Science.gov

Sample records for recombinantly produced hydrophobins

  1. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins.

    PubMed

    Reuter, Lauri; Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification.

  2. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    PubMed Central

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  3. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    PubMed

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions.

  4. Toluene gas phase biofiltration by Paecilomyces lilacinus and isolation and identification of a hydrophobin protein produced thereof.

    PubMed

    Vigueras, Gabriel; Shirai, Keiko; Martins de Souza, Daniel; Martins, Daniel; Franco, Telma Teixeira; Fleuri, Luciana Francisco; Revah, Sergio

    2008-08-01

    Paecilomyces lilacinus consumed toluene as the sole carbon source in a gas-phase biofilter packed with perlite obtaining an average elimination capacity of 50 g m(-3) h(-1), a removal efficiency of 53%, and a final biomass of 31.6 mg biomass g dry support(-1). Hydrophobin proteins from the mycelium produced in the biofilter were purified by formic acid extraction and precipitated by electrobubbling, and the molecular weight was found to be 10.6 +/- 0.3 kDa. The peptide mass fingerprinting analysis of the purified hydrophobin by matrix-assisted laser desorption/ionization time-of-flight resulted in the identification of two peptides that presented high homology with sequences of class I hydrophobin proteins from other ascomycetous fungi when compared against the National Center for Biotechnology Information database. The yield of hydrophobin (PLHYD) from P. lilacinus was 1.1 mg PLHYD g biomass(-1). These proteins modified the hydrophobicity of Teflon by lowering the contact angle from 130.1 (+/-2) degrees to 57.0 (+/-5) degrees supporting hot sodium dodecyl sulfate washing. This work is the first report about biodegradation of toluene by the nematophagous fungus P. lilacinus in a gas-phase biofilter and the identification of its hydrophobin protein.

  5. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability

    PubMed Central

    Lo, Victor C.; Ren, Qin; Pham, Chi L. L.; Morris, Vanessa K.; Kwan, Ann H.; Sunde, Margaret

    2014-01-01

    Hydrophobins are small proteins secreted by fungi and which spontaneously assemble into amphipathic layers at hydrophilic-hydrophobic interfaces. We have examined the self-assembly of the Class I hydrophobins EAS∆15 and DewA, the Class II hydrophobin NC2 and an engineered chimeric hydrophobin. These Class I hydrophobins form layers composed of laterally associated fibrils with an underlying amyloid structure. These two Class I hydrophobins, despite showing significant conformational differences in solution, self-assemble to form fibrillar layers with very similar structures and require a hydrophilic-hydrophobic interface to trigger self-assembly. Addition of additives that influence surface tension can be used to manipulate the fine structure of the protein films. The Class II hydrophobin NC2 forms a mesh-like protein network and the engineered chimeric hydrophobin displays two multimeric forms, depending on assembly conditions. When formed on a graphite surface, the fibrillar EAS∆15 layers are resistant to alcohol, acid and basic washes. In contrast, the NC2 Class II monolayers are dissociated by alcohol treatment but are relatively stable towards acid and base washes. The engineered chimeric Class I/II hydrophobin shows increased stability towards alcohol and acid and base washes. Self-assembled hydrophobin films may have extensive applications in biotechnology where biocompatible; amphipathic coatings facilitate the functionalization of nanomaterials.

  6. Use of the yeast-like cells of Tremella fuciformis as a cell factory to produce a Pleurotus ostreatus hydrophobin.

    PubMed

    Zhu, Hanyu; Liu, Dongmei; Wang, Yuanyuan; Ren, Danfeng; Zheng, Liesheng; Chen, Liguo; Ma, Aimin

    2017-08-01

    To obtain hydrophobin, a Class I hydrophobin gene, Po.hyd from Pleurotus ostreatus, was transformed into the yeast-like cells of Tremella fuciformis using Agrobacterium tumefaciens. The hydrophobin Po.HYD from P. ostreatus was heterogeneously expressed by the yeast-like cells of T. fuciformis. Plasmids harboring the Po.hyd gene driven by endogenous glyceraldehyde-3-phosphate dehydrogenase promoter were transformed by A. tumefaciens. The integration and expression of the rPo.HYD in the T. fuciformis cells were confirmed by PCR, Southern blot, fluorescence microscopy and quantitative real-time PCR. SDS-PAGE demonstrated that the rPo.HYD was extracted with the expected MW of 14 kDa. The yield of purified rPo.HYD was 0.58 mg/g dry wt. The protein, with its ability to stabilize oil droplets, exhibited a better emulsifying activity than the typical food emulsifiers Tween 20 and sodium caseinate. Tremella fuciformis can be used as a cell factory to produce hydrophobin on a large scale for the food industry.

  7. Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye.

    PubMed

    Wang, Kunpeng; Xiao, Yunjie; Wang, Yanyan; Feng, Yaqing; Chen, Cheng; Zhang, Jie; Zhang, Qian; Meng, Shuxian; Wang, Zefang; Yang, Haitao

    2016-03-15

    Low water solubility and poor membrane permeability are major disadvantages that compromise applications of most fluorescent dyes. To resolve these problems, herein, using Boron-dipyrromethene (BODIPY) as a model fluorescent dye, for the first time, we provide a new strategy for the rapid and efficient production of a water-soluble and membrane-permeable dye by mixing with an amphiphilic protein named hydrophobin. Data shows BODIPY could be effectively solubilized and dispersed in 200 μg/mL hydrophobin by simple mixing and sonication. Subsequent experiments indicated that hydrophobin self-assembled into a protein film on the surface of BODIPY forming stable hydrophobin-BODIPY complexes with a size range of 10-30 nm. Furthermore, we demonstrated hydrophobin-functionalized BODIPY are toxicity free to cells. The hydrophobin-BODIPY complex could pass through both the cell plasma membrane and nuclear membrane efficiently. Our work opens a novel route to modify and functionalize fluorescent dyes and may be developed as a general strategy for broadening their applications.

  8. Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye

    PubMed Central

    Wang, Kunpeng; Xiao, Yunjie; Wang, Yanyan; Feng, Yaqing; Chen, Cheng; Zhang, Jie; Zhang, Qian; Meng, Shuxian; Wang, Zefang; Yang, Haitao

    2016-01-01

    Low water solubility and poor membrane permeability are major disadvantages that compromise applications of most fluorescent dyes. To resolve these problems, herein, using Boron-dipyrromethene (BODIPY) as a model fluorescent dye, for the first time, we provide a new strategy for the rapid and efficient production of a water-soluble and membrane-permeable dye by mixing with an amphiphilic protein named hydrophobin. Data shows BODIPY could be effectively solubilized and dispersed in 200 μg/mL hydrophobin by simple mixing and sonication. Subsequent experiments indicated that hydrophobin self-assembled into a protein film on the surface of BODIPY forming stable hydrophobin-BODIPY complexes with a size range of 10–30 nm. Furthermore, we demonstrated hydrophobin-functionalized BODIPY are toxicity free to cells. The hydrophobin-BODIPY complex could pass through both the cell plasma membrane and nuclear membrane efficiently. Our work opens a novel route to modify and functionalize fluorescent dyes and may be developed as a general strategy for broadening their applications. PMID:26976627

  9. Bioseparation of recombinant proteins from plant extract with hydrophobin fusion technology.

    PubMed

    Joensuu, Jussi J; Conley, Andrew J; Linder, Markus B; Menassa, Rima

    2012-01-01

    Two main hurdles hinder the widespread acceptance of plants as a preferred protein expression platform: low accumulation levels and expensive chromatographic purification methods. Fusion of proteins of interest to fungal hydrophobins has provided a tool to address both accumulation and purification issues. In this method, we describe the one-step purification of a GFP-HFBI fusion from crude plant extract using an aqueous two-phase system (ATPS). ATPS can be carried out in a very short time frame, yields relatively pure protein with very few contaminants, and does not require any chromatographic column steps. This purification system takes advantage of the affinity of hydrophobins to the micellar phase of widely available nonionic surfactants, such as Triton X-114, and can be easily scaled up for industrial-scale protein purification.

  10. Influence of Elastin-Like Polypeptide and Hydrophobin on Recombinant Hemagglutinin Accumulations in Transgenic Tobacco Plants

    PubMed Central

    Phan, Hoang Trong; Hause, Bettina; Hause, Gerd; Arcalis, Elsa; Stoger, Eva; Maresch, Daniel; Altmann, Friedrich; Joensuu, Jussi; Conrad, Udo

    2014-01-01

    Fusion protein strategies are useful tools to enhance expression and to support the development of purification technologies. The capacity of fusion protein strategies to enhance expression was explored in tobacco leaves and seeds. C-terminal fusion of elastin-like polypeptides (ELP) to influenza hemagglutinin under the control of either the constitutive CaMV 35S or the seed-specific USP promoter resulted in increased accumulation in both leaves and seeds compared to the unfused hemagglutinin. The addition of a hydrophobin to the C-terminal end of hemagglutinin did not significantly increase the expression level. We show here that, depending on the target protein, both hydrophobin fusion and ELPylation combined with endoplasmic reticulum (ER) targeting induced protein bodies in leaves as well as in seeds. The N-glycosylation pattern indicated that KDEL sequence-mediated retention of leaf-derived hemagglutinins and hemagglutinin-hydrophobin fusions were not completely retained in the ER. In contrast, hemagglutinin-ELP from leaves contained only the oligomannose form, suggesting complete ER retention. In seeds, ER retention seems to be nearly complete for all three constructs. An easy and scalable purification method for ELPylated proteins using membrane-based inverse transition cycling could be applied to both leaf- and seed-expressed hemagglutinins. PMID:24914995

  11. Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags

    PubMed Central

    2014-01-01

    Background Pectinases play an important role in plant cell wall deconstruction and have potential in diverse industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is increasing exponentially, as are the efforts to improve their production and to implement their use in several industrial processes. The goal of this study was to examine the potential of producing polygalacturonase I from Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on its accumulation and activity. Results Polygalacturonase I from Aspergillus niger (AnPGI) was transiently produced in Nicotiana benthamiana by targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast, ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGI compared to the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGI when targeted to the chloroplast or cytosol. Analysis of AnPGI fused with elastin-like polypeptide (ELP) revealed a significant increase in the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGI accumulation and both tags impaired activity, albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGI compared to wild type N. benthamiana leaves. Conclusion Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both the target protein

  12. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells.

    PubMed

    Reuter, Lauri J; Shahbazi, Mohammad-Ali; Mäkilä, Ermei M; Salonen, Jarno J; Saberianfar, Reza; Menassa, Rima; Santos, Hélder A; Joensuu, Jussi J; Ritala, Anneli

    2017-06-21

    The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of-concept for the functionalization of hydrophobin coatings with transferrin as a targeting ligand.

  13. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  14. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  15. [Tobacco--a producer of recombinant interleukins].

    PubMed

    Budzianowski, Jaromir

    2012-01-01

    Interleukins are cytokines of highly pleiotropic activity and they have high potential for application in the treatment of cancer and autoimmune diseases. Trials of recombinant interleukin production in plants relate almost exclusively to tobacco, where through the transformation of the nuclear genome (agroinfection) monomeric (IL-2, IL-4, IL-13, IL-18), homodimeric (IL-10) and single-chain heterodimeric (IL-12) interleukins have been obtained. The expression of IL-10 as a homodimer in the chloroplast genome could not be reached. Expression of the given interleukin was obtained in the leaves, cell culture and culture of hairy roots of tobacco. Interleukins obtained in tobacco showed similar in vitro biological activity as commercial ILs produced mostly in E. coli. Glycosylated IL-13 obtained in tobacco was much more resistant to proteolytic digestion than commercial non-glycosylated IL-13; therefore in the case of sufficiently large production it could be suitable for oral administration in the treatment of type I diabetes.

  16. Structure-Function Relationships in Hydrophobins: Probing the Role of Charged Side Chains

    PubMed Central

    Lienemann, Michael; Gandier, Julie-Anne; Joensuu, Jussi J.; Iwanaga, Atsushi; Takatsuji, Yoshiyuki; Haruyama, Tetsuya; Master, Emma; Tenkanen, Maija

    2013-01-01

    Hydrophobins are small fungal proteins that are amphiphilic and have a strong tendency to assemble at interfaces. By taking advantage of this property, hydrophobins have been used for a number of applications: as affinity tags in protein purification, for protein immobilization, such as in foam stabilizers, and as dispersion agents for insoluble drug molecules. Here, we used site-directed mutagenesis to gain an understanding of the molecular basis of their properties. We especially focused on the role of charged amino acids in the structure of hydrophobins. For this purpose, fusion proteins consisting of Trichoderma reesei hydrophobin I (HFBI) and the green fluorescent protein (GFP) that contained various combinations of substitutions of charged amino acids (D30, K32, D40, D43, R45, K50) in the HFBI structure were produced. The effects of the introduced mutations on binding, oligomerization, and partitioning were characterized in an aqueous two-phase system. It was found that some substitutions caused better surface binding and reduced oligomerization, while some showed the opposite effects. However, all mutations decreased partitioning in surfactant systems, indicating that the different functions are not directly correlated and that partitioning is dependent on finely tuned properties of hydrophobins. This work shows that not all functions in self-assembly are connected in a predictable way and that a simple surfactant model for hydrophobin function is insufficient. PMID:23835172

  17. Hydrophobin-Encapsulated Quantum Dots.

    PubMed

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  18. Pure Protein Bilayers and Vesicles from Native Fungal Hydrophobins.

    PubMed

    Hähl, Hendrik; Vargas, Jose Nabor; Griffo, Alessandra; Laaksonen, Päivi; Szilvay, Géza; Lienemann, Michael; Jacobs, Karin; Seemann, Ralf; Fleury, Jean-Baptiste

    2017-01-01

    Pure protein bilayers and vesicles are formed using the native, fungal hydrophobin HFBI. Bilayers with hydrophobic (red) and hydrophilic (blue) core are produced and, depending on the type of core, vesicles in water, oily media, and even in air can be created using microfluidic jetting. Vesicles in water are even able to incorporate functional gramicidin A pores. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Intracellular protein production in Trichoderma reesei (Hypocrea jecorina) with hydrophobin fusion technology.

    PubMed

    Mustalahti, Eero; Saloheimo, Markku; Joensuu, Jussi Joonas

    2013-01-25

    Insufficient accumulation and the lack of efficient purification methods are the two major bottlenecks hindering the recombinant production of many proteins. Alternative production schemes are urgently needed for proteins that remain challenging to express and purify with conventional techniques. We have found that hydrophobin fusions targeted to endoplasmic reticulum (ER) can enhance the expression of target proteins simultaneously providing means for straightforward purification. Here we show that hydrophobin fusion technology induces formation of large protein bodies in the filamentous fungus Trichoderma reesei. The fusion protein remained soluble in the ER-derived protein bodies. A simple and scalable aqueous two-phase system was demonstrated to purify the hydrophobin fusion protein GFP-HFBI from the complex intracellular extracts with a recovery of up to 62%. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Production and activities of chitinases and hydrophobins from Lecanicillium lecanii.

    PubMed

    Rocha-Pino, Zaizy; Vigueras, Gabriel; Shirai, Keiko

    2011-08-01

    The production of chitinases and hydrophobins from Lecanicillium lecanii was influenced by the cultivation method and type of carbon source. Crude enzyme obtained from solid-substrate culture presented activities of exochitinases (32 and 51 kDa), endochitinases (26 kDa), β-N-acetylhexosaminidases (61, 80, 96 and 111 kDa). Additionally, submerged cultures produced exochitinases (32 and 45 kDa), endochitinases (10 and 26 kDa) and β-N-acetylhexosaminidases (61, 96 and 111 kDa). β-N-acetylhexosaminidases activity determined in solid-substrate culture with added chitin was ca. threefold (7.58 ± 0.57 U mg(-1)) higher than submerged culture (2.73 + 0.57 U mg(-1)). Similarly, hydrophobins displayed higher activities in solid-substrate culture (627.3 ± 2 μg protein mL(-1)) than the submerged one (57.4 ± 4.7 μg protein mL(-1)). Molecular weight of hydrophobins produced in solid-substrate culture was 7.6 kDa and they displayed surface activity on Teflon.

  1. High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris.

    PubMed

    Pedersen, Mona Højgaard; Borodina, Irina; Moresco, Jacob Lange; Svendsen, Winnie Edith; Frisvad, Jens Christian; Søndergaard, Ib

    2011-06-01

    Hydrophobins are small fungal proteins with amphipatic properties and the ability to self-assemble on a hydrophobic/hydrophilic interface; thus, many technical applications for hydrophobins have been suggested. The pathogenic fungus Aspergillus fumigatus expresses the hydrophobins RodA and RodB on the surface of its conidia. RodA is known to be of importance to the pathogenesis of the fungus, while the biological role of RodB is currently unknown. Here, we report the successful expression of both hydrophobins in Pichia pastoris and present fed-batch fermentation yields of 200-300 mg/l fermentation broth. Protein bands of expected sizes were detected by SDS-PAGE and western blotting, and the identity was further confirmed by tandem mass spectrometry. Both proteins were purified using his-affinity chromatography, and the high level of purity was verified by silver-stained SDS-PAGE. Recombinant RodA as well as rRodB were able to convert a glass surface from hydrophilic to hydrophobic similar to native RodA, but only rRodB was able to decrease the hydrophobicity of a Teflon-like surface to the same extent as native RodA, while rRodA showed this ability to a lesser extent. Recombinant RodA and native RodA showed a similar ability to emulsify air in water, while recombinant RodB could also emulsify oil in water better than the control protein bovine serum albumin (BSA). This is to our knowledge the first successful expression of hydrophobins from A. fumigatus in a eukaryote host, which makes it possible to further characterize both hydrophobins. Furthermore, the expression strategy and fed-batch production using P. pastoris may be transferred to hydrophobins from other species.

  2. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei

    PubMed Central

    Linder, Markus; Szilvay, Geza R.; Nakari-Setälä, Tiina; Söderlund, Hans; Penttilä, Merja

    2002-01-01

    Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and as fusion proteins. Both hydrophobins were produced as C-terminal fusions to the core of the hydrolytic enzyme endoglucanase I from the same organism. It was shown that as a fusion partner, HFBI causes the fusion protein to efficiently immobilize to hydrophobic surfaces, such as silanized glass and Teflon. The properties of the surface-bound protein were analyzed by the enzymatic activity of the endoglucanase domain, by surface plasmon resonance (Biacore), and by a quartz crystal microbalance. We found that the HFBI fusion forms a tightly bound, rigid surface layer on a hydrophobic support. The HFBI domain also causes the fusion protein to polymerize in solution, possibly to a decamer. Although isolated HFBII binds efficiently to surfaces, it does not cause immobilization as a fusion partner, nor does it cause polymerization of the fusion protein in solution. The findings give new information on how hydrophobins function and how they can be used to immobilize fusion proteins. PMID:12192081

  3. Hydrophobin can prevent secondary protein adsorption on hydrophobic substrates without exchange.

    PubMed

    von Vacano, Bernhard; Xu, Rui; Hirth, Sabine; Herzenstiel, Ines; Rückel, Markus; Subkowski, Thomas; Baus, Ulf

    2011-06-01

    By combining several surface analytical tools, we show that an adsorbed layer of the protein H*Protein B prevents the adsorption of secondary proteins bovine serum albumin, casein, or collagen at low-salinity conditions and at pH 8. H*Protein B is an industrially producible fusion protein of the hydrophobin family, known for its high interfacial activity. While applications of hydrophobin have been reported to facilitate adhesion of proteins under different pH conditions, careful analysis by quartz-crystal microbalance and ellipsometry prove that no additional adsorption can be found on top of the H*Protein B layer in this study. Surface analysis by X-ray photoelectron spectroscopy and secondary ion mass spectrometry proves that the hydrophobin layer stays intact even after hours of exposure to solutions of the secondary proteins and that no exchange of proteins can be detected.

  4. Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones

    PubMed Central

    Hennig, Stefan; Rödel, Gerhard; Ostermann, Kai

    2016-01-01

    Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal. PMID:27128920

  5. Insecticidal activity of recombinant avidin produced in yeast.

    PubMed

    Hinchliffe, Gareth; Bown, David P; Gatehouse, John A; Fitches, Elaine

    2010-06-01

    An expression construct encoding chicken (Gallus gallus) avidin was assembled from amplified fragments of genomic DNA. Recombinant, functional avidin was produced in Pichia pastoris, with yields of up to 80 mg/l of culture supernatant. The recombinant avidin had similar insecticidal activity to egg white avidin when assayed against larvae of a lepidopteran crop pest, cabbage moth (Mamestra brassicae), causing >90% reduction in growth and 100% mortality when fed in optimised diets at levels of 1.5 microM and 15 microM (100 ppm and 1000 ppm wet weight of recombinant protein). The recombinant protein was also highly toxic to a hemipteran pest, the pea aphid (Acyrthosiphon pisum), when fed in liquid artificial diet, causing 100% mortality after 4 days when present at concentrations > or = 3.8 microM (0.25 mg/ml, 250 ppm). Mortality was dose-dependent, with an estimated LC(50) of 2.1 microM. Toxicity to A. pisum was prevented by biotin supplementation of diet. In contrast, avidin had no significant effects on the survival of cereal aphid (Sitobion avenae) at concentrations up to 30 microM in liquid diet. Analysis of genomic DNA showed that symbionts from both aphid species lack the ability to synthesise biotin de novo. Cereal aphids appear to be less sensitive to recombinant avidin in the diet through proteolysis of the ingested protein, which would allow recovery of bound biotin. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  6. Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins

    PubMed Central

    2013-01-01

    Background Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum. Results The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants. Conclusion The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags

  7. Conidial Hydrophobins of Aspergillus fumigatus

    PubMed Central

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-01-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846

  8. Recent Advances in Fungal Hydrophobin Towards Using in Industry.

    PubMed

    Khalesi, Mohammadreza; Gebruers, Kurt; Derdelinckx, Guy

    2015-08-01

    Fungal hydrophobin is a family of low molecular weight proteins consisting of four disulfide bridges and an extraordinary hydrophobic patch. The hydrophobic patch of hydrophobins and the molecules of gaseous CO2 may interact together and form the stable CO2-nanobubbles covered by an elastic membrane in carbonated beverages. The nanobubbles provide the required energy to provoke primary gushing. Due to the hydrophobicity of hydrophobin, this protein is used as a biosurfactant, foaming agent or encapsulating agent in food products and medicine formulations. Increasing demands for using of hydrophobins led to a challenge regarding production and purification of this product. However, the main issue to use hydrophobin in the industry is the regulatory affairs: yet there is no approved legislation for using hydrophobin in food and beverages. To comply with the legislation, establishing a consistent method for obtaining pure hydrophobins is necessary. Currently, few research teams in Europe are focusing on different aspects of hydrophobins. In this paper, an up-to-date collection of highlights from those special groups about the bio-chemical and physicochemical characteristics of hydrophobins have been studied. The recent advances of those groups concerning the production and purification, positive applications and negative function of hydrophobin are also summarised.

  9. Preparing bioactive surface of polystyrene with hydrophobin for trypsin immobilization

    NASA Astrophysics Data System (ADS)

    Niu, Baolong; Li, Bingzhang; Wang, Huifang; Guo, Ruijie; Liang, HaiXia; Qiao, Mingqiang; Li, Wenfeng

    2016-05-01

    A simple and reliable enzyme immobilization technique which can retain their catalytic activity for a long time is interest in many technologies. Here, the trypsin was immobilized by physisorption on polystyrene (PS) surface coated with a class I hydrophobin recombinant HGFI (rHGFI). X-ray photoelectron spectroscopy and water-contact-angle measurements demonstrated that the hydrophobicity of the PS could be well improved by rHGFI modification, and the self-assembled rHGFI showed an admirable stability on the hydrophobic PS surface against hot SDS rinsing. The enzyme activity assay illustrated that the capacity of rHGFI could enable it to well intermediate trypsin on PS surface and allow its immobilization lasting in an active form. The results obtained in this work show a way that surface modification with rHGFI should be an easy and feasible strategy for applications of enzyme-based catalytic surfaces in biosensing.

  10. Hydrophobin Film Structure for HFBI and HFBII and Mechanism for Accelerated Film Formation

    PubMed Central

    Magarkar, Aniket; Mele, Nawel; Abdel-Rahman, Noha; Butcher, Sarah; Torkkeli, Mika; Serimaa, Ritva; Paananen, Arja; Linder, Markus; Bunker, Alex

    2014-01-01

    Hydrophobins represent an important group of proteins from both a biological and nanotechnological standpoint. They are the means through which filamentous fungi affect their environment to promote growth, and their properties at interfaces have resulted in numerous applications. In our study we have combined protein docking, molecular dynamics simulation, and electron cryo-microscopy to gain atomistic level insight into the surface structure of films composed of two class II hydrophobins: HFBI and HFBII produced by Trichoderma reesei. Together our results suggest a unit cell composed of six proteins; however, our computational results suggest P6 symmetry, while our experimental results show P3 symmetry with a unit cell size of 56 Å. Our computational results indicate the possibility of an alternate ordering with a three protein unit cell with P3 symmetry and a smaller unit cell size, and we have used a Monte Carlo simulation of a spin model representing the hydrophobin film to show how this alternate metastable structure may play a role in increasing the rate of surface coverage by hydrophobin films, possibly indicating a mechanism of more general significance to both biology and nanotechnology. PMID:25079355

  11. Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision

    PubMed Central

    Gandier, Julie-Anne; Langelaan, David N.; Won, Amy; O’Donnell, Kylie; Grondin, Julie L.; Spencer, Holly L.; Wong, Philip; Tillier, Elisabeth; Yip, Christopher; Smith, Steven P.; Master, Emma R.

    2017-01-01

    Class I hydrophobins are functional amyloids secreted by fungi. They self-assemble into organized films at interfaces producing structures that include cellular adhesion points and hydrophobic coatings. Here, we present the first structure and solution properties of a unique Class I protein sequence of Basidiomycota origin: the Schizophyllum commune hydrophobin SC16 (hyd1). While the core β-barrel structure and disulphide bridging characteristic of the hydrophobin family are conserved, its surface properties and secondary structure elements are reminiscent of both Class I and II hydrophobins. Sequence analyses of hydrophobins from 215 fungal species suggest this structure is largely applicable to a high-identity Basidiomycota Class I subdivision (IB). To validate this prediction, structural analysis of a comparatively distinct Class IB sequence from a different fungal order, namely the Phanerochaete carnosa PcaHyd1, indicates secondary structure properties similar to that of SC16. Together, these results form an experimental basis for a high-identity Class I subdivision and contribute to our understanding of functional amyloid formation. PMID:28393921

  12. Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision.

    PubMed

    Gandier, Julie-Anne; Langelaan, David N; Won, Amy; O'Donnell, Kylie; Grondin, Julie L; Spencer, Holly L; Wong, Philip; Tillier, Elisabeth; Yip, Christopher; Smith, Steven P; Master, Emma R

    2017-04-10

    Class I hydrophobins are functional amyloids secreted by fungi. They self-assemble into organized films at interfaces producing structures that include cellular adhesion points and hydrophobic coatings. Here, we present the first structure and solution properties of a unique Class I protein sequence of Basidiomycota origin: the Schizophyllum commune hydrophobin SC16 (hyd1). While the core β-barrel structure and disulphide bridging characteristic of the hydrophobin family are conserved, its surface properties and secondary structure elements are reminiscent of both Class I and II hydrophobins. Sequence analyses of hydrophobins from 215 fungal species suggest this structure is largely applicable to a high-identity Basidiomycota Class I subdivision (IB). To validate this prediction, structural analysis of a comparatively distinct Class IB sequence from a different fungal order, namely the Phanerochaete carnosa PcaHyd1, indicates secondary structure properties similar to that of SC16. Together, these results form an experimental basis for a high-identity Class I subdivision and contribute to our understanding of functional amyloid formation.

  13. Structural and functional analysis of an oligomeric hydrophobin gene from Claviceps purpurea.

    PubMed

    Mey, Géraldine; Correia, Telmo; Oeser, Birgitt; Kershaw, Michael J; Garre, Victoriano; Arntz, Claudia; Talbot, Nicholas J; Tudzynski, Paul

    2003-01-01

    SUMMARY Fungal hydrophobins are small hydrophobic proteins containing eight cysteine residues at conserved positions which have the ability to form amphipathic polymers. We have characterized a gene from the phytopathogenic ascomycete Claviceps purpurea, cpph1, which encodes a modular-type hydrophobin. It consists of five units, each showing a significant homology to class II hydrophobins. The units are separated by GN-repeat regions, which could form amphipathic alpha-helices; the amino terminus contains a glycine-rich region which could be involved in attaching the protein to the cell wall. The presence of long direct repeats within cpph1, and the high homology of the three internal modules suggest a recent generation of this gene from a tripartite precursor. Although sequencing of cDNA clones indicated that recombination could be mediated via the direct repeats, the majority of the transcripts appear to be full-sized. This was confirmed by Northern blot analysis, which showed the presence of a full-sized transcript in axenic culture. The high molecular weight pentahydrophobin was detected by Western blot analysis, indicating that CPPH1 is not processed into monomeric subunits. Targeted deletion of cpph1 did not lead to differences in morphology, growth rate, sporulation, or hydrophobicity of spores. Furthermore, the cpph1 deletion mutants showed no reduction in virulence on rye.

  14. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  15. Recombinant human factor IX produced from transgenic porcine milk.

    PubMed

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk.

  16. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence

    USDA-ARS?s Scientific Manuscript database

    Hydrophobins are small, cysteine-rich, secreted proteins, ubiquitously produced by filamentous fungi that are speculated to function in fungal growth, cell surface properties, and development, although this has been rigorously tested for only a few species. Herein, we report identification of three ...

  17. Quality assessment of recombinant proteins produced in plants.

    PubMed

    Medrano, Giuliana; Dolan, Maureen C; Condori, Jose; Radin, David N; Cramer, Carole L

    2012-01-01

    Plant-based expression technologies for recombinant proteins have begun to receive acceptance for pharmaceuticals and other commercial markets. Protein products derived from plants offer safer, more cost-effective, and less capital-intensive alternatives to traditional manufacturing systems using microbial fermentation or animal cell culture bioreactors. Moreover, plants are now known to be capable of expressing bioactive proteins from a diverse array of species including animals and humans. Methods development to assess the quality and performance of proteins manufactured in plants are essential to support the QA/QC demands as plant-produced protein products transition to the commercial marketplace. Within the pharmaceutical arena, process validation and acceptance criteria for biological products must comply with the Food and Drug Administration (FDA) and ICH Q6B guidelines in order to initiate the regulatory approval process. Detailed product specifications will also need to be developed and validated for plant-made proteins for the bioenergy, food, chemical synthesis, or research reagent markets.We have, therefore, developed assessment methods for important qualitative and quantitative parameters of the products and the manufacturing methods utilized in plant-based production systems. In this chapter, we describe a number of procedures to validate product identity and characteristics including mass analyses, antibody cross-reactivity, N-terminal sequencing, and bioactivity. We also address methods for routine assessment of yield, recovery, and purity. The methods presented are those developed for the synthesis and recovery of the avian cytokine, chicken interleukin-12 (ChIL-12), produced in the leaves of Nicotiana benthamiana. The ChIL-12 protein used as a model for this chapter includes a C-terminal histidine epitope (HIS-tag) and, thus, these methods may be directly applicable to other HIS-tagged proteins produced in plants. However, the overall strategy

  18. Lactogenic immunity in transgenic mice producing recombinant antibodies neutralizing coronavirus.

    PubMed

    Castilla, J; Sola, I; Pintado, B; Sánchez-Morgado, J M; Enjuanes, L

    1998-01-01

    Protection against coronavirus infections can be provided by the oral administration of virus neutralizing antibodies. To provide lactogenic immunity, eighteen lines of transgenic mice secreting a recombinant IgG1 monoclonal antibody (rIgG1) and ten lines of transgenic mice secreting recombinant IgA monoclonal antibodies (rIgA) neutralizing transmissible gastroenteritis coronavirus (TGEV) into the milk were generated. Genes encoding the light and heavy chains of monoclonal antibody (MAb) 6A.C3 were expressed under the control of regulatory sequences derived from the mouse genomic DNA encoding the whey acidic protein (WAP) and beta-lactoglobulin (BLG), which are highly abundant milk proteins. The MAb 6A.C3 binds to a highly conserved epitope present in coronaviruses of several species. This MAb does not allow the selection of neutralization escaping virus mutants. The antibody was expressed in the milk of transgenic mice with titers of one million as determined by RIA, and neutralized TGEV infectivity by one million fold corresponding to immunoglobulin concentrations of 5 to 6 mg per ml. Matrix attachment regions (MAR) sequences were not essential for rIgG1 transgene expression, but co-microinjection of MAR and antibody genes led to a twenty to ten thousand-fold increase in the antibody titer in 50% of the rIgG1 transgenic animals generated. Co-microinjection of the genomic BLG gene with rIgA light and heavy chain genes led to the generation of transgenic mice carrying the three transgenes. The highest antibody titers were produced by transgenic mice that had integrated the antibody and BLG genes, although the number of transgenic animals generated does not allow a definitive conclusion on the enhancing effect of BLG co-integration. Antibody expression levels were transgene copy number independent and integration site dependent. The generation of transgenic animals producing virus neutralizing antibodies in the milk could be a general approach to provide protection

  19. Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization

    PubMed Central

    Nakari-Setälä, Tiina; Azeredo, Joana; Henriques, Mariana; Oliveira, Rosário; Teixeira, José; Linder, Markus; Penttilä, Merja

    2002-01-01

    The aim of this work was to modify the cell surface properties of Saccharomyces cerevisiae by expression of the HFBI hydrophobin of the filamentous fungus Trichoderma reesei on the yeast cell surface. The second aim was to study the immobilization capacity of the modified cells. Fusion to the Flo1p flocculin was used to target the HFBI moiety to the cell wall. Determination of cell surface characteristics with contact angle and zeta potential measurements indicated that HFBI-producing cells are more apolar and slightly less negatively charged than the parent cells. Adsorption of the yeast cells to different commercial supports was studied. A twofold increase in the binding affinity of the hydrophobin-producing yeast to hydrophobic silicone-based materials was observed, while no improvement in the interaction with hydrophilic carriers could be seen compared to that of the parent cells. Hydrophobic interactions between the yeast cells and the support are suggested to play a major role in attachment. Also, a slight increase in the initial adsorption rate of the hydrophobin yeast was observed. Furthermore, due to the engineered cell surface, hydrophobin-producing yeast cells were efficiently separated in an aqueous two-phase system by using a nonionic polyoxyethylene detergent, C12-18EO5. PMID:12089019

  20. [Biosynthesis and isolation of a recombinant protein for producing genetically-engineered human proinsulin].

    PubMed

    Ivankin, A N; Mitaleva, S I; Nekliudov, A D

    1998-01-01

    Isolation of the recombinant protein from a genetically engineered Escherichia coli 1854 producer for further chemical enzymatic transformation into human insulin through proinsulin was studied. Under optimal conditions, the recombinant protein formation was more than 35% of the total cell proteins. Structures of the polypeptides obtained and purified chromatographically were confirmed by amino acid analysis. Human proinsulin was derived from the recombinant protein isolated.

  1. Layer thickness of hydrophobin films leads to oscillation in wettability.

    PubMed

    Gruner, Leopold J; Ostermann, Kai; Rödel, Gerhard

    2012-05-01

    In nanobiotechnology, the properties of surfaces are often key to sensor applications. If analytes possess a low tolerance or affinity regarding the sensory substrate (surface), then the setup of mediators may be indicated. Hydrophobins enable biocompatible surface functionalization without significant restrictions of the physicochemical substrate properties. Because of the imperfect formation of hydrophobin films, a high variation in surface properties is observed. In this study, we report on the relation between the film thickness of hydrophobin-coated solid surfaces and their wettability. We found that the wettability of protein-coated surfaces strictly depends on the amount of adsorbed protein, as reflected in an oscillation of the contact angles of hydrophobin-coated silicon wafers. Fusion proteins of Ccg2 and HFBI, representatives of class I and II hydrophobins, document the influence of fused peptide tags on the wettability. The orientation of the first crystal nuclei plays a decisive role in the formation of the growing hydrophobin layers. Here, a simple method of deducing the film thickness of hydrophobin assemblies on solid surfaces is presented. The determination of the static contact angle allows the prediction of which part of the protein is exposed to possible analytes.

  2. Antioxidant activity and ACE-inhibitory of Class II hydrophobin from wild strain Trichoderma reesei.

    PubMed

    Khalesi, Mohammadreza; Jahanbani, Raheleh; Riveros-Galan, David; Sheikh-Hassani, Vahid; Sheikh-Zeinoddin, Mahmoud; Sahihi, Mehdi; Winterburn, James; Derdelinckx, Guy; Moosavi-Movahedi, Ali Akbar

    2016-10-01

    There are several possible uses of the Class II hydrophobin HFBII in clinical applications. To fully understand and exploit this potential however, the antioxidant activity and ACE-inhibitory potential of this protein need to be better understood and have not been previously reported. In this study, the Class II hydrophobin HFBII was produced by the cultivation of wild type Trichoderma reesei. The crude hydrophobin extract obtained from the fermentation process was purified using reversed-phase liquid chromatography and the identity of the purified HFBII verified by MALDI-TOF (molecular weight: 7.2kDa). Subsequently the antioxidant activities of different concentrations of HFBII (0.01-0.40mg/mL) were determined. The results show that for HFBII concentrations of 0.04mg/mL and upwards the protein significantly reduced the presence of ABTS(+) radicals in the medium, the IC50 value found to be 0.13mg/mL. Computational modeling highlighted the role of the amino acid residues located in the conserved and exposed hydrophobic patch on the surface of the HFBII molecule and the interactions with the aromatic rings of ABTS. The ACE-inhibitory effect of HFBII was found to occur from 0.5mg/mL and upwards, making the combination of HFBII with strong ACE-inhibitors attractive for use in the healthcare industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Characterization of a hydrophobin of the ascomycete Paecilomyces farinosus.

    PubMed

    Lunkenbein, Stefan; Takenberg, Meike; Nimtz, Manfred; Berger, Ralf G

    2011-08-01

    The entomopathogenic ascomycete Paecilomyces farinosus (alternative name Isaria farinosa) synthesized a hydrophobin, irrespective of being grown in submerged or surface culture. The protein was extracted using trifluoroacetic acid and purified using preparative HPLC and SDS-PAGE. Partial sequences were obtained using ESI-MS/MS. The peptides were used as a start to apply a 'template switching oligo' protocol to elucidate the complete open reading frame of P. farinosus hydrophobin 1 (pfah1). The deduced protein sequence comprised 107 amino acids (10.7 kDa) including a 16 amino acid long hydrophobic signal peptide, showed a calculated pI of 4.56, and was interrupted by one intron. Phylogenetic analyses revealed relationships to hydrophobins of the ascomycetes Magnaporthe grisea and Metarhizium anisopliae. Based on solubility, hydropathy pattern and phylogeny PfaH1 was assigned to the class Ia hydrophobins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea

    PubMed Central

    2014-01-01

    Background Filamentous fungi produce small cysteine rich surface active amphiphilic hydrophobins on the outer surface of cell walls that mediate interactions between the fungus and the environment. The role of hydrophobins in surface hydrophobicity, sporulation, fruit body formation, recognition and adhesion to host surface and virulence have been reported. The aim of the present study was to characterize the biological function of hydrophobins in the fungal biocontrol agent Clonostachys rosea in order to understand their potential roles in biocontrol mechanisms. Results Based on the presence of hydrophobin domains, cysteine spacing patterns and hydropathy plots, we identified three class II hydrophobin genes in C. rosea. Gene expression analysis showed basal expression of Hyd1, Hyd2 and Hyd3 in all conditions tested with the exception of induced Hyd1 expression in conidiating mycelium. Interestingly, up-regulation of Hyd1, Hyd2 and Hyd3 was found during C. rosea self interaction compared to interactions with the fungal plant pathogens Botrytis cinerea or Fusarium graminearum in dual culture assays. Phenotypic analysis of C. rosea deletion and complementation strains showed that Hyd1 and Hyd3 are jointly required for conidial hydrophobicity, although no difference in mycelia hydrophobicity was found between wild type (WT) and mutant strains. Interestingly, mutant strains showed increased growth rates, conidiation and enhanced tolerances of conidia to abiotic stresses. Antagonism tests using in vitro dual culture and detached leaf assays showed that the mutant strains were more aggressive towards B. cinerea, F. graminearum or Rhizoctonia solani, and that aggression was partly related to earlier conidial germination and enhanced tolerance of mutant strains to secreted fungal metabolites. Furthermore, in vitro Arabidopsis thaliana root colonization assays revealed reduced root colonization ability of the ΔHyd3 strain, but not for the ΔHyd1 strain. Furthermore

  5. Hydrophobins as aqueous lubricant additive for a soft sliding contact.

    PubMed

    Lee, Seunghwan; Røn, Troels; Pakkanen, Kirsi I; Linder, Markus

    2015-01-01

    Two type II fungal hydrophobins, HFBI and FpHYD5, have been studied as aqueous lubricant additive at a nonpolar, compliant sliding contact (self-mated poly(dimethylsiloxane) (PDMS) contact) at two different concentrations, 0.1 mg/mL and 1.0 mg/mL. The two hydrophobins are featured as non-glycosylated (HFBI, m.w. ca. 7 kDa) vs glycosylated (FpHYD5, m.w. ca. 10 kDa) proteins. Far UV CD spectra of the two hydrophobins were very similar, suggesting overall structural similarity, but showed a noticeable difference according to the concentration. This is proposed to be related to the formation of multimers at 1.0 mg/mL. Despite 10-fold difference in the bulk concentration, the adsorbed masses of the hydrophobins onto PDMS surface obtained from the two solutions (0.1 and 1.0 mg/mL) were nearly identical, suggesting that a monolayer of the hydrophobins are formed from 0.1 mg/mL solution. PDMS-PDMS sliding interface was effectively lubricated by the hydrophobin solutions, and showed a reduction in the coefficient of friction by as much as ca. two orders of magnitude. Higher concentration solution (1.0 mg/mL) provided a superior lubrication, particularly in low-speed regime, where boundary lubrication characteristic is dominant via 'self-healing' mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO-PEO, with a similar molecular weight. This is ascribed to higher amount of adsorption of the hydrophobins to hydrophobic surfaces from aqueous solution.

  6. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    PubMed Central

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  7. Human recombinant type I collagen produced in plants.

    PubMed

    Shoseyov, Oded; Posen, Yehudit; Grynspan, Frida

    2013-07-01

    As a central element of the extracellular matrix, collagen is intimately involved in tissue development, remodeling, and repair and confers high tensile strength to tissues. Numerous medical applications, particularly, wound healing, cell therapy, bone reconstruction, and cosmetic technologies, rely on its supportive and healing qualities. Its synthesis and assembly require a multitude of genes and post-translational modifications, where even minor deviations can be deleterious or even fatal. Historically, collagen was always extracted from animal and human cadaver sources, but bare risk of contamination and allergenicity and was subjected to harsh purification conditions resulting in irreversible modifications impeding its biofunctionality. In parallel, the highly complex and stringent post-translational processing of collagen, prerequisite of its viability and proper functioning, sets significant limitations on recombinant expression systems. A tobacco plant expression platform has been recruited to effectively express human collagen, along with three modifying enzymes, critical to collagen maturation. The plant extracted recombinant human collagen type I forms thermally stable helical structures, fibrillates, and demonstrates bioactivity resembling that of native collagen. Deployment of the highly versatile plant-based biofactory can be leveraged toward mass, rapid, and low-cost production of a wide variety of recombinant proteins. As in the case of collagen, proper planning can bypass plant-related limitations, to yield products structurally and functionally identical to their native counterparts.

  8. Controlled glycosylation of plant-produced recombinant proteins.

    PubMed

    Strasser, Richard; Altmann, Friedrich; Steinkellner, Herta

    2014-12-01

    Despite their recognized importance for therapeutic proteins, the production of structurally defined glycans is still a challenging issue. However, an increased understanding of glycosylation pathways, recent advances in analytical tools, and emerging technologies for subcellular targeting using chimeric glycosyltransferases are facilitating the rational design of new glycan biosynthetic pathways. Plants are particularly amenable to glyco-engineering approaches and thus they are increasingly being used for the production of recombinant proteins. Here we summarize the main achievements in the field of in planta glyco-engineering for the production of therapeutically relevant proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  10. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  11. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  12. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  13. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  14. A Highly Efficient and Simple Construction Strategy for Producing Recombinant Baculovirus Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Liu, Xingjian; Wei, Yonglong; Li, Yinü; Li, Haoyang; Yang, Xin; Yi, Yongzhu; Zhang, Zhifang

    2016-01-01

    The silkworm baculovirus expression system is widely used to produce recombinant proteins. Several strategies for constructing recombinant viruses that contain foreign genes have been reported. Here, we developed a novel defective-rescue BmNPV Bacmid (reBmBac) expression system. A CopyControl origin of replication was introduced into the viral genome to facilitate its genetic manipulation in Escherichia coli and to ensure the preparation of large amounts of high quality reBmBac DNA as well as high quality recombinant baculoviruses. The ORF1629, cathepsin and chitinase genes were partially deleted or rendered defective to improve the efficiency of recombinant baculovirus generation and the expression of foreign genes. The system was validated by the successful expression of luciferase reporter gene and porcine interferon γ. This system can be used to produce batches of recombinant baculoviruses and target proteins rapidly and efficiently in silkworms. PMID:27008267

  15. Six Hydrophobins Are Involved in Hydrophobin Rodlet Formation in Aspergillus nidulans and Contribute to Hydrophobicity of the Spore Surface

    PubMed Central

    Seidel, Constanze; Gutt, Beatrice; Röhrig, Julian; Strunk, Timo; Vincze, Paul; Walheim, Stefan; Schimmel, Thomas; Wenzel, Wolfgang; Fischer, Reinhard

    2014-01-01

    Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins. PMID:24722460

  16. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface.

    PubMed

    Grünbacher, André; Throm, Tanja; Seidel, Constanze; Gutt, Beatrice; Röhrig, Julian; Strunk, Timo; Vincze, Paul; Walheim, Stefan; Schimmel, Thomas; Wenzel, Wolfgang; Fischer, Reinhard

    2014-01-01

    Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins.

  17. Langmuir Blodgett films of hydrophobins HFBI and HFBII

    NASA Astrophysics Data System (ADS)

    Kisko, Kaisa; Torkkeli, Mika; Vuorimaa, Elina; Lemmetyinen, Helge; Seeck, Oliver H.; Linder, Markus; Serimaa, Ritva

    2005-06-01

    Hydrophobins are small fungal proteins, which have remarkable surface-chemical properties. They self-assemble at hydrophobic/hydrophilic interfaces and work as adhesive agents and coatings. Sixteen layer Langmuir-Blodgett films of hydrophobins HFBI and HFBII from the fungus Trichoderma reesei were prepared and studied using grazing-incidence X-ray diffraction and reflectivity techniques. Both kind of films contain hexagonally ordered crystallites on the substrate with unit cell parameters of a = b = 54 Å (HFBI) and a = b = 55 Å (HFBII). The structure is similar to the structure of monolayer Langmuir-Blodgett films.

  18. High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris.

    PubMed

    Song, Dongmin; Gao, Zhendong; Zhao, Liqiang; Wang, Xiangxiang; Xu, Haijin; Bai, Yanling; Zhang, Xiuming; Linder, Markus B; Feng, Hui; Qiao, Mingqiang

    2016-12-01

    Hydrophobins are proteins produced by filamentous fungi with high natural-surfactant activities and that can self-assemble in interfaces of air-water or solid-water to form amphiphilic membranes. Here, we reported a high-yield fermentation method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris, attaining production of 300 mg/L by keeping the dissolved oxygen level at 15%-25% by turning the methanol-feeding speed. We also developed a novel HGFI-purification method enabling large-scare purification of HGFI, with >90% recovery. Additionally, we observed that hydrophobin HGFI in fermentation broth precipitated at pH < 7.0 and temperatures >90 °C. We also identified the structure and properties of proteins purified by this method through atomic force microscopy, circular dichroism, X-ray photoelectron spectroscopy, and water-contact angle measurement, which is similar to protein purification by ultrafiltration without heating treatment that enables our method to maintain native HGFI structure and properties. Furthermore, the purification method presented here can be applied to large-scale purification of other type I hydrophobins. Copyright © 2016. Published by Elsevier Inc.

  19. Generation of polyclonal antibodies against recombinant human glucocerebrosidase produced in Escherichia coli.

    PubMed

    Novo, Juliana Branco; Oliveira, Maria Leonor Sarno; Magalhães, Geraldo Santana; Morganti, Ligia; Raw, Isaías; Ho, Paulo Lee

    2010-11-01

    Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher's disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.

  20. Diffusion Of Hydrophobin Proteins In Solution And Interactions With A Graphite Surface

    SciTech Connect

    Mereghetti, Paolo; Wade, Rebecca C.

    2011-04-21

    Background Hydrophobins are small proteins produced by filamentous fungi that have a variety of biological functions including coating of spores and surface adhesion. To accomplish these functions, they rely on unique interface-binding properties. Using atomic-detail implicit solvent rigid-body Brownian dynamics simulations, we studied the diffusion of HFBI, a class II hydrophobin from Trichoderma reesei, in aqueous solution in the presence and absence of a graphite surface. Results In the simulations, HFBI exists in solution as a mixture of monomers in equilibrium with different types of oligomers. The oligomerization state depends on the conformation of HFBI. When a Highly Ordered Pyrolytic Graphite (HOPG) layer is present in the simulated system, HFBI tends to interact with the HOPG layer through a hydrophobic patch on the protein. Conclusions From the simulations of HFBI solutions, we identify a tetrameric encounter complex stabilized by non-polar interactions between the aliphatic residues in the hydrophobic patch on HFBI. After the formation of the encounter complex, a local structural rearrangement at the protein interfaces is required to obtain the tetrameric arrangement seen in HFBI crystals. Simulations performed with the graphite surface show that, due to a combination of a geometric hindrance and the interaction of the aliphatic sidechains with the graphite layer, HFBI proteins tend to accumulate close to the hydrophobic surface.

  1. HYP1, a hydrophobin gene from Aspergillus fumigatus, complements the rodletless phenotype in Aspergillus nidulans.

    PubMed Central

    Parta, M; Chang, Y; Rulong, S; Pinto-DaSilva, P; Kwon-Chung, K J

    1994-01-01

    Aspergillus fumigatus produces conidia that are highly dispersable and resistant to degradation. We have sought to analyze these properties by studying the rodlets which form the outer spore coat protein. Degenerate primers based on hydrophobins in other fungi were applied to genomic DNA from A. fumigatus in PCR. A product of this reaction with similarity to an Aspergillus nidulans gene as judged by Southern hybridization was chosen for further study. Cloning and sequencing revealed a gene with two introns which encodes a protein of 159 amino acids. Structural characteristics consistent with those of other fungal hydrophobin genes, especially conserved cysteine residues, are present. The expression of the gene is limited to the developmental stages in which maturing conidiophores are present. This A. fumigatus gene, HYP1, was used to transform a mutant strain of A. nidulans that lacks rodlets. Transformants with a single copy of HYP1 expressed a rodlet layer on their conidia as observed by freeze-fracture electron microscopy. Images PMID:7927700

  2. Molecular engineering of avidin and hydrophobin for functional self-assembling interfaces.

    PubMed

    Kurppa, Katri; Hytönen, Vesa P; Nakari-Setälä, Tiina; Kulomaa, Markku S; Linder, Markus B

    2014-08-01

    Control over the functionality of interfaces through biomolecular engineering is a central tool for nanoscale technology as well as many current applications of biology. In this work we designed fusion proteins that combined the surface adhesion and interfacial activity of a hydrophobin-protein together with the high affinity biotin-binding capability of an avidin-protein. We found that an overall architecture that was based on a circularly permuted version of avidin, dual-chain avidin, and hydrophobin gave a highly functional combination. The protein was produced in the filamentous fungus Trichoderma reesei and was efficiently purified using an aqueous two-phase partitioning procedure. The surface adhesive properties were widely different compared to wild-type avidin. Functional characterization showed that the protein assembled on hydrophobic surfaces as a thin layer even at very low concentrations and efficiently bound a biotinylated compound. The work shows how the challenge of creating a fusion protein with proteins that form multimers can be solved by structural design and how protein self-assembly can be used to efficiently functionalize interfaces. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system.

    PubMed

    Tanaka, Takumi; Nakayama, Mayumi; Takahashi, Toru; Nanatani, Kei; Yamagata, Youhei; Abe, Keietsu

    2017-03-01

    Hydrophobins are amphipathic secretory proteins with eight conserved cysteine residues and are ubiquitous among filamentous fungi. In the fungus Aspergillus oryzae, the hydrophobin RolA and the polyesterase CutL1 are co-expressed when the sole available carbon source is the biodegradable polyester polybutylene succinate-co-adipate (PBSA). RolA promotes the degradation of PBSA by attaching to the particle surface, changing its structure and interacting with CutL1 to concentrate CutL1 on the PBSA surface. We previously reported that positively charged residues in RolA and negatively charged residues in CutL1 are cooperatively involved in the ionic interaction between RolA and CutL1. We also reported that hydrophobin RodA of the model fungus Aspergillus nidulans, which was obtained via an A. oryzae expression system, interacted via ionic interactions with CutL1. In the present study, phylogenetic and alignment analyses revealed that the N-terminal regions of several RolA orthologs contained positively charged residues and that the corresponding negatively charged residues on the surface of CutL1 that were essential for the RolA-CutL1 interaction were highly conserved in several CutL1 orthologs. A PBSA microparticle degradation assay, a pull-down assay using a dispersion of Teflon particles, and a kinetic analysis using a quartz crystal microbalance revealed that recombinant A. nidulans RodA interacted via ionic interactions with two recombinant A. nidulans cutinases. Together, these results imply that ionic interactions between hydrophobins and cutinases may be common among aspergilli and other filamentous fungi.

  4. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells

    PubMed Central

    Goh, John SY; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors. PMID:24911584

  5. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells.

    PubMed

    Goh, John S Y; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors.

  6. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris

    PubMed Central

    Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J.; Pimentel, Luisa; Barrera, Luis A.

    2016-01-01

    Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276

  7. Overview of the purification of recombinant proteins produced in Escherichia coli.

    PubMed

    Wingfield, Paul T

    2003-02-01

    The updated version of this unit presents an overview of recombinant protein purification with special emphasis on proteins expressed in E. coli. The first section deals with information pertinent to protein purification that can be derived from translation of the cDNA sequence. This is followed by a discussion of common problems associated with bacterial protein expression. A flow chart summarizes approaches for establishing solubility and localization of bacterially produced proteins. Purification strategies for both soluble and insoluble proteins are also reviewed. A section on glycoproteins produced in bacteria in the nonglycosylated state is included to emphasize that, although they may not be useful for in vivo studies, such proteins are well suited for structural studies. Finally, protein handling, scale and aims of purification, and specialized equipment needed for recombinant protein purification and characterization are discussed. The methodologies and approaches described here are essentially suitable for laboratory-scale operations.

  8. [An effective scheme to produce recombinant uracil-DNA glycosylase of Escherichia coli for PCR diagnostics].

    PubMed

    Dmitrochenko, A E; Turiianskaia, O M; Gilep, A A; Usanov, S A; Iantsevich, A V

    2014-01-01

    An effective scheme has been developed to produce recombinant uracil-DNA glycosylase of Escherichia coli K12 intended to be used for PCR diagnostics, making it possible to achieve a high yield of the end product using a two-stage purification. The gene encoding this enzyme was cloned into the pCWori vector within the same reading frame with six residues of histidine in the C-erminal sequence. Using this vector and the E. coli DH5alpha, a host-vector expression system has been developed and conditions for protein synthesis have been optimized. To purify the protein, metal affinity chromatography with further dialysis was used to remove imidazole. The enzyme yield was no less than 60 mg of the end protein per 1 L of the culture medium. The concordance between amino acid sequences of the recombinant and native enzymes was proved by peptide mass fingerprinting and mass spectrometry. A rapid test to determine the activity of the enzyme preparation was suggested. It was found that the activity of 1.0 mg of the recombinant protein is no less than 3 x 10(3) units. The recombinant enzyme was most stable at pH 8.0 and an ionic strength of the solution equal to 200 mM; it lost its activity completely for 10 min at 60 degrees C. Storage during 1 h at 20 degrees C resulted in the loss of no more than 30% of activity. In the enzyme preparation, the activity of DNase was absent. The free energy of the unfolding of the protein globule of the recombinant uracil-DNA glycosylase is 23.1 +/- 0.2 kJ/mol. The data obtained indicate that the recombinant enzyme may be recommended for use in PCR diagnostics to prevent the appearance of false positive results caused by pollution of the reaction mixture by products of the preceding reactions.

  9. A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin

    PubMed Central

    Parsons, Juliana; Altmann, Friedrich; Graf, Manuela; Stadlmann, Johannes; Reski, Ralf; Decker, Eva L.

    2013-01-01

    Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modification in higher eukaryotes is prolyl-4-hydroxylase (P4H)-catalysed prolyl-hydroxylation. P4H sequence recognition sites on target proteins differ between humans and plants leading to non-human posttranslational modifications of recombinant human proteins produced in plants. The resulting hydroxyprolines display the anchor for plant-specific O-glycosylation, which bears immunogenic potential for patients. Here we describe the identification of a plant gene responsible for non-human prolyl-hydroxylation of human erythropoietin (hEPO) recombinantly produced in plant (moss) bioreactors. Targeted ablation of this gene abolished undesired prolyl-hydroxylation of hEPO and thus paves the way for plant-made pharmaceuticals humanized via glyco-engineering in moss bioreactors. PMID:24145658

  10. A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin.

    PubMed

    Parsons, Juliana; Altmann, Friedrich; Graf, Manuela; Stadlmann, Johannes; Reski, Ralf; Decker, Eva L

    2013-10-22

    Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modification in higher eukaryotes is prolyl-4-hydroxylase (P4H)-catalysed prolyl-hydroxylation. P4H sequence recognition sites on target proteins differ between humans and plants leading to non-human posttranslational modifications of recombinant human proteins produced in plants. The resulting hydroxyprolines display the anchor for plant-specific O-glycosylation, which bears immunogenic potential for patients. Here we describe the identification of a plant gene responsible for non-human prolyl-hydroxylation of human erythropoietin (hEPO) recombinantly produced in plant (moss) bioreactors. Targeted ablation of this gene abolished undesired prolyl-hydroxylation of hEPO and thus paves the way for plant-made pharmaceuticals humanized via glyco-engineering in moss bioreactors.

  11. Suspended crystalline films of protein hydrophobin I (HFBI).

    PubMed

    Oude Vrielink, Anneloes S; Bomans, Paul H H; Vredenbregt, Edgar J D; Wirix, Maarten J M; Sommerdijk, Nico A J M; Luiten, O J; Voets, Ilja K

    2015-06-01

    Protein interfaces play an essential role in both natural and man-made materials as stabilizers, sensors, catalysts, and selective channels for ions and small molecules. Probing the molecular arrangement within such interfaces is of prime importance to understand the relation between structure and functionality. Here we report on the preparation and characterization of large area suspended crystalline films of class II hydrophobin HFBI. This small, amphiphilic globular protein readily self-assembles at the air-water interface into a 2D hexagonal lattice which can be transferred onto a holey carbon electron microscopy grid yielding large areas of hundreds of square micrometers intact hydrophobin film spun across micron-sized holes. Fourier transform analysis of low-dose electron microscopy images and selected area electron diffraction profiles reveal a unit cell dimension a=5.6±0.1nm, in agreement with reported atomic force microscopy studies on solid substrates and grazing incidence X-ray scattering experiments at the air-water interface. These findings constitute the first step towards the utilization of large-area suspended crystalline hydrophobin films as membranes for ultrapurification and chiral separation or as biological substrates for ultrafast electron diffraction.

  12. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune.

    PubMed

    van Wetter, M A; Wösten, H A; Sietsma, J H; Wessels, J G

    2000-11-01

    Disruption of the SC3 hydrophobin gene of Schizophyllum commune (DeltaSC3 strain) affected the composition of the cell wall. Compared to a wild-type strain the amount of mucilage (i.e., water-soluble (1-3)beta-glucan with single glucose residues attached by (1-6)beta-linkages) increased considerably, while the amount of alkali-resistant glucan (linked to chitin) decreased. Reintroduction of the SC3 gene or other hydrophobins genes expressed behind the SC3 promotor restored wild-type cell wall composition. However, addition of purified SC3 protein to the medium or growing the DeltaSC3 strain in spent medium of the wild-type strain had no effect. In young cultures of wild-type strains of S.commune, not yet expressing SC3, the amount of mucilage was also relatively high. These data show that hydrophobins not only function at hydrophilic/hydrophobic interfaces, as shown previously, but also affect wall composition.

  13. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C.; Remington, Mary P.; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  14. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the solid-solution interface.

    PubMed

    Zhang, Xiaoli L; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Bent, Julian; Cox, Andrew

    2011-09-06

    The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.

  15. Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry.

    PubMed

    Niu, Baolong; Wang, Dandan; Yang, Yanyan; Xu, Haijin; Qiao, Mingqiang

    2012-08-01

    The class II hydrophobin HFBI from Trichoderma reesei was heterologously expressed by Pichia pastoris using pPIC9 vector under the control of the promoter AOX1. The recombinant HFBI (rHFBI) was purified by ultrafiltration and reverse-phase high performance liquid chromatography. Tricine-SDS-PAGE and Western blotting demonstrated that rHFBI with the expected molecular weight of 7.5 kDa was secreted into the culture medium. X-ray photoelectron spectroscopy and water contact angle measurements indicated that rHFBI could lead to the conversion of the wettability of the hydrophobic siliconized glass and hydrophilic mica surfaces relying on the self-assembly membrane on hydrophobic/hydrophilic interfaces. It was demonstrated that rHFBI had the ability to stabilize oil droplets, which was far excess of the class I hydrophobin HGFI heterologously expressed in P. pastoris (rHGFI) and the typical food emulsifier sodium caseinate. In gushing experiments, it was shown that rHFBI was a strong gushing inducer in beer, whereas rHGFI did not display any signs of gushing. This provided the potential of rHFBI to be used as a novel emulsifying agent and a predictor of gushing risk.

  16. Towards the molecular characterization of the stable producer phenotype of recombinant antibody-producing NS0 myeloma cells.

    PubMed

    Prieto, Y; Rojas, L; Hinojosa, L; González, I; Aguiar, D; de la Luz, K; Castillo, A; Pérez, R

    2011-08-01

    The loss of heterologous protein expression is one of the major problems faced by industrial cell line developers and has been reported by several authors. Therefore, the understanding of the mechanisms involved in the generation of stable and high producer cell lines is a critical issue, especially for those processes based on long term continuous cultures. We characterized two recombinant NS0 myeloma cell lines expressing Nimotuzumab, a humanized anti-human epidermal growth factor receptor (EGFR) antibody. The hR3/H7 clone is a stable producer obtained from the unstable hR3/t16 clone. The unstable clone was characterized by a bimodal distribution of intracellular immunoglobulin staining using flow cytometry. Loss of antibody production was due to the emergence of a non-producer cell subpopulation that increased with cell generation number. Immunoglobulin heavy chain (HC) and light chain (LC) ratio (HC/LC) was lower for the unstable phenotype. Proteomic maps using two dimensional gel electrophoresis (2DE) were obtained for both clones, at initial cell culture time and after 40 generations. Fifteen proteins potentially associated with the phenomenon of production stability were identified. The hR3/H7 stable clone showed an up-regulated expression pattern for most of these proteins. The regulation of recombinant antibody production by the host NS0 myeloma cell line most likely involves simultaneously cellular processes such as DNA transcription, mRNA processing, protein synthesis and folding, vesicular transport, glycolysis and energy production, according to the proteins identified in the present proteomic study.

  17. Electron-ion recombination in laser-produced plasmas using optical interferometry

    NASA Astrophysics Data System (ADS)

    Heilmann, Nathan; Peatross, Justin; Bergeson, Scott

    2011-10-01

    We are developing methods to measure electron-ion recombination in laser-produced plasmas. A high intensity fs laser pulse is focused into a gas jet and forms a plasma. A weaker probe beam first passes through a slightly mis-aligned Michelson interferometer and is also focused into the plasma. The probe ``beam'' is actually two temporally coincident but spatially offset laser beams. One of the laser beams passes through the plasma and the other does not. These beams expand and produce interference fringes in the far field, similar to a Young's double slit experiment. The spatial position of these fringes depends on the differential phase shift in the two probe beams. This differential shift is due to the electron density in the plasma, which is probed by only one beam. By measuring the fringe shift as a function of time after the plasma is formed, we should be able to measure the time-evolving electron density. At sufficiently high densities, three-body recombination will become important. In that regime, the measured recombination rate can be used to determine the electron temperature.

  18. Process technological effects of deletion and amplification of hydrophobins I and II in transformants of Trichoderma reesei.

    PubMed

    Bailey, M J; Askolin, S; Hörhammer, N; Tenkanen, M; Linder, M; Penttilä, M; Nakari-Setälä, T

    2002-05-01

    Transformants of the Trichoderma reeseistrains QM9414 and Rut-C30 were constructed in which the genes for the two major hydrophobin proteins, hydrophobins I (HFBI) and II (HFBII), were deleted or amplified by molecular biological techniques. Growth parameters and foam production of the transformant strains were compared with the corresponding properties of the parent strains by cultivation in laboratory bioreactors under conditions of catabolite repression (glucose medium) or induction of cellulolytic enzymes and other secondary metabolites (cellulose and lactose media). All the transformed strains exhibited vegetative growth properties similar to those of their parent. The Delta hfb2 (but not the Delta hfb1) transformant showed reduced tendency to foam, whereas both strains overproducing hydrophobins foamed extensively, particularly in the case of HFBII. Enzyme production on cellulose medium was unaltered in the Delta hfb2 transformant VTT D-99676, but both the Delta hfb2 and HFBII-overproducing transformants exhibited somewhat decreased enzyme production properties on lactose medium. Production of HFBI by the multi-copy transformant VTT D-98692 was almost 3-fold that of the parent strain QM9414. Overproduction of HFBII by the transformant VTT D-99745, obtained by transformation with three additional copies of the hfb2 gene under the cbh1 promoter, was over 5-fold compared to production by the parent strain Rut-C30. The Delta hfb2transformant VTT D-99676 produced a greatly increased number of spores on lactose medium compared with the parent strain, whereas the HFBII-overproducing transformant VTT D-99745 produced fewer spores.

  19. Key determinants affecting sheep wool biodegradation directed by a keratinase-producing Bacillus subtilis recombinant strain.

    PubMed

    Zaghloul, Taha I; Embaby, Amira M; Elmahdy, Ahmed R

    2011-02-01

    OVAT (one variable at a time) approach was applied in this study to screen the most important physicochemical key determinants involved in the process of sheep wool biodegradation. The process was directed by a keratinase-producing Bacillus subtilis DB 100 (p5.2) recombinant strain. Data indicate that, sheep wool could be degraded efficiently in cultures incubated at 30°C, with initial pH of 7 with agitation at 150 rpm. Two times autoclaved alkali treated and undefatted chopped sheep wool is more accessible to biodegradation. B. subtilis recombinant cells could utilize sheep wool as a sole source of carbon and nitrogen. Sheep wool-based modified basal medium II, lacking NH₄Cl and yeast extract, could greatly support the growth of these bacterial cells. Sheep wool biodegradation was conducted efficiently in the absence of kanamycin consequently; high stability of the recombinant plasmid (p5.2) represents a great challenge upon scaling up this process. Three key determinants (sheep wool concentration, incubation time and inoculum size) imposing considerable constraints on the process are highlighted. Sheep wool-based tap water medium and sheep wool-based distilled water medium were formulated in this study. High levels of released end products, produced from sheep wool biodegradation are achieved upon using these two sheep wool-based water media. Data indicate that, sheep wool hydrolysate is rich in some amino acids, such as tyrosine, phenylalanine, lysine, proline, isoleucine, leucine, valine, aspartic acid and glutamic acid. Moreover, the resulting sheep wool hydrolysate contains soluble proteins of high and intermediate molecular weights. The present study demonstrates a feasible, cheap, reproducible, efficient and rapid biotechnological approach towards utilization of raw sheep wool waste through a recombinant bacterium.

  20. Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

    PubMed Central

    Novo, Juliana Branco; Morganti, Ligia; Moro, Ana Maria; Paes Leme, Adriana Franco; Serrano, Solange Maria de Toledo; Raw, Isaias; Ho, Paulo Lee

    2012-01-01

    Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources. PMID:23091360

  1. Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l.

    PubMed Central

    2013-01-01

    Background Hydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to 40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are poorly understood. The functional roles of individual genes within such gene families also remain unclear. The relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are supplemented by results of the protein structure modeling for a representative set of hydrophobins. Results We have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes, Heterobasidion irregulare, representing one of the microspecies within the aggregate H. annosum s.l., and Phlebia brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irregulare (16 copies), a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1–40 copies), whereas contraction through gene loss was observed among the analyzed ascomycetes (1–11 copies). Our phylogenetic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species’ ecological strategy, with

  2. The Functional Quality of Soluble Recombinant Polypeptides Produced in Escherichia coli Is Defined by a Wide Conformational Spectrum▿

    PubMed Central

    Martínez-Alonso, Mónica; González-Montalbán, Nuria; García-Fruitós, Elena; Villaverde, Antonio

    2008-01-01

    We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure. PMID:18836021

  3. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.

  4. Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.

    PubMed

    Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N

    2016-09-15

    The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications.

  5. Efficient preservation in a silicon oxide matrix of Escherichia coli, producer of recombinant proteins.

    PubMed

    Desimone, Martín F; De Marzi, Mauricio C; Copello, Guillermo J; Fernández, Marisa M; Malchiodi, Emilio L; Diaz, Luis E

    2005-10-01

    The aim of this work was to study the use of silicon oxide matrices for the immobilization and preservation of recombinant-protein-producing bacteria. We immobilized Escherichia coli BL21 transformants containing different expression plasmids. One contained DNA coding for a T-cell receptor beta chain, which was expressed as inclusion bodies in the cytoplasm. The other two encoded bacterial superantigens Staphylococcal Enterotoxin G and Streptococcal Superantigen, which were expressed as soluble proteins in the periplasm. The properties of immobilization and storage stability in inorganic matrices prepared from two precursors, silicon dioxide and tetraethoxysilane, were studied. Immobilized E. coli was stored in sealed tubes at 4 and 20 degrees C and the number of viable cells and level of recombinant protein production were analyzed weekly. Different tests showed that the biochemical characteristics of immobilized E. coli remained intact. At both temperatures selected, we found that the number of bacteria in silicon dioxide-derived matrix was of the same order of magnitude (10(9) cfu ml(-1)) as before immobilization, for 2 months. After 2 weeks, cells immobilized in an alkoxide-derived matrix decreased to 10(4) cfu ml(-1) at 4 degrees C, and no viable cells were detected at 20 degrees C. We found that immobilized bacteria could be used as a starter to produce recombinant proteins with yields comparable to those obtained from glycerol stocks: 15 mg l(-1) for superantigens and 2 mg l(-1) for T-cell receptor beta chain. These results contribute to the development of methods for microbial cell preservation under field conditions.

  6. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli.

    PubMed

    Park, Si Jae; Kim, Eun Young; Noh, Won; Oh, Young Hoon; Kim, Hye Young; Song, Bong Keun; Cho, Kwang Myung; Hong, Soon Ho; Lee, Seung Hwan; Jegal, Jonggeon

    2013-07-01

    In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD₆₀₀ of 2-10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD₆₀₀ of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al₂O₃ as catalyst in toluene with the yield of 96 %.

  7. Recombination of engineered defective RNA species produces infective potyvirus in planta.

    PubMed

    Gal-On, A; Meiri, E; Raccah, B; Gaba, V

    1998-06-01

    Recombination occurred between viral genomes when squash plants were cobombarded with mixtures of engineered disabled constructs of a zucchini yellow mosaic potyvirus. Single and double recombinants were detected in the progeny. Genes involved in the recombination process and the mechanisms of recombination were studied in potyviruses for the first time.

  8. Recombination of Engineered Defective RNA Species Produces Infective Potyvirus In Planta†

    PubMed Central

    Gal-On, Amit; Meiri, Eti; Raccah, Benjamin; Gaba, Victor

    1998-01-01

    Recombination occurred between viral genomes when squash plants were cobombarded with mixtures of engineered disabled constructs of a zucchini yellow mosaic potyvirus. Single and double recombinants were detected in the progeny. Genes involved in the recombination process and the mechanisms of recombination were studied in potyviruses for the first time. PMID:9573302

  9. Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins

    PubMed Central

    Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin J.; Herrero Acero, Enrique; Guebitz, Georg M.; Kubicek, Christian P.

    2013-01-01

    Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET. PMID:23645195

  10. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications.

  11. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  12. Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris☆

    PubMed Central

    Krainer, Florian W.; Pletzenauer, Robert; Rossetti, Laura; Herwig, Christoph; Glieder, Anton; Spadiut, Oliver

    2014-01-01

    The plant enzyme horseradish peroxidase (HRP) is used in several important industrial and medical applications, of which especially biosensors and diagnostic kits describe an emerging field. Although there is an increasing demand for high amounts of pure enzyme preparations, HRP is still isolated from the plant as a mixture of different isoenzymes with different biochemical properties. Based on a recent next generation sequencing approach of the horseradish transcriptome, we produced 19 individual HRP isoenzymes recombinantly in the yeast Pichia pastoris. After optimizing a previously reported 2-step purification strategy for the recombinant isoenzyme HRP C1A by substituting an unfavorable size exclusion chromatography step with an anion exchange step using a monolithic column, we purified the 19 HRP isoenzymes with varying success. Subsequent basic biochemical characterization revealed differences in catalytic activity, substrate specificity and thermal stability of the purified HRP preparations. The preparations of the isoenzymes HRP A2A and HRP A2B were found to be highly interesting candidates for future applications in diagnostic kits with increased sensitivity. PMID:24342173

  13. Differentially regulated, vegetative-mycelium-specific hydrophobins of the edible basidiomycete Pleurotus ostreatus.

    PubMed

    Peñas, María M; Rust, Brian; Larraya, Luis M; Ramírez, Lucía; Pisabarro, Antonio G

    2002-08-01

    Three different hydrophobins (Vmh1, Vmh2, and Vmh3) were isolated from monokaryotic and dikaryotic vegetative cultures of the edible fungus Pleurotus ostreatus. Their corresponding genes have a number of introns different from those of other P. ostreatus hydrophobins previously described. Two genes (vmh1 and vmh2) were expressed only at the vegetative stage, whereas vmh3 expression was also found in the fruit bodies. Furthermore, the expression of the three hydrophobins varied significantly with culture time and nutritional conditions. The three genes were mapped in the genomic linkage map of P. ostreatus, and evidence is presented for the allelic nature of vmh2 and POH3 and for the different locations of the genes coding for the glycosylated hydrophobins Vmh3 and POH2. The glycosylated nature of Vmh3 and its expression during vegetative growth and in fruit bodies suggest that it should play a role in development similar to that proposed for SC3 in Schizophyllum commune.

  14. Nanoscale reduction in surface friction of polymer surfaces modified with Sc3 hydrophobin from Schizophyllum commune.

    PubMed

    Misra, Rahul; Li, Jun; Cannon, Gordon C; Morgan, Sarah E

    2006-05-01

    Hydrophobins are amphipathic self-assembling proteins secreted by filamentous fungi that exhibit remarkable ability to modify synthetic surfaces. Thin coatings of Sc3 hydrophobin isolated from the wood-rotting fungus Schizophyllum commune were prepared via spin coating and adsorption techniques onto polymeric surfaces. Surface morphology and nanotribological characteristics of the films were evaluated using lateral force microscopy (LFM) and nanoindentation techniques. This paper reports the first observation of reduction in nanoscale relative surface friction of Sc3 hydrophobin protein modified polymeric surfaces. Relative friction coefficients were dramatically reduced and hydrophilicity increased for polymer surfaces modified with Sc3 hydrophobin thin films. Morphology of the protein films as well as degree of surface modification was observed to be a function of film formation technique and composition of the substrate.

  15. [A study of recombinant human sestrin 1 and sestrin 2 proteins produced in a prokaryotic system].

    PubMed

    Rai, N; Kumar, R; Haque, Md A; Hassan, Md I; Dey, S

    2017-01-01

    Sestrins are highly conserved stress-inducible proteins capable of suppressing the production of ROS and signalling through mTORC1. Here we report a study of human sestrin1 (sesn1) and sestrin2 (sesn2) proteins produced in a pET28^(+) vector based prokaryotic system. Mass spectrometry analysis, western blot and surface plasmon resonance (SPR) of affinity purified sesn1 and sesn2 proteins confirmed their identity; biophysical characteristics were observed using circular dichroism (CD) showing that sesn1 and sesn2 have a predominant α-helical structure. Here we describe a simple, one step purification process to purify a large amount of sestrin proteins with significant yield. Further study of recombinant human sestrins may further facilitate the understanding of their roles in eukaryotic cells.

  16. Biological Activity of Recombinant Bovine Interferon τ Produced by a Silkworm-Baculovirus Gene Expression System

    PubMed Central

    TAKAHASHI, Hitomi; TSUNAZAKI, Makoto; HAMANO, Takashi; TAKAHASHI, Masashi; OKUDA, Kiyoshi; INUMARU, Shigeki; OKANO, Akira; GESHI, Masaya; HIRAKO, Makoto

    2013-01-01

    ABSTRACT Bovine interferon (bIFN) τ plays a crucial role in maternal-fetal recognition and was expressed using a Bombyx mori (Bm) nuclear polyhedrosis virus (silkworm baculovirus) gene expression system. The biological effects of Bm-recombinant bIFNτ (rbIFNτ) on prostaglandin (PG) F2α synthesis were investigated in cultured bovine endometrial epithelial cells with oxytocin (OT, 100 nM) and on the in vitro development of bovine embryos. Bm-rbIFNτ and OT were shown to suppress PGF2α production in a dose-dependent manner. When in vitro produced morula stage embryos were cultured for 72 hr in modified CR1aa medium supplemented with or without rbIFNτ, Bm-rbIFNτ (10 ng/ml) significantly promoted development to the expanded blastocyst stage. In conclusion, Bm-rbIFNτ was suggested to have the same bioactivity as native IFNτ. PMID:24212505

  17. Recombinant human milk fat globule-EGF factor 8 produces dose-dependent benefits in sepsis.

    PubMed

    Shah, Kavin G; Wu, Rongqian; Jacob, Asha; Molmenti, Ernesto P; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2012-01-01

    Animal milk fat globule-EGF factor 8 (MFG-E8) has been shown to be beneficial in attenuating the inflammatory response in sepsis. In this study, we examined the effect of recombinant human MFG-E8 (rhMFG-E8) in an animal model of sepsis in an effort to develop it as a potential therapy against sepsis in humans. Rats were subjected to sepsis by cecal ligation and puncture (CLP), and at 5 h post-CLP, they were given different doses of rhMFG-E8 (20, 40, 80, 160 μg/kg BW) in normal saline. At 20 h post-CLP, samples were collected for further analysis. A 10-day survival study was also performed. At 20 h after CLP, organ injury indicators, serum IL-6 and TNF-α, and plasma HMGB-1 levels were significantly increased as compared to sham-operated animals. Treatment with 20 μg/kg rhMFG-E8 significantly reduced these levels. With higher doses, further reductions in AST and ALT (59-62%), creatinine (65-68%), and lactate (46-57%), and serum IL-6 and TNF-α were obtained. The 160 μg/kg dose produced the greatest reduction in serum TNF-α. With treatment with 20 μg/kg rhMFG-E8, HMGB-1 levels decreased by 80%, returning back to sham values. In a 10-day survival study, vehicle-treated animals produced a 36% survival rate, while rhMFG-E8 significantly improved the survival rate to 68-72%. Treatment with increasing doses of rhMFG-E8 significantly reduced the number of apoptotic cells detected and markedly attenuated the tissue damages observed in the lungs. These data suggest that recombinant human MFG-E8 is beneficial in ameliorating sepsis in an animal model of sepsis.

  18. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  19. Selective isolation of hydrophobin SC3 by solid-phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis.

    PubMed

    Kupčík, Rudolf; Zelená, Miroslava; Řehulka, Pavel; Bílková, Zuzana; Česlová, Lenka

    2016-02-01

    Hydrophobins are small proteins that play a role in a number of processes during the filamentous fungi growth and development. These proteins are characterized by the self-assembly of their molecules into an amphipathic membrane at hydrophilic-hydrophobic interfaces. Isolation and purification of hydrophobins generally present a challenge in their analysis. Hydrophobin SC3 from Schizophyllum commune was selected as a representative of class I hydrophobins in this work. A novel procedure for selective and effective isolation of hydrophobin SC3 based on solid-phase extraction with polytetrafluoroethylene microparticles loaded in a small self-made microcolumn is reported. The tailored binding of hydrophobins to polytetrafluoroethylene followed by harsh elution conditions resulted in a highly specific isolation of hydrophobin SC3 from the model mixture of ten proteins. The presented isolation protocol can have a positive impact on the analysis and utilization of these proteins including all class I hydrophobins. Hydrophobin SC3 was further subjected to reduction of its highly stable disulfide bonds and to chymotryptic digestion followed by mass spectrometric analysis. The isolation and digestion protocols presented in this work make the analysis of these highly hydrophobic and compact proteins possible.

  20. Identification and characterization of gushing-active hydrophobins from Fusarium graminearum and related species.

    PubMed

    Sarlin, Tuija; Kivioja, Teemu; Kalkkinen, Nisse; Linder, Markus B; Nakari-Setälä, Tiina

    2012-04-01

    Fungal infection of barley and malt, particularly by the Fusarium species, is a direct cause of spontaneous overfoaming of beer, referred to as gushing. We have shown previously that small fungal proteins, hydrophobins, act as gushing-inducing factors in beer. The aim of our present study was to isolate and characterize hydrophobins from a gushing-active fungus, Fusarium graminearum (teleomorph Gibberella zeae) and related species. We generated profile hidden Markov models (profile HMMs) for the hydrophobin classes Ia, Ib and II from the multiple sequence alignments of their known members available in public domain databases. We searched the published Fusarium graminearum genome with the Markov models. The best matching sequences and the corresponding genes were isolated from F. graminearum and the related species F. culmorum and F. poae by PCR and characterized. One each of the putative F. graminearum and F. poae hydrophobin genes were expressed in the heterologous host Trichoderma reesei. The proteins corresponding to the genes were purified and identified as hydrophobins and named GzHYD5 and FpHYD5, respectively. Concentrations of 0.003 ppm of these hydrophobins were observed to induce vigorous beer gushing.

  1. RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose.

    PubMed

    Brown, Neil Andrew; Ries, Laure N A; Reis, Thaila F; Rajendran, Ranjith; Corrêa Dos Santos, Renato Augusto; Ramage, Gordon; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo H

    2016-01-01

    Sugarcane is one of the world's most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms that allow them to thrive in hostile environments. In turn, we adopted an RNA-sequencing approach to interrogate how the model fungus, Aspergillus nidulans, adapts to SEB, revealing the induction of carbon starvation responses and the lignocellulolytic machinery, in addition to morphological adaptations. Genetic analyses showed the importance of hydrophobins for growth on SEB. The major hydrophobin, RodA, was retained within the fungal biofilm on SEB fibres. The StuA transcription factor that regulates fungal morphology was up-regulated during growth on SEB and controlled hydrophobin gene induction. The absence of the RodA or DewC hydrophobins reduced biofilm formation. The loss of a RodA or a functional StuA reduced the retention of the hydrolytic enzymes within the vicinity of the fungus. Hence, hydrophobins promote biofilm formation on SEB, and may enhance lignocellulose utilisation via promoting a compact substrate-enzyme-fungus structure. This novel study highlights the importance of hydrophobins to the formation of biofilms and the efficient deconstruction of lignocellulose.

  2. Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

    PubMed Central

    Ruvinov, Emil; Sharabani-Yosef, Orna; Nagler, Arnon; Einbinder, Tom; Feinberg, Micha S; Holbova, Radka; Douvdevani, Amos; Leor, Jonathan

    2008-01-01

    Background Erythropoietin possesses cellular protection properties. The aim of the present study was to test the hypothesis that in situ expression of recombinant human erythropoietin (rhEPO) would improve tissue repair in rat after myocardial infarction (MI). Methods and results RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV) dysfunction and adverse LV remodeling 5 and 9 weeks after MI. Conclusion In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat. PMID:19014419

  3. Lifetime and quenching of CO /a super 3 pi/ produced by recombination of CO2 ions in a helium afterglow.

    NASA Technical Reports Server (NTRS)

    Wauchop, T. S.; Broida, H. P.

    1972-01-01

    Demonstration that rapid dissociative recombination of CO2(+) in a flowing, helium afterglow is an efficient source of CO in the a super 3 pi metastable state. Ions produced by mixing CO2 with He(2 super 3 S) recombine to produce a CO metastable afterglow with a number density as great as 10 to the 9th per sq cm. Monitoring of the (a super 3 pi-X super 1 sigma) Cameron transition in CO was used to study the lifetime and quenching of CO (a super 3 pi) by CO2, N2, NO, and He. Recombination of CO2(+) also produces CO in the d super 3 delta and a' super 3 sigma states.

  4. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    PubMed

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc. Copyright © 2015 Biogen. Published by Elsevier Ltd.. All rights reserved.

  5. Straightforward approach to produce recombinant scorpion toxins-Pore blockers of potassium channels.

    PubMed

    Nekrasova, Oksana; Kudryashova, Ksenia; Fradkov, Arkadiy; Yakimov, Sergey; Savelieva, Maria; Kirpichnikov, Mikhail; Feofanov, Alexey

    2017-01-10

    Scorpion venom peptide blockers (KTx) of potassium channels are a valuable tool for structure-functional studies and prospective candidates for medical applications. Low yields of recombinant KTx hamper their wide application. We developed convenient and efficient bioengineering approach to a large-scale KTx production that meets increasing demands for such peptides. Maltose-binding protein was used as a carrier for cytoplasmic expression of folded disulfide-rich KTx in E. coli. TEV protease was applied for in vitro cleavage of the target peptide from the carrier. To produce KTx with retained native N-terminal sequence, the last residue of TEV protease cleavage site (CSTEV) was occupied by the native N-terminal residue of a target peptide. It was shown that decreased efficiency of hydrolysis of fusion proteins with non-canonical CSTEV can be overcome without by-product formation. Disulfide formation and folding of a target peptide occurred in cytoplasm eliminating the need for renaturation procedure in vitro. Advantages of this approach were demonstrated by producing six peptides with three disulfide bonds related to four KTx sub-families and achieving peptide yields of 12-22mg per liter of culture. The developed approach can be of general use for low-cost production of various KTx, as well as other disulfide-rich peptides and proteins.

  6. Amino acid consumption in naïve and recombinant CHO cell cultures: producers of a monoclonal antibody.

    PubMed

    Carrillo-Cocom, L M; Genel-Rey, T; Araíz-Hernández, D; López-Pacheco, F; López-Meza, J; Rocha-Pizaña, M R; Ramírez-Medrano, A; Alvarez, M M

    2015-10-01

    Most commercial media for mammalian cell culture are designed to satisfy the amino acid requirements for cell growth, but not necessarily those for recombinant protein production. In this study, we analyze the amino acid consumption pattern in naïve and recombinant Chinese hamster ovary (CHO) cell cultures. The recombinant model we chose was a CHO-S cell line engineered to produce a monoclonal antibody. We report the cell concentration, product concentration, and amino acid concentration profiles in naïve and recombinant cell cultures growing in CD OptiCHO™ medium with or without amino acid supplementation with a commercial supplement (CHO CD EfficientFeed™ B). We quantify and discuss the amino acid demands due to cell growth and recombinant protein production during long term fed batch cultivation protocols. We confirmed that a group of five amino acids, constituting the highest mass fraction of the product, shows the highest depletion rates and could become limiting for product expression. In our experiments, alanine, a non-important mass constituent of the product, is in high demand during recombinant protein production. Evaluation of specific amino acid demands could be of great help in the design of feeding/supplementation strategies for recombinant mammalian cell cultures.

  7. Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins

    PubMed Central

    Ribitsch, Doris; Herrero Acero, Enrique; Przylucka, Agnieszka; Zitzenbacher, Sabine; Marold, Annemarie; Gamerith, Caroline; Tscheließnig, Rupert; Jungbauer, Alois; Rennhofer, Harald; Lichtenegger, Helga; Amenitsch, Heinz; Bonazza, Klaus; Kubicek, Christian P.; Guebitz, Georg M.

    2015-01-01

    Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.e., the class II hydrophobins HFB4 and HFB7 and the pseudo-class I hydrophobin HFB9b. The fusion enzymes exhibited decreased kcat values on soluble substrates (p-nitrophenyl acetate and p-nitrophenyl butyrate) and strongly decreased the hydrophilicity of glass but caused only small changes in the hydrophobicity of PET. When the enzyme was fused to HFB4 or HFB7, the hydrolysis of PET was enhanced >16-fold over the level with the free enzyme, while a mixture of the enzyme and the hydrophobins led only to a 4-fold increase at most. Fusion with the non-class II hydrophobin HFB9b did not increase the rate of hydrolysis over that of the enzyme-hydrophobin mixture, but HFB9b performed best when PET was preincubated with the hydrophobins before enzyme treatment. The pattern of hydrolysis by the fusion enzymes differed from that of Thc_Cut1 as the concentration of the product mono(2-hydroxyethyl) terephthalate relative to that of the main product, terephthalic acid, increased. Small-angle X-ray scattering (SAXS) analysis revealed an increased scattering contrast of the fusion proteins over that of the free proteins, suggesting a change in conformation or enhanced protein aggregation. Our data show that the level of hydrolysis of PET by cutinase can be significantly increased by fusion to hydrophobins. The data further suggest that this likely involves binding of the hydrophobins to the cutinase and changes in the conformation of its active center. PMID:25795674

  8. Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release.

    PubMed

    Maiolo, Daniele; Pigliacelli, Claudia; Sánchez Moreno, Paola; Violatto, Martina Bruna; Talamini, Laura; Tirotta, Ilaria; Piccirillo, Rosanna; Zucchetti, Massimo; Morosi, Lavinia; Frapolli, Roberta; Candiani, Gabriele; Bigini, Paolo; Metrangolo, Pierangelo; Baldelli Bombelli, Francesca

    2017-08-17

    One of the main hurdles in nanomedicine is the low stability of drug-nanocarrier complexes as well as the drug delivery efficiency in the region-of-interest. Here, we describe the use of the film-forming protein hydrophobin HFBII to organize dodecanethiol-protected gold nanoparticles (NPs) into well-defined supraparticles (SPs). The obtained SPs are exceptionally stable in vivo and efficiently encapsulate hydrophobic drug molecules. The HFBII film prevents massive release of the encapsulated drug, which, instead, is activated by selective SP disassembly triggered intracellularly by glutathione reduction of the protein film. As a consequence, the therapeutic efficiency of an encapsulated anticancer drug is highly enhanced (2 orders of magnitude decrease in IC50). Biodistribution and pharmacokinetics studies demonstrate the high stability of the loaded SPs in the bloodstream and the selective release of the payloads once taken up in the tissues. Overall, our results provide a rationale for the development of bioreducible and multifunctional nanomedicines.

  9. Recombinant proteinase 3 produced in different expression systems: recognition by anti-PR3 antibodies.

    PubMed

    van der Geld, Y M; Oost-Kort, W; Limburg, P C; Specks, U; Kallenberg, C G

    2000-10-20

    Anti-neutrophil cytoplasm autoantibodies (ANCA) directed against proteinase 3 (PR3) are highly sensitive and specific markers for Wegener's granulomatosis (WG). Consequently, antigen-specific assays for detection of PR3-ANCA are helpful for the diagnosis and follow-up of patients with WG. Purification of PR3 is laborious and requires large amounts of granulocytes. Therefore, several attempts have been made to produce recombinant PR3 that is recognized by PR3-ANCA. The purpose of this study was to compare the recognition of different recombinant forms of PR3 (rPR3) by anti-PR3 antibodies. Recombinant PR3 produced in E. coli (rcPR3), P. pastoris (rpPR3), insect cells using the baculovirus system (rbPR3), the human mast cell line, HMC-1 (HMC-1/PR3-S176A), or the human epithelial cell line, 293 (Delta-rPR3-S176A) as well as purified neutrophil PR3 (nPR3) were used. Recognition of these rPR3s by anti-PR3 antibodies was determined by direct and capture ELISA with 19 PR3-ANCA sera, 13 anti-PR3 mAbs and a rabbit serum raised against human PR3. In the capture ELISA rabbit anti-PR3 strongly bound nPR3 and all rPR3 products. By capture ELISA rcPR3 and rpPR3 were recognized by 11 (57%) and 13 (68%) of the 19 PR3-ANCA sera, respectively, whereas rbPR3, HMC-1/PR3-S176A, Delta-rPR3-S176A and nPR3 were recognized by all PR3-ANCA sera. By direct ELISA rabbit anti-PR3 strongly bound nPR3 and all tested rPR3 products. Using the direct ELISA none of the PR3-ANCA sera recognized rcPR3, whereas rpPR3 and rbPR3 were recognized by two (11%) and 17 (89%) of the 19 PR3-ANCA sera, respectively. All 13 anti-PR3 mAbs recognized nPR3 in the direct as well as in the capture ELISA. The rcPR3 was recognized by two mAbs in the capture ELISA but by none of the mAbs in the direct ELISA. The rpPR3 was recognized by seven mAbs in the capture ELISA and only by two mAbs in the direct ELISA. All but one of the anti-PR3 mAbs recognized rbPR3, whereas HMC-1/PR3-S176A and Delta-rPR3-S176A were recognized by

  10. Heterologous expression of the hydrophobin FcHyd5p from Fusarium culmorum in Pichia pastoris and evaluation of its surface activity and contribution to gushing of carbonated beverages.

    PubMed

    Stübner, Matthias; Lutterschmid, Georg; Vogel, Rudi F; Niessen, Ludwig

    2010-06-30

    The class II hydrophobin FcHyd5p from Fusarium culmorum was heterologously expressed by Pichia pastoris. Transcription of the recombinant gene was confirmed by RT-PCR and expression of FcHyd5p was demonstrated using SDS-PAGE and immuno-staining with 6 x His-tag antibodies. FcHyd5p was purified and concentrated by dialysis, isoelectric focussing and the use of ultra filtration. It was demonstrated that FcHyd5p is able to change the hydrophopic properties of surfaces rendering them wettable after coating with the supernatant of recombinant P. pastoris cultures. Furthermore, due to its surface activity, FcHyd5p was able to stabilise air bubbles in aqueous solutions. The supernatant of a culture medium containing a FcHyd5p producing P. pastoris clone remained turbid for 24h and the foam stable for more than 72 h after the treatment with a homogeniser, whereas the liquid of the wild type strain clarified after 10 min and the foam disintegrated after 2h. Finally it was demonstrated, that FcHyd5p can induce spontaneous overfoaming of carbonated liquids, referred to as gushing. Addition of 2 mg freeze-dried culture supernatant from a FcHyd5p producing P. pastoris clone resulted in a lost volume of 252 ml +/- 20 per 500 ml of beer (50%) and 179 ml +/- 7 per 330 ml of carbonated water (54%), respectively. Neither untreated beer/water, nor beer/water treated with freeze-dried culture supernatant from the wild type strain showed any gushing. Furthermore, addition of 215 microg highly purified FcHyd5p resulted in a lost volume of 77 ml +/- 40 per 500 ml beer (15%). 2010 Elsevier B.V. All rights reserved.

  11. Recombination produces coherent bacterial species clusters in both core and accessory genomes

    PubMed Central

    Croucher, Nicholas J.; Gutmann, Michael U.; Corander, Jukka; Hanage, William P.

    2015-01-01

    Background: Population samples show bacterial genomes can be divided into a core of ubiquitous genes and accessory genes that are present in a fraction of isolates. The ecological significance of this variation in gene content remains unclear. However, microbiologists agree that a bacterial species should be ‘genomically coherent’, even though there is no consensus on how this should be determined. Results: We use a parsimonious model combining diversification in both the core and accessory genome, including mutation, homologous recombination (HR) and horizontal gene transfer (HGT) introducing new loci, to produce a population of interacting clusters of strains with varying genome content. New loci introduced by HGT may then be transferred on by HR. The model fits well to a systematic population sample of 616 pneumococcal genomes, capturing the major features of the population structure with parameter values that agree well with empirical estimates. Conclusions: The model does not include explicit selection on individual genes, suggesting that crude comparisons of gene content may be a poor predictor of ecological function. We identify a clearly divergent subpopulation of pneumococci that are inconsistent with the model and may be considered genomically incoherent with the rest of the population. These strains have a distinct disease tropism and may be rationally defined as a separate species. We also find deviations from the model that may be explained by recent population bottlenecks or spatial structure.

  12. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity

    PubMed Central

    Sulkowski, Parker L.; Corso, Christopher D.; Robinson, Nathaniel D.; Scanlon, Susan E.; Purshouse, Karin R.; Bai, Hanwen; Liu, Yanfeng; Sundaram, Ranjini K.; Hegan, Denise C.; Fons, Nathan R.; Breuer, Gregory A.; Song, Yuanbin; Mishra-Gorur, Ketu; De Feyter, Henk; de Graaf, Robin A.; Surovtseva, Yulia V.; Kachman, Maureen; Halene, Stephanie; Günel, Murat; Glazer, Peter M.; Bindra, Ranjit S.

    2017-01-01

    2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase-1 and -2 (IDH1/2) mutations, whereas the latter is produced under pathologic processes such as hypoxia. Here, we report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. This “BRCAness” phenotype of IDH mutant cells can be completely reversed by treatment with small molecule inhibitors of the mutant IDH1 enzyme, and, conversely, it can be entirely recapitulated by treatment with either 2HG enantiomer alone in cells with intact IDH1/2 proteins. We demonstrate IDH1-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR-deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability. PMID:28148839

  13. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.

    2002-01-01

    Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.

  14. Cytotoxic and Apoptotic Effects of Recombinant Subtilase Cytotoxin Variants of Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Funk, J.; Biber, N.; Schneider, M.; Hauser, E.; Enzenmüller, S.; Förtsch, C.

    2015-01-01

    In this study, the cytotoxicity of the recently described subtilase variant SubAB2-2 of Shiga toxin-producing Escherichia coli was determined and compared to the plasmid-encoded SubAB1 and the chromosome-encoded SubAB2-1 variant. The genes for the respective enzymatic active (A) subunits and binding (B) subunits of the subtilase toxins were amplified and cloned. The recombinant toxin subunits were expressed and purified. Their cytotoxicity on Vero cells was measured for the single A and B subunits, as well as for mixtures of both, to analyze whether hybrids with toxic activity can be identified. The results demonstrated that all three SubAB variants are toxic for Vero cells. However, the values for the 50% cytotoxic dose (CD50) differ for the individual variants. Highest cytotoxicity was shown for SubAB1. Moreover, hybrids of subunits from different subtilase toxins can be obtained which cause substantial cytotoxicity to Vero cells after mixing the A and B subunits prior to application to the cells, which is characteristic for binary toxins. Furthermore, higher concentrations of the enzymatic subunit SubA1 exhibited cytotoxic effects in the absence of the respective B1 subunit. A more detailed investigation in the human HeLa cell line revealed that SubA1 alone induced apoptosis, while the B1 subunit alone did not induce cell death. PMID:25824835

  15. CHO-gmt5, a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies.

    PubMed

    Haryadi, Ryan; Zhang, Peiqing; Chan, Kah Fai; Song, Zhiwei

    2013-01-01

    Engineered zinc-finger nucleases (ZFNs) are powerful tools for creating double-stranded-breaks (DSBs) in genomic DNA in a site-specific manner. These DSBs generated by ZFNs can be repaired by homology-directed repair or nonhomologous end joining, in which the latter can be exploited to generate insertion or deletion mutants. Based on published literature, we designed a pair of zinc-finger nucleases and inactivated the GDP-fucose transporter gene (Slc35c1) in a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter gene (Slc35a1). The resulting mutant cell line, CHO-gmt5, lacks functional GDP-fucose transporter and CMP-sialic acid transporter. As a result, these cells can only produce asialylated and afucosylated glycoproteins. It is now widely recognized that removal of the core fucose from the N-glycans attached to Asn(297) of human IgG1 significantly enhances its binding to its receptor, FcγRIIIa, and thereby dramatically improves antibody-dependent cellular cytotoxicity (ADCC). Recent reports showed that removal of sialic acid from IgG1 also enhances ADCC. Therefore, CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC. These cells show comparable growth rate to wild type CHO-K1 cells and uncompromised transfection efficiency, which make them desirable for use as a production line.

  16. Detection and typing of herpes simplex viruses by using recombinant immunoglobulin fragments produced in bacteria.

    PubMed Central

    Cattani, P; Rossolini, G M; Cresti, S; Santangelo, R; Burton, D R; Williamson, R A; Sanna, P P; Fadda, G

    1997-01-01

    Thirty-seven bacterial clones producing human recombinant monoclonal antibody Fab fragments (rFabs) reactive to herpes simplex virus (HSV) antigens were selected from a human combinatorial antibody library constructed in a phage-display vector by a panning procedure against an HSV lysate. Thirty-four of the HSV-specific rFabs were able to specifically recognize HSV-infected cells in indirect immunofluorescence (IF) assays; of these, 25 recognized cells infected by either HSV type 1 (HSV-1) or HSV-2, while 9 recognized only HSV-1-infected cells. One HSV type-common rFab (rFab H37) and one HSV-1-specific rFab (rFab H85) were further evaluated as reagents for viral detection and typing by IF staining in 134 HSV-positive (72 HSV-1 and 62 HSV-2) viral cultures from clinical specimens. The results obtained with these two rFabs were fully consistent with those obtained with a commercial preparation of fluorescein-labeled anti-HSV type-specific murine monoclonal antibodies. The detection sensitivity with the type-common rFab in indirect IF assays was higher overall than that provided by the type-specific murine monoclonal antibodies. Preparations of rFabs suitable for IF staining can be easily and inexpensively obtained in a clinical microbiology laboratory from Escherichia coli cultures. Similar HSV-specific rFabs, therefore, could be advantageous for in vitro diagnostic purposes. PMID:9163470

  17. Treatment of Burn and Surgical Wounds With Recombinant Human Tropoelastin Produces New Elastin Fibers in Scars.

    PubMed

    Xie, Hua; Lucchesi, Lisa; Zheng, Bo; Ladich, Elena; Pineda, Teresa; Merten, Rose; Gregory, Cynthia; Rutten, Michael; Gregory, Kenton

    2017-02-15

    Tropoelastin (TE), the soluble precursor of insoluble elastin fibers, is produced in minimal amounts in adults. Burn injuries result in inflexible collagen-rich scars because of lack of elastin fiber formation. We studied the feasibility of using recombinant human tropoelastin to enable elastin fiber production in burn and surgical scars to improve skin flexibility. In a swine hypertrophic burn scar model, normal skin and 3 × 3-cm partial thickness thermal burns underwent dermatome resection at 1 week post burn and randomized to four subcutaneous injections of saline or TE (either 0.5, 5, or 10 mg/ml) spaced 3 days apart. Two burn sites received TE injections after wound closure (0.5 or 10 mg/ml). At 90 days, skin hardness, flexibility, and histology were evaluated. All injury sites developed hypertrophic scars. New elastin fibers were found in burn scars in all injuries injected after skin closure with low (5/5) and high (6/6) TE doses (P < .05). No elastin fibers were observed without TE treatment. No significant differences in skin hardness, flexibility, or inflammation were observed. This is the first report demonstrating that subcutaneous injections of TE into surgical and burn injuries can safely produce new elastin fibers in scars. Despite the development of new elastin fibers, skin flexibility was not improved, possibly because of insufficient elastin fiber maturation or the hypertrophic model used. The ability to restore elastin fiber formation in adult skin after burns, trauma, and surgery may improve skin regeneration and reduce disabling complications of scar formation.

  18. Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained.

    PubMed

    Zheng, Hongying; Nagaraja, Ganachari M; Kaur, Punit; Asea, Edwina E; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72(bv) (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72(bv) enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72(bv) in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72(bv) can now be used to unlock the important role Hsp72 plays in modulating immune function.

  19. Receptor specificity and functional comparison of recombinant sea bass (Dicentrarchus labrax) gonadotropins (FSH and LH) produced in different host systems.

    PubMed

    Molés, Gregorio; Zanuy, Silvia; Muñoz, Iciar; Crespo, Berta; Martínez, Iago; Mañanós, Evaristo; Gómez, Ana

    2011-06-01

    Different yields, biopotency, and in vivo pharmacokinetics are obtained for recombinant sea bass gonadoltropins depending on the production system and DNA construct, but they show specific activation of their corresponding receptors. Gonadotropins (GTHs) are glycoprotein hormones that play a major role in the regulation of gonadal functions. Recently, we succeeded in isolating the native sea bass Fsh from sea bass pituitaries, but to ensure the availability of bioactive GTHs and no cross-contamination with other related glycoproteins, recombinant sea bass GTHs were produced using two expression systems-insect and mammalian cells-and different constructs that yielded tethered or noncovalently bound dimers. Their production levels, binding specificity to their homologous cognate receptors, and bioactivity were investigated and compared. Both expression systems were successful in the generation of bioactive recombinant GTHs, but insect Sf9 cells yielded higher amounts of recombinant proteins than mammalian Chinese Hamster Ovary (CHO) stable clones. All recombinant GTHs activated their cognate receptors without cross-ligand binding and were able to stimulate sea bass gonadal steroidogenesis in vitro, although with different biopotencies. To assess their use for in vivo applications, their half-life in sea bass plasma was evaluated. Sf9-GTHs had a lower in vivo stability compared with CHO-GTHs due to their rapid clearance from the blood circulation. Cell-dependent glycosylation could be contributing to the final in vivo stability and biopotency of these recombinant glycoproteins. In conclusion, both insect and mammalian expression systems produced bioactive sea bass recombinant gonadotropins, although with particular features useful for different proposes (e.g., antibody production or in vivo studies, respectively).

  20. A Gateway recombination herpesvirus cloning system with negative selection that produces vectorless progeny.

    PubMed

    Kunec, Dusan; van Haren, Sandra; Burgess, Shane C; Hanson, Larry A

    2009-01-01

    Crossover recombination based on the lambda phage integration/excision functions enables insertion of a gene of interest into a specific locus by a simple one-step in vitro recombination reaction. Recently, a highly efficient recombination system for targeted mutagenesis, which utilizes lambda phage crossover recombination cloning, has been described for a human herpesvirus 2 bacterial artificial chromosome (BAC). The disadvantages of the system are that it allows only neutral selection (loss of green fluorescent protein) of desired recombinants and that it regenerates herpesvirus progeny containing the BAC sequence inserted in the herpesvirus genome. In this study, the existing channel catfish herpesvirus (CCV) infectious clone (in the form of overlapping fragments) was modified to allow introduction of foreign genes by modified lambda phage crossover recombination cloning. This novel system enables negative and neutral selection and regenerates vectorless herpesvirus progeny. Construction of two CCV mutants expressing lacZ, one from the native CCV ORF5 promoter and the other from the immediate-early cytomegalovirus promoter, demonstrated the efficiency and reliability of this system. This novel cloning system enables rapid incorporation, direct delivery and high-level expression of foreign genes by a herpesvirus. This system has broad utility and could be used to facilitate development of recombinant viruses, viral vectors and better vaccines.

  1. Mechanism of Nonpolar Model Substances to Inhibit Primary Gushing Induced by Hydrophobin HFBI.

    PubMed

    Shokribousjein, Zahra; Riveros Galan, David; Losada-Pérez, Patricia; Wagner, Patrick; Lammertyn, Jeroen; Arghir, Iulia; Golreihan, Asefeh; Verachtert, Hubert; Aydın, Ahmet Alper; De Maeyer, Marc; Titze, Jean; Ilberg, Vladimír; Derdelinckx, Guy

    2015-05-13

    In this work, the interactions of a well-studied hydrophobin with different types of nonpolar model substances and their impact on primary gushing is evaluated. The nature, length, and degree of saturation of nonpolar molecules are key parameters defining the gushing ability or inhibition. When mixed with hydrophobins, the nonpolar molecule-hydrophobin assembly acts as a less gushing or no gushing system. This effect can be explained in the framework of a competition effect between non-polar systems and CO2 to interact with the hydrophobic patch of the hydrophobin. Interactions of these molecules with hydrophobins are promoted as a result of the similar size of the nonpolar molecules with the hydrophobic patch of the protein, at the expense of the formation of nanobubbles with CO2. In order to prove the presence of interactions and to unravel the mechanisms behind them, a complete set of experimental techniques was used. Surface sensitive techniques clearly show the presence of the interactions, whose nature is not covalent nor hydrogen bonding according to infrared spectroscopy results. Interactions were also reflected by particle size analysis in which mixtures of particles displayed larger size than their pure component counterparts. Upon mixing with nonpolar molecules, the gushing ability of the protein is significantly disrupted.

  2. Novel application of hydrophobin in medical science: a drug carrier for improving serum stability

    PubMed Central

    Zhao, Liqiang; Xu, Haijin; Li, Ying; Song, Dongmin; Wang, Xiangxiang; Qiao, Mingqiang; Gong, Min

    2016-01-01

    Multiple physiological properties of glucagon-like peptide-1 (GLP-1) ensure that it is a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short because of rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor serum stability of GLP-1 has significantly limited its clinical utility, although many studies are focused on extending the serum stability of this molecule. Hydrophobin, a self-assembling protein, was first applied as drug carrier to stabilize GLP-1 against protease degradation by forming a cavity. The glucose tolerance test clarified that the complex retained blood glucose clearance activity for 72 hours suggesting that this complex might be utilized as a drug candidate administered every 2–3 days. Additionally, it was found that the mutagenesis of hydrophobin preferred a unique pH condition for self-assembly. These findings suggested that hydrophobin might be a powerful tool as a drug carrier or a pH sensitive drug-release compound. The novel pharmaceutical applications of hydrophobin might result in future widespread interest in hydrophobin. PMID:27212208

  3. Challenges in electrochemical pre-purification of recombinant proteins from green plant tissues: sgfp produced in tobacco leaves.

    PubMed

    Robić, Goran

    2013-01-01

    The use of recombinant proteins has increased greatly in recent years, as have the number of techniques and materials used for their production and purification. The principal advantage of using plants as bioreactors is the cost of the recombinant protein production, which is about 1000-fold lower as in the case of using CHO cells commonly applied in industry today. Among the different types of "green" bioreactors being studied today, there is a general consensus among scientists that production in green plant tissues such as leaves is more feasible. However, the presence of chlorophyll and phenolic compounds in plant extracts, which can precipitate and denature the proteins besides damaging separation membranes and gels, makes this technology impracticable on a commercial scale. Electrochemically produced aluminium hydroxide gel can be used to adsorb these compounds, and pre-purify recombinant synthetic green fluorescent protein (sGFP) produced in Nicotiana benthamiana leaves. Removal efficiencies of 99.7% of chlorophyll, 88.5% of phenolic compounds, and 38.5% of native proteins from the N. benthamiana extracts were achieved without removing sGFP from the extracts. Since electrochemical preparation of aluminum hydroxide gel is a cost-effective technique, its use can substantially contribute to the development of future production platforms for recombinant proteins produced in green plant tissues of pharmaceutical and industrial interest.

  4. GATEWAY technology and E. coli recombinant system produce a properly folded and functional recombinant allergen of the lipid transfer protein of apple (Mal d 3).

    PubMed

    Borges, Jean-Philippe; Culerrier, Raphaël; Aldon, Didier; Barre, Annick; Benoist, Hervé; Saurel, Olivier; Milon, Alain; Didier, Alain; Rougé, Pierre

    2010-04-01

    The lipid transfer protein of apple fruit, Mal d 3, has been produced as a soluble recombinant protein in transformed Escherichia coli cells using the GATEWAY technology. Circular dichroism spectra showing the protein essentially consists of alpha-helices indicate that the rMal d 3 is properly folded. The (1)H NMR spectra also indicates a correct fold for the recombinant allergen. The reactivity of rMal d 3 towards IgE from apple allergic patients and in vitro degranulation activity measured on transformed rat basophil leukemia cells expressing the human Fc epsilon RI alpha-subunit of rMal d 3 is similar to those of the native allergen purified from apple fruits. The expression of active rMal d 3 in E. coli is readily feasible and offers an interesting alternative to the production of recombinant allergen in the yeast Pichia pastoris. This expression in E. coli open the way to the modification of Mal d 3 by site-directed mutagenesis for immunotherapy purposes. (c) 2009 Elsevier Inc. All rights reserved.

  5. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  6. Design of antibacterial biointerfaces by surface modification of poly (ε-caprolactone) with fusion protein containing hydrophobin and PA-1.

    PubMed

    Wang, Xiangxiang; Mao, Jiwei; Chen, Yiming; Song, Dongmin; Gao, Zhendong; Zhang, Xiuming; Bai, Yanling; Saris, Per E J; Feng, Hui; Xu, Haijin; Qiao, Mingqiang

    2017-03-01

    Class IIa bacteriocin pediocin PA-1 has broad-spectrum activity and is a well-characterized candidate food biopreservative. Here, a simple approach is designed to extend the application of pediocin PA-1 in improving the antibacterial activity of electrospun poly(caprolactone) (PCL) grafts through combining PA-1 with HGFI, which is a self-assembled protein with characteristics allowing the modulation of surface properties of other materials originated from Grifola frondosa. Saccharomyces cerevisiae was used as the host for expression of fusion protein PA-1-linker-HGFI (pH) and his-tag purification was used to purify recombinant protein pH. An antibacterial activity assay showed the fusion protein pH retained the biological property of native PA-1. Water contact angle, X-ray photoelectron spectroscopy, immunofluorescence assay and atomic force microscopy indicated the surface properties of HGFI were greatly preserved by the fusion protein pH. Finally, antibacterial activity of pH-modified PCL substrate measurements implied the fusion protein significantly improved the bacterial-resistance of the PCL film through dressing the PCL fibers with the recombinant pH protein. This work presents a new perspective on the application of hydrophobin and pediocin PA-1 in antibacterial medical devices.

  7. A class II hydrophobin gene, Trhfb3, participates in fungal asexual development of Trichoderma reesei.

    PubMed

    He, Ronglin; Li, Chen; Feng, Jun; Zhang, Dongyuan

    2016-12-23

    Hydrophobin proteins originate from filamentous fungi, which are able to self-assemble at water-air interfaces. Hydrophobins have multiple functions in fungal growth and development. In the present study, the function of the Trhfb3 gene encoding a class II hydrophobin was characterized in Trichoderma reesei The null mutant of Trhfb3 presented a wettable phenotype and a significantly reduced conidial production compared with the parent strain. The ΔTrhfb3 mutant also exhibited less biomass formation than the parent strain. In addition, Trhfb3 was expressed on carbon sources that induce lignocellulytic enzymes, with the highest expression level detected on cellobiose. The results show that Trhfb3 has a role in vegetative growth and asexual development in T. reesei.

  8. An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms.

    PubMed

    Wang, Feng; Xu, Hanfu; Yuan, Lin; Ma, Sanyuan; Wang, Yuancheng; Duan, Xiaoli; Duan, Jianping; Xiang, Zhonghuai; Xia, Qingyou

    2013-10-01

    The middle silk gland (MSG) of silkworm is thought to be a potential host for mass-producing valuable recombinant proteins. Transgenic MSG expression systems based on the usage of promoter of sericin1 gene (sericin-1 expression system) have been established to produce various recombinant proteins in MSG. However, further modifying the activity of the sericin-1 expression system to yield higher amounts of recombinant proteins is still necessary. In this study, we provide an alternative modification strategy to construct an efficient sericin-1 expression system by using the hr3 enhancer (hr3 CQ) from a Chongqing strain of the Bombyx mori nuclear polyhedrosis virus (BmNPV) and the 3'UTRs of the fibroin heavy chain (Fib-HPA), the fibroin light chain (Fib-LPA), and Sericin1 (Ser1PA) genes. We first analyzed the effects of these DNA elements on expression of luciferase, and found that the combination of hr3 CQ and Ser1PA was most effective to increase the activity of luciferase. Then, hr3 CQ and Ser1PA were used to modify the sericin1 expression system. Transgenic silkworms bearing these modified sericin1 expression vectors were generated by a piggyBac transposon mediated genetic transformation method. Our results showed that mRNA level of DsRed reporter gene in transgenic silkworms containing hr3 CQ and Ser1PA significantly increased by 9 fold to approximately 83 % of that of endogenous sericin1. As the results of that, the production of recombinant RFP increased by 16 fold to 9.5 % (w/w) of cocoon shell weight. We conclude that this modified sericin-1 expression system is efficient and will contribute to the MSG as host to mass produce valuable recombinant proteins.

  9. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    PubMed

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  10. Hydrophobins in the Life Cycle of the Ectomycorrhizal Basidiomycete Tricholoma vaccinum

    PubMed Central

    Sammer, Dominik; Gube, Matthias; Wagner, Katharina; Kothe, Erika

    2016-01-01

    Hydrophobins—secreted small cysteine-rich, amphipathic proteins—foster interactions of fungal hyphae with hydrophobic surfaces, and are involved in the formation of aerial hyphae. Phylogenetic analyses of Tricholoma vaccinum hydrophobins showed a grouping with hydrophobins of other ectomycorrhizal fungi, which might be a result of co-evolution. Further analyses indicate angiosperms as likely host trees for the last common ancestor of the genus Tricholoma. The nine hydrophobin genes in the T. vaccinum genome were investigated to infer their individual roles in different stages of the life cycle, host interaction, asexual and sexual development, and with respect to different stresses. In aerial mycelium, hyd8 was up-regulated. In silico analysis predicted three packing arrangements, i.e., ring-like, plus-like and sheet-like structure for Hyd8; the first two may assemble to rodlets of hydrophobin covering aerial hyphae, whereas the third is expected to be involved in forming a two-dimensional network of hydrophobins. Metal stress induced hydrophobin gene hyd5. In early steps of mycorrhization, induction of hyd4 and hyd5 by plant root exudates and root volatiles could be shown, followed by hyd5 up-regulation during formation of mantle, Hartig’ net, and rhizomorphs with concomitant repression of hyd8 and hyd9. During fruiting body formation, mainly hyd3, but also hyd8 were induced. Host preference between the compatible host Picea abies and the low compatibility host Pinus sylvestris could be linked to a stronger induction of hyd4 and hyd5 by the preferred host and a stronger repression of hyd8, whereas the repression of hyd9 was comparable between the two hosts. PMID:27936063

  11. A Recombinant Fungal Chitin Deacetylase Produces Fully Defined Chitosan Oligomers with Novel Patterns of Acetylation

    PubMed Central

    Naqvi, Shoa; Cord-Landwehr, Stefan; Singh, Ratna; Bernard, Frank; Kolkenbrock, Stephan; El Gueddari, Nour Eddine

    2016-01-01

    . tritici in the periplasm of E. coli as a fusion protein with the maltose-binding protein; this strategy allows the production of these difficult-to-express enzymes in sufficient quantities for them to be characterized and optimized through protein engineering. Here, the recombinant enzyme was used to produce partially acetylated chitosan oligosaccharides from chitin oligomers, whereby the pronounced regioselectivity of the enzyme led to the production of defined products with novel patterns of acetylation. This approach widens the scope for both the production and functional analysis of chitosan oligomers and thus will eventually allow the detailed molecular structure-function relationships of biologically active chitosans to be studied, which is essential for developing applications for these functional biopolymers for a circular bioeconomy, e.g., in agriculture, medicine, cosmetics, and food sciences. PMID:27590819

  12. Haematococcus as a promising cell factory to produce recombinant pharmaceutical proteins.

    PubMed

    Saei, Amir Ata; Ghanbari, Parisa; Barzegari, Abolfazl

    2012-11-01

    The need for recombinant pharmaceutical proteins has urged scientists all over the world to search for better protein expression systems which have higher capabilities and flexibilities. Although a number of protein expression systems are now available, no system is ideal and different systems lack specific properties. Here, microalga Haematococcus is discussed as a new protein expression system which merits cheap growth medium, fast growth rate, ease of manipulation and scale-up, ease of transformation, potential of exploiting in bioreactors and ability to exert post-translational modifications to the proteins. This green single-cell plant has favorable biological and biotechnological features for production of remarkable yields of recombinant proteins with high functionality. In this review article, we highlight the favorable biotechnological characteristics of Haematococcus for lowering costs and facilitating scale-up of recombinant protein production along with its superior biological features for genetic engineering.

  13. Detection of recombinant human lactoferrin and lysozyme produced in a bitransgenic cow.

    PubMed

    Kaiser, Germán G; Mucci, Nicolás C; González, Vega; Sánchez, Lourdes; Parrón, José A; Pérez, María D; Calvo, Miguel; Aller, Juan F; Hozbor, Federico A; Mutto, Adrián A

    2017-03-01

    Lactoferrin and lysozyme are 2 glycoproteins with great antimicrobial activity, being part of the nonspecific defensive system of human milk, though their use in commercial products is difficult because human milk is a limited source. Therefore, many investigations have been carried out to produce those proteins in biological systems, such as bacteria, yeasts, or plants. Mammals seem to be more suitable as expression systems for human proteins, however, especially for those that are glycosylated. In the present study, we developed a bicistronic commercial vector containing a goat β-casein promoter and an internal ribosome entry site fragment between the human lactoferrin and human lysozyme genes to allow the introduction of both genes into bovine adult fibroblasts in a single transfection. Embryos were obtained by somatic cell nuclear transfer, and, after 6 transferences to recipients, 3 pregnancies and 1 viable bitransgenic calf were obtained. The presence of the vector was confirmed by fluorescent in situ hybridization of skin cells. At 13 mo of life and after artificial induction of lactation, both recombinant proteins were found in the colostrum and milk of the bitransgenic calf. Human lactoferrin concentration in the colostrum was 0.0098 mg/mL and that in milk was 0.011 mg/mL; human lysozyme concentration in the colostrum was 0.0022 mg/mL and that in milk was 0.0024 mg/mL. The molar concentration of both human proteins revealed no differences in protein production of the internal ribosome entry site upstream and downstream protein. The enzymatic activity of lysozyme in the transgenic milk was comparable to that of human milk, being 6 and 10 times higher than that of bovine lysozyme present in milk. This work represents an important step to obtain multiple proteins or enhance single protein production by using animal pharming and fewer regulatory and antibiotic-resistant foreign sequences, allowing the design of humanized milk with added biological value for

  14. Noncovalent Sidewall Functionalization of Carbon Nanotubes by Biomolecules: Single-stranded DNA and Hydrophobin

    NASA Astrophysics Data System (ADS)

    Taeger, Sebastian; Xuang, Li Yi; Günther, Katrin; Mertig, Michael

    2005-09-01

    Single-stranded DNA (ssDNA) is known to disperse individual carbon nanotubes (CNT) into aqueous suspensions. But other biomolecules are able to do so as well. We demonstrate a protein-assisted CNT dispersion by using hydrophobin. The yields of the suspensions are monitored by optical absorption spectroscopy (OAS). We perform atomic force microscopy (AFM) studies of DNA- and hydrophobin-functionalized CNT with a resolution that allows us to identify individual molecules attached to isolated CNT. We control the density of DNA on the nanotubes by the DNA:CNT ratio, and observe stable suspensions of CNT with surprisingly low surface coverages.

  15. Ionic interaction of positive amino acid residues of fungal hydrophobin RolA with acidic amino acid residues of cutinase CutL1.

    PubMed

    Takahashi, Toru; Tanaka, Takumi; Tsushima, Yusei; Muragaki, Kimihide; Uehara, Kenji; Takeuchi, Shunsuke; Maeda, Hiroshi; Yamagata, Youhei; Nakayama, Mayumi; Yoshimi, Akira; Abe, Keietsu

    2015-04-01

    Hydrophobins are amphipathic proteins secreted by filamentous fungi. When the industrial fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate co-adipate (PBSA), it produces RolA, a hydrophobin, and CutL1, a PBSA-degrading cutinase. Secreted RolA attaches to the surface of the PBSA particles and recruits CutL1, which then condenses on the particles and stimulates the hydrolysis of PBSA. Here, we identified amino acid residues that are required for the RolA-CutL1 interaction by using site-directed mutagenesis. We quantitatively analyzed kinetic profiles of the interactions between RolA variants and CutL1 variants by using a quartz crystal microbalance (QCM). The QCM analyses revealed that Asp142, Asp171 and Glu31, located on the hydrophilic molecular surface of CutL1, and His32 and Lys34, located in the N-terminus of RolA, play crucial roles in the RolA-CutL1 interaction via ionic interactions. RolA immobilized on a QCM electrode strongly interacted with CutL1 (K(D)  = 6.5 nM); however, RolA with CutL1 variants, or RolA variants with CutL1, showed markedly larger KD values, particularly in the interaction between the double variant RolA-H32S/K34S and the triple variant CutL1-E31S/D142S/D171S (K(D)  = 78.0 nM). We discuss a molecular prototype model of hydrophobin-based enzyme recruitment at the solid-water interface. © 2015 John Wiley & Sons Ltd.

  16. Characterization and biological activities of recombinant human plasminogen kringle 1-3 produced in Escherichia coli.

    PubMed

    You, Weon-Kyoo; So, Seung-Ho; Sohn, Young-Doug; Lee, Hyosil; Park, Doo-Hong; Chung, Soo-Il; Chung, Kwang-Hoe

    2004-07-01

    Angiogenesis, the formation of new capillaries from preexisting blood vessels, is involved in many pathological conditions, for example, tumorigenesis, diabetic retinopathy, and rheumatoid arthritis. Angiostatin, which contains the kringle 1-4 domains of plasminogen, is known to be a potent inhibitor of angiogenesis and a strong suppressor of various solid tumors. In this study, we expressed recombinant protein containing the kringle 1-3 domains of human plasminogen in Escherichia coli and investigated its biological activities. The protein was successfully refolded from inclusion bodies and purified at a 30% overall yield, as a single peak by HPLC. The purified recombinant protein had biochemical properties that were similar to those of the native form, which included molecular size, lysine-binding capacity, and immunoreactivity with a specific antibody. The recombinant protein was also found to strongly inhibit the proliferation of bovine capillary endothelial cells in vitro, and the formation of new capillaries on chick embryos. In addition, it suppressed the growth of primary Lewis lung carcinoma and B16 melanoma in an in vivo mouse model. Our findings suggest that the recombinant kringle 1-3 domains in a prokaryote expression system have anti-angiogenic activities, which may be useful in clinical and basic research in the field of angiogenesis.

  17. Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein.

    PubMed

    Zhang, Yin; Wei, Xiong; Lu, Zhou; Pan, Zhongli; Gou, Xinhua; Venkitasamy, Chandrasekar; Guo, Siya; Zhao, Liming

    2017-07-15

    Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h.

  18. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper.

    PubMed

    Pan, Zihao; Liu, Jin; Ma, Jiale; Jin, Qiuli; Yao, Huochun; Osterrieder, Nikolaus

    2017-10-01

    Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper. Copyright © 2017. Published by Elsevier Ltd.

  19. Hydrophobins Sc3 and Sc4 gene expression in mounds, fruiting bodies and vegetative hyphae of Schizophyllum commune.

    PubMed

    Banerjee, Goutami; Robertson, Deborah L; Leonard, Thomas J

    2008-03-01

    An abnormal growth form called mound has been hypothesized to be a neoplasm in the filamentous fungus Schizophyllum commune. An alternative hypothesis is that mounds represent some unusual developmental form in the fruiting body morphogenetic pathway. Hydrophobin proteins have been found in fruiting bodies where they line the surface of gas exchange pores and function to keep the pores hydrophobic. To further determine possible relationships between mounds and fruiting bodies, mound tissue was examined for gas exchange pores and the presence of hydrophobins. Cryoscanning electron microscopic images revealed the presence of channels in mound tissue and presumptive hydrophobin rodlets similar to the air channels in fruiting bodies. Hydrophobin gene expression was also measured in mound tissue using quantitative real-time PCR and showed both monokaryotic and dikaryotic mound tissue exhibited high expression of the dikaryotic specific Sc4 hydrophobin gene. In contrast, Sc4 hydrophobin expression was barely detectable in monokaryotic fruiting bodies. The expression of Sc4 hydrophobin genes in mounds suggests mound development uses this aspect of the dikaryotic fruiting developmental pathway.

  20. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber

    PubMed Central

    Xia, Xiao-Xia; Qian, Zhi-Gang; Ki, Chang Seok; Park, Young Hwan; Kaplan, David L.; Lee, Sang Yup

    2010-01-01

    Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250–320 kDa). Here we show that a 284.9 kDa recombinant protein of the spider Nephila clavipes is produced and spun into a fiber displaying mechanical properties comparable to those of the native silk. The native-sized protein, predominantly rich in glycine (44.9%), was favorably expressed in metabolically engineered Escherichia coli within which the glycyl-tRNA pool was elevated. We also found that the recombinant proteins of lower molecular weight versions yielded inferior fiber properties. The results provide insight into evolution of silk protein size related to mechanical performance, and also clarify why spinning lower molecular weight proteins does not recapitulate the properties of native fibers. Furthermore, the silk expression, purification, and spinning platform established here should be useful for sustainable production of natural quality dragline silk, potentially enabling broader applications. PMID:20660779

  1. Integrated approach to produce a recombinant, His-tagged human α-galactosidase A in mammalian cells.

    PubMed

    Corchero, José Luis; Mendoza, Rosa; Lorenzo, Julia; Rodríguez-Sureda, Victor; Domínguez, Carmen; Vázquez, Esther; Ferrer-Miralles, Neus; Villaverde, Antonio

    2011-01-01

    Successful production of recombinant proteins (r-proteins) by transient gene expression (TGE) depends on several parameters (including producer cells, culture conditions, transfection procedure, or expression vector) that should be optimized when producing any recombinant product. In this work, TGE-based production of human α-galactosidase A (GLA) is described. Producer cells, expression vectors, and parameters influencing cell metabolism after transfection have been tested. The enzyme is secreted, has the right molecular weight, and is enzymatically active. Productivities of up to 30-40 mg/L have been achieved, with a simple, fast procedure. A 6 × His tag allows enzyme purification in a single step, rendering a highly pure product. We propose a TGE-based protocol able to produce up to several milligrams per liter of highly pure, active GLA in a time as short as a few days. By this, enough amounts of engineered versions of the enzyme can be easily produced to be tested in vitro or in preclinical trials.

  2. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed Central

    Kilian, Oliver; Benemann, Christina S. E.; Niyogi, Krishna K.; Vick, Bertrand

    2011-01-01

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology. PMID:22123974

  3. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed

    Kilian, Oliver; Benemann, Christina S E; Niyogi, Krishna K; Vick, Bertrand

    2011-12-27

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology.

  4. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    PubMed

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  5. The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants.

    PubMed

    Peyret, Hadrien; Lomonossoff, George P

    2013-09-01

    The pEAQ vectors are a series of plasmids designed to allow easy and quick production of recombinant proteins in plants. Their main feature is the use of the Cowpea Mosaic Virus hypertranslational "CPMV-HT" expression system, which provides high yields of recombinant protein through extremely high translational efficiency without the need for viral replication. Since their creation, the pEAQ vectors have been used to produce a wide variety of proteins in plants. Viral proteins and Virus-Like Particles (VLPs) have been of particular interest, but other types of proteins including active enzymes have also been expressed. While the pEAQ vectors have mostly been used in a transient expression context, through agroinfiltration of leaves, they have also been shown to be suitable for the production of stably transformed lines of both cell cultures and whole plants. This paper looks back on the genesis of the pEAQ vectors and reviews their use so far.

  6. PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus.

    PubMed

    Zelena, Katerina; Takenberg, Meike; Lunkenbein, Stefan; Woche, Susanne K; Nimtz, Manfred; Berger, Ralf G

    2013-01-01

    The pfah2 gene coding for a novel hydrophobin PfaH2 from the ascomycete Paecilomyces farinosus was identified during sequencing of random clones from a cDNA library. The corresponding protein sequence of PfaH2 deduced from the cDNA comprised 134 amino acids (aa). A 16 aa signal sequence preceded the N-terminus of the mature protein. PfaH2 belonged to the class Ia hydrophobins. The protein was isolated using trifluoroacetic acid extraction and purified via SDS-PAGE and high-performance liquid chromatography. The surface activity of the recently described PfaH1 and of PfaH2 was compared by the determination of contact angles (CAs) on glass slides and Teflon tape, and the CA of distilled water droplets was measured on glass slides coated with hydrophobin PfaH1 or PfaH2. Surprisingly, both hydrophobins adsorbed to hydrophilic surfaces and changed their physicochemical properties to a similar quantitative extent, although little aa sequence homology was found. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  7. Differentially Regulated, Vegetative-Mycelium-Specific Hydrophobins of the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Peñas, María M.; Rust, Brian; Larraya, Luis M.; Ramírez, Lucía; Pisabarro, Antonio G.

    2002-01-01

    Three different hydrophobins (Vmh1, Vmh2, and Vmh3) were isolated from monokaryotic and dikaryotic vegetative cultures of the edible fungus Pleurotus ostreatus. Their corresponding genes have a number of introns different from those of other P. ostreatus hydrophobins previously described. Two genes (vmh1 and vmh2) were expressed only at the vegetative stage, whereas vmh3 expression was also found in the fruit bodies. Furthermore, the expression of the three hydrophobins varied significantly with culture time and nutritional conditions. The three genes were mapped in the genomic linkage map of P. ostreatus, and evidence is presented for the allelic nature of vmh2 and POH3 and for the different locations of the genes coding for the glycosylated hydrophobins Vmh3 and POH2. The glycosylated nature of Vmh3 and its expression during vegetative growth and in fruit bodies suggest that it should play a role in development similar to that proposed for SC3 in Schizophyllum commune. PMID:12147487

  8. Self-Assembly and Conformational Changes of Hydrophobin Classes at the Air-Water Interface.

    PubMed

    Meister, Konrad; Bäumer, Alexander; Szilvay, Geza R; Paananen, Arja; Bakker, Huib J

    2016-10-03

    We use surface-specific vibrational sum-frequency generation spectroscopy (VSFG) to study the structure and self-assembling mechanism of the class I hydrophobin SC3 from Schizophyllum commune and the class II hydrophobin HFBI from Trichoderma reesei. We find that both hydrophobins readily accumulate at the water-air interface and form rigid, highly ordered protein films that give rise to prominent VSFG signals. We identify several resonances that are associated with β-sheet structures and assign them to the central β-barrel core present in both proteins. Differences between the hydrophobin classes are observed in their interfacial self-assembly. For HFBI, we observe no changes in conformation upon adsorption to the water surface. For SC3, we observe an increase in β-sheet-specific signals that supports a surface-driven self-assembly mechanism in which the central β-barrel remains intact and stacks into a larger-scale architecture, amyloid-like rodlets.

  9. Identification, Characterization, and In Situ Detection of a Fruit-Body-Specific Hydrophobin of Pleurotus ostreatus

    PubMed Central

    Peñas, María M.; Ásgeirsdóttir, Sigridur A.; Lasa, Iñigo; Culiañez-Macià, Francisco A.; Pisabarro, Antonio G.; Wessels, Joseph G. H.; Ramírez, Lucía

    1998-01-01

    Hydrophobins are small (length, about 100 ± 25 amino acids), cysteine-rich, hydrophobic proteins that are present in large amounts in fungal cell walls, where they form part of the outermost layer (rodlet layer); sometimes, they can also be secreted into the medium. Different hydrophobins are associated with different developmental stages of a fungus, and their biological functions include protection of the hyphae against desiccation and attack by either bacterial or fungal parasites, hyphal adherence, and the lowering of surface tension of the culture medium to permit aerial growth of the hyphae. We identified and isolated a hydrophobin (fruit body hydrophobin 1 [Fbh1]) present in fruit bodies but absent in both monokaryotic and dikaryotic mycelia of the edible mushroom Pleurotus ostreatus. In order to study the temporal and spatial expression of the fbh1 gene, we determined the N-terminal amino acid sequence of Fbh1. We also synthesized and cloned the double-stranded cDNA corresponding to the full-length mRNA of Fbh1 to use it as a probe in both Northern blot and in situ hybridization experiments. Fbh1 mRNA is detectable in specific parts of the fruit body, and it is absent in other developmental stages. PMID:9758836

  10. One single method to produce native and Tat-fused recombinant human α-synuclein in Escherichia coli

    PubMed Central

    2013-01-01

    Background Human α-synuclein is a small-sized, natively unfolded protein that in fibrillar form is the primary component of Lewy bodies, the pathological hallmark of Parkinson’s disease. Experimental evidence suggests that α-synuclein aggregation is the key event that triggers neurotoxicity although additional findings have proposed a protective role of α-synuclein against oxidative stress. One way to address the mechanism of this protective action is to evaluate α-synuclein-mediated protection by delivering this protein inside cells using a chimeric protein fused with the Tat-transduction domain of HIV Tat, named TAT-α-synuclein. Results A reliable protocol was designed to efficiently express and purify two different forms of human α-synuclein. The synthetic cDNAs encoding for the native α-synuclein and the fusion protein with the transduction domain of Tat protein from HIV were overexpressed in a BL21(DE3) E. coli strain as His-tagged proteins. The recombinant proteins largely localized (≥ 85%) to the periplasmic space. By using a quick purification protocol, based on recovery of periplasmic space content and metal-chelating chromatography, the recombinant α-synuclein protein forms could be purified in a single step to ≥ 95% purity. Both α-synuclein recombinant proteins form fibrils and the TAT-α-synuclein is also cytotoxic in the micromolar concentration range. Conclusions To further characterize the molecular mechanisms of α-synuclein neurotoxicity both in vitro and in vivo and to evaluate the relevance of extracellular α-synuclein for the pathogenesis and progression of Parkinson’s disease, a suitable method to produce different high-quality forms of this pathological protein is required. Our optimized expression and purification procedure offers an easier and faster means of producing different forms (i.e., both the native and the TAT-fusion form) of soluble recombinant α-synuclein than previously described procedures. PMID:23557146

  11. Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro.

    PubMed

    Vejnovic, Ivana; Huonder, Cornelia; Betz, Gabriele

    2010-09-15

    Existing treatments of onychomycosis are not satisfactory. Oral therapies have many side effects and topical formulations are not able to penetrate into the human nail plate and deliver therapeutical concentrations of active agent in situ. The purpose of the present study was to determine the amount of terbinafine, which permeates through the human nail plate, from liquid formulations containing enhancers, namely hydrophobins A-C in the concentration of 0.1% (w/v). The used reference solution contained 10% (w/v) of terbinafine in 60% (v/v) ethanol/water without enhancer. Permeability studies have been performed on cadaver nails using Franz diffusion cells modified to mount nail plates and filled with 60% (v/v) ethanol/water in the acceptor chamber. Terbinafine was quantitatively determined by HPLC. The amount of terbinafine remaining in the nail was extracted by 96% ethanol from pulverized nail material after permeation experiment and presented as percentage of the dry nail weight before the milling test. Permeability coefficient (PC) of terbinafine from reference solution was determined to be 1.52E-10 cm/s. Addition of hydrophobins improved PC in the range of 3E-10 to 2E-9 cm/s. Remaining terbinafine reservoir in the nail from reference solution was 0.83% (n=2). An increase of remaining terbinafine reservoir in the nail was observed in two out of three tested formulations containing hydrophobins compared to the reference. In all cases, known minimum inhibitory concentration of terbinafine for dermatophytes (0.003 microg/ml) has been exceeded in the acceptor chamber of the diffusion cells. All tested proteins (hydrophobins) facilitated terbinafine permeation after 10 days of permeation experiment, however one of them achieved an outstanding enhancement factor of 13.05 compared to the reference. Therefore, hydrophobins can be included in the list of potential enhancers for treatment of onychomycosis. Copyright 2010 Elsevier B.V. All rights reserved.

  12. The Effect of Hydrophobin Protein on Conductive Properties of Carbon Nanotube Field-Effect Transistors: First Study on Sensing Mechanism.

    PubMed

    Yotprayoonsakl, Peerapong; Szilvay, Géza R; Laaksonen, Päivi; Linder, Markus B; Ahlskog, Markus

    2015-03-01

    Hydrophobin is a surface active protein having both hydrophobic and hydrophilic functional domains which has previously been used for functionalization and solubilization of graphene and carbon nanotubes. In this work, field-effect transistors based on single nanotubes have been employed for electronic detection of hydrophobin protein in phosphate buffer solution. Individual nanotubes, single- and multiwalled, are characterized by atomic force microscopy after being immersed in protein solution, showing a relatively dense coverage with hydrophobin. We have studied aspects such as nanotube length (0.3-1.2 µm) and the hysteresis effect in the gate voltage dependent conduction. When measured in ambient condition after the exposure to hydrophobin, the resistance increase has a strong dependence on the nanotube length, which we ascribe to mobility degradation and localization effects. The change could be exceptionally large when measured in-situ in solution and at suitable gate voltage conditions, which is shown to relate to the different mechanism behind the hysteresis effect.

  13. Rational Engineering of Recombinant Picornavirus Capsids to Produce Safe, Protective Vaccine Antigen

    PubMed Central

    Burman, Alison; Jackson, Terry; Ren, Jingshan; Loureiro, Silvia; Jones, Ian M.; Fry, Elizabeth E.; Stuart, David I.; Charleston, Bryan

    2013-01-01

    Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals. PMID:23544011

  14. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids.

    PubMed

    Liu, Peitong; Sun, Liang; Sun, Yuxia; Shang, Fei; Yan, Guoliang

    2016-04-01

    The genome-wide transcriptional responses of S. cerevisiae to heterologous carotenoid biosynthesis were investigated using DNA microarray analysis. The results show that the genes involved in metal ion transport were specifically up-regulated in the recombinant strain, and metal ions, including Cu(2+), Fe(2+), Mn(2+), and Mg(2+), were deficient in the recombinant strain compared to the ion content of the parent strain. The decrease in metal ions was ascribed to a decrease in cell membrane (CM) fluidity caused by lower levels of unsaturated fatty acids and ergosterol. This was confirmed by the observation that metal ion levels were restored when CM fluidity was increased by supplying linoleic acid. In addition, a 24.3 % increase in the β-carotene concentration was observed. Collectively, our results suggest that heterologous production of carotenoids in S. cerevisiae can induce cellular stress by rigidifying the CM, which can lead to a deficiency in metal ions. Due to the importance of CM fluidity in cellular physiology, maintaining normal CM fluidity might be a potential approach to improving carotenoid production in genetically engineered S. cerevisiae.

  15. Immunodiagnosis of Prune dwarf virus using antiserum produced to its recombinant coat protein.

    PubMed

    Abou-Jawdah, Yusuf; Sobh, Hana; Cordahi, Nada; Kawtharani, Hadia; Nemer, George; Maxwell, Douglas P; Nakhla, Mark K

    2004-10-01

    Certification represents the first line of defense against fruit tree viruses. For certification or surveys dealing with large number of samples, ELISA is still considered the technique of choice and requires a continuous supply of good quality antibodies. Prune dwarf virus (PDV) is among the major viruses affecting stone fruits; it belongs to the genus Ilarvirus named so for its isometric labile particles. Recombinant DNA technology was investigated for production of PDV antiserum to avoid labile virus purification and virus maintenance problems. The PDV coat protein gene (CP) was cloned into a protein expression bacterial plasmid vector which allowed a good level of expression of up to 2mg native protein/L culture. The recombinant PDV CP was injected into rabbits and the crude antiserum was successfully used in indirect ELISA at dilutions of up to 1:5000 to detect PDV in infected leaf samples. Similar results were obtained in dot blot immunoassays (DBIA). The antibodies were used in double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and results were comparable to a reference commercial kit. The crude antiserum was efficiently used for coating ELISA plates, thereby reducing test costs.

  16. Construction of Recombinant Bacmid Containing M2e-Ctxb and Producing the Fusion Protein in Insect Cell Lines

    PubMed Central

    Mirzaei, Nima; Mokhtari Azad, Talat; Nategh, Rakhshandeh; Soleimanjahi, Hoorieh; Amirmozafari, Nour

    2014-01-01

    Background: Sequence variations in glycoproteins of influenza virus surface impel us to design new candidate vaccines yearly. Ectodomain of influenza M2 protein is a surface and highly conserved protein. M2e in influenza vaccines may eliminate the need for changing vaccine formulation every year. Objectives: In this study, a recombinant baculovirus containing M2e and cholera toxin subunit B fusion gene was generated with transposition process to express in large amounts in insect cell lines. Materials and Methods: M2e-ctxB fusion gene was created and cloned into pFastBac HT. The recombinant vector was transformed into DH10Bac cells to introduce the fusion gene into the bacmid DNA via a site-specific transposition process. The recombinant bacmid was then extracted from white colonies and further analyzed using PCR, DNA sequence analyzing, and indirect immunofluorescence assay. Results: PCR and DNA sequence analyzing results showed that the fusion gene was constructed as a single open reading frame and was successfully inserted into bacmid DNA. Moreover, indirect immunofluorescence results showed that the fusion gene was successfully expressed. Conclusions: Baculovirus expression vector system is valuable to produce M2e based influenza vaccines due to its simple utilization and ease of target gene manipulation. The expressed protein in such systems can improve the evaluating process of new vaccination strategies. PMID:24719728

  17. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose.

  18. Transient Glyco-Engineering to Produce Recombinant IgA1 with Defined N- and O-Glycans in Plants

    PubMed Central

    Dicker, Martina; Tschofen, Marc; Maresch, Daniel; König, Julia; Juarez, Paloma; Orzaez, Diego; Altmann, Friedrich; Steinkellner, Herta; Strasser, Richard

    2016-01-01

    The production of therapeutic antibodies to combat pathogens and treat diseases, such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG), less effort has been undertaken to express immunoglobulin A (IgA), which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumor activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered ΔXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that ΔXT/FT N. benthamiana plants can be engineered toward the production of recombinant IgA1 with defined human-type N- and O-linked glycans. PMID:26858738

  19. Transient Glyco-Engineering to Produce Recombinant IgA1 with Defined N- and O-Glycans in Plants.

    PubMed

    Dicker, Martina; Tschofen, Marc; Maresch, Daniel; König, Julia; Juarez, Paloma; Orzaez, Diego; Altmann, Friedrich; Steinkellner, Herta; Strasser, Richard

    2016-01-01

    The production of therapeutic antibodies to combat pathogens and treat diseases, such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG), less effort has been undertaken to express immunoglobulin A (IgA), which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumor activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered ΔXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that ΔXT/FT N. benthamiana plants can be engineered toward the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  20. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview

    PubMed Central

    Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; Porro, Danilo; Ferrer, Pau; Tutino, Maria Luisa; Mattanovich, Diethard; Villaverde, Antonio

    2008-01-01

    Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes. PMID:18394160

  1. Prokaryotic High-Level Expression System in Producing Adhesin Recombinant Protein E of Nontypeable Haemophilus influenzae

    PubMed Central

    Tavakoli, Minoo; Bouzari, Saeed; Siadat, Seyed Davar; Najar Peerayeh, Shahin; Jafari, Anis

    2015-01-01

    Background: Adhesion protein E (PE) of Haemophilus influenzae is a 16 - 18 kDa protein with 160 amino acids which causes adhesion to epithelial cells and acts as a major factor in pathogenesis. Objectives: In this study, we performed cloning, expression and purification of PE as a candidate antigen for vaccine design upon further study. Materials and Methods: At first, the pe gene of NTHi ATCC 49766 strain (483 bp) was amplified by PCR. Then, to sequence the resulted amplicon, it was cloned into TA vector (pTZ57R/T). In the next step, the sequenced gene was sub-cloned in pBAD/gIII A vector and transformed into competent Escherichia coli TOP10. For overexpression, the recombinant bacteria were grown in broth medium containing arabinose and the recombinant protein was purified using metal affinity chromatography (Ni-nitrilotriacetic acid) (Ni-NTA agarose). Finally, the protein was detected using sodium dodecyl sulfate polyacrylamide gel electrophores (SDS-PAG) and confirmed by western blotting. Results: The cloned gene was confirmed by PCR, restriction digestion and sequencing. The sequenced gene was searched for homology in GenBank and 99% similarity was found to the already deposited genes in GenBank. Then we obtained PE using Ni-NTA agarose with up to 7 mg/mL concentration. Conclusions: The pe gene was successfully cloned and confirmed by sequencing. Finally, PE was obtained with high concentration. Due to high homology and similarity among the pe gene from NTHi ATCC 49766 and other NTHi strains in GenBank, we believe that the protein is a universal antigen to be used as a vaccine design candidate and further studies to evaluate its immunogenicity is underway. PMID:26034537

  2. Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus.

    PubMed

    Robitaille, G; Tremblay, A; Moineau, S; St-Gelais, D; Vadeboncoeur, C; Britten, M

    2009-02-01

    To prevent textural defects in low-fat and fat-free yogurts, fat substitutes are routinely added to milk. In situ production of exopolysaccharides (EPS) by starter cultures is an acknowledged alternative to the addition of biothickeners. With the aim of increasing in situ EPS production, a recombinant galactose-positive EPS(+) Streptococcus thermophilus strain, RD-534-S1, was generated and compared with the parent galactose-negative EPS(+) strain RD-534. The RD-534-S1 strain produced up to 84 mg/L of EPS during a single-strain milk fermentation process, which represented 1.3 times more than the EPS produced by strain RD-534. Under conditions that mimic industrial yogurt production, the starter culture consisting of RD-534-S1 and (EPS(-)) Lactobacillus bulgaricus L210R strain (RD-534-S1/L210R) led to an EPS production increase of 1.65-fold as compared with RD-534-S1 alone. However, the amount of EPS produced did not differ from that found in yogurts produced using an isogenic starter culture that included the parent S. thermophilus strain RD-534 and Lb. bulgaricus L210R (RD-534/L210R). Moreover, the gel characteristics of set-style yogurt and the rheological properties of stirred-style yogurt produced using RD-534-S1/L210R were similar to the values obtained for yogurts made with RD-534/L210R. In conclusion, it is possible to increase the production of EPS by ropy S. thermophilus strains through genetic engineering of galactose metabolism. However, when used in combination with Lb. bulgaricus for yogurt manufacture, the EPS overproduction of recombinant strain is not significant.

  3. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults.

    PubMed

    Szpakowski, Piotr; Biet, Franck; Locht, Camille; Paszkiewicz, Małgorzata; Rudnicka, Wiesława; Druszczyńska, Magdalena; Allain, Fabrice; Fol, Marek; Pestel, Joël; Kowalewicz-Kulbat, Magdalena

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4(+) T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.

  4. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults

    PubMed Central

    Biet, Franck; Rudnicka, Wiesława; Druszczyńska, Magdalena; Fol, Marek; Pestel, Joël

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4+ T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs. PMID:26339658

  5. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli

    PubMed Central

    Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; da Costa, Elaine Sobral; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  6. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli.

    PubMed

    Einsfeldt, Karen; Baptista, Isis Cavalcante; Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; Costa, Elaine Sobral da; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells.

  7. Hydrodynamic behavior of shaking flasks used for producing a recombinant protein by filamentous bacteria

    NASA Astrophysics Data System (ADS)

    Cordova Aguilar, Maria Soledad; Garcia, Monica; Trujillo-Roldan, Mauricio Alberto; Ascanio, Gabriel; Zenit, Roberto; Soto, Enrique

    2012-11-01

    Shake flasks are widely used for culture research. The agitation rate is one of the factors that determines the mass transfer. However, it has not been studied in detail. In this work, a comparison of the hydrodynamic performance for conventional, baffled and coiled spring Erlenmeyer flasks is presented. The velocity fields for a horizontal plane were measured by means of a Particle Image Velocimetry (PIV) technique and high speed videos were recorded to observe the behavior of the interface as a function of the agitation rate. It was observed not only that there is a strong dependence between the geometry and the hydrodynamics, but also there is a good agreement with the results obtained previously by Gamboa et al., in 2011, with the evaluation of the influence of culture conditions of S. lividans on protein O-glycosylation. The turbulence intensity increases with shaken rate. However, for the baffled geometry, it was observed a decrease for a critical speed, which is related with the in-phase and out-phase regions. These results can be an explanation for the variations in protein productivity as a function of the flask geometry and the differences in aggregation morphology and the pattern of O-glycosylation of the recombinant protein.

  8. Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis.

    PubMed

    Godfrey, Charlotte L; Mead, Emma J; Daramola, Olalekan; Dunn, Sarah; Hatton, Diane; Field, Ray; Pettman, Gary; Smales, C Mark

    2017-08-01

    mRNA translation is a key process determining growth, proliferation and duration of a Chinese hamster ovary (CHO) cell culture and influences recombinant protein synthesis rate. During bioprocessing, CHO cells can experience stresses leading to reprogramming of translation and decreased global protein synthesis. Here we apply polysome profiling to determine reprogramming and translational capabilities in host and recombinant monoclonal antibody-producing (mAb) CHO cell lines during batch culture. Recombinant cell lines with the fastest cell specific growth rates were those with the highest global translational efficiency. However, total ribosomal capacity, determined from polysome profiles, did not relate to the fastest growing or highest producing mAb cell line, suggesting it is the ability to utilise available machinery that determines protein synthetic capacity. Cell lines with higher cell specific productivities tended to have elevated recombinant heavy chain transcript copy numbers, localised to the translationally active heavy polysomes. The highest titre cell line was that which sustained recombinant protein synthesis and maintained high recombinant transcript copy numbers in polysomes. Investigation of specific endogenous transcripts revealed a number that maintained or reprogrammed into heavy polysomes, identifying targets for potential cell engineering or those with 5' untranslated regions that might be utilised to enhance recombinant transcript translation. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plant cell calcium-rich environment enhances thermostability of recombinantly produced alpha-amylase from the hyperthermophilic bacterium Thermotoga maritime.

    PubMed

    Santa-Maria, Monica C; Chou, Chung-Jung; Yencho, G Craig; Haigler, Candace H; Thompson, William F; Kelly, Robert M; Sosinski, Bryon

    2009-12-01

    In the industrial processing of starch for sugar syrup and ethanol production, a liquefaction step is involved where starch is initially solubilized at high temperature and partially hydrolyzed with a thermostable and thermoactive alpha-amylase. Most amylases require calcium as a cofactor for their activity and stability, therefore calcium, along with the thermostable enzyme, are typically added to the starch mixture during enzymatic liquefaction, thereby increasing process costs. An attractive alternative would be to produce the enzyme directly in the tissue to be treated. In a proof of concept study, tobacco cell cultures were used as model system to test in planta production of a hyperthermophilic alpha-amylase from Thermotoga maritima. While comparable biochemical properties to recombinant production in Escherichia coli were observed, thermostability of the plant-produced alpha-amylase benefited significantly from high intrinsic calcium levels in the tobacco cells. The plant-made enzyme retained 85% of its initial activity after 3 h incubation at 100 degrees C, whereas the E. coli-produced enzyme was completely inactivated after 30 min under the same conditions. The addition of Ca(2+) or plant cell extracts from tobacco and sweetpotato to the E. coli-produced enzyme resulted in a similar stabilization, demonstrating the importance of a calcium-rich environment for thermostability, as well as the advantage of producing this enzyme directly in plant cells where calcium is readily available.

  10. Purification and physiochemical properties of a recombinant bovine growth hormone produced by cultured murine fibroblasts.

    PubMed

    Leung, F C; Jones, B; Steelman, S L; Rosenblum, C I; Kopchick, J J

    1986-10-01

    Mouse fibroblast cell lines which secrete bovine (b) GH have been generated. This was accomplished by cotransforming mouse L cells (thymidine kinase-negative [TK-] and adenine phosphoribosyl transferase-negative [APRT-]) with DNA molecules encoding the Rous sarcoma virus-long-terminal repeat and bGH genes along with the herpes viral TK gene and the hamster APRT gene. One stable cell line, Pd lambda-pbGH 4-13, was found to secrete approximately 75 micrograms bGH per 24 h/5.0 X 10(6) cells. Media from this cell line were collected for purification of recombinant bGH (rbGH). Purification involved (NH4)2SO4 fractionation, ion-exchange chromatography, and gel filtration on Sephacryl S-200. The rbGH was characterized by bioassay, RIA, radioreceptor assay, and sodium dodecyl sulfate gel electrophoresis. Results of these analyses were compared with those obtained with a highly purified pituitary bGH. In the rat tibia bioassay, rbGH was found to be as potent as pituitary bGH. Results from the RIA, radioreceptor assay, and sodium dodecyl sulfate gel electrophoresis and Western blot analysis also suggested that the rbGH was similar to that of pituitary origin. Amino acid composition, partial (amino-terminal) sequence, and tryptic peptide maps were also found to be similar between the rbGH and pituitary bGH preparations. The amino terminus of the rbGH showed similar heterogeneity to that of the bGH of pituitary origin. We conclude that rbGH which was synthesized, processed, and secreted from transformed mouse fibroblasts possessed almost exactly the same physiochemical properties as pituitary bGH.

  11. Aspergillus fumigatus Produces Two Arabinofuranosidases From Glycosyl Hydrolase Family 62: Comparative Properties of the Recombinant Enzymes.

    PubMed

    Pérez, Rodrigo; Eyzaguirre, Jaime

    2016-04-01

    The genes of two α-L-arabinofuranosidases (AbfI and II) from family GH 62 have been identified in the genome of Aspergillus fumigatus wmo. Both genes have been expressed in Pichia pastoris and the enzymes have been purified and characterized. AbfI is composed of 999 bp, does not contain introns and codes for a protein (ABFI) of 332 amino acid residues. abfII has 1246 bp, including an intron of 51 bp; the protein ABFII has 396 amino acid residues; it includes a family 1 carbohydrate-binding module (CBM) in the N-terminal region, followed by a catalytic module. The sequence of ABFI and the catalytic module of ABFII show a 79 % identity. Both enzymes are active on p-nitrophenyl α-L-arabinofuranoside (pNPAra) with KM of 94.2 and 3.9 mM for ABFI and II, respectively. Optimal temperature for ABFI is 37 °C and for ABFII 42 °C, while the pH optimum is about 4.5 to 5 for both enzymes. ABFII shows a higher thermostability. When assayed using natural substrates, both show higher activity over rye arabinoxylan as compared to wheat arabinoxylan. ABFII only is active on sugar beet pulp arabinan and both are inactive towards debranched arabinan. The higher thermostability, higher affinity for pNPAra and wider activity over natural substrates shown by ABFII may be related to the presence of a CBM. The availability of the recombinant enzymes may be useful in biotechnological applications for the production of arabinose.

  12. Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus

    USDA-ARS?s Scientific Manuscript database

    The fungal phylum Ascomycota comprises a large proportion of species with no known sexual stage, despite high genetic variability in field populations. One such asexual species, Aspergillus parasiticus, is a potent producer of carcinogenic and hepatotoxic aflatoxins, polyketide-derived secondary me...

  13. Plant-Produced Human Recombinant Erythropoietic Growth Factors Support Erythroid Differentiation In Vitro

    PubMed Central

    Musiychuk, Konstantin; Sivalenka, Rajarajeswari; Jaje, Jennifer; Bi, Hong; Flores, Rosemary; Shaw, Brenden; Jones, R. Mark; Golovina, Tatiana; Schnipper, Jacob; Khandker, Luipa; Sun, Ruiqiang; Li, Chang; Kang, Lin; Voskinarian-Berse, Vanessa; Zhang, Xiaokui; Streatfield, Stephen; Hambor, John; Abbot, Stewart

    2013-01-01

    Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system. PMID:23517237

  14. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.

    PubMed

    Nakayama, Kosuke; Ohmori, Takeshi; Ishikawa, Satoshi; Iwata, Natsumi; Seto, Yasuo; Kawahara, Kazuyoshi

    2016-05-01

    The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.

  15. A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting

    PubMed Central

    Vallet-Courbin, Amelie; Larivière, Mélusine; Hocquellet, Agnès; Hemadou, Audrey; Parimala, Sarjapura-Nagaraja; Laroche-Traineau, Jeanny; Santarelli, Xavier; Clofent-Sanchez, Gisèle; Jacobin-Valat, Marie-Josée; Noubhani, Abdelmajid

    2017-01-01

    Cells of the innate and adaptive immune system are key factors in the progression of atherosclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute atherothrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-αIIbβ3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-αIIbβ3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZαA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability. PMID:28125612

  16. Real time detection of anthrax spores using highly specific anti-EA1 recombinant antibodies produced by competitive panning.

    PubMed

    Love, Tracey E; Redmond, Caroline; Mayers, Carl N

    2008-05-20

    We describe a targeted approach for the production of biological recognition elements capable of fast, specific detection of anthrax spores on biosensor surfaces. The aim was to produce single chain antibodies (scFvs) to EA1, a Bacillus anthracis S-layer protein that is also present, although not identical, in related to Bacillus species. The aim of the work was to produce antibodies that would detect B. anthracis EA1 protein and intact spores with a high degree of specificity, but would not detect other Bacillus species. Existing monoclonal antibodies were evaluated and found to recognise B. anthracis EA1 and S-layer proteins from other closely related Bacillus species. Recombinant anti-EA1 scFvs were isolated from B. anthracis immune library that contained antibody genes raised against B. anthracis spores and purified exosporium. Two approaches for scFv selection were used; standard (non-competitive) panning, and competitive panning. The non-competitive biopanning strategy isolated scFvs that recognised EA1 from B. anthracis, but also cross-reacted with other Bacillus species. In contrast, the competitive panning approach used S-layer proteins from other Bacillus species to generate scFvs that were highly specific to B. anthracis EA1 and demonstrated apparent nanomolar binding affinities. Specific, real time detection of B. anthracis spores was demonstrated with these scFvs using an evanescent wave biosensor, the Resonant Mirror. The approach described can be used to generate specific antibodies to any desired target where homologous proteins also exist in closely related species, and demonstrates clear advantages to using recombinant technology to produce biological recognition elements for detection of biological threat agents.

  17. Co-expression of ferrochelatase allows for complete heme incorporation into recombinant proteins produced in E. coli.

    PubMed

    Sudhamsu, Jawahar; Kabir, Mariam; Airola, Michael V; Patel, Bhumit A; Yeh, Syun-Ru; Rousseau, Denis L; Crane, Brian R

    2010-09-01

    Over-expression of heme binding proteins in Escherichia coli often results in sub-optimal heme incorporation and the amount of heme-bound protein produced usually varies with the protein of interest. Complete heme incorporation is important for biochemical characterization, spectroscopy, structural studies, and for the production of homogeneous commercial proteins with high activity. We have determined that recombinant proteins expressed in E. coli often contain less than a full complement of heme because they rather are partially incorporated with free-base porphyrin. Porphyrin-incorporated proteins have similar spectral characteristics as the desired heme-loaded targets, and thus are difficult to detect, even in purified samples. We present a straightforward and inexpensive solution to this problem that involves the co-expression of native ferrochelatase with the protein of interest. The method is shown to be effective for proteins that contain either Cys- or His-ligated hemes.

  18. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  19. Glutamic acid decarboxylase autoantibody assay using 125I-labelled recombinant GAD65 produced in yeast.

    PubMed

    Powell, M; Prentice, L; Asawa, T; Kato, R; Sawicka, J; Tanaka, H; Petersen, V; Munkley, A; Morgan, S; Rees Smith, B; Furmaniak, J

    1996-12-30

    We describe a new method for measuring autoantibodies (Ab) to the 65 kDa isoform of glutamic acid carboxylase (GAD65). In particular, GAD65 without the hydrophobic N-terminal region has been produced in yeast, purified, labelled with 125I and reacted with GAD65 Ab. Antibody bound 125I-GAD65 is then precipitated by the addition of solid phase protein A. With the assay, GAD65 Ab were detected in 59 of 71 (83%) islet cell antibody (ICA) positive IDDM patients and in 8 of 23 (35%) ICA negative IDDM patients (overall 67 of 94 (71%) of IDDM patients). Low concentrations of GAD65 Ab were also detected in 2/98 (2%) healthy blood donors and 1/27 (4%) Graves' disease patients had a high level of antibody. GAD65 Ab were not detected in any of 10 Hashimoto's thyroiditis, 20 Addison's disease or 19 myasthenia gravis sera. There was good agreement between the 125I assay and the current reference method based on 35S-labelled full-length GAD65 (produced by in vitro transcription/translation reaction) and solid phase protein A (r = 0.91, n = 108). Overall, our 125I assay showed sensitivity, precision and disease group specificity at least as good as any assay so far described. These features, combined with a simple assay protocol and the convenience of 125I counting and handling indicate that the method is suitable for routine GAD65 Ab measurements.

  20. Bioinspired deposition of TiO2 thin films induced by hydrophobins.

    PubMed

    Santhiya, D; Burghard, Z; Greiner, C; Jeurgens, Lars P H; Subkowski, T; Bill, J

    2010-05-04

    The deposition of ceramic thin films from aqueous solutions at low temperature using biopolymers as templates has attracted much attention due to economic and environmental benefits. Titanium dioxide is one of the most attractive functional materials and shows a wide range of applications across vastly different areas because of its unique chemical, optical, and electrical properties. In the present work, we deposited smooth, nanocrystalline titania thin films by an aqueous deposition method on surface active and amphipathic proteins of fungal origin called hydrophobins. Initially, the hydrophobin molecules were self-assembled on a silicon substrate and characterized by angle-resolved X-ray photoelectron spectroscopy (AR-XPS), atomic force microscopy (AFM) and surface potential measurements. Thin films of titanium dioxide were deposited on the surface of hydrophobin self-assembled monolayers from aqueous titanium(IV) bis(ammonium lactate) dihydroxide solution at near-ambient conditions. The microstructure of the as-deposited films was analyzed by AFM, scanning and transmission electron microscopy, which revealed the presence of nanocrystals. The titania films were also characterized using AR-XPS and Fourier transform infrared spectroscopic (FTIR) techniques. Appropriate mechanisms involved in film deposition are suggested. Additionally, nanoindentation tests on as deposited titania films showed their high resistance against mechanical stress.

  1. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax.

    PubMed

    Wycoff, Keith L; Belle, Archana; Deppe, Dorothée; Schaefer, Leah; Maclean, James M; Haase, Simone; Trilling, Anke K; Liu, Shihui; Leppla, Stephen H; Geren, Isin N; Pawlik, Jennifer; Peterson, Johnny W

    2011-01-01

    Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.

  2. Specificity of antibodies produced against native or desialylated human immunodeficiency virus type 1 recombinant gp160.

    PubMed Central

    Benjouad, A; Gluckman, J C; Montagnier, L; Bahraoui, E

    1993-01-01

    In a previous report we have shown that, in contrast to antibodies produced against native or fully deglycosylated human immunodeficiency virus type 1 (HIV-1) gp160 in rabbits, antibodies raised against desialylated HIV-1 gp160 also recognize gp140 from HIV-2 at high titers. Here, we characterize the fine specificity of these cross-reactive antibodies. Inhibition assays with a panel of synthetic peptides as competitors showed that cross-reactivity to gp140 was due to antibodies that were specific for the region encompassing HIV-1 gp41 immunodominant epitope, mimicked by peptide P39 (residues 583 to 609), the latter being able to totally inhibit the formation of complexes between radiolabeled HIV-2 gp140 and antibodies elicited by desialylated HIV-1 gp160. In addition, anti-desialylated gp160 antibodies retained on a P39 affinity column still bound HIV-2 gp140. Fine mapping has enabled us to localize the cross-reactive epitope within the N-terminal extremity of the gp41 immunodominant region. Interestingly, this cross-reactive antibody population did not recognize glycosylated or totally deglycosylated simian immunodeficiency virus gp140 despite an amino acid homology with HIV-1 within this region that is comparable to that of HIV-2. This cross-reactivity between HIV-1 and HIV-2 did not correlate with cross-neutralization. These results illustrate the influence of carbohydrate moieties on the specificity of the antibodies produced and clearly indicate that such procedures may be an efficient way to raise specific immune responses that are not type specific. Moreover, this cross-reactivity might explain the double-positive reactivity observed, in some human sera, against both HIV-1 and HIV-2 envelope antigens. PMID:7679751

  3. A Recombinant Fungal Chitin Deacetylase Produces Fully Defined Chitosan Oligomers with Novel Patterns of Acetylation.

    PubMed

    Naqvi, Shoa; Cord-Landwehr, Stefan; Singh, Ratna; Bernard, Frank; Kolkenbrock, Stephan; El Gueddari, Nour Eddine; Moerschbacher, Bruno M

    2016-11-15

    Partially acetylated chitosan oligosaccharides (paCOS) are potent biologics with many potential applications, and their bioactivities are believed to be dependent on their structure, i.e., their degrees of polymerization and acetylation, as well as their pattern of acetylation. However, paCOS generated via chemical N-acetylation or de-N-acetylation of GlcN or GlcNAc oligomers, respectively, typically display random patterns of acetylation, making it difficult to control and predict their bioactivities. In contrast, paCOS produced from chitin deacetylases (CDAs) acting on chitin oligomer substrates may have specific patterns of acetylation, as shown for some bacterial CDAs. However, compared to what we know about bacterial CDAs, we know little about the ability of fungal CDAs to produce defined paCOS with known patterns of acetylation. Therefore, we optimized the expression of a chitin deacetylase from the fungus Puccinia graminis f. sp. tritici in Escherichia coli The best yield of functional enzyme was obtained as a fusion protein with the maltose-binding protein (MBP) secreted into the periplasmic space of the bacterial host. We characterized the MBP fusion protein from P. graminis (PgtCDA) and tested its activity on different chitinous substrates. Mass spectrometric sequencing of the products obtained by enzymatic deacetylation of chitin oligomers, i.e., tetramers to hexamers, revealed that PgtCDA generated paCOS with specific acetylation patterns of A-A-D-D, A-A-D-D-D, and A-A-D-D-D-D, respectively (A, GlcNAc; D, GlcN), indicating that PgtCDA cannot deacetylate the two GlcNAc units closest to the oligomer's nonreducing end. This unique property of PgtCDA significantly expands the so far very limited library of well-defined paCOS available to test their bioactivities for a wide variety of potential applications.

  4. Effects of recombinant methionyl bovine somatotropin (sometribove) in high producing cows milked three times daily.

    PubMed

    Jordan, D C; Aguilar, A A; Olson, J D; Bailey, C; Hartnell, G F; Madsen, K S

    1991-01-01

    Effects of daily sometribove administration on milk yield and composition, body condition score, BW, and SCC were evaluated in Holstein cows milked three times daily. Lactating cows (n =104) were assigned randomly to control or sometribove-treated (25 mg/d) groups. The experimental period was 16 wk, consisting of 2-wk pretreatment, 12-wk treatment, and 2-wk posttreatment periods. All cows were injected once daily starting at 53 to 180 d postpartum, housed in free stalls, and fed one of five total mixed rations according to milk production. Body weights were measured weekly, and body condition was scored biweekly. Milk yield was recorded daily, and weekly milk samples were analyzed for fat, protein, lactose, total solids, and SCC. Milk yield and milk protein were increased 18.8% (38.6 vs. 32.5 kg/d) and 3.3% (3.1 vs. 3.0%), respectively, whereas percentage of milk fat, lactose, SNF, SCC, and BW were unaffected by treatment. Overall average body condition scores were lower for the sometribove-treated group versus control (2.2 vs. 2.4). No apparent differences in the number of cows treated for mastitis, foot rot, displaced abomasum, or lameness were observed between treatment groups. Sometribove treatment significantly enhanced milk yield (6.1 kg/d) with no apparent negative effects on health in high producing cows milked three times per day.

  5. Quantitative Determination of Bandpasses for Producing Vegetation Indices from Recombined NEON Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2015-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. However, as each spectral return from these systems is a vector with several hundred elements, they can be very difficult to process and analyze, and problemeatic to compare within, across, and between datasets over time and space. Vegetation indices (e.g. NDVI, ARVI, EVI, et al) attempt to combine spectral features in to single-value scores. When derived from calibrated and atmospherically compensated reflectance data, these indices can be quantitatively compared. Historically, these indices have been calculated from multispectral sensor data. These sensors have a handful (4 to 16 or so) of bandbasses ranging from 20 nm to 200 nm FWHM covering specific spectral regions for a variety of reasons, including both intended applications and system limitations. Hyperspectral sensors, however, cover the spectrum with many, many narrow (5 to 10 nm) bandpasses. This allows for analyses using the full, detailed spectral curve, or combination of the bands in to regions by averaging or in to composites using transforms or other techniques. This raises the question of exactly which bands should be used and combined in what manner for ideally deriving well-known vegetation indices typically made from multispectral data. In this study we use derivatives and other curve and signal analysis techniques to analyze vegetation reflectance spectra to quantitatively define optimal bandpasses for several vegetation indices and combine the 5 nm hypserspectral bandpasses of the NEON Imaging Spectrometer to synthesize them.

  6. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein.

    PubMed

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-07-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. © 2014 The Authors. Haemophilia Published by John Wiley & Sons Ltd.

  7. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein

    PubMed Central

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-01-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. PMID:24811361

  8. Novel Feruloyl Esterase from Lactobacillus fermentum NRRL B-1932 and Analysis of the Recombinant Enzyme Produced in Escherichia coli

    PubMed Central

    Bischoff, Kenneth M.; Anderson, Amber M.; Rich, Joseph O.

    2016-01-01

    ABSTRACT A total of 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity using agar plates containing ethyl ferulate as the sole carbon source, and Lactobacillus fermentum NRRL B-1932 demonstrated the strongest FE activity among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate. FE activities were monitored using high-performance liquid chromatography with an acetonitrile-trifluoroacetic acid gradient. To produce sufficient purified FE from L. fermentum strain NRRL B-1932 (LfFE), the cDNA encoding LfFE (Lffae) was amplified and cloned by using available closely related genome sequences and overexpressed in Escherichia coli. A 29.6-kDa LfFE protein was detected from the protein extract of E. coli BL21(pLysS) carrying pET28bLffae upon IPTG (isopropyl-β-d-thiogalactopyranoside) induction. The recombinant LfFE containing a polyhistidine tag was purified by nickel-nitrilotriacetic acid affinity resin. The purified LfFE showed strong activities against several artificial substrates, including p-nitrophenyl acetate and 4-methylumbelliferyl p-trimethylammoniocinnamate chloride. The optimum pH and temperature of the recombinant LfFE were around 6.5 and 37°C, respectively, as determined using either crude or purified recombinant LfFE. This study will be essential for the production of the LfFE in E. coli on a larger scale that could not be readily achieved by L. fermentum fermentation. IMPORTANCE The production of feruloyl esterase (FE) from Lactobacillus fermentum NRRL B-1932 reported in this study will have immense potential commercial applications not only in biofuel production but also in pharmaceutical, polymer, oleo chemical, cosmetic additive, and detergent industries, as well as human health-related applications, including food flavoring, functional foods, probiotic agents, preventive medicine, and animal feed. Given the essential role FE plays in the production of hydroxycinnamic acids and ferulic acid

  9. [Producing recombinant adenovirus encoding green fluorescent protein (Ad-GFP) by suspension cultured HEK-293 N3S cells].

    PubMed

    Tian, Bo; Wu, Bin; Zhang, Qun-Wei; Bi, Jian-Jin; Wang, Lan; Zhu, Bao-Zhen; Geng, Yue; Wu, Zu-Ze

    2007-09-01

    Adenovirus vectors are one of the most promising gene transfer systems. They are of great value for gene therapy because these vectors achieve temporal high-level transgene expression and high gene transfer efficiency. To meet increasing needs of adenovirus vectors for gene therapy programs, parallel development of efficient, scalable and reproducible production processes is required. Perfusion cultivation of 293 cells is one of the most commonly used methods to produce adenovirus vectors and it is suitable for industrialized production specially. Experimental studies had been carried out to produce recombinant adenovirus containing the green fluorescent protein gene (Ad-GFP) by perfusion cultivation of HEK-293 N3S cells in a 5L stirring bioreactors. Perfusion rate was 1-2 volume/day. To infect the 293 N3S cells with Ad-GFP at the density of (2-4) x 10(6) cells/ ml. The time of collecting cells was 48 hours post infection. After three rounds of freeze/thaw and centrifugation, the crude viral lysates were stored at--80 degrees C until use. Then to get the Ad-GFP products by 2 x CsCl-gradient purification. The purity of the products was determined by the A260/A280 ratio and a high performance liquid chromatography (HPLC) assay. The infective titer was determined by a TCID50 assay. The culture term was 10-12 days. The infectious titer, the number of virus particle and the ratio of infectious titer to virus particle for the product were 1.0 x 10(11) IU/mL, 1.68 x 10(12) VP/mL and 6.0% IU/VP respectively. The A260/A280 ratio was 1.33, and the purity determined by HPLC was 99.2%. The cell specific productivity was around 1000 IU/cell. By perfusion cultivation of 293 N3S cells in a 5L stirring bioreactors, we established the production process for Ad-GFP, which paves a way to produce other recombinant adenovirus for gene therapy.

  10. Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: case study with recombinant ovine interferon-tau.

    PubMed

    Sinha, Jayanta; Plantz, Bradley A; Inan, Mehmet; Meagher, Michael M

    2005-01-05

    It was observed that during fermentative production of recombinant ovine interferon-tau (r-oIFN-tau) in Pichia pastoris, a secreted recombinant protein, the protein was degraded increasingly after 48 h of induction and the rate of degradation increased towards the end of fermentation at 72 h, when the fermentation was stopped. Proteases, whose primary source was the vacuoles, was found in increasing levels in the cytoplasm and in the fermentation broth after 48 h of induction and reached maximal values when the batch was completed at 72 h. Protease levels at various cell fractions as well as in the culture supernatant were lower when glycerol was used as the carbon source instead of methanol. It can be concluded that methanol metabolism along with cell lysis towards the end of fermentation contributes to increased proteolytic activity and eventual degradation of recombinant protein.

  11. Escherichia coli can produce recombinant chitinase in the soil to control the pathogenesis by Fusarium oxysporum without colonization.

    PubMed

    Chung, Soohee; Kim, Sang-Dal

    2007-03-01

    Fusarium wilt of cucumbers was effectively controlled by Escherichia coli expressing an endochitinase gene (chiA), and the rate was as effective (60.0%) as the wildtype strain S. proteamaculans 3095 (55.0%) where the gene was cloned. However, live cells of soil inoculated E. coli host harboring the chiA gene did not proliferate but declined 100-fold from 108 CFU during the first week and showed less than 10 cells after day 14, suggesting that E. coli was able to express and produce the chitinase enzyme to the soil even as the population was gradually decreasing. Because the majority of the strains was alive for only a short period of time and the Fusarium-affected seedlings showed symptoms of wilting within 7-10 days, it seems that the pathogen control was decided early after the introduction of the biocontrol agent, eliminating the survival of the antagonist. These results indicated that soil inoculated E. coli could sufficiently express and produce the recombinant protein to control the pathogen, and root or soil colonization of the antagonist might not be a significant factor in determining the efficacy of biological control.

  12. Effect of recombinant Lactococcus lactis producing myelin peptides on neuroimmunological changes in rats with experimental allergic encephalomyelitis.

    PubMed

    Kasarełło, K; Szczepankowska, A; Kwiatkowska-Patzer, B; Lipkowski, A W; Gadamski, R; Sulejczak, D; Łachwa, M; Biały, M; Bardowski, J

    2016-01-01

    Multiple sclerosis (MS) is a human autoimmune neurodegenerative disease with an unknown etiology. Despite various therapies, there is no effective cure for MS. Since the mechanism of the disease is based on autoreactive T-cell responses directed against myelin antigens, oral tolerance is a promising approach for the MS treatment. Here, the experiments were performed to assess the impact of oral administration of recombinant Lactococcus lactis producing encephalogenic fragments of three myelin proteins: myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein, on neuroimmunological changes in rats with experimental allergic encephalomyelitis (EAE) - an animal model of MS. Lactococcus lactis whole-cell lysates were administered intragastrically at two doses (103 and 106 colony forming units) in a twenty-fold feeding regimen to Lewis rats with EAE. Spinal cord slices were subjected to histopathological analysis and morphometric evaluation, and serum levels of cytokines (IL-1b, IL-10, TNF-α and IFN-γ) were measured. Results showed that administration of the L. lactis preparations at the tested doses to rats with EAE, diminished the histopathological changes observed in EAE rats and reduced the levels of serum IL-1b, IL-10 and TNF-α, previously increased by evoking EAE. This suggests that oral delivery of L. lactis producing myelin peptide fragments could be an alternative strategy to induce oral tolerance for the treatment of MS.

  13. High-level expression and purification of recombinant human growth hormone produced in soluble form in Escherichia coli.

    PubMed

    Levarski, Zdenko; Šoltýsová, Andrea; Krahulec, Ján; Stuchlík, Stanislav; Turňa, Ján

    2014-08-01

    Human growth hormone (hGH) was one of the first recombinant proteins approved for the treatment of human growth disorders. Its small size (191 amino acids), possession of only 2 disulphide bonds and absence of posttranslational modifications make Escherichia coli the host of choice for its production on any scale. In this work, we have utilized an efficient T7 based expression system to produce high levels of soluble thioredoxin-hGH (Trx-hGH) fusion protein. We outline a relatively simple three step purification process employing two immobilized metal-affinity chromatography and one anion-exchange steps and removal of fusion partner by enterokinase cleavage yielding native hGH. The ability of cell populations to produce quantities of up to 1 g/L of the soluble Trx-hGH fusion protein has been tested in flask cultivations as well as in batch and fed-batch bioreactor runs. The sequence and structure of derived hGH were confirmed by mass spectrometry and circular dichroism and its native function, to induce cell proliferation, was confirmed by employing a Nb2 cell line proliferation assay.

  14. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system

    PubMed Central

    Buclez, Pierre-Olivier; Dias Florencio, Gabriella; Relizani, Karima; Beley, Cyriaque; Garcia, Luis; Benchaouir, Rachid

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology. PMID:27226971

  15. Medical devices; general and plastic surgery devices; classification of absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology. Final rule.

    PubMed

    2007-08-03

    The Food and Drug Administration (FDA) is classifying the absorbable poly(hydroxybutyrate) surgical suture produced by recombinant deoxyribonucleic acid (DNA) technology into class II (special controls). The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Absorbable Poly(hydroxybutyrate) Surgical Suture Produced by Recombinant DNA Technology." The agency is classifying these devices into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of these devices. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  16. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    SciTech Connect

    Nguyen, Minh Vu Chuong; Zhang, Leilei; Lhomme, Stanislas; Mouz, Nicolas

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  17. Preparation of Specific Polyclonal Antibody Against the Recombinant Mutacin Produced by sfGFP Fusion Protein Technology

    PubMed Central

    Al-Homsi, Lamis; Al-Okla, Souad; Abbady, Abdul Q.

    2015-01-01

    Mutacin I, a bacteriocin produced by streptococcus mutans, displays an antimicrobial activity against many gram positive and some gram negative bacteria. Because of its medical importance, production of this short peptide in large scale for future applications is a significant challenge. This work described the improvement of a novel system to produce the recombinant mutacin using fusion protein technology. The short peptide was expressed directly as a fusion protein with a superfolder form of the green florescent protein (sfGFP), resulting in a high yield expression of soluble sfGFP-mutacin fusion protein (30 kDa) in the cytoplasm of E. coli. Mutacin was released from the fusion by enzymatic cleavage at the tobacco etch virus (TEV) protease recognition site and separated from the carrier sfGFP by nickel affinity and gel filtration chromatography. An additional advantage of this fusion system was tested in the generation of mutacin-specific polyclonal antibodies. Specific anti-mutacin IgGs were affinity purified, and were able to recognize the mutacin-sfGFP fusion protein or the cleaved forms of mutacin. Even though it was efficiently produced (25 mg/L) by this method, pure mutacin was devoid of antibiotic activity. Fourier transform infrared spectroscopy (FTIR) analysis revealed the absence of thioether bonds in the purified mutacin, which are critical for final structure and function of this antibiotic. Determining whether the activity of pure mutacin could be recovered by the reformation of such structures by chemical reaction needs more investigations. The development of this system will provide large quantities of mutacin for future studies and applications as broad spectrum antibacterial peptide. PMID:26668664

  18. Biochemical characterization of LR769, a new recombinant factor VIIa bypassing agent produced in the milk of transgenic rabbits.

    PubMed

    Chevreux, G; Tilly, N; Leblanc, Y; Ramon, C; Faid, V; Martin, M; Dhainaut, F; Bihoreau, N

    2017-07-01

    The bypassing agent factor VII (FVIIa) is a first-line therapy for the treatment of acute bleeding episodes in patients with haemophilia and high-titre inhibitors. FVIIa is a highly post-translationally modified protein that requires eukaryotic expression systems to produce a fully active molecule. A recombinant FVIIa was produced in the milk of transgenic rabbits to increase expression and provide an efficient, safe and affordable product after purification to homogeneity (LR769). To present the biochemical and functional in vitro characteristics of LR769. Mass spectrometric analyses of the intact protein and of heavy and light chains revealed a fully activated, mature and properly post-translationally modified protein notably regarding N/O-glycosylations and γ-carboxylation. Primary structure analysis, performed by peptide mapping, confirmed 100% of the sequence and the low level or absence of product-derived impurities such as oxidized, deamidated and glycated forms. Low levels of aggregates and fragments were observed by different chromatographic methods. Higher order structure investigated by circular dichroism showed appropriate secondary/tertiary structures and conformational change in the presence of Ca(2+) ions. Finally, activated partial thromboplastin time and thrombin generation assays showed the ability of LR769 to decrease coagulation time and to generate thrombin in haemophiliac-A-plasmas, even in the presence of inhibitors. The innovative expression system used to produce LR769 yields a new safe and effective rhFVIIa for the treatment of haemophilia A or B patients with inhibitors. © 2017 LFB Biotechnologies. Haemophilia Published by John Wiley & Sons Ltd.

  19. Recombinant bovine dihydrofolate reductase produced by mutagenesis and nested PCR of murine dihydrofolate reductase cDNA.

    PubMed

    Cody, Vivian; Mao, Qilong; Queener, Sherry F

    2008-11-01

    Recent reports of the slow-tight binding inhibition of bovine liver dihydrofolate reductase (bDHFR) in the presence of polyphenols isolated from green tea leaves has spurred renewed interest in the biochemical properties of bDHFR. Earlier studies were done with native bDHFR but in order to validate models of polyphenol binding to bDHFR, larger quantities of bDHFR are necessary to support structural studies. Bovine DHFR differs from its closest sequence homologue, murine DHFR, by 19 amino acids. To obtain the bDHFR cDNA, murineDHFR cDNA was transformed by a series of nested PCRs to reproduce the amino acid coding sequence for bovine DHFR. The bovine liver DHFR cDNA has an open reading frame of 561 base pairs encoding a protein of 187 amino acids that has a high level of conservation at the primary sequence level with other DHFR enzymes, and more so for the amino acid residues in the active site of the mammalian DHFR enzymes. Expression of the bovine DHFR cDNA in bacterial cells produced a stable recombinant protein with high enzymatic activity and kinetic properties similar to those previously reported for the native protein.

  20. Growth of recombinant Drosophila melanogaster Schneider 2 cells producing rabies virus glycoprotein in bioreactor employing serum-free medium

    PubMed Central

    Galesi, Adriana L. L.; Aguiar, Marcelo A.; Astray, Renato M.; Augusto, Elisabeth F. P.

    2008-01-01

    Drosophila melanogaster Schneider 2 (S2) cells have been increasingly used as a suitable expression system for the production of different recombinant proteins, and the employment of bioreactors for large-scale culture is an important tool for this purpose. In this work, Drosophila S2 cells producing the rabies virus glycoprotein RVGP were cultivated in bioreactor, employing a serum-free medium, aiming an improvement in cell growth and in glycoprotein production. To overcome cell growth limitation commonly observed in stirred flasks, different experiments in bioreactor were performed, in which some system modifications were carried out to attain the desired goal. The study showed that this cell line is considerably sensitive to hydrodynamic forces, and a high cell density (about 16.0 × 106 cells mL−1) was only obtained when Pluronic F68® percentage was increased to 0.6% (w/v). Despite ammonium concentration affected RVGP production, and also cell growth, an elevated amount of the target protein was obtained, attaining 563 ng 10−7 cells. PMID:19003175

  1. Control of specific carbon dioxide production in a fed-batch culture producing recombinant protein using a soft sensor.

    PubMed

    Gustavsson, Robert; Lukasser, Cornelia; Mandenius, Carl-Fredrik

    2015-04-20

    The feeding of a fed-batch cultivation producing recombinant protein was controlled by a soft sensor set-up. It was assumed that the control approach could be based on the cell's production of carbon dioxide and that this parameter indicates the metabolic state occurring at induced protein expression. The soft sensor used the on-line signals from a carbon dioxide analyser and a near-infrared (NIR) probe for biomass to estimate the specific production rate qCO2. Control experiments were carried out with various qCO2 set-points where we observe that the feeding of nutrients to the culture could easily be controlled and resulted in a decreased variability compared to uncontrolled cultivations. We therefore suggest that this control approach could serve as an alternative to other commonly applied methods such as controlling the cell's overflow metabolism of acetate or the cell's specific growth rate. However, further studies of the internal metabolic fluxes of CO2 during protein expression would be recommended for a more precise characterization of the relationship between qCO2 and protein expression in order to fully interpret the control behaviour.

  2. In vivo efficacy of human recombinant factor IX produced by the human hepatoma cell line HuH-7.

    PubMed

    Enjolras, N; Perot, E; Le Quellec, S; Indalecio, A; Girard, J; Negrier, C; Dargaud, Y

    2015-07-01

    Post-translational modifications of the CHO-cell-derived-recombinant human factor IX (FIX) currently used for the treatment of hemophilia B (HB) are different from plasma derived FIX. Our previous studies described a rFIX (HIX) having better profile of post-translational modifications than rFIX produced by CHO cells. The aim of the study consisted to verify the improved post-translational modifications effect of HIX on in vivo recovery. HIX has been produced in a bioreactor and then purified from supernatants. In vitro activation and activity were evaluated measured by thrombin generation tests (TGT) and compared to commercial molecules, Benefix(®) , Mononine(®) . The three molecules were then administrated (i.v.) to FIX-knockout mice and two minutes after injection, blood samples were collected and subjected to human FIX-specific-ELISA and TGT. The clotting function of HIX, activation courses of HIX by FXIa and FVIIa-TF complex appear normal as did activation of Benefix(®) , Mononine(®) and TG constants of each FIX were equivalent. After injection to HB mice, circulating HIX did not present any significant difference in term of antigen value with Benefix(®) . Intriguingly, TGT were clearly exhibiting a better velocity for HIX than Benefix(®) and Mononine(®) . These data suggested that HIX may improve in vivo coagulant efficacy in comparison with the two commercial FIX injected at the same dose. The study shows that HuH-7-derived-rFIX has better in vivo haemostatic activity in hemophilia B mice compared to the reference rFIX molecule despite similar in vivo recovery rates, suggesting that HuH-7 cells could represent an effective cellular system for production of rFIX. © 2015 John Wiley & Sons Ltd.

  3. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction.

    PubMed

    Biet, F; Duez, C; Kremer, L; Marquillies, P; Amniai, L; Tonnel, A-B; Locht, C; Pestel, J

    2005-08-01

    Allergic reactions occur through the exacerbated induction of a Th2 cell type expression profile and can be prevented by agents favoring a Th1 profile. Bacillus Calmette-Guérin (BCG) is able to induce high IFN-gamma levels and has been shown to decrease experimentally induced allergy. The induction of IFN-gamma is mediated by interleukin (IL)-12 known to be secreted upon mycobacterial infections and can be enhanced by IL-18 acting in synergy with IL-12. We evaluated the ability of a recombinant BCG strain producing IL-18 (rBCG) to modify the Th2 type responses in a murine model of ovalbumin (OVA)-dependent allergic reaction. Mice were injected intraperitoneally or intranasally with OVA at days 0 and 15 and exposed to an OVA aerosol challenge at days 29, 30, 31 and 34. At days 0 and 15, two additional groups of mice received OVA together with 5 x 10(6) colony forming units of either rBCG or nonrecombinant BCG. A time-course analysis of OVA-specific immunoglobulin (Ig)E, IgG1 and IgG2a levels indicated no significant difference between the three groups of mice. However, following in vitro stimulation with OVA, lymph node cells from rBCG-treated mice produced less IL-5 and more IFN-gamma than those of mice injected with nonrecombinant BCG. In addition, 48 h after the last OVA challenge, a strong reduction of bronchoalveolar eosinophilia was found in the rBCG-injected mice compared to the nontreated or nonrecombinant BCG-treated groups. These results indicate that the production of IL-18 by rBCG may enhance the immunomodulatory properties of BCG that suppress pulmonary Th2 responses and, in particular, decrease airway eosinophilia.

  4. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    DOE PAGES

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan; ...

    2016-08-25

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of a processmore » of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the

  5. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    SciTech Connect

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan; Voulis, Nina; Angenent, Largus T.; Ungerer, Justin; Yu, Jianping

    2016-08-25

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of a process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the

  6. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    SciTech Connect

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan; Voulis, Nina; Angenent, Largus T.; Ungerer, Justin; Yu, Jianping

    2016-08-25

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of a process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the

  7. Purification and characterization of Streptococcus sobrinus dextranase produced in recombinant Escherichia coli and sequence analysis of the dextranase gene.

    PubMed Central

    Wanda, S Y; Curtiss, R

    1994-01-01

    The plasmid (pYA902) with the dextranase (dex) gene of Streptococcus sobrinus UAB66 (serotype g) produces a C-terminal truncated dextranase enzyme (Dex) with a multicomplex mass form which ranges from 80 to 130 kDa. The Escherichia coli-produced enzyme was purified and characterized, and antibodies were raised in rabbits. Purified dextranase has a native-form molecular mass of 160 to 260 kDa and specific activity of 4,000 U/mg of protein. Potential immunological cross-reactivity between dextranase and the SpaA protein specified by various recombinant clones was studied by using various antisera and Western blot (immunoblot) analysis. No cross-reactivity was observed. Optimal pH (5.3) and temperature (39 degrees C) and the isoelectric points (3.56, 3.6, and 3.7) were determined and found to be similar to those for dextranase purified from S. sobrinus. The dex DNA restriction map was determined, and several subclones were obtained. The nucleotide sequence of the dex gene was determined by using subclones pYA993 and pYA3009 and UAB66 chromosomal DNA. The open reading frame for dex was 4,011 bp, ending with a stop codon TAA. A ribosome-binding site and putative promoter preceding the start codon were identified. The deduced amino acid sequence of Dex revealed the presence of a signal peptide of 30 amino acids. The cleavage site for the signal sequence was determined by N-terminal amino acid sequence analysis for Dex produced in E. coli chi 2831(pYA902). The C terminus consists of a serine- and threonine-rich region followed by the peptide LPKTGD, 3 charged amino acids, 19 amino acids with a strongly hydrophobic character, and a charged pentapeptide tail, which are proposed to correspond to the cell wall-spanning region, the LPXTGX consensus sequence, and the membrane-anchoring domains of surface-associated proteins of gram-positive cocci. Images PMID:8021165

  8. Anti-loxoscelic horse serum produced against a recombinant dermonecrotic protein of Brazilian Loxosceles intermedia spider neutralize lethal effects of Loxosceles laeta venom from Peru.

    PubMed

    Duarte, C G; Bonilla, C; Guimarães, G; Machado de Avila, R A; Mendes, T M; Silva, W; Tintaya, B; Yarleque, A; Chávez-Olórtegui, C

    2015-01-01

    In this work, an anti-loxoscelic serum was produced by immunizing horses with a recombinant dermonecrotic protein from Loxosceles intermedia (rLiD1). Anti-rLiD1 antibodies were able to recognize different species of Loxosceles venoms by Western Blot and ELISA. The efficacy of anti-rLiD1 serum against the toxic effects of Loxosceles laeta (Peru) venom was tested, showing that anti-rLiD1 serum can neutralize those effects. This study confirms that recombinant proteins can be good candidates to replace crude venoms for antivenom production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    PubMed

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium.

  10. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.

    PubMed

    Li, Ting; Liu, Bo; Chen, Chih Ying; Yang, Bing

    2016-05-20

    Over the last decades, much endeavor has been made to advance genome editing technology due to its promising role in both basic and synthetic biology. The breakthrough has been made in recent years with the advent of sequence-specific endonucleases, especially zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) guided nucleases (e.g., Cas9). In higher eukaryotic organisms, site-directed mutagenesis usually can be achieved through non-homologous end-joining (NHEJ) repair to the DNA double-strand breaks (DSBs) caused by the exogenously applied nucleases. However, site-specific gene replacement or genuine genome editing through homologous recombination (HR) repair to DSBs remains a challenge. As a proof of concept gene replacement through TALEN-based HR in rice (Oryza sativa), we successfully produced double point mutations in rice acetolactate synthase gene (OsALS) and generated herbicide resistant rice lines by using TALENs and donor DNA carrying the desired mutations. After ballistic delivery into rice calli of TALEN construct and donor DNA, nine HR events with different genotypes of OsALS were obtained in T0 generation at the efficiency of 1.4%-6.3% from three experiments. The HR-mediated gene edits were heritable to the progeny of T1 generation. The edited T1 plants were as morphologically normal as the control plants while displayed strong herbicide resistance. The results demonstrate the feasibility of TALEN-mediated genome editing in rice and provide useful information for further genome editing by other nuclease-based genome editing platforms.

  11. Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects.

    PubMed

    Poudel, Sher Bahadur; Bhattarai, Govinda; Kook, Sung-Ho; Shin, Yun-Ji; Kwon, Tae-Ho; Lee, Seung-Youp; Lee, Jeong-Chae

    2017-07-30

    Transgenic plant cell suspension culture systems have been utilized extensively as convenient and efficient expression systems for the production of recombinant human growth factors. We produced insulin-like growth factor-1 using a plant suspension culture system (p-IGF-1) and explored its effect on new bone formation in calvarial defects. We also compared the bone regenerating potential of p-IGF-1 with commercial IGF-1 derived from Escherichia coli (e-IGF-1). Male C57BL/6 mice underwent calvarial defect surgery, and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 13μg of p-IGF-1 (p-IGF-1 group) or e-IGF-1 (e-IGF-1 group). The sham group did not receive any treatment with ACS or IGFs after surgery. Live μCT and histological analyses showed critical-sized bone defects in the sham group, whereas greater bone formation was observed in the p-IGF-1 and e-IGF-1 groups than the ACS group both 5 and 10weeks after surgery. Bone mineral density, bone volume, and bone surface values were also higher in the IGF groups than in the ACS group. Local delivery of p-IGF-1 or e-IGF-1 more greatly enhanced the expression of osteoblast-specific markers, but inhibited osteoclast formation, in newly formed bone compared with ACS control group. Specifically, p-IGF-1 treatment induced higher expression of alkaline phosphatase, osteocalcin, and osteopontin in the defect site than did e-IGF-1. Furthermore, treatment with p-IGF-1, but not e-IGF-1, increased mineralization of MC3T3-E1 cells, with the attendant upregulation of osteogenic marker genes. Collectively, our findings suggest the potential of p-IGF-1 in promoting the processes required for bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  12. Significance of the class II hydrophobin FgHyd5p for the life cycle of Fusarium graminearum.

    PubMed

    Minenko, Ekaterina; Vogel, Rudi F; Niessen, Ludwig

    2014-04-01

    Hydrophobins are small secreted proteins ubiquitously found in filamentous fungi. Some hydrophobins were shown to have functions in fungal development, while others lack known function. Class II hydrophobins from Fusarium graminearum and Fusarium culmorum are characterized by formation of low stability aggregates and their solubility in organic solvents. They are economically relevant to the brewing industry because they can induce beer gushing. Since cellular functions of Hyd5p's are still unknown, we analyzed the influence of FgHyd5p on growth and morphology of F. graminearum using FgΔhyd5 knock-out mutants expressing sGFP under the control of the hyd5 promoter and compared them with the performance of the parent wild type strain. Results demonstrate that FgHyd5p does not affect the colony and hyphal morphology. FgHyd5p affects the hydrophobicity of aerial mycelia but had no obvious function in penetration of hyphae through the water air interface. The hydrophobin affects the morphology of conidia, but not their fitness. Different sources of carbon and nitrogen as well as different pH have no effect on the expression of the hyd5 gene, which was demonstrated to be expressed upon growth of F. graminearum on hydrophobic surfaces.

  13. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures.

    PubMed

    Riveros G, D; Cordova, K; Michiels, C; Verachtert, H; Derdelinckx, G

    2016-11-01

    Hydrophobins are one of the most active surface active proteins in nature, with an amphiphilic nature and the ability to self-assembly in elastic monolayers, the possible applications in industry are continuously increasing. However, production and purification of these proteins still remains a tedious process. We introduce here the use of polydopamine as imprinter polymer to create specific magnetic nanoparticles for the recognition of Hydrophobin HFBII from Trichoderma reesei. The protein was molecularly imprinted to magnetic nanoparticles to facilitate its specific detection and purification from liquids or carbonated beverages in the presence of other proteins. The resulting magnetic nanoparticles were successfully imprinted adsorbing till 77,4µg of HFBII hydrophobin per miligram of nanoparticles. The adsorption capacity of the imprinted nanoparticles was also tested for specificity using a mixture of five different proteins and peptides. A slight cross interaction was observed when proteins of similar molecular weight to HFBII were used. With larger proteins and peptides the interaction was very low. with other class II Hydrophobins the interaction was very similar as to HFBII. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    PubMed Central

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M. F.; Stanley-Wall, Nicola R.

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demonstrates that BslA can self-assemble at interfaces, forming an elastic film. Molecular function is revealed from analysis of the crystal structure of BslA, which consists of an Ig-type fold with the addition of an unusual, extremely hydrophobic “cap” region. A combination of in vivo biofilm formation and in vitro biophysical analysis demonstrates that the central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein. The hydrophobic cap exhibits physiochemical properties remarkably similar to the hydrophobic surface found in fungal hydrophobins; thus, BslA is a structurally defined bacterial hydrophobin. We suggest that biofilms formed by other species of bacteria may have evolved similar mechanisms to provide protection to the resident bacterial community. PMID:23904481

  15. Molecular simulation of hydrophobin adsorption at an oil-water interface.

    PubMed

    Cheung, David L

    2012-06-12

    Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein.

  16. A simple MALDI plate functionalization by Vmh2 hydrophobin for serial multi-enzymatic protein digestions.

    PubMed

    Longobardi, Sara; Gravagnuolo, Alfredo Maria; Funari, Riccardo; Della Ventura, Bartolomeo; Pane, Francesca; Galano, Eugenio; Amoresano, Angela; Marino, Gennaro; Giardina, Paola

    2015-01-01

    The development of efficient and rapid methods for the identification with high sequence coverage of proteins is one of the most important goals of proteomic strategies today. The on-plate digestion of proteins is a very attractive approach, due to the possibility of coupling immobilized-enzymatic digestion with direct matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS) analysis. The crucial step in the development of on-plate immobilization is however the functionalization of the solid surface. Fungal self-assembling proteins, the hydrophobins, are able to efficiently functionalize surfaces. We have recently shown that such modified plates are able to absorb either peptides or proteins and are amenable to MALDI-TOF-MS analysis. In this paper, the hydrophobin-coated MALDI sample plates were exploited as a lab-on-plate for noncovalent immobilization of enzymes commonly used in protein identification/characterization, such as trypsin, V8 protease, PNGaseF, and alkaline phosphatase. Rapid and efficient on-plate reactions were performed to achieve high sequence coverage of model proteins, particularly when performing multiple enzyme digestions. The possibility of exploiting this direct on-plate MALDI-TOF/TOF analysis has been investigated on model proteins and, as proof of concept, on entire whey milk proteome.

  17. Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay.

    PubMed

    Wang, Zefang; Huang, Yujian; Li, Shan; Xu, Haijin; Linder, Markus B; Qiao, Mingqiang

    2010-11-15

    Herein we reported that a hydrophobin film was used as a solid support on the polystyrene surface for immobilizing antibodies in the time-resolved immunofluorometric assay (TR-IFMA). Quartz crystal microbalance with dissipative monitoring (QCM-D), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements, as well as atomic force microscope (AFM) were used to characterize the hydrophilic modification of polystyrene surface with Class I hydrophobin isolated from Grifola frondosa (HGFI). The performance of HGFI-modified polystyrene was evaluated by TR-IFMA of carcinoembryonic antigen (CEA). QCM-D revealed that HGFI formed an intact monolayer on the polystyrene at pH 5. XPS and WCA measurements showed that self-assembling HGFI could render polystyrene surface hydrophilic for three months. AFM indicated that an end-on antibody monolayer was adsorbed on the HGFI film rather than multilayers on the polystyrene in a side-on orientation. Furthermore, a linear calibration curve (from 5 to 600 ng/mL) of CEA showed HGFI-modified polystyrene had higher detection sensitivity than unmodified ones in TR-IFMA. This present method for modifying polystyrene is simple without severe chemical treatment and may have wide applicability to functionalize other supports for immobilizing biomolecules. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana.

    PubMed

    Cho, Eun-Min; Kirkland, Brett H; Holder, Diane J; Keyhani, Nemat O

    2007-10-01

    Hydrophobins are small amphipathic proteins that function in a broad range of growth and developmental processes in fungi. They are involved in the formation of aerial structures, the attachment of fungal cells to surfaces, and act in signalling in response to surface cues and pathogenesis. Beauveria bassiana is an important entomopathogenic fungus used as an arthropod biological control agent. To examine the feasibility of using phage display technology to clone cDNAs encoding hydrophobins, biopanning experiments were performed using a variety of affinity resins, including N,N'-diacetylchitobiose-, fucose-, lactose-, maltose- and melibiose-coupled agarose beads. After five rounds of iterative biopanning, cDNAs corresponding to two B. bassiana (class I) hydrophobins were selectively enriched using melibiose- or lactose-coupled agarose beads. Expression analysis revealed that the hyd1 gene was expressed in all samples tested, including aerial conidia, in vitro blastospores, submerged conidia, and cells sporulating on chitin and insect cuticle, with hyd1 expression peaking in growing mycelia. In contrast, the hyd2 gene was not appreciably expressed in any of the single-cell types (aerial conidia, blastospores and submerged conidia), but was constitutively expressed in growing mycelia and when cells were sporulating on chitin and insect cuticle. MS fingerprinting of an approximately 10 kDa protein found in boiling SDS-insoluble, trifluoroacetic acid-soluble extracts from aerial conidia identified the major component of the B. bassiana rodlet layer to be the hyd2 gene product. These results reveal the differential regulation of the isolated hydrophobins and indicate that phage display represents a novel approach to cDNA cloning of hydrophobins.

  19. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex.

    PubMed

    Degenkolb, Thomas; Fog Nielsen, Kristian; Dieckmann, Ralf; Branco-Rocha, Fabiano; Chaverri, Priscila; Samuels, Gary J; Thrane, Ulf; von Döhren, Hans; Vilcinskas, Andreas; Brückner, Hans

    2015-04-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics in plant-protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna(®) , Trichosan(®) , Vitalin(®) , Promot(®) WP, and TrichoMax(®) , formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well-established, HPLC/MS-based peptaibiomics approach, it could unequivocally be demonstrated that all of these formulations contained new and recurrent peptaibols, i.e., peptaibiotics carrying an acetylated N-terminus, the C-terminus of which is reduced to a 1,2-amino alcohol. Their chain lengths, including the amino alcohol, were 11, 14, and 18 residues, respectively. Peptaibols were also to be the dominating secondary metabolites in plate cultures of the four strains obtained from four of the Trichoderma- based BCAs, contributing 95% of the UHPLC-UV/VIS peak areas and 99% of the total ion count MS peak area from solid media. Furthermore, species-specific hydrophobins, as well as non-peptaibiotic secondary metabolites, were detected, the latter being known for their antifungal, siderophore, or plant-growth-promoting activities. Notably, none of the isolates produced low-molecular weight mycotoxins.

  20. Human leukocytic pyrogen test for detection of pyrogenic material in growth hormone produced by recombinant Escherichia coli.

    PubMed Central

    Dinarello, C A; O'Connor, J V; LoPreste, G; Swift, R L

    1984-01-01

    Human growth hormone is biosynthetically produced in recombinant strains of Escherichia coli as methionyl human growth hormone (met-hGH). When purified from the bacterial culture, met-hGH is biologically active in established assays for growth hormone. Therefore, a phase I trial of met-hGH was carried out in healthy human adults; during the first trial, however, signs, symptoms, and clinical laboratory tests characteristic of an acute-phase response to pyrogenic agents was observed. Prior testing of the met-hGH preparation used in the phase I trial did not reveal evidence of toxicity, and the U.S. Pharmacopeial Convention rabbit pyrogen test, as well as the Limulus amoebocyte lysate (LAL) test, had not detected significant levels of exogenous pyrogens or endotoxin. In addition, standard inhibition studies with added endotoxin showed no inhibition by the LAL test. When this preparation of met-hGH was incubated with human blood mononuclear cells, leukocytic pyrogen (LP) was released into the supernatant medium, suggesting that the preparation contained pyrogenic material. Various lots of met-hGH based on different purification and formulating methods were tested by the human LP assay for contaminating pyrogens. The results of these tests aided in the identification of procedures for met-hGH preparations which did not induce LP in vitro. Thus, subsequent lots of met-hGH which had passed the LP test were used in repeat clinical studies, and no inflammatory or pyrogenic reactions were observed. When the LP test was used, experiments revealed that the original lot of met-hGH was contaminated with endotoxin which had not been detected in the LAL or rabbit pyrogen tests. Lyophilization in glycine-phosphate buffer had resulted in a 10- to 20-fold reduction of endotoxin reactivity in the LAL test and the U.S. Pharmacopeial Convention rabbit pyrogen test. These data provide a probable explanation for the negative result from the LAL and rabbit pyrogen test in the initial lot

  1. Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse

    PubMed Central

    Nguyen, Michael O; Jalan, Manisha; Morrow, Carl A; Osman, Fekret; Whitby, Matthew C

    2015-01-01

    The completion of genome duplication during the cell cycle is threatened by the presence of replication fork barriers (RFBs). Following collision with a RFB, replication proteins can dissociate from the stalled fork (fork collapse) rendering it incapable of further DNA synthesis unless recombination intervenes to restart replication. We use time-lapse microscopy and genetic assays to show that recombination is initiated within ∼10 min of replication fork blockage at a site-specific barrier in fission yeast, leading to a restarted fork within ∼60 min, which is only prevented/curtailed by the arrival of the opposing replication fork. The restarted fork is susceptible to further collapse causing hyper-recombination downstream of the barrier. Surprisingly, in our system fork restart is unnecessary for maintaining cell viability. Seemingly, the risk of failing to complete replication prior to mitosis is sufficient to warrant the induction of recombination even though it can cause deleterious genetic change. DOI: http://dx.doi.org/10.7554/eLife.04539.001 PMID:25806683

  2. Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins.

    PubMed

    da Cunha, Nicolau B; Vianna, Giovanni R; da Almeida Lima, Thaina; Rech, Elíbio

    2014-01-01

    Plants have emerged as an attractive alternative to the traditional mammalian cell cultures or microbial cell-based systems system for the production of valuable recombinant proteins. Through recombinant DNA technology, plants can be engineered to produce large quantities of pharmaceuticals and industrial proteins of high quality at low costs. The recombinant production, by transgenic plants, of therapeutic proteins normally present in human plasma, such as cytokines, coagulation factors, anticoagulants, and immunoglobulins, represents a response to the ongoing challenges in meeting the demand for therapeutic proteins to treat serious inherited or acquired bleeding and immunological diseases. As the clinical utilization of fractionated plasma molecules is limited by high production costs, using recombinant biopharmaceuticals derived from plants represents a feasible alternative to provide efficient treatment. Plant-derived pharmaceuticals also reduce the potential risks to patients of infection with pathogens or unwanted immune responses due to immunogenic antigens. In this review, we summarize the recent advances in molecular farming of cytokines. We also examine the technological basis, upcoming challenges, and perspectives for the biosynthesis and detection of these molecules in different plant production platforms.

  3. Origin of the CMS gene locus in rapeseed cybrid mitochondria: active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae.

    PubMed

    Oshima, Masao; Kikuchi, Rie; Imamura, Jun; Handa, Hirokazu

    2010-01-01

    CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.

  4. Genes encoding homologous antigens in taeniid cestode parasites: Implications for development of recombinant vaccines produced in Escherichia coli.

    PubMed

    Gauci, Charles; Lightowlers, Marshall W

    2013-01-01

    Recombinant vaccine antigens are being evaluated for their ability to protect livestock animals against cysticercosis and related parasitic infections. Practical use of some of these vaccines is expected to reduce parasite transmission, leading to a reduction in the incidence of neurocysticercosis and hydatid disease in humans. We recently showed that an antigen (TSOL16), expressed in Escherichia coli, confers high levels of protection against Taenia solium cysticercosis in pigs, which provides a strategy for control of T. solium parasite transmission. Here, we discuss the characteristics of this antigen that may affect the utility of TSOL16 and related antigens for development as recombinant vaccines. We also report that genes encoding antigens closely related to TSOL16 from T. solium also occur in other related species of parasites. These highly homologous antigens have the potential to be used as vaccines and may provide protection against related species of Taenia that cause infection in other hosts.

  5. Identifying the risk of producing aneuploids using meiotic recombination genes as biomarkers: A copy number variation approach

    PubMed Central

    Suresh, Raviraj V.; Lingaiah, Kusuma; Veerappa, Avinash M.; Ramachandra, Nallur B.

    2017-01-01

    Background & objectives: Aneuploids are the most common chromosomal abnormality in liveborns and are usually the result of non-disjunction (NDJ) in meiosis. Copy number variations (CNVs) are large structural variations affecting the human genome. CNVs influence critical genes involved in causing NDJ by altering their copy number which affects the clinical outcome. In this study influence of CNVs on critical meiotic recombination was examined using new computational technologies to assess their role in causing aneuploidy. Methods: This investigation was based on the analysis of 12 random normal populations consisting of 1714 individuals for aneuploid causing genes under CNV effect. To examine the effect of CNVs on genes causing aneuploidy, meiotic recombination genes were analyzed using EnrichR, WebGestalt and Ingenuity Pathway Analysis (IPA). Results: Forty three NDJ genes were found under CNV burden; IPA (Ingenuity Pathway Analysis) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of CNV in meiotic recombination genes revealed a significant role of breast cancer gene 1, amyloid protein precursor, mitogen-activated protein kinase and nerve growth factor as key molecular players involved in causing aneuploidy. Interaction between these genes with other CNV-overlapping genes involved in cell cycle, recombination and meiosis might lead to increased incidences of aneuploidy. Interpretation & conclusions: The findings of this study implied that the effect of CNVs on normal genome contributed in amplifying the occurrences of chromosomal aneuploidies. The normal individuals consisting of variations in the susceptible genes causing aneuploids in the population remain undetected until the disorder genes express in the succeeding generations. PMID:28574013

  6. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production.

    PubMed

    Noguchi, Chiemi; Araki, Yoshio; Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.

  7. Fusion of the Dhfr/Mtx and IR/MAR Gene Amplification Methods Produces a Rapid and Efficient Method for Stable Recombinant Protein Production

    PubMed Central

    Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone. PMID:23300841

  8. Comparative analysis of plant-produced, recombinant dimeric IgA against cell wall β-glucan of pathogenic fungi.

    PubMed

    Capodicasa, Cristina; Catellani, Marcello; Moscetti, Ilaria; Bromuro, Carla; Chiani, Paola; Torosantucci, Antonella; Benvenuto, Eugenio

    2017-08-19

    Immunoglobulins A (IgA) are crucially involved in protection of human mucosal surfaces from microbial pathogens. In this work, we devised and expressed in plants recombinant chimeric antifungal antibodies (Abs) of isotype A (IgA1, IgA2, and scFvFcA1), derived from a murine mAb directed to the fungal cell wall polysaccharide β-glucan which had proven able to confer protection against multiple pathogenic fungi. All recombinant IgA (rIgA) were expressed and correctly assembled in dimeric form in plants and evaluated for yield, antigen-binding efficiency and antifungal properties in vitro, in comparison with a chimeric IgG1 version. Production yields and binding efficiency to purified β-glucans showed significant variations not only between Abs of different isotypes but also between the different IgA formats. Moreover, only the dimeric IgA1 was able to strongly bind cells of the fungal pathogen Candida albicans and to restrain its adhesion to human epithelial cells. Our data indicate that IgG to IgA switch and differences in molecular structure among different rIgA formats can impact expression in plant and biological activity of anti-β-glucans Abs and provide new insights for the design of recombinant IgA as anti-infective immunotherapeutics, whose potential is still poorly investigated. © 2017 Wiley Periodicals, Inc.

  9. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    PubMed

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  10. Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds.

    PubMed

    He, Xu; Pierce, Owen; Haselhorst, Thomas; von Itzstein, Mark; Kolarich, Daniel; Packer, Nicolle H; Gloster, Tracey M; Vocadlo, David J; Qian, Yi; Brooks, Doug; Kermode, Allison R

    2013-12-01

    Mucopolysaccharidosis (MPS) I is a lysosomal storage disease caused by a deficiency of α-L-iduronidase (IDUA) (EC 3.2.1.76); enzyme replacement therapy is the conventional treatment for this genetic disease. Arabidopsis cgl mutants are characterized by a deficiency of the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of hybrid and complex N-glycan biosynthesis. To develop a seed-based platform for the production of recombinant IDUA for potential treatment of MPS I, cgl mutant seeds were generated to express human IDUA at high yields and to avoid maturation of the N-linked glycans on the recombinant human enzyme. Enzyme kinetic data showed that cgl-IDUA has similar enzymatic properties to the commercial recombinant IDUA derived from cultured Chinese hamster ovary (CHO) cells (Aldurazyme™). The N-glycan profile showed that cgl-derived IDUA contained predominantly high-mannose-type N-glycans (94.5%), and the residual complex/hybrid N-glycan-containing enzyme was efficiently removed by an additional affinity chromatography step. Furthermore, purified cgl-IDUA was amenable to sequential in vitro processing by soluble recombinant forms of the two enzymes that mediate the addition of the mannose-6-phosphate (M6P) tag in mammalian cells-UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine (GlcNAc)-1-phosphotransferase-and GlcNAc-1-phosphodiester α-N-acetylglucosaminidase (the 'uncovering enzyme'). Arabidopsis seeds provide an alternative system for producing recombinant lysosomal enzymes for enzyme replacement therapy; the purified enzymes can be subjected to downstream processing to create the M6P, a recognition marker essential for efficient receptor-mediated uptake into lysosomes of human cells.

  11. One-pot synthesis of a gold nanoparticle-Vmh2 hydrophobin nanobiocomplex for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Politi, Jane; De Stefano, Luca; Rea, Ilaria; Gravagnuolo, Alfredo Maria; Giardina, Paola; Methivier, Christophe; Casale, Sandra; Spadavecchia, Jolanda

    2016-05-01

    HydrophobinVmh2 is a small amphiphilic protein, which self-assembles on different surfaces and naturally interacts with glucose. Here, we report on the synthesis of a nanobiocomplex made of polyethylene glycol, Vmh2 and gold nanoparticles by a one-step process and on its ability to recognise glucose in an aqueous solution at 0.3-0.6-1.2 mg ml-1 concentrations. Even though the Vmh2 proteins are intrinsically bonded to the gold core, effective glucose interaction monitoring was demonstrated by using dynamic light scattering, ultraviolet-visible, polarization-modulated infrared reflection-absorption and x-ray photoelectron spectroscopies. Experimental results highlighted an affinity constant of 7.3 ± 0.3 mg ml-1 between the nanobiosystem and the sugar, and a detection sensitivity of 0.13 ± 0.06 a.u./mg ml-1.

  12. Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus.

    PubMed

    De Stefano, L; Rea, I; De Tommasi, E; Rendina, I; Rotiroti, L; Giocondo, M; Longobardi, S; Armenante, A; Giardina, P

    2009-10-01

    A crystalline silicon surface can be made biocompatible and chemically stable by a self-assembled biofilm of proteins, the hydrophobins (HFBs) purified from the fungus Pleurotus ostreatus. The protein-modified silicon surface shows an improvement in wettability and is suitable for immobilization of other proteins. Two different proteins were successfully immobilized on the HFBs-coated chips: the bovine serum albumin and an enzyme, a laccase, which retains its catalytic activity even when bound on the chip. Variable-angle spectroscopic ellipsometry (VASE), water contact angle (WCA), and fluorescence measurements demonstrated that the proposed approach in silicon surface bioactivation is a feasible strategy for the fabrication of a new class of hybrid devices.

  13. Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus

    NASA Astrophysics Data System (ADS)

    de Stefano, L.; Rea, I.; de Tommasi, E.; Rendina, I.; Rotiroti, L.; Giocondo, M.; Longobardi, S.; Armenante, A.; Giardina, P.

    2009-10-01

    A crystalline silicon surface can be made biocompatible and chemically stable by a self-assembled biofilm of proteins, the hydrophobins (HFBs) purified from the fungus Pleurotus ostreatus. The protein-modified silicon surface shows an improvement in wettability and is suitable for immobilization of other proteins. Two different proteins were successfully immobilized on the HFBs-coated chips: the bovine serum albumin and an enzyme, a laccase, which retains its catalytic activity even when bound on the chip. Variable-angle spectroscopic ellipsometry (VASE), water contact angle (WCA), and fluorescence measurements demonstrated that the proposed approach in silicon surface bioactivation is a feasible strategy for the fabrication of a new class of hybrid devices.

  14. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    PubMed

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such

  15. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System

    PubMed Central

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B.

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H – referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner – diflavin reductase – by fusing both enzymes individually to the hydrophobin HFBI – a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution. PMID:27458582

  16. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System.

    PubMed

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H - referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner - diflavin reductase - by fusing both enzymes individually to the hydrophobin HFBI - a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution.

  17. Temperature effects on product-quality-related enzymes in batch CHO cell cultures producing recombinant tPA.

    PubMed

    Clark, Kevin J R; Chaplin, Frank W R; Harcum, Sarah W

    2004-01-01

    Culture conditions that affect product quality are important to the successful operation and optimization of bioreactors. Previous studies have demonstrated that enzymes, such as proteases and sialidases, accumulate in batch bioreactors. These enzymes are known to be detrimental to the quality of recombinant glycoproteins. Bioreactor temperature has been used to control cell growth and recombinant protein production rates. However, the effect of culture temperature on the production of proteases and sialidases has not been investigated. In this study, Chinese hamster ovary cells were cultured with a temperature profile that decreased from 37 to 34 degrees C over 8 days and with a constant temperature of 37 degrees C. Analysis of extracellular protease activity indicated that two major proteases were present (50 and 69 kDa). The 50 kDa protease activity decreased similarly with time for both culture conditions. The 69 kDa protease activity increased with time for both culture conditions. The constant-temperature cultures had significantly lower 69 kDa protease levels compared to the ramped-temperature cultures in the early stationary phase. Intracellular sialidase activity was present in both cultures. The intracellular sialidase activity increased dramatically for both culture conditions immediately after the cells were inoculated into fresh medium. The initial peak in intracellular sialidase activity was followed by a first-order decay. The intracellular sialidase activities for the two culture conditions were not significantly different. The production of recombinant tissue type plasminogen activator was not significantly different for the two culture conditions. Thus, the previously hypothesized advantages that lower culture temperatures have reduced protease activity and improved productivity do not appear to be universal.

  18. DNA sequences, recombinant DNA molecules and processes for producing bovine growth hormone-like polypeptides in high yield

    SciTech Connect

    Buell, G.N.

    1987-09-15

    This patent describes a process for increasing the yield of a bovine growth hormone-like polypeptide to at least 100 times that of a bovine growth hormone-like polypeptide encoded by a DNA sequence. The process comprises the steps of culturing a host transformed with a recombinant DNA molecule comprising DNA sequence encoding a Met ..lambda.. or ..lambda.. bovine growth hormone-like polypetide operatively linked to an expression control sequence. The ..lambda.. is an amino terminal deletion from the amino acid sequence of mature bovine growth hormone.

  19. Atomistic simulation of hydrophobin HFBII conformation in aqueous and fluorous media and at the water/vacuum interface.

    PubMed

    Raffaini, Giuseppina; Milani, Roberto; Ganazzoli, Fabio; Resnati, Giuseppe; Metrangolo, Pierangelo

    2016-01-01

    Hydrophobins are proteins of interest for numerous applications thanks to their unique conformational and surface properties and their ability to self-assemble at interfaces. Here we report fully atomistic molecular mechanics and molecular dynamics results together with circular dichroism experimental data, aimed to study the conformational properties of the hydrophobin HFBII in a fluorinated solvent in comparison with a water solution and/or at an aqueous/vacuum interface. Both the atomistic simulations and the circular dichroism data show the remarkable structural stability of HFBII at all scales in all these environments, with no significant structural change, although a small cavity is formed in the fluorinated solvent. The combination of theoretical calculations and circular dichroism data can describe in detail the protein conformation and flexibility in different solvents and/or at an interface, and constitutes a first step towards the study of their self-assembly. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection.

    PubMed

    Hyvönen, P; Suojala, L; Orro, T; Haaranen, J; Simola, O; Røntved, C; Pyörälä, S

    2006-11-01

    This is the first study describing an experimental mastitis model using transgenic cows expressing recombinant human lactoferrin (rhLf) in their milk. The aim of the study was to investigate the concentrations in milk and protective effects of bovine and recombinant human lactoferrin in experimental Escherichia coli mastitis. Experimental intramammary infection was induced in one udder quarter of seven first-lactating rhLf-transgenic cows and six normal cows, using an E. coli strain isolated from cows with clinical mastitis and known to be susceptible to Lf in vitro. Clinical signs were recorded during the experimental period, concentrations of human and bovine Lf and indicators of inflammation and bacterial counts were determined for milk, and concentrations of acute-phase proteins and tumor necrosis factor alpha were determined for sera and milk. Serum cortisol and blood hematological and biochemical parameters were also determined. Expression levels of rhLf in the milk of transgenic cows remained constant throughout the experiment (mean, 2.9 mg/ml). The high Lf concentrations in the milk of transgenic cows did not protect them from intramammary infection. All cows became infected and developed clinical mastitis. The rhLf-transgenic cows showed milder systemic signs and lower serum cortisol and haptoglobin concentrations than did controls. This may be explained by lipopolysaccharide-neutralizing and immunomodulatory effects of the high Lf concentrations in their milk. However, Lf does not seem to be a very efficient protein for genetic engineering to enhance the mastitis resistance of dairy cows.

  1. [Characterization of hepatitis C virus structural proteins and HCV-like particles produced in recombinant baculovirus infected insect cells].

    PubMed

    Belzhelarskaia, S N; Koroleva, N N; Popenko, V V; Drutsa, V L; Orlova, O V; Rubtsov, P M; Kochetkov, S N

    2010-01-01

    Three proteins, namely: "core" protein C and glycoproteins E1 and E2, are main structural proteins forming a hepatitis C vius (HCV) virion. The virus structure and assembly, a role of the structural proteins in virion morphogenesis remain unknown because of the lack of an efficient culture system for HCV to be grown in vitro. Using recombinant baculoviruses expressing HCV structural protein genes in insect cells the specific structural proteins at the level of 25-35% relative to a common cell protein content, heterodimers of the glcoproteins, and HCV-like particles have been obtained. It has been demonstrated that recombinant proteins C, E1, and E2 go through the posttranslation modification, the glycoproteins form the non-covalent heterodimer, and HCV-like particles are located in endoplasmatic reticulum membrains of infected cells. An ability of the expressed proteins for forming E1E2 dimers and HCV-like particles was used for studying the role of E1 protein glcosylation upon expression and processing of the glycoproteins.

  2. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

    PubMed Central

    Lima, Matheus S.; Damasio, André R. de L.; Crnkovic, Paula M.; Pinto, Marcelo R.; da Silva, Ana M.; da Silva, Jean C. R.; Segato, Fernando; de Lucas, Rosymar C.; Jorge, João A.; Polizeli, Maria de L. T. de M.

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60–80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  3. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    PubMed

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  4. Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing

    SciTech Connect

    Ermolovich, I. B.; Milenin, V. V.; Red'ko, R. A. Red'ko, S. M.

    2009-08-15

    The steady-state and kinetic characteristics of photoconductivity and photoluminescence and the thermally stimulated conductivity spectra of the GdTe layers deposited by vacuum evaporation onto heated substrates are studied in relation to the substrate temperature. The measurements are carried out at temperatures, illuminations, and wavelengths ranging from 4.2 to 400 K, from 10{sup 10} to 10{sup 23} photon/cm{sup 2}, and from0.4 to 2.5 {mu}m, respectively. A certain optimal range of substrate temperatures T{sub s} {approx} 450-550 deg. C, at which the as-prepared layers exhibit a high resistivity, a high photosensitivity, and the best structural quality, is established. In the spectra of these layers, a new luminescence band at hv{sub m} = 1.09 eV is observed along with the known photoluminescence band at hv{sub m} = 1.42 eV. It is established that this new band is due to intracenter transitions rather than recombination transitions. The nature of radiative recombination centers in the layers is discussed. It is suggested that the d electrons of cations can be involved in the formation of chemical bonds of local centers in CdTe.

  5. Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin

    PubMed Central

    Ley, Kamron; Christofferson, Andrew; Penna, Matthew; Winkler, Dave; Maclaughlin, Shane; Yarovsky, Irene

    2015-01-01

    The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin. PMID:26636091

  6. Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin.

    PubMed

    Ley, Kamron; Christofferson, Andrew; Penna, Matthew; Winkler, Dave; Maclaughlin, Shane; Yarovsky, Irene

    2015-01-01

    The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  7. Multiple microfermentor battery: a versatile tool for use with automated parallel cultures of microorganisms producing recombinant proteins and for optimization of cultivation protocols.

    PubMed

    Frachon, Emmanuel; Bondet, Vincent; Munier-Lehmann, Hélène; Bellalou, Jacques

    2006-08-01

    A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained with heating/cooling Peltier devices. Data from pH, DO, and turbidity sensors are collected on a FieldPoint (National Instruments) I/O interface and are processed and recorded by a LabVIEW program on a personal computer, which enables feedback control of the culture parameters. A high-density medium formulation was designed, which enabled us to grow E. coli to OD600 up to 100 in batch cultures with oxygen-enriched aeration. Accordingly, the biomass and the amount of recombinant protein produced in a 70-ml culture were at least equivalent to the biomass and the amount of recombinant protein obtained in a Fernbach flask with 1 liter of conventional medium. Thus, the microfermentor battery appears to be well suited for automated parallel cultures and process optimization, such as that needed for structural genomics projects.

  8. Multiple Microfermentor Battery: a Versatile Tool for Use with Automated Parallel Cultures of Microorganisms Producing Recombinant Proteins and for Optimization of Cultivation Protocols

    PubMed Central

    Frachon, Emmanuel; Bondet, Vincent; Munier-Lehmann, Hélène; Bellalou, Jacques

    2006-01-01

    A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained with heating/cooling Peltier devices. Data from pH, DO, and turbidity sensors are collected on a FieldPoint (National Instruments) I/O interface and are processed and recorded by a LabVIEW program on a personal computer, which enables feedback control of the culture parameters. A high-density medium formulation was designed, which enabled us to grow E. coli to OD600 up to 100 in batch cultures with oxygen-enriched aeration. Accordingly, the biomass and the amount of recombinant protein produced in a 70-ml culture were at least equivalent to the biomass and the amount of recombinant protein obtained in a Fernbach flask with 1 liter of conventional medium. Thus, the microfermentor battery appears to be well suited for automated parallel cultures and process optimization, such as that needed for structural genomics projects. PMID:16885269

  9. Establishment of a large-scale purification procedure for purified recombinant bovine interferon-tau produced by a silkworm-baculovirus gene expression system.

    PubMed

    Nagaya, Hidekazu; Kanaya, Toshimichi; Kaki, Hiroki; Tobita, Yoneko; Takahashi, Masashi; Takahashi, Hitomi; Yokomizo, Yuichi; Inumaru, Shigeki

    2004-11-01

    We developed a procedure for the large-scale purification of bovine interferon-tau (boIFN-tau) by means of a silkworm-baculovirus gene expression system. Recombinant boIFN-tau (rboIFN-tau) was efficiently produced in the silkworm infected with boIFN-tau cDNA recombinant baculovirus and accumulated in the haemolymph. To establish a purification method suitable for mass production, we tried three crude purification methods, namely, an acidification and neutralization treatment (ANT), silica gel column chromatography (SGCC), and Blue sepharose column chromatography (BSCC) with a combination of Q-sepharose (QSC) and chelating sepharose column chromatographies (CSCC). As a result, the acidification and neutralization treatment was found to be the most efficient and cost effective. With this combination, we obtained 91% pure products. To confirm the applicability of the procedure for mass production, we inoculated 100 silkworms with the recombinant virus, and recovered about 4.55 mg (1.26 x 10(8)U/mg) of 91% pure rboIFN-tau by means of a combination of the ANT, followed by QSC and CSCC.

  10. Recombinant Scorpine Produced Using SUMO Fusion Partner in Escherichia coli Has the Activities against Clinically Isolated Bacteria and Inhibits the Plasmodium falciparum Parasitemia In Vitro

    PubMed Central

    Gu, Yaping; Zhou, Huayun; Cao, Jun; Gao, Qi

    2014-01-01

    Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel–nitrilotriacetic acid (Ni2+–NTA) resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+–NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future. PMID:25068263

  11. Recombinant Adenovirus Delivery of Calreticulin–ESAT-6 Produces an Antigen-Specific Immune Response but no Protection Against a Mycobacterium Tuberculosis Challenge

    PubMed Central

    Esparza-González, S. C.; Troy, A.; Troudt, J.; Loera-Arias, M. J.; Villatoro-Hernández, J.; Torres-López, E.; Ancer-Rodríguez, J.; Gutiérrez-Puente, Y.; Muñoz-Maldonado, G.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.; Izzo, A.

    2015-01-01

    Bacillus Calmette–Guerin (BCG) has failed to efficaciously control the worldwide spread of the disease. New vaccine development targets virulence antigens of Mycobacterium tuberculosis that are deleted in Mycobacterium bovis BCG. Immunization with ESAT-6 and CFP10 provides protection against M. tuberculosis in a murine infection model. Further, previous studies have shown that calreticulin increases the cell-mediated immune responses to antigens. Therefore, to test whether calreticulin enhances the immune response against M. tuberculosis antigens, we fused ESAT-6 to calreticulin and constructed a recombinant replication-deficient adenovirus to express the resulting fusion protein (AdCRT–ESAT-6). The adjuvant effect of calreticulin was assayed by measuring cytokine responses specific to ESAT-6. Recombinant adenovirus expressing the fusion protein produced higher levels of interferon-γ and tumour necrosis factor-α in response to ESAT-6. This immune response was not improved by the addition of CFP-10 to the CRT-ESAT-6 fusion protein (AdCRT–ESAT-6–CFP10). Mice immunized with these recombinant adenoviruses did not decrease the mycobacterial burden after low-dose aerosol infection with M. tuberculosis. We conclude that calreticulin can be used as an adjuvant to enhance the immune response against mycobacterial antigens, but it is not enough to protect against tuberculosis. PMID:22010821

  12. Standardization of allergen products: 2. Detailed characterization of GMP-produced recombinant Phl p 5.0109 as European Pharmacopoeia reference standard.

    PubMed

    Himly, M; Nandy, A; Kahlert, H; Thilker, M; Steiner, M; Briza, P; Neubauer, A; Klysner, S; van Ree, R; Buchheit, K-H; Vieths, S; Ferreira, F

    2016-04-01

    The Biological Standardization Programme of the European Directorate for Quality of Medicines and Healthcare (EDQM) aims at the establishment of well-characterized reference standards based on recombinant allergens and validated assays for the quantification of major allergen content. The objective of this study was to examine the detailed physicochemical and immunological characterization of recombinant Phl p 5.0109, the second available allergen reference standard. Recombinant Phl p 5.0109 PP5ar06007 was produced under GMP conditions and analyzed by an array of physicochemical and immunological methods for identity, quantity, homogeneity, and folding stability in bulk solution, as well as thermal denaturation, aggregation state, and biological activity when formulated for long-time storage. PP5ar06007 revealed as a highly homogeneous, monomeric, well-folded preparation of rPhl p 5.0109, as documented by mass spectrometry, SDS-PAGE, isoelectric focusing, size-exclusion chromatography with light scattering, circular dichroism, and infrared spectroscopy. Upon storage at +4°C, PP5ar06007 retained the monomeric state for at least 2 months. A protein quantity of 1.56 ± 0.03 mg/ml was determined by amino acid analysis in PP5ar06007, and its biological activity was shown to be comparable to natural Phl p 5 in terms of basophil activation and T-cell reactivity. Recombinant Phl p 5.0109 PP5ar06007 was characterized extensively at the physicochemical and immunological level. It revealed to be a highly stable, monomeric, and immunologically equivalent of its natural counterpart. PP5ar06007 is now available as European Pharmacopoeia allergen reference standard for grass pollen products. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Development of a mixed feed strategy for a recombinant Pichia pastoris strain producing with a de-repression promoter.

    PubMed

    Capone, Simona; Horvat, Jernej; Herwig, Christoph; Spadiut, Oliver

    2015-07-10

    Recombinant protein production in the yeast Pichia pastoris is usually based on the alcohol oxidase promoters pAOX1 and pAOX2, which are regulated by methanol and strongly repressed by other C-sources, like glycerol and glucose. However, the use of methanol brings several disadvantages, which is why current trends in bioprocess development with P. pastoris are focussing on minimizing the required amount of methanol or even avoid its employment. In this respect novel promoter systems which do not rely on methanol have been investigated and promoter variants were designed to fine-tune gene expression. Amongst these novel promoter systems, mutated AOX promoters, which are regulated by available carbon source concentration (so-called de-repressed promoters), are currently raising attention. However, the main disadvantage of such a production system is that expression and growth usually cannot happen concomitantly resulting in low space-time-yields. Here we show the development of a mixed-feed strategy for an industrial recombinant P. pastoris de-repression strain aiming at increased productivity and maximum space-time-yield. By doing dynamic experiments we determined a ratio between the specific substrate uptake rates of glycerol and sorbitol allowing a more than 2-fold increased productivity compared to the conventional single substrate de-repression strategy. Based on our results we recommend adjusting q(s glycerol) = 0.04 g g(-1) h(-1) and q(s sorbitol) = 0.055 g g(-1) h(-1) to obtain highest productivity with a P. pastoris de-repression strain. Our methodological approach of designing mixed-feed strategies based on physiological strain characterization using dynamic experiments proved to be beneficial.

  14. Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B₁₂ naturally.

    PubMed

    Ashok, Somasundar; Sankaranarayanan, Mugesh; Ko, Yeounjoo; Jae, Kyeung-Eun; Ainala, Satish Kumar; Kumar, Vinod; Park, Sunghoon

    2013-02-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical that can be used to synthesize a range of chemical compounds. A previous study demonstrated that recombinant Escherichia coli stains can produce 3-HP from glycerol in the presence of vitamin B₁₂ (coenzyme B₁₂), when overexpressed with a coenzyme B₁₂-dependent glycerol dehydratase (DhaB) and an aldehyde dehydrogenase. The present study examined the production of 3-HP in recombinant Klebsiella pneumoniae strains, which naturally synthesizes vitamin B₁₂ and does not require supplementation of the expensive vitamin. The NAD⁺-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase (PuuC) of K. pneumoniae alone or with its DhaB was overexpressed homologously, and two major oxidoreductases, DhaT and YqhD, were disrupted. Without vitamin B₁₂ addition, the recombinant K. pneumoniae ΔdhaTΔyqhD overexpressing PuuC could produce ∼3.8 g/L 3-HP in 12 h of flask culture. However, this was possible only under the appropriate aeration conditions; 1,3-propanediol (1,3-PDO) (instead of 3-HP) was mainly produced when aeration was insufficient, whereas a very small amount of both 3-HP and 1,3-PDO were produced when aeration was too high. The production of a small amount of 3-HP under improper aeration conditions was attributed to either slow NAD⁺ regeneration (under low aeration) or reduced vitamin B₁₂ synthesis (under high aeration). In a glycerol fed-batch bioreactor experiment under a constant DO of 5%, the strain, K. pneumoniae ΔdhaTΔyqhD, overexpressing both PuuC and DhaB could produce >28 g/L 3-HP in 48 h with a yield of >40% on glycerol. Only small amount of 3-HP was produced when cultivation was carried out at a constant aeration of 1 vvm or constant 10% DO. These results show that K. pneumoniae is potentially useful for the production of 3-HP in an economical culture medium that does not require vitamin B₁₂. The results also suggest that the aeration

  15. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting.

    PubMed

    Borth, N; Zeyda, M; Kunert, R; Katinger, H

    The screening procedure for high-producing cell lines is extremely time- and labor-intensive and costly, and is at present guided by an empirical approach based on individual experience. Flow cytometry and cell sorting, with its ability to analyze and separate single cells, an ideal method in the selection of such rare cells. The isolation of recombinant cell lines is especially difficult due to repeated gene amplification, which introduces high mutational variation into the population. We have established and evaluated a modification of a previous method that traps secreted product on the surface of the secreting cell, thus allowing direct analysis of single cell specific production rates. This method was used to select for high-producing subclones of a recombinant Chinese hamster ovary (CHO) cell line producing a human antibody against HIV-1 by repeated rounds of gene amplification and cell sorting. This cell line has been amplified in previous investigations, so that the amount of work and testing required by traditional methods can be compared with the protocol described herein. Forty-five 96-well plates were necessary to obtain a high-producing subclone by limited dilution methods, whereas only five plates were required when cell sorting was used. The specific production rate of the best clone obtained by sorting, however, was five times that of the clone obtained by traditional methods. In contrast to the clones obtained by limited dilution, which consisted of several populations of low- and high-producing cells even at high methotrexate concentrations (6.4 microM), the clones isolated by sorting were already homogeneous at 0.8 microM methotrexate.

  16. Characterization of a recombinant humanized anti-cocaine monoclonal antibody produced from multiple clones for the selection of a master cell bank candidate.

    PubMed

    Wetzel, Hanna N; Webster, Rose P; Saeed, Fatima O; Kirley, Terence L; Ball, William J; Norman, Andrew B

    2017-06-03

    We have generated a humanized anti-cocaine monoclonal antibody (mAb), which is at an advanced stage of pre-clinical development. We report here in vitro binding affinity studies, and in vivo pharmacokinetic and efficacy studies of the recombinant mAb. The overall aim was to characterize the recombinant antibody from each of the three highest producing transfected clones and to select one to establish a master cell bank. In mAb pharmacokinetic studies, after injection with h2E2 (120 mg/kg iv) blood was collected from the tail tip of mice over 28 days. Antibody concentrations were quantified using ELISA. The h2E2 concentration as a function of time was fit using a two-compartment pharmacokinetic model. To test in vivo efficacy, mice were injected with h2E2 (120 mg/kg iv), then one hour later injected with an equimolar dose of cocaine. Blood and brain were collected 5 min after cocaine administration. Cocaine concentrations were quantified using LC/MS. The affinity of the antibody for cocaine was determined using a [(3)H] cocaine binding assay. All three antibodies had long elimination half-lives, 2-5 nM Kd for cocaine, and prevented cocaine's entry into the brain by sequestering it in the plasma. Pharmacokinetic and radioligand binding assays supported designation of the highest producing clone 85 as the master cell bank candidate. Overall, the recombinant h2E2 showed favorable binding properties, pharmacokinetics, and in vivo efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins.

    PubMed

    Hashimoto, Yoshi; Zhang, Sheng; Zhang, Shiying; Chen, Yun-Ru; Blissard, Gary W

    2012-04-24

    After publication we discovered an error in the identification of the origin of the cell line reported in our article in BMC Biotechnology (2010, 10:50), entitled "Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins". Upon analysis of primary A. odorata cultures, we found that they were contaminated with cells of Trichoplusia ni origin. The origin of the Ao38 cell line was determined as T. ni using three marker genes and the Ao38 cell line was renamed BTI-Tnao38. References to the origin of the cell line as Ascalapha odorata should be replaced with "a cell line of Trichoplusia ni origin". The absence of TNCL virus detection in the BTI-Tnao38 (Ao38) cell line was confirmed using a highly sensitive RT-PCR protocol capable of detecting TNCL virus RNA at approximately 0.018 copies/cell. Because of these observations, we have revised the title of the original article to "Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins" and two additional authors were added to reflect their contributions to the analysis of this cell line.

  18. Heterologous production and detection of recombinant directing 2-deoxystreptamine (DOS) in the non-aminoglycoside-producing host Streptomyces venezuelae YJ003.

    PubMed

    Kurumbang, Nagendra Prasad; Oh, Tae-Jin; Liou, Kwangkyoung; Sohng, Jae Kyung

    2008-05-01

    2-Deoxystreptamine is a core aglycon that is vital to backbone formation in various aminoglycosides. This core structure can be modified to develop hybrid types of aminoglycoside antibiotics. We obtained three genes responsible for 2-deoxystreptamine production, neo7, neo6, and neo5, which encode 2-deoxy-scyllo-inosose synthase, L-glutamine: 2-deoxy-scyllo-inosose aminotransferase, and dehydrogenase, respectively, from the neomycin gene cluster. These genes were cloned into pIBR25, a Streptomyces expression vector, resulting in pNDOS. The recombinant pNDOS was transformed into a non-aminoglycoside-producing host, Streptomyces venezuelae YJ003, for heterologous expression. Based on comparisons of the retention time on LC-ESI/MS and ESIMS data with those of the 2-deoxystreptamine standard, a compound produced by S. venezuelae YJ003/pNDOS was found to be 2-deoxystreptamine.

  19. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli

    PubMed Central

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  20. Purification and characterization of pre-S-containing hepatitis B surface antigens produced in recombinant mammalian cell culture.

    PubMed

    Youn, B W; Samanta, H

    1989-02-01

    Heterogeneous, pre-S-rich HBsAg particles were expressed in recombinant mammalian cell culture and purified to near homogeneity. The purification process comprises: concentration of cell culture medium, protein precipitation by poly(ethylene glycol), gel filtration column chromatography, isopycnic ultracentrifugation by KBr and sucrose density gradient ultracentrifugation. The resulting HBsAg product was greater than 98% pure, and contained much of pre-S1 and pre-S2 components. Scanning densitometry analysis of the silver-stained HBsAg product showed approximately 70-80% S protein, approximately 10-20% pre-S2 protein, and approximately 5-15% pre-S1 protein. It was estimated that the amount of HBV-specific DNA present the final product was less than 7 pg mg-1 HBsAg. Further biochemical analysis has demonstrated that the HBsAg particles are very heterogeneous in charge and density. Charge heterogeneity was quite random among the particles, but density heterogeneity could be related to the different amounts of pre-S2 component in the particles.

  1. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa).

    PubMed

    Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija

    2013-10-01

    Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality.

  2. T-lineage cells require the thymus, but not V(D)J recombination to produce IL-17A and regulate granulopoiesis in vivo

    PubMed Central

    Smith, Emily; von Vietinghoff, Sibylle; Stark, Matthew A.; Zarbock, Alexander; Sanders, John M.; Duley, Amanda; Rivera-Nieves, Jesus; Bender, Timothy P.; Ley, Klaus

    2010-01-01

    IL-17A and F regulate granulopoiesis and are produced by memory T cells. Recombinase activating gene (Rag)1−/− mice cannot produce mature T cells, but maintain normal neutrophil counts. Nude mice are neutropenic or have near-normal neutrophil counts, depending on the prevailing intestinal flora. Athymic nude mice can produce IL-17F, but not A. By contrast, thymi from Rag1−/− mice contain as much IL-17A as those from wild-type (WT) mice. IL-17A-producing cells are found in the double negative (DN)1 compartment of the Rag1−/− thymus, and express intracellular CD3. These cells colonize the spleen and MLN and secrete IL-17A in vitro following stimulation with IL-23, at a level similar to WT splenocytes. Adoptively transferred Rag1−/− or WT thymocytes correct neutrophil counts in neutropenic nude mice. We conclude that the development of IL-17A-producing T-lineage cells requires an intact thymic epithelium, but not V(D)J recombination. PMID:19843951

  3. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV

    PubMed Central

    Paul, Matthew; Reljic, Rajko; Klein, Katja; Drake, Pascal MW; van Dolleweerd, Craig; Pabst, Martin; Windwarder, Markus; Arcalis, Elsa; Stoger, Eva; Altmann, Friedrich; Cosgrove, Catherine; Bartolf, Angela; Baden, Susan; Ma, Julian K-C

    2014-01-01

    Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb. PMID:25484063

  4. Partition separation and characterization of the polyhydroxyalkanoates synthase produced from recombinant Escherichia coli using an aqueous two-phase system.

    PubMed

    Lan, John Chi-Wei; Yeh, Chun-Yi; Wang, Chih-Chi; Yang, Yu-Hsuan; Wu, Ho-Shing

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are renewable and biodegradable polyesters which can be synthesized either by numerous of microorganisms in vivo or synthase in vitro. The synthesis of PHAs in vitro requires an efficient separation for high yield of purified enzyme. The recombinant Escherichia coli harboring phaC gene derived from Ralstonia eutropha H16 was cultivated in the chemically defined medium for overexpression of synthase in the present work. The purification and characteristics of PHA synthase from clarified feedstock by using aqueous two-phase systems (ATPS) was investigated. The optimized concentration of ATPS for partitioning PHA synthase contained polyethylene glycol 6000 (30%, w/w) and potassium phosphate (8%, w/w) with 3.25 volume ratio in the absence of NaCl at pH 8.7 and 4°C. The results showed that the partition coefficient of enzyme activity and protein content are 6.07 and 0.22, respectively. The specific activity, selectivity, purification fold and recovery of phaC(Re) achieved 1.76 U mg⁻¹, 29.05, 16.23 and 95.32%, respectively. Several metal ions demonstrated a significant effect on activity of purified enzyme. The purified enzyme displayed maximum relative activity as operating condition at pH value of 7.5 and 37°C. As compared to conventional purification processes, ATPS can be a promising technique applied for rapid recovery of PHA synthase and preparation of large quantity of PHA synthase on synthesis of P(3HB) in vitro. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Standardization of allergen products: 1. Detailed characterization of GMP-produced recombinant Bet v 1.0101 as biological reference preparation.

    PubMed

    Himly, M; Nony, E; Chabre, H; Van Overtvelt, L; Neubauer, A; van Ree, R; Buchheit, K-H; Vieths, S; Moingeon, P; Ferreira, F

    2009-07-01

    Standardization of allergen extracts requires the availability of well-characterized recombinant allergens, which can be used as reference standards provided by the European regulatory authorities. The objective of this study was the detailed physicochemical and immunological characterization of rBet v 1.0101, which shall be used in a ring trial within the framework of the Biological Standardization Programme BSP090 of the European Directorate for Quality of Medicines and Healthcare. Recombinant Bet v 1.0101 Y0487 was produced under good manufacturing practice conditions and analysed by an array of physicochemical and immunological methods for identity, quantity, homogeneity, folding and denaturation, aggregation state and stability in solution, as well as biological activity. Batch Y0487 was shown to contain monomeric and well-folded protein being identical with rBet v 1.0101, as determined by mass spectrometry. SDS-PAGE, isoelectric focusing, deamidation analysis and size-exclusion chromatography with light scattering revealed sample homogeneity of >99.9%. Upon storage at +4 degrees C batch Y0487 retained the monomeric state up to 3 months. Protein quantification determined by amino acid analysis was found coinciding with half-maximal inhibition of serum IgE in ELISA. Biological activity of batch Y0487 was shown to be comparable to natural Bet v 1 by IgG and IgE immunoblotting, as well as basophil and T-cell activation. Recombinant Bet v 1.0101 Y0487 was characterized extensively by physicochemical and immunological methods. It was shown highly stable, monomeric and immunologically equivalent to its natural counterpart. Thus, it represents an appropriate candidate reference standard for Bet v 1.

  6. Development, evaluation, and laboratory validation of immunoassays for the diagnosis of equine infectious anemia (EIA) using recombinant protein produced from a synthetic p26 gene of EIA virus.

    PubMed

    Singha, Harisankar; Goyal, Sachin K; Malik, Praveen; Khurana, Sandip K; Singh, Raj K

    2013-12-01

    Equine infectious anemia (EIA)-a retroviral disease caused by equine infectious anemia virus (EIAV)-is a chronic, debilitating disease of horses, mules, and donkeys. EIAV infection has been reported worldwide and is recognized as pathogen of significant economic importance to the horse industry. This disease falls under regulatory control program in many countries including India. Control of EIA is based on identification of inapparent carriers by detection of antibodies to EIAV in serologic tests and "Stamping Out" policy. The current internationally accepted test for diagnosis of EIA is the agar gel immune-diffusion test (AGID), which detects antibodies to the major gag gene (p26) product. The objective of this study was to develop recombinant p26 based in-house immunoassays [enzyme linked immunosorbent assays (ELISA), and AGID] for EIA diagnosis. The synthetic p26 gene of EIAV was expressed in Escherichia coli and diagnostic potential of recombinant p26 protein were evaluated in ELISA and AGID on 7,150 and 1,200 equine serum samples, respectively, and compared with commercial standard AGID kit. The relative sensitivity and specificity of the newly developed ELISA were 100 and 98.6 %, respectively. Whereas, relative sensitivity and specificity of the newly developed AGID were in complete agreement in respect to commercial AGID kit. Here, we have reported the validation of an ELISA and AGID on large number of equine serum samples using recombinant p26 protein produced from synthetic gene which does not require handling of pathogenic EIAV. Since the indigenously developed reagents would be economical than commercial diagnostic kit, the rp26 based-immunoassays could be adopted for the sero-diagnosis and control of EIA in India.

  7. Vi Capsular Polysaccharide Produced by Recombinant Salmonella enterica Serovar Paratyphi A Confers Immunoprotection against Infection by Salmonella enterica Serovar Typhi.

    PubMed

    Xiong, Kun; Zhu, Chunyue; Chen, Zhijin; Zheng, Chunping; Tan, Yong; Rao, Xiancai; Cong, Yanguang

    2017-01-01

    Enteric fever is predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A, and accounts for an annual global incidence of 26.9 millions. In recent years, the rate of S. Paratyphi A infection has progressively increased. Currently licensed vaccines for typhoid fever, live Ty21a vaccine, Vi subunit vaccine, and Vi-conjugate vaccine, confer inadequate cross immunoprotection against enteric fever caused by S. Paratyphi A. Therefore, development of bivalent vaccines against enteric fever is urgently required. The immunogenic Vi capsular polysaccharide is characteristically produced in S. Typhi, but it is absent in S. Paratyphi A. We propose that engineering synthesis of Vi in S. Paratyphi A live-attenuated vaccine may expand its protection range to cover S. Typhi. In this study, we cloned the viaB locus, which contains 10 genes responsible for Vi biosynthesis, and integrated into the chromosome of S. Paratyphi A CMCC 50093. Two virulence loci, htrA and phoPQ, were subsequently deleted to achieve a Vi-producing attenuated vaccine candidate. Our data showed that, despite more than 200 passages, the viaB locus was stably maintained in the chromosome of S. Paratyphi A and produced the Vi polysaccharide. Nasal immunization of the vaccine candidate stimulated high levels of Vi-specific and S. Paratyphi A-specific antibodies in mice sera as well as total sIgA in intestinal contents, and showed significant protection against wild-type challenge of S. Paratyphi A or S. Typhi. Our study show that the Vi-producing attenuated S. Paratyphi A is a promising bivalent vaccine candidate for the prevention of enteric fever.

  8. Vi Capsular Polysaccharide Produced by Recombinant Salmonella enterica Serovar Paratyphi A Confers Immunoprotection against Infection by Salmonella enterica Serovar Typhi

    PubMed Central

    Xiong, Kun; Zhu, Chunyue; Chen, Zhijin; Zheng, Chunping; Tan, Yong; Rao, Xiancai; Cong, Yanguang

    2017-01-01

    Enteric fever is predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A, and accounts for an annual global incidence of 26.9 millions. In recent years, the rate of S. Paratyphi A infection has progressively increased. Currently licensed vaccines for typhoid fever, live Ty21a vaccine, Vi subunit vaccine, and Vi-conjugate vaccine, confer inadequate cross immunoprotection against enteric fever caused by S. Paratyphi A. Therefore, development of bivalent vaccines against enteric fever is urgently required. The immunogenic Vi capsular polysaccharide is characteristically produced in S. Typhi, but it is absent in S. Paratyphi A. We propose that engineering synthesis of Vi in S. Paratyphi A live-attenuated vaccine may expand its protection range to cover S. Typhi. In this study, we cloned the viaB locus, which contains 10 genes responsible for Vi biosynthesis, and integrated into the chromosome of S. Paratyphi A CMCC 50093. Two virulence loci, htrA and phoPQ, were subsequently deleted to achieve a Vi-producing attenuated vaccine candidate. Our data showed that, despite more than 200 passages, the viaB locus was stably maintained in the chromosome of S. Paratyphi A and produced the Vi polysaccharide. Nasal immunization of the vaccine candidate stimulated high levels of Vi-specific and S. Paratyphi A-specific antibodies in mice sera as well as total sIgA in intestinal contents, and showed significant protection against wild-type challenge of S. Paratyphi A or S. Typhi. Our study show that the Vi-producing attenuated S. Paratyphi A is a promising bivalent vaccine candidate for the prevention of enteric fever. PMID:28484685

  9. One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing alpha-amylase, glucoamylase and pullulanase.

    PubMed

    Janse, B J; Pretorius, I S

    1995-03-01

    A recombinant strain of Saccharomyces cerevisiae was constructed that contained the genes encoding a bacterial alpha-amylase (AMY1), a yeast glucoamylase (STA2) and a bacterial pullulanase (pulA). The Bacillus amyloliquefaciens alpha-amylase and S. cerevisiae var. diastaticus glucoamylase genes were expressed in S. cerevisiae using their native promoters and the encoded enzymes secreted under direction of their native leader sequences. In contrast, the Klebsiella pneumoniae pullulanase gene was placed under the control of the yeast alcohol dehydrogenase gene promoter (ADC1P) and secreted using the yeast mating pheromone alpha-factor secretion signal (MF alpha 1S). Transcription termination of the pullulanase gene was effected by the yeast tryptophan synthase gene terminator (TRP5T), whereas termination of the glucoamylase and alpha-amylase genes was directed by their native terminators. Pullulanase (PUL1) produced by recombinant yeasts containing ADC1P MF alpha 1S pulA TRP5T (designated PUL1) was further characterized and compared to its bacterial counterpart (PulA). The different genes were introduced into S. cerevisiae in different combinations and the various amylolytic Saccharomyces transformants compared to Schwanniomyces occidentalis. Introduction of PUL1 into a S. cerevisiae strain containing both STA2 and AMY1, resulted in 99% assimilation of starch.

  10. Spontaneous hybrids between native and exotic Rubus in the Western United States produce offspring both by apomixis and by sexual recombination

    PubMed Central

    Clark, L V; Jasieniuk, M

    2012-01-01

    Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species. PMID:22850699

  11. Spontaneous hybrids between native and exotic Rubus in the Western United States produce offspring both by apomixis and by sexual recombination.

    PubMed

    Clark, L V; Jasieniuk, M

    2012-11-01

    Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species.

  12. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs.

    PubMed

    Paukkonen, Heli; Ukkonen, Anni; Szilvay, Geza; Yliperttula, Marjo; Laaksonen, Timo

    2017-03-30

    The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Productivity and quality of recombinant proteins produced by stable CHO cell clones can be predicted by transient expression in HEK cells.

    PubMed

    Diepenbruck, Carolin; Klinger, Matthias; Urbig, Thomas; Baeuerle, Patrick; Neef, Rüdiger

    2013-06-01

    Selection of lead candidates in drug discovery is a complex and time-consuming process. Here, we describe an approach that allows prediction of the productivity and quality of recombinant proteins by stable producer cell clones with the help of transient transfection studies. This is exemplified for three distinct bispecific T cell engager (BiTE(®))-a new class of single-chain antibody-based therapeutics showing very promising results in the treatment of cancer. BiTE(®) titers of transiently transfected HEK cells showed a striking correlation with titers of selected stable CHO cell clones. Likewise, the percentage of the monomeric BiTE(®) fraction in cell culture supernatants correlated well between transiently expressing HEK and stably expressing CHO cell clones. This validates the use of transient transfection studies for the selection of biopharmaceutical lead candidates with desired pharmaceutical properties.

  14. Expression, purification and characterization of yeast protein disulfide isomerase produced by a recombinant baculovirus-mediated silkworm, Bombyx mori, pupae expression system.

    PubMed

    Wang, Liyun; Shimizu, Yuri; Mizunaga, Takemitsu; Matsumoto, Shogo; Otsuka, Yuzuru

    2008-04-01

    Protein disulfide isomerase (PDI) is a multifunctional polypeptide presents in the endoplasmic reticulum of the cell. Silkworm (Bombyx mori) pupae were used as hosts to produce recombinant PDI (rPDI). The concentration-dependent chaperone activity of rPDI was evidenced by the inhibition of the aggregation of rhodanese. Approximately 297 microg rPDI was purified from a single silkworm pupa. Results of rPDI treated with endoglycosidase H and N-glycanase, PNGase F, indicate that non-N-glycosylated rPDI (occupying 90%) and N-glycosylated rPDI are expressed in the silkworm expression system. The difference in glycosylation between silkworm pupae and yeast is discussed.

  15. Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase.

    PubMed

    Hong, Soo-Jeong; Kim, Hyo Jin; Kim, Jin-Woo; Lee, Dae-Hee; Seo, Jin-Ho

    2015-02-01

    Inulin is a polyfructan that is abundant in plants such as Jerusalem artichoke, chicory and dahlia. Inulinase can easily hydrolyze inulin to fructose, which is consumed by microorganisms. Generally, Saccharomyces cerevisiae, an industrial workhorse strain for bioethanol production, is known for not having inulinase activity. The inulinase gene from Kluyveromyces marxianus (KmINU), with the ability of converting inulin to fructose, was introduced into S. cerevisiae D452-2. The inulinase gene was fused to three different types of promoter (GPD, PGK1, truncated HXT7) and secretory signal sequence (KmINU, MFα1, SUC2) to generate nine expression cassettes. The inulin fermentation performance of the nine transformants containing different promoter and signal sequence combinations for inulinase production were compared to select an optimized expression system for efficient inulin fermentation. Among the nine inulinase-producing transformants, the S. cerevisiae carrying the PGK1 promoter and MFα1 signal sequence (S. cerevisiae D452-2/p426PM) showed not only the highest specific KmINU activity, but also the best inulin fermentation capability. Finally, a batch fermentation of the selected S. cerevisiae D452-2/p426PM in a bioreactor with 188.2 g/L inulin was performed to produce 80.2 g/L ethanol with 0.43 g ethanol/g inulin of ethanol yield and 1.22 g/L h of ethanol productivity.

  16. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines

    PubMed Central

    Khurana, Surender; Larkin, Christopher; Verma, Swati; Joshi, Manju B.; Fontana, Juan; Steven, Alasdair C.; King, Lisa R.; Manischewitz, Jody; McCormick, William; Gupta, Rajesh K.; Golding, Hana

    2011-01-01

    Vaccine production and initiation of mass vaccination is a key factor in rapid response to new influenza pandemic. During the 2009–2010 H1N1 pandemic, several bottlenecks were identified, including the delayed availability of vaccine potency reagents. Currently, antisera for the single-radial immunodiffusion (SRID) potency assay are generated in sheep immunized repeatedly with HA released and purified after bromelain-treatment of influenza virus grown in eggs. This approach was a major bottleneck for pandemic H1N1 (H1N1pdm09) potency reagent development in 2009. Alternative approaches are needed to make HA immunogens for generation of SRID reagents in the shortest possible time. In this study, we found that properly folded recombinant HA1 globular domain (rHA1) from several type A viruses including H1N1pdm09 and two H5N1 viruses could be produced efficiently by using a bacterial expression system and subsequent purification. The rHA1 proteins were shown to form functional oligomers of trimers, similar to virus derived HA, and elicited high titer of neutralizing antibodies in rabbits and sheep. Importantly, the immune sera formed precipitation rings with reference antigens in the SRID assay in a dose-dependent manner. The HA contents in multiple H1N1 vaccine products from different manufacturers (and in several lots) as determined with the rHA1-generated sheep sera were similar to the values obtained with a traditionally generated sheep serum from NIBSC. We conclude that bacterially-expressed recombinant HA1 proteins can be produced rapidly and used to generate SRID potency reagents shortly after new influenza strains with pandemic potential are identified. PMID:21704111

  17. The Arthroderma benhamiae Hydrophobin HypA Mediates Hydrophobicity and Influences Recognition by Human Immune Effector Cells

    PubMed Central

    Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf

    2012-01-01

    Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypAC). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited “easily wettable” mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA. PMID:22408226

  18. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells.

    PubMed

    Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf; Brakhage, Axel A

    2012-05-01

    Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypA(C)). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited "easily wettable" mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA.

  19. Construction of a Recombinant Leuconostoc mesenteroides CJNU 0147 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Factor

    PubMed Central

    2015-01-01

    1,4-Dihydroxy-2-naphthoic acid (DHNA), a precursor of menaquinone (vitamin K2), has an effect on growth stimulation of bifidobacteria and prevention of osteoporosis, making it a promising functional food material. Therefore, we tried to clone the menB gene encoding DHNA synthase from Leuconostoc mesenteroides CJNU 0147. Based on the genome sequence of Leu. mesenteroides ATCC 8293 (GenBank accession no., CP000414), a primer set (Leu_menBfull_F and Leu_menBfull_R) was designed for the PCR amplification of menB gene of CJNU 0147. A DNA fragment (1,190 bp), including the menB gene, was amplified, cloned into pGEM-T Easy vector, and sequenced. The deduced amino acid sequence of MenB (DHNA synthase) protein of CJNU 0147 had a 98% similarity to the corresponding protein of ATCC 8293. The menB gene was subcloned into pCW4, a lactic acid bacteria - E. coli shuttle vector, and transferred to CJNU 0147. The transcription of menB gene of CJNU 0147 (pCW4::menB) was increased, when compared with those of CJNU 0147 (pCW4) and CJNU 0147 (−). The DHNA was produced from it at a detectable level, indicating that the cloned menB gene of CJNU 0147 encoded a DHNA synthase which is responsible for the production of DHNA, resulting in an increase of bifidogenic growth stimulation activity. PMID:26877648

  20. Construction of a Recombinant Leuconostoc mesenteroides CJNU 0147 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Factor.

    PubMed

    Eom, Ji-Eun; Moon, Gi-Seong

    2015-01-01

    1,4-Dihydroxy-2-naphthoic acid (DHNA), a precursor of menaquinone (vitamin K2), has an effect on growth stimulation of bifidobacteria and prevention of osteoporosis, making it a promising functional food material. Therefore, we tried to clone the menB gene encoding DHNA synthase from Leuconostoc mesenteroides CJNU 0147. Based on the genome sequence of Leu. mesenteroides ATCC 8293 (GenBank accession no., CP000414), a primer set (Leu_menBfull_F and Leu_menBfull_R) was designed for the PCR amplification of menB gene of CJNU 0147. A DNA fragment (1,190 bp), including the menB gene, was amplified, cloned into pGEM-T Easy vector, and sequenced. The deduced amino acid sequence of MenB (DHNA synthase) protein of CJNU 0147 had a 98% similarity to the corresponding protein of ATCC 8293. The menB gene was subcloned into pCW4, a lactic acid bacteria - E. coli shuttle vector, and transferred to CJNU 0147. The transcription of menB gene of CJNU 0147 (pCW4::menB) was increased, when compared with those of CJNU 0147 (pCW4) and CJNU 0147 (-). The DHNA was produced from it at a detectable level, indicating that the cloned menB gene of CJNU 0147 encoded a DHNA synthase which is responsible for the production of DHNA, resulting in an increase of bifidogenic growth stimulation activity.

  1. The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein-gold nanoparticles.

    PubMed

    Politi, Jane; De Stefano, Luca; Longobardi, Sara; Giardina, Paola; Rea, Ilaria; Methivier, Christophe; Pradier, Claire-Marie; Casale, Sandra; Spadavecchia, Jolanda

    2015-12-01

    We report a simple and original method to synthesize gold nanoparticles in which a fungal protein, the hydrophobin Vmh2 from Pleurotus ostreatus and dicarboxylic acid-terminated polyethylene-glycol (PEG) has been used as additional components in a one step process, leading to hybrid protein-metal nanoparticles (NPs). The nanoparticles have been characterized by ultra-violet/visible, infrared and X-ray photoelectron spectroscopies, dynamic light scattering and also by electron microscopy imaging. The results of these analytical techniques highlight nanometric sized, stable, hybrid complexes of about 12 nm, with outer surface rich in functional chemical groups. Interaction with protein and antibodies has also been exploited.

  2. Recombinant gonadotropins.

    PubMed

    Lathi, R B; Milki, A A

    2001-10-01

    Recombinant DNA technology makes it possible to produce large amounts of human gene products for pharmacologic applications, supplanting the need for human tissues. The genes for the alpha and beta subunits of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG) have been characterized and cloned. Recombinant FSH (rFSH) has been shown to be safe and effective in the treatment of fertility disorders. In comparison with the urinary gonadotropin products, human menopausal gonadotropins (HMG), and urinary follitropins (uFSH), rFSH is more potent and better tolerated by patients. Recombinant HCG appears to be as efficacious as urinary HCG with the benefit of improved local tolerance. Recombinant LH (rLH) is likely to be recommended as a supplement to rFSH for ovulation induction in hypogonadotropic women. It may also benefit in vitro fertilization patients undergoing controlled ovarian hyperstimulation with rFSH combined with pituitary suppression, with a gonadotropin-releasing hormone agonist or antagonist.

  3. Human anti-varicella-zoster virus (VZV) recombinant monoclonal antibody produced after Zostavax immunization recognizes the gH/gL complex and neutralizes VZV infection.

    PubMed

    Birlea, Marius; Owens, Gregory P; Eshleman, Emily M; Ritchie, Alanna; Traktinskiy, Igor; Bos, Nathan; Seitz, Scott; Azarkh, Yevgeniy; Mahalingam, Ravi; Gilden, Don; Cohrs, Randall J

    2013-01-01

    Varicella-zoster virus (VZV) is a ubiquitous, highly cell-associated, and exclusively human neurotropic alphaherpesvirus. VZV infection is initiated by membrane fusion, an event dependent in part on VZV glycoproteins gH and gL. Consistent with its location on the virus envelope, the gH/gL complex is a target of neutralizing antibodies produced after virus infection. One week after immunizing a 59-year-old VZV-seropositive man with Zostavax, we sorted his circulating blood plasma blasts and amplified expressed immunoglobulin variable domain sequences by single-cell PCR. Sequence analysis identified two plasma blast clones, one of which was used to construct a recombinant monoclonal antibody (rec-RC IgG). The rec-RC IgG colocalized with VZV gE on the membranes of VZV-infected cells and neutralized VZV infection in tissue culture. Mass spectrometric analysis of proteins immunoprecipitated by rec-RC IgG identified both VZV gH and gL. Transfection experiments showed that rec-RC IgG recognized a VZV gH/gL protein complex but not individual gH or gL proteins. Overall, our recombinant monoclonal anti-VZV antibody effectively neutralizes VZV and recognizes a conformational epitope within the VZV gH/L protein complex. An unlimited supply of this antibody provides the opportunity to analyze membrane fusion events that follow virus attachment and to identify multiple epitopes on VZV-specific proteins.

  4. Identification and characterization of a -1 reading frameshift in the heavy chain constant region of an IgG1 recombinant monoclonal antibody produced in CHO cells

    PubMed Central

    Lian, Zhirui; Wu, Qindong; Wang, Tongtong

    2016-01-01

    ABSTRACT Frameshifts lead to complete alteration of the intended amino acid sequences, and therefore may affect the biological activities of protein therapeutics and pose potential immunogenicity risks. We report here the identification and characterization of a novel -1 frameshift variant in a recombinant IgG1 therapeutic monoclonal antibody (mAb) produced in Chinese hamster ovary cells during the cell line selection studies. The variant was initially observed as an atypical post-monomer fragment peak in size exclusion chromatography. Characterization of the fragment peak using intact and reduced liquid chromatography-mass spectrometry (LC-MS) analyses determined that the fragment consisted of a normal light chain disulfide-linked to an aberrant 26 kDa fragment that could not be assigned to any HC fragment even after considering common modifications. Further analysis using LC-MS/MS peptide mapping revealed that the aberrant fragment contained the expected HC amino acid sequence (1-232) followed by a 20-mer novel sequence corresponding to expression of heavy chain DNA sequence in the -1 reading frame. Examination of the DNA sequence around the frameshift initiation site revealed that a mononucleotide repeat GGGGGG located in the IgG1 HC constant region was most likely the structural root cause of the frameshift. Rapid identification of the frameshift allowed us to avoid use of a problematic cell line containing the frameshift as the production cell line. The frameshift reported here may be observed in other mAb products and the hypothesis-driven analytical approaches employed here may be valuable for rapid identification and characterization of frameshift variants in other recombinant proteins. PMID:26652198

  5. Effector properties and glycosylation patterns of recombinant human anti-D-IgG1 antibodies produced by human PER.C6(®) cells.

    PubMed

    Olovnikova, N I; Grigorieva, O V; Petrov, A V

    2012-12-01

    Creation of effective monoclonal anti-D immunoglobulin for prevention of hemolytic disease of the newborn remains an unsolved problem because there is still no producer cell strain providing stable production and adequate glycosylation of antibodies. Recombinant anti-D have been obtained on the basis of human PER.C6(®) cells and characterized. Anti-D antibodies expressed in PER.C6(®) exhibited lower hemolytic activity in antibody-dependent cytotoxicity (ADCC) reaction mediated by low-affinity Fcγ receptors in comparison with identical antibodies of lymphoblastoid origin. Monoclonal antibodies produced by PER.C6(®) are completely fucosylated and desialylated, i.e. are characterized by abnormal glycosylation. Addition of kifunensine (α-mannosidase I inhibitor) to the medium led to production of antibodies with high hemolytic activity. Reduced activity of monoclonal antibodies in PER.C6(®) cells and the effect of kifunensine (causing synthesis of defucosylated glycans) suggest that the absence of fucose is the key factor responsible for Fc affinity for low-affinity receptors.

  6. Recruitment of Class I Hydrophobins to the Air:Water Interface Initiates a Multi-step Process of Functional Amyloid Formation*

    PubMed Central

    Morris, Vanessa K.; Ren, Qin; Macindoe, Ingrid; Kwan, Ann H.; Byrne, Nolene; Sunde, Margaret

    2011-01-01

    Class I fungal hydrophobins form amphipathic monolayers composed of amyloid rodlets. This is a remarkable case of functional amyloid formation in that a hydrophobic:hydrophilic interface is required to trigger the self-assembly of the proteins. The mechanism of rodlet formation and the role of the interface in this process have not been well understood. Here, we have studied the effect of a range of additives, including ionic liquids, alcohols, and detergents, on rodlet formation by two class I hydrophobins, EAS and DewA. Although the conformation of the hydrophobins in these different solutions is not altered, we observe that the rate of rodlet formation is slowed as the surface tension of the solution is decreased, regardless of the nature of the additive. These results suggest that interface properties are of critical importance for the recruitment, alignment, and structural rearrangement of the amphipathic hydrophobin monomers. This work gives insight into the forces that drive macromolecular assembly of this unique family of proteins and allows us to propose a three-stage model for the interface-driven formation of rodlets. PMID:21454575

  7. Interspecific variability of class II hydrophobin GEO1 in the genus Geosmithia.

    PubMed

    Frascella, Arcangela; Bettini, Priscilla P; Kolařík, Miroslav; Comparini, Cecilia; Pazzagli, Luigia; Luti, Simone; Scala, Felice; Scala, Aniello

    2014-11-01

    The genus Geosmithia Pitt (Ascomycota: Hypocreales) comprises cosmopolite fungi living in the galleries built by phloeophagous insects. Following the characterization in Geosmithia species 5 of the class II hydrophobin GEO1 and of the corresponding gene, the presence of the geo1 gene was investigated in 26 strains derived from different host plants and geographic locations and representing the whole phylogenetic diversity of the genus. The geo1 gene was detected in all the species tested where it maintained the general organization shown in Geosmithia species 5, comprising three exons and two introns. Size variations were found in both introns and in the first exon, the latter being due to the presence of an intragenic tandem repeat sequence corresponding to a stretch of glycine residues in the deduced proteins. At the amino acid level the deduced proteins had 44.6 % identity and no major differences in the biochemical parameters (pI, GRAVY index, hydropathy plots) were found. GEO1 release in the fungal culture medium was also assessed by turbidimetric assay and SDS-PAGE, and showed high variability between species. The phylogeny based on the geo1 sequences did not correspond to that generated from a neutral marker (ITS rDNA), suggesting that sequence similarities could be influenced by other factors than phylogenetic relatedness, such as the intimacy of the symbiosis with insect vectors. The hypothesis of a strong selection pressure on the geo1 gene was sustained by the low values (<1) of non synonymous to synonymous nucleotide substitutions ratios (Ka/Ks), which suggest that purifying selection might act on this gene. These results are compatible with either a birth-and-death evolution scenario or horizontal transfer of the gene between Geosmithia species. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Molecular dynamics of the "hydrophobic patch" that immobilizes hydrophobin protein HFBII on silicon.

    PubMed

    Moldovan, Clara; Thompson, Damien

    2011-09-01

    The experimentally-observed stable, electrically-conducting interface formed between hydrophobin protein HFBII and silicon provides a model system for the Bio/ICT interfaces required for bionanoelectronics. The present work used molecular dynamics (MD) computer simulations to investigate the atom-scale details of the assembly and structure of the HFBII/silicon interface, using models on the order of 40,000 atoms to compute energy profiles for the full protein interacting with a bare Si(111) substrate in aqueous solution. Five nanoseconds of free, equilibrated dynamics were performed for six models with initial protein:silicon separations ranging from 1.2 to 0.2 nanometers in steps of 0.2 nm. Three of the models formed extensive protein:silicon van der Waals's interfacial contacts. The model with 0.2 nm starting separation serves as an illustrative example of the dynamic interface created, whereby hydrophobic patch residues cycle between flat and more protruding patch conformations that favor respectively close inter-patch and close patch-surface contacts, with protein:surface separations cycling between 0.2 and 0.4 nm over the 5 ns of dynamics. Analysis of residue-based binding energies at the interface reveal three leucines Leu19, Leu21 and Leu63, together with isoleucine Ile22 and alanine Ala61, as the primary drivers towards adhesion on bare silicon, providing the atom-scale details of HFBII’s hydrophobic patch which in turn provides leads for the engineering of more tightly-coupled interfaces.

  9. Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA

    PubMed Central

    Aimanianda, Vishukumar; Nietzsche, Sandor; Thywißen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A.; Gunzer, Matthias

    2010-01-01

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  10. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    PubMed

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  11. Scintillation proximity assay for human DNA topoisomerase I using recombinant biotinyl-fusion protein produced in baculovirus-infected insect cells.

    PubMed

    Lerner, C G; Saiki, A Y

    1996-09-05

    DNA topoisomerases are well-established targets of important therapeutic agents which include the antibacterial quinolones and anticancer camptothecins. Screens for new classes of topoisomerase inhibitors generally employ methods, such as gel electrophoresis, which are not readily amenable to a rapid high-throughput format. We describe here a high-throughput assay to screen for inhibitors of human DNA topoisomerase I based on the scintillation proximity assay. The assay employs recombinant biotinyl-topoisomerase I fusion protein, a hybrid protein which contains a domain that is biotinylated during in vivo expression. The hybrid topoisomerase I fusion protein is found to be biotinylated, active, and nuclear-localized when produced in insect cells using a baculovirus expression system. The biotinyl-topoisomerase I fusion protein can be captured from crude nuclear extracts by immobilization on streptavidin-coated scintillation proximity assay beads. The assay detects binding of 3H-labeled DNA to the bead-immobilized enzyme by scintillation counting. The method is also able to detect stabilization of covalent protein-DNA complexes by camptothecin, an inhibitor previously shown to stabilize covalent intermediates that form during catalysis.

  12. IL-10-IFN-γ Double Producers CD4+ T Cells Are Induced by Immunization with an Amastigote Stage Specific Derived Recombinant Protein of Trypanosoma Cruzi

    PubMed Central

    Flores-García, Yevel; Rosales-Encina, José Luis; Satoskar, Abhay R.; Talamás-Rohana, Patricia

    2011-01-01

    During the acute phase of infection, T. cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas'disease have not been fully identified. GPI-anchored mucins, glycoinositolphospholipids, and glycoproteins comprise some of the most abundant T. cruzi surface molecules. IL-10 IFN-γ-secreting CD4+ T cells are activated during chronic infections and are responsible for prolonged persistence of parasite and for host protection against severe inflammatory responses. In this work we evaluated the role of rMBP::SSP4 protein of T. cruzi, a recombinant protein derived from a GPI anchored antigen, SSP4, as an immunomodulator molecule, finding that it was able to induce high concentrations of IL-10 and IFN-γ both in vivo and in vitro; during this last condition, both cytokines were produced by IL-10-IFN-γ-secreting CD4+ T cells. PMID:21927578

  13. Bactericidal properties of the antimicrobial peptide Ib-AMP4 from Impatiens balsamina produced as a recombinant fusion-protein in Escherichia coli.

    PubMed

    Fan, Xiaobo; Schäfer, Holger; Reichling, Jürgen; Wink, Michael

    2013-10-01

    Antimicrobial peptides (AMPs) represent a novel class of powerful natural antimicrobial agents. As AMPs are bactericidal, production of AMPs in recombinant bacteria is far from trivial. We report the production of Impatiens balsamina antimicrobial peptide 4 (Ib-AMP4, originally isolated from Impatiens balsamina) in Escherichia coli as a fusion protein and investigate Ib-AMP4's antimicrobial effects on human pathogens. A plasmid vector pET32a-Trx-Ib-AMP4 was constructed and transferred into E. coli. After induction, a soluble fusion protein was expressed successfully. The Ib-AMP4 peptide was obtained with a purity of over 90% after nickel affinity chromatography, ultrafiltration, enterokinase cleavage and sephadex size exclusion chromatography. For maximum activity, Ib-AMP4, which possesses two disulfide bonds, required activation with 5 μg/mL H2 O2 . Antimicrobial assays showed that Ib-AMP4 could efficiently target clinical multiresistant isolates including methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing E. coli. Time kill experiments revealed that Ib-AMP4 is bactericidal within 10 min after application. Haemolysis and cytotoxicity assays implied selectivity towards bacteria, an important prerequisite for clinical applications. Ib-AMP4 might be an interesting candidate for clinical studies involving patients with septicemia or for coating clinical devices, such as catheters. The method described here may be applicable for expression and purification of other AMPs with multiple disulfide bridges.

  14. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris.

    PubMed

    Jansson, Ronnie; Lau, Cheuk H; Ishida, Takuya; Ramström, Margareta; Sandgren, Mats; Hedhammar, My

    2016-05-01

    Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improvement in the stability and functionality of Nicotiana tabacum produced recombinant TRAIL through employment of endoplasmic reticulum expression and ascorbate buffer mediated extraction strategies

    PubMed Central

    Heidari, Hamid Reza; Bandehpour, Mojgan; Vahidi, Hossein; Barar, Jaleh; Kazemi, Bahram; Naderi-Manesh, Hossein

    2014-01-01

    Introduction: In order to employ Nicotiana tabacum cells as a profitable natural bioreactor for production of bio-functional "Soluble human TRAIL" (ShTRAIL), endoplasmic reticulum (ER) targeted expression and innovative extraction procedures were exploited. Methods: At first, the ShTRAIL encoding gene was sub-cloned into designed H2 helper vector to equip it with potent TMV omega leader sequences, ER sorting signal peptide, poly-histidine tag and ER retention signal peptide (KDEL). Then, the ER targeted ShTRAIL cassette was sequentially sub-cloned into "CaMV-35S" helper and "pGreen-0179" final expression vectors. Afterward, Agrobacterium mediated transformation method was adopted to express the ShTRAIL in the ER of N. tabacum . Next, the ShTRAIL protein was extracted through both phosphate and innovative ascorbate extraction buffers. Subsequently, oligomerization state of the ShTRAIL was evaluated through cross-linking assay and western blot analysis. Then, semi-quantitative western blot analysis was performed to estimate the ShTRAIL production. Finally, biological activity of the ShTRAIL was evaluated through MTT assay. Results: The phosphate buffer extracted ShTRAIL was produced in dimmer form, whereas the ShTRAIL extracted with ascorbate buffer generated trimer form. The ER targeted ShTRAIL strategy increased the ShTRAIL’s production level up to about 20 μg/g of fresh weight of N. tabacum . MTT assay indicated that ascorbate buffer extracted ShTRAIL could prohibit proliferation of A549 cell line. Conclusion: Endoplasmic reticulum expression and reductive ascorbate buffer extraction procedure can be employed to enhance the stability and overall production level of bio-functional recombinant ShTRAIL from transgenic N. tabacum cells. PMID:25337465

  16. On-line casein micelle disruption for downstream purification of recombinant human myelin basic protein produced in the milk of transgenic cows.

    PubMed

    Al-Ghobashy, Medhat A; Williams, Martin A K; Brophy, Brigid; Laible, Götz; Harding, David R K

    2009-06-01

    Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.

  17. Noncovalently functionalized multi-wall carbon nanotubes in aqueous solution using the hydrophobin HFBI and their electroanalytical application.

    PubMed

    Wang, Xinsheng; Wang, Huicai; Huang, Yujian; Zhao, Zixia; Qin, Xia; Wang, Yanyan; Miao, Zhiying; Chen, Qiang; Qiao, Mingqiang

    2010-11-15

    A novel noncovalent approach was developed for the functionalization of multi-wall carbon nanotubes (MWNTs) using the hydrophobin, HFBI. Owing to the amphipathic nature, HFBI can be adopted onto the surface of MWNTs to form HFBI-MWNTs nanocomposite with good dispersion in water. The HFBI-MWNTs nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle measurements (WCA). Furthermore, a glucose biosensor was developed based on HFBI-MWNTs by a one-step casting method. The resulting biosensor displayed high sensitivity, wider linear range, low detection limit, and fast response for glucose detection, which implicated that the HFBI-MWNTs nanocomposite film holds great promise in the design of electrochemical devices, such as sensors and biosensors. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant.

    PubMed

    Kass, E; Panicali, D L; Mazzara, G; Schlom, J; Greiner, J W

    2001-01-01

    Recombinant avian poxviruses [fowlpox and canarypox (ALVAC)], restricted for replication in nonavian cell substrates and expressing granulocyte/macrophage-colony stimulating factor (avipox-GM-CSF), were evaluated for their ability to enrich an immunization site with antigen-presenting cells (APCs) and, in turn, function as biological vaccine adjuvants. Avipox-GM-CSF administered as a single s.c. injection significantly enhanced the percentage and absolute number of APCs in the regional lymph nodes that drain the injection site. Both the magnitude and duration of the cellular and phenotypic increases within the lymph nodes induced by the avipox-GM-CSF viruses were significantly (P < 0.05) greater than those measured in mice treated with four daily injections of recombinant GM-CSF protein. Temporal studies revealed that the APC enrichment of regional lymph nodes was sustained for 21-28 days after injection of the recombinant avipox virus expressing GM-CSF and, moreover, three injections of the recombinant virus could be given without any appreciable loss of in vivo bioactivity. Mice expressing human carcinoembryonic antigen (CEA) as a transgene (CEA.Tg) developed CEA-specific humoral and cell-mediated immunity after being immunized with avipox-CEA. The coadministration of recombinant avipox viruses expressing CEA and GM-CSF significantly enhanced CEA-specific host immunity with an accompanying immunotherapeutic response in tumor-bearing CEA.Tg mice. The optimal use of avipox-GM-CSF, in terms of dose and dose schedule, especially when used with different immunogens, remains to be determined. Nonetheless, the present findings demonstrate: (a) the effective delivery of GM-CSF to an immunization site using a recombinant avian poxvirus; (b) the compatibility of delivering an antigen and GM-CSF in replication-defective viruses to enhance antigen-specific immunity; and (c) the combined use of recombinant avipox viruses expressing CEA and GM-CSF to generate antitumor

  19. (1)H, (13)C and (15)N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    Pille, Ariane; Kwan, Ann H; Cheung, Ivan; Hampsey, Matthew; Aimanianda, Vishukumar; Delepierre, Muriel; Latge, Jean-Paul; Sunde, Margaret; Guijarro, J Iñaki

    2015-04-01

    Hydrophobins are fungal proteins characterised by their amphipathic properties and an idiosyncratic pattern of eight cysteine residues involved in four disulphide bridges. The soluble form of these proteins spontaneously self-assembles at hydrophobic/hydrophilic interfaces to form an amphipathic monolayer. The RodA hydrophobin of the opportunistic pathogen Aspergillus fumigatus forms an amyloid layer with a rodlet morphology that covers the surface of fungal spores. This rodlet layer bestows hydrophobicity to the spores facilitating their dispersal in the air and rendering the conidia inert relative to the human immune system. As a first step in the analysis of the solution structure and self-association of RodA, we report the (1)H, (13)C and (15)N resonance assignments of the soluble monomeric form of RodA.

  20. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging.

    PubMed

    Stanimirova, Rumyana D; Gurkov, Theodor D; Kralchevsky, Peter A; Balashev, Konstantin T; Stoyanov, Simeon D; Pelan, Eddie G

    2013-05-21

    Here, we combine experiments with Langmuir trough and atomic force microscopy (AFM) to investigate the reasons for the special properties of layers from the protein HFBII hydrophobin spread on the air-water interface. The hydrophobin interfacial layers possess the highest surface dilatational and shear elastic moduli among all investigated proteins. The AFM images show that the spread HFBII layers are rather inhomogeneous, (i.e., they contain voids, monolayer and multilayer domains). A continuous compression of the layer leads to filling the voids and transformation of a part of the monolayer into a trilayer. The trilayer appears in the form of large surface domains, which can be formed by folding and subduction of parts from the initial monolayer. The trilayer appears also in the form of numerous submicrometer spots, which can be obtained by forcing protein molecules out of the monolayer and their self-assembly into adjacent pimples. Such structures are formed because not only the hydrophobic parts, but also the hydrophilic parts of the HFBII molecules can adhere to each other in the water medium. If a hydrophobin layer is subjected to oscillations, its elasticity considerably increases, up to 500 mN/m, which can be explained with compaction. The relaxation of the layer's tension after expansion or compression follows the same relatively simple law, which refers to two-dimensional diffusion of protein aggregates within the layer. The characteristic diffusion time after compression is longer than after expansion, which can be explained with the impedence of diffusion in the more compact interfacial layer. The results shed light on the relation between the mesoscopic structure of hydrophobin interfacial layers and their unique mechanical properties that find applications for the production of foams and emulsions of extraordinary stability; for the immobilization of functional molecules at surfaces, and as coating agents for surface modification.

  1. Anti-Bacterial Activity of Recombinant Human β-Defensin-3 Secreted in the Milk of Transgenic Goats Produced by Somatic Cell Nuclear Transfer

    PubMed Central

    Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90–111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5–10.5, 21.8–23.0 and 17.3–18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×103 and 95.4×103 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×105 and 622.2×105 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals. PMID:23799010

  2. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Ge, Hengtao; Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90-111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5-10.5, 21.8-23.0 and 17.3-18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×10(3) and 95.4×10(3) CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×10(5) and 622.2×10(5) cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.

  3. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism

    PubMed Central

    Pham, Chi L. L.; Rey, Anthony; Lo, Victor; Soulès, Margaux; Ren, Qin; Meisl, Georg; Knowles, Tuomas P. J.; Kwan, Ann H.; Sunde, Margaret

    2016-01-01

    Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface. PMID:27142249

  4. Norovirus recombination.

    PubMed

    Bull, Rowena A; Tanaka, Mark M; White, Peter A

    2007-12-01

    RNA recombination is a significant driving force in viral evolution. Increased awareness of recombination within the genus Norovirus of the family Calicivirus has led to a rise in the identification of norovirus (NoV) recombinants and they are now reported at high frequency. Currently, there is no classification system for recombinant NoVs and a widely accepted recombinant genotyping system is still needed. Consequently, there is duplication in reporting of novel recombinants. This has led to difficulties in defining the number and types of recombinants in circulation. In this study, 120 NoV nucleotide sequences were compiled from the current GenBank database and published literature. NoV recombinants and their recombination breakpoints were identified using three methods: phylogenetic analysis, SimPlot analysis and the maximum chi2 method. A total of 20 NoV recombinant types were identified in circulation worldwide. The recombination point is the ORF1/2 overlap in all isolates except one, which demonstrated a double recombination event within the polymerase region.

  5. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  6. Dissociative recombination in aeronomy

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1989-01-01

    The importance of dissociative recombination in planetary aeronomy is summarized, and two examples are discussed. The first is the role of dissociative recombination of N2(+) in the escape of nitrogen from Mars. A previous model is updated to reflect new experimental data on the electronic states of N produced in this process. Second, the intensity of the atomic oxygen green line on the nightside of Venus is modeled. Use is made of theoretical rate coefficients for production of O (1S) in dissociative recombination from different vibrational levels of O2(+).

  7. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  8. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  9. Application of recombinant human leukemia inhibitory factor (LIF) produced in rice (Oryza sativa L.) for maintenance of mouse embryonic stem cells.

    PubMed

    Youngblood, Bradford A; Alfano, Randall; Pettit, Steve C; Zhang, Deshui; Dallmann, H Garry; Huang, Ning; Macdonald, Clinton C

    2014-02-20

    Embryonic and induced pluripotent stem cells have the ability to differentiate into any somatic cell type, and thus have potential to treat a number of diseases that are currently incurable. Application of these cells for clinical or industrial uses would require an increase in production to yield adequate numbers of viable cells. However, the relatively high costs of cytokines and growth factors required for maintenance of stem cells in the undifferentiated state have the potential to limit translational research. Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, is a key regulator in the maintenance of naïve states for both human and mouse stem cells. In this study, we describe a new recombinant human LIF (rhLIF) using a plant-based (rice) expression system. We found that rice-derived rhLIF possessed the same specific activity as commercial Escherichia coli-derived LIF and was capable of supporting mouse embryonic stem cell proliferation in the undifferentiated state as evidenced from pluripotency marker level analysis. Retention of the pluripotent state was found to be indistinguishable between rice-derived rhLIF and other recombinant LIF proteins currently on the market.

  10. Vmh2 hydrophobin layer entraps glucose: A quantitative characterization by label-free optical and gravimetric methods

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Rea, I.; Caliò, A.; Giardina, P.; Gravagnuolo, A. M.; Funari, R.; Altucci, C.; Velotta, R.; De Stefano, L.

    2016-02-01

    Hydrophobins (HFBs) are peculiar proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes, and some of them (class I HFB) are able to form much more stable amyloid-like layers. This feature makes them suitable for many purposes, particularly when stable surface functionalization is required, also in view of their versatility in binding different kinds of molecules. For instance, it has been shown that Vmh2 from Pleurotus ostreatus (a class I HFB) is able to bind molecules like glucose, thus offering the perspective of using Vmh2 as a surface functionalization tool in bio-hybrid devices. In this paper a quantitative analysis of glucose interaction with the Vmh2 layer is reported; in particular, it is shown that Vmh2 layer swells by almost doubling its thickness as a result of glucose diffusion and each Vmh2 monomer is able to bind approximately 30 glucose molecules. These results have been achieved by self-assembling multi-layers of Vmh2 on a gold substrate and, subsequently, measuring both the mass of the bound glucose and the thickness of the resulting layer through two different and complementary techniques: quartz crystal-microbalance and ellipsometry. The data provided by the two techniques are in a satisfactory agreement and offer a plausible description of the mechanisms underlying the interaction of glucose with Vmh2 layer. This facile and versatile coating is of interest for biomedical applications of gold surfaces and particles.

  11. Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon.

    PubMed

    Rocha-Pino, Zaizy; Marín-Cervantes, María del Carmen; Martínez-Archundia, Marlet; Soriano-Blancas, Elizabeth; Revah, Sergio; Shirai, Keiko

    2013-05-01

    Lecanicillium lecanii, Verticillium chlamydosporium, V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n-hexane, toluene and n-hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of Lecanicillium were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of n-hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of n-hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases, N-acetylhexosaminidase and production of hydrophobins class I and II.

  12. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    SciTech Connect

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce an immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.

  13. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  14. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  15. Two recombinant human interferon-beta 1a pharmaceutical preparations produce a similar transcriptional response determined using whole genome microarray analysis.

    PubMed

    Prync, A E Sterin; Yankilevich, P; Barrero, P R; Bello, R; Marangunich, L; Vidal, A; Criscuolo, M; Benasayag, L; Famulari, A L; Domínguez, R O; Kauffman, M A; Diez, R A

    2008-02-01

    Recombinant human interferon-beta (IFN-b) is a well-established treatment for multiple sclerosis (MS). The regulatory process for marketing authorization of biosimilars is currently under debate in certain countries. In the EU, EMEA has clearly defined the process including overarching and product-specific guidelines, which includes clinical testing. Biosimilarity needs to be based on comparability criteria, including at least molecular characterization, biological activity relevant for the therapeutic effect and relative bioavailability ("bioequivalence"). In the case of such complex diseases as MS, where the effect of treatment is not so directly measurable, in vitro tools can provide additional data to support comparability. Genomic microarrays assays might be useful to compare multisource biopharmaceuticals. The aim of the present study was to compare the pharmacodynamic genomic effects (in terms of transcriptional regulation) of two recombinant human IFN-I(2)1a preparations on lymphocytes of multiple sclerosis patients using a whole genome microarray assay. We performed an ex vivo whole genome expression profiling of the effect of two preparations of IFN-I(2)1a on non-adherent mononuclears from five relapsing-remitting MS patients analyzing microarrays (CodeLink Human Whole Genome). Patients blood was drawn, PBMCs isolated and cultured in three different conditions: culture medium (control), 1,000 U/ml of IFN-I(2)1a (BLA- (STOFERON, Bio Sidus) and 1,000 U/ml of IFN-I(2)1a (REBIF, Serono) RNA was purified from non-adherent cells (mostly lymphocytes), amplified and hybridized. Raw data were generated by CodeLink proprietary software. Data normalization, quality control and analysis of differential gene expression between treatments were done using linear model for microarray data. Functional annotation analysis of IFN-I(2)1a MS treatment transcription was done using DAVID. Out of the approximately 45,000 human sequences examined, no evidence of differential

  16. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity

    PubMed Central

    Karakostis, Kostantinos; Costa, Caterina; Zito, Francesca; Matranga, Valeria

    2015-01-01

    Galectin family members specifically bind beta-galactoside derivatives and are involved in different cellular events, including cell communication, signalling, apoptosis, and immune responses. Here, we report a tandem-repeat type galectin from the Paracentrotus lividus sea urchin embryo, referred to as Pl-GAL-8. The 933nt sequence encodes a protein of 34.73 kDa, containing the conserved HFNPRF and WGxExR motifs in the two highly similar carbohydrate-recognition domains (CRD). The three-dimensional protein structure model of the N-CRD confirms the high evolutionary conservation of carbohydrate binding sites. The temporal gene expression is regulated during development and transcripts localize at the tip of the archenteron at gastrula stage, in a subset of the secondary mesenchyme cells that differentiate into blastocoelar (immune) cells. Functional studies using a recombinant Pl-GAL-8 expressed in bacteria demonstrate its hemo-agglutinating activity on human red blood cells through the binding to lactose, as well as its ability in inhibiting the adhesion of human Hep-G2 cells to the substrate. The recent implications in autoimmune diseases and inflammatory disorders make Gal-8 an attractive candidate for therapeutic purposes. Our results offer a solid basis for addressing the use of the new Pl-GAL-8 in functional and applicative studies, respectively in the developmental and biomedical fields. PMID:26640155

  17. Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21.

    PubMed

    Rodríguez, Alexander; Espejo, Angela J; Hernández, Alejandra; Velásquez, Olga L; Lizaraso, Lina M; Cordoba, Henry A; Sánchez, Oscar F; Alméciga-Díaz, Carlos J; Barrera, Luis A

    2010-11-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Currently no effective therapies exist for MPS IVA. In this work, production of a recombinant GALNS enzyme (rGALNS) in Escherichia coli BL21 strain was studied. At shake scale, the effect of glucose concentration on microorganism growth, and microorganism culture and induction times on rGALNS production were evaluated. At bench scale, the effect of aeration and agitation on microorganism growth, and culture and induction times were evaluated. The highest enzyme activity levels at shake scale were observed in 12 h culture after 2-4 h induction. At bench scale the highest enzyme activity levels were observed after 2 h induction. rGALNS amounts in inclusion bodies fraction were up to 17-fold higher than those observed in the soluble fraction. However, the highest levels of active enzyme were found in the soluble fraction. Western blot analysis showed the presence of a 50-kDa band, in both soluble and inclusion bodies fractions. These results show for the first time the feasibility and potential of production of active rGALNS in a prokaryotic system for development of enzyme replacement therapy for MPS IVA disease.

  18. The recombination of genetic material

    SciTech Connect

    Low, K.B.

    1988-01-01

    Genetic recombination is the major mechanism by which new arrangements of genetic elements are produced in all living organisms, from the simplest bacterial viruses to humans. This volume presents an overview of the types of recombination found in prokaryotes and eukaryotes.

  19. Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment.

    PubMed

    Hamada, Akira; Yamaguchi, Ken-Ichi; Harada, Michiko; Horiguchi, Ken-Ichi; Takahashi, Toshiyoshi; Honda, Hideo

    2006-06-01

    When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.

  20. New skin test for detection of bovine tuberculosis on the basis of antigen-displaying polyester inclusions produced by recombinant Escherichia coli.

    PubMed

    Chen, Shuxiong; Parlane, Natalie A; Lee, Jason; Wedlock, D Neil; Buddle, Bryce M; Rehm, Bernd H A

    2014-04-01

    The tuberculin skin test for diagnosing tuberculosis (TB) in cattle lacks specificity if animals are sensitized to environmental mycobacteria, as some antigens in purified protein derivative (PPD) prepared from Mycobacterium bovis are present in nonpathogenic mycobacteria. Three immunodominant TB antigens, ESAT6, CFP10, and Rv3615c, are present in members of the pathogenic Mycobacterium tuberculosis complex but absent from the majority of environmental mycobacteria. These TB antigens have the potential to enhance skin test specificity. To increase their immunogenicity, these antigens were displayed on polyester beads by translationally fusing them to a polyhydroxyalkanoate (PHA) synthase which mediated formation of antigen-displaying inclusions in recombinant Escherichia coli. The most common form of these inclusions is poly(3-hydroxybutyric acid) (PHB). The respective fusion proteins displayed on these PHB inclusions (beads) were identified using tryptic peptide fingerprinting analysis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The surface exposure and accessibility of antigens were assessed by enzyme-linked immunosorbent assay (ELISA). Polyester beads displaying all three TB antigens showed greater reactivity with TB antigen-specific antibody than did beads displaying only one TB antigen. This was neither due to cross-reactivity of antibodies with the other two antigens nor due to differences in protein expression levels between beads displaying single or three TB antigens. The triple-antigen-displaying polyester beads were used for skin testing of cattle and detected all cattle experimentally infected with M. bovis with no false-positive reactions observed in those sensitized to environmental mycobacteria. The results suggested applicability of TB antigen-displaying polyester inclusions as diagnostic reagents for distinguishing TB-infected from noninfected animals.

  1. Introduction to dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Mitchell, J. Brian A.

    1989-01-01

    Dissociative recombination (DR) of molecular ions with electrons has important consequences in many areas of physical science. Ab-initio calculations coupled with resonant scattering theory and multichannel quantum defect studies have produced detailed results illuminating the role of ion vibrational excitation, the quantum yields of the DR products, and the role of Rydberg states. The theoretical and experimental results are discussed.

  2. The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen.

    PubMed

    Arai, Shinpei; Ogiwara, Naoko; Mukai, Saki; Takezawa, Yuka; Sugano, Mitsutoshi; Honda, Takayuki; Okumura, Nobuo

    2017-06-01

    Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2-22.7 and 2.1-24.5%, respectively) and large granular (5.4-25.5 and 7.7-23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.

  3. Making recombinant extracellular matrix proteins.

    PubMed

    Ruggiero, Florence; Koch, Manuel

    2008-05-01

    A variety of approaches to understand extracellular matrix protein structure and function require production of recombinant proteins. Moreover, the expression of heterologous extracellular matrix proteins, in particular collagens, using the recombinant technology is of major interest to the biomedical industry. Although extracellular matrix proteins are large, modular and often multimeric, most of them have been successfully produced in various expression systems. This review provides important factors, including the design of the construct, the cloning strategies, the expression vectors, the transfection method and the host cell systems, to consider in choosing a reliable and cost-effective way to make recombinant extracellular matrix proteins. Advantages and drawbacks of each system have been appraised. Protocols that may ease efficient recombinant production of extracellular matrix are described. Emphasis is placed on the recombinant collagen production. Members of the collagen superfamily exhibit specific structural features and generally require complex post-translational modifications to retain full biological activity that make more arduous their recombinant production.

  4. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.

    PubMed

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2014-08-01

    Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention.

  5. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells.

    PubMed

    Gimenez, Alba Marina; Françoso, Katia S; Ersching, Jonatan; Icimoto, Marcelo Y; Oliveira, Vitor; Rodriguez, Anabel E; Schnittger, Leonhard; Florin-Christensen, Monica; Rodrigues, Mauricio M; Soares, Irene S

    2016-11-14

    Babesia bovis is a tick-transmitted protozoan hemoparasite and the causative agent of bovine babesiosis, a potential risk to more than 500 million cattle worldwide. The vaccines currently available are based on attenuated parasites, which are difficult to produce, and are only recommended for use in bovines under one year of age. When used in older animals, these vaccines may cause life-threatening clinical symptoms and eventually death. The development of a multi-subunit recombinant vaccine against B. bovis would be attractive from an economic standpoint and, most importantly, could be recommended for animals of any age. In the present study, recombinant ectodomains of MSA-2a1, MSA-2b and MSA-2c antigens were expressed in Pichia pastoris yeast as secreted soluble peptides. The antigens were purified to homogeneity, and biochemically and immunologically characterized. A vaccine formulation was obtained by emulsifying a mixture of the three peptides with the adjuvant Montanide ISA 720, which elicited high IgG antibody titers against each of the above antigens. IgG antibodies generated against each MSA-antigen recognized merozoites and significantly inhibited the invasion of bovine erythrocytes. Cellular immune responses were also detected, which were characterized by splenic and lymph node CD4(+) T cells producing IFN-γ and TNF-α upon stimulation with the antigens MSA-2a1 or MSA-2c. These data strongly suggest the high protective potential of the presented formulation, and we propose that it could be tested in vaccination trials of bovines challenged with B. bovis.

  6. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci.

    PubMed

    Sandiford, Stephanie; Upton, Mathew

    2012-03-01

    We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide.

  7. Recombinant allergens

    PubMed Central

    Jutel, Marek; Solarewicz-Madejek, Katarzyna; Smolinska, Sylwia

    2012-01-01

    Allergen specific immunotherapy (SIT) is the only known causative treatment of allergic diseases. Recombinant allergen-based vaccination strategies arose from a strong need to both to improve safety and enhance efficacy of SIT. In addition, new vaccines can be effective in allergies including food allergy or atopic dermatitis, which poorly respond to the current treatment with allergen extracts. A number of successful clinical studies with both wild-type and hypoallergenic derivatives of recombinant allergens vaccines have been reported for the last decade. They showed high efficacy and safety profile as well as very strong modulation of T and B cell responses to specific allergens. PMID:23095874

  8. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    PubMed

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2017-07-06

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  9. 'Super-perfect' enzymes: Structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli.

    PubMed

    Sharma, Prerna; Guptasarma, Purnananda

    2015-05-08

    Triose phosphate isomerases (TIMs) are considered to be 'kinetically perfect' enzymes, limited in their activity only by the rates of diffusion of substrate and product molecules. Most studies conducted thus far have been on mesophile-derived TIMs. Here, we report studies of two extremophile-derived TIMs produced in Escherichia coli: (i) TonTIM, sourced from the genome of the thermophile archaeon, Thermococcus onnurineus, and (ii) PfuTIM, sourced from the genome of the hyperthermophile archaeon, Pyrococcus furiosus (PfuTIM). Although these enzymes are presumed to have evolved to function optimally at temperatures close to the boiling point of water, we find that TonTIM and PfuTIM display second-order rate-constants of activity (k(cat)/K(m) values) comparable to mesophile-derived TIMs, at 25 °C. At 90 °C, TonTIM and PfuTIM reach maximum velocities of reaction of ∼ 10(6)-10(7) μmol/s/mg, and display k(cat)/K(m) values in the range of ∼ 10(10)-10(11) M(-1) s(-1), which are three orders of magnitude higher than those reported for mesophile TIMs. Further, the two enzymes display no signs of having undergone any structural unfolding at 90 °C. Such enzymes could thus probably be called 'super-perfect' enzymes.

  10. Overexpression of Protein Disulfide Isomerase DsbC Stabilizes Multiple-Disulfide-Bonded Recombinant Protein Produced and Transported to the Periplasm in Escherichia coli

    PubMed Central

    Kurokawa, Yoichi; Yanagi, Hideki; Yura, Takashi

    2000-01-01

    Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli. PMID:10966415

  11. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  12. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  13. A Method to Produce and Purify Full-Length Recombinant Alpha Dystroglycan: Analysis of N- and O-Linked Monosaccharide Composition in CHO Cells with or without LARGE Overexpression

    PubMed Central

    Yoon, Jung Hae; Xu, Rui; Martin, Paul

    2013-01-01

    α dystroglycan (αDG) is part of the dystrophin-associated glycoprotein (DAG) complex, a series of cytoskeletal, transmembrane, and membrane-associated proteins that serve to link the extracellular matrix (ECM) surrounding individual skeletal myofibers to the intracellular F-actin cytoskeleton. Glycosylation and ECM protein binding to αDG are regulated by a number of genes that, when defective, give rise to congenital or limb-girdle forms of muscular dystrophy termed dystroglycanopathies. One such dystroglycanopathy gene is LARGE. Here, we describe a method to produce and purify full-length, furin-resistant, recombinant αDG from CHO cells and CHO cells overexpressing LARGE (CHO-LARGE). In addition, we analyze the O- and N-linked monosaccharide composition of such proteins. αDG purified from CHO-LARGE cells had increased molar content of xylose and fucose relative to CHO, while no significant changes were found in N-linked monosaccharides. Glucuronic acid could not be quantified by the methods used. These studies describe a method to produce and purify the milligram amounts of αDG needed for certain biochemical methods, including monosaccharide analysis. Key words: Dystroglycan, muscular dystrophy, xylose, fucose, laminin, LARGE Correspondence: Paul.Martin@nationwidechildrens.org PMID:23390591

  14. Are hydrophobins and/or non-specific lipid transfer proteins responsible for gushing in beer? New hypotheses on the chemical nature of gushing inducing factors.

    PubMed

    Hippeli, Susanne; Elstner, Erich F

    2002-01-01

    Gushing of beer is characterised by the fact that immediately after opening a bottle a great number of fine bubbles are created throughout the volume of beer and ascend quickly under foam formation, which flows out of the bottle. This infuriating gushing phenomenon has been, and still is, a problem of world-wide importance to the brewing industry. It is generally assumed that the causes of malt-derived gushing are due to the use of "weathered" barley or wheat and the growth of moulds in the field, during storage and malting. We now develop a hypothesis connecting several lines of evidence from different laboratories. These results indicate that the fungal hydrophobins, hydrophobic components of conidiospores or aerial mycelia, are gushing-inducing factors. Furthermore, increased formation of ns-LTPs (non-specific lipid transfer proteins), synthesised in grains as response to fungal infection, and their modification during the brewing process may be responsible for malt-derived gushing.

  15. Production and secretion of Aspergillus nidulans catalase B in filamentous fungi driven by the promoter and signal peptide of the Cladosporium fulvum hydrophobin gene hcf-1.

    PubMed

    Johnson, Hannah; Whiteford, James R; Eckert, Sabine E; Spanu, Pietro D

    2003-11-01

    We describe here the use of sequences from the hydrophobin gene hcf-1 of Cladosporium fulvum to construct pCatBex, a vector for high-level expression and secretion of CatB, a catalase from Aspergillus nidulans. Transformation of C. fulvum with pCatBex results in a 60-fold increase in the mycelial activity in the fungus and the appearance of up to 5.4 mkat/l of catalase in the growth medium. The levels of catalase in the supernatant increased dramatically following removal of nitrogen from the medium. Conversely, the overall specific activity of catalase in the cytoplasm did not change appreciably. This indicates that nitrogen depletion induces greater secretion of protein. The vector pCatBex also directs the expression and secretion of CatB in Magnaporthe grisea and may be a useful vector for the expression of genes in other filamentous fungi.

  16. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  17. Recombinant DNA production of spider silk proteins.

    PubMed

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks.

  18. Adoptive transfer of experimental allergic encephalomyelitis after in vitro treatment with recombinant murine interleukin-12. Preferential expansion of interferon-gamma-producing cells and increased expression of macrophage-associated inducible nitric oxide synthase as immunomodulatory mechanisms.

    PubMed Central

    Waldburger, K. E.; Hastings, R. C.; Schaub, R. G.; Goldman, S. J.; Leonard, J. P.

    1996-01-01

    In an adoptive transfer model of experimental allergic encephalomyelitis, stimulation of lymph node cells with proteolipid protein and recombinant murine interleukin (rmIL)-12 before cell transfer accelerated the onset and exacerbates clinical disease. In vitro stimulation with proteolipid protein in the presence of rmIL-12 was associated with an increase in interferon-gamma-producing cells and a decrease in IL-4-producing cells, indicating a preferential expansion of Th1 effector cells. This was supported by the finding that severe disease with rapid onset could be transferred with as few as 10 x 10(6) rmIL-12-stimulated lymph node cells. Immunohistochemical analysis confirmed that the accelerated onset of disease after in vitro stimulation with rmIL-12 coincided with an acute inflammatory response in the central nervous system. At peak disease, both control and rmIL-12 treatment groups exhibited extensive cellular infiltration with characteristic perivascular cuffing. No notable differences in either the cellular composition or cytokine expression within the lesions were seen between groups. However, the frequency of macrophages that stained positively for inducible nitric oxide synthase was increased in animals challenged with rmIL-12-treated lymph node cells. The results suggest that, in addition to promoting the preferential expansion of interferon-gamma-producing cells by rmIL-12 in vitro, secondary in vivo effects leading to macrophage activation and inducible nitric oxide synthase expression may contribute to the severe and protracted course of central nervous system inflammation in this model. Images Figure 2 PMID:8579100

  19. Recombinant protein expression plasmids optimized for industrial E. coli fermentation and plant systems produce biologically active human insulin-like growth factor-1 in transgenic rice and tobacco plants.

    PubMed

    Panahi, Mitra; Alli, Zaman; Cheng, Xiongying; Belbaraka, Loubaba; Belgoudi, Jaafar; Sardana, Ravinder; Phipps, Jenny; Altosaar, Illimar

    2004-06-01

    Human insulin-like growth factor-1 (hIGF-1) is a growth factor with clinical significance in medicine. The therapeutic potential of recombinant hIGF-1 (rthIGF-1) stems from the fact that hIGF-1 resembles insulin in many aspects of physiology. The expression of hIGF-1 in transgenic tobacco and rice plants using different expression cassettes is reported here. In the present study, two coding sequences were tested, one with the original human sequence, but partially optimized for expression in E. coli and the other with a plant-codon-optimized sequence that was expected to give a higher level of expression in plant systems. Three different hIGF-1 recombinant expression constructs were generated. All expression constructs utilized the maize ubiquitin 1 promoter with or without a signal sequence. Analyses conducted using a hIGF-1 specific ELISA kit showed all transgenic plants produced hIGF-1 and the accumulated hIGF-1 increased from the E. coli codon bias to higher levels when the hIGF-1 coding sequence was codon-optimized to match that of the maize zeamatin protein--the most transcribed gene in maize endosperm suspension cells. Further analyses that compared the functionality of the bacterial signal peptide Lam B in plants showed that this leader peptide led to lower expression levels when compared to transgenic plants that did not contain this sequence. This indicated that this expression construct was functional without removal of the bacterial signal sequence. The maize ubiquitin 1 promoter was found to be more active in rice plants than tobacco plants indicating that in this case, there was a class preference that was biased towards a monocot host. Biological analyses conducted using protein extracts from transgenic plants showed that the rthIGF-1 was effective in stimulating the in vitro growth and proliferation of human SH-SY5Y neuroblastoma cells. This indicated that the plant-produced rthIGF-1 was stable and biologically active. As some plants have been

  20. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  1. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  2. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  3. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  4. Antigenic and immunogenic properties of recombinant hemagglutinin proteins from H1N1 A/Brisbane/59/07 and B/Florida/04/06 when produced in various protein expression systems

    PubMed Central

    Santiago, Felix W.; Emo, Kris Lambert; Fitzgerald, Theresa; Treanor, John J.

    2012-01-01

    Antibodies directed against the influenza hemagglutinin (HA) protein largely mediate virus neutralization and confer protection against infection. Consequently, many studies and assays of influenza vaccines are focused on HA-specific immune responses. Recombinant HA (rHA) proteins can be produced in a number of protein expression and cell culture systems. These range from baculovirus infection of insect cell cultures, to transient transfection of plants, to stably transfected human cell lines. Furthermore, the rHA proteins may contain genetic modifications, such as histidine tags or trimerization domains, intended to ease purification or enhance protein stability. However, no systematic study of these different forms of the HA protein have been conducted. It is not clear which, if any, of these different protein expression systems or structural modifications improve or diminish the biological behavior of the proteins as immunogens or antigens in immune assays. Therefore we set out to perform systematic evaluation of rHA produced in different proteins expression systems and with varied modifications. Five rHA proteins based on recent strains of seasonal influenza A and five based on influenza B HA were kindly provided by the Biodefense and Emerging Infections Reagent repository (BEIR). These proteins were evaluated in a combination of biochemical and structural assays, in vitro humoral and cellular immune assays, and in an animal vaccination model. Marked differences in the behavior of the individual proteins was evident suggesting that they are not equal when being used to detect an immune response. They were, nevertheless, similar at eliciting neutralizing antibody responses. PMID:22609035

  5. Cells and methods for producing fatty alcohols

    DOEpatents

    Pfleger, Brian F.; Youngquist, Tyler J.

    2017-07-18

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  6. In vitro stimulation of Balb/c and C57 BL/6 splenocytes by a recombinantly produced banana lectin isoform results in both a proliferation of T cells and an increased secretion of interferon-gamma.

    PubMed

    Stojanović, Marijana M; Zivković, Irena P; Petrusić, Vladimir Z; Kosec, Dusko J; Dimitrijević, Rajna D; Jankov, Ratko M; Dimitrijević, Ljiljana A; Gavrović-Jankulović, Marija D

    2010-01-01

    Lectins are widely used in many types of assay but some lectins such as banana lectin (BanLec) are recognised as potent immunostimulators. Although BanLec's structure and binding characteristics are now familiar, its immunostimulatory potential has not yet been fully explored. The synthesis by recombinant technology of a BanLec isoform (rBanLec) whose binding properties are similar to its natural counterpart has made it possible to overcome the twin problems of natural BanLec's microheterogeneity and low availability. This study's aim is to explore the immunostimulatory potential of rBanLec in the murine model. Analyses of the responses of Balb/c- and C57 BL/6-originated splenocytes to in vitro rBanLec stimulation were performed to examine the dependency of rBanLec's immunostimulatory potential upon the splenocytes' genetic background. It is shown that the responses of Balb/c- and C57 BL/6-originated splenocytes to rBanLec stimulation differ both qualitatively and in intensity. The hallmarks of the induced responses are T lymphocyte proliferation and intensive interferon-gamma secretion. Both phenomena are more marked in Balb/c-originated cultures; Balb/c-originated lymphocytes produce interleukin (IL)-4 and IL-10 following rBanLec stimulation. Our results demonstrate that any responses to rBanLec stimulation are highly dependent upon genetic background; they suggest that genetic background must be an important consideration in any further investigations using animal models or when exploring rBanLec's potential human applications.

  7. The recombination epoch revisited

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons.

  8. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants.

    PubMed

    Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima

    2011-05-01

    For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.

  9. Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins

    PubMed Central

    2010-01-01

    Background The insect cell line is a critical component in the production of recombinant proteins in the baculovirus expression system and new cell lines hold the promise of increasing both quantity and quality of protein production. Results Seventy cell lines were established by single-cell cloning from a primary culture of cells derived from eggs of the black witch moth (Ascalapha odorata; Lepidoptera, Noctuidae). Among 8 rapidly growing lines, cell line 38 (Ao38) was selected for further analysis, based on susceptibility to AcMNPV infection and production of secreted alkaline phosphatase (SEAP) from a baculovirus expression vector. In comparisons with low-passage High Five (BTI-Tn-5B1-4) cells, infected Ao38 cells produced β-galactosidase and SEAP at levels higher (153% and 150%, respectively) than those measured from High Five cells. Analysis of N-glycans of SEAP produced in Ao38 cells revealed two N-glycosylation sites and glycosylation patterns similar to those reported for High Five and Sf9 cells. Glycopeptide isoforms consisted of pauci- or oligomannose, with and without fucose on N-acetylglucosamine(s) linked to asparagine residues. Estimates of Ao38 cell volume suggest that Ao38 cells are approximately 2.5× larger than Sf9 cells but only approximately 74% of the size of High Five cells. Ao38 cells were highly susceptible to AcMNPV infection, similar to infectivity of Sf9 cells. Production of infectious AcMNPV budded virions from Ao38 cells peaked at approximately 4.5 × 107 IU/ml, exceeding that from High Five cells while lower than that from Sf9 cells. Ao38 cells grew rapidly in stationary culture with a population doubling time of 20.2 hr, and Ao38 cells were readily adapted to serum-free medium (Sf-900III) and to a suspension culture system. Analysis of Ao38 and a parental Ascalapha odorata cell line indicated that these lines were free of the alphanodavirus that was recently identified as an adventitious agent in High Five cell lines. Conclusions Ao

  10. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  11. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  12. Asp30 of Aspergillus oryzae cutinase CutL1 is involved in the ionic interaction with fungal hydrophobin RolA.

    PubMed

    Terauchi, Yuki; Kim, Yoon-Kyung; Tanaka, Takumi; Nanatani, Kei; Takahashi, Toru; Abe, Keietsu

    2017-07-01

    Aspergillus oryzae hydrophobin RolA adheres to the biodegradable polyester polybutylene succinate-co-adipate (PBSA) and promotes PBSA degradation by interacting with A. oryzae polyesterase CutL1 and recruiting it to the PBSA surface. In our previous studies, we found that positively charged amino acid residues (H32, K34) of RolA and negatively charged residues (E31, D142, D171) of CutL1 are important for the cooperative ionic interaction between RolA and CutL1, but some other charged residues in the triple mutant CutL1-E31S/D142S/D171S are also involved. In the present study, on the basis of the 3D-structure of CutL1, we hypothesized that D30 is also involved in the CutL1-RolA interaction. We substituted D30 with serine and performed kinetic analysis of the interaction between wild-type RolA and the single mutant CutL1-D30S or quadruple mutant CutL1-D30S/E31S/D142S/D171S by using quartz crystal microbalance. Our results indicate that D30 is a novel residue involved in the ionic interaction between RolA and CutL1.

  13. Recombinant allergens for specific immunotherapy.

    PubMed

    Cromwell, Oliver; Häfner, Dietrich; Nandy, Andreas

    2011-04-01

    Recombinant DNA technology provides the means for producing allergens that are equivalent to their natural counterparts and also genetically engineered variants with reduced IgE-binding activity. The proteins are produced as chemically defined molecules with consistent structural and immunologic properties. Several hundred allergens have been cloned and expressed as recombinant proteins, and these provide the means for making a very detailed diagnosis of a patient's sensitization profile. Clinical development programs are now in progress to assess the suitability of recombinant allergens for both subcutaneous and sublingual immunotherapy. Recombinant hypoallergenic variants, which are developed with the aim of increasing the doses that can be administered while at the same time reducing the risks for therapy-associated side effects, are also in clinical trials for subcutaneous immunotherapy. Grass and birch pollen preparations have been shown to be clinically effective, and studies with various other allergens are in progress. Personalized or patient-tailored immunotherapy is still a very distant prospect, but the first recombinant products based on single allergens or defined mixtures could reach the market within the next 5 years. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  14. Human Insulin from Recombinant DNA Technology

    NASA Astrophysics Data System (ADS)

    Johnson, Irving S.

    1983-02-01

    Human insulin produced by recombinant DNA technology is the first commercial health care product derived from this technology. Work on this product was initiated before there were federal guidelines for large-scale recombinant DNA work or commercial development of recombinant DNA products. The steps taken to facilitate acceptance of large-scale work and proof of the identity and safety of such a product are described. While basic studies in recombinant DNA technology will continue to have a profound impact on research in the life sciences, commercial applications may well be controlled by economic conditions and the availability of investment capital.

  15. Expression of recombinant antibodies.

    PubMed

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  16. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  17. Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae.

    PubMed

    Ohtaki, Shinsaku; Maeda, Hiroshi; Takahashi, Toru; Yamagata, Youhei; Hasegawa, Fumihiko; Gomi, Katsuya; Nakajima, Tasuku; Abe, Keietsu

    2006-04-01

    Hydrophobic surface binding protein A (HsbA) is a secreted protein (14.5 kDa) isolated from the culture broth of Aspergillus oryzae RIB40 grown in a medium containing polybutylene succinate-co-adipate (PBSA) as a sole carbon source. We purified HsbA from the culture broth and determined its N-terminal amino acid sequence. We found a DNA sequence encoding a protein whose N terminus matched that of purified HsbA in the A. ozyzae genomic sequence. We cloned the hsbA genomic DNA and cDNA from A. oryzae and constructed a recombinant A. oryzae strain highly expressing hsbA. Orthologues of HsbA were present in animal pathogenic and entomopathogenic fungi. Heterologously synthesized HsbA was purified and biochemically characterized. Although the HsbA amino acid sequence suggests that HsbA may be hydrophilic, HsbA adsorbed to hydrophobic PBSA surfaces in the presence of NaCl or CaCl(2). When HsbA was adsorbed on the hydrophobic PBSA surfaces, it promoted PBSA degradation via the CutL1 polyesterase. CutL1 interacts directly with HsbA attached to the hydrophobic QCM electrode surface. These results suggest that when HsbA is adsorbed onto the PBSA surface, it recruits CutL1, and that when CutL1 is accumulated on the PBSA surface, it stimulates PBSA degradation. We previously reported that when the A. oryzae hydrophobin RolA is bound to PBSA surfaces, it too specifically recruits CutL1. Since HsbA is not a hydrophobin, A. oryzae may use several types of proteins to recruit lytic enzymes to the surface of hydrophobic solid materials and promote their degradation.

  18. Current Drive in Recombining Plasma

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2012-05-15

    The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

  19. Using Crossover Breakpoints in Recombinant Inbred Lines to Identify Quantitative Trait Loci Controlling the Global Recombination Frequency

    USDA-ARS?s Scientific Manuscript database

    Recombination is a crucial component of evolution and breeding, producing new genetic combinations on which selection can act. Rates of recombination vary tremendously, not only between species but also within species and for specific chromosomal segments. In this study, by examining recombination...

  20. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase.

    PubMed

    Wang, Rui-Yan; Shi, Zhen-Yu; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2012-09-01

    Recombinant Escherichia coli was constructed for co-production of hydrogen and polyhydroxybutyrate (PHB) due to its rapid growth and convenience of genetic manipulation. In particular, anaerobic metabolic pathways dedicated to co-production of hydrogen and PHB were established due to the advantages of directing fluxes away from toxic compounds such as formate and acetate to useful products. Here, recombinant E. coli expressing hydrogenase 3 and/or acetyl-CoA synthetase showed improved PHB and hydrogen production when grown with or without acetate as a carbon source. When hydrogenase 3 was over-expressed, hydrogen yield was increased from 14 to 153 mmol H(2)/mol glucose in a mineral salt (MS) medium with glucose as carbon source, accompanied by an increased PHB yield from 0.55 to 5.34 mg PHB/g glucose in MS medium with glucose and acetate as carbon source.

  1. Recognition of a core fragment of Beauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential

    PubMed Central

    Wang, Zheng-Liang; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (Phyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (Phyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length Phyd1. Further truncating Phyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in Phyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under Phyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, Phyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of PgpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, Phyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides. PMID:22639846

  2. Recognition of a core fragment ofBeauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential.

    PubMed

    Wang, Zheng-Liang; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (P hyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (P hyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length P hyd1. Further truncating P hyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in P hyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under P hyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, P hyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of P gpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, P hyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides.

  3. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  4. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  5. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  6. Recombinant Toxins for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Pastan, Ira; Fitzgerald, David

    1991-11-01

    Recombinant toxins target cell surface receptors and antigens on tumor cells. They kill by mechanisms different from conventional chemotherapy, so that cross resistance to conventional chemotherapeutic agents should not be a problem. Furthermore, they are not mutagens and should not induce secondary malignancies or accelerate progression of benign malignancies. They can be mass-produced cheaply in bacteria as homogeneous proteins. Either growth factor-toxin fusions or antibody-toxin fusions can be chosen, depending on the cellular target.

  7. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  8. A recombinant 63-kDa form of Bacillus anthracis protective antigen produced in the yeast Saccharomyces cerevisiae provides protection in rabbit and primate inhalational challenge models of anthrax infection.

    PubMed

    Hepler, Robert W; Kelly, Rosemarie; McNeely, Tessie B; Fan, Hongxia; Losada, Maria C; George, Hugh A; Woods, Andrea; Cope, Leslie D; Bansal, Alka; Cook, James C; Zang, Gina; Cohen, Steven L; Wei, Xiaorong; Keller, Paul M; Leffel, Elizabeth; Joyce, Joseph G; Pitt, Louise; Schultz, Loren D; Jansen, Kathrin U; Kurtz, Myra

    2006-03-06

    Infection by Bacillus anthracis is preventable by prophylactic vaccination with several naturally derived and recombinant vaccine preparations. Existing data suggests that protection is mediated by antibodies directed against the protective antigen (PA) component of the anthrax toxin complex. PA is an 83-kDa protein cleaved in vivo to yield a biologically active 63-kDa protein. In an effort to evaluate the potential of yeast as an expression system for the production of recombinant PA, and to determine if the yeast-purified rPA63 can protect from a lethal inhalational challenge, the sequence of the 63-kDa form of PA was codon-optimized and expressed in the yeast Saccharomyces cerevisiae. Highly purified rPA63 isolated from Saccharomyces under denaturing conditions demonstrated reduced biological activity in a macrophage-killing assay compared to non-denatured rPA83 purified from Escherichia coli. Rabbits and non-human primates (NHP) immunized with rPA63 and later challenged with a lethal dose of B. anthracis spores were generally protected from infection. These results indicate that epitopes present in the 63-kDa from of PA can protect rabbits and non-human primates from a lethal spore challenge, and further suggest that a fully functional rPA63 is not required in order to provide these epitopes.

  9. Genetic recombination and molecular evolution.

    PubMed

    Charlesworth, B; Betancourt, A J; Kaiser, V B; Gordo, I

    2009-01-01

    Reduced rates of genetic recombination are often associated with reduced genetic variability and levels of adaptation. Several different evolutionary processes, collectively known as Hill-Robertson (HR) effects, have been proposed as causes of these correlates of recombination. Here, we use DNA sequence polymorphism and divergence data from the noncrossing over dot chromosome of Drosophila to discriminate between two of the major forms of HR effects: selective sweeps and background selection. This chromosome shows reduced levels of silent variability and reduced effectiveness of selection. We show that neither model fits the data on variability. We propose that, in large genomic regions with restricted recombination, HR effects among nonsynonymous mutations undermine the effective strength of selection, so that their background selection effects are weakened. This modified model fits the data on variability and also explains why variability in very large nonrecombining genomes is not completely wiped out. We also show that HR effects of this type can produce an individual selection advantage to recombination, as well as greatly reduce the mean fitness of nonrecombining genomes and genomic regions.

  10. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  11. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  12. A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella

    PubMed Central

    Miletic, Sean; Simpson, David J.; Szymanski, Christine M.; Deyholos, Michael K.; Menassa, Rima

    2016-01-01

    The receptor binding domain of the tailspike protein Gp9 from the P22 bacteriophage was recently shown to reduce Salmonella colonization in the chicken gut. In this study, we transiently expressed the receptor binding domain of the Gp9 tailspike protein in Nicotiana benthamiana, and targeted it to the endoplasmic reticulum (ER) or to the chloroplasts. Gp9 was also fused to either an elastin-like polypeptide (ELP) or hydrophobin I tag, which were previously described to improve accumulation levels of recombinant proteins. The highest levels of recombinant protein accumulation occurred when unfused Gp9 was targeted to the ER. Lower levels of chloroplast-targeted Gp9 were also detected. ELP-fused Gp9 was purified and demonstrated to bind to Salmonella enterica serovar Typhimurium in vitro. Upon oral administration of lyophilized leaves expressing Gp9-ELP to newly hatched chickens, we found that this tailspike protein has the potential to be used as a therapeutic to control Salmonella contamination in chickens. PMID:26779243

  13. Production of recombinant proteins by filamentous fungi.

    PubMed

    Ward, Owen P

    2012-01-01

    The initial focus of recombinant protein production by filamentous fungi related to exploiting the extraordinary extracellular enzyme synthesis and secretion machinery of industrial strains, including Aspergillus, Trichoderma, Penicillium and Rhizopus species, was to produce single recombinant protein products. An early recognized disadvantage of filamentous fungi as hosts of recombinant proteins was their common ability to produce homologous proteases which could degrade the heterologous protein product and strategies to prevent proteolysis have met with some limited success. It was also recognized that the protein glycosylation patterns in filamentous fungi and in mammals were quite different, such that filamentous fungi are likely not to be the most suitable microbial hosts for production of recombinant human glycoproteins for therapeutic use. By combining the experience gained from production of single recombinant proteins with new scientific information being generated through genomics and proteomics research, biotechnologists are now poised to extend the biomanufacturing capabilities of recombinant filamentous fungi by enabling them to express genes encoding multiple proteins, including, for example, new biosynthetic pathways for production of new primary or secondary metabolites. It is recognized that filamentous fungi, most species of which have not yet been isolated, represent an enormously diverse source of novel biosynthetic pathways, and that the natural fungal host harboring a valuable biosynthesis pathway may often not be the most suitable organism for biomanufacture purposes. Hence it is expected that substantial effort will be directed to transforming other fungal hosts, non-fungal microbial hosts and indeed non microbial hosts to express some of these novel biosynthetic pathways. But future applications of recombinant expression of proteins will not be confined to biomanufacturing. Opportunities to exploit recombinant technology to unravel the

  14. Production systems for recombinant antibodies.

    PubMed

    Schirrmann, Thomas; Al-Halabi, Laila; Dübel, Stefan; Hust, Michael

    2008-05-01

    Recombinant antibodies are the fastest growing class of therapeutic proteins. Furthermore, antibodies are key detection reagents in research and diagnostics. The increasing demand for antibodies with regards to amount and quality resulted in the development of a variety of recombinant production systems employing gram-negative and gram-positive bacteria, yeast and filamentous fungi, insect cell lines as well as mammalian cell lines. More recently, antibodies were also successfully produced in transgenic plants and animals. Currently, the production of recombinant antibodies for therapy is performed in mammalian cell lines to reduce the risk of immunogenicity caused by non-human post-translational modifications, in particular glycosylation. However, novel strategies already allow human-like glycosylation patterns in yeast, insect cell lines and transgenic plants. Furthermore, therapeutic strategies not requiring glycosylation of the Fc portion have been conceived, most prominently using bispecific antibodies or scFv fusion proteins, which can be produced in bacteria. Here, we review all current antibody production systems considering their advantages and limitations with respect to intended applications.

  15. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  16. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    PubMed

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-06

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Recombinant baculoviruses for insect control.

    PubMed

    Inceoglu, A B; Kamita, S G; Hinton, A C; Huang, Q; Severson, T F; Kang, K; Hammock, B D

    2001-10-01

    Baculoviruses are double-stranded DNA viruses which are highly selective for several insect groups. They are valuable natural control agents, but their utility in many agricultural applications has been limited by their slow speed of kill and narrow host specificity. Baculoviruses have been genetically modified to express foreign genes under powerful promoters in order to accelerate their speed of kill. In our and other laboratories, the expression of genes coding for insect juvenile hormone esterases and various peptide neurotoxins has resulted in recombinant baculoviruses with promise as biological insecticides. These viruses are efficacious in the laboratory, greenhouse and field and dramatically reduce damage caused by insect feeding. The recombinant viruses synergize and are synergized by classical pesticides such as pyrethroids. Since they are highly selective for pest insects, they can be used without disrupting biological control. Because the recombinant virus produces fewer progeny in infected larvae than the wild-type virus, they are rapidly out-competed in the ecosystem. The viruses can be used effectively with crops expressing endotoxins of Bacillus thuringiensis. They can be produced industrially but also by village industries, indicating that they have the potential to deliver sustainable pest control in developing countries. It remains to be seen, however, whether the current generation of recombinant baculoviruses will be competitive with the new generation of synthetic chemical pesticides. Current research clearly indicates, though, that the use of biological vectors of genes for insect control will find a place in agriculture. Baculoviruses will also prove valuable in testing the potential utility of proteins and peptides for insect control.

  18. Electron Recombination in a Dense Hydrogen Plasma

    SciTech Connect

    Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; Leonova, M.A.; Schwarz, T.A.; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic

    2012-05-01

    A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced plasma inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized electrons load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized electrons and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of electrons in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of electron recombination grows for larger clusters of hydrogen and so at the equilibrium of electron production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.

  19. Implications of recombination for HIV diversity.

    PubMed

    Ramirez, Bertha Cecilia; Simon-Loriere, Etienne; Galetto, Roman; Negroni, Matteo

    2008-06-01

    The human immunodeficiency virus (HIV) population is characterised by extensive genetic variability that results from high error and recombination rates of the reverse transcription process, and from the fast turnover of virions in HIV-infected individuals. Among the viral variants encountered at the global scale, recombinant forms are extremely abundant. Some of these recombinants (known as circulating recombinant forms) become fixed and undergo rapid expansion in the population. The reasons underlying their epidemiological success remain at present poorly understood and constitute a fascinating area for future research to improve our understanding of immune escape, pathogenicity and transmission. Recombinant viruses are generated during reverse transcription as a consequence of template switching between the two genetically different genomic RNAs present in a heterozygous virus. Recombination can thereby generate shortcuts in evolution by producing mosaic reverse transcription products of parental genomes. Therefore, in a single infectious cycle multiple mutations that are positively selected can be combined or, conversely, negatively selected mutations can be removed. Recombination is therefore involved in different aspects of HIV evolution, adaptation to its host, and escape from antiviral treatments.

  20. Recombinant clostridia that fix CO2 and CO and uses thereof

    DOEpatents

    Papoutsakis, Eleftherios T.; Al-Hinai, Mohab Ali; Jones, Shawn Williams; Indurthi, Dinesh Chanukya; Mitchell, Daniel Knox; Fast, Alan

    2014-06-24

    The present invention relates a recombinant Clostridium expressing one or more heterologous Wood-Ljungdahl (WL) genes. In particular, the recombinant Clostridium produces a metabolite at an increased level. The present invention also relates to a method for producing a metabolite by the recombinant Clostridium.

  1. Evolution of Resistance in Culex quinquefasciatus (Say) Selected With a Recombinant Bacillus thuringiensis Strain-Producing Cyt1Aa and Cry11Ba, and the Binary Toxin, Bin, From Lysinibacillus sphaericus.

    PubMed

    Wirth, Margaret C; Walton, William E; Federici, Brian A

    2015-09-01

    Fourth instars of Culex quinquefasciatus (Say) (Diptera: Culicidae) were selected with a recombinant bacterial strain synthesizing the mosquitocidal proteins from Lysinibacillus sphaericus (Bin) and Cry11Ba and Cyt1Aa from Bacillus thuringiensis. Selection was initiated in Generation 1 with a concentration of 0.04 μg/ml, which rose to a maximum selection concentration of 8.0 μg/ml in Generation 14, followed by an unexpected, rapid increase in mortality in Generation 15. Subsequently, a selection concentration of 0.8 μg/ml was determined to be survivable. During this same period, resistance rose to nearly 1,000-fold (by Generation 12) and declined to 18.8-fold in Generation 19. Resistance remained low and fluctuated between 5.3 and 7.3 up to Generation 66. The cross-resistance patterns and interactions among the component proteins were analyzed to identify possible causes of this unusual pattern of evolution. Poor activity in the mid-range concentrations and lower-than-expected synergistic interactions were identified as potential sources of the early resistance. These findings should be considered in the development of genetically engineered strains intended to control nuisance and vector mosquitoes.

  2. 92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen.

    PubMed Central

    Ståhle-Bäckdahl, M; Inoue, M; Guidice, G J; Parks, W C

    1994-01-01

    Eosinophils are prominent in bullous pemphigoid (BP), and proteases secreted from these and other inflammatory cells may induce disruption of the basement membrane. We used in situ hybridization and immunohistochemistry to localize the sites of 92-kD gelatinase expression in BP lesions. In all samples (20/20), a strong signal for gelatinase mRNA was detected only in eosinophils and was most pronounced where these cells accumulated at the floor of forming blisters. No other cells were positive for enzyme mRNA. Both eosinophils and neutrophils, however, contained immunoreactive 92-kD gelatinase indicating that active expression occurred only in eosinophils. Degranulated eosinophils were also seen near blisters, and as demonstrated by gelatin zymography, immunoblotting, and ELISA, 92-kD gelatinase protein was prominent in BP blister fluid. No other gelatinolytic activity was specifically detected in BP fluid, and only small amounts of 92-kD gelatinase were present in suction blister fluids. As demonstrated in vitro, 92-kD gelatinase cleaved the extracellular, collagenous domain of recombinant 180-kD BP autoantigen (BP180, BPAG2, HD4, type XVII collagen), a transmembrane molecule of the epidermal hemidesmosome. Our results suggest that production and release 92-kD gelatinase by eosinophils contributes significantly to tissue damage in BP. Images PMID:8182134

  3. Evolution of Resistance in Culex quinquefasciatus (Say) Selected With a Recombinant Bacillus thuringiensis Strain-Producing Cyt1Aa and Cry11Ba, and the Binary Toxin, Bin, From Lysinibacillus sphaericus

    PubMed Central

    Wirth, Margaret C.; Walton, William E.; Federici, Brian A.

    2015-01-01

    Fourth instars of Culex quinquefasciatus (Say) (Diptera: Culicidae) were selected with a recombinant bacterial strain synthesizing the mosquitocidal proteins from Lysinibacillus sphaericus (Bin) and Cry11Ba and Cyt1Aa from Bacillus thuringiensis. Selection was initiated in Generation 1 with a concentration of 0.04 μg/ml, which rose to a maximum selection concentration of 8.0 μg/ml in Generation 14, followed by an unexpected, rapid increase in mortality in Generation 15. Subsequently, a selection concentration of 0.8 μg/ml was determined to be survivable. During this same period, resistance rose to nearly 1,000-fold (by Generation 12) and declined to 18.8-fold in Generation 19. Resistance remained low and fluctuated between 5.3 and 7.3 up to Generation 66. The cross-resistance patterns and interactions among the component proteins were analyzed to identify possible causes of this unusual pattern of evolution. Poor activity in the mid-range concentrations and lower-than-expected synergistic interactions were identified as potential sources of the early resistance. These findings should be considered in the development of genetically engineered strains intended to control nuisance and vector mosquitoes. PMID:26336254

  4. Recombinant monoclonal antibody technology.

    PubMed

    Siegel, D L

    2002-01-01

    With the development of murine hybridoma technology over a quarter century ago, the ability to produce large quantities of well-characterized monoclonal antibody preparations revolutionized diagnostic and therapeutic medicine. For many applications in transfusion medicine, however, the production of serological reagents in mice has certain biological limitations relating to the difficulty in obtaining murine monoclonal antibodies specific for many human blood group antigens. Furthermore, for therapeutic purposes, the efficacy of murine-derived immunoglobulin preparations is limited by the induction of anti-mouse immune responses. Technical difficulties inherent in human hybridoma formation have led to novel molecular approaches that facilitate the isolation and production of human antibodies without the need for B-cell transformation, tissue culture, or even immunized individuals. These technologies, referred to as 'repertoire cloning' or 'Fab/phage display', involve the rapid cloning of immunoglobulin gene segments to create immune libraries from which antibodies with desired specificities can be selected. The use of such recombinant methods in transfusion medicine is anticipated to play an important role in the development and production of renewable supplies of low-cost reagents for diagnostic and therapeutic applications.

  5. Interplay between modifications of chromatin and meiotic recombination hotspots.

    PubMed

    Brachet, Elsa; Sommermeyer, Vérane; Borde, Valérie

    2012-02-01

    Meiotic recombination lies at the heart of sexual reproduction. It is essential for producing viable gametes with a normal haploid genomic content and its dysfunctions can be at the source of aneuploidies, such as the Down syndrome, or many genetic disorders. Meiotic recombination also generates genetic diversity that is transmitted to progeny by shuffling maternal and paternal alleles along chromosomes. Recombination takes place at non-random chromosomal sites called 'hotspots'. Recent evidence has shown that their location is influenced by properties of chromatin. In addition, many studies in somatic cells have highlighted the need for changes in chromatin dynamics to allow the process of recombination. In this review, we discuss how changes in the chromatin landscape may influence the recombination map, and reciprocally, how recombination events may lead to epigenetic modifications at sites of recombination, which could be transmitted to progeny.

  6. Recombinant Baculovirus Isolation.

    PubMed

    King, Linda A; Hitchman, Richard; Possee, Robert D

    2016-01-01

    Although there are several different methods available of making recombinant baculovirus expression vectors (reviewed in Chapter 3 ), all require a stage in which insect cells are transfected with either the virus genome alone (Bac-to-Bac(®) or BaculoDirect™, Invitrogen) or virus genome and transfer vector. In the latter case, this allows the natural process of homologous recombination to transfer the foreign gene, under control of the polyhedrin or other baculovirus gene promoter, from the transfer vector to the virus genome to create the recombinant virus. Previously, many methods required a plaque-assay to separate parental and recombinant virus prior to amplification and use of the recombinant virus. Fortunately, this step is no longer required for most systems currently available. This chapter provides an overview of the historical development of increasingly more efficient systems for the isolation of recombinant baculoviruses (Chapter 3 provides a full account of the different systems and transfer vectors available). The practical details cover: transfection of insect cells with either virus DNA or virus DNA and plasmid transfer vector; a reliable plaque-assay method that can be used to separate recombinant virus from parental (nonrecombinant) virus where this is necessary; methods for the small-scale amplification of recombinant virus; and subsequent titration by plaque-assay or real-time polymerase chain reaction (PCR). Methods unique to the Bac-to-Bac(®) system are also covered and include the transformation of bacterial cells and isolation of bacmid DNA ready for transfection of insect cells.

  7. A glycosylated recombinant human granulocyte colony stimulating factor produced in a novel protein production system (AVI-014) in healthy subjects: a first-in human, single dose, controlled study.

    PubMed

    Varki, Roslyn; Pequignot, Ed; Leavitt, Mark C; Ferber, Andres; Kraft, Walter K

    2009-01-28

    AVI-014 is an egg white-derived, recombinant, human granulocyte colony-stimulating factor (G-CSF). This healthy volunteer study is the first human investigation of AVI-014. 24 male and female subjects received a single subcutaneous injection of AVI-014 at 4 or 8 mcg/kg. 16 control subjects received 4 or 8 mcg/kg of filgrastim (Neupogen, Amgen) in a partially blinded, parallel fashion. The Geometric Mean Ratio (GMR) (90% CI) of 4 mcg/kg AVI-014/filgrastim AUC(0-72 hr) was 1.00 (0.76, 1.31) and Cmax was 0.86 (0.66, 1.13). At the 8 mcg/kg dose, the AUC(0-72) GMR was 0.89 (0.69, 1.14) and Cmax was 0.76 (0.58, 0.98). A priori pharmacokinetic bioequivalence was defined as the 90% CI of the GMR bounded by 0.8-1.25. Both the white blood cell and absolute neutrophil count area under the % increase curve AUC(0-9 days) and Cmax (maximal % increase from baseline)GMR at 4 and 8 mcg/kg fell within the 0.5-2.0 a priori bound set for pharmacodynamic bioequivalence. The CD 34+ % increase curve AUC(0-9 days) and Cmax GMR for both doses was approximately 1, but 90% confidence intervals were large due to inherent variance, and this measure did not meet pharmacodynamic bioequivalence. AVI-014 demonstrated a side effect profile similar to that of filgrastim. AVI-014 has safety, pharmacokinetic, and pharmacodynamic properties comparable to filgrastim at an equal dose in healthy volunteers. These findings support further investigation in AVI-014.

  8. A glycosylated recombinant human granulocyte colony stimulating factor produced in a novel protein production system (AVI-014) in healthy subjects: a first-in human, single dose, controlled study

    PubMed Central

    Varki, Roslyn; Pequignot, Ed; Leavitt, Mark C; Ferber, Andres; Kraft, Walter K

    2009-01-01

    Background AVI-014 is an egg white-derived, recombinant, human granulocyte colony-stimulating factor (G-CSF). This healthy volunteer study is the first human investigation of AVI-014. Methods 24 male and female subjects received a single subcutaneous injection of AVI-014 at 4 or 8 mcg/kg. 16 control subjects received 4 or 8 mcg/kg of filgrastim (Neupogen, Amgen) in a partially blinded, parallel fashion. Results The Geometric Mean Ratio (GMR) (90% CI) of 4 mcg/kg AVI-014/filgrastim AUC(0–72 hr) was 1.00 (0.76, 1.31) and Cmax was 0.86 (0.66, 1.13). At the 8 mcg/kg dose, the AUC(0–72) GMR was 0.89 (0.69, 1.14) and Cmax was 0.76 (0.58, 0.98). A priori pharmacokinetic bioequivalence was defined as the 90% CI of the GMR bounded by 0.8–1.25. Both the white blood cell and absolute neutrophil count area under the % increase curve AUC(0–9 days) and Cmax (maximal % increase from baseline)GMR at 4 and 8 mcg/kg fell within the 0.5–2.0 a priori bound set for pharmacodynamic bioequivalence. The CD 34+ % increase curve AUC(0–9 days) and Cmax GMR for both doses was ~1, but 90% confidence intervals were large due to inherent variance, and this measure did not meet pharmacodynamic bioequivalence. AVI-014 demonstrated a side effect profile similar to that of filgrastim. Conclusion AVI-014 has safety, pharmacokinetic, and pharmacodynamic properties comparable to filgrastim at an equal dose in healthy volunteers. These findings support further investigation in AVI-014. PMID:19175929

  9. Microbial factories for recombinant pharmaceuticals

    PubMed Central

    Ferrer-Miralles, Neus; Domingo-Espín, Joan; Corchero, José Luis; Vázquez, Esther; Villaverde, Antonio

    2009-01-01

    Most of the hosts used to produce the 151 recombinant pharmaceuticals so far approved for human use by the Food and Drug Administration (FDA) and/or by the European Medicines Agency (EMEA) are microbial cells, either bacteria or yeast. This fact indicates that despite the diverse bottlenecks and obstacles that microbial systems pose to the efficient production of functional mammalian proteins, namely lack or unconventional post-translational modifications, proteolytic instability, poor solubility and activation of cell stress responses, among others, they represent convenient and powerful tools for recombinant protein production. The entering into the market of a progressively increasing number of protein drugs produced in non-microbial systems has not impaired the development of products obtained in microbial cells, proving the robustness of the microbial set of cellular systems (so far Escherichia coli and Saccharomyces cerevisae) developed for protein drug production. We summarize here the nature, properties and applications of all those pharmaceuticals and the relevant features of the current and potential producing hosts, in a comparative way. PMID:19317892

  10. Genome Scale Patterns of Recombination between Coinfecting Vaccinia Viruses

    PubMed Central

    Qin, Li

    2014-01-01

    ABSTRACT Recombination plays a critical role in virus evolution. It helps avoid genetic decline and creates novel phenotypes. This promotes survival, and genome sequencing suggests that recombination has facilitated the evolution of human pathogens, including orthopoxviruses such as variola virus. Recombination can also be used to map genes, but although recombinant poxviruses are easily produced in culture, classical attempts to map the vaccinia virus (VACV) genome this way met with little success. We have sequenced recombinants formed when VACV strains TianTan and Dryvax are crossed under different conditions. These were a single round of growth in coinfected cells, five rounds of sequential passage, or recombinants obtained using leporipoxvirus-mediated DNA reactivation. Our studies showed that recombinants contain a patchwork of DNA, with the number of exchanges increasing with passage. Further passage also selected for TianTan DNA and correlated with increased plaque size. The recombinants produced through a single round of coinfection contain a disproportionate number of short conversion tracks (<1 kbp) and exhibited 1 exchange per 12 kbp, close to the ∼1 per 8 kbp in the literature. One by-product of this study was that rare mutations were also detected; VACV replication produces ∼1 × 10−8 mutation per nucleotide copied per cycle of replication and ∼1 large (21 kbp) deletion per 70 rounds of passage. Viruses produced using DNA reactivation appeared no different from recombinants produced using ordinary methods. An attractive feature of this approach is that when it is combined with selection for a particular phenotype, it provides a way of mapping and dissecting more complex virus traits. IMPORTANCE When two closely related viruses coinfect the same cell, they can swap genetic information through a process called recombination. Recombination produces new viruses bearing different combinations of genes, and it plays an important role in virus

  11. Recombinant DNA technology in apple.

    PubMed

    Gessler, Cesare; Patocchi, Andrea

    2007-01-01

    This review summarizes the achievements of almost 20 years of recombinant DNA technology applied to apple, grouping the research results into the sections: developing the technology, insect resistance, fungal disease resistance, self-incompatibility, herbicide resistance, fire blight resistance, fruit ripening, allergens, rooting ability, and acceptance and risk assessment. The diseases fire blight, caused by Erwinia amylovora, and scab, caused by Venturia inaequalis, were and still are the prime targets. Shelf life improvement and rooting ability of rootstocks are also relevant research areas. The tools to create genetically modified apples of added value to producers, consumers, and the environment are now available.

  12. Recombination and Replication

    PubMed Central

    Syeda, Aisha H.; Hawkins, Michelle; McGlynn, Peter

    2014-01-01

    The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA. PMID:25341919

  13. Homologous recombination using bacterial artificial chromosomes.

    PubMed

    Lai, Cary; Fischer, Tobias; Munroe, Elizabeth

    2015-02-02

    This protocol introduces the technique of homologous recombination in bacteria to insert a linear DNA fragment into bacterial artificial chromosomes (BACs). Homologous recombination allows the modification of large DNA molecules, in contrast with conventional restriction endonuclease-based strategies, which cleave large DNAs into numerous fragments and are unlikely to permit the precise targeting afforded by recombination-based approaches. The method uses a phage lambda-derived recombination system (using exo, beta, and gam) as well as other enzymatic activities provided by the host (Escherichia coli). In the method described here, a DNA fragment encoding enhanced cyan fluorescent protein is inserted immediately after the start codon of the gene encoding choline acetyltransferase ("ChAT"), the final enzyme in acetylcholine biosynthesis, using homologous recombination between sequences that are present both on the introduced DNA fragment and in the target BAC. The desired recombination products are identified via positive selection for resistance to kanamycin. In principle, the resulting modified BAC could be used to produce transgenic mice that express this fluorescent protein in cholinergic neurons. The approach described here could be used to insert any DNA fragment.

  14. Surface recombination in semiconductors

    SciTech Connect

    Langer, J.M.; Walukiewicz, W.

    1995-07-01

    We propose two general criteria for a surface defect state to act as an efficient, nonradiative recombination center. The first is that the thermal ionization energy should not deviate from the mid-gap energy by more than the relaxation energy of the defect, In this case the activation energy for the recombination is given by the barrier for the capture of the first carrier, whereas the second carrier is captured athermally. The second citerion is related to the position of the average dangling bond energy relative to the band edges. If, as in the cases of InP or InAs, it is located close to a band edge, a low surface recombination velocity is expected. However a much faster recombination is predicated and experimentally observed in the materials with the average dangling bond energy located close to the mid-gap. The relevance of these criteria for the novel wide-gap optoelectronic materials is discussed.

  15. Multiphoton Assisted Recombination

    NASA Astrophysics Data System (ADS)

    Shuman, E. S.; Jones, R. R.; Gallagher, T. F.

    2008-12-01

    We have observed multiphoton assisted recombination in the presence of a 38.8 GHz microwave field. Stimulated emission of up to ten microwave photons results in energy transfer from continuum electrons, enabling recombination. The maximum electron energy loss is far greater than the 2Up predicted by the standard “simpleman’s” model. The data are well reproduced by both an approximate analytic expression and numerical simulations in which the combined Coulomb and radiation fields are taken into account.

  16. Recombination and chromosome segregation.

    PubMed Central

    Sherratt, David J; Søballe, Britta; Barre, François-Xavier; Filipe, Sergio; Lau, Ivy; Massey, Thomas; Yates, James

    2004-01-01

    The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated. PMID:15065657

  17. Influence of protein formulation and carrier solution on asymmetrical flow field-flow fractionation: a case study of the plant-produced recombinant anthrax protective antigen pp-PA83.

    PubMed

    Palais, Caroline; Chichester, Jessica A; Manceva, Slobodanka; Yusibov, Vidadi; Arvinte, Tudor

    2015-02-01

    Asymmetrical flow field-flow fractionation (afFFF) was used to investigate the properties of a plant-produced anthrax toxin protective antigen, pp-PA83. The afFFF fractogram consisted of two main peaks with molar masses similar to the molecular mass of pp-PA83 monomer. afFFF carrier solutions strongly influenced the ratio and the intensity of the two main peaks. These differences indicate that conformation changes in the pp-PA83 molecule occurred during the afFFF analysis. Similar fractograms were obtained for different pp-PA83 formulations when the afFFF carrier solution and the protein formulation were the same (or very similar). The data show that in specific cases, afFFF could be used to study protein conformation and document the importance of studying the influence of the carrier solution on afFFF.

  18. Preparation of recombinant alpha-thrombin: high-level expression of recombinant human prethrombin-2 and its activation by recombinant ecarin.

    PubMed

    Yonemura, Hiroshi; Imamura, Takayuki; Soejima, Kenji; Nakahara, Yo; Morikawa, Wataru; Ushio, Yoshitaka; Kamachi, Yasuharu; Nakatake, Hiroshi; Sugawara, Keishin; Nakagaki, Tomohiro; Nozaki, Chikateru

    2004-05-01

    We have established a large-scale manufacturing system to produce recombinant human alpha-thrombin. In this system, a high yield of alpha-thrombin is prepared from prethrombin-2 activated by recombinant ecarin. We produced human prethrombin-2 using mouse myeloma cells and an expression plasmid carrying the chicken beta-actin promoter and mutant dihydrofolate reductase gene for gene amplification. To increase prethrombin-2 expression further, we performed fed-batch cultivation with the addition of vegetable peptone in 50 liters of suspension culture. After five feedings of vegetable peptone, the expression level of the recombinant prethrombin-2 reached 200 micro g/ml. Subsequently, the recombinant prethrombin-2 could be activated to alpha-thrombin by recombinant ecarin expressed in a similar manner. Finally, recombinant alpha-thrombin was purified to homogeneity by affinity chromatography using a benzamidine-Sepharose gel. The yield from prethrombin-2 in culture medium was approximately 70%. The activity of the purified recombinant alpha-thrombin, including hydrolysis of a chromogenic substrate, release of fibrinopeptide A, and activation of protein C, was indistinguishable from that of plasma-derived alpha-thrombin. Our system is suitable for the large-scale production of recombinant alpha-thrombin, which can be used in place of clinically available alpha-thrombin derived from human or bovine plasma.

  19. Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency.

    PubMed

    Esch, Elisabeth; Szymaniak, Jessica M; Yates, Heather; Pawlowski, Wojciech P; Buckler, Edward S

    2007-11-01

    Recombination is a crucial component of evolution and breeding, producing new genetic combinations on which selection can act. Rates of recombination vary tremendously, not only between species but also within species and for specific chromosomal segments. In this study, by examining recombination events captured in recombinant inbred mapping populations previously created for maize, wheat, Arabidopsis, and mouse, we demonstrate that substantial variation exists for genomewide crossover rates in both outcrossed and inbred plant and animal species. We also identify quantitative trait loci (QTL) that control this variation. The method that we developed and employed here holds promise for elucidating factors that regulate meiotic recombination and for creation of hyperrecombinogenic lines, which can help overcome limited recombination that hampers breeding progress.

  20. Utilization of Site-Specific Recombination in Biopharmaceutical Production

    PubMed Central

    Ahmadi, Maryam; Damavandi, Narges; Akbari, Mohammad Reza; Davami, Fatemeh

    2016-01-01

    Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and process development, expression level is unpredictable and unstable because of the random location of integration in the genome. Site-specific recombination techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant protein production by specifically inserting a vector at a locus with specific expression trait. The present review focused on the latest developments in site-specific recombination techniques, their specific features and comparisons. PMID:26602035

  1. Utilization of Site-Specific Recombination in Biopharmaceutical Production.

    PubMed

    Ahmadi, Maryam; Damavandi, Narges; Akbari Eidgahi, Mohammad Reza; Davami, Fatemeh

    2016-01-01

    Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and process development, expression level is unpredictable and unstable because of the random location of integration in the genome. Site-specific recombination techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant protein production by specifically inserting a vector at a locus with specific expression trait. The present review focused on the latest developments in site-specific recombination techniques, their specific features and comparisons.

  2. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  3. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  4. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  5. Fundamental Studies of Recombinant Hydrogenases

    SciTech Connect

    Adams, Michael W

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  6. Production of a recombinant full-length prion protein in a soluble form without refolding or detergents.

    PubMed

    Arii, Yasuhiro; Oshiro, Satoshi; Wada, Keita; Fukuoka, Shin-ichi

    2011-01-01

    Recombinant prion protein has been produced in insoluble form and refolded following solubilization with denaturants. It is, however, preferable to use a soluble recombinant protein prepared without artificial solubilization. In this study, a soluble recombinant prion protein was produced in Escherichia coli cells by coexpression of neuregulin I-β1 and purified to high purity.

  7. Dissociative recombination in planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1993-01-01

    Ionization in planetary atmospheres can be produced by solar photoionization, photoelectron impact ionization, and, in auroral regions, by impact of precipitating particles. This ionization is lost mainly in dissociative recombination (DR) of molecular ions. Although atomic ions cannot undergo DR, they can be transformed locally through ion-molecule reactions into molecular ions, or they may be transported vertically or horizontally to regions of the atmosphere where such transformations are possible. Because DR reactions tend to be very exothermic, they can be an important source of kinetically or internally excited fragments. In interplanetary thermospheres, the neutral densities decrease exponentially with altitude. Below the homopause (or turbopause), the atmosphere is assumed to be throughly mixed by convection and/or turbulence. Above the homopause, diffusion is the major transport mechanism, and each species is distributed according to its mass, with the logarithmic derivative of the density with repect to altitude given approximately by -1/H, where H = kT/mg is the scale height. In this expression, T is the neutral temperature, g is the local acceleratiion of gravity, and m is the mass of the species. Thus lighter species become relatively more abundant, and heavier species less abundant, as the altitude increases. This variation of the neutral composition can lead to changes in the ion composition; furthermore, as the neutral densities decrease, dissociative recombination becomes more important relative to ion-neutral reactions as a loss mechanism for molecular ions.

  8. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  9. Recombinant expression of hydroxylated human collagen in Escherichia coli.

    PubMed

    Rutschmann, Christoph; Baumann, Stephan; Cabalzar, Jürg; Luther, Kelvin B; Hennet, Thierry

    2014-05-01

    Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.

  10. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  11. The dissociative recombination of ?

    NASA Astrophysics Data System (ADS)

    Laubé, S.; Lehfaoui, L.; Rowe, B. R.; Mitchell, J. B. A.

    1998-09-01

    The dissociative recombination rate coefficient for 0953-4075/31/18/016/img2 has been measured at 300 K using a flowing afterglow Langmuir probe-mass spectrometer apparatus. A value of 0953-4075/31/18/016/img3 has been found.

  12. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  13. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  14. Recombineering linear BACs.

    PubMed

    Chen, Qingwen; Narayanan, Kumaran

    2015-01-01

    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

  15. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  16. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  17. Nascent Vibrational/Rotational Distribution Produced by Hydrogen Atom Recombination.

    DTIC Science & Technology

    1988-02-01

    12. PERSONAL AUTHOR(S) WoiAn0 13a.TYP OF E OT 13b. TIME COVERED , 14. PA.TE OF REPORT (~r, Month, Day) i5P4Ca COUNT 13.TP F EOT - FROM TO / Albury10 I...UNCLASSIFIED V%-’.- . ~ -d,𔃿.. 5. 5 ~ ~ .2-~’~- ’~ ~% %J’ % ’ ’ P ’.k PREFACE I This program was initiated with support from J. Pollard and R. Cohen. L. Friesen ...Probabilities for Final Vibrational/Rotational State Formed from Initial ’Resonance State v - 13, J - 8 for Initial E /k - 50 K ......... 16 2

  18. Method for producing aldehyde from CO.sub.2

    SciTech Connect

    Liao, James C.; Atsumi, Shota

    2015-09-29

    The invention provides recombinant microorganisms capable of producing isobutyraldehyde using CO.sub.2 as a carbon source. The invention further provides methods of preparing and using such microorganisms to produce isobutyraldehyde.

  19. Purification of soluble recombinant human FcgammaRII (CD32).

    PubMed

    Gruel, N; Chapiro, J; Fridman, W H; Teillaud, J L

    2001-11-01

    The present study describes the methodology used to purify human recombinant low-affinity FcgammaRIIa2 produced in E. coli and to evaluate its binding to surface IgG. The recombinant molecule was purified by a two-step chromatographic procedure, including affinity chromatography using IV.3 anti-FcgammaRIIa1/2 immunosorbent, followed by gel filtration chromatography. Using this method, the purified recombinant FcgammaRIIa2 was 99% pure. It exhibited an isoeletric point of 5.2. Binding studies demonstrated a specific binding of the purified recombinant molecule to surface IgG expressed by human B cells. Thus, we have set up a method which allows to purify functional human recombinant FcgammaRIIa2 for further characterization of its biological activities.

  20. Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins.

    PubMed

    Vallin, Carlos; Ramos, Astrid; Pimienta, Elsa; Rodríguez, Caridad; Hernández, Tairí; Hernández, Ivones; Del Sol, Ricardo; Rosabal, Grisel; Van Mellaert, Lieve; Anné, Jozef

    2006-01-01

    The 45/47 kDa APA protein (Rv1860) of Mycobacterium tuberculosis was produced by Streptomyces lividans. The recombinant protein could be recovered from the culture medium of an S. lividans clone containing the apa gene under control of the promoter and signal sequence of the Streptomyces coelicolor agarase gene. The recombinant protein production was further scaled-up using fermentation conditions. The APA protein was subsequently purified from the culture supernatant by means of immunochromatography. About 80 mg of recombinant protein were obtained per liter of culture media. In vivo tests with the APA protein purified from S. lividans TK24/pRGAPA1 revealed that the recombinant protein was antigenic and could induce high titers of specific antibodies in the mouse biological model. Results obtained concerning heterologous production of APA, its immunogenic and antigenic capacity, demonstrated the potential of S. lividans as a valuable host for the production of recombinant proteins from M. tuberculosis.

  1. Sex recombination, and reproductive fitness: an experimental study using Paramecium

    SciTech Connect

    Nyberg, D.

    1982-08-01

    The effect of sex and recombination on reproductive fitness are measured using five wild stocks of Paramecium primaurelia. Among the wild stocks there were highly significant differences in growth rates. No hybrid had as low a fitness as the least fit parental stock. Recombination produced genotypes of higher fitness than those of either parent only in the cross between the two stocks of lowest fitness. The increase in variance of fitness as a result of recombination was almost exclusively attributable to the generation lines with low fitness. The fitness consequences of sexuality and mate choice were stock specific; some individuals leaving the most descendants by inbreeding, others by outcrossing. For most crosses the short-term advantage of sex, if any, accrue from the fusion of different gametes (hybrid vigor) and not from recombination. Since the homozygous genotype with the highest fitnes left the most progeny by inbreeding (no recombination), the persistence of conjugation in P. primaurelia is paradoxical. (JMT)

  2. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  3. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  4. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  5. Recombinant human milk proteins.

    PubMed

    Lönnerdal, Bo

    2006-01-01

    Human milk provides proteins that benefit newborn infants. They not only provide amino acids, but also facilitate the absorption of nutrients, stimulate growth and development of the intestine, modulate immune function, and aid in the digestion of other nutrients. Breastfed infants have a lower prevalence of infections than formula-fed infants. Since many women in industrialized countries choose not to breastfeed, and an increasing proportion of women in developing countries are advised not to breastfeed because of the risk of HIV transmission, incorporation of recombinant human milk proteins into infant foods is likely to be beneficial. We are expressing human milk proteins known to have anti-infective activity in rice. Since rice is a normal constituent of the diet of infants and children, limited purification of the proteins is required. Lactoferrin has antimicrobial and iron-binding activities. Lysozyme is an enzyme that is bactericidal and also acts synergistically with lactoferrin. These recombinant proteins have biological activities identical to their native counterparts. They are equally resistant to heat processing, which is necessary for food applications, and to acid and proteolytic enzymes which are needed to maintain their biological activity in the gastrointestinal tract of infants. These recombinant human milk proteins may be incorporated into infant formulas, baby foods and complementary foods, and used with the goal to reduce infectious diseases.

  6. Genetic Modification of Recombination Rate in TRIBOLIUM CASTANEUM

    PubMed Central

    Dewees, Andrew A.

    1975-01-01

    Asymmetrical responses were obtained in a replicated study of 15 generations of two-way selection for recombination rate between the ruby (rb) and jet (j) loci in Tribolium castaneum. Recombination rates in the two replicate high lines increased from an average of 0.22 in the base populations to an average of 0.42 at generation 15. Recombination rate pooled over the 15 generations of selection in each low line was significantly less than the control but there was no clear downward trend in response to selection for decreased recombination rate. The realized heritabilities were 0.16 ± 0.03 and 0.17 ± 0.02 in the two high lines, and were not significantly different from zero in the two low lines. Selection was based on crossing over in cis females only; however, rates measured in cis males after 12 generations showed the same response patterns as female rates. Similar response patterns were also determined for recombination measured in trans males and females at generation 18 following three generations of relaxed selection. The distribution of recombination rates measured in backcross beetles [(H x L) x H and (H x L) x L] at generation 12 indicated polygenic control with those genes decreasing recombination rate being dominant. Detailed analysis of recombination rates in F1's produced by interline crosses at generation 15 confirmed the directional dominance findings. Under a polygenic model of recombination modifiers in which low recombination is dominant to high, average recombination rates will increase as inbreeding progresses, thus providing a mechanism for the production of new gene combinations in small populations. PMID:1205134

  7. Cell biology of mitotic recombination.

    PubMed

    Lisby, Michael; Rothstein, Rodney

    2015-03-02

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.

  8. Cell Biology of Mitotic Recombination

    PubMed Central

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination. PMID:25731763

  9. Recombinant Allergens in Structural Biology, Diagnosis, and Immunotherapy

    PubMed Central

    Tscheppe, Angelika; Breiteneder, Heimo

    2017-01-01

    The years 1988–1995 witnessed the beginning of allergen cloning and the generation of recombinant allergens, which opened up new avenues for the diagnosis and research of human allergic diseases. Most crystal and solution structures of allergens have been obtained using recombinant allergens. Structural information on allergens allows insights into their evolutionary biology, illustrates clinically observed cross-reactivities, and makes the design of hypoallergenic derivatives for allergy vaccines possible. Recombinant allergens are widely used in molecule-based allergy diagnosis such as protein microarrays or suspension arrays. Recombinant technologies have been used to produce well-characterized, noncontaminated vaccine components with known biological activities including a variety of allergen derivatives with reduced IgE reactivity. Such recombinant hypoallergens as well as wild-type recombinant allergens have been used successfully in several immunotherapy trials for more than a decade to treat birch and grass pollen allergy. As a more recent application, the development of antibody repertoires directed against conformational epitopes during immunotherapy has been monitored by recombinant allergen chimeras. Although much progress has been made, the number and quality of recombinant allergens will undoubtedly increase and keep improving our knowledge in basic scientific investigations, diagnosis, and therapy of human allergic diseases. PMID:28467993

  10. Recombinant Allergens in Structural Biology, Diagnosis, and Immunotherapy.

    PubMed

    Tscheppe, Angelika; Breiteneder, Heimo

    2017-01-01

    The years 1988-1995 witnessed the beginning of allergen cloning and the generation of recombinant allergens, which opened up new avenues for the diagnosis and research of human allergic diseases. Most crystal and solution structures of allergens have been obtained using recombinant allergens. Structural information on allergens allows insights into their evolutionary biology, illustrates clinically observed cross-reactivities, and makes the design of hypoallergenic derivatives for allergy vaccines possible. Recombinant allergens are widely used in molecule-based allergy diagnosis such as protein microarrays or suspension arrays. Recombinant technologies have been used to produce well-characterized, noncontaminated vaccine components with known biological activities including a variety of allergen derivatives with reduced IgE reactivity. Such recombinant hypoallergens as well as wild-type recombinant allergens have been used successfully in several immunotherapy trials for more than a decade to treat birch and grass pollen allergy. As a more recent application, the development of antibody repertoires directed against conformational epitopes during immunotherapy has been monitored by recombinant allergen chimeras. Although much progress has been made, the number and quality of recombinant allergens will undoubtedly increase and keep improving our knowledge in basic scientific investigations, diagnosis, and therapy of human allergic diseases. © 2017 The Author(s) Published by S. Karger AG, Basel.

  11. Dissection of Mycobacterium tuberculosis antigens using recombinant DNA.

    PubMed Central

    Young, R A; Bloom, B R; Grosskinsky, C M; Ivanyi, J; Thomas, D; Davis, R W

    1985-01-01

    A recombinant DNA strategy has been used systematically to survey the Mycobacterium tuberculosis genome for sequences that encode specific antigens detected by monoclonal antibodies. M. tuberculosis genomic DNA fragments with randomly generated endpoints were used to construct a large lambda gt11 recombinant DNA expression library. Sufficient numbers of recombinants were produced to contain inserts whose endpoints occur at nearly every base pair in the pathogen genome. Protein antigens specified by linear segments of pathogen DNA and produced by the recombinant phage of Escherichia coli were screened with monoclonal antibody probes. This approach was coupled with an improved detection method for gene isolation using antibodies to clonally isolate DNA sequences that specify polypeptide components of M. tuberculosis. The methodology described here, which is applicable to other pathogens, offers possibilities for the development of more sensitive and specific immunodiagnostic and seroepidemiological tests for tuberculosis and, ultimately, for the development of more effective vaccines. Images PMID:2581251

  12. Clinical experience with recombinant molecules for allergy vaccination.

    PubMed

    Cromwell, Oliver; Niederberger, Verena; Horak, Friedrich; Fiebig, Helmut

    2011-01-01

    Numerous allergens have been cloned and produced by the use of recombinant DNA technology. In several cases recombinant variants with reduced IgE-reactivity have also been developed as candidates for allergen specific immunotherapy. Only very few of these proteins have as yet been tested in the clinic, and the major focus has been on birch and grass pollen, two of the most common causes of IgE-mediated allergic disease. This article serves to justify the rational for using recombinant products and reviews the progress that has been made to date with their clinical assessment.

  13. Recombination events that activate, diversify, and delete immunoglobulin genes.

    PubMed

    Leder, P; Max, E E; Seidman, J G; Kwan, S P; Scharff, M; Nau, M; Norman, B

    1981-01-01

    Immunoglobulin kappa light-chain diversity arises, in large part, from an array of germ-line V-region genes that undergo somatic recombination with one of four active J-region segments. The diversity provided by this combinational system is increased by a recombination mechanism that allows variation of crossover points so as to generate additional diversity at a critical region of the light chain. The elaborate mechanism for generating diversity is accompanied not only by considerable waste, in terms of unused V and J regions in a given cell, but also by a range of aberrant recombinants that fail to produce active immunoglobulin genes.

  14. Recombinant CBM-fusion technology - Applications overview.

    PubMed

    Oliveira, Carla; Carvalho, Vera; Domingues, Lucília; Gama, Francisco M

    2015-01-01

    Carbohydrate-binding modules (CBMs) are small components of several enzymes, which present an independent fold and function, and specific carbohydrate-binding activity. Their major function is to bind the enzyme to the substrate enhancing its catalytic activity, especially in the case of insoluble substrates. The immense diversity of CBMs, together with their unique properties, has long raised their attention for many biotechnological applications. Recombinant DNA technology has been used for cloning and characterizing new CBMs. In addition, it has been employed to improve the purity and availability of many CBMs, but mainly, to construct bi-functional CBM-fused proteins for specific applications. This review presents a comprehensive summary of the uses of CBMs recombinantly produced from heterologous organisms, or by the original host, along with the latest advances. Emphasis is given particularly to the applications of recombinant CBM-fusions in: (a) modification of fibers, (b) production, purification and immobilization of recombinant proteins, (c) functionalization of biomaterials and (d) development of microarrays and probes.

  15. Elimination kinetic of recombinant somatotropin in bovine.

    PubMed

    Le Breton, Marie-Hélène; Rochereau-Roulet, Sandrine; Pinel, Gaud; Cesbron, Nora; Le Bizec, Bruno

    2009-04-01

    Bovine somatotropin (bST), also called growth hormone is a protein hormone produced by the pituitary gland and responsible directly or indirectly for various effects on growth, development and reproductive functions. Its recombinant bovine somatotropin form (rbST) is used in dairy cattle to enhance milk production. Even if the effects of treatment with rbST have been largely studied, until now analytical methods able to detect rbST were limited to immunoassays, which suffer from the impossibility to distinguish between the endogenous and the recombinant form. In this study, a sample preparation procedure based on different precipitation steps, extraction on solid phase and enzymatic digestion was used to purify rbST from serum. The detection was performed by liquid chromatography coupled to tandem mass spectrometry in positive electrospray ionization mode (LC-ESI(+)-MS/MS) allowing the unambiguous identification and quantification of rbST in serum. Samples collected from a cow treated with recombinant bovine somatotropin were analysed and for the first time, the elimination kinetic specific to recombinant somatotropin has been characterized in serum. Detection of rbST was possible from 4h 30min to 4 days after administration and concentration was found up to 10ngmL(-1) during the kinetic.

  16. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  17. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF.

  18. Green factory: plants as bioproduction platforms for recombinant proteins.

    PubMed

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success.

  19. Fibroblast interleukin 1 beta: synergistic stimulation by recombinant interleukin 1 and tumor necrosis factor and posttranscriptional regulation.

    PubMed Central

    Elias, J A; Reynolds, M M; Kotloff, R M; Kern, J A

    1989-01-01

    To understand the role fibroblasts play in mediating and amplifying the effects of inflammatory cytokines, we determined whether recombinant interleukin 1 (IL-1) and recombinant tumor necrosis factor (TNF), alone and in combination, stimulated fibroblasts to produce IL-1 beta. Recombinant IL-1 (alpha and beta) stimulated fibroblast IL-1 beta mRNA accumulation, whereas recombinant TNF did not. In addition, simultaneous stimulation with recombinant IL-1 (alpha or beta) and recombinant TNF resulted in a synergistic increase in IL-1 beta mRNA levels. However, in all cases, IL-1 beta mRNA accumulation was not associated with fibroblast production of soluble IL-1 beta protein. Lysates of unstimulated, recombinant IL-1-stimulated, and recombinant TNF-stimulated fibroblasts did not contain IL-1 beta prohormone. In contrast, IL-1 beta prohormone was detected in lysates of fibroblasts incubated simultaneously with recombinant IL-1 and recombinant TNF. These studies demonstrate that recombinant IL-1 stimulates fibroblast IL-1 beta mRNA accumulation and that recombinant IL-1 and recombinant TNF synergize to further up-regulate IL-1 beta mRNA levels. In addition, they show that IL-1 beta production by human lung fibroblasts is inhibited at a posttranscriptional level. Translational control appears to be important in recombinant IL-1-stimulated fibroblasts and posttranslational control is important in fibroblasts stimulated simultaneously with recombinant IL-1 and recombinant TNF. Images PMID:2788284

  20. Recombinant Protein Production by In Vivo Polymer Inclusion Display ▿

    PubMed Central

    Grage, Katrin; Peters, Verena; Rehm, Bernd H. A.

    2011-01-01

    A novel approach to produce purified recombinant proteins was established. The target protein is produced as polyhydroxyalkanoate (PHA) synthase fusion protein, which mediates intracellular formation of PHA inclusions displaying the target protein. After isolation of the PHA inclusions, the pure target protein was released by simple enterokinase digestion. PMID:21803888

  1. Orientation Dependence in Homologous Recombination

    PubMed Central

    Yamamoto, K.; Takahashi, N.; Fujitani, Y.; Yoshikura, H.; Kobayashi, I.

    1996-01-01

    Homologous recombination was investigated in Escherichia coli with two plasmids, each carrying the homologous region (two defective neo genes, one with an amino-end deletion and the other with a carboxyl-end deletion) in either direct or inverted orientation. Recombination efficiency was measured in recBC sbcBC and recBC sbcA strains in three ways. First, we measured the frequency of cells carrying neo(+) recombinant plasmids in stationary phase. Recombination between direct repeats was much more frequent than between inverted repeats in the recBC sbcBC strain but was equally frequent in the two substrates in the recBC sbcA strain. Second, the fluctuation test was used to exclude bias by a rate difference between the recombinant and parental plasmids and led to the same conclusion. Third, direct selection for recombinants just after transformation with or without substrate double-strand breaks yielded essentially the same results. Double-strand breaks elevated recombination in both the strains and in both substrates. These results are consistant with our previous findings that the major route of recombination in recBC sbcBC strains generates only one recombinant DNA from two DNAs and in recBC sbcA strains generates two recombinant DNAs from two DNAs. PMID:8722759

  2. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes.

    PubMed Central

    Zieg, J; Maples, V F; Kushner, S R

    1978-01-01

    Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products. PMID:350859

  3. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  4. Recombinant electric storage battery

    SciTech Connect

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  5. Hyaluronic acid production by recombinant Lactococcus lactis.

    PubMed

    Chien, Liang-Jung; Lee, Cheng-Kang

    2007-11-01

    Microbial hyaluronic acid (HA), commonly produced by pathogenic Streptococcus, was made possible to be produced by a generally recognized as safe Lactococcus lactis by coexpressing HA synthase and uridine diphosphate-glucose dehydrogenase (UDP-GlcDH) of Streptococcus equi subsp. zooepidemicus in a nisin-controlled expression (NICE) system. With scarce expressed HA synthase alone, the constructed recombinant L. lactis (LL-NA) strain could produce HA with a concentration about 0.08 g/l in the M17 medium supplemented with 1% (w/v) glucose. In contrast to HA synthase, UDP-GlcDH of Streptococcus could be overexpressed in the NICE system. With coexpression of heterologous UDP-GlcDH with HA synthase, the constructed LL-NAB strain grew slightly slower to a concentration about 10% lower that of the LL-NA strain. However, the HA concentration produced was enhanced about eightfold to 0.65 g/l.

  6. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  7. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  8. Scaling and fractal behaviour underlying meiotic recombination.

    PubMed

    Waxman, D; Stoletzki, N

    2010-01-01

    In this paper we investigate some of the mathematical properties of meiotic recombination. Working within the framework of a genetic model with n loci, where alpha alleles are possible at each locus, we find that the proportion of all possible diploid parental genotypes that can produce a particular haploid gamete is exp[-n log(alpha(2)/[2alpha-1])]. We show that this proportion connects recombination with a fractal geometry of dimension log(2alpha-1)/log(alpha). The fractal dimension of a geometric object manifests itself when it is measured at increasingly smaller length scales. Decreasing the length scale of a geometric object is found to be directly analogous, in a genetics problem, to specifying a multilocus haplotype at a larger number of loci, and it is here that the fractal dimension reveals itself.

  9. Cosmological recombination: feedback of helium photons and its effect on the recombination spectrum

    NASA Astrophysics Data System (ADS)

    Chluba, J.; Sunyaev, R. A.

    2010-02-01

    In this paper, we consider the reprocessing of high-frequency photons emitted by HeII and HeI during the epoch of cosmological recombination by HeI and HI. We demonstrate that, in comparison to computations which neglect all feedback processes, the number of cosmological recombination photons that are related to the presence of helium in the early Universe could be increased by ~40-70 per cent. Our computations imply that per helium nucleus ~3-6 additional photons could be produced. Therefore, a total of ~12-14 helium-related photons per helium atom are emitted during cosmological recombination. This is an important addition to cosmological recombination spectrum which in the future may render it slightly easier to determine the primordial abundance of helium using differential measurements of the cosmic microwave background (CMB) energy spectrum. Also, since these photons are the only witnesses of the feedback process at high redshift, observing them in principle offers a way to check our understanding of the recombination physics. Here, most interestingly, the feedback of HeII photons on HeI leads to the appearance of several additional, rather narrow spectral features in the HeI recombination spectrum at low frequencies. Consequently, the signatures of helium-related features in the CMB spectral distortion from cosmological recombination at some given frequency can exceed the average level of ~17 per cent several times. We find that in particular the bands around ν ~ 10, ~35, ~80 and ~200GHz seem to be affected strongly. In addition, we computed the changes in the cosmological ionization history, finding that only the feedback of primary HeI photons on the dynamics of HeII -> HeI recombination has an effect, producing a change of ΔNe/Ne ~ +0.17 per cent at z ~ 2300. This result seems to be ~2-3 times smaller than the one obtained in earlier computations for this process, however, the difference will not be very important for the analysis of future CMB data.

  10. Three-Body Recombination of Oxygen Atoms

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Kalogerakis, K. S.

    2002-05-01

    Dayside photodissociation of O2 and CO2 in the atmospheres of Earth, Venus, and Mars produces oxygen atoms that eventually undergo three-body recombination O + O + M -> O2* + M The variety of electronic states produced is observable as nightglow emissions, which have been the subject of many laboratory and interpretive investigations. Here we review the current understanding of the overall temperature-dependent rate coefficient for three-body recombination of oxygen atoms and describe a strategy for its measurement. The most recent measurement [1] is almost 30 years old. The most comprehensive review [2] is more than 25 years old and shows that the absolute rate coefficients for recombination and the reverse process, collision-induced dissociation, as well as the dependence on temperature and collider, are poorly determined, in spite of the relatively narrow error bars reported in the various studies. The most recent high-temperature dissociation study [3] actually increases the divergence. We plan experiments with a commercial F2 laser, providing roughly 50 mJ of 157 nm radiation in a 3-4 mm beam, to achieve greater than 80% dissociation of molecular oxygen, in the range from 0.5 to 5 torr. In a high-pressure N2 background (30-200 torr) the oxygen atoms will recombine in a time scale from 0.1 to 10 ms, as monitored by 845 nm fluorescence excited by two photons at 226 nm. [1] I. M. Campbell and C. N. Gray, Chem. Phys. Lett. 18, 607 (1973). [2] D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions Vol. 3 ``Homogeneous Gas Phase Reactions of the O2--O3 System, the CO--O2--H2 System, and of Sulphur-Containing Species," (Butterworths, London, 1976). [3] V. Naudet, S. Abid, and C. E. Paillard, J. Chim. Phys. 96, 1123 (1999).

  11. Recombineering: A Homologous Recombination-Based Method of Genetic Engineering

    PubMed Central

    Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.; Court, Donald L.

    2009-01-01

    Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in E. coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-strand linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted, and regions of bacterial artificial chromosomes (BACs) or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about a week's time. PMID:19180090

  12. Homologous recombination prevents methylation-induced toxicity in Escherichia coli.

    PubMed

    Nowosielska, Anetta; Smith, Stephen A; Engelward, Bevin P; Marinus, M G

    2006-01-01

    Methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methane sulfonate (MMS) produce a wide variety of N- and O-methylated bases in DNA, some of which can block replication fork progression. Homologous recombination is a mechanism by which chromosome replication can proceed despite the presence of lesions. The two major recombination pathways, RecBCD and RecFOR, which repair double-strand breaks (DSBs) and single-strand gaps respectively, are needed to protect against toxicity with the RecBCD system being more important. We find that recombination-deficient cell lines, such as recBCD recF, and ruvC recG, are as sensitive to the cytotoxic effects of MMS and MNNG as the most base excision repair (BER)-deficient (alkA tag) isogenic mutant strain. Recombination and BER-deficient double mutants (alkA tag recBCD) were more sensitive to MNNG and MMS than the single mutants suggesting that homologous recombination and BER play essential independent roles. Cells deleted for the polA (DNA polymerase I) or priA (primosome) genes are as sensitive to MMS and MNNG as alkA tag bacteria. Our results suggest that the mechanism of cytotoxicity by alkylating agents includes the necessity for homologous recombination to repair DSBs and single-strand gaps produced by DNA replication at blocking lesions or single-strand nicks resulting from AP-endonuclease action.

  13. Primordial magnetogenesis before recombination

    NASA Astrophysics Data System (ADS)

    Fabre, Ophélia; Shankaranarayanan, S.

    2016-04-01

    The origin of large magnetic fields in the Universe remains currently unknown. We investigate here a mechanism before recombination based on known physics. The source of the vorticity is due to the changes in the photon distribution function caused by the fluctuations in the background photons. We show that the magnetic field generated in the MHD limit, due to the Coulomb scattering, is of the order 10-49 G on a coherence scale of 10 kpc. We explicitly show that the magnetic fields generated from this process are sustainable and are not erased by resistive diffusion. We compare the results with current observations and discuss the implications. Our seed magnetic fields are generated on small scales whereas the main mechanisms studied in the literature are on scale bigger than 1 Mpc. However, compared to more exotic theories generating seed magnetic fields on similar scales, the strength of our fields are generally smaller.

  14. Demystified...recombinant antibodies.

    PubMed

    Smith, K A; Nelson, P N; Warren, P; Astley, S J; Murray, P G; Greenman, J

    2004-09-01

    Recombinant antibodies are important tools for biomedical research and are increasingly being used as clinical diagnostic/therapeutic reagents. In this article, a background to humanized antibodies is given, together with details of the generation of antibody fragments--for example, single chain Fv fragments. Phage antibody fragments are fast becoming popular and can be generated by simple established methods of affinity enrichment from libraries derived from immune cells. Phage display methodology can also be used for the affinity enrichment of existing antibody fragments to provide a reagent with a higher affinity. Here, phage antibodies are demystified to provide a greater understanding of the potential of these reagents and to engage clinicians and biomedical scientists alike to think about potential applications in pathology and clinical settings.

  15. Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli.

    PubMed

    Upadhyay, Vaibhav; Singh, Anupam; Panda, Amulya K

    2016-01-01

    Recombinant ovalbumin expressed in bacterial host is essentially free from post-translational modifications and can be useful in understanding the structure-function relationship of the protein. In this study, ovalbumin was expressed in Escherichia coli in the form of inclusion bodies. Ovalbumin inclusion bodies were solubilized using urea and refolded by decreasing the urea concentration by dilution. Refolded protein was purified by anion exchange chromatography. Overall recovery of purified recombinant ovalbumin from inclusion bodies was about 30% with 98% purity. Purified recombinant ovalbumin was characterized by mass spectrometry, circular dichroism and fluorescence spectroscopy. Recombinant ovalbumin was shown to be resistant to trypsin using protease resistance assay. This indicated proper refolding of ovalbumin from inclusion bodies of E. coli. This method provides a simple way of producing ovalbumin free of post-translational modifications. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Break-induced replication and recombinational telomere elongation in yeast.

    PubMed

    McEachern, Michael J; Haber, James E

    2006-01-01

    When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.

  17. Auger recombination in sodium iodide

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  18. Bimolecular Recombination in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Lakhwani, Girish; Rao, Akshay; Friend, Richard H.

    2014-04-01

    The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.

  19. Extensive Interallelic Polymorphisms Drive Meiotic Recombination into a Crossover Pathway

    PubMed Central

    Dooner, Hugo K.

    2002-01-01

    Recombinants isolated from most meiotic intragenic recombination experiments in maize, but not in yeast, are borne principally on crossover chromosomes. This excess of crossovers is not explained readily by the canonical double-strand break repair model of recombination, proposed to account for a large body of yeast data, which predicts that crossovers (COs) and noncrossovers (NCOs) should be recovered equally. An attempt has been made here to identify general rules governing the recovery of the CO and NCO classes of intragenic recombinants in maize. Recombination was analyzed in bz heterozygotes between a variety of mutations derived from the same or different progenitor alleles. The mutations include point mutations, transposon insertions, and transposon excision footprints. Consequently, the differences between the bz heteroalleles ranged from just two nucleotides to many nucleotides, indels, and insertions. In this article, allelic pairs differing at only two positions are referred to as dimorphic to distinguish them from polymorphic pairs, which differ at multiple positions. The present study has revealed the following effects at these bz heteroalleles: (1) recombination between polymorphic heteroalleles produces mostly CO chromosomes; (2) recombination between dimorphic heteroalleles produces both CO and NCO chromosomes, in ratios apparently dependent on the nature of the heteroalleles; and (3) in dimorphic heterozygotes, the two NCO classes are recovered in approximately equal numbers when the two mutations are point mutations but not when one or both mutations are insertions. These observations are discussed in light of a recent version of the double-strand break repair model of recombination that postulates separate pathways for the formation of CO and NCO products. PMID:12034905

  20. Extensive recombination-induced disruption of genetic interactions is highly deleterious but can be partially reversed by small numbers of secondary recombination events.

    PubMed

    Monjane, Adérito L; Martin, Darren P; Lakay, Francisco; Muhire, Brejnev M; Pande, Daniel; Varsani, Arvind; Harkins, Gordon; Shepherd, Dionne N; Rybicki, Edward P

    2014-07-01

    of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.

  1. Recombinant Origin of the Retrovirus XMRV

    PubMed Central

    Paprotka, Tobias; Delviks-Frankenberry, Krista A.; Cingöz, Oya; Martinez, Anthony; Kung, Hsing-Jien; Tepper, Clifford G.; Hu, Wei-Shau; Fivash, Matthew J.; Coffin, John M.; Pathak, Vinay K.

    2012-01-01

    The retrovirus XMRV (xenotropic murine leukemia virus-related virus) has been detected in human prostate tumors and in blood samples from patients with chronic fatigue syndrome, but these findings have not been replicated. We hypothesized that an understanding of when and how XMRV first arose might help explain the discrepant results. We studied human prostate cancer cell lines CWR22Rv1 and CWR-R1, which produce XMRV virtually identical to the viruses recently found in patient samples, as well as their progenitor human prostate tumor xenograft (CWR22) that had been passaged in mice. We detected XMRV infection in the two cell lines and in the later passage xenografts, but not in the early passages. Importantly, we found that the host mice contained two proviruses, PreXMRV-1 and PreXMRV-2, which share 99.92% identity with XMRV over >3.2-kb stretches of their genomes. We conclude that XMRV was not present in the original CWR22 tumor but was generated by recombination of two proviruses during tumor passaging in mice. The probability that an identical recombinant was generated independently is negligible (~10-12); our results suggest that the association of XMRV with human disease is due to contamination of human samples with virus originating from this recombination event. PMID:21628392

  2. Modification by chloramphenicol of diethyl sulphate-induced male recombination frequency in Drosophila melanogaster.

    PubMed

    Miglani, G S; Kaur, N P

    1995-06-01

    To study the effect of chloramphenicol (CPL, an inhibitor of protein synthesis) on diethyl sulphate (DES, a potent mutagen) induced male recombination frequency, the F1 (+/aristaless dumpy black cinnabar, al dp b cn) larvae of D. melanogaster were given a pre- or post-treatment of CPL with DES during the first or second half of larval life. In order to determine sensitivity of different germ cell stages to the induction and modification of male recombination frequency, five 3-day broods were taken from every F1 male. DES showed toxic effect on egg-to-adult development. DES was found to be a potent recombinogen. Several cases of non-reciprocal male recombination were recorded. The most frequent recombinant phenotype observed was b cn followed by cn and al. Majority of the recombinants appeared in clusters suggesting their pre-meiotic origin. DES produced male recombination at a stage where only primary spermatocytes were present in the larval testes. CPL when given as a pre- or post-treatment with DES revealed highest frequency of male recombination in broods that represented effect of treatment on spermatogonia predominantly. CPL enhanced the overall level of male recombination produced by DES in both pre- and post-treatments. The results suggested the role of protein synthesis in induction of male recombination in D. melanogaster. In addition, the present experiments give a methodology of enhancing the frequency of chemically-induced male recombination.

  3. Delayed recombination and standard rulers

    SciTech Connect

    De Bernardis, Francesco; Melchiorri, Alessandro; Bean, Rachel; Galli, Silvia; Silk, Joseph I.; Verde, Licia

    2009-02-15

    Measurements of baryonic acoustic oscillations (BAOs) in galaxy surveys have been recognized as a powerful tool for constraining dark energy. However, this method relies on the knowledge of the size of the acoustic horizon at recombination derived from cosmic microwave background (CMB) anisotropy measurements. This estimate is typically derived assuming a standard recombination scheme; additional radiation sources can delay recombination altering the cosmic ionization history and the cosmological inferences drawn from CMB and BAO data. In this paper we quantify the effect of delayed recombination on the determination of dark energy parameters from future BAO surveys such as the Baryon Oscillation Spectroscopic Survey and the Wide-Field Multi-Object Spectrograph. We find the impact to be small but still not negligible. In particular, if recombination is nonstandard (to a level still allowed by CMB data), but this is ignored, future surveys may incorrectly suggest the presence of a redshift-dependent dark energy component. On the other hand, in the case of delayed recombination, adding to the analysis one extra parameter describing deviations from standard recombination does not significantly degrade the error bars on dark energy parameters and yields unbiased estimates. This is due to the CMB-BAO complementarity.

  4. Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools.

    PubMed

    Oliveira, Carla; Teixeira, José A; Domingues, Lucília

    2013-03-01

    Lectins are a heterogeneous group of proteins found in plants, animals and microorganisms, which possess at least one non-catalytic domain that binds reversibly to specific mono- or oligosaccharides. The range of lectins and respective biological activities is unsurprising given the immense diversity and complexity of glycan structures and the multiple modes of interaction with proteins. Recombinant DNA technology has been traditionally used for cloning and characterizing newly discovered lectins. It has also been employed as a means of producing pure and sequence-defined lectins for different biotechnological applications. This review focuses on the production of recombinant lectins in heterologous organisms, and highlighting the Escherichia coli and Pichia pastoris expression systems, which are the most employed. The choice of expression host depends on the lectin. Non-glycosylated recombinant lectins are produced in E. coli and post-translational modified recombinant lectins are produced in eukaryotic organisms, namely P. pastoris and non-microbial hosts such as mammalian cells. Emphasis is given to the applications of the recombinant lectins especially (a) in cancer diagnosis and/or therapeutics, (b) as anti-microbial, anti-viral, and anti-insect molecules or (c) in microarrays for glycome profiling. Most reported applications are from recombinant plant lectins. These applications benefit from the tailor-made design associated with recombinant production and will aid in unraveling the complex biological mechanisms of glycan-interactions, bringing recombinant lectins to the forefront of glycobiology. In conclusion, recombinant lectins are developing into valuable biosynthetic tools for biomedical research.

  5. Testing for recombinant erythropoietin.

    PubMed

    Delanghe, Joris R; Bollen, Mathieu; Beullens, Monique

    2008-03-01

    Erythropoietin (Epo) is a glycoprotein hormone that promotes the production of red blood cells. Recombinant human Epo (rhEpo) is illicitly used to improve performance in endurance sports. Doping in sports is discouraged by the screening of athletes for rhEpo. Both direct tests (indicating the presence of exogeneous Epo isoforms) and indirect tests (indicating hematological changes induced by exogenous Epo administration) can be used for Epo detection. At present, the test adopted by the World Anti Doping Agency is based on a combination of isoelectric focusing and double immunoblotting, and distinguishes between endogenous and rhEpo. However, the adopted monoclonal anti-Epo antibodies are not monospecific. Therefore, the test can occasionally lead to the false-positive detection of rhEpo (epoetin-beta) in post-exercise, protein-rich urine, or in case of contamination of the sample with microorganisms. An improved preanalytical care may counteract a lot of these problems. Adaptation of the criteria may be helpful to further refine direct Epo testing. Indirect tests have the disadvantage that they require blood instead of urine samples, but they can be applied to detect a broader range of performance improving techniques which are illicitly used in sports.

  6. Recombineering: genetic engineering in bacteria using homologous recombination.

    PubMed

    Thomason, Lynn C; Sawitzke, James A; Li, Xintian; Costantino, Nina; Court, Donald L

    2014-04-14

    The bacterial chromosome and bacterial plasmids can be engineered in vivo by homologous recombination using PCR products and synthetic oligonucleotides as substrates. This is possible because bacteriophage-encoded recombination proteins efficiently recombine sequences with homologies as short as 35 to 50 bases. Recombineering allows DNA sequences to be inserted or deleted without regard to location of restriction sites. This unit first describes preparation of electrocompetent cells expressing the recombineering functions and their transformation with dsDNA or ssDNA. It then presents support protocols that describe several two-step selection/counter-selection methods of making genetic alterations without leaving any unwanted changes in the targeted DNA, and a method for retrieving onto a plasmid a genetic marker (cloning by retrieval) from the Escherichia coli chromosome or a co-electroporated DNA fragment. Additional protocols describe methods to screen for unselected mutations, removal of the defective prophage from recombineering strains, and other useful techniques. Copyright © 2014 John Wiley & Sons, Inc.

  7. Effect of varying epistasis on the evolution of recombination.

    PubMed

    Kouyos, Roger D; Otto, Sarah P; Bonhoeffer, Sebastian

    2006-06-01

    Whether recombination decelerates or accelerates a population's response to selection depends, at least in part, on how fitness-determining loci interact. Realistically, all genomes likely contain fitness interactions both with positive and with negative epistasis. Therefore, it is crucial to determine the conditions under which the potential beneficial effects of recombination with negative epistasis prevail over the detrimental effects of recombination with positive epistasis. Here, we examine the simultaneous effects of diverse epistatic interactions with different strengths and signs in a simplified model system with independent pairs of interacting loci and selection acting only on the haploid phase. We find that the average form of epistasis does not predict the average amount of linkage disequilibrium generated or the impact on a recombination modifier when compared to results using the entire distribution of epistatic effects and associated single-mutant effects. Moreover, we show that epistatic interactions of a given strength can produce very different effects, having the greatest impact when selection is weak. In summary, we observe that the evolution of recombination at mutation-selection balance might be driven by a small number of interactions with weak selection rather than by the average epistasis of all interactions. We illustrate this effect with an analysis of published data of Saccharomyces cerevisiae. Thus to draw conclusions on the evolution of recombination from experimental data, it is necessary to consider the distribution of epistatic interactions together with the associated selection coefficients.

  8. Homologous recombination catalyzed by a nuclear extract from Xenopus oocytes.

    PubMed Central

    Lehman, C W; Carroll, D

    1991-01-01

    Xenopus laevis oocytes efficiently recombine linear DNA injected into their nuclei (germinal vesicles). This process requires homologous sequences at or near the molecular ends. Here we report that a cell-free extract made from germinal vesicles is capable of accomplishing the complete recombination reaction in vitro. Like the in vivo process, the extract converts the overlapping ends of linear substrate molecules into covalently closed products. Establishment of this cell-free system has allowed examination of the cofactors required for recombination. The first step involves a 5'----3' exonuclease activity that requires a divalent cation but not NTPs. Completion of recombination requires a hydrolyzable NTP; maximal product formation occurs in the presence of millimolar levels of ATP or dATP. At submillimolar levels of all four dNTPs, homologous recombination is inefficient, and a side reaction produces end-joined products. This cell-free system should facilitate a step-by-step understanding of an homologous recombination pathway that operates not only in Xenopus laevis oocytes but also in cells from a wide variety of organisms. Images PMID:1961753

  9. Trends in recombinant protein use in animal production.

    PubMed

    Gifre, Laia; Arís, Anna; Bach, Àlex; Garcia-Fruitós, Elena

    2017-03-04

    Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.

  10. RECOMBINATIONS OF MUTANT PHAGES OF BACILLUS MEGATHERIUM 899A

    PubMed Central

    Murphy, James S.

    1953-01-01

    A group of mutant phages stemming from the virus of B. megatherium 899a (lysogenic), growing on a sensitive B. megatherium strain (KM), have been studied with respect to their recombination reactions. All these mutants and many of their recombinations can be recognized by a characteristic plaque morphology. A similar group of phages have been isolated directly from a culture of B. megatherium 899a in this laboratory. Previous work has shown that when two different plaque mutant phages both infect essentially all the bacteria in a culture, a characteristic per cent of recombinants is produced. This percentage depends on the two recombinants used, each pair having its own value. Hershey and coworkers (2–5) have demonstrated with coli-phage T2, that the percentages of recombination found can be handled mathematically and that they demonstrate the existence of a relationship between the mutations entirely comparable to crossover percentages as used in gene locus maps in genetics. This has been found to hold true for the phages studied in the present work. Only one "linkage group" has been detected and all the mutants studied showed low percentages of recombination (0.8 to 7.6). B. megatherium 899a phage and some of its mutants have been examined with an electron microscope and no differences have been detected between the different mutant strains. PMID:13109115

  11. Genetic Analysis of Recombinant Inbred Lines For Sorghum Bicolor x Perennial S. Propinquum.

    USDA-ARS?s Scientific Manuscript database

    From an annual S. bicolor x perennial S. propinquum F2 population used in early-generation genetic analysis, we have produced and describe here a recombinant inbred line (RIL) population of 161 F5 genotypes that segregates for rhizomatousness and many other traits. The genetic map of the recombinant...

  12. Protein expression in yeast as an approach to production of recombinant malaria antigens.

    PubMed

    Bathurst, I C

    1994-01-01

    The selection of a system suitable for expression of recombinant malaria antigens for vaccine development is, in the final analysis, empirical. However, experience gained with both malaria antigens and other recombinant proteins has provided helpful guidelines. Recombinant DNA technology has been successfully applied to the development of vaccines against a number of human diseases. For example, recombinant DNA-derived hepatitis B virus surface antigen has been produced from both prokaryotic and eukaryotic systems. Yeast has been demonstrated to be an excellent host for the expression of recombinant proteins with uses in diagnostics, therapeutics, and vaccine production. Both intracellular and secretory systems have been developed and optimized for the production of high levels of recombinant proteins. Recombinant DNA technology, and in particular yeast expression systems, have been successfully used to produce malaria antigens, several of which have been protective in various animal models. In contrast, attempts to produce sufficient quantities of antigens for a malaria vaccine from in vitro cultures of the malaria parasite have been unsuccessful. Recombinant proteins can be produced and purified from yeast in large quantities and at low cost, each being requirements for a vaccine to be used in a global vaccination program against malaria.

  13. [Detection and antigenic characteristics of the recombinant nucleocapsid proteins of Lassa and Marburg viruses].

    PubMed

    Vladyko, A S; Scheslenok, E P; Fomina, E G; Semizhon, P A; Ignat'ev, G M; Shkolina, T V; Kras'ko, A G; Semenov, S F; Vinokurov, N V

    2012-01-01

    Two plasmid vectors, which allow the recombinant polypeptides of Lassa and Marburg viruses to be expressed in prokaryotic cells E. coli strain BL21 (DE3), were produced. The two recombinant polypeptides are able to bind specific antibodies. This provides an opportunity to use them as antigenic components of immunoassay diagnostic test kits.

  14. Development by genetic recombination of a line of Eimeria tenella resistant to robenidine, decoquinate and amprolium.

    PubMed

    Chapman, H D

    1984-01-01

    A line of Eimeria tenella (H) resistant to robenidine, decoquinate and amprolium has been produced by genetic recombination. It was not possible to obtain a cross between this line and lines resistant to clopidol or arprinocid and halofuginone. Recombination between lines resistant to arprinocid and halofuginone resulted in a loss of pathogenicity.

  15. Utilizing Protein-lean Co-products from Corn Containing Recombinant Pharmaceutical Proteins for Ethanol Production

    USDA-ARS?s Scientific Manuscript database

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were used to produce fuel ethanol and residual r-proteins in the co-product, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein ...

  16. Perovskite photovoltaics: Slow recombination unveiled

    NASA Astrophysics Data System (ADS)

    Moser, Jacques-E.

    2017-01-01

    One of the most salient features of hybrid lead halide perovskites is the extended lifetime of their photogenerated charge carriers. This property has now been shown experimentally to originate from a slow, thermally activated recombination process.

  17. Controlled release from recombinant polymers.

    PubMed

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  18. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  19. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  20. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  1. Stable recombination hotspots in birds.

    PubMed

    Singhal, Sonal; Leffler, Ellen M; Sannareddy, Keerthi; Turner, Isaac; Venn, Oliver; Hooper, Daniel M; Strand, Alva I; Li, Qiye; Raney, Brian; Balakrishnan, Christopher N; Griffith, Simon C; McVean, Gil; Przeworski, Molly

    2015-11-20

    The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.

  2. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  3. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  4. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  5. Fermentations with new recombinant organisms

    SciTech Connect

    Bothast, R.J.; Nichols, N.N.; Dien, B.S.

    1999-10-01

    US fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharomyces cerevisiae and Zymomonas mobilis for pentose utilization. The authors have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21--34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sug