawi, Tanzania. Methods. CD4 and VL were captured at AIDs Clinical Trial Group (ACTG) A5230 study entry, a study of lopinavir/ritonavir (LPV/r) monotherapy after first-line virologic failure on an NNRTI regimen. HIV drug-resistance mutation associations with subtype, site, study entry VL, and CD4 were evaluated using Fisher exact and Kruskall–Wallis tests. Results. Of the 207 individuals who were screened for A5230, sequence data were available for 148 individuals. Subtypes observed: subtype C (n = 97, 66%) AE (n = 27, 18%), A1 (n = 12, 8%), and D (n = 10, 7%). Of the 148 individuals, 93% (n = 138) and 96% (n = 142) had at least 1 reverse transcriptase (RT) mutation associated with NRTI and NNRTI resistance, respectively. The number of NRTI mutations was significantly associated with a higher study screening VL and lower study screening CD4 (P < .001). Differences in drug-resistance patterns in both NRTI and NNRTI were observed by site. Conclusions. The degree of NNRTI and NRTI resistance after first-line virologic failure was associated with higher VL at study entry. Thirty-two percent of individuals remained fully susceptible to etravirine and rilpivirine, protease inhibitor resistance was rare. Some level of susceptibility to NRTI remained; however, VL monitoring and earlier virologic failure detection may result in lower NRTI resistance. PMID:24795328

  9. In vitro cross-resistance profile of nucleoside reverse transcriptase inhibitor (NRTI) BMS-986001 against known NRTI resistance mutations.

    PubMed

    Li, Zhufang; Terry, Brian; Olds, William; Protack, Tricia; Deminie, Carol; Minassian, Beatrice; Nowicka-Sans, Beata; Sun, Yongnian; Dicker, Ira; Hwang, Carey; Lataillade, Max; Hanna, George J; Krystal, Mark

    2013-11-01

    BMS-986001 is a novel HIV nucleoside reverse transcriptase inhibitor (NRTI). To date, little is known about its resistance profile. In order to examine the cross-resistance profile of BMS-986001 to NRTI mutations, a replicating virus system was used to examine specific amino acid mutations known to confer resistance to various NRTIs. In addition, reverse transcriptases from 19 clinical isolates with various NRTI mutations were examined in the Monogram PhenoSense HIV assay. In the site-directed mutagenesis studies, a virus containing a K65R substitution exhibited a 0.4-fold change in 50% effective concentration (EC50) versus the wild type, while the majority of viruses with the Q151M constellation (without M184V) exhibited changes in EC50 versus wild type of 0.23- to 0.48-fold. Susceptibility to BMS-986001 was also maintained in an L74V-containing virus (0.7-fold change), while an M184V-only-containing virus induced a 2- to 3-fold decrease in susceptibility. Increasing numbers of thymidine analog mutation pattern 1 (TAM-1) pathway mutations correlated with decreases in susceptibility to BMS-986001, while viruses with TAM-2 pathway mutations exhibited a 5- to 8-fold decrease in susceptibility, regardless of the number of TAMs. A 22-fold decrease in susceptibility to BMS-986001 was observed in a site-directed mutant containing the T69 insertion complex. Common non-NRTI (NNRTI) mutations had little impact on susceptibility to BMS-986001. The results from the site-directed mutants correlated well with the more complicated genotypes found in NRTI-resistant clinical isolates. Data from clinical studies are needed to determine the clinically relevant resistance cutoff values for BMS-986001.

  10. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.

    PubMed

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M; Weissman, Jonathan S; Rouskin, Silvi

    2017-01-01

    Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.

  11. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties.

    PubMed

    Fang, Evandro Fei; Ng, Tzi Bun

    2015-04-01

    Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.

  12. The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus

    PubMed Central

    Figueiredo, Luisa M.; Rocha, Eduardo P. C.; Mancio-Silva, Liliana; Prevost, Christine; Hernandez-Verdun, Danièle; Scherf, Artur

    2005-01-01

    Telomerase replicates chromosome ends, a function necessary for maintaining genome integrity. We have identified the gene that encodes the catalytic reverse transcriptase (RT) component of this enzyme in the malaria parasite Plasmodium falciparum (PfTERT) as well as the orthologous genes from two rodent and one simian malaria species. PfTERT is predicted to encode a basic protein that contains the major sequence motifs previously identified in known telomerase RTs (TERTs). At ∼2500 amino acids, PfTERT is three times larger than other characterized TERTs. We observed remarkable sequence diversity between TERT proteins of different Plasmodial species, with conserved domains alternating with hypervariable regions. Immunofluorescence analysis revealed that PfTERT is expressed in asexual blood stage parasites that have begun DNA synthesis. Surprisingly, rather than at telomere clusters, PfTERT typically localizes into a discrete nuclear compartment. We further demonstrate that this compartment is associated with the nucleolus, hereby defined for the first time in P.falciparum. PMID:15722485

  13. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  14. Intracellular studies of the nucleoside reverse transcriptase inhibitor active metabolites: a review.

    PubMed

    Rodriguez Orengo, J F; Santana, J; Febo, I; Diaz, C; Rodriguez, J L; Garcia, R; Font, E; Rosario, O

    2000-03-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) plasma concentrations do not correlate with clinical efficacy or toxicity. These agents need to be phosphorylated to become active against HIV-infection. Thus, the characterization of the NRTIs intracellular metabolite pharmacological parameters will provide a better understanding that could lead to the development of more rational dose regimens in the HIV-infected population. Furthermore, intracellular measurements of NRTIs may provide a better marker with respect to clinical efficacy and toxicity than plasma concentrations. Thus, in this article we review the latest information regarding the intracellular pharmacological parameters of zidovudine (ZDV) and lamivudine (3TC) active metabolites in HIV-infected patients including the results from our recent clinical studies. We will start the discussion with ZDV and 3TC clinical efficacy, followed by systemic pharmacokinetics studies. We will then discuss the in vitro and in vivo intracellular studies with particular emphasis in the method development to measure these metabolites and we will conclude with the most current data from our clinical trials.

  15. Molecular Epidemiology of Norovirus Outbreaks in Norway during 2000 to 2005 and Comparison of Four Norovirus Real-Time Reverse Transcriptase PCR Assays

    PubMed Central

    Vainio, Kirsti; Myrmel, Mette

    2006-01-01

    During the period from January 2000 to August 2005 a total of 204 outbreaks of norovirus gastroenteritis were diagnosed at the Norwegian Institute of Public Health. A clear increase in the norovirus activity was seen in healthcare institutions during the winter seasons. Polymerase sequence analysis of norovirus strains from 122 outbreaks showed that 112 were caused by GII strains (91.8%). Two norovirus variants seen during the study period—GIIb and GII.4—were predominant between January 2000 and September 2002, whereas GII.4 was predominant from September 2002 onward. The highest norovirus activity was seen during the 2002-2003 and 2004-2005 seasons with the emergence of new GII.4 variants. This study describes the molecular epidemiology of norovirus strains circulating in Norway during the five previous seasons and compares four norovirus real-time reverse transcriptase PCR assays. A suitable assay for routine diagnostics is suggested. PMID:17021099

  16. Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements.

    PubMed

    Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D

    1995-11-10

    The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.

  17. TOPICAL TENOFOVIR, A MICROBICIDE EFFECTIVE AGAINST HIV, INHIBITS HERPES SIMPLEX VIRUS-2 REPLICATION

    PubMed Central

    Andrei, Graciela; Lisco, Andrea; Vanpouille, Christophe; Introini, Andrea; Balestra, Emanuela; van den Oord, Joost; Cihlar, Tomas; Perno, Carlo-Federico; Snoeck, Robert; Margolis, Leonid; Balzarini, Jan

    2011-01-01

    SUMMARY The HIV reverse transcriptase inhibitor tenofovir, was recently formulated into a vaginal gel for use as a microbicide. In human trials, a 1% tenofovir gel inhibited HIV sexual transmission by 39% and surprisingly herpes simplex virus-2 (HSV-2) transmission by 51%. We demonstrate that the concentration achieved intravaginally with a 1% tenofovir topical gel has direct anti-herpetic activity. Tenofovir inhibits the replication of HSV clinical isolates in human embryonic fibroblasts, keratinocytes, and organotypic epithelial 3D-rafts, decreases HSV replication in human lymphoid and cervical tissues ex vivo, and delays HSV-induced lesions and death of topically treated HSV-infected mice. The active tenofovir metabolite inhibits HSV DNA-polymerase and HIV reverse transcriptase. Tenofovir must be topically administered to achieve concentrations, which are higher than systemic levels after oral treatment, that exert these dual antiviral effects. These findings indicate that a single topical treatment, like tenofovir, can inhibit the transmission of HIV and its co-pathogens. PMID:22018238

  18. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    PubMed Central

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2016-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage. PMID:26613339

  19. The future of pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection.

    PubMed

    Özdener, Ayşe Elif; Park, Tae Eun; Kalabalik, Julie; Gupta, Rachna

    2017-05-01

    People at high risk for HIV acquisition should be offered pre-exposure prophylaxis (PrEP). Tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) is currently the only medication recommended for pre-exposure prophylaxis (PrEP) by the Centers for Disease Control and Prevention (CDC) in people at high risk for HIV acquisition. This article will review medications currently under investigation and the future landscape of PrEP therapy. Areas covered: This article will review clinical trials that have investigated nontraditional regimens of TDF/FTC, antiretroviral agents from different drug classes such as integrase strand transfer inhibitors (INSTI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) as potential PrEP therapies. Expert commentary: Currently, there are several investigational drugs in the pipeline for PrEP against HIV infection. Increased utilization of PrEP therapy depends on provider identification of people at high risk for HIV transmission. Advances in PrEP development will expand options and access for people and reduce the risk of HIV acquisition.

  20. Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase

    NASA Astrophysics Data System (ADS)

    Kuroda, Daniel G.; Bauman, Joseph D.; Challa, J. Reddy; Patel, Disha; Troxler, Thomas; Das, Kalyan; Arnold, Eddy; Hochstrasser, Robin M.

    2013-03-01

    The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water-drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.

  1. Pausing kinetics dominates strand-displacement polymerization by reverse transcriptase

    PubMed Central

    Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei; Marx, Ailie

    2017-01-01

    Abstract Reverse transcriptase (RT) catalyzes the conversion of the viral RNA into an integration-competent double-stranded DNA, with a variety of enzymatic activities that include the ability to displace a non-template strand concomitantly with polymerization. Here, using high-resolution optical tweezers to follow the activity of the murine leukemia Virus RT, we show that strand-displacement polymerization is frequently interrupted. Abundant pauses are modulated by the strength of the DNA duplex ∼8 bp ahead, indicating the existence of uncharacterized RT/DNA interactions, and correspond to backtracking of the enzyme, whose recovery is also modulated by the duplex strength. Dissociation and reinitiation events, which induce long periods of inactivity and are likely the rate-limiting step in the synthesis of the genome in vivo, are modulated by the template structure and the viral nucleocapsid protein. Our results emphasize the potential regulatory role of conserved structural motifs, and may provide useful information for the development of potent and specific inhibitors. PMID:28973474

  2. Reverse transcriptase inhibitors as microbicides.

    PubMed

    Lewi, Paul; Heeres, Jan; Ariën, Kevin; Venkatraj, Muthusamy; Joossens, Jurgen; Van der Veken, Pieter; Augustyns, Koen; Vanham, Guido

    2012-01-01

    The CAPRISA 004 study in South Africa has accelerated the development of vaginal and rectal microbicides containing antiretrovirals that target specific enzymes in the reproduction cycle of HIV, especially reverse transcriptase inhibitors (RTI). In this review we discuss the potential relevance of HIV-1 RTIs as microbicides, focusing in the nucleotide RTI tenofovir and six classes of nonnucleoside RTIs (including dapivirine, UC781, urea and thiourea PETTs, DABOs and a pyrimidinedione). Although tenofovir and dapivirine appear to be most advanced in clinical trials as potential microbicides, several issues remain unresolved, e.g., the importance of nonhuman primates as a "gatekeeper" for clinical trials, the emergence and spread of drug-resistant mutants, the combination of microbicides that target different phases of viral reproduction and the accessibility to microbicides in low-income countries. Thus, here we discuss the latest research on RTI as microbicides in the light of the continuing spread of the HIV pandemic from the point of view of medicinal chemistry, virological, and pharmaceutical studies.

  3. Expanded-spectrum nonnucleoside reverse transcriptase inhibitors inhibit clinically relevant mutant variants of human immunodeficiency virus type 1.

    PubMed

    Corbett, J W; Ko, S S; Rodgers, J D; Jeffrey, S; Bacheler, L T; Klabe, R M; Diamond, S; Lai, C M; Rabel, S R; Saye, J A; Adams, S P; Trainor, G L; Anderson, P S; Erickson-Viitanen, S K

    1999-12-01

    A research program targeted toward the identification of expanded-spectrum nonnucleoside reverse transcriptase inhibitors which possess increased potency toward K103N-containing mutant human immunodeficiency virus (HIV) and which maintain pharmacokinetics consistent with once-a-day dosing has resulted in the identification of the 4-cyclopropylalkynyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 961 and DPC 963 and the 4-cyclopropylalkenyl-4-trifluoromethyl-3, 4-dihydro-2(1H)quinazolinones DPC 082 and DPC 083 for clinical development. DPC 961, DPC 963, DPC 082, and DPC 083 all exhibit low-nanomolar potency toward wild-type virus, K103N and L100I single-mutation variants, and many multiply amino acid-substituted HIV type 1 mutants. This high degree of potency is combined with a high degree of oral bioavailability, as demonstrated in rhesus monkeys and chimpanzees, and with plasma serum protein binding that can result in significant free levels of drug.

  4. Dual HIV-1 reverse transcriptase and integrase inhibitors from Limonium morisianum Arrigoni, an endemic species of Sardinia (Italy).

    PubMed

    Sanna, Cinzia; Rigano, Daniela; Corona, Angela; Piano, Dario; Formisano, Carmen; Farci, Domenica; Franzini, Genni; Ballero, Mauro; Chianese, Giuseppina; Tramontano, Enzo; Taglialatela-Scafati, Orazio; Esposito, Francesca

    2018-02-04

    During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC 50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.

  5. The ORF1 Protein Encoded by LINE-1: Structure and Function During L1 Retrotransposition

    PubMed Central

    Martin, Sandra L.

    2006-01-01

    LINE-1, or L1 is an autonomous non-LTR retrotransposon in mammals. Retrotransposition requires the function of the two, L1-encoded polypeptides, ORF1p and ORF2p. Early recognition of regions of homology between the predicted amino acid sequence of ORF2 and known endonuclease and reverse transcriptase enzymes led to testable hypotheses regarding the function of ORF2p in retrotransposition. As predicted, ORF2p has been demonstrated to have both endonuclease and reverse transcriptase activities. In contrast, no homologs of known function have contributed to our understanding of the function of ORF1p during retrotransposition. Nevertheless, significant advances have been made such that we now know that ORF1p is a high affinity RNA binding protein that forms a ribonucleoprotein particle together with L1 RNA. Furthermore, ORF1p is a nucleic acid chaperone and this nucleic acid chaperone activity is required for L1 retrotransposition. PMID:16877816

  6. Impact of Noncoding Satellite Repeats on Pancreatic Cancer Metastasis

    DTIC Science & Technology

    2014-09-01

    nucleoside reverse transcriptase inhibitor ddC as a small molecule inhibitor of HSATII reverse transcription. Initial data indicates there are anti...proliferative effects of ddC in cancer cell lines. We will evaluate ddC and anti-sense locked nucleic acids as methods for inhibiting this process and...of these hybrids, we tested the effect of the nucleoside analog RT inhibitor (NRTI) 2’,3’-dideoxycytidine ( ddC ) in COLO205 cells (Fig. 2e). Notably

  7. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses.

    PubMed

    Henzy, Jamie E; Gifford, Robert J; Johnson, Welkin E; Coffin, John M

    2014-03-01

    Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, "TgERV-F," that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and can lead to the creation of novel retroviral lineages. Retroviruses insert viral DNA into the host DNA during infection, and therefore vertebrate genomes contain a "fossil record" of endogenous retroviral sequences thought to represent past infections of germ cells. We examined endogenous retroviral sequences in avian genomes for evidence of recombination events involving env. Although cross-species transmissions of retroviruses between vertebrate classes (from mammals to birds, for example) are thought to be rare, we here characterized a group of avian retroviruses that acquired an env sequence from a mammalian retrovirus. We offer evidence that this unusual recombinant circulated among songbirds 2 to 4 million years ago and has remained active into the recent past.

  8. Infectivity titration of a prototype strain of hepatitis E virus in cynomolgus monkeys.

    PubMed

    Tsarev, S A; Tsareva, T S; Emerson, S U; Yarbough, P O; Legters, L J; Moskal, T; Purcell, R H

    1994-06-01

    The infectivity titer of a standard stock of the SAR-55 strain of hepatitis E virus (HEV) was determined in cynomolgus macaques (Macaca fascicularis) and the effect of dose on the course of the infection was examined by weekly monitoring of alanine aminotransferase (ALT) and anti-HEV levels. Antibody to HEV (anti-HEV) was measured with ELISAs based on ORF-2 recombinant antigens consisting of either a 55 kDa region expressed in insect cells or shorter regions expressed as fusion proteins in bacteria. The ELISA based on the 55 kDa antigen was generally more sensitive. The infectivity titer of SAR-55 was 10(6) cynomolgus 50% infectious doses per gram of feces. The infectivity titer corresponded to the HEV genome titer of the inoculum as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). Anti-HEV IgM was detected in only a portion of the animals that had an anti-HEV IgG response. Biochemical evidence of hepatitis was most prominent in animals that were inoculated with the higher concentrations of virus and the incubation period to seroconversion was prolonged in animals that received the lower doses.

  9. Biodistribution and safety of a live attenuated tetravalent dengue vaccine in the cynomolgus monkey.

    PubMed

    Ravel, Guillaume; Mantel, Nathalie; Silvano, Jeremy; Rogue, Alexandra; Guy, Bruno; Jackson, Nicholas; Burdin, Nicolas

    2017-10-13

    The first licensed dengue vaccine is a recombinant, live, attenuated, tetravalent dengue virus vaccine (CYD-TDV; Sanofi Pasteur). This study assessed the biodistribution, shedding, and toxicity of CYD-TDV in a non-human primate model as part of the nonclinical safety assessment program for the vaccine. Cynomolgus monkeys were given one subcutaneous injection of either one human dose (5log 10 CCID 50 /serotype) of CYD-TDV or saline control. Study endpoints included clinical observations, body temperature, body weight, food consumption, clinical pathology, immunogenicity, and post-mortem examinations including histopathology. Viral load, distribution, persistence, and shedding in tissues and body fluids were evaluated by quantitative reverse transcriptase polymerase chain reaction. The subcutaneous administration of CYD-TDV was well tolerated. There were no toxicological findings other than expected minor local reactions at the injection site. A transient low level of CYD-TDV viral RNA was detected in blood and the viral genome was identified primarily at the injection site and in the draining lymph nodes following immunization. These results, together with other data from repeat-dose toxicity and neurovirulence studies, confirm the absence of toxicological concern with CYD-TDV and corroborate clinical study observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Inactivation of CUG-BP1/CELF1 Causes Growth, Viability, and Spermatogenesis Defects in Mice▿

    PubMed Central

    Kress, Chantal; Gautier-Courteille, Carole; Osborne, H. Beverley; Babinet, Charles; Paillard, Luc

    2007-01-01

    CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1−/− mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1−/− males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1−/− males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis. PMID:17130239

  11. Early detection of a two-long-terminal-repeat junction molecule in the cytoplasm of recombinant murine leukemia virus-infected cells.

    PubMed

    Serhan, Fatima; Penaud, Magalie; Petit, Caroline; Leste-Lasserre, Thierry; Trajcevski, Stéphane; Klatzmann, David; Duisit, Ghislaine; Sonigo, Pierre; Moullier, Philippe

    2004-06-01

    We showed that a U5-U3 junction was reproducibly detected by a PCR assay as early as 1 to 2 h postinfection with a DNase-treated murine leukemia virus (MLV)-containing supernatant in aphidicolin-arrested NIH 3T3 cells, as well as in nonarrested cells. Such detection is azidothymidine sensitive and corresponded to neosynthesized products of the reverse transcriptase. This observation was confirmed in two additional human cell lines, TE671 and ARPE-19. Using cell fractionation combined with careful controls, we found that a two-long-terminal-repeat (two-LTR) junction molecule was detectable in the cytoplasm as early as 2 h post virus entry. Altogether, our data indicated that the neosynthesized retroviral DNA led to the early formation of structures including true two-LTR junctions in the cytoplasm of MLV-infected cells. Thus, the classical assumption that two-LTR circles are a mitosis-dependent dead-end product accumulating in the nucleus must be reconsidered. MLV-derived products containing a two-LTR junction can no longer be used as an exclusive surrogate for the preintegration complex nuclear translocation event.

  12. Evaluation of Cytokine Synthesis in Human Whole Blood by Enzyme Linked Immunoassay (ELISA), Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), and Flow Cytometry

    DTIC Science & Technology

    2007-05-08

    deoxynucleotide triphosphates, from Sigma. Sequences for glyceraldehyde-3-phosphate dehydrogenase ( G3PDH ), IL-8,and TNF-a were amplified with primer...This was accomplished by normalizing all samples to the mRNA for the moderately expressed housekeeping function glyceraldehyde-3 -phosphate...without and with isolation of cells before reverse transcription and PCR. G3PDH mRNA target amplifies at 983 base pairs. The 630 base pair band is the

  13. First report of Cocksfoot mottle virus infecting wheat (Triticum aestivum) in Ohio

    USDA-ARS?s Scientific Manuscript database

    Cocksfoot mottle virus (CfMV) was discovered in Ohio wheat during a 2016 field survey utilizing RNA-Seq to identify virus-like sequences. Virus sequences were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Sanger sequencing, and CfMV was transmitted to orchardgrass and pas...

  14. RNA Extraction Methods for Reverse Transcriptase Real-Time PCR and Microarray Analysis of Cryptosporidium and Toxoplasma gondii Oocysts

    EPA Science Inventory

    The ability of infectious oocyst forms of Toxoplasma gondii and Cryptosporidium spp. to resist disinfection treatments and cause disease may have significant public health implications. Currently, little is known about oocyst-specific factors involved during host cell invasion p...

  15. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  16. Isolation and characterization of an AGAMOUS homolog from Fraxinus pennsylvanica

    Treesearch

    Ningxia Du; Paula M. Pijut

    2010-01-01

    An AGAMOUS homolog (FpAG) was isolated from green ash (Fraxinus pennsylvanica) using a reverse transcriptase polymerase chain reaction method. Southern blot analysis indicated that FpAG was present as a single-copy sequence in the genome of green ash. RNA accumulated in the reproductive tissues (female...

  17. In-vitro Cell Culture and Real-time Reverse Transcriptase PCR-based Assays to Detect Infective Toxoplas gondii Oocysts

    EPA Science Inventory

    Toxoplasma gondii is an obligate intracellular, apicomplexan parasite that infects humans. It is ubiquitous in nature and seroprevalence in the United States and in Europe ranges from 25->70%. Although typically associated with causing foodborne outbreaks, recent studies in Canad...

  18. Quantification of HTLV-1 reverse transcriptase activity in ATL patients treated with zidovudine and interferon-α.

    PubMed

    Macchi, Beatrice; Balestrieri, Emanuela; Frezza, Caterina; Grelli, Sandro; Valletta, Elena; Marçais, Ambroise; Marino-Merlo, Francesca; Turpin, Jocelyn; Bangham, Charles R; Hermine, Olivier; Mastino, Antonio; Bazarbachi, Ali

    2017-05-09

    The therapeutic efficacy of the AZT and IFN combination in ATL presumably reflects the inhibition of RT-related functions.HTLV-1-RT activity from short-term cultured PBMCs may represent a predictive correlate of clinical response to AZT/IFN in ATL patients.

  19. Anti-tumor function of double-promoter regulated adenovirus carrying SEA gene, in the treatment of bladder cancer.

    PubMed

    Hu, Jianpeng; Xuan, Xujun; Han, Conghui; Hao, Lin; Zhang, Peiying; Chen, Meng; He, Houguang; Fan, Tao; Dong, Binzheng

    2012-03-01

    To construct an adenovirus carrying SEA gene and regulated by telomerase reverse transcriptase (hTERT) and hypoxia-inducible factor (HIF) promoters and investigate its anti-tumor function in vitro, as well as its role in lymphocyte production. hTERT and HIF genes were cloned into adenovirus E1A and E1B shuttle plasmids. The control vector for SEA gene expression is under the regulation of CMV and SV40 promoters. Double regulation was obtained through homologous recombination. The positive clones of replicable adenovirus H2-SEA-Ad were selected by plaque assay. The adenovirus was purified, titrated, and DNA was verified by PCR. The obtained virus was used to infect EJ bladder tumor cells and the SEA Mrna, and protein expression was measured by RT-PCR, western blot, and immunofluorescence microscopy, respectively. Co-culture of lymphocytes and tumor cells was observed dynamically under microscope. The construction of shuttle plasmid p315-CSS-SEA was confirmed by PCR and DNA sequencing. Insertion of superantigen SEA gene in adenovirus (H2-SEA-Ad.SEA) was obtained by homologous recombination. In lymphocytes and tumor cell co-culture, the number of viable tumor cells in test groups was significantly lower than that in control group after 12, 24, and 48 h of treatment. Production of interleukin-2, interleukin-4, and tumor necrosis factor were higher in test groups than in control group. Expression of SEA gene in bladder tumor cells by adenoviral vector caused reduced tumor cell proliferation, as well as stimulation of inflammatory cytokine productions in co-cultures with lymphocytes.

  20. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia.

    PubMed

    Nedellec, Rebecca; Herbeck, Joshua T; Hunt, Peter W; Deeks, Steven G; Mullins, James I; Anton, Elizabeth D; Reeves, Jacqueline D; Mosier, Donald E

    2017-03-01

    Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.

  1. Identification and characterization of jute LTR retrotransposons:

    PubMed Central

    Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit

    2011-01-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842

  2. Active methamphetamine use is associated with transmitted drug resistance to non-nucleoside reverse transcriptase inhibitors in individuals with HIV infection of unknown duration.

    PubMed

    Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm Christopher; Smith, Davey M

    2007-01-01

    Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Cross-sectional analysis. Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI.

  3. S100A8 and S100A9 Are Associated with Colorectal Carcinoma Progression and Contribute to Colorectal Carcinoma Cell Survival and Migration via Wnt/β-Catenin Pathway

    PubMed Central

    Duan, Liang; Wu, Rui; Ye, Liwei; Wang, Haiyan; Yang, Xia; Zhang, Yunyuan; Chen, Xian; Zuo, Guowei; Zhang, Yan; Weng, Yaguang; Luo, Jinyong; Tang, Min; Shi, Qiong; He, Tongchuan; Zhou, Lan

    2013-01-01

    Background and Objective S100A8 and S100A9, two members of the S100 protein family, have been reported in association with the tumor cell differentiation and tumor progression. Previous study has showed that their expression in stromal cells of colorectal carcinoma (CRC) is associated with tumor size. Here, we investigated the clinical significances of S100A8 and S100A9 in tumor cells of CRC and their underlying molecular mechanisms. Methods Expression of S100A8 and S100A9 in colorectal carcinoma and matching distal normal tissues were measured by reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. CRC cell lines treated with the recombinant S100A8 and S100A9 proteins were used to analyze the roles and molecular mechanisms of the two proteins in CRC in vitro. Results S100A8 and S100A9 were elevated in more than 50% of CRC tissues and their expression in tumor cells was associated with differentiation, Dukes stage and lymph node metastasis. The CRC cell lines treatment with recombinant S100A8 and S100A9 proteins promoted the viability and migration of CRC cells. Furthermore, the two recombinant proteins also resulted in the increased levels of β-catenin and its target genes c-myc and MMP7. β-catenin over-expression in CRC cells by Adβ-catenin increased cell viability and migration. β-catenin knock-down by Adsiβ-catenin reduced cell viability and migration. Furthermore, β-catenin knockdown also partially abolished the promotive effects of recombinant S100A8 and S100A9 proteins on the viability and migration of CRC cells. Conclusions Our work demonstrated that S100A8 and S100A9 are linked to the CRC progression, and one of the underlying molecular mechanisms is that extracellular S100A8 and S100A9 proteins contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PMID:23637971

  4. Identification of cytochrome P450s involved in the metabolism of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) using human recombinant enzymes and rat liver microsomes in vitro.

    PubMed

    Lu, Ying-Yuan; Cheng, Hai-Xu; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Li, Jun; Lu, Chuang; Zhang, Guo-Liang

    2017-08-01

    1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including K m , V max , and CL int were 2.3 μM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.

  5. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana.

    PubMed

    Nii-Trebi, Nicholas Israel; Brandful, James Ashun Mensah; Ibe, Shiro; Sugiura, Wataru; Barnor, Jacob Samson; Bampoh, Patrick Owiredu; Yamaoka, Shoji; Matano, Tetsuro; Yoshimura, Kazuhisa; Ishikawa, Koichi; Ampofo, William Kwabena

    2017-11-01

    There have been hardly any reports on the human immunodeficiency virus type 1 (HIV-1) drug-resistance profile from northern Ghana since antiretroviral therapy (ART) was introduced over a decade ago. This study investigated prevailing HIV-1 subtypes and examined the occurrence of drug resistance in ART-experienced patients in Tamale, the capital of the Northern Region of Ghana. A cross-sectional study was carried out on HIV-infected adult patients receiving first-line ART. HIV viral load (VL) and CD4 + T-cell counts were measured. The pol gene sequences were analysed for genotypic resistance by an in-house HIV-1 drug-resistance test; the prevailing HIV-1 subtypes were analysed in detail.Results/Key findings. A total of 33 subjects were studied. Participants comprised 11 males (33.3 %) and 22 (66.7 %) females, with a median age of 34.5 years [interquartile range (IQR) 30.0-40.3]. The median duration on ART was 12 months (IQR 8.0-24). Of the 24 subjects successfully genotyped, 10 (41.7 %) viruses possessed at least one mutation conferring resistance to nucleoside or non-nucleoside reverse-transcriptase inhibitors (NRTIs/NNRTIs). Two-class drug resistance to NRTI and NNRTI was mostly detected (25 %, 6/24). The most frequent mutations were lamivudine-resistance M184V and efavirenz/nevirapine-resistance K103N. HIV-1 subtype CRF02_AG was predominant (79.2 %). Other HIV-1 subtypes detected were G (8.3 %), A3 (4.2 %) and importantly two (8.3 %) unique HIV-1 recombinant forms with CRF02_AG/A3 mosaic. HIV-1 shows high genetic diversity and on-going viral genetic recombination in the study region. Nearly 42 % of the patients studied harboured a drug-resistant virus. The study underscores the need for continued surveillance of HIV-1 subtype diversity; and of drug-resistance patterns to guide selection of second-line regimens in northern Ghana.

  6. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications

    PubMed Central

    Adebiyi, Oluwafeyisetan O.; Adebiyi, Olubunmi A.; Owira, Peter M. O.

    2015-01-01

    Nucleoside Reverse Transcriptase Inhibitors (NRTIs) have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7) were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT) (groups I, II III), 50 mg/kg stavudine (d4T) (groups IV, V, VI) and 3 mL/kg of distilled water (group VII). Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy. PMID:26690471

  7. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase.

    PubMed

    Irmak, M Kemal; Oztas, Yesim; Oztas, Emin

    2012-06-07

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to "caveolar-mediated endocytosis signaling" pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature.The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases.

  8. The Reverse Transcription Inhibitor Abacavir Shows Anticancer Activity in Prostate Cancer Cell Lines

    PubMed Central

    Molinari, Agnese; Parisi, Chiara; Bozzuto, Giuseppina; Toccacieli, Laura; Formisano, Giuseppe; De Orsi, Daniela; Paradisi, Silvia; Grober, OlÌ Maria Victoria; Ravo, Maria; Weisz, Alessandro; Arcieri, Romano; Vella, Stefano; Gaudi, Simona

    2010-01-01

    Background Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. Principal Findings ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. Conclusions Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications. PMID:21151977

  9. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase

    PubMed Central

    2012-01-01

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to “caveolar-mediated endocytosis signaling” pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature. The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases. PMID:22676860

  10. Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase

    PubMed Central

    Döring, Jessica

    2017-01-01

    Abstract Branchpoint nucleotides of intron lariats induce pausing of DNA synthesis by reverse transcriptases (RTs), but it is not known yet how they direct RT RNase H activity on branched RNA (bRNA). Here, we report the effects of the two arms of bRNA on branchpoint-directed RNA cleavage and mutation produced by Moloney murine leukemia virus (M-MLV) RT during DNA polymerization. We constructed a long-chained bRNA template by splinted-ligation. The bRNA oligonucleotide is chimeric and contains DNA to identify RNA cleavage products by probe hybridization. Unique sequences surrounding the branchpoint facilitate monitoring of bRNA purification by terminal-restriction fragment length polymorphism analysis. We evaluate the M-MLV RT-generated cleavage and mutational patterns. We find that cleavage of bRNA and misprocessing of the branched nucleotide proceed arm-specifically. Bypass of the branchpoint from the 2΄-arm causes single-mismatch errors, whereas bypass from the 3΄-arm leads to deletion mutations. The non-template arm is cleaved when reverse transcription is primed from the 3΄-arm but not from the 2΄-arm. This suggests that RTs flip ∼180° at branchpoints and RNases H cleave the non-template arm depending on its accessibility. Our observed interplay between M-MLV RT and bRNA would be compatible with a bRNA-mediated control of retroviral and related retrotransposon replication. PMID:28160599

  11. Selective suppression of autocatalytic caspase-3 driven by two-step transcriptional amplified human telomerase reverse transcriptase promoter on ovarian carcinoma growth in vitro and in mice.

    PubMed

    Song, Yue; Xin, Xing; Xia, Zhijun; Zhai, Xingyue; Shen, Keng

    2014-07-01

    The objective of our study was to construct recombinant adenovirus (rAd) AdHTVP2G5-rev-casp3, which expresses autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp) with a two-step transcription amplification (TSTA) system and investigate its antitumor effects on ovarian cancer in vitro and in vivo. Fluorescent detection was used to detect EGFP expression in various cells. Cell viabilities were determined using the Cell Counting Kit-8 and flow cytometry. RT-PCR and immunoblotting assays were used to detect cellular apoptotic activities. Tumor growth and survival of tumor-bearing mice were studied. The hTERTp-TSTA system showed the strongest activity in hTERT-positive cancer cells when compared with hTERTp and cytomeglovirus promoter (CMVp). In contrast, it showed no activity in hTERT‑negative HUVECs. AdHTVP2G5‑rev-casp3 markedly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 17.8 ± 3.5% at an MOI of 70, which was significantly lower than that by AdHT-rev-casp3 and Ad-rev-casp3 (rAds which express rev-caspase-3 driven by hTERTp and CMVp, respectively). In contrast, AdHTVP2G5‑rev-casp3 induced little HUVEC death with a viability rate of 92.7 ± 5.2% at the same MOI. Additionally, AdHTVP2G5-rev-casp3 (MOI=70) caused significant apoptosis in AO cells with an apoptotic rate of 42%. The tumor growth suppression rate of AdHTVP2G5-rev-casp3 was 81.52%, significantly higher than that of AdHT-rev-casp3 (54.94%) or Ad-rev-casp3 (21.35%). AdHTVP2G5-rev-casp3 significantly improved the survival of tumor-bearing mice with little liver damage, with a mean survival of 258 ± 28 days. These results showed that AdHTVP2G5-rev-casp3 caused effective apoptosis with significant tumor selectivity, strongly suppressed tumor growth and improved mouse survival with little liver toxicity. It can be a potent therapeutic agent for tumor targeted treatment of ovarian cancer.

  12. Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice.

    PubMed

    Kim, Ki Chan; Rhee, Jeehae; Park, Jong-Eun; Lee, Dong-Keun; Choi, Chang Soon; Kim, Ji-Woon; Lee, Han-Woong; Song, Mi-Ryoung; Yoo, Hee Jeong; Chung, ChiHye; Shin, Chan Young

    2016-12-01

    In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as β-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.

  13. Synthesis, Biological Activity, and Crystal Structure of Potent Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase That Retain Activity against Mutant Forms of the Enzyme†

    PubMed Central

    Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.

    2010-01-01

    In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538

  14. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hee-Young; Kim, Hye-Young; Jung, Jaesung

    2008-01-05

    Our recent observation that hepatitis B virus (HBV) DNA polymerase (P) might initiate minus-strand DNA synthesis without primer [Kim et al., (2004) Virology 322, 22-30], raised a possibility that HBV P protein may have the potential to function as an RNA polymerase. Thus, we mutated Phe 436, a bulky amino acid with aromatic side chain, at the putative dNTP-binding cleft in reverse transcriptase (RT) domain of P protein to smaller amino acids (Gly or Val), and examined RNA polymerase activity. HBV core particles containing RT dNTP-binding cleft mutant P protein were able to incorporate {sup 32}P-ribonucleotides, but not HBV coremore » particles containing wild type (wt), priming-deficient mutant, or RT-deficient mutant P proteins. Since all the experiments were conducted with core particles isolated from transfected cells, our results indicate that the HBV RT mutant core particles containing RT dNTP-binding cleft mutant P protein could incorporate both deoxyribonucleotides and ribonucleotides in replicating systems.« less

  15. Emergence of a replicating species from an in vitro RNA evolution reaction

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    The technique of self-sustained sequence replication allows isothermal amplification of DNA and RNA molecules in vitro. This method relies on the activities of a reverse transcriptase and a DNA-dependent RNA polymerase to amplify specific nucleic acid sequences. We have modified this protocol to allow selective amplification of RNAs that catalyze a particular chemical reaction. During an in vitro RNA evolution experiment employing this modified system, a unique class of "selfish" RNAs emerged and replicated to the exclusion of the intended RNAs. Members of this class of selfish molecules, termed RNA Z, amplify efficiently despite their inability to catalyze the target chemical reaction. Their amplification requires the action of both reverse transcriptase and RNA polymerase and involves the synthesis of both DNA and RNA replication intermediates. The proposed amplification mechanism for RNA Z involves the formation of a DNA hairpin that functions as a template for transcription by RNA polymerase. This arrangement links the two strands of the DNA, resulting in the production of RNA transcripts that contain an embedded RNA polymerase promoter sequence.

  16. Appearance of drug resistance-associated mutations in human immunodeficiency virus type 1 protease and reverse transcriptase derived from drug-treated Indonesian patients.

    PubMed

    Khairunisa, Siti Qamariyah; Kotaki, Tomohiro; Witaningrum, Adiana Mutamsari; Yunifiar M, Muhammad Qushai; Sukartiningrum, Septhia Dwi; Nasronudin; Kameoka, Masanori

    2015-02-01

    Although HIV-1 drug resistance is a major obstacle in Indonesia, information on drug resistance is limited. In this study, the viral subtype and appearance of drug resistance mutations in the HIV-1 protease (PR) and reverse transcriptase (RT) genes were determined among drug-treated, HIV-1-infected patients in Surabaya. HIV-1 patients who received antiretroviral therapy (ART) more than 2 years were randomly recruited regardless of the viral load or ART failure. Fifty-eight HIV-1 PR genes and 53 RT genes were sequenced. CRF01_AE viruses were identified as the predominant strain. Major drug resistance mutations were not detected in the PR genes. In contrast, 37.7% (20/53) of the participants had one or more major drug resistance mutations in the RT genes, predominantly M184V (28.3%), K103N (11.3%), and thymidine analogue mutations (TAMs) (20.8%). The high prevalence of drug resistance mutations in RT genes indicated the necessity of monitoring the effectiveness of ART in Indonesia.

  17. Reverse transcriptase polymerase chain reaction on fine needle aspirates for rapid detection of translocations in synovial sarcoma.

    PubMed

    Nilsson, G; Wang, M; Wejde, J; Kanter, L; Karlén, J; Tani, E; Kreicbergs, A; Larsson, O

    1998-01-01

    To evaluate the utilization of fine needle aspiration (FNA) biopsy to obtain material for reverse-transcriptase polymerase chain reaction (RT-PCR) in the detection of the t(X;18)(p11.2;q11.2) translocation in synovial sarcomas. We applied RT-PCR to detection of synovial sarcoma fusion gene transcripts on fine needle aspirates. Five clinical samples were first analyzed: one was a tumor previously diagnosed as malignant hemangiopericytoma, one was a poorly defined tumor, and three were suspected synovial sarcomas. FNA material was transferred directly to the RT-PCR reaction tube without RNA extraction. The t(X;18) translocation could be detected on the limited amount of material that FNA provides. In each of the cases studied the representivity of the tumor samples was confirmed microscopically. Our protocol permits analysis directly on representative samples without extraction of RNA. The results imply that RT-PCR offers reliable detection of sarcoma fusion gene transcripts on fine needle aspirates. The procedure, apart from being applicable to outpatients, is rapid and sensitive.

  18. Effect of saliva stabilisers on detection of porcine reproductive and respiratory syndrome virus in oral fluid by quantitative reverse transcriptase real-time PCR.

    PubMed

    Decorte, Inge; Van der Stede, Yves; Nauwynck, Hans; De Regge, Nick; Cay, Ann Brigitte

    2013-08-01

    This study evaluated the effect of extraction-amplification methods, storage temperature and saliva stabilisers on detection of porcine reproductive and respiratory syndrome virus (PRRSV) RNA by quantitative reverse transcriptase real-time PCR (qRT-PCR) in porcine oral fluid. The diagnostic performance of different extraction-amplification methods was examined using a dilution series of oral fluid spiked with PRRSV. To determine RNA stability, porcine oral fluid, with or without commercially available saliva stabilisers, was spiked with PRRSV, stored at 4°C or room temperature and tested for the presence of PRRSV RNA by qRT-PCR. PRRSV RNA could be detected in oral fluid using all extraction-amplification combinations, but the limit of detection varied amongst different combinations. Storage temperature and saliva stabilisers had an effect on the stability of PRRSV RNA, which could only be detected for 7 days when PRRSV spiked oral fluid was kept at 4°C or stabilised at room temperature with a commercial mRNA stabiliser. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dongwen; Chung, Suhman; Miller, Maria

    2012-06-19

    The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intactmore » RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.« less

  20. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA.

    PubMed

    Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin

    2010-01-01

    The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.

  1. A novel Met-to-Thr mutation in the YMDD motif of reverse transcriptase from feline immunodeficiency virus confers resistance to oxathiolane nucleosides.

    PubMed Central

    Smith, R A; Remington, K M; Lloyd, R M; Schinazi, R F; North, T W

    1997-01-01

    Variants of feline immunodeficiency virus (FIV) that possess a unique methionine-to-threonine mutation within the YMDD motif of reverse transcriptase (RT) were selected by culturing virus in the presence of inhibitory concentrations of (-)-beta-L-2',3'-dideoxy-5-fluoro-3'-thiacytidine [(-)-FTC]. The mutants were resistant to (-)-FTC and (-)-beta-L-2',3'-dideoxy-3'-thiacytidine (3TC) and additionally exhibited low-level resistance to 2',3'-dideoxycytidine (ddC). DNA sequence analysis of the RT-encoding region of the pol gene amplified from resistant viruses consistently identified a Met-to-Thr mutation in the YMDD motif. Purified RT from the mutants was also resistant to the 5'-triphosphate forms of 3TC, (-)-FTC, and ddC. Site-directed mutants of FIV were engineered which contain either the novel Met-to-Thr mutation or the Met-to-Val mutation seen in oxathiolane nucleoside-resistant HIV-1. Both site-directed mutants displayed resistance to 3TC, thus confirming the role of these mutations in the resistance of FIV to beta-L-3'-thianucleosides. PMID:9032372

  2. A Laccase with HIV-1 Reverse Transcriptase Inhibitory Activity from the Broth of Mycelial Culture of the Mushroom Lentinus tigrinus

    PubMed Central

    Xu, LiJing; Wang, HeXiang; Ng, TziBun

    2012-01-01

    A 59 kDa laccase with inhibitory activity against HIV-1 reverse transcriptase (IC50 = 2.4 μM) was isolated from the broth of mycelial culture of the mushroom Lentinus tigrinus. The isolation procedure involved ion exchange chromatography on DEAE-cellulose and CM-cellulose, and gel filtration by fast protein liquid chromatography on Superdex 75. The laccase was adsorbed on both types of ion exchangers. About 95-fold purification was achieved with a 25.9% yield of the enzyme. The procedure resulted in a specific enzyme activity of 76.6 U/mg. Its N-terminal amino acid sequence was GIPDLHDLTV, which showed little similarity to other mushroom laccase and other Lentinus tigrinus strain laccase. Its characteristics were different from previously reported laccase of other Lentinus tigrinus strain. Maximal laccase activity was observed at a pH of 4 and at a temperature of 60°C, respectively. This study yielded the information about the potentially exploitable activities of Lentinus tigrinus laccase. PMID:22536022

  3. The Reverse Transcriptases Associated with CRISPR-Cas Systems.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco; González-Delgado, Alejandro

    2017-08-02

    CRISPR (clustered regularly interspaced short palindromic repeats) and associated proteins (Cas) act as adaptive immune systems in bacteria and archaea. Some CRISPR-Cas systems have been found to be associated with putative reverse transcriptases (RT), and an RT-Cas1 fusion associated with a type III-B system has been shown to acquire RNA spacers in vivo. Nevertheless, the origin and evolutionary relationships of these RTs and associated CRISPR-Cas systems remain largely unknown. We performed a comprehensive phylogenetic analysis of these RTs and associated Cas1 proteins, and classified their CRISPR-Cas modules. These systems were found predominantly in bacteria, and their presence in archaea may be due to a horizontal gene transfer event. These RTs cluster into 12 major clades essentially restricted to particular phyla, suggesting host-dependent functioning. The RTs and associated Cas1 proteins may have largely coevolved. They are, therefore, subject to the same selection pressures, which may have led to coadaptation within particular protein complexes. Furthermore, our results indicate that the association of an RT with a CRISPR-Cas system has occurred on multiple occasions during evolution.

  4. Direct and quantitative detection of HIV-1 RNA in human plasma with a branched DNA signal amplification assay.

    PubMed

    Urdea, M S; Wilber, J C; Yeghiazarian, T; Todd, J A; Kern, D G; Fong, S J; Besemer, D; Hoo, B; Sheridan, P J; Kokka, R

    1993-11-01

    To determine the relative effect of sample matrix on the quantitation of HIV RNA in plasma. Two HIV-positive specimens were diluted into five and 10 different HIV-negative plasma samples, respectively. Branched DNA signal amplification technology and reverse-transcriptase polymerase chain reaction were used to measure the viral load. In one sample the viral load by polymerase chain reaction ranged from undetectable to 1.9 x 10(5) copies/ml, and the branched DNA results ranged from 2.6 x 10(4) to 4.2 x 10(4) HIV RNA equivalent/ml. In the other sample the corresponding figures were 6.3 x 10(4) to 5.5 x 10(5) copies/ml and 5.7 x 10(4) to 7.5 x 10(4) HIV RNA equivalents/ml. In contrast to reverse-transcriptase polymerase chain reaction the branched DNA signal amplification assay does not require a separate extraction step or enzymatic amplification of the target. Therefore this measurement is less affected by the sample matrix and the signal generated is directly proportional to the viral load.

  5. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo

    PubMed Central

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M.; Weissman, Jonathan S.; Rouskin, Silvi

    2017-01-01

    Coupling structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structural studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduces biases and necessitates population-average assessments of RNA structure. Here we present dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase (TGIRT). DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in non-canonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs to their mature isoforms. These applications illustrate DMS-MaPseq’s capacity to dramatically expand in vivo analysis of RNA structure. PMID:27819661

  6. Micronuclei induced by reverse transcriptase inhibitors in mononucleated and binucleated cells as assessed by the cytokinesis-block micronucleus assay

    PubMed Central

    2010-01-01

    This study evaluated the clastogenic and/or aneugenic potential of three nucleoside reverse transcriptase inhibitors (zidovudine - AZT, lamivudine - 3TC and stavudine - d4T) using the cytokinesis-block micronucleus (CBMN) assay in human lymphocyte cultures. All three inhibitors produced a positive response when tested in binucleated cells. The genotoxicity of AZT and 3TC was restricted to binucleated cells since there was no significant increase in the frequency of micronuclei in mononucleated cells. This finding indicated that AZT and 3TC caused chromosomal breakage and that their genotoxicity was related to a clastogenic action. In addition to the positive response observed with d4T in binucleated cells, this drug also increased the frequency of micronuclei in mononucleated cells, indicating clastogenic and aneugenic actions. Since the structural differences between AZT and 3TC and AZT and d4T involve the 3' position in the 2'-deoxyribonucleoside and in an unsaturated 2',3',dideoxyribose, respectively, we suggest that an unsaturated 2', 3', dideoxyribose is responsible for the clastogenic and aneugenic actions of d4T. PMID:21637587

  7. Characterization of UC781-Tenofovir Combination Gel Products for HIV-1 Infection Prevention in an Ex Vivo Ectocervical Model

    PubMed Central

    Cost, Marilyn; Dezzutti, Charlene S.; Clark, Meredith R.; Friend, David R.; Akil, Ayman

    2012-01-01

    HIV continues to be a problem worldwide. Topical vaginal microbicides represent one option being evaluated to stop the spread of HIV. With drug candidates that have a specific action against HIV now being studied, it is important that, when appropriate and based on the mechanism of action, the drug permeates the tissue so that it can be delivered to specific targets which reside there. Novel formulations of the nucleotide reverse transcriptase inhibitor tenofovir (TFV) and the nonnucleoside reverse transcriptase inhibitor UC781 have been developed and evaluated here. Gels with three distinct rheological properties were prepared. The three gels released both UC781 and TFV under in vitro conditions at concentrations equal to or above the reported 50% effective concentrations (EC50s). The drug concentrations in ectocervical tissues were well in excess of the reported EC50s. The gels maintain ectocervical viability and prevent infection of ectocervical explants after a HIV-1 challenge. This study successfully demonstrates the feasibility of using this novel combination of antiretroviral agents in an aqueous gel as an HIV infection preventative. PMID:22430977

  8. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    PubMed

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  9. Efficacy and safety of TMC278 in antiretroviral-naive HIV-1 patients: week 96 results of a phase IIb randomized trial.

    PubMed

    Pozniak, Anton L; Morales-Ramirez, Javier; Katabira, Elly; Steyn, Dewald; Lupo, Sergio H; Santoscoy, Mario; Grinsztejn, Beatriz; Ruxrungtham, Kiat; Rimsky, Laurence T; Vanveggel, Simon; Boven, Katia

    2010-01-02

    TMC278 is a next-generation nonnucleoside reverse transcriptase inhibitor highly active against wild-type and nonnucleoside reverse transcriptase inhibitor-resistant HIV-1 in vitro. The week 96 analysis of TMC278-C204, a large dose-ranging study of TMC278 in treatment-naive HIV-1-infected patients, is presented. Phase IIb randomized trial. Three hundred sixty-eight patients were randomized and treated with three blinded once-daily TMC278 doses 25, 75 or 150 mg, or an open-label, active control, efavirenz 600 mg once daily, all with two nucleoside reverse transcriptase inhibitors. The primary analysis was at week 48. No TMC278 dose-response relationship for efficacy and safety was observed. TMC278 demonstrated potent antiviral efficacy comparable with efavirenz over 48 weeks that was sustained to week 96 (76.9-80.0% and 71.4-76.3% of TMC278-treated patients with confirmed viral load <50 copies/ml, respectively; time-to-loss of virological-response algorithm). Median increases from baseline in CD4 cell count with TMC278 at week 96 (138.0-149.0 cells/microl) were higher than at week 48 (108.0-123.0 cells/microl). All TMC278 doses were well tolerated. The incidences of the most commonly reported grade 2-4 adverse events at least possibly related to study medication, including nausea, dizziness, abnormal dreams/nightmare, dyspepsia, asthenia, rash, somnolence and vertigo, were low and lower with TMC278 than with efavirenz. Incidences of serious adverse events, grade 3 or 4 adverse events and discontinuations due to adverse events were similar among groups. All TMC278 doses demonstrated potent and sustained efficacy comparable with efavirenz in treatment-naive patients over 96 weeks. TMC278 was well tolerated with lower incidences of neurological and psychiatric adverse events, rash and lower lipid elevations than those with efavirenz. TMC278 25 mg once daily was selected for further clinical development.

  10. Deep sequencing analysis of HIV-1 reverse transcriptase at baseline and time of failure in patients receiving rilpivirine in the phase III studies ECHO and THRIVE.

    PubMed

    Van Eygen, Veerle; Thys, Kim; Van Hove, Carl; Rimsky, Laurence T; De Meyer, Sandra; Aerssens, Jeroen; Picchio, Gaston; Vingerhoets, Johan

    2016-05-01

    Minority variants (1.0-25.0%) were evaluated by deep sequencing (DS) at baseline and virological failure (VF) in a selection of antiretroviral treatment-naïve, HIV-1-infected patients from the rilpivirine ECHO/THRIVE phase III studies. Linkage between frequently emerging resistance-associated mutations (RAMs) was determined. DS (llIumina®) and population sequencing (PS) results were available at baseline for 47 VFs and time of failure for 48 VFs; and at baseline for 49 responders matched for baseline characteristics. Minority mutations were accurately detected at frequencies down to 1.2% of the HIV-1 quasispecies. No baseline minority rilpivirine RAMs were detected in VFs; one responder carried 1.9% F227C. Baseline minority mutations associated with resistance to other non-nucleoside reverse transcriptase inhibitors (NNRTIs) were detected in 8/47 VFs (17.0%) and 7/49 responders (14.3%). Baseline minority nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) RAMs M184V and L210W were each detected in one VF (none in responders). At failure, two patients without NNRTI RAMs by PS carried minority rilpivirine RAMs K101E and/or E138K; and five additional patients carried other minority NNRTI RAMs V90I, V106I, V179I, V189I, and Y188H. Overall at failure, minority NNRTI RAMs and NRTI RAMs were found in 29/48 (60.4%) and 16/48 VFs (33.3%), respectively. Linkage analysis showed that E138K and K101E were usually not observed on the same viral genome. In conclusion, baseline minority rilpivirine RAMs and other NNRTI/NRTI RAMs were uncommon in the rilpivirine arm of the ECHO and THRIVE studies. DS at failure showed emerging NNRTI resistant minority variants in seven rilpivirine VFs who had no detectable NNRTI RAMs by PS. © 2015 Wiley Periodicals, Inc.

  11. A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge

    PubMed Central

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.

    2014-01-01

    Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013

  12. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge.

    PubMed

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa

    2014-02-01

    Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.

  13. The HEPT Analogue WPR-6 Is Active against a Broad Spectrum of Nonnucleoside Reverse Transcriptase Drug-Resistant HIV-1 Strains of Different Serotypes.

    PubMed

    Xu, Weisi; Zhao, Jianxiong; Sun, Jianping; Yin, Qianqian; Wang, Yan; Jiao, Yang; Liu, Junyi; Jiang, Shibo; Shao, Yiming; Wang, Xiaowei; Ma, Liying

    2015-08-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are important components of the highly active antiretroviral therapy (HAART) used to treat human immunodeficiency type 1 virus (HIV-1). However, because of the emergence of drug resistance and the adverse effects of current anti-HIV drugs, it is essential to develop novel NNRTIs with an excellent safety profile, improved activity against NNRTI-resistant viruses, and enhanced activity against clinical isolates of different subtypes. Here, we have identified 1-[(benzyloxy)methyl]-6-(3,5-dimethylbenzyl)-5-iodopyrimidine-2,4(1H,3H)-dione (WPR-6), a novel NNRTI with a 50% effective concentration (EC50) of 2 to 4 nM against laboratory-adapted HIV-1 strain SF33 and an EC50 of 7 to 14 nM against nucleoside reverse transcriptase inhibitor-resistant HIV-1 strain 7391 with a therapeutic index of >1 × 10(4). A panel of five representative clinical virus isolates of different subtypes circulating predominantly in China was highly sensitive to WPR-6, with EC50s ranging from 1 to 6 nM. In addition, WPR-6 showed excellent antiviral potency against the most prevalent NNRTI-resistant viruses containing the K103N and Y181C mutations. To determine whether WPR-6 selects for novel resistant mutants, in vitro resistance selection was conducted with laboratory-adapted HIV-1 strain SF33 on MT-4 cells. The results demonstrated that V106I and Y188L were the two dominant NNRTI-associated resistance mutations detected in the breakthrough viruses. Taken together, these in vitro data indicate that WPR-6 has greater efficacy than the reference HEPT analogue TNK651 and the marketed drug nevirapine against HIV-1. However, to develop it as a new NNRTI, further improvement of its pharmacological properties is warranted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Clinical and virologic follow-up in perinatally HIV-1-infected children and adolescents in Madrid with triple-class antiretroviral drug-resistant viruses.

    PubMed

    Rojas Sánchez, P; de Mulder, M; Fernandez-Cooke, E; Prieto, L; Rojo, P; Jiménez de Ory, S; José Mellado, M; Navarro, M; Tomas Ramos, J; Holguín, Á

    2015-06-01

    Drug resistance mutations compromise the success of antiretroviral treatment in human immunodeficiency virus type 1 (HIV-1)-infected children. We report the virologic and clinical follow-up of the Madrid cohort of perinatally HIV-infected children and adolescents after the selection of triple-class drug-resistant mutations (TC-DRM). We identified patients from the cohort carrying HIV-1 variants with TC-DRM to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors and protease inhibitors according to IAS-USA-2013. We recovered pol sequences or resistance profiles from 2000 to 2011 and clinical-immunologic-virologic data from the moment of TC-DRM detection until December 2013. Viruses harbouring TC-DRM were observed in 48 (9%) of the 534 children and adolescents from 2000 to 2011, rising to 24.4% among those 197 with resistance data. Among them, 95.8% were diagnosed before 2003, 91.7% were Spaniards, 89.6% carried HIV-1-subtype B and 75% received mono/dual therapy as first regimen. The most common TC-DRM present in ≥50% of them were D67NME, T215FVY, M41L and K103N (retrotranscriptase) and L90M (protease). The susceptibility to darunavir, tipranavir, etravirine and rilpivirine was 67.7%, 43.7%, 33.3% and 33.3%, respectively, and all reported high resistance to didanosine, abacavir and nelfinavir. Despite the presence of HIV-1 resistance mutations to the three main antiretroviral families in our paediatric cohort, some drugs maintained their susceptibility, mainly the new protease inhibitors (tipranavir and darunavir) and nonnucleoside reverse transcriptase inhibitors (etravirine and rilpivirine). These data will help to improve the clinical management of HIV-infected children with triple resistance in Spain. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Detection of Anti-Hepatitis B Virus Drug Resistance Mutations Based on Multicolor Melting Curve Analysis.

    PubMed

    Mou, Yi; Athar, Muhammad Ammar; Wu, Yuzhen; Xu, Ye; Wu, Jianhua; Xu, Zhenxing; Hayder, Zulfiqar; Khan, Saeed; Idrees, Muhammad; Nasir, Muhammad Israr; Liao, Yiqun; Li, Qingge

    2016-11-01

    Detection of anti-hepatitis B virus (HBV) drug resistance mutations is critical for therapeutic decisions for chronic hepatitis B virus infection. We describe a real-time PCR-based assay using multicolor melting curve analysis (MMCA) that could accurately detect 24 HBV nucleotide mutations at 10 amino acid positions in the reverse transcriptase region of the HBV polymerase gene. The two-reaction assay had a limit of detection of 5 copies per reaction and could detect a minor mutant population (5% of the total population) with the reverse transcriptase M204V amino acid mutation in the presence of the major wild-type population when the overall concentration was 10 4 copies/μl. The assay could be finished within 3 h, and the cost of materials for each sample was less than $10. Clinical validation studies using three groups of samples from both nucleos(t)ide analog-treated and -untreated patients showed that the results for 99.3% (840/846) of the samples and 99.9% (8,454/8,460) of the amino acids were concordant with those of Sanger sequencing of the PCR amplicon from the HBV reverse transcriptase region (PCR Sanger sequencing). HBV DNA in six samples with mixed infections consisting of minor mutant subpopulations was undetected by the PCR Sanger sequencing method but was detected by MMCA, and the results were confirmed by coamplification at a lower denaturation temperature-PCR Sanger sequencing. Among the treated patients, 48.6% (103/212) harbored viruses that displayed lamivudine monoresistance, adefovir monoresistance, entecavir resistance, or lamivudine and adefovir resistance. Among the untreated patients, the Chinese group had more mutation-containing samples than did the Pakistani group (3.3% versus 0.56%). Because of its accuracy, rapidness, wide-range coverage, and cost-effectiveness, the real-time PCR assay could be a robust tool for the detection if anti-HBV drug resistance mutations in resource-limited countries. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Nelfinavir and non-nucleoside reverse transcriptase inhibitor-based salvage regimens in heavily HIV pretreated patients

    PubMed Central

    Baril, Jean-Guy; Lefebvre, Eric A; Lalonde, Richard G; Shafran, Stephen D; Conway, Brian

    2003-01-01

    OBJECTIVE: To assess the efficacy of nelfinavir mesylate (NFV) in combination with delavirdine mesylate (DLV) or efavirenz (EFV) and other antiretroviral agents following virological failure on other protease inhibitor (PI)-based regimens. DESIGN: Multicentre, retrospective chart review. METHODS: One hundred-one patients who were naive to both NFV and non-nucleoside reverse transcriptase inhibitors (NNRTIs) and who initiated NFV plus DLV or EFV-based salvage regimens were reviewed. Response to treatment was defined as a reduction in HIV ribonucleic acid (RNA) levels to unquantifiable levels (less than 50 copies/mL, less than 400 copies/mL, less than 500 copies/mL) on at least one occasion after the initiation of salvage therapy. Baseline correlates of response, including prior duration of HIV infection, prior number of regimens, viral load and CD4 cell counts were also evaluated. RESULTS: Patients had a mean duration of HIV infection of 10 years, a mean duration of prior therapy of four years, a median of four prior nucleoside reverse transcriptase inhibitors and a median of two prior PIs. At the time of review the mean duration of salvage therapy was 63.4 weeks. Virological suppression was achieved in 59 (58.4%) patients within a mean of eight weeks and maintained for a mean of 44.9 weeks (the mean follow-up was 78 weeks). Of the non-responders, 16 (38%) achieved a less than 1 log10 decrease in HIV RNA levels. Although there was no association between baseline correlates, response rate (75.7%) was significantly higher in patients with HIV RNA levels of 50,000 copies/mL or lower and CD4 counts greater than 200 cells/mm3. CONCLUSION: NFV/NNRTI-based highly active antiretroviral therapy regimens are an effective therapy in many patients who have experienced virological breakthroughs on at least one prior PI-based regimen. PMID:18159457

  17. In Vitro Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor

    PubMed Central

    Feng, Meizhen; Falgueyret, Jean-Pierre; Tawa, Paul; Witmer, Marc; DiStefano, Daniel; Li, Yuan; Burch, Jason; Sachs, Nancy; Lu, Meiqing; Cauchon, Elizabeth; Campeau, Louis-Charles; Grobler, Jay; Yan, Youwei; Ducharme, Yves; Côté, Bernard; Asante-Appiah, Ernest; Hazuda, Daria J.; Miller, Michael D.

    2014-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent. PMID:24379202

  18. Protein-mediated antagonism between HIV reverse transcriptase ligands nevirapine and MgATP.

    PubMed

    Zheng, Xunhai; Mueller, Geoffrey A; DeRose, Eugene F; London, Robert E

    2013-06-18

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) play a central role in the treatment of AIDS, but their mechanisms of action are incompletely understood. The interaction of the NNRTI nevirapine (NVP) with HIV-1 reverse transcriptase (RT) is characterized by a preference for the open conformation of the fingers/thumb subdomains, and a reported variation of three orders of magnitude between the binding affinity of NVP for RT in the presence or absence of primer/template DNA. To investigate the relationship between conformation and ligand binding, we evaluated the use of methionine NMR probes positioned near the tip of the fingers or thumb subdomains. Such probes would be expected to be sensitive to changes in the local environment depending on the fractions of open and closed RT. Comparisons of the NMR spectra of three conservative mutations, I63M, L74M, and L289M, indicated that M63 showed the greatest shift sensitivity to the addition of NVP. The exchange kinetics of the M63 resonance are fast on the chemical shift timescale, but become slow in the presence of NVP due to the slow binding of RT with the inhibitor. The simplest model consistent with this behavior involves a rapid open/closed equilibrium coupled with a slow interaction of the inhibitor with the open conformation. Studies of RT in the presence of both NVP and MgATP indicate a strong negative cooperativity. Binding of MgATP reduces the fraction of RT bound to NVP, as indicated by the intensity of the NVP-perturbed M230 resonance, and enhances the dissociation rate constant of the NVP, resulting in an increase of the open/closed interconversion rate, so that the M63 resonance moves into the fast/intermediate-exchange regime. Protein-mediated interactions appear to explain most of the affinity variation of NVP for RT. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. High Rates of Baseline Drug Resistance and Virologic Failure Among ART-naive HIV-infected Children in Mali.

    PubMed

    Crowell, Claudia S; Maiga, Almoustapha I; Sylla, Mariam; Taiwo, Babafemi; Kone, Niaboula; Oron, Assaf P; Murphy, Robert L; Marcelin, Anne-Geneviève; Traore, Ban; Fofana, Djeneba B; Peytavin, Gilles; Chadwick, Ellen G

    2017-11-01

    Limited data exist on drug resistance and antiretroviral treatment (ART) outcomes in HIV-1-infected children in West Africa. We determined the prevalence of baseline resistance and correlates of virologic failure (VF) in a cohort of ART-naive HIV-1-infected children <10 years of age initiating ART in Mali. Reverse transcriptase and protease genes were sequenced at baseline (before ART) and at 6 months. Resistance was defined according to the Stanford HIV Genotypic Resistance database. VF was defined as viral load ≥1000 copies/mL after 6 months of ART. Logistic regression was used to evaluate factors associated with VF or death >1 month after enrollment. Post hoc, antiretroviral concentrations were assayed on baseline samples of participants with baseline resistance. One-hundred twenty children with a median age 2.6 years (interquartile range: 1.6-5.0) were included. Eighty-eight percent reported no prevention of mother-to-child transmission exposure. At baseline, 27 (23%), 4 (3%) and none had non-nucleoside reverse transcriptase inhibitor (NNRTI), nucleoside reverse transcriptase inhibitor or protease inhibitor resistance, respectively. Thirty-nine (33%) developed VF and 4 died >1 month post-ART initiation. In multivariable analyses, poor adherence [odds ratio (OR): 6.1, P = 0.001], baseline NNRTI resistance among children receiving NNRTI-based ART (OR: 22.9, P < 0.001) and protease inhibitor-based ART initiation among children without baseline NNRTI resistance (OR: 5.8, P = 0.018) were significantly associated with VF/death. Ten (38%) with baseline resistance had detectable levels of nevirapine or efavirenz at baseline; 7 were currently breastfeeding, but only 2 reported maternal antiretroviral use. Baseline NNRTI resistance was common in children without reported NNRTI exposure and was associated with increased risk of treatment failure. Detectable NNRTI concentrations were present despite few reports of maternal/infant antiretroviral use.

  20. High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea.

    PubMed

    Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M; Myatt, Mark; Hearps, Anna C; Jordan, Michael R

    2017-01-01

    Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented.

  1. Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments.

    PubMed

    Techathuvanan, Chayapa; Draughon, Frances Ann; D'Souza, Doris Helen

    2011-02-01

    Novel rapid Salmonella detection assays without the need for sophisticated equipment or labor remain in high demand. Real-time reverse transcriptase PCR (RT-PCR) assays, though rapid and sensitive, require expensive thermocyclers, while a novel RT loop-mediated isothermal amplification (RT-LAMP) method requires only a simple water bath. Our objective was to compare the detection sensitivity of Salmonella Typhimurium from the pork processing environment by RT-LAMP, RT-PCR, and culture-based assays. Carcass and surface swabs and carcass rinses were obtained from a local processing plant. Autoclaved carcass rinses (500 ml) were spiked with Salmonella Typhimurium and filtered. Filters were placed in stomacher bags containing tetrathionate broth (TTB) and analyzed with or without 10-h enrichment at 37 °C. Natural swabs were stomached with buffered peptone water, and natural carcass rinses were filtered, preenriched, and further enriched in TTB. Serially-diluted enriched samples were enumerated by spread plating on xylose lysine Tergitol 4 agar. RNA was extracted from 5 ml of enriched TTB with TRIzol. RT-LAMP assay using previously described invA primers was conducted at 62 °C for 90 min in a water bath with visual detection and by gel electrophoresis. SYBR Green I-based-real-time RT-PCR was carried out with invA primers followed by melt temperature analysis. The results of RT-LAMP detection for spiked carcass rinses were comparable to those of RT-PCR and cultural plating, with detection limits of 1 log CFU/ml, although they were obtained significantly faster, within 24 h including preenrichment and enrichment. RT-LAMP showed 4 of 12 rinse samples positive, while RT-PCR showed 1 of 12 rinse samples positive. For swabs, 6 of 27 samples positive by RT-LAMP and 5 of 27 by RT-PCR were obtained. This 1-day RT-LAMP assay shows promise for routine Salmonella screening by the pork industry. Copyright ©, International Association for Food Protection

  2. Transmitted drug resistance in patients with acute/recent HIV infection in Brazil.

    PubMed

    Ferreira, Ana Cristina G; Coelho, Lara E; Grinsztejn, Eduarda; Jesus, Carlos S de; Guimarães, Monick L; Veloso, Valdiléa G; Grinsztejn, Beatriz; Cardoso, Sandra W

    The widespread use of antiretroviral therapy increased the transmission of antiretroviral resistant HIV strains. Antiretroviral therapy initiation during acute/recent HIV infection limits HIV reservoirs and improves immune response in HIV infected individuals. Transmitted drug resistance may jeopardize the early goals of early antiretroviral treatment among acute/recent HIV infected patients. Patients with acute/recent HIV infection who underwent resistance test before antiretroviral treatment initiation were included in this analysis. HIV-1 sequences were obtained using an in house protease/reverse transcriptase genotyping assay. Transmitted drug resistance was identified according to the Stanford HIV Database for Transmitted Drug Resistance Mutations, based on WHO 2009 surveillance list, and HIV-1 subtyping according to Rega HIV-1 subtyping tool. Comparison between patients with and without transmitted drug resistance was made using Kruskal-Wallis and Chi-square tests. Forty-three patients were included, 13 with acute HIV infection and 30 with recent HIV infection. The overall transmitted drug resistance prevalence was 16.3% (95% confidence interval [CI]: 8.1-30.0%). The highest prevalence of resistance (11.6%, 95% CI: 8.1-24.5) was against non-nucleoside reverse transcriptase inhibitors, and K103N was the most frequently identified mutation. The high prevalence of nonnucleoside reverse transcriptase inhibitors resistance indicates that efavirenz-based regimen without prior resistance testing is not ideal for acutely/recently HIV-infected individuals in our setting. In this context, the recent proposal of including integrase inhibitors as a first line regimen in Brazil could be an advantage for the treatment of newly HIV infected individuals. However, it also poses a new challenge, since integrase resistance test is not routinely performed for antiretroviral naive individuals. Further studies on transmitted drug resistance among acutely/recently HIV-infected are needed to inform the predictors of transmitted resistance and the antiretroviral therapy outcomes among these population. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Efficacy and durability of nevirapine in antiretroviral drug näive patients.

    PubMed

    Lange, Joep M A

    2003-09-01

    Nevirapine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) that was first reported in the scientific literature in 1990. Varying doses of nevirapine (NVP) and a number of regimens containing this NNRTI have been studied in antiretroviral (ARV) näive patients. Four key studies have compared the efficacy and safety of triple drug regimens containing NVP in ARV näive, HIV-1 infected patients. The INCAS study was the first demonstration of how to use NVP in an effective and durable manner: as a component of a triple drug regimen. The COMBINE Study was a comparison of protease inhibitor (PI)-based and NVP-based triple regimens. The Atlantic Study is comparing the safety and efficacy of three triple drug regimens in ARV näive patients. In this study, treatment consists of a divergent drug regimen (PI and nucleoside reverse transcriptase inhibitors, NRTIs) targeting both HIV-1 protease and reverse transcriptase or a convergent regimen targeting reverse transcriptase alone (three NRTIs or two NRTIs plus a NNRTI). A clinical endpoint study (BI 1090) compared the efficacy and durability of multi-drug regimens in ARV näive patients with high baseline plasma HIV-1 RNA levels (pVLs) and low peripheral blood CD4+ lymphocyte counts. Data from these studies confirm that triple regimens containing NVP suppressed viral replication for up to one year, even when the ARV näive patients had low CD4+ cell counts at baseline. Nevirapine-containing regimens suppressed pVLs to < 50 copies/ mL in approximately 50% of patients in the studies discussed (Intent to Treat analyses). Data from 96 weeks of follow up in the Atlantic Study demonstrates that the regimens containing didanosine and stavudine plus indinavir or NVP were significantly more successful in suppressing pVLs to < 50 copies/mL during this period than a regimen composed of these NRTIs and lamivudine (p < or = 0.001). As with other ARV drugs, NVP should always be used as part of a fully suppressive ARV regimen. When used in this way, it is an effective ARV drug, which contributes to durable virological and immunological responses in approximately half of all treated patients. Nevirapine-containing regimens are effective in patients with advanced HIV-1 infection, i.e., low CD4+ cell counts. Data will soon be available from the 2NN Study that compares the efficacy and safety of four different regimens using NVP once daily, NVP twice daily, efavirenz once daily or a combination of NVP and efavirenz. All four arms of the study include a backbone of stavudine and lamivudine.

  4. Determining Resistance of Toxoplasma gondii Oocysts to UV Disinfection Using Cell Culture and a Mouse Bioassay

    USDA-ARS?s Scientific Manuscript database

    The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated irradiated oocysts by three assays: a SCID mouse biassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reverse-transcriptase real-t...

  5. Bioinformatic analysis of variability of Newcastle disease virus diagnostic primers and probes and the potential for false negative detection

    USDA-ARS?s Scientific Manuscript database

    The use of reverse transcriptase polymerase chain reaction (RT-PCR) or other molecular diagnostic methods is commonly used for the primary diagnosis of Newcastle disease virus (NDV). However, NDV in nature has a range of virulence, and the low virulence viruses must be differentiated from virulent ...

  6. Gene expression analysis of wood decay fungus Fibroporia Radiculosa grown In ACQ-treated wood

    Treesearch

    Ayfer Akgul; Ali Akgul; Juliet D. Diehl Tang

    2018-01-01

    Copper-tolerant brown-rot fungi are able todegrade wood treated with copper or copper-based wood preservatives. This research used quantitative reverse transcriptase polymerase chain reaction to explore what genes of the brown-rot fungus, Fibroporia radiculosa, were expressed when the fungus was overcoming the wood preservatives and decaying the...

  7. 1-Benzyl-2-(1H-indol-3-yl)-5-oxo-pyrrolidine-2-carbonitrile.

    PubMed

    Tamazyan, Rafael; Armen, Ayvazyan; Ashot, Martirosyan; Sahak, Gasparyan; Schinazi, Raymond

    2008-01-04

    In the title compound, C(20)H(17)N(3)O, a potential anti-human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse-transcriptase inhibitor, the pyrrolidine ring has an envelope conformation. In the crystal structure, adjacent mol-ecules are connected into infinite chains via an N-H⋯O hydrogen bond.

  8. Problem-solving test: catalytic activities of a human nuclear enzyme.

    PubMed

    Szeberényi, József

    2011-01-01

    Terms to be familiar with before you start to solve the test: ion exchange chromatography, polynucleotides, oligonucleotides, radioactive labeling, template, primer, DNA polymerase, reverse transcriptase, helicase, nucleoside triphosphates, nucleoside diphosphates, nucleoside monophosphates, nucleosides, 5′-end and 3′-end, bacteriophage, polyacrylamide gel electrophoresis, urea, autoradiography, proofreading, telomerase, endonucleases, exonucleases, primase, topoisomerases, and excinuclease.

  9. Evaluation of primer and probe mismatches in sensitivity of select RRT-PCR tests for avian influenza

    USDA-ARS?s Scientific Manuscript database

    The recent outbreak of pH1N1 in animals highlighted an imperfection of the matrix real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) that has become the primary screening test for avian and swine influenza viruses. Four mismatches in one primer resulted in an important loss of sens...

  10. Design, discovery, modelling, synthesis, and biological evaluation of novel and small, low toxicity s-triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Viira, Birgit; Selyutina, Anastasia; García-Sosa, Alfonso T; Karonen, Maarit; Sinkkonen, Jari; Merits, Andres; Maran, Uko

    2016-06-01

    A set of top-ranked compounds from a multi-objective in silico screen was experimentally tested for toxicity and the ability to inhibit the activity of HIV-1 reverse transcriptase (RT) in cell-free assay and in cell-based assay using HIV-1 based virus-like particles. Detailed analysis of a commercial sample that indicated specific inhibition of HIV-1 reverse transcription revealed that a minor component that was structurally similar to that of the main compound was responsible for the strongest inhibition. As a result, novel s-triazine derivatives were proposed, modelled, discovered, and synthesised, and their antiviral activity and cellular toxicity were tested. Compounds 18a and 18b were found to be efficient HIV-1 RT inhibitors, with an IC50 of 5.6±1.1μM and 0.16±0.05μM in a cell-based assay using infectious HIV-1, respectively. Compound 18b also had no detectable toxicity for different human cell lines. Their binding mode and interactions with the RT suggest that there was strong and adaptable binding in a tight (NNRTI) hydrophobic pocket. In summary, this iterative study produced structural clues and led to a group of non-toxic, novel compounds to inhibit HIV-RT with up to nanomolar potency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Active Methamphetamine Use is Associated with Transmitted Drug Resis-tance to Non-Nucleoside Reverse Transcriptase Inhibitors in Individuals with HIV Infection of Unknown Duration

    PubMed Central

    Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm. Christopher; Smith, Davey M

    2007-01-01

    Background: Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Design: Cross-sectional analysis. Methods: Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq™, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Results: Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Conclusion: Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI. PMID:18923691

  12. Ferrate oxidation of murine leukemia virus reverse transcriptase: identification of the template-primer binding domain.

    PubMed

    Reddy, G; Nanduri, V B; Basu, A; Modak, M J

    1991-08-20

    Treatment of murine leukemia virus reverse transcriptase (MuLV RT) with potassium ferrate, an oxidizing agent known to oxidize amino acids involved in phosphate binding domains of proteins, results in the irreversible inactivation of both the DNA polymerase and the RNase H activities. Significant protection from ferrate-mediated inactivation is observed in the presence of template-primer but not in the presence of substrate deoxynucleoside triphosphates. Furthermore, ferrate-treated enzyme loses template-primer binding activity as judged by UV-mediated cross-linking of radiolabeled DNA. Comparative tryptic peptide mapping by reverse-phase HPLC of native and ferrate-oxidized enzyme indicated the presence of two new peptides eluting at 38 and 57 min and a significant loss of a peptide eluting at 74 min. Purification, amino acid composition, and sequencing of these affected peptides revealed that they correspond to amino acid residues 285-295, 630-640, and 586-599, respectively, in the primary amino acid sequence of MuLV RT. These results indicate that the domains constituted by the above peptides are important for the template-primer binding function in MuLV RT. Peptide I is located in the polymerase domain whereas peptides II and III are located in the RNase H domain. Amino acid sequence analysis of peptides I and II suggested Lys-285 and Cys-635 as the probable sites of ferrate action.

  13. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase.

    PubMed

    Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao

    2017-01-01

    Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface. A rescue experiment with a mutated HIV-1 with RT and IN deleted (ΔRT ΔIN) and IN and RT supplied in trans revealed that the nonenzymatic IN function might be exerted through the IN precursor conjugated with RT (RT-IN). Importantly, the lethal mutations of Tyr15 significantly reduced the RT-IN function and assembly. Taken together, Tyr15 seems to play a key role in facilitating the proper assembly of IN and RT on viral RNA through the RT-IN precursor form. Inhibitors of the IN enzymatic strand transfer function (INSTI) have been applied in combination antiretroviral therapies to treat HIV-1-infected patients. Recently, allosteric IN inhibitors (ALLINIs) that interact with HIV-1 IN residues, the locations of which are distinct from the catalytic sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.

  14. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    PubMed

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  15. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia

    PubMed Central

    Nedellec, Rebecca; Herbeck, Joshua T.; Hunt, Peter W.; Deeks, Steven G.; Mullins, James I.; Anton, Elizabeth D.; Reeves, Jacqueline D.

    2017-01-01

    Abstract Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5. PMID:27604829

  16. HIV-1 Variants and Drug Resistance in Pregnant Women from Bata (Equatorial Guinea): 2012-2013.

    PubMed

    Alvarez, Patricia; Fernández McPhee, Carolina; Prieto, Luis; Martín, Leticia; Obiang, Jacinta; Avedillo, Pedro; Vargas, Antonio; Rojo, Pablo; Benito, Agustín; Ramos, José Tomás; Holguín, África

    2016-01-01

    This is the first study describing drug resistance mutations (DRM) and HIV-1 variants among infected pregnant women in Equatorial Guinea (GQ), a country with high (6.2%) and increasing HIV prevalence. Dried blood spots (DBS) were collected from November 2012 to December 2013 from 69 HIV-1 infected women participating in a prevention of mother-to-child transmission program in the Hospital Regional of Bata and Primary Health Care Centre María Rafols, Bata, GQ. The transmitted (TDR) or acquired (ADR) antiretroviral drug resistance mutations at partial pol sequence among naive or antiretroviral therapy (ART)-exposed women were defined following WHO or IAS USA 2015 lists, respectively. HIV-1 variants were identified by phylogenetic analyses. A total of 38 of 69 HIV-1 specimens were successfully amplified and sequenced. Thirty (79%) belonged to ART-experienced women: 15 exposed to nucleoside reverse transcriptase inhibitors (NRTI) monotherapy, and 15 to combined ART (cART) as first regimen including two NRTI and one non-NRTI (NNRTI) or one protease inhibitor (PI). The TDR rate was only found for PI (3.4%). The ADR rate was 37.5% for NNRTI, 8.7% for NRTI and absent for PI or NRTI+NNRTI. HIV-1 group M non-B variants caused most (97.4%) infections, mainly (78.9%) recombinants: CRF02_AG (55.2%), CRF22_A101 (10.5%), subtype C (10.5%), unique recombinants (5.3%), and A3, D, F2, G, CRF06_cpx and CRF11_cpx (2.6% each). The high rate of ADR to retrotranscriptase inhibitors (mainly to NNRTIs) observed among pretreated pregnant women reinforces the importance of systematic DRM monitoring in GQ to reduce HIV-1 resistance transmission and to optimize first and second-line ART regimens when DRM are present.

  17. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    PubMed Central

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  18. Plasma flow in peripheral region of detached plasma in linear plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less

  19. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  20. Development and Initial Results of a Low Cost, Disposable, Point-of-Care Testing Device for Pathogen Detection

    PubMed Central

    Dugan, Lawrence C.; Baker, Brian R.; Hall, Sara B.; Ebert, Katja; Mioulet, Valerie; Madi, Mikidache; King, Donald P.

    2011-01-01

    Development of small footprint, disposable, fast, and inexpensive devices for pathogen detection in the field and clinic would benefit human and veterinary medicine by allowing evidence-based responses to future out breaks. We designed and tested an integrated nucleic acid extraction and amplification device employing a loop-mediated isothermal amplification (LAMP) or reverse transcriptase-LAMP assay. Our system provides a screening tool with polymerase-chain-reaction-level sensitivity and specificity for outbreak detection, response, and recovery. Time to result is ~90 min. The device utilizes a swab that collects sample and then transfers it to a disc of cellulose-based nucleic acid binding paper. The disc is positioned within a disposable containment tube with a manual loading port. In order to test for the presence of target pathogens, LAMP reagents are loaded through the tube’s port into contact with the sample containing cellulose disc. The reagents then are isothermally heated to 63°C for ~1 h to achieve sequence-specific target nucleic acid amplification. Due to the presence of a colorimetric dye, amplification induces visible color change in the reagents from purple to blue. As initial demonstrations, we detected methicillin resistant Staphylococcus aureus genomic DNA, as well as recombinant and live foot-and-mouth disease virus. PMID:21342806

  1. Meta-analysis and time series modeling allow a systematic review of primary HIV-1 drug-resistant prevalence in Latin America and Caribbean.

    PubMed

    Coelho, Antonio Victor Campos; De Moura, Ronald Rodrigues; Da Silva, Ronaldo Celerino; Kamada, Anselmo Jiro; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; Coelho, Hemílio Fernandes Campos; Crovella, Sergio

    2015-01-01

    Here we review the prevalence of HIV-1 primary drug resistance in Latin America and Caribbean using meta-analysis as well as time-series modeling. We also discuss whether there could be a drawback to HIV/AIDS programs due to drug resistance in Latin America and Caribbean in the next years. We observed that, although some studies report low or moderate primary drug resistance prevalence in Caribbean countries, this evidence needs to be updated. In other countries, such as Brazil and Argentina, the prevalence of drug resistance appears to be rising. Mutations conferring resistance against reverse transcriptase inhibitors were the most frequent in the analyzed populations (70% of all mutational events). HIV-1 subtype B was the most prevalent in Latin America and the Caribbean, although subtype C and B/F recombinants have significant contributions in Argentina and Brazil. Thus, we suggest that primary drug resistance in Latin America and the Caribbean could have been underestimated. Clinical monitoring should be improved to offer better therapy, reducing the risk for HIV-1 resistance emergence and spread, principally in vulnerable populations, such as men who have sex with men transmission group, sex workers and intravenous drug users.

  2. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1989-01-01

    The gene coding for Escherichia coli arginyl-tRNA synthetase (argS) was isolated as a fragment of 2.4 kb after analysis and subcloning of recombinant plasmids from the Clarke and Carbon library. The clone bearing the gene overproduces arginyl-tRNA synthetase by a factor 100. This means that the enzyme represents more than 20% of the cellular total protein content. Sequencing revealed that the fragment contains a unique open reading frame of 1734 bp flanked at its 5' and 3' ends respectively by 247 bp and 397 bp. The length of the corresponding protein (577 aa) is well consistent with earlier Mr determination (about 70 kd). Primer extension analysis of the ArgRS mRNA by reverse transcriptase, located its 5' end respectively at 8 and 30 nucleotides downstream of a TATA and a TTGAC like element (CTGAC) and 60 nucleotides upstream of the unusual translation initiation codon GUG; nuclease S1 analysis located the 3'-end at 48 bp downstream of the translation termination codon. argS has a codon usage pattern typical for highly expressed E. coli genes. With the exception of the presence of a HVGH sequence similar to the HIGH consensus element, ArgRS has no relevant sequence homologies with other aminoacyl-tRNA synthetases. Images PMID:2668891

  3. The biological activity of ABA-1-like protein from Ascaris lumbricoides.

    PubMed

    Muto, R; Imai, S; Tezuka, H; Furuhashi, Y; Fujita, K

    2001-09-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, that is an ABA-1-like protein from Toxocara canis. The clone was sequenced, we constructed the recombinant polyprotein of ALB (rALB14 and rALB7) based on the ALB sequence, and rALB was administrated to BALB/c mice. Fourteen days after inoculation with rALB14 which is the full length of ALB, the elevation of total IgE which we supposed to contain non-specific IgE was observed, and the results were as we expected. Furthermore, in an in-vitro experiment, we confirmed that the spleen cells proliferated when stimulated by rALB14 and concanavalin A. Therefore, the whole conformation of ALB is considered to be involved in the elevation of non-specific IgE, and is involved in the activation of T cells.

  4. In vivo marking of spontaneous or vaccine-induced fibrosarcomas in the domestic house cat, using an adenoviral vector containing a bifunctional fusion protein, GAL-TEK.

    PubMed

    Marini, F C; Cannon, J P; Belmont, J W; Shillitoe, E J; Lapeyre, J N

    1995-09-01

    We evaluated the ability of a replication-deficient, recombinant adenoviral vector to transfer the bifunctional gene GAL-TEK, which expresses a marking/therapeutic gene product, to naturally occurring cat fibrosarcomas in situ. GAL-TEK contains an in-frame fusion of the bacterial LacZ gene for histochemical marking of tumors with beta-galactosidase (beta-Gal) and the HSV tk gene for enzyme-prodrug activation of the prodrug ganciclovir (GCV) to induce selective tumor cell killing. GAL-TEK bifunctional marking and cell killing activities were tested in vitro after adenoviral vector infection of HT1080 human fibrosarcoma cells. The tk activity of GAL-TEK is shown to be almost as potent as HSV tk to catalyze conversion of GCV to GCV nucleotides and promote selective cell killing. Using 8 cats with recurring 2.5-cm2 fibrosarcomas that either arose spontaneously or were induced by vaccine, we determined experimentally the administration routes and times required for optimum GAL-TEK gene transfer by beta-Gal histological staining and reverse transcriptase polymerase chain reaction to the multiple compartments of the growing fibrosarcomas consonant with minimizing collateral infection of neighboring tissues and other unwanted side effects.

  5. From Cells to Virus Particles: Quantitative Methods to Monitor RNA Packaging

    PubMed Central

    Ferrer, Mireia; Henriet, Simon; Chamontin, Célia; Lainé, Sébastien; Mougel, Marylène

    2016-01-01

    In cells, positive strand RNA viruses, such as Retroviridae, must selectively recognize their full-length RNA genome among abundant cellular RNAs to assemble and release particles. How viruses coordinate the intracellular trafficking of both RNA and protein components to the assembly sites of infectious particles at the cell surface remains a long-standing question. The mechanisms ensuring packaging of genomic RNA are essential for viral infectivity. Since RNA packaging impacts on several essential functions of retroviral replication such as RNA dimerization, translation and recombination events, there are many studies that require the determination of RNA packaging efficiency and/or RNA packaging ability. Studies of RNA encapsidation rely upon techniques for the identification and quantification of RNA species packaged by the virus. This review focuses on the different approaches available to monitor RNA packaging: Northern blot analysis, ribonuclease protection assay and quantitative reverse transcriptase-coupled polymerase chain reaction as well as the most recent RNA imaging and sequencing technologies. Advantages, disadvantages and limitations of these approaches will be discussed in order to help the investigator to choose the most appropriate technique. Although the review was written with the prototypic simple murine leukemia virus (MLV) and complex human immunodeficiency virus type 1 (HIV-1) in mind, the techniques were described in order to benefit to a larger community. PMID:27556480

  6. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes

    PubMed Central

    Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M.S.; Reddel, Roger R.; Pickett, Hilda A.

    2014-01-01

    Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres. PMID:24225324

  7. 1-Benzyl-2-(1H-indol-3-yl)-5-oxo­pyrrolidine-2-carbonitrile

    PubMed Central

    Tamazyan, Rafael; Armen, Ayvazyan; Ashot, Martirosyan; Sahak, Gasparyan; Schinazi, Raymond

    2008-01-01

    In the title compound, C20H17N3O, a potential anti-human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse-transcriptase inhibitor, the pyrrolidine ring has an envelope conformation. In the crystal structure, adjacent mol­ecules are connected into infinite chains via an N—H⋯O hydrogen bond. PMID:21201400

  8. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction.

    PubMed

    Elhafi, G; Naylor, C J; Savage, C E; Jones, R C

    2004-06-01

    A method is described for enabling safe transit of denatured virus samples for polymerase chain reaction (PCR) identification without the risk of unwanted viable viruses. Cotton swabs dipped in avian infectious bronchitis virus (IBV) or avian pneumovirus (APV) were allowed to dry. Newcastle disease virus and avian influenza viruses were used as controls. Autoclaving and microwave treatment for as little as 20 sec destroyed the infectivity of all four viruses. However, both IBV and APV could be detected by reverse transcriptase (RT)-PCR after autoclaving and as long as 5 min microwave treatment (Newcastle disease virus and avian influenza viruses were not tested). Double microwave treatment of IBV and APV with an interval of 2 to 7 days between was tested. After the second treatment, RT-PCR products were readily detected in all samples. Swabs from the tracheas and cloacas of chicks infected with IBV shown to contain infectious virus were microwaved. Swabs from both sources were positive by RT-PCR. Microwave treatment appears to be a satisfactory method of inactivating virus while preserving nucleic acid for PCR identification.

  9. A Laccase with Antiproliferative and HIV-I Reverse Transcriptase Inhibitory Activities from the Mycorrhizal Fungus Agaricus placomyces

    PubMed Central

    Sun, Jian; Chen, Qing-Jun; Cao, Qing-Qin; Wu, Ying-Ying; Xu, Li-Jing; Zhu, Meng-Juan; Ng, Tzi-Bun; Wang, He-Xiang; Zhang, Guo-Qing

    2012-01-01

    A novel 68 kDa laccase was purified from the mycorrhizal fungus Agaricus placomyces by utilizing a procedure that comprised three successive steps of ion exchange chromatography and gel filtration as the final step. The monomeric enzyme exhibited the N-terminal amino acid sequence of DVIGPQAQVTLANQD, which showed only a low extent of homology to sequences of other fungal laccases. The optimal temperature for A. placomyces laccase was 30°C, and optimal pH values for laccase activity towards the substrates 2,7′-azinobis[3-ethylbenzothiazolone-6-sulfonic acid] diammonium salt (ABTS) and hydroquinone were 5.2 and 6.8, respectively. The laccase displayed, at 30°C and pH 5.2, Km values of 0.392 mM towards hydroquinone and 0.775 mM towards ABTS. It potently suppressed proliferation of MCF 7 human breast cancer cells and Hep G2 hepatoma cells and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity with an IC50 of 1.8 μM, 1.7 μM, and 1.25 μM, respectively, signifying that it is an antipathogenic protein. PMID:23093860

  10. Probing the communication of deoxythymidine triphosphate in HIV-1 reverse transcriptase by communication maps and interaction energy studies.

    PubMed

    Gnanasekaran, Ramachandran

    2017-11-08

    We calculate communication maps for HIV-1 Reverse Transcriptase (RT) to elucidate energy transfer pathways between deoxythymidine triphosphate (dTTP) and other parts of the protein. This approach locates energy transport channels from the dTTP to remote regions of the protein via residues and water molecules. We examine the water dynamics near the catalytic site of HIV-1 RT by molecular dynamics (MD) simulations. We find that, within the catalytic site, the relaxation of water molecules is similar to that of the hydration water molecules present in other proteins and the relaxation time scale is fast enough to transport energy and helps in communication between dTTP and other residues in the system. To quantify energy transfer, we also calculate the interaction energies of dTTP, 2Mg 2+ , doxy-guanosine nucleotide (DG22) with their surrounding residues by using the B3LYP-D3 method. The results, from classical vibrational energy diffusivity and QM interaction energy, are complementary to identify the important residues involved in the process of polymerization. The positive and negative interactions by dTTP with different types of residues in the catalytic region make the residues transfer energy through vibrational communication.

  11. Adipocytes impair efficacy of antiretroviral therapy.

    PubMed

    Couturier, Jacob; Winchester, Lee C; Suliburk, James W; Wilkerson, Gregory K; Podany, Anthony T; Agarwal, Neeti; Xuan Chua, Corrine Ying; Nehete, Pramod N; Nehete, Bharti P; Grattoni, Alessandro; Sastry, K Jagannadha; Fletcher, Courtney V; Lake, Jordan E; Balasubramanyam, Ashok; Lewis, Dorothy E

    2018-06-01

    Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Anti-HIV and cytotoxic biphenyls, benzophenones and xanthones from stems, leaves and twigs of Garcinia speciosa.

    PubMed

    Pailee, Phanruethai; Kuhakarn, Chutima; Sangsuwan, Chanyapat; Hongthong, Sakchai; Piyachaturawat, Pawinee; Suksen, Kanoknetr; Jariyawat, Surawat; Akkarawongsapat, Radeekorn; Limthongkul, Jitra; Napaswad, Chanita; Kongsaeree, Palangpon; Prabpai, Samran; Jaipetch, Thaworn; Pohmakotr, Manat; Tuchinda, Patoomratana; Reutrakul, Vichai

    2018-03-01

    Eleven previously undescribed compounds, including four benzophenones (garciosones A-D), four xanthones (garciosones E-H) and three biphenyls (garciosines A-C), along with eighteen known compounds were isolated from the stems, leaves and twigs of Garcinia speciosa Wall. (Clusiaceae). Their structures were established by extensive spectroscopic analysis. For garciosines A-C, the structures were confirmed by single crystal X-ray diffraction analysis. Most of the isolated compounds were evaluated for their cytotoxic activity and anti-HIV-1 activity using the syncytium inhibition assay and HIV-1 reverse transcriptase (RT) assay. The known compounds, 4,6,3',4'-tetrahydroxy-2-methoxybenzophenone and macluraxanthone, displayed significant cytotoxic activity with the ED 50 in the range of 1.85-11.76 μM. 1,5-Dihydroxyxanthone exhibited the most potent anti-HIV activity against syncytium formation with EC 50  < 17.13 μM (SI > 25.28) and 2-(3,3-dimethylallyl)-1,3,7-trihydroxyxanthone was the most active compound in the HIV-1 reverse transcriptase assay with IC 50 value of 58.24 μM. Structure-activity relationship of some isolated compounds were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Executive summary of the GeSIDA/National AIDS Plan consensus document on antiretroviral therapy in adults infected by the human immunodeficiency virus (updated January 2014).

    PubMed

    Berenguer, Juan; Polo, Rosa; Lozano, Fernando; López Aldeguer, José; Antela, Antonio; Arribas, José Ramón; Asensi, Víctor; Blanco, José Ramón; Clotet, Bonaventura; Domingo, Pere; Galindo, María José; Gatell, José María; González-García, Juan; Iribarren, José Antonio; Locutura, Jaime; López, Juan Carlos; Mallolas, Josep; Martínez, Esteban; Miralles, Celia; Miró, José M; Moreno, Santiago; Palacios, Rosario; Pérez Elías, María Jesús; Pineda, Juan Antonio; Podzamczer, Daniel; Portilla, Joaquín; Pulido, Federico; Ribera, Esteban; Riera, Melchor; Rubio, Rafael; Santos, Jesús; Sanz, Jesús; Tuset, Montserrat; Vidal, Francesc; Rivero, Antonio

    2014-01-01

    In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and grade of the recommendation varies with clinical circumstances, number of CD4 cells, comorbid conditions and prevention of transmission of HIV. The objective of ART is to achieve an undetectable plasma viral load. Initial ART should always comprise a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors and a third drug from a different family (non-nucleoside reverse transcriptase inhibitor, protease inhibitor, or integrase inhibitor). This update presents the causes and criteria for switching ART in patients with undetectable plasma viral load and in cases of virological failure. An update is also provided for the specific criteria for ART in special situations (acute infection, HIV-2 infection, and pregnancy) and with comorbid conditions (tuberculosis or other opportunistic infections, kidney disease, liver disease, and cancer). Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. hTERT gene immortalized human adipose-derived stem cells and its multiple differentiations: a preliminary investigation.

    PubMed

    Wang, L; Song, K; Qu, X; Wang, H; Zhu, H; Xu, X; Zhang, M; Tang, Y; Yang, X

    2013-03-01

    Human adipose-derived adult stem cells (hADSCs) can express human telomerase reverse transcriptase phenotypes under an appropriate culture condition. Because adipose tissue is abundant and easily accessible, hADSCs offer a promising source of stem cells for tissue engineering application and other cell-based therapies. However, the shortage of cells number and the difficulty to proliferate, known as the "Hayflick limit" in vitro, limit their further clinical application. Here, hADSCs were transfected with human telomerase reverse transcriptase (hTERT) gene by the lentiviral vector to prolong the lifespan of stem cells and even immortalize them. Following to this, the cellular properties and functionalities of the transfected cell lines were assayed. The results demonstrated that hADSCs had been successfully transfected with hTERT gene (hTERT-ADSCs). Then, hTERT-ADSCs were initially selected by G418 and subsequently expanded over 20 passages in vitro. Moreover, the qualitative and quantitative differentiation criteria for 20 passages of hTERT-ADSCs also demonstrated that hTERT-ADSCs could differentiate into osteogenesis, chondrogenesis, and adipogenesis phenotypes in lineage-specific differentiation media. These findings confirmed that this transfection could prolong the lifespan of hADSCs.

  15. A second chance for telomerase reverse transcriptase in anticancer immunotherapy.

    PubMed

    Zanetti, Maurizio

    2017-02-01

    Telomerase reverse transcriptase (TERT) is a self-antigen that is expressed constitutively in many tumours, and is, therefore, an important target for anticancer immunotherapy. In the past 10 years, trials of immunotherapy with TERT-based vaccines have demonstrated only modest benefits. In this Perspectives, I discuss the possible immunological reasons for this limited antitumour efficacy, and propose that advances in our understanding of the genetics and biology of the involvement of TERT in cancer provides the basis for renewed interest in TERT- based immunotherapy. Telomerase and TERT are expressed in cancer cells at every stage of tumour evolution, from the cancer stem cell to circulating tumour cells and tumour metastases. Many cancer types also harbour cells with mutations in the TERT promoter region, which increase transcriptional activation of this gene. These new findings should spur new interest in the development of TERT-based immunotherapies that are redesigned in line with established immunological considerations and working principles, and are tailored to patients stratified on the basis of TERT-promoter mutations and other underlying tumour characteristics. Thus, despite the disappointment of previous clinical trials, TERT offers the potential for personalized immunotherapy, perhaps in combination with immune-checkpoint inhibition.

  16. Inhibitory Effect of 2,3,5,6-Tetrafluoro-4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamide Derivatives on HIV Reverse Transcriptase Associated RNase H Activities

    PubMed Central

    Pala, Nicolino; Esposito, Francesca; Rogolino, Dominga; Carcelli, Mauro; Sanna, Vanna; Palomba, Michele; Naesens, Lieve; Corona, Angela; Grandi, Nicole; Tramontano, Enzo; Sechi, Mario

    2016-01-01

    The HIV-1 ribonuclease H (RNase H) function of the reverse transcriptase (RT) enzyme catalyzes the selective hydrolysis of the RNA strand of the RNA:DNA heteroduplex replication intermediate, and represents a suitable target for drug development. A particularly attractive approach is constituted by the interference with the RNase H metal-dependent catalytic activity, which resides in the active site located at the C-terminus p66 subunit of RT. Herein, we report results of an in-house screening campaign that allowed us to identify 4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamides, prepared by the “click chemistry” approach, as novel potential HIV-1 RNase H inhibitors. Three compounds (9d, 10c, and 10d) demonstrated a selective inhibitory activity against the HIV-1 RNase H enzyme at micromolar concentrations. Drug-likeness, predicted by the calculation of a panel of physicochemical and ADME properties, putative binding modes for the active compounds, assessed by computational molecular docking, as well as a mechanistic hypothesis for this novel chemotype are reported. PMID:27556447

  17. The development of HEPT-type HIV non-nucleoside reverse transcriptase inhibitors and its implications for DABO family.

    PubMed

    Chen, Wenmin; Zhan, Peng; Wu, Jingde; Li, Zhenyu; Liu, Xinyong

    2012-01-01

    1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) was discovered as the first HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) in 1989. The research on HEPT derivatives (HEPTs) has been lasted for more than 20 years and HEPT family is probably the most investigated NNRTI. Extensive molecular modifications on HEPT have led to many highly potent compounds with broad-resistance spectrum and optimal pharmacokinetic profiles. Moreover, X-crystallographic studies of HEPTs/RT complexes revealed the binding mode of HEPTs and the action mechanism of NNRTI, which has greatly facilitated the design of novel NNRTIs. Recently, the development of HEPTs was accelerated by the application of the "follow-on"-based chemical evolution strategies, such as designed multiple ligands (DMLs) and molecular hybridization (MH). Herein, this article will provide an insight into the development of HEPTs, including structural modifications, crystal structure of RT complexed with HEPTs and its structure-activity relationship (SAR). Additionally, this review also covers the emerging HEPT related dual inhibitors and HEPT-pyridinone hybrids, as well as the contributions of HEPTs to the development of dihydro-alkoxy-benzyl-oxopyrimidine (DABO) family, thus highlighting the importance of HEPTs on the development of NNRTIs.

  18. Validation of a real-time reverse transcriptase-PCR assay for the detection of H7 avian influenza virus

    USGS Publications Warehouse

    Pedersen, J.; Killian, M.L.; Hines, N.; Senne, D.; Panigrahy, B.; Ip, Hon S.; Spackman, Erica

    2010-01-01

    This report describes the validation of an avian influenza virus (AIV) H7 subtype-specific real-time reverse transcriptasePCR (rRT-PCR) assay developed at the Southeast Poultry Research Laboratory (SEPRL) for the detection of H7 AI in North and South American wild aquatic birds and poultry. The validation was a collaborative effort by the SEPRL and the National Veterinary Services Laboratories. The 2008 H7 rRT-PCR assay detects 101 50% embryo infectious doses per reaction, or 103104 copies of transcribed H7 RNA. Diagnostic sensitivity and specificity were estimated to be 97.5% and 82.4%, respectively; the assay was shown to be specific for H7 AI when tested with >270 wild birds and poultry viruses. Following validation, the 2008 H7 rRT-PCR procedure was adopted as an official U.S. Department of Agriculture procedure for the detection of H7 AIV. The 2008 H7 assay replaced the previously used (2002) assay, which does not detect H7 viruses currently circulating in wild birds in North and South America. ?? 2010 American Association of Avian Pathologists.

  19. Creation of a Long-Acting Nanoformulated 2′,3′-Dideoxy-3′-Thiacytidine

    PubMed Central

    Guo, Dongwei; Zhou, Tian; Araínga, Mariluz; Palandri, Diana; Gautam, Nagsen; Bronich, Tatiana; Alnouti, Yazen; McMillan, JoEllyn; Edagwa, Benson

    2017-01-01

    Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release. PMID:27559685

  20. The emerging profile of cross-resistance among the nonnucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Sluis-Cremer, Nicolas

    2014-07-31

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infection. For example: (1) nevirapine is used to prevent mother-to-child transmission; (2) the ASPIRE (MTN 020) study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; (3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4) a long acting rilpivirine formulation is under-development for pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited settings, as well as their low genetic barriers to resistance, there are concerns about overlapping resistance between the different NNRTIs. Consequently, a better understanding of the resistance and cross-resistance profiles among the NNRTI class is important for predicting response to treatment, and surveillance of transmitted drug-resistance.

  1. Pharmacophore Identification, Molecular Docking, Virtual Screening, and In Silico ADME Studies of Non-Nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Pirhadi, Somayeh; Ghasemi, Jahan B

    2012-12-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity and low toxicity in antiretroviral combination therapies used to treat HIV. In this study, chemical feature based pharmacophore models of different classes of NNRT inhibitors of HIV-1 have been developed. The best HypoRefine pharmacophore model, Hypo 1, which has the best correlation coefficient (0.95) and the lowest RMS (0.97), contains two hydrogen bond acceptors, one hydrophobic and one ring aromatic feature, as well as four excluded volumes. Hypo 1 was further validated by test set and Fischer validation method. The best pharmacophore model was then utilized as a 3D search query to perform a virtual screening to retrieve potential inhibitors. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies by Libdock and Gold methods to refine the retrieved hits. Finally, 7 top ranked compounds based on Gold score fitness function were subjected to in silico ADME studies to investigate for compliance with the standard ranges. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.

  3. Expression of an Mg2+-Dependent HIV-1 RNase H Construct for Drug Screening▿†

    PubMed Central

    Farias, Richard V.; Vargas, Deborah A.; Castillo, Andres E.; Valenzuela, Beatriz; Coté, Marie L.; Roth, Monica J.; Leon, Oscar

    2011-01-01

    A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg2+-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), lacking endogenous RNase HI and HII. The p51-G-TCR RNase H construct displayed Mg2+-dependent activity using a fluorescent nonspecific assay and showed the same cleavage pattern as HIV-1 reverse transcriptase (RT) on substrates that mimic the tRNA removal required for second-strand transfer reactions. The mutant E706Q (E478Q in RT) was purified under similar conditions and was not active. The RNase H of the p51-G-TCR RNase H construct and wild type HIV-1 RT had similar Kms for an RNA-DNA hybrid substrate and showed similar inhibition kinetics to two known inhibitors of the HIV-1 RT RNase H. PMID:21768506

  4. Exploiting Drug-Resistant Enzymes as Tools to Identify Thienopyrimidinone Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H

    PubMed Central

    Masaoka, Takashi; Chung, Suhman; Caboni, Pierluigi; Rausch, Jason W.; Wilson, Jennifer A.; Taskent-Sezgin, Humeyra; Beutler, John A.; Tocco, Graziella; Le Grice, Stuart F. J.

    2013-01-01

    The thienopyrimidinone 5,6-dimethyl-2-(4-nitrophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (DNTP) occupies the interface between the p66 ribonuclease H (RNase H) domain and p51 thumb of human immunodeficiency virus reverse transcriptase (HIV RT), thereby inducing a conformational change incompatible with catalysis. Here, we combined biochemical characterization of 39 DNTP derivatives with antiviral testing of selected compounds. In addition to wild-type HIV-1 RT, derivatives were evaluated with rationally-designed, p66/p51 heterodimers exhibiting high-level DNTP sensitivity or resistance. This strategy identified 3′,4′-dihydroxyphenyl (catechol)-substituted thienopyrimidinones with sub-micromolar in vitro activity against both wild type HIV-1 RT and drug-resistant variants. Thermal shift analysis indicates that, in contrast to active site RNase H inhibitors, these thienopyrimidinones destabilize the enzyme, in some instances reducing the Tm by 5°C. Importantly, catechol-containing thienopyrimidinones also inhibit HIV-1 replication in cells. Our data strengthens the case for allosteric inhibition of HIV RNase H activity, providing a platform for designing improved antagonists for use in combination antiviral therapy. PMID:23631411

  5. Discovery of 3-{5-[(6-Amino-1H-pyrazolo[3,4-b]pyridine-3-yl)methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965): A Potent, Orally Bioavailable HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitor with Improved Potency against Key Mutant Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Thomas J.; Sisko, John T.; Tynebor, Robert M.

    2009-07-10

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrummore » antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.« less

  6. [Use of Nadis(®) software to improve adverse drug reaction reporting of antiretroviral drugs: experience in south west of France (midi-pyrénées)].

    PubMed

    Pochard, Liselotte; Hauviller, Laurent; Cuzin, Lise; Eyvrard, Fréderic; Sommet, Agnès; Montastruc, Jean-Louis; Bagheri, Haleh

    2014-01-01

    To study the value of the module of pharmacovigilance in Nadis® to improve the antiretroviral (ARV) drugs-induced adverse drug reactions (ADRs) reporting. We collected the ADRs reported for 17 months from November 2010 until April 2012. Following data were recorded: characteristics of patients, ADRs, ARV drugs. The number of ADRs was compared to those collected in the same period (17 months) before use of Nadis®. The 119 ADRs reported (an increase of 183%) for 109 patients ADRs were mainly gastrointestinal (21.8%) followed by renal (20.2%), neuro-psychiatric (16.8%), hepatic (13.5%), cutaneous (8.4%), metabolic (6.7%) and others (12.6%). The repartition of ARV drugs was: nucleoside (31.8%), nucleotide (13.6%) reverse transcriptase inhibitors respectively, non-nucleoside reverse transcriptase inhibitors (13.1%), protease inhibitors (36.4%), and integrase inhibitors (5.1%). Our results show the improvement of ARV-induced ADRs reporting by Nadis® which could be used to reduce the rate of under-reporting in patients exposed to these drugs. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  7. Reverse Transcriptase Inhibitors as Potential Colorectal Microbicides▿ †

    PubMed Central

    Herrera, Carolina; Cranage, Martin; McGowan, Ian; Anton, Peter; Shattock, Robin J.

    2009-01-01

    We investigated whether reverse transcriptase (RT) inhibitors (RTI) can be combined to inhibit human immunodeficiency virus type 1 (HIV-1) infection of colorectal tissue ex vivo as part of a strategy to develop an effective rectal microbicide. The nucleotide RTI (NRTI) PMPA (tenofovir) and two nonnucleoside RTI (NNRTI), UC-781 and TMC120 (dapivirine), were evaluated. Each compound inhibited the replication of the HIV isolates tested in TZM-bl cells, peripheral blood mononuclear cells, and colorectal explants. Dual combinations of the three compounds, either NRTI-NNRTI or NNRTI-NNRTI combinations, were more active than any of the individual compounds in both cellular and tissue models. Combinations were key to inhibiting infection by NRTI- and NNRTI-resistant isolates in all models tested. Moreover, we found that the replication capacities of HIV-1 isolates in colorectal explants were affected by single point mutations in RT that confer resistance to RTI. These data demonstrate that colorectal explants can be used to screen compounds for potential efficacy as part of a combination microbicide and to determine the mucosal fitness of RTI-resistant isolates. These findings may have important implications for the rational design of effective rectal microbicides. PMID:19258271

  8. Reverse transcriptase inhibitors as potential colorectal microbicides.

    PubMed

    Herrera, Carolina; Cranage, Martin; McGowan, Ian; Anton, Peter; Shattock, Robin J

    2009-05-01

    We investigated whether reverse transcriptase (RT) inhibitors (RTI) can be combined to inhibit human immunodeficiency virus type 1 (HIV-1) infection of colorectal tissue ex vivo as part of a strategy to develop an effective rectal microbicide. The nucleotide RTI (NRTI) PMPA (tenofovir) and two nonnucleoside RTI (NNRTI), UC-781 and TMC120 (dapivirine), were evaluated. Each compound inhibited the replication of the HIV isolates tested in TZM-bl cells, peripheral blood mononuclear cells, and colorectal explants. Dual combinations of the three compounds, either NRTI-NNRTI or NNRTI-NNRTI combinations, were more active than any of the individual compounds in both cellular and tissue models. Combinations were key to inhibiting infection by NRTI- and NNRTI-resistant isolates in all models tested. Moreover, we found that the replication capacities of HIV-1 isolates in colorectal explants were affected by single point mutations in RT that confer resistance to RTI. These data demonstrate that colorectal explants can be used to screen compounds for potential efficacy as part of a combination microbicide and to determine the mucosal fitness of RTI-resistant isolates. These findings may have important implications for the rational design of effective rectal microbicides.

  9. Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses.

    PubMed

    Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami Ghassan; Ma, Chunlong; Hau, Raymond; Wang, Jun

    2017-09-01

    The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Diaryltriazine non-nucleoside reverse transcriptase inhibitors are potent candidates for pre-exposure prophylaxis in the prevention of sexual HIV transmission.

    PubMed

    Ariën, Kevin K; Venkatraj, Muthusamy; Michiels, Johan; Joossens, Jurgen; Vereecken, Katleen; Van der Veken, Pieter; Abdellati, Saïd; Cuylaerts, Vicky; Crucitti, Tania; Heyndrickx, Leo; Heeres, Jan; Augustyns, Koen; Lewi, Paul J; Vanham, Guido

    2013-09-01

    Pre-exposure prophylaxis and topical microbicides are important strategies in the prevention of sexual HIV transmission, especially since partial protection has been shown in proof-of-concept studies. In search of new candidate drugs with an improved toxicity profile and with activity against common non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV, we have synthesized and investigated a library of 60 new diaryltriazine analogues. From this library, 15 compounds were evaluated in depth using a broad armamentarium of in vitro assays that are part of a preclinical testing algorithm for microbicide development. Antiviral activity was assessed in a cell line, and in primary human cells, against both subtype B and subtype C HIV-1 and against viruses resistant to therapeutic NNRTIs and the candidate NNRTI microbicide dapivirine. Toxicity towards primary blood-derived cells, cell lines originating from the female reproductive tract and female genital microflora was also studied. We identified several compounds with highly potent antiviral activity and toxicity profiles that are superior to that of dapivirine. In particular, compound UAMC01398 is an interesting new candidate that warrants further investigation because of its superior toxicity profile and potent activity against dapivirine-resistant viruses.

  11. The Emerging Profile of Cross-Resistance among the Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Sluis-Cremer, Nicolas

    2014-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infection. For example: (1) nevirapine is used to prevent mother-to-child transmission; (2) the ASPIRE (MTN 020) study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; (3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4) a long acting rilpivirine formulation is under-development for pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited settings, as well as their low genetic barriers to resistance, there are concerns about overlapping resistance between the different NNRTIs. Consequently, a better understanding of the resistance and cross-resistance profiles among the NNRTI class is important for predicting response to treatment, and surveillance of transmitted drug-resistance. PMID:25089538

  12. Emtricitabine: a once-daily nucleoside reverse transcriptase inhibitor.

    PubMed

    Modrzejewski, Krysten A; Herman, Ronald A

    2004-06-01

    To review the pharmacology, virology, pharmacokinetics, safety, and efficacy of the nucleoside reverse transcriptase inhibitor (NRTI) emtricitabine. English-language reports were accessed using MEDLINE (1966-June 2003) and the Iowa Drug Information Service database (1966-June 2003) using emtricitabine and Coviracil as key words. (Coviracil was the proposed trade name for the product prior to approval.) The Internet was also searched using the terms HIV/AIDS conferences, then emtricitabine within the conference proceedings. Abstracts, posters, and oral presentations from scientific conferences, both published and unpublished, were included. Preference was given to published controlled trials. Studies providing a description of the pharmacology, virology, effectiveness, safety, or pharmacokinetics of emtricitabine were used in this review. Emtricitabine is an NRTI used to treat HIV-1 infection. Once-daily administration can decrease pill burden and potentially increase adherence to multidrug HIV therapy. Further, emtricitabine has shown equivalent or improved outcomes compared with lamivudine and stavudine. Emtricitabine is a safe and effective option for HIV-1 infection in adults as part of a multidrug regimen. It may be a better alternative than lamivudine for once-daily therapy because of its extended intracellular half-life and better than lamivudine and stavudine because of a possibly decreased potential for drug resistance.

  13. The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA

    PubMed Central

    Akiyama, Benjamin M.; Loper, John; Najarro, Kevin; Stone, Michael D.

    2012-01-01

    The unique cellular activity of the telomerase reverse transcriptase ribonucleoprotein (RNP) requires proper assembly of protein and RNA components into a functional complex. In the ciliate model organism Tetrahymena thermophila, the La-domain protein p65 is required for in vivo assembly of telomerase. Single-molecule and biochemical studies have shown that p65 promotes efficient RNA assembly with the telomerase reverse transcriptase (TERT) protein, in part by inducing a bend in the conserved stem IV region of telomerase RNA (TER). The domain architecture of p65 consists of an N-terminal domain, a La-RRM motif, and a C-terminal domain (CTD). Using single-molecule Förster resonance energy transfer (smFRET), we demonstrate the p65CTD is necessary for the RNA remodeling activity of the protein and is sufficient to induce a substantial conformational change in stem IV of TER. Moreover, nuclease protection assays directly map the site of p65CTD interaction to stem IV and reveal that, in addition to bending stem IV, p65 binding reorganizes nucleotides that comprise the low-affinity TERT binding site within stem–loop IV. PMID:22315458

  14. Adipocytes Impair Efficacy of Antiretroviral Therapy

    PubMed Central

    Couturier, Jacob; Winchester, Lee C.; Suliburk, James W.; Wilkerson, Gregory K.; Podany, Anthony T.; Agarwal, Neeti; Chua, Corrine Ying Xuan; Nehete, Pramod N.; Nehete, Bharti P.; Grattoni, Alessandro; Sastry, K. Jagannadha; Fletcher, Courtney V.; Lake, Jordan E.; Balasubramanyan, Ashok; Lewis, Dorothy E.

    2018-01-01

    Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. PMID:29630975

  15. Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H.

    PubMed

    Kankanala, Jayakanth; Kirby, Karen A; Huber, Andrew D; Casey, Mary C; Wilson, Daniel J; Sarafianos, Stefan G; Wang, Zhengqiang

    2017-12-01

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC 50  = 0.04 μM) with decent antiviral potency (EC 50  = 7.4 μM) and no cytotoxicity (CC 50  > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC 50  = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Revealing the drug-resistant mechanism for diarylpyrimidine analogue inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Zhang, Hao; Qin, Fang; Ye, Wei; Li, Zeng; Ma, Songyao; Xia, Yan; Jiang, Yi; Zhu, Jiayi; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2011-09-01

    Diaryltriazine (DATA) and diarylpyrimidine (DAPY) were two category inhibitors with highly potent activity for wild type (wt) and four principal mutant types (L100I, K103N, Y181C and Y188L) of HIV-1 reverse transcriptase (RT). We had revealed the drug-resistant mechanism of DATA analogue inhibitors with molecular dynamics simulation and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. In this work, we investigated the drug-resistant mechanism of DAPY analogue inhibitors. It was found that DAPY analogue inhibitors form more hydrogen bonds and hydrophobic contacts with wild type and mutants of HIV-1 RT than DATA inhibitors. This could explain that DAPY analogue inhibitors are more potent than DATA for the wild type and mutants of HIV-1 RT. Then, 3D-QSAR models were constructed for these inhibitors of wild type and four principal mutant types HIV-1 RT and evaluated by test set compounds. These combined models can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 RT inhibitors before resorting to in vitro and in vivo experiment. © 2011 John Wiley & Sons A/S.

  17. A Novel Lectin with Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Dried Fruiting Bodies of the Monkey Head Mushroom Hericium erinaceum

    PubMed Central

    Li, Yanrui; Zhang, Guoqing; Ng, Tzi Bun; Wang, Hexiang

    2010-01-01

    A lectin designated as Hericium erinaceum agglutinin (HEA) was isolated from dried fruiting bodies of the mushroom Hericium erinaceum with a chromatographic procedure which entailed DEAE-cellulose, CM-cellulose, Q-Sepharose, and FPLC Superdex 75. Its molecular mass was estimated to be 51 kDa and its N-terminal amino acid sequences was distinctly different from those of other isolated mushroom lectins. The hemagglutinating activity of HEA was inhibited at the minimum concentration of 12.5 mM by inulin. The lectin was stable at pH 1.9–12.1 and at temperatures up to 70°C, but was inhibited by Hg2+, Cu2+, and Fe3+ ions. The lectin exhibited potent mitogenic activity toward mouse splenocytes, and demonstrated antiproliferative activity toward hepatoma (HepG2) and breast cancer (MCF7) cells with an IC50 of 56.1 μM and 76.5 μM, respectively. It manifested HIV-1 reverse transcriptase inhibitory activity with an IC50 of 31.7 μM. The lectin exhibited potent mitogenic activity toward murine splenocytes but was devoid of antifungal activity. PMID:20625408

  18. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    PubMed

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  19. A modified single-tube one-step product-enhanced reverse transcriptase (mSTOS-PERT) assay with heparin as DNA polymerase inhibitor for specific detection of RTase activity.

    PubMed

    Fan, Xiao-Yong; Lü, Guo-Zhen; Wu, Li-Na; Chen, Jing-Hua; Xu, Wen-Qing; Zhao, Chun-Nü; Guo, Sheng-Qi

    2006-12-01

    Current regulations and recommendations proposed for the production of vaccines in continuous cell lines of any origin demand that these be free of exogenous viruses, particularly retroviruses. Recently, the ultra-sensitive product-enhanced reverse transcriptase (PERT) assay can be used to detect minute of reverse transcriptase (RTase) in single retroviral particle and is 10(6) times more sensitive than the conventional RTase assays. However, coincidental with this increase in sensitivity is an increase in false-positive reactions derived from contaminating cellular DNA polymerases, which are known to have RTase-like activities. To develop a modified single-tube one-step PERT (mSTOS-PERT) assay with improvements on decreasing significantly the level of false-positive reactions, and to evaluate the mSTOS-PERT assay for sensitivity and specificity. Ampliwaxtrade mark was used to compartmentalize the reverse transcription (RT) and PCR step in the same micro-tube with more efficiency and reproducibility, while maintaining the high sensitivity. The DNA amplification products were separated by 2% agarose gel electrophoresis, and then analyzed by non-isotopic Southern blot hybridization. A wide variety of cell lines used in biologicals production were detected to validate the improved mSTOS-PERT assay. The detection limit for the mSTOS-PERT assay was at least 10(-9)U, when using AMV-RTase as a positive control. Furthermore, heparin involvement in the RT step can eliminate completely the false-positive PERT signals which are exhibited by cellular polymerases such as DNA-dependent DNA polymerase alpha, gamma released by cell death. Most mammalian cells (MRC-5, Vero, WISH, 2BS, RK-13, MDCK, etc.) are PERT-negative in cell supernatants. Some PERT-positive signals in cell lysates were found to be introduced by the cellular DNA polymerases and could be inhibited specifically by heparin. Chick cells derived from either chick embryo fibroblasts (CEF) or allantoic fluid from SPF embryonated eggs, murine hybridoma cell SP2/0, etc., contained authentic RTase activities, which could not be inactivated by heparin. The improved mSTOS-PERT assay described here may distinguish the genuine RTase activity from cellular polymerases with high sensitivity and specificity, and is rapid and easy to perform to screen for the possible contamination of minute retroviruses in the cell substrates used in vaccine production.

  20. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells.

    PubMed

    Kobayashi, Shintaro; Yoshii, Kentaro; Hirano, Minato; Muto, Memi; Kariwa, Hiroaki

    2017-02-01

    Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction.

    PubMed

    Du, Chia-Fong; Lee, Chen-Hui; Cheng, Chao-Tsung; Lin, Kai-Hsiang; Sheu, Jin-Kong; Hsu, Hsu-Cheng

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO.

  2. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    PubMed

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  3. Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations

    PubMed Central

    Telwatte, Sushama; Hearps, Anna C.; Johnson, Adam; Latham, Catherine F.; Moore, Katie; Agius, Paul; Tachedjian, Mary; Sonza, Secondo; Sluis-Cremer, Nicolas; Harrigan, P. Richard; Tachedjian, Gilda

    2015-01-01

    Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses. PMID:25765644

  4. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  5. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    PubMed Central

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-01

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976

  6. The removal of RNA primers from DNA synthesized by the reverse transcriptase of the retrotransposon Tf1 is stimulated by Tf1 integrase.

    PubMed

    Herzig, Eytan; Voronin, Nickolay; Hizi, Amnon

    2012-06-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process.

  7. The Removal of RNA Primers from DNA Synthesized by the Reverse Transcriptase of the Retrotransposon Tf1 Is Stimulated by Tf1 Integrase

    PubMed Central

    Herzig, Eytan; Voronin, Nickolay

    2012-01-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process. PMID:22491446

  8. West Nile virus in overwintering Culex mosquitoes, New York City, 2000.

    PubMed Central

    Nasci, R. S.; Savage, H. M.; White, D. J.; Miller, J. R.; Cropp, B. C.; Godsey, M. S.; Kerst, A. J.; Bennett, P.; Gottfried, K.; Lanciotti, R. S.

    2001-01-01

    After the 1999 West Nile (WN) encephalitis outbreak in New York, 2,300 overwintering adult mosquitoes were tested for WN virus by cell culture and reverse transcriptase-polymerase chain reaction. WN viral RNA and live virus were found in pools of Culex mosquitoes. Persistence in overwintering Cx. pipiens may be important in the maintenance of WN virus in the northeastern United States. PMID:11585542

  9. Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572

    Treesearch

    Tomas Johansson; Per Olof Nyman; Daniel Cullen

    2002-01-01

    A peroxidase-encoding gene, mnp2, and its corresponding cDNA were characterized from the white-rot basidiomycete Trametes versicolor PRL 572. We used quantitative reverse transcriptase-mediated PCR to identify mnp2 transcripts in nutrient-limited stationary cultures. Although mnp2 lacks upstream metal response elements (MREs), addition of MnSO4 to cultures increased...

  10. Capsicum annum, a new host of watermelon mosaic virus.

    PubMed

    Hajizadeh, Mohammad; Mohammadi, Kazhal

    2016-03-01

    The occurrence of Watermelon mosaic virus (WMV) in sweet pepper (Capsicum annuum L.) in Kurdistan province, Iran was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and partial characterization of coat protein. To the best of our knowledge, this is the first report of WMV infecting C. annuum, adding a new host to list of more than 170 species infected by this virus.

  11. Carbocyclic nucleoside analogues: classification, target enzymes, mechanisms of action and synthesis

    NASA Astrophysics Data System (ADS)

    Matyugina, E. S.; Khandazhinskaya, A. P.; Kochetkov, Sergei N.

    2012-08-01

    Key biological targets (S-adenosyl-L-homocysteine hydrolase, telomerase, human immunodeficiency virus reverse transcriptase, herpes virus DNA polymerase and hepatitis B virus DNA polymerase) and the mechanisms of action of carbocyclic nucleoside analogues are considered. Structural types of analogues are discussed. Methods of synthesis for the most promising compounds and the spectrum of their biological activities are described. The bibliography includes 126 references.

  12. Replication fork reversal triggers fork degradation in BRCA2-defective cells.

    PubMed

    Mijic, Sofija; Zellweger, Ralph; Chappidi, Nagaraja; Berti, Matteo; Jacobs, Kurt; Mutreja, Karun; Ursich, Sebastian; Ray Chaudhuri, Arnab; Nussenzweig, Andre; Janscak, Pavel; Lopes, Massimo

    2017-10-16

    Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.

  13. Balancing Antiviral Potency and Host Toxicity: Identifying a Nucleotide Inhibitor with an Optimal Kinetic Phenotype for HIV-1 Reverse Transcriptase

    PubMed Central

    Sohl, Christal D.; Kasiviswanathan, Rajesh; Kim, Jiae; Pradere, Ugo; Schinazi, Raymond F.; Copeland, William C.; Mitsuya, Hiroaki; Baba, Masanori

    2012-01-01

    Two novel thymidine analogs, 3′-fluoro-3′-deoxythymidine (FLT) and 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre–steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2′,3′-didehydro-2′,3′-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4′-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2′,3′-didehydro-2′,3′-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials. PMID:22513406

  14. Dolutegravir Plus Two Nucleoside Reverse Transcriptase Inhibitors versus Efavirenz Plus Two Nucleoside Reverse Transcriptase Inhibitors As Initial Antiretroviral Therapy for People with HIV: A Systematic Review.

    PubMed

    Rutherford, George W; Horvath, Hacsi

    2016-01-01

    Dolutegravir (DTG) is a once-daily unboosted second-generation integrase-inhibitor that along with two nucleoside reverse transcriptase inhibitors is one of several regimens recommended by the United States, United Kingdom and European Union for first-line antiretroviral treatment of people with HIV infection. Our objective was to review the evidence for the efficacy and safety of DTG-based first-line regimens compared to efavirenz (EFV)-based regimens. We conducted a systematic review. We comprehensively searched a range of databases as well as conference abstracts and a trials registry. We used Cochrane methods in screening and data collection and assessed each study's risk of bias with the Cochrane tool. We meta-analyzed data using a fixed-effects model. We used GRADE to assess evidence quality. From 492 search results, we identified two randomized controlled trials, reported in five peer-reviewed articles and one conference abstract. One trial tested two DTG-based regimens (DTG + abacavir (ABC) + lamivudine (3TC) or DTG + tenofovir + emtricitabine) against an EFV-based regimen (EFV+ ABC+3TC). The other trial tested DTG+ABC+3TC against EFV+ABC+3TC. In meta-analysis, DTG-containing regimens were superior to EFV-containing regimens at 48 weeks and at 96 weeks (RR = 1.10, 95% CI 1.04-1.16; and RR = 1.12, 95% CI 1.04-1.21, respectively). In one trial, the DTG-containing regimen was superior at 144 weeks (RR = 1.13, 95% CI 1.02-1.24). DTG-containing regimens were superior in reducing treatment discontinuation compared to those containing EFV at 96 weeks and at 144 weeks (RR = 0.27, 95% CI 0.15-0.50; and RR = 0.28, 95% CI 0.16-0.48, respectively). Risk of serious adverse events was similar in each regimen at 96 weeks (RR = 1.15, 95% CI 0.80-1.63) and 144 weeks (RR = 0.93, 95% CI 0.68-1.29). Risk of bias was moderate overall, as was GRADE evidence quality. DTG-based regimens should be considered in future World Health Organization guidelines for initial HIV treatment.

  15. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naïve and first-line treatment failures in Djiboutian patients

    PubMed Central

    2012-01-01

    Abstract In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. Patients and methods A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Results Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. Conclusion The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2051206212753973 PMID:23044036

  16. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naïve and first-line treatment failures in Djiboutian patients.

    PubMed

    Elmi Abar, Aden; Jlizi, Asma; Darar, Houssein Youssouf; Kacem, Mohamed Ali Ben Hadj; Slim, Amine

    2012-10-08

    In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2051206212753973.

  17. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors.

    PubMed

    Mao, Yating; Li, Yan; Hao, Ming; Zhang, Shuwei; Ai, Chunzhi

    2012-05-01

    As a key component in combination therapy for acquired immunodeficiency syndrome (AIDS), non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been proven to be an essential way in stopping HIV-1 replication. In the present work, in silico studies were conducted on a series of 119 NNRTIs, including 1-(2-hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) and dihydroalkoxybenzyloxopyrimidine (DABO) derivatives by using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), docking simulations and molecular dynamics (MD). The statistical results of the optimal model, the ligand-based CoMSIA one (Q(2) = 0.48, R(ncv)(2) =0.847, R(pre)(2) = 0.745) validates its satisfactory predictive capacity both internally and externally. The contour maps, docking and MD results correlate well with each other, drawing conclusions as follows: 1) Compounds with bulky substituents in position-6 of ring A, hydrophobic groups around position- 1, 2, 6 are preferable to the biological activities; 2) Two hydrogen bonds between RT inhibitor and the Tyr 318, Lys 101 residues, respectively, and a π-π bond between the inhibitor and Trp 188 are formed and crucial to the orientation of the active conformation of the molecules; 3) The binding pocket is essentially hydrophobic, which are determined by residues such as Trp 229, Tyr 318, Val 179, Tyr 188 and Val 108, and hydrophobic substituents may bring an improvement to the biological activity; 4) DABO and HEPT derivatives have different structures but take a similar mechanism to inhibit RT. The potency difference between two isomers in HEPTs can be explained by the distinct locations of the 6-naphthylmethyl substituent and the reasons are explained in details. All these results could be employed to alter the structural scaffold in order to develop new HIV-1 RT inhibitors that have an improved biological property. To the best of our knowledge, this is the first report on 3D-QSAR modeling of this series of HEPT and DABO NNRTs. The QSAR model and the information derived, we hope, will be of great help in presenting clear guidelines and accurate activity predictions for newly designed HIV-1 reverse transcriptase (RT) inhibitor.

  18. Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Mueller, G; Cuneo, M

    2010-01-01

    The dimerization of HIV reverse transcriptase (RT), required to obtain the active form of the enzyme, is influenced by mutations, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide substrates, Mg ions, temperature, and specifically designed dimerization inhibitors. In this study, we have utilized nuclear magnetic resonance (NMR) spectroscopy of the [methyl-{sup 13}C]methionine-labeled enzyme and small-angle X-ray scattering (SAXS) to investigate how several of these factors influence the dimerization behavior of the p51 subunit. The {sup 1}H-{sup 13}C HSQC spectrum of p51 obtained at micromolar concentrations indicates that a significant fraction of the p51 adopts a 'p66-like' conformation. SAXS data obtained for p51more » samples were used to determine the fractions of monomer and dimer in the sample and to evaluate the conformation of the fingers/thumb subdomain. All of the p51 monomer observed was found to adopt the compact, 'p51C' conformation observed for the p51 subunit in the RT heterodimer. The NMR and SAXS data indicate that the p51 homodimer adopts a structure that is similar to the p66/p51 heterodimer, with one p51C subunit and a second p51 subunit in an extended, 'p51E' conformation that resembles the p66 subunit of the heterodimer. The fractional dimer concentration and the fingers/thumb orientation are found to depend strongly on the experimental conditions and exhibit a qualitative dependence on nevirapine and ionic strength (KCl) that is similar to the behavior reported for the heterodimer and the p66 homodimer. The L289K mutation interferes with p51 homodimer formation as it does with formation of the heterodimer, despite its location far from the dimer interface. This effect is readily interpreted in terms of a conformational selection model, in which p51{sub L289K} has a much greater preference for the compact, p51C conformation. A reduced level of dimer formation then results from the reduced ratio of the p51E{sub L289K} to p51C{sub L289K} monomers.« less

  19. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction

    PubMed Central

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO. PMID:25232299

  20. [Biosafety issues and public concerns on recombinant influenza viruses generated in the laboratories].

    PubMed

    Jia, Xiaojuan; Huang, Liqin; Liu, Wenjun

    2013-12-01

    Understanding inter-species transmission of influenza viruses is an important research topic. Scientists try to identify and evaluate the functional factors determining the host range of influenza viruses by generating the recombinant viruses through reverse genetics in laboratories, which reveals the viruses' molecular mechanisms of infection and transmission in different species. Therefore, the reverse genetic method is a very important tool for further understanding the biology of influenza viruses and will provide the insight for the prevention and treatment of infections and transmission. However, these recombinant influenza viruses generated in laboratories will become the potential threat to the public health and the environment. In this paper, we discussed the biological safety issues of recombinant influenza viruses and suggested we should set up protocols for risk management on research activities related to recombinant highly pathogenic influenza viruses.

  1. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells

    PubMed Central

    Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh

    2015-01-01

    Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites and are promising approaches for antigen preparation in vaccine development. PMID:25861441

  2. Design, Construction and Cloning of Truncated ORF2 and tPAsp-PADRE-Truncated ORF2 Gene Cassette From Hepatitis E Virus in the pVAX1 Expression Vector

    PubMed Central

    Farshadpour, Fatemeh; Makvandi, Manoochehr; Taherkhani, Reza

    2015-01-01

    Background: Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal. Objectives: The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus. Materials and Methods: A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells. Results: Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method. Conclusions: The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations. PMID:26865938

  3. Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs.

    PubMed

    Kuboki, T; Nakanishi, T; Kanyama, M; Sonoyama, W; Fujisawa, T; Kobayashi, K; Ikeda, T; Kubo, T; Yamashita, A; Takigawa, M

    1999-09-01

    Adenovirus vector system is expected to be useful for direct gene therapy for joint disease. This study first sought to confirm that foreign genes can be transferred to articular chondrocytes in primary culture. Next, recombinant adenovirus vectors harbouring beta-galactosidase gene (LacZ) was injected directly into the temporomandibular joints of Hartley guinea-pigs to clarify the in vivo transfer availability of the adenovirus vectors. Specifically, recombinant adenovirus harbouring LacZ gene (AxlCALacZ) was injected into the upper joint cavities of both mandibular joints of four male 6-week-old Hartley guinea-pigs. Either the same amount of recombinant adenovirus without LacZ gene (Axlw) suspension (placebo) or the same amount of phosphate-buffered saline solution (control) were injected into the upper joint cavities of both joints of another four male guinea-pigs. At 1, 2, 3 and 4 weeks after injection, the joints were dissected and the expression of delivered LacZ was examined by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining and reverse transcriptase-polymerase chain reaction (RT-PCR). To investigate the expression of transferred gene in other organs, total RNA was extracted from liver, kidney, heart and brain and the expression of LacZ mRNA and 18 S ribosomal RNA were analysed by RT-PCR. Clear expression of LacZ was observed in the articular surfaces of the temporal tubercle, articular disc and synovium of the temporomandibular joints even 4 weeks after injection in the AxlCALacZ-injected group, while no expression was detected in placebo and control groups. Histological examination confirmed that LacZ activity was clearly detected in a few cell layers of the articular surface tissues, which is much more efficient than in a previously study of the knee joint. In the other organs, expression of the delivered transgene was not observed. Based on these findings, direct gene delivery into the articular surface of the temporomandibular joint using the adenovirus vector is feasible as an effective in vivo method.

  4. Leukemia patient-derived lymphoblastoid cell lines exhibit increased induction of leukemia-associated transcripts following high-dose irradiation.

    PubMed

    Spencer, A; Granter, N

    1999-09-01

    Improvement in diagnostic cytogenetic techniques has led to the recognition of an increasing number of leukemia-associated chromosomal translocations and inversions. These genetic lesions frequently are associated with the disruption of putative transcription factors and the production of hybrid transcripts that are implicated in leukemogenesis. Epidemiologic evidence suggests that some, but not all, individuals with a history of gamma-irradiation exposure are at increased risk of developing chronic myeloid leukemia (CML). CML is characterized by the Philadelphia chromosome and transcription of the resulting hybrid BCR-ABL gene. Utilizing the leukemia-associated BCR-ABL p210 transcript as a marker, we sought differences in the induction of illegitimate genetic recombination following high-dose gamma-irradiation of karyotypically normal lymphoblastoid cell lines (LCL) derived from individuals with and without a history of myeloid leukemias. Six LCL [4 leukemia patient derived [2 acute myeloid leukemia and 2 CML] and 2 from normal individuals were analyzed with reverse transcriptase polymerase chain reaction for BCR-ABL under stringent conditions following exposure to 0, 50, or 100 Gy of LET gamma-irradiation delivered via a Varian linear accelerator at 4 MV. Transcripts identical to disease-associated b2a2 and b3a2 transcripts were detected both spontaneously (background illegitimate genetic recombination) and following gamma-irradiation. Background BCR-ABL positivity was demonstrable in 4 of the 6 LCL, with no significant difference in detection between leukemic- and nonleukemic-derived LCL. Overall, increasing gamma-irradiation dose resulted in an increased frequency of BCR-ABL transcript detection (0 Gy vs 50 Gy vs 100 Gy,p = 0.0023, Chi-square test). Within the leukemic- but not the nonleukemic-derived LCL there was significantly greater BCR-ABL positivity after gamma-irradiation compared to unirradiated equivalents. Furthermore, the BCR-ABL positivity of both the AML- and CML-derived LCL after gamma-irradiation was significantly greater than that of the nonleukemic-derived LCL after gamma-irradiation. We speculate that this difference in the detection of illegitimate after gamma-irradiation recombination may be due to aberrant DNA double strand break repair mechanisms in individuals predisposed to the development of myeloid leukemias.

  5. Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast.

    PubMed

    Dacquin, Romain; Starbuck, Michael; Schinke, Thorsten; Karsenty, Gérard

    2002-06-01

    Cell- and time-specific gene inactivation should enhance our knowledge of bone biology. Implementation of this technique requires construction of transgenic mouse lines expressing Cre recombinase in osteoblasts, the bone forming cell. We tested several promoter fragments for their ability to drive efficient Cre expression in osteoblasts. In the first mouse transgenic line, the Cre gene was placed under the control of the 2.3-kb proximal fragment of the alpha1(I)-collagen promoter, which is expressed at high levels in osteoblasts throughout their differentiation. Transgenic mice expressing this transgene in bone were bred with the ROSA26 reporter (R26R) strain in which the ROSA26 locus is targeted with a conditional LacZ reporter cassette. In R26R mice, Cre expression and subsequent Cre-mediated recombination lead to expression of the LacZ reporter gene, an event that can be monitored by LacZ staining. LacZ staining was detected in virtually all osteoblasts of alpha1(I)-Cre;R26R mice indicating that homologous recombination occurred in these cells. No other cell type stained blue. In the second line studied, the 1.3-kb fragment of osteocalcin gene 2 (OG2) promoter, which is active in differentiated osteoblasts, was used to drive Cre expression. OG2-Cre mice expressed Cre specifically in bone. However, cross of OG2-Cre mice with R26R mice did not lead to any detectable LacZ staining in osteoblasts. Lastly, we tested a more active artificial promoter derived from the OG2 promoter. The artificial OG2-Cre transgene was expressed by reverse transcriptase-polymerase chain reaction in cartilage and bone samples. After cross of the artificial OG2-Cre mice with R26R mice, we detected a LacZ staining in articular chondrocytes but not in osteoblasts. Our data suggest that the only promoter able to drive Cre expression at a level sufficient to induce recombination in osteoblasts is the alpha1(I)-collagen promoter. Copyright 2002 Wiley-Liss, Inc.

  6. SJ-3366 Sam Jin Pharmaceutical.

    PubMed

    Baba, Masanori

    2002-08-01

    Sam Jin is investigating SJ-3366, a non-nucleoside reverse transcriptase inhibitor (NNRTI), for the potential treatment of HIV infection [302450]. As well as acting as an NNRTI, SJ-3366 also interferes with HIV-1 entry via an intermediate target formed after virus-cell attachment [341146], [363900]. As of June 1998, Sam Jin had been awarded a patent for SJ-3366 in South Africa, with applications pending in 22 other countries [302450].

  7. Performance of the Directigen EZ Flu A+B rapid influenza diagnostic test to detect pandemic influenza A/H1N1 2009.

    PubMed

    Boyanton, Bobby L; Almradi, Amro; Mehta, Tejal; Robinson-Dunn, Barbara

    2014-04-01

    The Directigen EZ Flu A+B rapid influenza diagnostic test, as compared to real-time reverse transcriptase polymerase chain reaction, demonstrated suboptimal performance to detect pandemic influenza A/H1N1 2009. Age- and viral load-stratified test sensitivity ranged from 33.3 to 84.6% and 0 to 100%, respectively. © 2013.

  8. Human immunodeficiency virus types 1 and 2 exhibit comparable sensitivities to Zidovudine and other nucleoside analog inhibitors in vitro.

    PubMed

    Smith, Robert A; Gottlieb, Geoffrey S; Anderson, Donovan J; Pyrak, Crystal L; Preston, Bradley D

    2008-01-01

    Using an indicator cell assay that directly quantifies viral replication, we show that human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) exhibit similar sensitivities to 3'-azido-3'-deoxythymidine (zidovudine) as well as other nucleoside analog inhibitors of reverse transcriptase. These data support the use of nucleoside analogs for antiviral therapy of HIV-2 infection.

  9. Possible Application of Biotechnology to the Development of Biological Agents by Potential Enemies

    DTIC Science & Technology

    1987-06-01

    of enzyme catalyzed reactions. Although cloning techniques are directly applicable to the manipulation of proteinaceous toxins, they would be less...useful for nonproteinaceous toxins because the corresponding gene for each enzyme must be cloned and expressed in a coordinated manner. Effective...to produce a synthetic DNA. The enzyme reverse transcriptase (RNA dependent DNA polymerase), which is obtained from retroviruses, is the only enzyme

  10. Drug resistance mutations in HIV type 1 isolates from naive patients eligible for first line antiretroviral therapy in JJ Hospital, Mumbai, India.

    PubMed

    Deshpande, Alake; Karki, Surendra; Recordon-Pinson, Patricia; Fleury, Herve J

    2011-12-01

    More than 50 HIV-1-infected patients, naive of antiretroviral therapy (ART) but eligible for first line ART in JJ Hospital, Mumbai, India were investigated for surveillance drug resistance mutations (SDRMs); all but one virus belonged to subtype C; we could observe SDRMs to nonnucleoside reverse transcriptase inhibitors and protease inhibitors in 9.6% of the patients.

  11. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution

    Treesearch

    J.S. (Pat) Heslop-Harrison; Andrea Brandes; Shin Taketa; Thomas Schmidt; Alexander V. Vershinin; Elena G. Alkhimova; Anette Kamm; Robert L. Doudrick; [and others

    1997-01-01

    Retrotransposons make up a major fraction - sometimes more than 40% - of all plant genomes investigated so far. We have isolated the reverse transcriptase domains of theTyl-copia group elements from several species, ranging in genome size from some 100 Mbp to 23,000 Mbp, and determined the distribution patterns of these retrotransposons on metaphase chromosomes and...

  12. Imprint cytology of clear cell sarcoma-like tumor of the gastrointestinal tract in the small intestine: A case report.

    PubMed

    Kato, Takashi; Ichihara, Shin; Gotoda, Hiroko; Muraoka, Shunji; Kubo, Terufumi; Sugita, Shintaro; Hasegawa, Tadashi

    2017-12-01

    Clear cell sarcoma-like tumor of the gastrointestinal tract (CCSLGT) is an extremely rare malignant neoplasm in the digestive tract. Its cytomorphologic features have never previously been reported. Here, we describe a case of CCSLGT, including its cytologic examination findings. A 47-year-old woman presented with a mass in the small intestine, which was resected and sent for imprint cytology. Imprint smears revealed tumor cells with light eosinophilic or clear cytoplasm in a necrotic background. Many of the tumor cells were arranged in a perivascular growth with a pseudopapillary formation, and there were some non-neoplastic osteoclast-like giant cells. Histological examination revealed solid nests and a pseudopapillary pattern of the tumor cells with clear or pale eosinophilic cytoplasm and large nuclei with small nucleoli. Immunohistochemistry showed positive for vimentin, S-100, and SOX-10, and negative for SMA, c-KIT, cytokeratin, HMB-45, and MelanA. The EWSR1 gene split signal was detected by reverse transcriptase fluorescence in situ hybridization, and EWSR1-CREB1 gene fusion was indicated by reverse transcriptase polymerase chain reaction analysis. From these findings, we diagnosed the tumor as CCSLGT. To best of our knowledge, this is the first description of the imprint cytology features of CCSLGT. © 2017 Wiley Periodicals, Inc.

  13. Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase.

    PubMed

    Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio

    2016-09-30

    We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.

  14. Substrate-induced stable enzyme-inhibitor complex formation allows tight binding of novel 2-aminopyrimidin-4(3H)-ones to drug-resistant HIV-1 reverse transcriptase mutants.

    PubMed

    Samuele, Alberta; Facchini, Marcella; Rotili, Dante; Mai, Antonello; Artico, Marino; Armand-Ugón, Mercedes; Esté, José A; Maga, Giovanni

    2008-09-01

    We recently reported the synthesis and biological evaluation of a novel series of 5-alkyl-2-(N,N-disubstituted)amino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-ones (F(2)-N,N-DABOs). These compounds are highly active against both wild-type HIV-1 and the K103N, Y181C, and Y188L mutant strains. Herein we present novel 6-(2-chloro-6-fluorophenylalkyl)-N,N-DABO (2-Cl-6-F-N,N-DABO) derivatives and investigate the molecular basis for their high-affinity binding to HIV-1 reverse transcriptase (RT). Our results show that the new compounds display higher association rates than the difluoro derivatives toward wild-type HIV-1 RT or drug-resistant RT mutant forms. We also show that they preferentially associate to either the free enzyme or the enzyme-nucleic acid binary complex, and that this binding is stabilized upon formation of the ternary complex between HIV-1 RT and both the nucleic acid and nucleotide substrates. Interestingly, one compound showed dissociation rates from the ternary complex with RT mutants K103N and Y181I 10-20-fold slower than from the corresponding complex with wild-type RT.

  15. Approved Antiviral Drugs over the Past 50 Years

    PubMed Central

    2016-01-01

    SUMMARY Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2′-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2′-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide. PMID:27281742

  16. Telomerase reverse transcriptase (TERT) is a therapeutic target of oleanane triterpenoid CDDO-Me in prostate cancer.

    PubMed

    Liu, Yongbo; Gao, Xiaohua; Deeb, Dorrah; Arbab, Ali S; Gautam, Subhash C

    2012-12-11

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is an synthetic oleanane triterpenoid with strong antiprolifertive and proapoptotic activities in cancer cells. However, the effect of CDDO-Me on human telomerase reverse transcriptase (hTERT) and its telomerase activity in prostate cancer cells has not been studied. We investigated the role of hTERT in mediating the anticancer activity of CDDO-Me in prostate cancer cells in vitro and in vivo. The inhibition of cell proliferation and induction of apoptosis by CDDO-Me in LNCaP and PC-3 prostate cancer cell lines was associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT transcriptionally and post-translationally. Furthermore, ablation of hTERT protein increased the sensitivity of cancer cells to CDDO-Me, whereas its overexpression rendered them resistant to CDDO-Me. In addition, inhibition of progression of preneoplastic lesions (i.e., low and high-grade prostate intraepithelial neoplasms, PINs) to adenocarcinoma of the prostate by CDDO-Me in TRAMP mice was associated with significant decrease in TERT and its regulatory proteins in the prostate gland. These data provide evidence that telomerase is a potential target of CDDO-Me for the prevention and treatment of prostate cancer.

  17. HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.

    PubMed

    Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F

    2001-03-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.

  18. HOX Genes in Human Lung

    PubMed Central

    Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.

    2001-01-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043

  19. Telomere lengthening and other functions of telomerase.

    PubMed

    Rubtsova, M P; Vasilkova, D P; Malyavko, A N; Naraikina, Yu V; Zvereva, M I; Dontsova, O A

    2012-04-01

    Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.

  20. Hypersusceptibility to substrate analogs conferred by mutations in human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Smith, Robert A; Anderson, Donovan J; Preston, Bradley D

    2006-07-01

    Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contains four structural motifs (A, B, C, and D) that are conserved in polymerases from diverse organisms. Motif B interacts with the incoming nucleotide, the template strand, and key active-site residues from other motifs, suggesting that motif B is an important determinant of substrate specificity. To examine the functional role of this region, we performed "random scanning mutagenesis" of 11 motif B residues and screened replication-competent mutants for altered substrate analog sensitivity in culture. Single amino acid replacements throughout the targeted region conferred resistance to lamivudine and/or hypersusceptibility to zidovudine (AZT). Substitutions at residue Q151 increased the sensitivity of HIV-1 to multiple nucleoside analogs, and a subset of these Q151 variants was also hypersusceptible to the pyrophosphate analog phosphonoformic acid (PFA). Other AZT-hypersusceptible mutants were resistant to PFA and are therefore phenotypically similar to PFA-resistant variants selected in vitro and in infected patients. Collectively, these data show that specific amino acid replacements in motif B confer broad-spectrum hypersusceptibility to substrate analog inhibitors. Our results suggest that motif B influences RT-deoxynucleoside triphosphate interactions at multiple steps in the catalytic cycle of polymerization.

  1. The discovery of novel diarylpyri(mi)dine derivatives with high level activity against a wide variety of HIV-1 strains as well as against HIV-2.

    PubMed

    Lu, Xueyi; Yang, Jiapei; Kang, Dongwei; Gao, Ping; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong

    2018-05-01

    By means of structure-based molecular hybridization strategy, a series of novel diarylpyri(mi)dine derivatives targeting the entrance channel of HIV-1 reverse transcriptase (RT) were designed, synthesized and evaluated as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs). Encouragingly, all the tested compounds showed good activities against wild-type (WT) HIV-1 (IIIB) with EC 50 in the range of 1.36 nM-29 nM, which is much better than those of nevirapine (NVP, EC 50  = 125.42 nM) and azidothymidine (AZT, EC 50  = 11.36 nM). Remarkably, these compounds also displayed effective activity against the most of the single and double-mutated HIV-1 strains with low EC 50 values, which is comparable to the control drugs. Besides, these compounds were also exhibited favorable enzymatic inhibitory activity. Moreover, preliminary structure-activity relationships (SARs) and molecular modeling study were investigated and discussed in detail. Unexpectedly, four diarylpyrimidines yielded moderate anti-HIV-2 activities. To our knowledge, this is rarely reported that diarylpyrimidine-based NNRTIs have potent activity against both HIV-1 and HIV-2 in cell culture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.

    PubMed

    Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana

    2014-09-01

    It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. High Degree of Interlaboratory Reproducibility of Human Immunodeficiency Virus Type 1 Protease and Reverse Transcriptase Sequencing of Plasma Samples from Heavily Treated Patients

    PubMed Central

    Shafer, Robert W.; Hertogs, Kurt; Zolopa, Andrew R.; Warford, Ann; Bloor, Stuart; Betts, Bradley J.; Merigan, Thomas C.; Harrigan, Richard; Larder, Brendon A.

    2001-01-01

    We assessed the reproducibility of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and protease sequencing using cryopreserved plasma aliquots obtained from 46 heavily treated HIV-1-infected individuals in two laboratories using dideoxynucleotide sequencing. The rates of complete sequence concordance between the two laboratories were 99.1% for the protease sequence and 99.0% for the RT sequence. Approximately 90% of the discordances were partial, defined as one laboratory detecting a mixture and the second laboratory detecting only one of the mixture's components. Only 0.1% of the nucleotides were completely discordant between the two laboratories, and these were significantly more likely to occur in plasma samples with lower plasma HIV-1 RNA levels. Nucleotide mixtures were detected at approximately 1% of the nucleotide positions, and in every case in which one laboratory detected a mixture, the second laboratory either detected the same mixture or detected one of the mixture's components. The high rate of concordance in detecting mixtures and the fact that most discordances between the two laboratories were partial suggest that most discordances were caused by variation in sampling of the HIV-1 quasispecies by PCR rather than by technical errors in the sequencing process itself. PMID:11283081

  4. Course of c-myc mRNA expression in the regenerating mouse testis determined by competitive reverse transcriptase polymerase chain reaction.

    PubMed

    Amendola, R

    1994-11-01

    The c-myc proto-oncogene is a reliable marker of the "G0-early G1" transition, and its down-regulation is believed to be necessary to obtain cellular differentiation. In murine spermatogenesis, the level of c-myc transcripts does not correlate with the rate of cellular division. Proliferation of supposed staminal spermatogonia to reproduce themselves is induced with a local 5 Gy X-ray dose in 90-day-old C57Bl/6 mice. c-myc quantification by a newly developed competitive reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to follow the expression course of this proto-oncogene. Damage and restoration of spermatogenesis were analyzed at days 3, 6, 9, 10, 13, 30, and 60 after injury by relative testes/body weight determination and histological examination. Proliferative status was determined by histone H3 Northern blot analysis. c-myc mRNA level was 10 times higher after 3 days in the irradiated animals compared to the controls. An increasing number of copies were noted up to 10 days, but promptly decreased to the base level found for irradiated mice from 13 to 60 days. Interestingly, the expression of histone H3 detected S phase only in testes at 60 days from damage.

  5. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    PubMed Central

    Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang

    2014-01-01

    A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, K m values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778

  6. Inhibition of Human Immunodeficiency Virus Type 1 Infection by the Candidate Microbicide Dapivirine, a Nonnucleoside Reverse Transcriptase Inhibitor▿

    PubMed Central

    Fletcher, P.; Harman, S.; Azijn, H.; Armanasco, N.; Manlow, P.; Perumal, D.; de Bethune, M.-P.; Nuttall, J.; Romano, J.; Shattock, R.

    2009-01-01

    Heterosexual transmission of human immunodeficiency virus (HIV) remains the major route of infection worldwide; thus, there is an urgent need for additional prevention strategies, particularly strategies that could be controlled by women, such as topical microbicides. Potential microbicide candidates must be both safe and effective. Using cellular and tissue explant models, we have evaluated the activity of the nonnucleoside reverse transcriptase inhibitor (NNRTI) dapivirine as a vaginal microbicide. In tissue compatibility studies, dapivirine was well tolerated by epithelial cells, T cells, macrophages, and cervical tissue explants. Dapivirine demonstrated potent dose-dependent inhibitory effects against a broad panel of HIV type 1 isolates from different clades. Furthermore, dapivirine demonstrated potent activity against a wide range of NNRTI-resistant isolates. In human cervical explant cultures, dapivirine was able not only to inhibit direct infection of mucosal tissue but also to prevent the dissemination of the virus by migratory cells. Activity was retained in the presence of semen or a cervical mucus simulant. Furthermore, dapivirine demonstrated prolonged inhibitory effects: it was able to prevent both localized and disseminated infection for as long as 6 days posttreatment. The prolonged protection observed following pretreatment of genital tissue and the lack of observable toxicity suggest that dapivirine has considerable promise as a potential microbicide candidate. PMID:19029331

  7. Inhibition of human immunodeficiency virus type 1 infection by the candidate microbicide dapivirine, a nonnucleoside reverse transcriptase inhibitor.

    PubMed

    Fletcher, P; Harman, S; Azijn, H; Armanasco, N; Manlow, P; Perumal, D; de Bethune, M-P; Nuttall, J; Romano, J; Shattock, R

    2009-02-01

    Heterosexual transmission of human immunodeficiency virus (HIV) remains the major route of infection worldwide; thus, there is an urgent need for additional prevention strategies, particularly strategies that could be controlled by women, such as topical microbicides. Potential microbicide candidates must be both safe and effective. Using cellular and tissue explant models, we have evaluated the activity of the nonnucleoside reverse transcriptase inhibitor (NNRTI) dapivirine as a vaginal microbicide. In tissue compatibility studies, dapivirine was well tolerated by epithelial cells, T cells, macrophages, and cervical tissue explants. Dapivirine demonstrated potent dose-dependent inhibitory effects against a broad panel of HIV type 1 isolates from different clades. Furthermore, dapivirine demonstrated potent activity against a wide range of NNRTI-resistant isolates. In human cervical explant cultures, dapivirine was able not only to inhibit direct infection of mucosal tissue but also to prevent the dissemination of the virus by migratory cells. Activity was retained in the presence of semen or a cervical mucus simulant. Furthermore, dapivirine demonstrated prolonged inhibitory effects: it was able to prevent both localized and disseminated infection for as long as 6 days posttreatment. The prolonged protection observed following pretreatment of genital tissue and the lack of observable toxicity suggest that dapivirine has considerable promise as a potential microbicide candidate.

  8. 4'-Ethynyl-2-fluoro-2'-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor.

    PubMed

    Markowitz, Martin; Sarafianos, Stefan G

    2018-07-01

    4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside reverse transcriptase inhibitor (NRTI) with a novel mechanism of action, unique structure, and amongst NRTIs, unparalleled anti-HIV-1 activity. We will summarize its structure and function, antiviral activity, resistance profile, and potential as an antiretroviral for use in the treatment and preexposure prophylaxis of HIV-1 infection. EFdA is active against wild-type (EC50 as low as 50 pmol/l) and most highly NRTI-resistant viruses. The active metabolite, EFdA-triphosphate, has been shown to have a prolonged intracellular half-life in human and rhesus (Rh) blood cells. As a result, single drug doses tested in simian immunodeficiency virus mac251-infected Rh macaques and HIV-1-infected individuals exhibited robust antiviral activity of 7-10 days duration. Preclinical studies of EFdA as preexposure prophylaxis in the Rh macaque/simian/human immunodeficiency virus low-dose intrarectal challenge model have shown complete protection when given in clinically relevant doses. EFdA is a novel antiretroviral with activity against both wild-type and NRTI-resistant viruses. As a result of the prolonged intracellular half-life of its active moiety, it is amenable to flexibility in dosing of at least daily to weekly and perhaps longer.

  9. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells

    PubMed Central

    Huang, Peixin; Riordan, Sean M.; Heruth, Daniel P.; Grigoryev, Dmitry N.; Zhang, Li Qin; Ye, Shui Qing

    2015-01-01

    Aging is the predominant risk factor for cardiovascular diseases and contributes to a considerably more severe outcome in patients with acute myocardial infarction. Resveratrol, a polyphenol found in red wine, is a caloric restriction mimetic with potential anti-aging properties which has emerged as a beneficial nutraceutical for patients with cardiovascular disease. Although resveratrol is widely consumed as a nutritional supplement, its mechanism of action remains to be elucidated fully. Here, we report that resveratrol activates human nicotinamide phosphoribosyltransferase (NAMPT), SIRT4 and telomerase reverse transcriptase (hTERT) in human aortic smooth muscle cells. Similar observations were obtained in resveratrol treated C57BL/6J mouse heart and liver tissues. Resverotrol can also augment telomerase activity in both human pulmonary microvascular endothelial cells and A549 cells. Blocking NAMPT and SIRT4 expression prevents induction of hTERT in human aortic smooth muscle cells while overexpression of NAMPT elevates the telomerase activity induced by resveratrol in A549 cells. Together, these results identify a NAMPT-SIRT4-hTERT axis as a novel mechanism by which resveratrol may affect the anti-aging process in human aortic smooth muscle cells, mouse hearts and other cells. These findings enrich our understanding of the positive effects of resveratrol in human cardiovascular diseases. PMID:25926556

  10. Use of a novel virus inactivation method for a multicenter avian influenza real-time reverse transcriptase-polymerase chain reaction proficiency study.

    PubMed

    Spackman, Erica; Suarez, David L

    2005-01-01

    Proficiency assessments are important elements in quality control for diagnostic laboratories. Traditionally, proficiency testing for polymerase chain reaction (PCR)-based assays has involved the use of clinical samples, samples "spiked" with live agents or DNA plasmids. Because of government regulations and biosecurity concerns, distribution of live high-consequence pathogens of livestock and poultry, such as avian influenza, is not possible, and DNA plasmids are not technically suitable for evaluating RNA virus detection. Therefore, a proficiency testing panel using whole avian influenza in a diluent containing a phenolic disinfectant that inactivates the virus while preserving the RNA for at least 8 weeks at -70 C was developed and used in a multicenter proficiency assessment for a type A influenza real-time reverse transcriptase (RT)-PCR test. The test, which was highly standardized, except for variation in the real-time RT-PCR equipment used, was shown to be highly reproducible by proficiency testing in 12 laboratories in the United States, Canada, and Hong Kong. Variation in cycle threshold values among 35 data sets and 490 samples was minimal (CV = 5.19%), and sample identifications were highly accurate (96.7% correct identifications) regardless of real-time PCR instrumentation.

  11. Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.

    PubMed

    Matamoros, Tania; Barrioluengo, Verónica; Abia, David; Menéndez-Arias, Luis

    2013-12-23

    At high temperatures, RNA denaturation can improve the efficiency and specificity of reverse transcription. Refined structures and molecular models of HIV-1 reverse transcriptases (RTs) from phylogenetically distant clades (i.e., group M subtype B and group O) revealed a major interaction between the template-primer and the Arg³⁵⁸-Gly³⁵⁹-Ala³⁶⁰ triad in the large subunit of HIV-1M/B RT. However, fewer contacts were predicted for the equivalent Lys³⁵⁸-Ala³⁵⁹-Ser³⁶⁰ triad of HIV-1O RT and the nucleic acid. An engineered HIV-1O K358R/A359G/S360A RT showed increased cDNA synthesis efficiency above 68 °C, as determined by qualitative and quantitative reverse transcription polymerase chain reactions. In comparison with wild-type HIV-1O RT, the mutant enzyme showed higher thermal stability but retained wild-type RNase H activity. Mutations that increased the accuracy of HIV-1M/B RTs were tested in combination with the K358R/A359G/S360A triple mutation. Some of them (e.g., F61A, K65R, K65R/V75I, and V148I) had a negative effect on reverse transcription efficiency above 65 °C. RTs with improved DNA binding affinities also showed higher cDNA synthesis efficiencies at elevated temperatures. Two of the most thermostable RTs (i.e., mutants T69SSG/K358R/A359G/S360A and K358R/A359G/S360A/E478Q) showed moderately increased fidelity in forward mutation assays. Our results demonstrate that the triad of Arg³⁵⁸, Gly³⁵⁹, and Ala³⁶⁰ in the major groove binding track of HIV-1 RT is a major target for RT stabilization, and most relevant for improving reverse transcription efficiency at high temperatures.

  12. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less

  13. Antiviral interactions of combinations of highly potent 2,4(1H,3H)-pyrimidinedione congeners and other anti-HIV agents.

    PubMed

    Hartman, Tracy L; Yang, Lu; Buckheit, Robert W

    2011-12-01

    Structure-activity relationship evaluation of seventy-four 2,4(1H,3H)-pyrimidinedione derivatives identified seven lead compounds based on anti-HIV-1 potency, extended range of action to include HIV-2, virus entry inhibition, reverse transcriptase inhibition, and lack of cytotoxicity to human cells. The selected pyrimidinedione congeners are highly active inhibitors of HIV-1 with EC(50) values ranging from 0.6 to 2 nM in CEM-SS cells infected with laboratory derived viruses, 11-20 nM in fresh human PBMCs infected with subtype B (HT/92/599) virus, and 2-7 nM in PBMCs infected with the clinical subtype C (ZA/97/003) virus. Combination antiviral assays were performed using the laboratory adapted RF strain of HIV-1 in CEM-SS cells and with a clade B and C low passage clinical isolate in fresh human peripheral mononuclear cells and the compound interactions were analyzed using MacSynergy II. The seven pyrimidinedione compounds resulted in additive to synergistic interactions in combination with entry and fusion inhibitors, nonnucleoside and nucleoside reverse transcriptase inhibitors, and the protease inhibitors. No evidence of antagonistic antiviral activity or synergistic cytotoxicity was detected with the combinations of compounds tested. The dual mechanism of action of the pyrimidinediones resulting in inhibition of both virus entry and reverse transcription suggests excellent potential of these lead pyrimidinediones as candidates for combination therapy with other approved HIV inhibitors of varying mechanism of action. Copyright © 2011. Published by Elsevier B.V.

  14. Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase.

    PubMed Central

    Allawi, H T; Dong, F; Ip, H S; Neri, B P; Lyamichev, V I

    2001-01-01

    A rapid and simple method for determining accessible sites in RNA that is independent of the length of target RNA and does not require RNA labeling is described. In this method, target RNA is allowed to hybridize with sequence-randomized libraries of DNA oligonucleotides linked to a common tag sequence at their 5'-end. Annealed oligonucleotides are extended with reverse transcriptase and the extended products are then amplified by using PCR with a primer corresponding to the tag sequence and a second primer specific to the target RNA sequence. We used the combination of both the lengths of the RT-PCR products and the location of the binding site of the RNA-specific primer to determine which regions of the RNA molecules were RNA extendible sites, that is, sites available for oligonucleotide binding and extension. We then employed this reverse transcription with the random oligonucleotide libraries (RT-ROL) method to determine the accessible sites on four mRNA targets, human activated ras (ha-ras), human intercellular adhesion molecule-1 (ICAM-1), rabbit beta-globin, and human interferon-gamma (IFN-gamma). Our results were concordant with those of other researchers who had used RNase H cleavage or hybridization with arrays of oligonucleotides to identify accessible sites on some of these targets. Further, we found good correlation between sites when we compared the location of extendible sites identified by RT-ROL with hybridization sites of effective antisense oligonucleotides on ICAM-1 mRNA in antisense inhibition studies. Finally, we discuss the relationship between RNA extendible sites and RNA accessibility. PMID:11233988

  15. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    NASA Astrophysics Data System (ADS)

    Sciamanna, Ilaria; De Luca, Chiara; Spadafora, Corrado

    2016-02-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  16. Successful passive and active immunization of cynomolgus monkeys against hepatitis E.

    PubMed Central

    Tsarev, S A; Tsareva, T S; Emerson, S U; Govindarajan, S; Shapiro, M; Gerin, J L; Purcell, R H

    1994-01-01

    Virtually full protection against hepatitis E and partial or complete protection against infection with hepatitis E virus (HEV) were achieved in passively or actively immunized cynomolgus monkeys. Hepatitis, viremia, and shedding of the virus in feces were detected in all nonimmunized animals that were challenged with HEV. HEV titers detected by reverse transcriptase PCR were higher in feces than in serum of nonimmunized animals. Anti-HEV antibody titers at the time of challenge ranged between 1:40 and 1:200 in animals passively immunized with convalescent plasma from a cynomolgus monkey previously infected with HEV and between 1:100 and 1:10,000 in animals actively immunized with a recombinant 55-kDa open reading frame 2 protein. The estimated 50% protective titer of passively acquired anti-HEV antibodies was 1:40. Although only one of four passively immunized animals showed histopathologic evidence of hepatitis, all four were infected after challenge; however, the titers of HEV in serum and feces were lower in the passively immunized animals than in the nonimmunized group. The actively immunized animals developed neither hepatitis nor viremia when challenged with HEV and virus was either not detected or was present in low titer in feces. The protective response was a function of the ELISA anti-HEV antibody titer at the time of challenge and the immunization schedule. PMID:7937861

  17. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils.

    PubMed

    Gounni, A S; Gregory, B; Nutku, E; Aris, F; Latifa, K; Minshall, E; North, J; Tavernier, J; Levit, R; Nicolaides, N; Robinson, D; Hamid, Q

    2000-09-15

    Interleukin-9 (IL-9) has been implicated in the pathogenesis of allergic disorders. To examine the interaction between IL-9 and eosinophils, we evaluated mature peripheral blood eosinophils for their expression of the specific alpha-subunit of the IL-9 receptor (IL-9R-alpha). The expression of IL-9R-alpha by human eosinophils was detected at the messenger RNA (mRNA) and protein levels by reverse transcriptase-polymerase chain reaction (RT-PCR), flow cytometry, and immunocytochemical analysis, respectively. Functional analyses demonstrated that recombinant human (rh)IL-9 inhibited in vitro peripheral blood human eosinophil apoptosis in a concentration-dependent manner. We then examined the role of IL-9 in eosinophil differentiation using the human cord blood CD34(+) cells and human promyelocytic leukemia cells (HL-60). The addition of IL-9 to CD34(+) cells cultured in IL-3 and IL-5 enhanced eosinophil development, and IL-9 alone induced the expression of IL-5R-alpha. IL-9 also up-regulated the IL-5R-alpha chain cell surface expression during terminal eosinophil differentiation of the HL-60 cell line. Our findings suggest that IL-9 may potentiate in vivo eosinophil function by increasing their survival and IL-5-mediated differentiation and maturation. Taken together, these results suggest a mechanism by which IL-9 potentiates airway and tissue eosinophilia.

  18. Expression and integrity of dermatopontin in chronic cutaneous wounds: a crucial factor in impaired wound healing.

    PubMed

    Krishnaswamy, Venkat Raghavan; Manikandan, Mayakannan; Munirajan, Arasambattu Kannan; Vijayaraghavan, Doraiswamy; Korrapati, Purna Sai

    2014-12-01

    Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases. This study essentially deals with assessing the expression and integrity of an extracellular matrix protein, Dermatopontin (DPT), in CCW using real-time quantitative reverse transcriptase PCR and immunological techniques. The results indicate that, despite DPT's high mRNA expression, the protein levels are markedly reduced in both CCW tissue and its exudate. To elucidate the cause for this contradiction in mRNA and protein levels, the stability of DPT is analyzed in the presence of wound exudates and various proteases that are naturally elevated in CCW. DPT was observed to be degraded at higher rates when incubated with certain recombinant proteases or chronic wound exudate. In conclusion, the susceptibility of DPT protein to specific proteases present at high levels in the wound milieu resulted in the degradation of DPT, thus leading to impaired healing response in CCW.

  19. Selection and Characterization of Drug-Resistant Variants of Human Immunodeficiency Virus (AIDS).

    DTIC Science & Technology

    1995-10-01

    on Antiviral Reserach, Santa Fe, New Mexico , 1995. Page 18 APPENDIX Page 19 p - FACTFILE Mutations in HIV-1 Reverse Transcriptase and Protease...including herpes simplex viruses, varicella -zoster Resistance of clinical HIV-1 isolates to foscarnet has not virus, cytomegalovirus (CMV), hepatitis B...This effect of the Tyr-208 substitution was not ob- reported previously for herpes simplex viruses, varicella -zoster served in MT-2 cells, however. virus

  20. Suicide Inhibitors of Reverse Transcriptase in the Therapy of AIDS and Other Retroviruses

    DTIC Science & Technology

    1991-07-01

    of intermediate 3 was detected by 3 P NMR spectroscopy . The observed chemical shifts are comparable to those reported ’in the literature. The spectrum...were characterized by NMR spectroscopy . The presence of the characteristic triphosphate group was confirmed by NMR as indicated in the figure below...Two compounds, 2𔃽’ sulfinyl cytidine hydrochloride and 2,0 2 anhydrocytidine hydrochloride, which have proved to be highly effective against vaccinia

  1. Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Won-Gil; Chan, Albert H.; Spasov, Krasimir A.

    Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1–10 nM potencies toward wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for 4a and 4f illustrate the alternatives.

  2. Reversal of succinylcholine induced apnea with an organophosphate scavenging recombinant butyrylcholinesterase.

    PubMed

    Geyer, Brian C; Larrimore, Katherine E; Kilbourne, Jacquelyn; Kannan, Latha; Mor, Tsafrir S

    2013-01-01

    Concerns about the safety of paralytics such as succinylcholine to facilitate endotracheal intubation limit their use in prehospital and emergency department settings. The ability to rapidly reverse paralysis and restore respiratory drive would increase the safety margin of an agent, thus permitting the pursuit of alternative intubation strategies. In particular, patients who carry genetic or acquired deficiency of butyrylcholinesterase, the serum enzyme responsible for succinylcholine hydrolysis, are susceptible to succinylcholine-induced apnea, which manifests as paralysis, lasting hours beyond the normally brief half-life of succinylcholine. We hypothesized that intravenous administration of plant-derived recombinant BChE, which also prevents mortality in nerve agent poisoning, would rapidly reverse the effects of succinylcholine. Recombinant butyrylcholinesterase was produced in transgenic plants and purified. Further analysis involved murine and guinea pig models of succinylcholine toxicity. Animals were treated with lethal and sublethal doses of succinylcholine followed by administration of butyrylcholinesterase or vehicle. In both animal models vital signs and overall survival at specified intervals post succinylcholine administration were assessed. Purified plant-derived recombinant human butyrylcholinesterase can hydrolyze succinylcholine in vitro. Challenge of mice with an LD100 of succinylcholine followed by BChE administration resulted in complete prevention of respiratory inhibition and concomitant mortality. Furthermore, experiments in symptomatic guinea pigs demonstrated extremely rapid succinylcholine detoxification with complete amelioration of symptoms and no apparent complications. Recombinant plant-derived butyrylcholinesterase was capable of counteracting and reversing apnea in two complementary models of lethal succinylcholine toxicity, completely preventing mortality. This study of a protein antidote validates the feasibility of protection and treatment of overdose from succinylcholine as well as other biologically active butyrylcholinesterase substrates.

  3. Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA.

    PubMed

    Fujino, Tomoko; Yasumoto, Ken-ichi; Yamazaki, Naomi; Hasome, Ai; Sogawa, Kazuhiro; Isobe, Hiroyuki

    2011-11-04

    A phosphate-eliminated nonnatural oligonucleotide serves as a primer surrogate in reverse transcription reaction of mRNA. Despite of the nonnatural triazole linkages in the surrogate, the reverse transcriptase effectively elongated cDNA sequences on the 3'-downstream of the primer by transcription of the complementary sequence of mRNA. A structure-activity comparison with the reference natural oligonucleotides shows the superior priming activity of the surrogate containing triazole-linkages. The nonnatural linkages also protect the transcribed cDNA from digestion reactions with 5'-exonuclease and enable us to remove noise transcripts of unknown origins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs.

    PubMed

    Navarro, B; Daròs, J A; Flores, R

    1998-07-01

    A protocol is described for general application for cloning small circular RNAs which requires only minimal amounts of template (approximately 50 ng) of unknown sequence. Both cDNA strands are synthesized with a 26-mer primer whose six 3'-terminal positions are totally degenerate in two consecutive reactions catalyzed by reverse transcriptase and DNA polymerase, respectively. The cDNAs are then PCR-amplified, using a 20-mer primer with the non-degenerate sequence of the previous primer, cloned and sequenced. This information permits the synthesis of one or more pairs of specific and adjacent primers for obtaining full-length cDNA clones by a protocol which is also described.

  5. Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures.

    PubMed

    Costa, Michael Rodrigues; Fischer, Nicole; Gulich, Barbara; Tönjes, Ralf R

    2014-01-01

    Porcine endogenous retroviruses (PERV) pose a zoonotic risk potential in pig-to-human xenotransplantation given that PERV capacity to infect different human cell lines in vitro has been clearly shown in the past. However, PERV infectious potential for human peripheral blood mononuclear cells (huPBMC) has been also demonstrated, albeit with controversial results. As productive PERV infection of huPBMC involves immune suppression that may attract opportunistic pathogens as shown for other retroviruses, it is crucial to ascertain unequivocally huPBMC susceptibility for PERV. To address this question, we first investigated in vitro infectivity of PERV for huPBMC using supernatants containing highly infectious PERV-A/C. Second, huPBMC were cocultivated with PERV-A/C producer cells to come a step closer to the in vivo situation of xenotransplantation. In addition, cocultivation of huPBMC with porcine PBMC (poPBMC) isolated from German landrace pigs was performed to distinguish PERV replication competence when they were constitutively produced by immortalized cells or by primary poPBMC. Supernatants containing recombinant highly infectious PERV-A/C were used to infect PHA-activated huPBMC in the presence or absence of polybrene. Next, PERV-producing cell lines such as human 293/5° and primary mitogenically activated poPBMC of three German landrace pigs were cocultivated with huPBMC as well as with susceptible human and porcine cell lines as controls. PERV infection was monitored by using three test approaches. The presence of provirus DNA in putatively infected cells was detected via sensitive nested PCR. Viral expression was determined by screening for the activity of gammaretroviral reverse transcriptase (RT) in cell-free supernatants of infected cells. Virus release was monitored by counting the number of packaged RNA particles in supernatants via PERV-specific quantitative one-step real-time reverse transcriptase PCR. Porcine endogenous retroviruses-A/C in supernatants of human producer 293/5° cells was not able to infect huPBMC. Neither RT activity nor PERV copies were detected. Even provirus could not be detected displaying the inability of PERV-A/C to induce a productive infection in huPBMC. In cocultivation experiments only non-productive infection of huPBMC with PERV derived from 293/5° cell line and from PHA-activated poPBMC was observed by detection of provirus DNA in infected cells. Recombinant PERV-A/C in supernatants of producer cells failed to infect huPBMC, whereas coculture experiments with producer cell lines lead to non-productive infection of huPBMC. PERV in supernatants seem to have not sufficient infectious potential for huPBMC. However, extensive PERV exposure to huPBMC via cocultivation enabled at least virus cell entry as provirus was detected by nested PCR. Furthermore, results presented support previous data showing German landrace pigs as low producers with negligible infectious potential due to the absence of replication-competent PERV in the genome. The low PERV expression profile and the lack of significant replication competence of German landrace pigs raise hope for considering these animals as putative donor animals in future pig-to-human xenotransplantation. Nonetheless, data imply that PERV still represent a virological risk in the course of xenotransplantation, as the presence of PERV provirus in host cells may lead to a provirus integration resulting in insertional mutagenesis and chromosomal rearrangements. © 2014 John Wiley & Sons A/S.

  6. Telomerase reverse transcriptase protects against angiotensin II-induced microvascular endothelial dysfunction.

    PubMed

    Ait-Aissa, Karima; Kadlec, Andrew O; Hockenberry, Joseph; Gutterman, David D; Beyer, Andreas M

    2018-05-01

    A rise in reactive oxygen species (ROS) may contribute to cardiovascular disease by reducing nitric oxide (NO) levels, leading to loss of NO's vasodilator and anti-inflammatory effects. Although primarily studied in larger conduit arteries, excess ROS release and a corresponding loss of NO also occur in smaller resistance arteries of the microcirculation, but the underlying mechanisms and therapeutic targets have not been fully characterized. We examined whether either of the two subunits of telomerase, telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC), affect microvascular ROS production and peak vasodilation at baseline and in response to in vivo administration to angiotensin II (ANG II). We report that genetic loss of TERT [maximal dilation: 52.0 ± 6.1% with vehicle, 60.4 ± 12.9% with N ω -nitro-l-arginine methyl ester (l-NAME), and 32.2 ± 12.2% with polyethylene glycol-catalase (PEG-Cat) ( P < 0.05), means ± SD, n = 9-19] but not TERC [maximal dilation: 79 ± 5% with vehicle, 10.7 ± 9.8% with l-NAME ( P < 0.05), and 86.4 ± 8.4% with PEG-Cat, n = 4-7] promotes flow-induced ROS formation. Moreover, TERT knockout exacerbates the microvascular dysfunction resulting from in vivo ANG II treatment, whereas TERT overexpression is protective [maximal dilation: 88.22 ± 4.6% with vehicle vs. 74.0 ± 7.3% with ANG II (1,000 ng·kg -1 ·min -1 ) ( P = not significant), n = 4]. Therefore, loss of TERT but not TERC may be a key contributor to the elevated microvascular ROS levels and reduced peak dilation observed in several cardiovascular disease pathologies. NEW & NOTEWORTHY This study identifies telomerase reverse transcriptase (TERT) but not telomerase RNA component as a key factor regulating endothelium-dependent dilation in the microcirculation. Loss of TERT activity leads to microvascular dysfunction but not conduit vessel dysfunction in first-generation mice. In contrast, TERT is protective in the microcirculation in the presence of prolonged vascular stress. Understanding the mechanism of how TERT protects against vascular stress represents a novel target for the treatment of vascular disorders.

  7. Etravirine and rilpivirine resistance in HIV-1 subtype CRF01_AE-infected adults failing non-nucleoside reverse transcriptase inhibitor-based regimens.

    PubMed

    Bunupuradah, Torsak; Ananworanich, Jintanat; Chetchotisakd, Ploenchan; Kantipong, Pacharee; Jirajariyavej, Supunnee; Sirivichayakul, Sunee; Munsakul, Warangkana; Prasithsirikul, Wisit; Sungkanuparph, Somnuek; Bowonwattanuwong, Chureeratana; Klinbuayaem, Virat; Petoumenos, Kathy; Hirschel, Bernard; Bhakeecheep, Sorakij; Ruxrungtham, Kiat

    2011-01-01

    We studied prevalence of etravirine (ETR) and rilpivirine (RPV) resistance in HIV-1 subtype CRF01_AE infection with first-line non-nucleoside reverse transcriptase inhibitor (NNRTI) failure. A total of 225 adults failing two nucleoside reverse transcriptase inhibitors (NRTIs) plus 1 NNRTI in Thailand with HIV RNA>1,000 copies/ml were included. Genotypic resistance results and HIV-1 subtype were interpreted by Stanford DR database. ETR resistance was calculated by the new Monogram weighted score (Monogram WS; ≥ 4 indicating high-level ETR resistance) and by DUET weighted score (DUET WS; 2.5-3.5 and ≥ 4 resulted in intermediate and reduce ETR response, respectively). RPV resistance interpretation was based on previous reports. Median (IQR) age was 38 (34-42) years, 41% were female and CDC A:B:C were 22%:21%:57%. HIV subtypes were 96% CRF01_AE and 4% B. Antiretrovirals at failure were lamivudine (100%), stavudine (93%), nevirapine (90%) and efavirenz (10%) with a median (IQR) duration of 3.4 (1.8-4.5) years. Median (IQR) CD4(+) T-cell count and HIV RNA were 194 (121-280) cells/mm³ and 4.1 (3.6-4.6) log₁₀ copies/ml, respectively. The common NNRTI mutations were Y181C (41%), G190A (22%) and K103N (19%). The proportion of patients with Monogram WS score ≥ 4 was 61.3%. By DUET WS, 49.8% and 7.5% of patients were scored 2.5-3.5 and ≥4, respectively. Only HIV RNA ≥ 4 log₁₀ copies/ml at failure was associated with both Monogram WS ≥ 4 (OR 2.3, 95% CI 1.3-3.9; P=0.003) and DUET WS ≥ 2.5 (OR 1.9, 95% CI 1.1-3.3; P=0.02). The RVP resistance-associated mutations (RAMs) detected were K101P (1.8%), Y181I (2.7%) and Y181V (3.6%). All patients with RPV mutation had ETR resistance. No E138R/E138K mutations were detected. Approximately 60% of patients had high-level ETR resistance. The role of ETR in second-line therapy is limited in late NNRTI failure settings. RVP RAMs were uncommon, but cross-resistance between ETR and RVP was high.

  8. Evidence for Mitotic Recombination in W(ei)/+ Heterozygous Mice

    PubMed Central

    Panthier, J. J.; Guenet, J. L.; Condamine, H.; Jacob, F.

    1990-01-01

    A number of alleles at coat color loci of the house mouse give rise to areas of wild-type pigmentation on the coats of otherwise mutant animals. Such unstable alleles include both recessive and dominant mutations. Among the latter are several alleles at the W locus. In this report, phenotypic reversions of the W(ei) allele at the W locus were studied Mice heterozygous in repulsion for both W(ei) and buff (bf) [i.e. W(ei)+/+bf] were examined for the occurrence of phenotypic reversion events. Buff (bf) is a recessive mutation, which lies 21 cM from W on the telomeric side of chromosome 5 and is responsible for the khaki colored coat of nonagouti buff homozygotes (a/a; bf/bf). Two kinds of fully pigmented reversion spots were recovered on the coats of a/a; W(ei)+/+bf mice: either solid black or khaki colored. Furthermore phenotypic reversions of W(ei)/+ were enhanced significantly following X-irradiation of 9.25-day-old W(ei)/+ embryos (P < 0.04). These observations are consistent with the suggestion of a role for mitotic recombination in the origin of these phenotypic reversions. In addition these results rise the intriguing possibility that some W mutations may enhance mitotic recombination in the house mouse. PMID:2341029

  9. An Escherichia coli Expression Assay and Screen for Human Immunodeficiency Virus Protease Variants with Decreased Susceptibility to Indinavir

    PubMed Central

    Melnick, Laurence; Yang, Shiow-Shong; Rossi, Rick; Zepp, Charlie; Heefner, Donald

    1998-01-01

    We have developed a recombinant Escherichia coli screening system for the rapid detection and identification of amino acid substitutions in the human immunodeficiency virus (HIV) protease associated with decreased susceptibility to the protease inhibitor indinavir (MK-639; Merck & Co.). The assay depends upon the correct processing of a segment of the HIV-1 HXB2 gag-pol polyprotein followed by detection of HIV reverse transcriptase activity by a highly sensitive, colorimetric enzyme-linked immunosorbent assay. The highly sensitive system detects the contributions of single substitutions such as I84V, L90M, and L63P. The combination of single substitutions further decreases the sensitivity to indinavir. We constructed a library of HIV protease variant genes containing dispersed mutations and, using the E. coli recombinant system, screened for mutants with decreased indinavir sensitivity. The discovered HIV protease variants contain amino acid substitutions commonly associated with indinavir resistance in clinical isolates, including the substitutions L90M, L63P, I64V, V82A, L24I, and I54T. One substitution, W6R, is also frequently found by the screen and has not been reported elsewhere. Of a total of 12,000 isolates that were screened, 12 protease variants with decreased sensitivity to indinavir were found. The L63P substitution, which is also associated with indinavir resistance, increases the stability of the isolated protease relative to that of the native HXB2 protease. The rapidity, sensitivity, and accuracy of this screen also make it useful for screening for novel inhibitors. We have found the approach described here to be useful for the detection of amino acid substitutions in HIV protease that have been associated with drug resistance as well as for the screening of novel compounds for inhibitory activity. PMID:9835523

  10. Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase.

    PubMed

    Jovanović, T; Ascenso, C; Hazlett, K R; Sikkink, R; Krebs, C; Litwiller, R; Benson, L M; Moura, I; Moura, J J; Radolf, J D; Huynh, B H; Naylor, S; Rusnak, F

    2000-09-15

    Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mössbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.

  11. α-Fetoprotein as a modulator of the pro-inflammatory response of human keratinocytes

    PubMed Central

    Potapovich, AI; Pastore, S; Kostyuk, VA; Lulli, D; Mariani, V; De Luca, C; Dudich, EI; Korkina, LG

    2009-01-01

    Background and purpose: The immunomodulatory effects of α-fetoprotein (AFP) on lymphocytes and macrophages have been described in vitro and in vivo. Recombinant forms of human AFP have been proposed as potential therapeutic entities for the treatment of autoimmune diseases. We examined the effects of embryonic and recombinant human AFP on the spontaneous, UVA- and cytokine-induced pro-inflammatory responses of human keratinocytes. Experimental approach: Cultures of primary and immortalized human keratinocytes (HaCaT) and human blood T lymphocytes were used. The effects of AFP on cytokine expression were studied by bioplexed elisa and quantitative reverse transcriptase polymerase chain reaction assay. Kinase and nuclear factor kappa B (NFκB) phosphorylation were quantified by intracellular elisa. Nuclear activator protein 1 and NFκB DNA binding activity was measured by specific assays. Nitric oxide and H2O2 production and redox status were assessed by fluorescent probe and biochemical methods. Key results: All forms of AFP enhanced baseline expression of cytokines, chemokines and growth factors. AFP dose-dependently increased tumour necrosis factor alpha-stimulated granulocyte macrophage colony stimulating factor and interleukin 8 expression and decreased tumour necrosis factor alpha-induced monocyte chemotactic protein 1 and IP-10 (interferon gamma-produced protein of 10 kDa) expression. AFP induced a marked activator protein 1 activation in human keratinocytes. AFP also increased H2O2 and modulated nitrite/nitrate levels in non-stimulated keratinocytes whereas it did not affect these parameters or cytokine release from UVA-stimulated cells. Phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Akt1 but not NFκB was activated by AFP alone or by its combination with UVA. Conclusions and implications: Exogenous AFP induces activation of human keratinocytes, with de novo expression of a number of pro-inflammatory mediators and modulation of their pro-inflammatory response to cytokines or UVA. AFP may modulate inflammatory events in human skin. PMID:19785658

  12. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits.

    PubMed

    Lau, Susanna K P; Woo, Patrick C Y; Yip, Cyril C Y; Fan, Rachel Y Y; Huang, Yi; Wang, Ming; Guo, Rongtong; Lam, Carol S F; Tsang, Alan K L; Lai, Kenneth K Y; Chan, Kwok-Hung; Che, Xiao-Yan; Zheng, Bo-Jian; Yuen, Kwok-Yung

    2012-05-01

    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 10(8) copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5'-UCUAAAC-3'. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed <90% amino acid identities to most members of Betacoronavirus 1 in ADP-ribose 1″-phosphatase (ADRP) and nidoviral uridylate-specific endoribonuclease (NendoU), indicating that RbCoV HKU14 should represent a separate species. RbCoV HKU14 also possessed genomic features distinct from those of other Betacoronavirus subgroup A coronaviruses, including a unique NS2a region with a variable number of small open reading frames (ORFs). Recombination analysis revealed possible recombination events during the evolution of RbCoV HKU14 and members of Betacoronavirus 1, which may have occurred during cross-species transmission. Molecular clock analysis using RNA-dependent RNA polymerase (RdRp) genes dated the most recent common ancestor of RbCoV HKU14 to around 2002, suggesting that this virus has emerged relatively recently. Antibody against RbCoV was detected in 20 (67%) of 30 rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits.

  13. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA

    PubMed Central

    Naorem, Santa S.; Han, Jin; Wang, Shufang; Lee, William R.; Heng, Xiao; Miller, Jeff F.

    2017-01-01

    Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation. PMID:29109248

  14. Distemper outbreak and its effect on African wild dog conservation.

    PubMed

    van de Bildt, Marco W G; Kuiken, Thijs; Visee, Aart M; Lema, Sangito; Fitzjohn, Tony R; Osterhaus, Albert D M E

    2002-02-01

    In December 2000, an infectious disease spread through a captive breeding group of African wild dogs (Lycaon pictus) in Tanzania, killing 49 of 52 animals within 2 months. The causative agent was identified as Canine distemper virus (CDV) by means of histologic examination, virus isolation, reverse transcriptase-polymerase chain reaction analysis, and nucleotide sequencing. This report emphasizes the importance of adequate protection against infectious diseases for the successful outcome of captive breeding programs of endangered species.

  15. Mechanism of Telomerase Inhibition Using Small Inibitory RNAs and Induction of Breast Tumor Cell Sensitivity

    DTIC Science & Technology

    2007-03-01

    RTb motif mutants hTERT Senescence Apoptosis Long lag period [20,25] Ribozymes Hairpin hTR, hTERT Apoptosis Incomplete knockdown of target [26...O-(2-Methoxyethyl) oligomers. b Reverse transcriptase motif.the growth and viability of cancer cells (Table 1). Ribozymes and short-interfering RNA...recent studies indicate that complete knockdown is not essential for efficient and rapid apoptosis in reference to siRNA against hTR and ribozymes

  16. Determination of Clinical and Demographic Predictors of Laboratory-confirmed Influenza with Subtype Analysis

    DTIC Science & Technology

    2012-06-07

    Advisory Committee on Immunization Practicies (ACIP). vol. 57th edition. Atlanta, GA: MMWR; 2008:1–59. 3. Cox NJ, Subbarao K : Influenza. Lancet 1999...to April 2008. Reverse-transcriptase polymerase chain reaction testing and viral culture for influenza A and B with subtyping were performed on all...REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 RESEARCH

  17. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  18. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    Purcell, Maureen K.; Thompson, Rachel L.; Garver, Kyle A.; Hawley, Laura M.; Batts, William N.; Sprague, Laura; Sampson, Corie; Winton, James R.

    2013-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.

  19. Telomerase Activation in Atherosclerosis and Induction of Telomerase Reverse Transcriptase Expression by Inflammatory Stimuli in Macrophages

    PubMed Central

    Gizard, Florence; Heywood, Elizabeth B.; Findeisen, Hannes M.; Zhao, Yue; Jones, Karrie L.; Cudejko, Cèline; Post, Ginell R.; Staels, Bart; Bruemmer, Dennis

    2010-01-01

    Objective Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in LDL-receptor-deficient mice. Methods and Results We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized NF-κB response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT-deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in LDL-receptor-deficient mice. Conclusion These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis. PMID:21106948

  20. Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation.

    PubMed

    Chichinadze, Konstantin; Tkemaladze, Jaba; Lazarashvili, Ann

    2012-01-01

    In 2006, a group of scientists studying centrosomes of Spisula solidissima mollusc oocytes under the leadership of Alliegro (Alliegro, M.C.; Alliegro, M.A.; Palazzo, R.E. Centrosome-associated RNA in surf clam oocytes. Proc. Natl. Acad. Sci. USA 2006, 103(24), 9034-9038) reliably demonstrated the existence of specific RNA in centrosome, called centrosomal RNA (cnRNA). In their first article, five different RNAs (cnRNAs 11, 102, 113, 170, and 184) were described. During the process of full sequencing of the first transcript (cnRNA 11), it was discovered that the transcript contained a conserved structure-a reverse transcriptase domain located together with the most important centrosomal protein, γ-tubulin. In an article published in 2005, we made assumptions about several possible mechanisms for determining the most important functions of centrosomal structures and referred to one of them as a "RNA-dependent mechanism." This idea about participation of hypothetic centrosomal small interference RNA and/or microRNA in the process was made one year prior to the discovery of cnRNA by Alliegro's group. The discovery of specific RNA in a centrosome is indirect evidence of a centrosomal hypothesis of cellular ageing and differentiation. The presence of a reverse transcriptase domain in this type of RNA, together with its uniqueness and specificity, makes the centrosome a place of information storage and reproduction.

Top