Science.gov

Sample records for recombinantly produced hydrophobins

  1. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    PubMed Central

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  2. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    PubMed

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions.

  3. Identification properties of a recombinant class I hydrophobin rHGFI.

    PubMed

    Li, Wenfeng; Gong, Yanbo; Xu, Haijin; Qiao, Mingqiang; Niu, Baolong

    2015-01-01

    Hydrophobins fulfill various functions in fungal growth and morphology. These proteins can self-assemble at hydrophilic/hydrophobic interfaces and form amphipathic membranes. Based on their physical properties and hydropathy patterns, hydrophobins are divided into two classes (I and II). In order to identify the recombinant class I hydrophobin rHGFI, the different properties between rHGFI and the typical class II hydrophobin rHFBI were investigated. In contrast to rHGFI, no rodlet structure was observed on rHFBI coated mica surface, and the membranes formed on siliconized glass surfaces by rHFBI were not robust enough to resist treatment with 60% ethanol and 2% hot SDS. In contrast, the membranes formed by rHGFI on siliconized glass surfaces were so strong that could resist hot detergent and alcohol solution washing. Moreover, self-assembly of rHFBI at the water-air interface was not accompanied by a change in secondary structure. Meanwhile, β-sheet structures dramatically increased after rHGFI self-assembled at water-air interface, which could cause the fluorescence intensity of Thioflavin T increased and Congo Red and CD absorption spectra shift. Water-insoluble erythrosin B dispersion prepared with rHGFI and rHFBI were both stable for more than one month, which indicated that the interaction between erythrosin B and rHGFI/rHFBI was strong. This might promote rHGFI and rHFBI to be considered as potential dispersing agents to stabilize water-insoluble erythrosin B.

  4. Toluene gas phase biofiltration by Paecilomyces lilacinus and isolation and identification of a hydrophobin protein produced thereof.

    PubMed

    Vigueras, Gabriel; Shirai, Keiko; Martins de Souza, Daniel; Martins, Daniel; Franco, Telma Teixeira; Fleuri, Luciana Francisco; Revah, Sergio

    2008-08-01

    Paecilomyces lilacinus consumed toluene as the sole carbon source in a gas-phase biofilter packed with perlite obtaining an average elimination capacity of 50 g m(-3) h(-1), a removal efficiency of 53%, and a final biomass of 31.6 mg biomass g dry support(-1). Hydrophobin proteins from the mycelium produced in the biofilter were purified by formic acid extraction and precipitated by electrobubbling, and the molecular weight was found to be 10.6 +/- 0.3 kDa. The peptide mass fingerprinting analysis of the purified hydrophobin by matrix-assisted laser desorption/ionization time-of-flight resulted in the identification of two peptides that presented high homology with sequences of class I hydrophobin proteins from other ascomycetous fungi when compared against the National Center for Biotechnology Information database. The yield of hydrophobin (PLHYD) from P. lilacinus was 1.1 mg PLHYD g biomass(-1). These proteins modified the hydrophobicity of Teflon by lowering the contact angle from 130.1 (+/-2) degrees to 57.0 (+/-5) degrees supporting hot sodium dodecyl sulfate washing. This work is the first report about biodegradation of toluene by the nematophagous fungus P. lilacinus in a gas-phase biofilter and the identification of its hydrophobin protein.

  5. Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye.

    PubMed

    Wang, Kunpeng; Xiao, Yunjie; Wang, Yanyan; Feng, Yaqing; Chen, Cheng; Zhang, Jie; Zhang, Qian; Meng, Shuxian; Wang, Zefang; Yang, Haitao

    2016-01-01

    Low water solubility and poor membrane permeability are major disadvantages that compromise applications of most fluorescent dyes. To resolve these problems, herein, using Boron-dipyrromethene (BODIPY) as a model fluorescent dye, for the first time, we provide a new strategy for the rapid and efficient production of a water-soluble and membrane-permeable dye by mixing with an amphiphilic protein named hydrophobin. Data shows BODIPY could be effectively solubilized and dispersed in 200 μg/mL hydrophobin by simple mixing and sonication. Subsequent experiments indicated that hydrophobin self-assembled into a protein film on the surface of BODIPY forming stable hydrophobin-BODIPY complexes with a size range of 10-30 nm. Furthermore, we demonstrated hydrophobin-functionalized BODIPY are toxicity free to cells. The hydrophobin-BODIPY complex could pass through both the cell plasma membrane and nuclear membrane efficiently. Our work opens a novel route to modify and functionalize fluorescent dyes and may be developed as a general strategy for broadening their applications. PMID:26976627

  6. Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye

    PubMed Central

    Wang, Kunpeng; Xiao, Yunjie; Wang, Yanyan; Feng, Yaqing; Chen, Cheng; Zhang, Jie; Zhang, Qian; Meng, Shuxian; Wang, Zefang; Yang, Haitao

    2016-01-01

    Low water solubility and poor membrane permeability are major disadvantages that compromise applications of most fluorescent dyes. To resolve these problems, herein, using Boron-dipyrromethene (BODIPY) as a model fluorescent dye, for the first time, we provide a new strategy for the rapid and efficient production of a water-soluble and membrane-permeable dye by mixing with an amphiphilic protein named hydrophobin. Data shows BODIPY could be effectively solubilized and dispersed in 200 μg/mL hydrophobin by simple mixing and sonication. Subsequent experiments indicated that hydrophobin self-assembled into a protein film on the surface of BODIPY forming stable hydrophobin-BODIPY complexes with a size range of 10–30 nm. Furthermore, we demonstrated hydrophobin-functionalized BODIPY are toxicity free to cells. The hydrophobin-BODIPY complex could pass through both the cell plasma membrane and nuclear membrane efficiently. Our work opens a novel route to modify and functionalize fluorescent dyes and may be developed as a general strategy for broadening their applications. PMID:26976627

  7. Influence of Elastin-Like Polypeptide and Hydrophobin on Recombinant Hemagglutinin Accumulations in Transgenic Tobacco Plants

    PubMed Central

    Phan, Hoang Trong; Hause, Bettina; Hause, Gerd; Arcalis, Elsa; Stoger, Eva; Maresch, Daniel; Altmann, Friedrich; Joensuu, Jussi; Conrad, Udo

    2014-01-01

    Fusion protein strategies are useful tools to enhance expression and to support the development of purification technologies. The capacity of fusion protein strategies to enhance expression was explored in tobacco leaves and seeds. C-terminal fusion of elastin-like polypeptides (ELP) to influenza hemagglutinin under the control of either the constitutive CaMV 35S or the seed-specific USP promoter resulted in increased accumulation in both leaves and seeds compared to the unfused hemagglutinin. The addition of a hydrophobin to the C-terminal end of hemagglutinin did not significantly increase the expression level. We show here that, depending on the target protein, both hydrophobin fusion and ELPylation combined with endoplasmic reticulum (ER) targeting induced protein bodies in leaves as well as in seeds. The N-glycosylation pattern indicated that KDEL sequence-mediated retention of leaf-derived hemagglutinins and hemagglutinin-hydrophobin fusions were not completely retained in the ER. In contrast, hemagglutinin-ELP from leaves contained only the oligomannose form, suggesting complete ER retention. In seeds, ER retention seems to be nearly complete for all three constructs. An easy and scalable purification method for ELPylated proteins using membrane-based inverse transition cycling could be applied to both leaf- and seed-expressed hemagglutinins. PMID:24914995

  8. Influence of elastin-like polypeptide and hydrophobin on recombinant hemagglutinin accumulations in transgenic tobacco plants.

    PubMed

    Phan, Hoang Trong; Hause, Bettina; Hause, Gerd; Arcalis, Elsa; Stoger, Eva; Maresch, Daniel; Altmann, Friedrich; Joensuu, Jussi; Conrad, Udo

    2014-01-01

    Fusion protein strategies are useful tools to enhance expression and to support the development of purification technologies. The capacity of fusion protein strategies to enhance expression was explored in tobacco leaves and seeds. C-terminal fusion of elastin-like polypeptides (ELP) to influenza hemagglutinin under the control of either the constitutive CaMV 35S or the seed-specific USP promoter resulted in increased accumulation in both leaves and seeds compared to the unfused hemagglutinin. The addition of a hydrophobin to the C-terminal end of hemagglutinin did not significantly increase the expression level. We show here that, depending on the target protein, both hydrophobin fusion and ELPylation combined with endoplasmic reticulum (ER) targeting induced protein bodies in leaves as well as in seeds. The N-glycosylation pattern indicated that KDEL sequence-mediated retention of leaf-derived hemagglutinins and hemagglutinin-hydrophobin fusions were not completely retained in the ER. In contrast, hemagglutinin-ELP from leaves contained only the oligomannose form, suggesting complete ER retention. In seeds, ER retention seems to be nearly complete for all three constructs. An easy and scalable purification method for ELPylated proteins using membrane-based inverse transition cycling could be applied to both leaf- and seed-expressed hemagglutinins. PMID:24914995

  9. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.

  10. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  11. Recombinant protein vaccines produced in insect cells.

    PubMed

    Cox, Manon M J

    2012-02-27

    The baculovirus-insect cell expression system is a well known tool for the production of complex proteins. The technology is also used for commercial manufacture of various veterinary and human vaccines. This review paper provides an overview of how this technology can be applied to produce a multitude of vaccine candidates. The key advantage of this recombinant protein manufacturing platform is that a universal "plug and play" process may be used for producing a broad range of protein-based prophylactic and therapeutic vaccines for both human and veterinary use while offering the potential for low manufacturing costs. Large scale mammalian cell culture facilities previously established for the manufacturing of monoclonal antibodies that have now become obsolete due to yield improvement could be deployed for the manufacturing of these vaccines. Alternatively, manufacturing capacity could be established in geographic regions that do not have any vaccine production capability. Dependent on health care priorities, different vaccines could be manufactured while maintaining the ability to rapidly convert to producing pandemic influenza vaccine when the need arises. PMID:22265860

  12. Structure-Function Relationships in Hydrophobins: Probing the Role of Charged Side Chains

    PubMed Central

    Lienemann, Michael; Gandier, Julie-Anne; Joensuu, Jussi J.; Iwanaga, Atsushi; Takatsuji, Yoshiyuki; Haruyama, Tetsuya; Master, Emma; Tenkanen, Maija

    2013-01-01

    Hydrophobins are small fungal proteins that are amphiphilic and have a strong tendency to assemble at interfaces. By taking advantage of this property, hydrophobins have been used for a number of applications: as affinity tags in protein purification, for protein immobilization, such as in foam stabilizers, and as dispersion agents for insoluble drug molecules. Here, we used site-directed mutagenesis to gain an understanding of the molecular basis of their properties. We especially focused on the role of charged amino acids in the structure of hydrophobins. For this purpose, fusion proteins consisting of Trichoderma reesei hydrophobin I (HFBI) and the green fluorescent protein (GFP) that contained various combinations of substitutions of charged amino acids (D30, K32, D40, D43, R45, K50) in the HFBI structure were produced. The effects of the introduced mutations on binding, oligomerization, and partitioning were characterized in an aqueous two-phase system. It was found that some substitutions caused better surface binding and reduced oligomerization, while some showed the opposite effects. However, all mutations decreased partitioning in surfactant systems, indicating that the different functions are not directly correlated and that partitioning is dependent on finely tuned properties of hydrophobins. This work shows that not all functions in self-assembly are connected in a predictable way and that a simple surfactant model for hydrophobin function is insufficient. PMID:23835172

  13. Continuous Flow Separation of Hydrophobin Fusion Proteins from Plant Cell Culture Extract.

    PubMed

    Reuter, Lauri J; Conley, Andrew J; Joensuu, Jussi J

    2016-01-01

    Fusion to fungal hydrophobins has proven to be a useful tool to enhance accumulation and recovery of recombinant proteins in plants. Aqueous two-phase separation (ATPS) is an attractive system to capture hydrophobin fusion proteins from plant extracts. The process can simultaneously purify and concentrate target protein with minimal background. ATPS avoids the use of chromatographic column steps, can be carried out in a short time frame, and is amenable to industrial-scale protein purification. A drawback of performing ATPS in large volumes is the lengthy time required for phase separation; however, this can be avoided by incorporating continuous systems, which are often preferred by the processing industry. This method chapter illustrates the capture of GFP-HFBI hydrophobin fusion protein from BY-2 plant cell suspension extract using a semi-continuous ATPS method. PMID:26614291

  14. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.

    PubMed

    Niu, Baolong; Gong, Yanbo; Gao, Xianghua; Xu, Haijin; Qiao, Mingqiang; Li, Wenfeng

    2014-11-01

    Hydrophobins are a large group of low-molecular weight proteins. These proteins are highly surface-active and can form amphipathic membranes by self-assembling at hydrophobic-hydrophilic interfaces. Based on physical properties and hydropathy profiles, hydrophobins are divided into two classes. Upon the analysis of amino acid sequences and higher structures, some models suggest that the Cys3-Cys4 loop regions in class I and II hydrophobins can exhibit remarkable difference in their alignment and conformation, and have a critical role in the rodlets structure formation. To examine the requirement for the Cys3-Cys4 loop in class I hydrophobins, we used protein fusion technology to obtain a mutant protein HGFI-AR by replacing the amino acids between Cys3 and Cys4 of the class I hydrophobin HGFI from Grifola frondosa with those ones between Cys3 and Cys4 of the class II hydrophobin HFBI from Trichoderma reesei. The gene of the mutant protein HGFI-AR was successfully expressed in Pichia pastoris. Water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the purified HGFI-AR could form amphipathic membranes by self-assembling at mica and hydrophobic polystyrene surfaces. This property enabled them to alter the surface wettabilities of polystyrene and mica and change the elemental composition of siliconized glass. In comparison to recombinant class I hydrophobin HGFI (rHGFI), the membranes formed on hydrophobic surfaces by HGFI-AR were not robust enough to resist 1 % hot SDS washing. Atomic force microscopy (AFM) measurements indicated that unlike rHGFI, no rodlet structure was observed on the mutant protein HGFI-AR coated mica surface. In addition, when compared to rHGFI, no secondary structural change was detected by Circular Dichroism (CD) spectroscopy after HGFI-AR self-assembled at the water-air interface. HGFI-AR could not either be deemed responsible for the fluorescence intensity increase of Thioflavin T (THT) and the

  15. Formation of a Rigid Hydrophobin Film and Disruption by an Anionic Surfactant at an Air/Water Interface.

    PubMed

    Kirby, Stephanie M; Zhang, Xujun; Russo, Paul S; Anna, Shelley L; Walker, Lynn M

    2016-06-01

    Hydrophobins are amphiphilic proteins produced by fungi. Cerato-ulmin (CU) is a hydrophobin that has been associated with Dutch elm disease. Like other hydrophobins, CU stabilizes air bubbles and oil droplets through the formation of a persistent protein film at the interface. The behavior of hydrophobins at surfaces has raised interest in their potential applications, including use in surface coatings, food foams, and emulsions and as dispersants. The practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, alone and in the presence of added surfactants. In this study, the adsorption behavior of CU at air/water interfaces is characterized by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to adsorb irreversibly at air/water interfaces. The magnitude of the dilatational modulus increases with adsorption time and surface pressure until CU eventually forms a rigid film. The persistence of this film is tested through the sequential addition of strong surfactant sodium dodecyl sulfate (SDS) to the bulk liquid adjacent to the interface. SDS is found to coadsorb to interfaces precoated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU by SDS. Sequential adsorption results in mixed layers with properties not observed in interfaces generated from complexes formed in the bulk. These results lend insight to the complex interfacial interactions between hydrophobins and surfactants. PMID:27164189

  16. Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones

    PubMed Central

    Hennig, Stefan; Rödel, Gerhard; Ostermann, Kai

    2016-01-01

    Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal. PMID:27128920

  17. Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones.

    PubMed

    Hennig, Stefan; Rödel, Gerhard; Ostermann, Kai

    2016-01-01

    Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal. PMID:27128920

  18. Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins

    PubMed Central

    2013-01-01

    Background Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum. Results The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants. Conclusion The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags

  19. Conidial Hydrophobins of Aspergillus fumigatus

    PubMed Central

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-01-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846

  20. Conidial hydrophobins of Aspergillus fumigatus.

    PubMed

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-03-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and DeltarodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. DeltarodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of DeltarodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the DeltarodA DeltarodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells.

  1. Recent Advances in Fungal Hydrophobin Towards Using in Industry.

    PubMed

    Khalesi, Mohammadreza; Gebruers, Kurt; Derdelinckx, Guy

    2015-08-01

    Fungal hydrophobin is a family of low molecular weight proteins consisting of four disulfide bridges and an extraordinary hydrophobic patch. The hydrophobic patch of hydrophobins and the molecules of gaseous CO2 may interact together and form the stable CO2-nanobubbles covered by an elastic membrane in carbonated beverages. The nanobubbles provide the required energy to provoke primary gushing. Due to the hydrophobicity of hydrophobin, this protein is used as a biosurfactant, foaming agent or encapsulating agent in food products and medicine formulations. Increasing demands for using of hydrophobins led to a challenge regarding production and purification of this product. However, the main issue to use hydrophobin in the industry is the regulatory affairs: yet there is no approved legislation for using hydrophobin in food and beverages. To comply with the legislation, establishing a consistent method for obtaining pure hydrophobins is necessary. Currently, few research teams in Europe are focusing on different aspects of hydrophobins. In this paper, an up-to-date collection of highlights from those special groups about the bio-chemical and physicochemical characteristics of hydrophobins have been studied. The recent advances of those groups concerning the production and purification, positive applications and negative function of hydrophobin are also summarised.

  2. Preparing bioactive surface of polystyrene with hydrophobin for trypsin immobilization

    NASA Astrophysics Data System (ADS)

    Niu, Baolong; Li, Bingzhang; Wang, Huifang; Guo, Ruijie; Liang, HaiXia; Qiao, Mingqiang; Li, Wenfeng

    2016-05-01

    A simple and reliable enzyme immobilization technique which can retain their catalytic activity for a long time is interest in many technologies. Here, the trypsin was immobilized by physisorption on polystyrene (PS) surface coated with a class I hydrophobin recombinant HGFI (rHGFI). X-ray photoelectron spectroscopy and water-contact-angle measurements demonstrated that the hydrophobicity of the PS could be well improved by rHGFI modification, and the self-assembled rHGFI showed an admirable stability on the hydrophobic PS surface against hot SDS rinsing. The enzyme activity assay illustrated that the capacity of rHGFI could enable it to well intermediate trypsin on PS surface and allow its immobilization lasting in an active form. The results obtained in this work show a way that surface modification with rHGFI should be an easy and feasible strategy for applications of enzyme-based catalytic surfaces in biosensing.

  3. Hydrophobin Film Structure for HFBI and HFBII and Mechanism for Accelerated Film Formation

    PubMed Central

    Magarkar, Aniket; Mele, Nawel; Abdel-Rahman, Noha; Butcher, Sarah; Torkkeli, Mika; Serimaa, Ritva; Paananen, Arja; Linder, Markus; Bunker, Alex

    2014-01-01

    Hydrophobins represent an important group of proteins from both a biological and nanotechnological standpoint. They are the means through which filamentous fungi affect their environment to promote growth, and their properties at interfaces have resulted in numerous applications. In our study we have combined protein docking, molecular dynamics simulation, and electron cryo-microscopy to gain atomistic level insight into the surface structure of films composed of two class II hydrophobins: HFBI and HFBII produced by Trichoderma reesei. Together our results suggest a unit cell composed of six proteins; however, our computational results suggest P6 symmetry, while our experimental results show P3 symmetry with a unit cell size of 56 Å. Our computational results indicate the possibility of an alternate ordering with a three protein unit cell with P3 symmetry and a smaller unit cell size, and we have used a Monte Carlo simulation of a spin model representing the hydrophobin film to show how this alternate metastable structure may play a role in increasing the rate of surface coverage by hydrophobin films, possibly indicating a mechanism of more general significance to both biology and nanotechnology. PMID:25079355

  4. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence.

    PubMed

    Sevim, Ali; Donzelli, Bruno G G; Wu, Dongliang; Demirbag, Zihni; Gibson, Donna M; Turgeon, B Gillian

    2012-04-01

    Hydrophobins are small, cysteine-rich, secreted proteins, ubiquitously produced by filamentous fungi that are speculated to function in fungal growth, cell surface properties, and development, although this has been rigorously tested for only a few species. Herein, we report identification of three hydrophobin genes from the entomopathogenic fungus, Metarhizium brunneum, and functional characterization of strains lacking these genes. One gene (HYD1/ssgA) encodes a class I hydrophobin identified previously. Two new genes, HYD3 and HYD2, encode a class I and class II hydrophobin, respectively. To examine function, we deleted all three separately, from the M. brunneum strain KTU-60 genome, using Agrobacterium tumefaciens-mediated transformation. Deletion strains were screened for alterations in developmental phenotypes including growth, sporulation, pigmentation, colony surface properties, and virulence to insects. All deletion strains were reduced in their ability to sporulate and showed alterations in wild-type pigmentation, but all retained wild-type hydrophobicity, except for one individual hyd3 mutant. Complementation with the wild-type HYD3 gene restored hydrophobicity. Each gene, present as a single copy in the genome, showed differential expression patterns dependent on the developmental stage of the fungus. When Spodoptera exigua (beet armyworm) larvae were treated with either conidia or blastospores of each hyd mutant, reductions in virulence and delayed mortality were observed as compared to WT. Together, these results suggest that hydrophobins are differentially expressed and may have distinct, but compensating roles, in conidiation, pigmentation, hydrophobicity, and virulence. PMID:22388867

  5. Milk production in lactating buffalo receiving recombinantly produced bovine somatotropin.

    PubMed

    Ludri, R S; Upadhyay, R C; Singh, M; Guneratne, J R; Basson, R P

    1989-09-01

    Thirty healthy Murrah buffalo (Bubalus bubalis) in their second to fourth lactations were selected from the herd at the National Dairy Research Institute, Karnal, Haryana, India, for use in a 35-d study to determine the effects of recombinantly produced bovine somatotropin on milk production, milk composition, and dry matter intake. Treatments were daily injections of 0, 25, or 50 mg somatotropin per animal for 14 d. All buffalo consumed green chopped fodder ad libitum plus a predetermined quantity of concentrate mixture to each animal, based on individual milk production during the 14-d pretreatment period. The quantity of concentrate mixture fed to each buffalo was not altered during the study. Net increase in milk volume for groups receiving 25 and 30 mg somatotropin was 16.8 and 29.5% over controls. Milk composition, DM intake, and body weights were not affected by treatment. PMID:2592642

  6. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  7. Antioxidant activity and ACE-inhibitory of Class II hydrophobin from wild strain Trichoderma reesei.

    PubMed

    Khalesi, Mohammadreza; Jahanbani, Raheleh; Riveros-Galan, David; Sheikh-Hassani, Vahid; Sheikh-Zeinoddin, Mahmoud; Sahihi, Mehdi; Winterburn, James; Derdelinckx, Guy; Moosavi-Movahedi, Ali Akbar

    2016-10-01

    There are several possible uses of the Class II hydrophobin HFBII in clinical applications. To fully understand and exploit this potential however, the antioxidant activity and ACE-inhibitory potential of this protein need to be better understood and have not been previously reported. In this study, the Class II hydrophobin HFBII was produced by the cultivation of wild type Trichoderma reesei. The crude hydrophobin extract obtained from the fermentation process was purified using reversed-phase liquid chromatography and the identity of the purified HFBII verified by MALDI-TOF (molecular weight: 7.2kDa). Subsequently the antioxidant activities of different concentrations of HFBII (0.01-0.40mg/mL) were determined. The results show that for HFBII concentrations of 0.04mg/mL and upwards the protein significantly reduced the presence of ABTS(+) radicals in the medium, the IC50 value found to be 0.13mg/mL. Computational modeling highlighted the role of the amino acid residues located in the conserved and exposed hydrophobic patch on the surface of the HFBII molecule and the interactions with the aromatic rings of ABTS. The ACE-inhibitory effect of HFBII was found to occur from 0.5mg/mL and upwards, making the combination of HFBII with strong ACE-inhibitors attractive for use in the healthcare industry. PMID:27211298

  8. Hydrophobin-1 promotes thermostability of firefly luciferase.

    PubMed

    Lohrasbi-Nejad, Azadeh; Torkzadeh-Mahani, Masoud; Hosseinkhani, Saman

    2016-07-01

    The thermal sensitivity of firefly luciferase limits its use in certain applications. Firefly luciferase has hydrophobic sites on its surface, which lead to aggregation and inactivation of the enzyme at temperatures over 30 °C. We have successfully stabilized firefly luciferase at high temperatures with the assistance of a unique protein, hydrophobin-1 (HFB1). HFB1 is a small secretory protein belonging to class II of hydrophobins with a low molecular weight (7.5 kDa) and distinct functional hydrophobic patch on its surface. The interaction of HFB1 with hydrophobic sites on the surface of luciferase was confirmed by extrinsic fluorescence studies using 8-anilino-1-naphthalenesulfonic acid (ANS) as a hydrophobic reporter probe. Calculation of thermodynamic parameters of heat inactivation of luciferase shows that conformational changes and flexibility of enzyme decreased in the presence of HFB1, and thermostability of the HFB1-treated enzyme increased. Furthermore, the addition of HFB1 into the enzymatic solution leads to an increase in catalytic efficiency of luciferase and subsequently improves the utility of the enzyme as an ATP detector. PMID:27191938

  9. Hydrophobin-1 promotes thermostability of firefly luciferase.

    PubMed

    Lohrasbi-Nejad, Azadeh; Torkzadeh-Mahani, Masoud; Hosseinkhani, Saman

    2016-07-01

    The thermal sensitivity of firefly luciferase limits its use in certain applications. Firefly luciferase has hydrophobic sites on its surface, which lead to aggregation and inactivation of the enzyme at temperatures over 30 °C. We have successfully stabilized firefly luciferase at high temperatures with the assistance of a unique protein, hydrophobin-1 (HFB1). HFB1 is a small secretory protein belonging to class II of hydrophobins with a low molecular weight (7.5 kDa) and distinct functional hydrophobic patch on its surface. The interaction of HFB1 with hydrophobic sites on the surface of luciferase was confirmed by extrinsic fluorescence studies using 8-anilino-1-naphthalenesulfonic acid (ANS) as a hydrophobic reporter probe. Calculation of thermodynamic parameters of heat inactivation of luciferase shows that conformational changes and flexibility of enzyme decreased in the presence of HFB1, and thermostability of the HFB1-treated enzyme increased. Furthermore, the addition of HFB1 into the enzymatic solution leads to an increase in catalytic efficiency of luciferase and subsequently improves the utility of the enzyme as an ATP detector.

  10. Hydrophobins as aqueous lubricant additive for a soft sliding contact.

    PubMed

    Lee, Seunghwan; Røn, Troels; Pakkanen, Kirsi I; Linder, Markus

    2015-01-01

    Two type II fungal hydrophobins, HFBI and FpHYD5, have been studied as aqueous lubricant additive at a nonpolar, compliant sliding contact (self-mated poly(dimethylsiloxane) (PDMS) contact) at two different concentrations, 0.1 mg/mL and 1.0 mg/mL. The two hydrophobins are featured as non-glycosylated (HFBI, m.w. ca. 7 kDa) vs glycosylated (FpHYD5, m.w. ca. 10 kDa) proteins. Far UV CD spectra of the two hydrophobins were very similar, suggesting overall structural similarity, but showed a noticeable difference according to the concentration. This is proposed to be related to the formation of multimers at 1.0 mg/mL. Despite 10-fold difference in the bulk concentration, the adsorbed masses of the hydrophobins onto PDMS surface obtained from the two solutions (0.1 and 1.0 mg/mL) were nearly identical, suggesting that a monolayer of the hydrophobins are formed from 0.1 mg/mL solution. PDMS-PDMS sliding interface was effectively lubricated by the hydrophobin solutions, and showed a reduction in the coefficient of friction by as much as ca. two orders of magnitude. Higher concentration solution (1.0 mg/mL) provided a superior lubrication, particularly in low-speed regime, where boundary lubrication characteristic is dominant via 'self-healing' mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO-PEO, with a similar molecular weight. This is ascribed to higher amount of adsorption of the hydrophobins to hydrophobic surfaces from aqueous solution. PMID:25466456

  11. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    PubMed Central

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  12. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation...

  13. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation...

  14. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation...

  15. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation...

  16. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation...

  17. A Highly Efficient and Simple Construction Strategy for Producing Recombinant Baculovirus Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Liu, Xingjian; Wei, Yonglong; Li, Yinü; Li, Haoyang; Yang, Xin; Yi, Yongzhu; Zhang, Zhifang

    2016-01-01

    The silkworm baculovirus expression system is widely used to produce recombinant proteins. Several strategies for constructing recombinant viruses that contain foreign genes have been reported. Here, we developed a novel defective-rescue BmNPV Bacmid (reBmBac) expression system. A CopyControl origin of replication was introduced into the viral genome to facilitate its genetic manipulation in Escherichia coli and to ensure the preparation of large amounts of high quality reBmBac DNA as well as high quality recombinant baculoviruses. The ORF1629, cathepsin and chitinase genes were partially deleted or rendered defective to improve the efficiency of recombinant baculovirus generation and the expression of foreign genes. The system was validated by the successful expression of luciferase reporter gene and porcine interferon γ. This system can be used to produce batches of recombinant baculoviruses and target proteins rapidly and efficiently in silkworms. PMID:27008267

  18. A Highly Efficient and Simple Construction Strategy for Producing Recombinant Baculovirus Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Liu, Xingjian; Wei, Yonglong; Li, Yinü; Li, Haoyang; Yang, Xin; Yi, Yongzhu; Zhang, Zhifang

    2016-01-01

    The silkworm baculovirus expression system is widely used to produce recombinant proteins. Several strategies for constructing recombinant viruses that contain foreign genes have been reported. Here, we developed a novel defective-rescue BmNPV Bacmid (reBmBac) expression system. A CopyControl origin of replication was introduced into the viral genome to facilitate its genetic manipulation in Escherichia coli and to ensure the preparation of large amounts of high quality reBmBac DNA as well as high quality recombinant baculoviruses. The ORF1629, cathepsin and chitinase genes were partially deleted or rendered defective to improve the efficiency of recombinant baculovirus generation and the expression of foreign genes. The system was validated by the successful expression of luciferase reporter gene and porcine interferon γ. This system can be used to produce batches of recombinant baculoviruses and target proteins rapidly and efficiently in silkworms. PMID:27008267

  19. Langmuir Blodgett films of hydrophobins HFBI and HFBII

    NASA Astrophysics Data System (ADS)

    Kisko, Kaisa; Torkkeli, Mika; Vuorimaa, Elina; Lemmetyinen, Helge; Seeck, Oliver H.; Linder, Markus; Serimaa, Ritva

    2005-06-01

    Hydrophobins are small fungal proteins, which have remarkable surface-chemical properties. They self-assemble at hydrophobic/hydrophilic interfaces and work as adhesive agents and coatings. Sixteen layer Langmuir-Blodgett films of hydrophobins HFBI and HFBII from the fungus Trichoderma reesei were prepared and studied using grazing-incidence X-ray diffraction and reflectivity techniques. Both kind of films contain hexagonally ordered crystallites on the substrate with unit cell parameters of a = b = 54 Å (HFBI) and a = b = 55 Å (HFBII). The structure is similar to the structure of monolayer Langmuir-Blodgett films.

  20. Biologically produced bifunctional recombinant protein nanoparticles for immunoassays.

    PubMed

    Jääskeläinen, Anu; Harinen, Reija-Riitta; Soukka, Tero; Lamminmäki, Urpo; Korpimäki, Teemu; Virta, Marko

    2008-02-01

    Nanoparticles are increasingly used as labels for analytical purposes. In general, nanoparticles need to be functionalized with binding molecules (mostly antibodies or fragments thereof) and label substances using a multistep process that requires several manufacturing and purification steps. Here, we present a biological method of producing functionalized nanoparticles for effective use as label agents in a bioaffinity assay. The particles are based on the globular protein shell of human ferritin. A single chain Fv fragment (scFv) of an antibody is used as the binding moiety and Eu3+ ions as the label substance. Conventional chemical conjugation of the particle and antibody fragment is replaced with genetic fusion between the ferritin subunit and scFv genes. The material, for example, the fusion construct is produced in a single bacterial culture as insoluble forms that are easily purified by centrifugations. The subunits are solubilized and self-assembled, and label ions are introduced by shifting the pH. The functionality of these particles is demonstrated with a bioaffinity assay. This method of producing nanoparticles with inherent antigen binding activity presents several possibilities for the simple production of specific, functional nanoparticles. Production is fast, economical, and environmentally sustainable, making the system advantageous, particularly in applications requiring large quantities of specific nanoparticles. PMID:18179181

  1. High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris.

    PubMed

    Song, Dongmin; Gao, Zhendong; Zhao, Liqiang; Wang, Xiangxiang; Xu, Haijin; Bai, Yanling; Zhang, Xiuming; Linder, Markus B; Feng, Hui; Qiao, Mingqiang

    2016-12-01

    Hydrophobins are proteins produced by filamentous fungi with high natural-surfactant activities and that can self-assemble in interfaces of air-water or solid-water to form amphiphilic membranes. Here, we reported a high-yield fermentation method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris, attaining production of 300 mg/L by keeping the dissolved oxygen level at 15%-25% by turning the methanol-feeding speed. We also developed a novel HGFI-purification method enabling large-scare purification of HGFI, with >90% recovery. Additionally, we observed that hydrophobin HGFI in fermentation broth precipitated at pH < 7.0 and temperatures >90 °C. We also identified the structure and properties of proteins purified by this method through atomic force microscopy, circular dichroism, X-ray photoelectron spectroscopy, and water-contact angle measurement, which is similar to protein purification by ultrafiltration without heating treatment that enables our method to maintain native HGFI structure and properties. Furthermore, the purification method presented here can be applied to large-scale purification of other type I hydrophobins. PMID:27474238

  2. Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536.

    PubMed

    Huang, Ying; Mijiti, Gulijimila; Wang, Zhiying; Yu, Wenjing; Fan, Haijuan; Zhang, Rongshu; Liu, Zhihua

    2015-02-01

    A class II hydrophobin gene, HFB2-6, was cloned from Trichoderma asperellum ACCC30536 and its biocontrol function was studied. According to our previous transcriptome data, six of the eight class II hydrophobin genes were obviously differential expression in four inducing conditions, especially the gene HFB2-6. Moreover, HFB2-6 proven to be differentially transcribed under eight different treatments. HFB2-6 transcripts were up-regulated under 1% Alternaria alternata cell wall and 5% A. alternata fermentation liquid treatments, and by nutritional stress conditions, suggesting that HFB2-6 plays roles in interactions with both biotic and abiotic environmental conditions. HFB2-6 expression was down-regulated under 1% poplar leaf powder culture conditions, but its expression was up-regulated under 1% poplar root powder, indicating that HFB2-6 has a function in root colonization. Furthermore, the recombinant hydrophobin rHFB2-6 was successfully expressed in Escherichia coli BL21-HFB2-6 and purified from the recombinant strain. Genes related to both the jasmonic acid and salicylic acid signal transduction pathways were up-regulated by interaction with renatured rHFB2-6. The ORCA3 (octadecanoid-derivative responsive Catharanthus AP2-domain) gene of the poplar jasmonic acid signal transduction pathway showed a peak expression of 4.48 times at 2 h, and the peak expression of PR1 (pathogenesis-related protein gene) in the salicylic acid signal transduction pathway was 4.58 times at 72 h. Two genes, MP (monopteros) and GH3.17 (auxin original response gene), in the auxin signal transduction pathway were also up-regulated after induction with rHFB2-6, indicating that rHFB2-6 can promote poplar growth and confer broad-spectrum resistance to pathogens.

  3. Diffusion Of Hydrophobin Proteins In Solution And Interactions With A Graphite Surface

    SciTech Connect

    Mereghetti, Paolo; Wade, Rebecca C.

    2011-04-21

    Background Hydrophobins are small proteins produced by filamentous fungi that have a variety of biological functions including coating of spores and surface adhesion. To accomplish these functions, they rely on unique interface-binding properties. Using atomic-detail implicit solvent rigid-body Brownian dynamics simulations, we studied the diffusion of HFBI, a class II hydrophobin from Trichoderma reesei, in aqueous solution in the presence and absence of a graphite surface. Results In the simulations, HFBI exists in solution as a mixture of monomers in equilibrium with different types of oligomers. The oligomerization state depends on the conformation of HFBI. When a Highly Ordered Pyrolytic Graphite (HOPG) layer is present in the simulated system, HFBI tends to interact with the HOPG layer through a hydrophobic patch on the protein. Conclusions From the simulations of HFBI solutions, we identify a tetrameric encounter complex stabilized by non-polar interactions between the aliphatic residues in the hydrophobic patch on HFBI. After the formation of the encounter complex, a local structural rearrangement at the protein interfaces is required to obtain the tetrameric arrangement seen in HFBI crystals. Simulations performed with the graphite surface show that, due to a combination of a geometric hindrance and the interaction of the aliphatic sidechains with the graphite layer, HFBI proteins tend to accumulate close to the hydrophobic surface.

  4. Vaccination against Anthrax with Attenuated Recombinant Strains of Bacillus anthracis That Produce Protective Antigen

    PubMed Central

    Barnard, John P.; Friedlander, Arthur M.

    1999-01-01

    The protective efficacy of several live, recombinant anthrax vaccines given in a single-dose regimen was assessed with Hartley guinea pigs. These live vaccines were created by transforming ΔANR and ΔSterne, two nonencapsulated, nontoxinogenic strains of Bacillus anthracis, with four different recombinant plasmids that express the anthrax protective antigen (PA) protein to various degrees. This enabled us to assess the effect of the chromosomal background of the strain, as well as the amount of PA produced, on protective efficacy. There were no significant strain-related effects on PA production in vitro, plasmid stability in vivo, survival of the immunizing strain in the host, or protective efficacy of the immunizing infection. The protective efficacy of the live, recombinant anthrax vaccine strains correlated with the anti-PA antibody titers they elicited in vivo and the level of PA they produced in vitro. PMID:9916059

  5. Interspecific protoplast fusion in Streptomyces--selection of thermotolerant antibiotic-producing recombinant.

    PubMed

    Qi, H Y; Zheng, Y X

    1990-01-01

    The thermotolerant fusants were obtained after interspecific protoplast fusion between S. qingfengmyceticus M15S (SMr, stop growth at 39 degrees C, producing qingfingmycin with wide antimicrobial spectrum) and S. hygroscopicus var. jinggangensis *75 (SMs, grow well at 42 degrees C, producing jingganmycin of antifungus) by directly selecting from the regeneration plates containing SM 100 micrograms/ml and incubated at 42 degrees C. The fusion frequency was about 10(-5) -10(-4). The stable thermotolerant recombinants with antimicrobial activity were obtained. The properties of their products were quite different from that of the parents (Qm, Jm). The antimicrobial substance produced by recombinant F6-6 consists of two components: one has acid-alkaline indicator property; the other is fluorescent under UV light. The antimicrobial products of F1-16, F1-38 and FM3-32 have absorption peaks at 274nm, which suggests that a cytosine moiety may be present in their molecules.

  6. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris

    PubMed Central

    Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J.; Pimentel, Luisa; Barrera, Luis A.

    2016-01-01

    Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276

  7. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris.

    PubMed

    Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J; Pimentel, Luisa; Barrera, Luis A

    2016-01-01

    Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276

  8. In vitro carboxylation of a blood coagulation factor IX precursor produced by recombinant-DNA technology.

    PubMed

    Soute, B A; Balland, A; Faure, T; de la Salle, H; Vermeer, C

    1989-04-25

    Blood coagulation factor IX (Christmas factor) is a plasma protein which is required for normal haemostasis. A functional deficiency of factor IX results in haemophilia B, a bleeding disorder which is generally treated by infusions of factor IX concentrates prepared from pooled human plasma. The use of human blood products is connected with the risk of transmitting viral agents responsible for diseases such as hepatitis B and AIDS. Recombinant DNA techniques may provide the means to produce the required proteins without exposing the patients to these risks and at lower costs. One of the problems which has to be overcome before recombinant factor IX can be used for therapeutical purposes is related to the vitamin K-dependent carboxylation of its 12 NH2-terminal glutamate residues. In cell cultures this carboxylation, which is required to render the protein its procoagulant activity, is far from complete, especially at high expression levels. In this paper we describe the in vitro carboxylation of non and/or partly carboxylated recombinant factor IX produced by transformed Chinese hamster ovary cells. The identity of the newly formed Gla residues was verified and it could be demonstrated that all carboxyl groups had been incorporated into the recombinant factor IX.

  9. Cylindrical bubbles and blobs from a Class II Hydrophobin

    NASA Astrophysics Data System (ADS)

    Russo, Paul; Pham, Michael; Blalock, Brad

    2012-02-01

    Cerato ulmin is a class II hydrophobin. In aqueous suspensions, it easily forms cylindrical air bubbles and cylindrical oil blobs. The conditions for formation of these unusual structures will be discussed, along with scattering and microscopic investigations of their remarkable stability. Possible applications in diverse fields including polymer synthesis and oil spill remediation will be considered. Acknowledgment is made to Dr. Wayne C. Richards of the Canadian Forest Service for the gift of Cerato ulmin.

  10. A synthetically modified hydrophobin showing enhanced fluorous affinity.

    PubMed

    Milani, Roberto; Pirrie, Lisa; Gazzera, Lara; Paananen, Arja; Baldrighi, Michele; Monogioudi, Evanthia; Cavallo, Gabriella; Linder, Markus; Resnati, Giuseppe; Metrangolo, Pierangelo

    2015-06-15

    Hydrophobins are natural surfactant proteins endowed with exceptional surface activity and film-forming capabilities and their use as effective "fluorine-free fluorosurfactants" has been recently reported. In order to increase their fluorophilicity further, here we report the preparation of a unique fluorous-modified hydrophobin, named F-HFBI. F-HFBI was found to be more effective than its wild-type parent protein HFBI at reducing interface tension of water at both air/water and oil/water interfaces, being particularly effective at the fluorous/water interface. F-HFBI was also found to largely retain the exceptionally good capability of forming strong and elastic films, typical of the hydrophobin family. Further studies by interface shear rheology and isothermal compression, alongside Quartz Crystal Microbalance and Atomic Force Microscopy, demonstrated the tendency of F-HFBI to form thicker films compared to the wild-type protein. These results suggest that F-HFBI may function as an effective compatibilizer for biphasic systems comprising a fluorous phase. PMID:25725398

  11. Multiple roles and effects of a novel Trichoderma hydrophobin.

    PubMed

    Ruocco, Michelina; Lanzuise, Stefania; Lombardi, Nadia; Woo, Sheridan L; Vinale, Francesco; Marra, Roberta; Varlese, Rosaria; Manganiello, Gelsomina; Pascale, Alberto; Scala, Valeria; Turrà, David; Scala, Felice; Lorito, Matteo

    2015-02-01

    Fungi belonging to the genus Trichoderma are among the most active and ecologically successful microbes found in natural environments, because they are able to use a variety of substrates and affect the growth of other microbes and virtually any plant species. We isolated and characterized a novel type II hydrophobin secreted by the biocontrol strain MK1 of Trichoderma longibrachiatum. The corresponding gene (Hytlo1) has a multiple role in the Trichoderma-plant-pathogen three-way interaction, while the purified protein displayed a direct antifungal as well as a microbe-associated molecular pattern and a plant growth promotion (PGP) activity. Leaf infiltration with the hydrophobin systemically increased resistance to pathogens and activated defense-related responses involving reactive oxygen species, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. The hydrophobin was found to enhance development of a variety of plants when applied at very low doses. It particularly stimulated root formation and growth, as demonstrated also by transient expression of the encoding gene in tobacco and tomato. Targeted knock-out of Hytlo1 significantly reduced both antagonistic and PGP effect of the wild-type strain. We conclude that this protein represents a clear example of a molecular factor developed by Trichoderma spp. to establish a mutually beneficial interaction with the colonized plant.

  12. A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin.

    PubMed

    Parsons, Juliana; Altmann, Friedrich; Graf, Manuela; Stadlmann, Johannes; Reski, Ralf; Decker, Eva L

    2013-01-01

    Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modification in higher eukaryotes is prolyl-4-hydroxylase (P4H)-catalysed prolyl-hydroxylation. P4H sequence recognition sites on target proteins differ between humans and plants leading to non-human posttranslational modifications of recombinant human proteins produced in plants. The resulting hydroxyprolines display the anchor for plant-specific O-glycosylation, which bears immunogenic potential for patients. Here we describe the identification of a plant gene responsible for non-human prolyl-hydroxylation of human erythropoietin (hEPO) recombinantly produced in plant (moss) bioreactors. Targeted ablation of this gene abolished undesired prolyl-hydroxylation of hEPO and thus paves the way for plant-made pharmaceuticals humanized via glyco-engineering in moss bioreactors.

  13. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins.

    PubMed

    Ribitsch, Doris; Herrero Acero, Enrique; Przylucka, Agnieszka; Zitzenbacher, Sabine; Marold, Annemarie; Gamerith, Caroline; Tscheließnig, Rupert; Jungbauer, Alois; Rennhofer, Harald; Lichtenegger, Helga; Amenitsch, Heinz; Bonazza, Klaus; Kubicek, Christian P; Druzhinina, Irina S; Guebitz, Georg M

    2015-06-01

    Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.e., the class II hydrophobins HFB4 and HFB7 and the pseudo-class I hydrophobin HFB9b. The fusion enzymes exhibited decreased kcat values on soluble substrates (p-nitrophenyl acetate and p-nitrophenyl butyrate) and strongly decreased the hydrophilicity of glass but caused only small changes in the hydrophobicity of PET. When the enzyme was fused to HFB4 or HFB7, the hydrolysis of PET was enhanced >16-fold over the level with the free enzyme, while a mixture of the enzyme and the hydrophobins led only to a 4-fold increase at most. Fusion with the non-class II hydrophobin HFB9b did not increase the rate of hydrolysis over that of the enzyme-hydrophobin mixture, but HFB9b performed best when PET was preincubated with the hydrophobins before enzyme treatment. The pattern of hydrolysis by the fusion enzymes differed from that of Thc_Cut1 as the concentration of the product mono(2-hydroxyethyl) terephthalate relative to that of the main product, terephthalic acid, increased. Small-angle X-ray scattering (SAXS) analysis revealed an increased scattering contrast of the fusion proteins over that of the free proteins, suggesting a change in conformation or enhanced protein aggregation. Our data show that the level of hydrolysis of PET by cutinase can be significantly increased by fusion to hydrophobins. The data further suggest that this likely involves binding of the hydrophobins to the cutinase and changes in the conformation of its active center.

  14. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C.; Remington, Mary P.; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  15. Process technological effects of deletion and amplification of hydrophobins I and II in transformants of Trichoderma reesei.

    PubMed

    Bailey, M J; Askolin, S; Hörhammer, N; Tenkanen, M; Linder, M; Penttilä, M; Nakari-Setälä, T

    2002-05-01

    Transformants of the Trichoderma reeseistrains QM9414 and Rut-C30 were constructed in which the genes for the two major hydrophobin proteins, hydrophobins I (HFBI) and II (HFBII), were deleted or amplified by molecular biological techniques. Growth parameters and foam production of the transformant strains were compared with the corresponding properties of the parent strains by cultivation in laboratory bioreactors under conditions of catabolite repression (glucose medium) or induction of cellulolytic enzymes and other secondary metabolites (cellulose and lactose media). All the transformed strains exhibited vegetative growth properties similar to those of their parent. The Delta hfb2 (but not the Delta hfb1) transformant showed reduced tendency to foam, whereas both strains overproducing hydrophobins foamed extensively, particularly in the case of HFBII. Enzyme production on cellulose medium was unaltered in the Delta hfb2 transformant VTT D-99676, but both the Delta hfb2 and HFBII-overproducing transformants exhibited somewhat decreased enzyme production properties on lactose medium. Production of HFBI by the multi-copy transformant VTT D-98692 was almost 3-fold that of the parent strain QM9414. Overproduction of HFBII by the transformant VTT D-99745, obtained by transformation with three additional copies of the hfb2 gene under the cbh1 promoter, was over 5-fold compared to production by the parent strain Rut-C30. The Delta hfb2transformant VTT D-99676 produced a greatly increased number of spores on lactose medium compared with the parent strain, whereas the HFBII-overproducing transformant VTT D-99745 produced fewer spores.

  16. Baculovirus Coinfection Strategy for Improved Galactosylation of Recombinant Glycoprotein Produced by Insect Cell Culture

    NASA Astrophysics Data System (ADS)

    Ney, Yap Wei; Rahman, Badarulhisam Abdul; Aziz, Azila Abdul

    Baculovirus Expression Vector System (BEVS) is widely used for the production of recombinant glycoproteins, but it is not ideal for pharmaceutical glycoprotein production due to incomplete glycosylation. The factors that ensure successful glycosylation are the presence of sufficient amount of glycosyltransferases, sugar nucleotides as the substrate donor and the recombinant protein as the substrate acceptor. In this study, we analyzed the galactosylation process by the introduction of ß-1,4galactosyltransferase (ß-1,4GalT) as the glycosyltransferase of interest and uridine-5`-diphosphogalactose (UDP-Gal) as the substrate donor. Recombinant human transferrin (rhTf) as a model protein was used as the substrate acceptor. Insect cell lines have been reported to produce a small amount of ß-1,4GalT and thus insufficient for effective galactosylation. In this study, we developed a method to produce galactosylated rhTf and optimized the expression of rhTf with better N-glycan quality. Recombinant ß-1,4GalT was introduced during protein expression by the coinfection of the BEVS with baculovirus carrying bovine ß-1,4GalT. To evaluate the extent of galactosylation by the coinfection strategy, a binding assay was established. In this binding assay, glycoprotein acceptor was absorbed onto ELISA plate surface. A lectin known as Ricinus communis agglutinin-I (RCA-I) labeled with peroxidase, was added and allowed to recognize Gal ß1>4GlcNAc group on the N-glycan of the glycoprotein, followed by appropriate color reaction measurements. Coexpression between rhTf and ß-1,4GalT did not show encouraging results due to the reduction of UDP-Gal upon baculovirus infection. This interesting finding suggested that the introduction of ß-1,4GalT alone was not sufficient for successful galactosylation. Alternatively, post harvest glycosylation method strategy seems to be a promising technique in the improvement of glycoprotein quality.

  17. Key determinants affecting sheep wool biodegradation directed by a keratinase-producing Bacillus subtilis recombinant strain.

    PubMed

    Zaghloul, Taha I; Embaby, Amira M; Elmahdy, Ahmed R

    2011-02-01

    OVAT (one variable at a time) approach was applied in this study to screen the most important physicochemical key determinants involved in the process of sheep wool biodegradation. The process was directed by a keratinase-producing Bacillus subtilis DB 100 (p5.2) recombinant strain. Data indicate that, sheep wool could be degraded efficiently in cultures incubated at 30°C, with initial pH of 7 with agitation at 150 rpm. Two times autoclaved alkali treated and undefatted chopped sheep wool is more accessible to biodegradation. B. subtilis recombinant cells could utilize sheep wool as a sole source of carbon and nitrogen. Sheep wool-based modified basal medium II, lacking NH₄Cl and yeast extract, could greatly support the growth of these bacterial cells. Sheep wool biodegradation was conducted efficiently in the absence of kanamycin consequently; high stability of the recombinant plasmid (p5.2) represents a great challenge upon scaling up this process. Three key determinants (sheep wool concentration, incubation time and inoculum size) imposing considerable constraints on the process are highlighted. Sheep wool-based tap water medium and sheep wool-based distilled water medium were formulated in this study. High levels of released end products, produced from sheep wool biodegradation are achieved upon using these two sheep wool-based water media. Data indicate that, sheep wool hydrolysate is rich in some amino acids, such as tyrosine, phenylalanine, lysine, proline, isoleucine, leucine, valine, aspartic acid and glutamic acid. Moreover, the resulting sheep wool hydrolysate contains soluble proteins of high and intermediate molecular weights. The present study demonstrates a feasible, cheap, reproducible, efficient and rapid biotechnological approach towards utilization of raw sheep wool waste through a recombinant bacterium.

  18. Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.

    PubMed

    Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N

    2016-09-15

    The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. PMID:27288573

  19. Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.

    PubMed

    Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N

    2016-09-15

    The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications.

  20. Identification of new members of hydrophobin family using primary structure analysis

    PubMed Central

    Yang, Kuan; Deng, Youping; Zhang, Chaoyang; Elasri, Mohamed

    2006-01-01

    Background Hydrophobins are fungal proteins that can turn into amphipathic membranes at hydrophilic/hydrophobic interfaces by self-assembly. The assemblages by Class I hydrophobins are extremely stable and possess the remarkable ability to change the polarity of the surface. One of its most important industrial applications is its usage as paint. Without detailed knowledge of the 3D structure and self-assembly principles of hydrophobins, it is difficult to make significant progress in furthering its research. Results In order to provide useful information to hydrophobin researchers, we analyzed primary structure of hydrophobins to gain more insight about these proteins. In this paper, we presented an in-depth primary sequence analysis using batch BLAST search of the database, sequence filtering by programming and motif finding by MEME. We used batch BLAST to find similar sequences in the NCBI nr database. Then we used MEME to find out motifs. Based on the newly found motifs and the well-known C-CC-C-C-CC-C pattern we used MAST to search the entire nr database. At the end, domain search and phylogenetic analysis were conducted to confirm the result. After searching the nr database with the new PSSM-format motifs identified by MEME, many sequences from various species were found by MAST. Filtering process by pattern, domain and length left 9 qualified candidates. Conclusion All of 9 newly identified potential hydrophobins possess the common pattern and hydrophobin domain. From the multiple sequence alignment result, we can see that some of them are grouped very close to other known hydrophobins, which means their phylogenetic relationship is very close and it is highly plausible that they are indeed hydrophobin proteins. PMID:17217508

  1. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.

  2. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein. PMID:25115849

  3. Characterization of a yam class IV chitinase produced by recombinant Pichia pastoris X-33.

    PubMed

    Akond, Muhammad Ali; Matsuda, Yusuke; Ishimaru, Takayuki; Iwai, Ken; Saito, Akira; Kato, Akio; Tanaka, Shuhei; Kobayashi, Jun; Koga, Daizo

    2014-01-01

    A yam (Dioscorea opposita Thunb) class IV chitinase, whose genomic DNA was cloned by Mitsunaga et al. (2004), was produced by the recombinant Pichia pastoris X-33 in high yields such as 66 mg/L of culture medium. The chitinase was purified by column chromatography after Endoglycosidase H treatment and then characterized. It showed properties similar to the original chitinase E purified from the yam tuber reported by Arakane et al. (2000). This Pichia-produced chitinase also showed strong lytic activity against Fusarium oxysporum and Phytophthora nicotianae, wide pH and thermal stability, optimum activity at higher temperature such as 70 °C, and high substrate affinity, indicating that one can use this Pichia-produced yam chitinase as a bio-control agent.

  4. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes

    PubMed Central

    Serra-Moreno, Ruth; Acosta, Sandra; Hernalsteens, Jean Pierre; Jofre, Juan; Muniesa, Maite

    2006-01-01

    Background The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in E. coli K-12 through homologous recombination using linear PCR products. The aim of this study was to induce mutations in the genome of some temperate Shiga toxin encoding bacteriophages. When phage genes are in the prophage state, they behave like chromosomal genes. This enables marker genes, such as antibiotic resistance genes, to be incorporated into the stx gene. Once the phages' lytic cycle is activated, recombinant Shiga toxin converting phages are produced. These phages can transfer the marker genes to the bacteria that they infect and convert. As the Red system's effectiveness decreased when used for our purposes, we had to introduce significant variations to the original method. These modifications included: confirming the stability of the target stx gene increasing the number of cells to be transformed and using a three-step PCR method to produce the amplimer containing the antibiotic resistance gene. Results Seven phages carrying two different antibiotic resistance genes were derived from phages that are directly involved in the pathogenesis of Shiga toxin-producing strains, using this modified protocol. Conclusion This approach facilitates exploration of the transduction processes and is a valuable tool for studying phage-mediated horizontal gene transfer. PMID:16984631

  5. Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins

    PubMed Central

    Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin J.; Herrero Acero, Enrique; Guebitz, Georg M.; Kubicek, Christian P.

    2013-01-01

    Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET. PMID:23645195

  6. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications. PMID:25447786

  7. Accelerated Nucleation of Hydroxyapatite Using an Engineered Hydrophobin Fusion Protein.

    PubMed

    Melcher, Melanie; Facey, Sandra J; Henkes, Thorsten M; Subkowski, Thomas; Hauer, Bernhard

    2016-05-01

    Calcium phosphate mineralization is of particular interest in dental repair. A biomimetic approach using proteins or peptides is a highly promising way to reconstruct eroded teeth. In this study, the screening of several proteins is described for their binding and nucleating activities toward hydroxyapatite. Out of 27 tested candidates, only two hydrophobin fusion proteins showed binding abilities to hydroxyapatite in a mouthwash formulation and an increased nucleation in artificial saliva. Using a semirational approach, one of the two candidates (DEWA_5), a fusion protein consisting of a truncated section of the Bacillus subtilis synthase YaaD, the Aspergillus nidulans hydrophobin DEWA, and the rationally designed peptide P11-4 described in the literature, could be further engineered toward a faster mineral formation. The variants DEWA_5a (40aaYaaD-SDSDSD-DEWA) and DEWA_5b (40aaYaaD-RDRDRD-DEWA) were able to enhance the nucleation activity without losing the ability to form hydroxyapatite. In the case of variant DEWA_5b, an additional increase in the binding toward hydroxyapatite could be achieved. Especially with the variant DEWA_5a, the protein engineering of the rationally designed peptide sequence resulted in a resemblance of an amino acid motif that is found in nature. The engineered peptide resembles the amino acid motif in dentin phosphoprotein, one of the major proteins involved in dentinogenesis. PMID:27010648

  8. The human potential of a recombinant pandemic influenza vaccine produced in tobacco plants.

    PubMed

    Jul-Larsen, Åsne; Madhun, Abdullah S; Brokstad, Karl A; Montomoli, Emanuele; Yusibov, Vidadi; Cox, Rebecca J

    2012-05-01

    Rapid production of influenza vaccine antigen is an important challenge when a new pandemic occurs. Production of recombinant antigens in plants is a quick, cost effective and up scalable new strategy for influenza vaccine production. In this study, we have characterized a recombinant influenza haemagglutinin antigen (HAC1) that was derived from the 2009 pandemic H1N1 (pdmH1N1) virus and expressed in tobacco plants. Volunteers vaccinated with the 2009 pdmH1N1 oil-in-water adjuvanted vaccine provided serum and lymphocyte samples that were used to study the immunogenic properties of the HAC1 antigen in vitro. By 7 d post vaccination, the vaccine fulfilled the licensing criteria for antibody responses to the HA detected by haemagglutination inhibition and single radial hemolysis. By ELISA and ELISPOT analysis we showed that HAC1 was recognized by specific serum antibodies and antibody secreting cells, respectively. We conducted a kinetic analysis and found a peak of serum HAC1 specific antibody response between day 14 and 21 post vaccination by ELISA. We also detected elevated production of IL-2 and IFNγ and low frequencies of CD4(+) T cells producing single or multiple Th1 cytokines after stimulating PBMCs (peripheral blood mononuclear cells) with the HAC1 antigen in vitro. This indicates that the antigen can interact with T cells, although confirming an effective adjuvant would be required to improve the T-cell stimulation of plant based vaccines. We conclude that the tobacco derived recombinant HAC1 antigen is a promising vaccine candidate recognized by both B- and T cells. PMID:22634440

  9. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  10. Eliminating tyrosine sequence variants in CHO cell lines producing recombinant monoclonal antibodies.

    PubMed

    Feeney, Lauren; Carvalhal, Veronica; Yu, X Christopher; Chan, Betty; Michels, David A; Wang, Yajun Jennifer; Shen, Amy; Ressl, Jan; Dusel, Brendon; Laird, Michael W

    2013-04-01

    Amino acid sequence variants are defined as unintended amino acid sequence changes that contribute to product variation with potential impact to product safety, immunogenicity, and efficacy. Therefore, it is important to understand the propensity for sequence variant (SV) formation during the production of recombinant proteins for therapeutic use. During the development of clinical therapeutic products, several monoclonal antibodies (mAbs) produced from Chinese Hamster Ovary (CHO) cells exhibited SVs at low levels (≤3%) in multiple locations throughout the mAbs. In these examples, the cell culture process depleted tyrosine, and the tyrosine residues in the recombinant mAbs were replaced with phenylalanine or histidine. In this work, it is demonstrated that tyrosine supplementation eliminated the tyrosine SVs, while early tyrosine starvation significantly increased the SV level in all mAbs tested. Additionally, it was determined that phenylalanine is the amino acid preferentially misincorporated in the absence of tyrosine over histidine, with no other amino acid misincorporated in the absence of tyrosine, phenylalanine, and histidine. The data support that the tyrosine SVs are due to mistranslation and not DNA mutation, most likely due to tRNA(Tyr) mischarging due to the structural similarities between tyrosine and phenylalanine.

  11. Recombinant conotoxin, TxVIA, produced in yeast has insecticidal activity.

    PubMed

    Bruce, C; Fitches, E C; Chougule, N; Bell, H A; Gatehouse, J A

    2011-07-01

    Conotoxins are a diverse collection of more than 50,000 peptides produced by predatory marine snails of the genus Conus in order to immobilize their prey. Many conotoxins modulate the activity of ion channels, and show high specificity to their targets; as a result, some have valuable pharmaceutical applications. However, obtaining active peptide is difficult and to date has only been achieved though natural collection, chemical synthesis, or the use of prokaryotic expression systems, which often have the disadvantage of requiring subsequent steps to correctly fold the peptide. This paper reports the production of a conotoxin, TxVIA from Conus textile, as a biologically active recombinant protein, using the yeast Pichia pastoris as expression host. The presence of the pro-peptide was found to be necessary for the expression of biologically active conotoxin. We also show that TxVIA is not, as previously reported, mollusc-specific, but also shows insecticidal activity when injected into lepidopteran (cabbage moth) and dipteran (house fly) larvae. In contrast, recombinant TxVIA was not found to be molluscicidal to the grey field slug Deroceras reticulatum. PMID:21640131

  12. Biological Activity of Recombinant Bovine Interferon τ Produced by a Silkworm-Baculovirus Gene Expression System

    PubMed Central

    TAKAHASHI, Hitomi; TSUNAZAKI, Makoto; HAMANO, Takashi; TAKAHASHI, Masashi; OKUDA, Kiyoshi; INUMARU, Shigeki; OKANO, Akira; GESHI, Masaya; HIRAKO, Makoto

    2013-01-01

    ABSTRACT Bovine interferon (bIFN) τ plays a crucial role in maternal-fetal recognition and was expressed using a Bombyx mori (Bm) nuclear polyhedrosis virus (silkworm baculovirus) gene expression system. The biological effects of Bm-recombinant bIFNτ (rbIFNτ) on prostaglandin (PG) F2α synthesis were investigated in cultured bovine endometrial epithelial cells with oxytocin (OT, 100 nM) and on the in vitro development of bovine embryos. Bm-rbIFNτ and OT were shown to suppress PGF2α production in a dose-dependent manner. When in vitro produced morula stage embryos were cultured for 72 hr in modified CR1aa medium supplemented with or without rbIFNτ, Bm-rbIFNτ (10 ng/ml) significantly promoted development to the expanded blastocyst stage. In conclusion, Bm-rbIFNτ was suggested to have the same bioactivity as native IFNτ. PMID:24212505

  13. Proteomic differences in recombinant CHO cells producing two similar antibody fragments

    PubMed Central

    Sommeregger, Wolfgang; Mayrhofer, Patrick; Steinfellner, Willibald; Reinhart, David; Henry, Michael; Clynes, Martin

    2016-01-01

    ABSTRACT Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. “Omics” studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label‐free LC‐MS proteomic analyses to investigate product‐specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single‐chain Fv‐Fc homodimeric antibody fragments (scFv‐Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase‐mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label‐free proteomic analysis. LC‐MS‐MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902–1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26913574

  14. Fermentation of a yeast producing A. niger glucose oxidase: scale-up, purification and characterization of the recombinant enzyme.

    PubMed

    De Baetselier, A; Vasavada, A; Dohet, P; Ha-Thi, V; De Beukelaer, M; Erpicum, T; De Clerck, L; Hanotier, J; Rosenberg, S

    1991-06-01

    We have developed a fermentation process to produce up to 3 grams per liter of active, secreted glucose oxidase from a recombinant Saccharomyces cerevisiae. Real-time size-exclusion HPLC analysis is used to monitor enzyme production during fermentation, and purification to more than 95 percent is obtained using only filtration methods. The recombinant enzyme is stable to higher temperatures and a wider pH range than the native Aspergillus niger enzyme, and is free of contaminating amylase, cellulase and catalase.

  15. Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins

    PubMed Central

    Ribitsch, Doris; Herrero Acero, Enrique; Przylucka, Agnieszka; Zitzenbacher, Sabine; Marold, Annemarie; Gamerith, Caroline; Tscheließnig, Rupert; Jungbauer, Alois; Rennhofer, Harald; Lichtenegger, Helga; Amenitsch, Heinz; Bonazza, Klaus; Kubicek, Christian P.; Guebitz, Georg M.

    2015-01-01

    Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.e., the class II hydrophobins HFB4 and HFB7 and the pseudo-class I hydrophobin HFB9b. The fusion enzymes exhibited decreased kcat values on soluble substrates (p-nitrophenyl acetate and p-nitrophenyl butyrate) and strongly decreased the hydrophilicity of glass but caused only small changes in the hydrophobicity of PET. When the enzyme was fused to HFB4 or HFB7, the hydrolysis of PET was enhanced >16-fold over the level with the free enzyme, while a mixture of the enzyme and the hydrophobins led only to a 4-fold increase at most. Fusion with the non-class II hydrophobin HFB9b did not increase the rate of hydrolysis over that of the enzyme-hydrophobin mixture, but HFB9b performed best when PET was preincubated with the hydrophobins before enzyme treatment. The pattern of hydrolysis by the fusion enzymes differed from that of Thc_Cut1 as the concentration of the product mono(2-hydroxyethyl) terephthalate relative to that of the main product, terephthalic acid, increased. Small-angle X-ray scattering (SAXS) analysis revealed an increased scattering contrast of the fusion proteins over that of the free proteins, suggesting a change in conformation or enhanced protein aggregation. Our data show that the level of hydrolysis of PET by cutinase can be significantly increased by fusion to hydrophobins. The data further suggest that this likely involves binding of the hydrophobins to the cutinase and changes in the conformation of its active center. PMID:25795674

  16. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    PubMed

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc.

  17. Design of a recombinant Escherichia coli for producing L-phenylalanine from glycerol.

    PubMed

    Thongchuang, Mayura; Pongsawasdi, Piamsook; Chisti, Yusuf; Packdibamrung, Kanoktip

    2012-10-01

    A recombinant Escherichia coli was engineered to produce the commercially important amino acid L-phenylalanine (L-Phe) using glycerol as the carbon source. Compared to the conventionally used glucose and sucrose, glycerol is a less expensive carbon source. As phenylalanine dehydrogenase (PheDH) activity is involved in the last step of L-Phe synthesis in E. coli, a phenylalanine dehydrogenase gene (phedh) from the thermotolerant Bacillus lentus was cloned into pRSFDuet-1 (pPheDH) and expressed in E. coli BL21(DE3). The resulting clone had a limited ability to produce L-Phe from glycerol, possibly because of a poor glycerol uptake by the cell, or an inability to excrete L-Phe, or both. Therefore, yddG gene encoding an aromatic amino acid exporter and glpF gene encoding a glycerol transport facilitator were coexpressed with the phedh in a reengineered E. coli. In a glycerol medium, the maximum L-Phe production rates of the clones pPY (phedh and yddG genes) and pPYF (phedh, yddG and glpF genes) were 1.4- and 1.8-fold higher than the maximum production rate of the pPheDH clone. The better producing pPYF clone was further evaluated in a 5 l stirred-tank fermenter (37 °C, an aeration rate of 1 vvm, an agitation speed of 400 rpm). In the fermenter, the maximum concentration of L-Phe (366 mg/l) was achieved in a much shorter period compared to in the shake flasks. In the latter, the highest titer of L-Phe was only 76 % of the maximum value attained in the fermenter. PMID:22806734

  18. A New Defective Helper RNA to Produce Recombinant Sindbis Virus that Infects Neurons but does not Propagate.

    PubMed

    Kebschull, Justus M; Garcia da Silva, Pedro; Zador, Anthony M

    2016-01-01

    Recombinant Sindbis viruses are important tools in neuroscience because they combine rapid and high transgene expression with a capacity to carry large transgenes. Currently, two packaging systems based on the defective helper (DH) RNAs DH(26S)5'SIN and DH-BB(tRNA;TE12) are available for generating recombinant Sindbis virus that is neurotropic (able to infect neurons and potentially other cells). Both systems produce a fraction of viral particles that can propagate beyond the primary infected neuron. When injected into mouse brain, viruses produced using these DH RNAs produce transgene expression at the injection site, but also elsewhere in the brain. Such ectopic labeling caused recombinant Sindbis viruses to be classified as anterograde viruses with limited retrograde spread, and can complicate the interpretation of neuroanatomical and other experiments. Here we describe a new DH RNA, DH-BB(5'SIN;TE12ORF), that can be used to produce virus that is both neurotropic and propagation-incompetent. We show in mice that DH-BB(5'SIN;TE12ORF)-packaged virus eliminates infection of cells outside the injection site. We also provide evidence that ectopically labeled cells observed in previous experiments with recombinant Sindbis virus resulted from secondary infection by propagation-competent virus, rather than from inefficient retrograde spread. Virus produced with our new packaging system retains all the advantages of previous recombinant Sindbis viruses, but minimizes the risks of confounding results with unwanted ectopic labeling. It should therefore be considered in future studies in which a neurotropic, recombinant Sindbis virus is needed. PMID:27252627

  19. A New Defective Helper RNA to Produce Recombinant Sindbis Virus that Infects Neurons but does not Propagate

    PubMed Central

    Kebschull, Justus M.; Garcia da Silva, Pedro; Zador, Anthony M.

    2016-01-01

    Recombinant Sindbis viruses are important tools in neuroscience because they combine rapid and high transgene expression with a capacity to carry large transgenes. Currently, two packaging systems based on the defective helper (DH) RNAs DH(26S)5’SIN and DH-BB(tRNA;TE12) are available for generating recombinant Sindbis virus that is neurotropic (able to infect neurons and potentially other cells). Both systems produce a fraction of viral particles that can propagate beyond the primary infected neuron. When injected into mouse brain, viruses produced using these DH RNAs produce transgene expression at the injection site, but also elsewhere in the brain. Such ectopic labeling caused recombinant Sindbis viruses to be classified as anterograde viruses with limited retrograde spread, and can complicate the interpretation of neuroanatomical and other experiments. Here we describe a new DH RNA, DH-BB(5’SIN;TE12ORF), that can be used to produce virus that is both neurotropic and propagation-incompetent. We show in mice that DH-BB(5’SIN;TE12ORF)-packaged virus eliminates infection of cells outside the injection site. We also provide evidence that ectopically labeled cells observed in previous experiments with recombinant Sindbis virus resulted from secondary infection by propagation-competent virus, rather than from inefficient retrograde spread. Virus produced with our new packaging system retains all the advantages of previous recombinant Sindbis viruses, but minimizes the risks of confounding results with unwanted ectopic labeling. It should therefore be considered in future studies in which a neurotropic, recombinant Sindbis virus is needed. PMID:27252627

  20. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.

    2002-01-01

    Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.

  1. Characterization of recombinant human diamine oxidase (rhDAO) produced in Chinese Hamster Ovary (CHO) cells.

    PubMed

    Gludovacz, Elisabeth; Maresch, Daniel; Bonta, Maximilian; Szöllösi, Helen; Furtmüller, Paul G; Weik, Robert; Altmann, Friedrich; Limbeck, Andreas; Borth, Nicole; Jilma, Bernd; Boehm, Thomas

    2016-06-10

    Human diamine oxidase (hDAO) efficiently degrades polyamines and histamine. Reduced enzyme activities might cause complications during pregnancy and be involved in histamine intolerance. So far hDAO has been characterized after isolation from either native sources or the heterologous production in insect cells. Accessibility to human enzyme is limited and insect cells produce non-human glycosylation patterns that may alter its biochemical properties. We present the heterologous expression of hDAO in Chinese Hamster Ovary (CHO) cells and a three step purification protocol. Analysis of metal content using ICP-MS revealed that 93% of the active sites were occupied by copper. Topaquinone (TPQ) cofactor content was determined using phenylhydrazine titration. Ninety-four percent of DAO molecules contained TPQ and therefore the copper content at the active site was indirectly confirmed. Mass spectrometric analysis was conducted to verify sequence integrity of the protein and to assess the glycosylation profile. Electronic circular dichroism and UV-vis spectra data were used to characterize structural properties. The substrate preference and kinetic parameters were in accordance with previous publications. The establishment of a recombinant production system for hDAO enables us to generate decent amounts of protein with negligible impurities to address new scientific questions.

  2. Cytotoxic and Apoptotic Effects of Recombinant Subtilase Cytotoxin Variants of Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Funk, J.; Biber, N.; Schneider, M.; Hauser, E.; Enzenmüller, S.; Förtsch, C.

    2015-01-01

    In this study, the cytotoxicity of the recently described subtilase variant SubAB2-2 of Shiga toxin-producing Escherichia coli was determined and compared to the plasmid-encoded SubAB1 and the chromosome-encoded SubAB2-1 variant. The genes for the respective enzymatic active (A) subunits and binding (B) subunits of the subtilase toxins were amplified and cloned. The recombinant toxin subunits were expressed and purified. Their cytotoxicity on Vero cells was measured for the single A and B subunits, as well as for mixtures of both, to analyze whether hybrids with toxic activity can be identified. The results demonstrated that all three SubAB variants are toxic for Vero cells. However, the values for the 50% cytotoxic dose (CD50) differ for the individual variants. Highest cytotoxicity was shown for SubAB1. Moreover, hybrids of subunits from different subtilase toxins can be obtained which cause substantial cytotoxicity to Vero cells after mixing the A and B subunits prior to application to the cells, which is characteristic for binary toxins. Furthermore, higher concentrations of the enzymatic subunit SubA1 exhibited cytotoxic effects in the absence of the respective B1 subunit. A more detailed investigation in the human HeLa cell line revealed that SubA1 alone induced apoptosis, while the B1 subunit alone did not induce cell death. PMID:25824835

  3. Mechanism of Nonpolar Model Substances to Inhibit Primary Gushing Induced by Hydrophobin HFBI.

    PubMed

    Shokribousjein, Zahra; Riveros Galan, David; Losada-Pérez, Patricia; Wagner, Patrick; Lammertyn, Jeroen; Arghir, Iulia; Golreihan, Asefeh; Verachtert, Hubert; Aydın, Ahmet Alper; De Maeyer, Marc; Titze, Jean; Ilberg, Vladimír; Derdelinckx, Guy

    2015-05-13

    In this work, the interactions of a well-studied hydrophobin with different types of nonpolar model substances and their impact on primary gushing is evaluated. The nature, length, and degree of saturation of nonpolar molecules are key parameters defining the gushing ability or inhibition. When mixed with hydrophobins, the nonpolar molecule-hydrophobin assembly acts as a less gushing or no gushing system. This effect can be explained in the framework of a competition effect between non-polar systems and CO2 to interact with the hydrophobic patch of the hydrophobin. Interactions of these molecules with hydrophobins are promoted as a result of the similar size of the nonpolar molecules with the hydrophobic patch of the protein, at the expense of the formation of nanobubbles with CO2. In order to prove the presence of interactions and to unravel the mechanisms behind them, a complete set of experimental techniques was used. Surface sensitive techniques clearly show the presence of the interactions, whose nature is not covalent nor hydrogen bonding according to infrared spectroscopy results. Interactions were also reflected by particle size analysis in which mixtures of particles displayed larger size than their pure component counterparts. Upon mixing with nonpolar molecules, the gushing ability of the protein is significantly disrupted. PMID:25891388

  4. Novel application of hydrophobin in medical science: a drug carrier for improving serum stability

    PubMed Central

    Zhao, Liqiang; Xu, Haijin; Li, Ying; Song, Dongmin; Wang, Xiangxiang; Qiao, Mingqiang; Gong, Min

    2016-01-01

    Multiple physiological properties of glucagon-like peptide-1 (GLP-1) ensure that it is a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short because of rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor serum stability of GLP-1 has significantly limited its clinical utility, although many studies are focused on extending the serum stability of this molecule. Hydrophobin, a self-assembling protein, was first applied as drug carrier to stabilize GLP-1 against protease degradation by forming a cavity. The glucose tolerance test clarified that the complex retained blood glucose clearance activity for 72 hours suggesting that this complex might be utilized as a drug candidate administered every 2–3 days. Additionally, it was found that the mutagenesis of hydrophobin preferred a unique pH condition for self-assembly. These findings suggested that hydrophobin might be a powerful tool as a drug carrier or a pH sensitive drug-release compound. The novel pharmaceutical applications of hydrophobin might result in future widespread interest in hydrophobin. PMID:27212208

  5. Formation, disruption and mechanical properties of a rigid hydrophobin film at an air-water interface

    NASA Astrophysics Data System (ADS)

    Walker, Lynn; Kirby, Stephanie; Anna, Shelley; CMU Team

    Hydrophobins are small, globular proteins with distinct hydrophilic and hydrophobic regions that make them extremely surface active. The behavior of hydrophobins at surfaces has raised interest in their potential industrial applications, including use in surface coatings, food foams and emulsions, and as dispersants. Practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, both individually and in the presence of surfactants. Cerato-ulmin (CU) is a hydrophobin that has been shown to strongly stabilize air bubbles and oil droplets through the formation of a persistent protein film at the interface. In this work, we characterize the adsorption behavior of CU at air/water interfaces by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to strongly, irreversibly adsorb at air/water interfaces; the magnitude of the dilatational modulus increases with adsorption time and surface pressure, until the CU eventually forms a rigid film. The persistence of this film is tested through the addition of SDS, a strong surfactant, to the bulk. SDS is found to co-adsorb to interfaces pre-coated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU. These results lend insight into the complex interfacial interactions between hydrophobins and surfactants. Funding from GoMRI.

  6. A Gateway recombination herpesvirus cloning system with negative selection that produces vectorless progeny.

    PubMed

    Kunec, Dusan; van Haren, Sandra; Burgess, Shane C; Hanson, Larry A

    2009-01-01

    Crossover recombination based on the lambda phage integration/excision functions enables insertion of a gene of interest into a specific locus by a simple one-step in vitro recombination reaction. Recently, a highly efficient recombination system for targeted mutagenesis, which utilizes lambda phage crossover recombination cloning, has been described for a human herpesvirus 2 bacterial artificial chromosome (BAC). The disadvantages of the system are that it allows only neutral selection (loss of green fluorescent protein) of desired recombinants and that it regenerates herpesvirus progeny containing the BAC sequence inserted in the herpesvirus genome. In this study, the existing channel catfish herpesvirus (CCV) infectious clone (in the form of overlapping fragments) was modified to allow introduction of foreign genes by modified lambda phage crossover recombination cloning. This novel system enables negative and neutral selection and regenerates vectorless herpesvirus progeny. Construction of two CCV mutants expressing lacZ, one from the native CCV ORF5 promoter and the other from the immediate-early cytomegalovirus promoter, demonstrated the efficiency and reliability of this system. This novel cloning system enables rapid incorporation, direct delivery and high-level expression of foreign genes by a herpesvirus. This system has broad utility and could be used to facilitate development of recombinant viruses, viral vectors and better vaccines. PMID:18948138

  7. Properties of pertussis toxin B oligomer assembled in vitro from recombinant polypeptides produced by Escherichia coli.

    PubMed Central

    Burnette, W N; Arciniega, J L; Mar, V L; Burns, D L

    1992-01-01

    The subunits that make up the pentameric B oligomer of pertussis toxin (S2, S3, S4, and S5) were individually synthesized as recombinant polypeptides in Escherichia coli, isolated as insoluble inclusion bodies, and assembled into a multimeric form in vitro by spontaneous association following treatment with a chaotropic agent, reduction, and reoxidation. The recombinant B multimer, purified by fetuin-Sepharose affinity chromatography, contained all four of the individual subunits and possessed the mitogenic and hemagglutinating activities characteristic of the native B oligomer. Immunization of mice with the recombinant B oligomer elicited antibodies that neutralized pertussis toxin in vitro and, moreover, provided protection in vivo against the leukocytosis-promoting activity of the toxin. These results demonstrate the potential for assembly of complex multimeric proteins from recombinant DNA-derived polypeptides and provide a novel means for production of an acellular pertussis vaccine component. Images PMID:1587592

  8. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  9. Silencing of six hydrophobins in Cladosporium fulvum: complexities of simultaneously targeting multiple genes.

    PubMed

    Lacroix, Hélène; Spanu, Pietro D

    2009-01-01

    In this study, we have constructed and expressed inverted repeat chimeras from the first exons of the six known hydrophobins of the fungus Cladosporium fulvum, the causal agent of tomato leaf mold. We used quantitative PCR to measure specifically the expression levels of the hydrophobins. The targeted genes are silenced to different degrees, but we also detected clear changes in the expression levels of nontargeted genes. This work highlights the difficulties that are likely to be encountered when attempting to silence more than one gene in a multigene family.

  10. Hydrophobins Sc3 and Sc4 gene expression in mounds, fruiting bodies and vegetative hyphae of Schizophyllum commune.

    PubMed

    Banerjee, Goutami; Robertson, Deborah L; Leonard, Thomas J

    2008-03-01

    An abnormal growth form called mound has been hypothesized to be a neoplasm in the filamentous fungus Schizophyllum commune. An alternative hypothesis is that mounds represent some unusual developmental form in the fruiting body morphogenetic pathway. Hydrophobin proteins have been found in fruiting bodies where they line the surface of gas exchange pores and function to keep the pores hydrophobic. To further determine possible relationships between mounds and fruiting bodies, mound tissue was examined for gas exchange pores and the presence of hydrophobins. Cryoscanning electron microscopic images revealed the presence of channels in mound tissue and presumptive hydrophobin rodlets similar to the air channels in fruiting bodies. Hydrophobin gene expression was also measured in mound tissue using quantitative real-time PCR and showed both monokaryotic and dikaryotic mound tissue exhibited high expression of the dikaryotic specific Sc4 hydrophobin gene. In contrast, Sc4 hydrophobin expression was barely detectable in monokaryotic fruiting bodies. The expression of Sc4 hydrophobin genes in mounds suggests mound development uses this aspect of the dikaryotic fruiting developmental pathway.

  11. Design of a stable cell line producing a recombinant monoclonal anti-TNFα antibody based on a CHO cell line.

    PubMed

    Voronina, E V; Seregin, Y A; Litvinova, N A; Shvets, V I; Shukurov, R R

    2016-01-01

    Recombinant monoclonal antibodies (mAbs) against tumor necrosis factor alpha are widely used in the biopharmaceutical therapy of autoimmune diseases. Currently, a large number of drugs based on these antibodies are available. Accordingly, the development of these products for the Russian market is an important goal. The aim of the current study is to describe the development of one such technology. CHO-DG44-derived cell lines producing mAb were developed using two strategies, one based on individual clones and the other based on cell pools. To obtain recombinant cell lines with highly amplified genes of interest, the clones underwent dihydrofolate reductase-mediated gene amplification. Using the best strategy for the selection and amplification of mAb-producing clones, we achieved the production of more than 1 g/L in small scale, non-optimized conditions. PMID:27652157

  12. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber

    PubMed Central

    Xia, Xiao-Xia; Qian, Zhi-Gang; Ki, Chang Seok; Park, Young Hwan; Kaplan, David L.; Lee, Sang Yup

    2010-01-01

    Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250–320 kDa). Here we show that a 284.9 kDa recombinant protein of the spider Nephila clavipes is produced and spun into a fiber displaying mechanical properties comparable to those of the native silk. The native-sized protein, predominantly rich in glycine (44.9%), was favorably expressed in metabolically engineered Escherichia coli within which the glycyl-tRNA pool was elevated. We also found that the recombinant proteins of lower molecular weight versions yielded inferior fiber properties. The results provide insight into evolution of silk protein size related to mechanical performance, and also clarify why spinning lower molecular weight proteins does not recapitulate the properties of native fibers. Furthermore, the silk expression, purification, and spinning platform established here should be useful for sustainable production of natural quality dragline silk, potentially enabling broader applications. PMID:20660779

  13. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.

    PubMed

    Xia, Xiao-Xia; Qian, Zhi-Gang; Ki, Chang Seok; Park, Young Hwan; Kaplan, David L; Lee, Sang Yup

    2010-08-10

    Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250-320 kDa). Here we show that a 284.9 kDa recombinant protein of the spider Nephila clavipes is produced and spun into a fiber displaying mechanical properties comparable to those of the native silk. The native-sized protein, predominantly rich in glycine (44.9%), was favorably expressed in metabolically engineered Escherichia coli within which the glycyl-tRNA pool was elevated. We also found that the recombinant proteins of lower molecular weight versions yielded inferior fiber properties. The results provide insight into evolution of silk protein size related to mechanical performance, and also clarify why spinning lower molecular weight proteins does not recapitulate the properties of native fibers. Furthermore, the silk expression, purification, and spinning platform established here should be useful for sustainable production of natural quality dragline silk, potentially enabling broader applications. PMID:20660779

  14. Differentially Regulated, Vegetative-Mycelium-Specific Hydrophobins of the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Peñas, María M.; Rust, Brian; Larraya, Luis M.; Ramírez, Lucía; Pisabarro, Antonio G.

    2002-01-01

    Three different hydrophobins (Vmh1, Vmh2, and Vmh3) were isolated from monokaryotic and dikaryotic vegetative cultures of the edible fungus Pleurotus ostreatus. Their corresponding genes have a number of introns different from those of other P. ostreatus hydrophobins previously described. Two genes (vmh1 and vmh2) were expressed only at the vegetative stage, whereas vmh3 expression was also found in the fruit bodies. Furthermore, the expression of the three hydrophobins varied significantly with culture time and nutritional conditions. The three genes were mapped in the genomic linkage map of P. ostreatus, and evidence is presented for the allelic nature of vmh2 and POH3 and for the different locations of the genes coding for the glycosylated hydrophobins Vmh3 and POH2. The glycosylated nature of Vmh3 and its expression during vegetative growth and in fruit bodies suggest that it should play a role in development similar to that proposed for SC3 in Schizophyllum commune. PMID:12147487

  15. Class I Hydrophobin Vmh2 Adopts Atypical Mechanisms to Self-Assemble into Functional Amyloid Fibrils.

    PubMed

    Gravagnuolo, Alfredo Maria; Longobardi, Sara; Luchini, Alessandra; Appavou, Marie-Sousai; De Stefano, Luca; Notomista, Eugenio; Paduano, Luigi; Giardina, Paola

    2016-03-14

    Hydrophobins are fungal proteins whose functions are mainly based on their capability to self-assemble into amphiphilic films at hydrophobic-hydrophilic interfaces (HHI). It is widely accepted that class I hydrophobins form amyloid-like structures, named rodlets, which are hundreds of nanometers long, packed into ordered lateral assemblies and do not exhibit an overall helical structure. We studied the self-assembly of the Class I hydrophobin Vmh2 from Pleurotus ostreatus in aqueous solutions by dynamic light scattering (DLS), thioflavin T (ThT), fluorescence assay, circular dichroism (CD), cryogenic trasmission electron microscopy (cryo-TEM), and TEM. Vmh2 does not form fibrillar aggregates at HHI. It exhibits spherical and fibrillar assemblies whose ratio depends on the protein concentration when freshly solubilized at pH ≥ 7. Moreover, it spontaneously self-assembles into isolated, micrometer long, and twisted amyloid fibrils, observed for the first time in fungal hydrophobins. This process is promoted by acidic pH, temperature, and Ca(2+) ions. A model of self-assembly into amyloid-like structures has been proposed. PMID:26828412

  16. Identification, characterization, and In situ detection of a fruit-body-specific hydrophobin of Pleurotus ostreatus.

    PubMed

    Peñas, M M; Asgeirsdóttir, S A; Lasa, I; Culiañez-Macià, F A; Pisabarro, A G; Wessels, J G; Ramírez, L

    1998-10-01

    Hydrophobins are small (length, about 100 +/- 25 amino acids), cysteine-rich, hydrophobic proteins that are present in large amounts in fungal cell walls, where they form part of the outermost layer (rodlet layer); sometimes, they can also be secreted into the medium. Different hydrophobins are associated with different developmental stages of a fungus, and their biological functions include protection of the hyphae against desiccation and attack by either bacterial or fungal parasites, hyphal adherence, and the lowering of surface tension of the culture medium to permit aerial growth of the hyphae. We identified and isolated a hydrophobin (fruit body hydrophobin 1 [Fbh1]) present in fruit bodies but absent in both monokaryotic and dikaryotic mycelia of the edible mushroom Pleurotus ostreatus. In order to study the temporal and spatial expression of the fbh1 gene, we determined the N-terminal amino acid sequence of Fbh1. We also synthesized and cloned the double-stranded cDNA corresponding to the full-length mRNA of Fbh1 to use it as a probe in both Northern blot and in situ hybridization experiments. Fbh1 mRNA is detectable in specific parts of the fruit body, and it is absent in other developmental stages. PMID:9758836

  17. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed

    Kilian, Oliver; Benemann, Christina S E; Niyogi, Krishna K; Vick, Bertrand

    2011-12-27

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology. PMID:22123974

  18. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed Central

    Kilian, Oliver; Benemann, Christina S. E.; Niyogi, Krishna K.; Vick, Bertrand

    2011-01-01

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology. PMID:22123974

  19. [Recombinant strain producing thermostable lipase from Thermomyces lanuginosus immobilized into nanocarbon silica matrices and properties of the prepared biocatalyzers].

    PubMed

    Kovalenko, G A; Beklemishev, A B; Perminova, L V; Chuenko, T V; Ivanov, I D; Moiseenkov, S I; Kuznetsov, V L

    2013-01-01

    Multicomponent composite biocatalyzers with lipolytic activity have been studied. These biocatalyzers were prepared through the immobilization of a recombinant producer strain of thermostable lipase from Thermomyces lanuginosus into SiO2 xerogel, which contains a nanocarbon component, i.e., multilayered carbon nanotubes with varying diameters, and also bulblike structured carbon nanospheres ("nanobulb"). The properties of lipase were studied both in cell suspensions of a recombinant producer strain constructed based on E. coli BL21(DE3) and in the immobilized state with regard to the structure and dispersibility of the nanocarbon component used in the composition of the biocatalyzers. It was shown that the recombinant intracellular lipase exerted its activity in a reaction of tributirin hydrolysis on average comprising 50 U/mg of dried cells and had a high level of thermostability. Upon heating in olive oil at 100 degrees C, the inactivation constant and the period of semi-inactivation comprised 6 x 10(-3) min(-1) and 2 h, respectively, exceeding by one order the thermostability of lipase in a buffer solution. Biocatalyzers that contained aggregated "thick" nanotubes with a diameter of 20-22 nm had the maximum initial activity-250 U/g. PMID:23882949

  20. Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro.

    PubMed

    Vejnovic, Ivana; Huonder, Cornelia; Betz, Gabriele

    2010-09-15

    Existing treatments of onychomycosis are not satisfactory. Oral therapies have many side effects and topical formulations are not able to penetrate into the human nail plate and deliver therapeutical concentrations of active agent in situ. The purpose of the present study was to determine the amount of terbinafine, which permeates through the human nail plate, from liquid formulations containing enhancers, namely hydrophobins A-C in the concentration of 0.1% (w/v). The used reference solution contained 10% (w/v) of terbinafine in 60% (v/v) ethanol/water without enhancer. Permeability studies have been performed on cadaver nails using Franz diffusion cells modified to mount nail plates and filled with 60% (v/v) ethanol/water in the acceptor chamber. Terbinafine was quantitatively determined by HPLC. The amount of terbinafine remaining in the nail was extracted by 96% ethanol from pulverized nail material after permeation experiment and presented as percentage of the dry nail weight before the milling test. Permeability coefficient (PC) of terbinafine from reference solution was determined to be 1.52E-10 cm/s. Addition of hydrophobins improved PC in the range of 3E-10 to 2E-9 cm/s. Remaining terbinafine reservoir in the nail from reference solution was 0.83% (n=2). An increase of remaining terbinafine reservoir in the nail was observed in two out of three tested formulations containing hydrophobins compared to the reference. In all cases, known minimum inhibitory concentration of terbinafine for dermatophytes (0.003 microg/ml) has been exceeded in the acceptor chamber of the diffusion cells. All tested proteins (hydrophobins) facilitated terbinafine permeation after 10 days of permeation experiment, however one of them achieved an outstanding enhancement factor of 13.05 compared to the reference. Therefore, hydrophobins can be included in the list of potential enhancers for treatment of onychomycosis. PMID:20620203

  1. Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro.

    PubMed

    Vejnovic, Ivana; Huonder, Cornelia; Betz, Gabriele

    2010-09-15

    Existing treatments of onychomycosis are not satisfactory. Oral therapies have many side effects and topical formulations are not able to penetrate into the human nail plate and deliver therapeutical concentrations of active agent in situ. The purpose of the present study was to determine the amount of terbinafine, which permeates through the human nail plate, from liquid formulations containing enhancers, namely hydrophobins A-C in the concentration of 0.1% (w/v). The used reference solution contained 10% (w/v) of terbinafine in 60% (v/v) ethanol/water without enhancer. Permeability studies have been performed on cadaver nails using Franz diffusion cells modified to mount nail plates and filled with 60% (v/v) ethanol/water in the acceptor chamber. Terbinafine was quantitatively determined by HPLC. The amount of terbinafine remaining in the nail was extracted by 96% ethanol from pulverized nail material after permeation experiment and presented as percentage of the dry nail weight before the milling test. Permeability coefficient (PC) of terbinafine from reference solution was determined to be 1.52E-10 cm/s. Addition of hydrophobins improved PC in the range of 3E-10 to 2E-9 cm/s. Remaining terbinafine reservoir in the nail from reference solution was 0.83% (n=2). An increase of remaining terbinafine reservoir in the nail was observed in two out of three tested formulations containing hydrophobins compared to the reference. In all cases, known minimum inhibitory concentration of terbinafine for dermatophytes (0.003 microg/ml) has been exceeded in the acceptor chamber of the diffusion cells. All tested proteins (hydrophobins) facilitated terbinafine permeation after 10 days of permeation experiment, however one of them achieved an outstanding enhancement factor of 13.05 compared to the reference. Therefore, hydrophobins can be included in the list of potential enhancers for treatment of onychomycosis.

  2. The Effect of Hydrophobin Protein on Conductive Properties of Carbon Nanotube Field-Effect Transistors: First Study on Sensing Mechanism.

    PubMed

    Yotprayoonsakl, Peerapong; Szilvay, Géza R; Laaksonen, Päivi; Linder, Markus B; Ahlskog, Markus

    2015-03-01

    Hydrophobin is a surface active protein having both hydrophobic and hydrophilic functional domains which has previously been used for functionalization and solubilization of graphene and carbon nanotubes. In this work, field-effect transistors based on single nanotubes have been employed for electronic detection of hydrophobin protein in phosphate buffer solution. Individual nanotubes, single- and multiwalled, are characterized by atomic force microscopy after being immersed in protein solution, showing a relatively dense coverage with hydrophobin. We have studied aspects such as nanotube length (0.3-1.2 µm) and the hysteresis effect in the gate voltage dependent conduction. When measured in ambient condition after the exposure to hydrophobin, the resistance increase has a strong dependence on the nanotube length, which we ascribe to mobility degradation and localization effects. The change could be exceptionally large when measured in-situ in solution and at suitable gate voltage conditions, which is shown to relate to the different mechanism behind the hysteresis effect. PMID:26413623

  3. One single method to produce native and Tat-fused recombinant human α-synuclein in Escherichia coli

    PubMed Central

    2013-01-01

    Background Human α-synuclein is a small-sized, natively unfolded protein that in fibrillar form is the primary component of Lewy bodies, the pathological hallmark of Parkinson’s disease. Experimental evidence suggests that α-synuclein aggregation is the key event that triggers neurotoxicity although additional findings have proposed a protective role of α-synuclein against oxidative stress. One way to address the mechanism of this protective action is to evaluate α-synuclein-mediated protection by delivering this protein inside cells using a chimeric protein fused with the Tat-transduction domain of HIV Tat, named TAT-α-synuclein. Results A reliable protocol was designed to efficiently express and purify two different forms of human α-synuclein. The synthetic cDNAs encoding for the native α-synuclein and the fusion protein with the transduction domain of Tat protein from HIV were overexpressed in a BL21(DE3) E. coli strain as His-tagged proteins. The recombinant proteins largely localized (≥ 85%) to the periplasmic space. By using a quick purification protocol, based on recovery of periplasmic space content and metal-chelating chromatography, the recombinant α-synuclein protein forms could be purified in a single step to ≥ 95% purity. Both α-synuclein recombinant proteins form fibrils and the TAT-α-synuclein is also cytotoxic in the micromolar concentration range. Conclusions To further characterize the molecular mechanisms of α-synuclein neurotoxicity both in vitro and in vivo and to evaluate the relevance of extracellular α-synuclein for the pathogenesis and progression of Parkinson’s disease, a suitable method to produce different high-quality forms of this pathological protein is required. Our optimized expression and purification procedure offers an easier and faster means of producing different forms (i.e., both the native and the TAT-fusion form) of soluble recombinant α-synuclein than previously described procedures. PMID:23557146

  4. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids.

    PubMed

    Liu, Peitong; Sun, Liang; Sun, Yuxia; Shang, Fei; Yan, Guoliang

    2016-04-01

    The genome-wide transcriptional responses of S. cerevisiae to heterologous carotenoid biosynthesis were investigated using DNA microarray analysis. The results show that the genes involved in metal ion transport were specifically up-regulated in the recombinant strain, and metal ions, including Cu(2+), Fe(2+), Mn(2+), and Mg(2+), were deficient in the recombinant strain compared to the ion content of the parent strain. The decrease in metal ions was ascribed to a decrease in cell membrane (CM) fluidity caused by lower levels of unsaturated fatty acids and ergosterol. This was confirmed by the observation that metal ion levels were restored when CM fluidity was increased by supplying linoleic acid. In addition, a 24.3 % increase in the β-carotene concentration was observed. Collectively, our results suggest that heterologous production of carotenoids in S. cerevisiae can induce cellular stress by rigidifying the CM, which can lead to a deficiency in metal ions. Due to the importance of CM fluidity in cellular physiology, maintaining normal CM fluidity might be a potential approach to improving carotenoid production in genetically engineered S. cerevisiae. PMID:26749524

  5. European community and US-FDA approval of recombinant human antithrombin produced in genetically altered goats.

    PubMed

    Adiguzel, Cafer; Iqbal, Omer; Demir, Muzaffer; Fareed, Jawed

    2009-12-01

    Thrombin and factor Xa play a central role in thrombogenesis in both medical and surgical patients. Antithrombin (AT) is the key inhibitor, which controls the action of these enzymes in hypercoagulable states. The AT concentrates prepared from human blood have been used to treat patients with thrombotic disorders and heparin resistance. The AT concentrates are prepared from pooled human plasma and beside limited supply, suffer from viral and other biological contaminants. The availability of recombinant human AT (rhAT) obtained from genetically engineered goats provide a biologically equivalent product that can be used in practically all indications where human AT is indicated including heparin resistance. Moreover, because of its high affinity to heparin and related drugs, recombinant AT can also be developed in further indications. On review of the preclinical and clinical data on the safety and efficacy, the European Union and U.S. Food and Drug Administration (US-FDA) have recently approved the use of rhAT in specified clinical indications.

  6. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose. PMID:23300051

  7. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose.

  8. The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely

    PubMed Central

    Guo, Xiaoyan; Chen, Ping; Hou, Xiaohu; Xu, Wenjuan; Wang, Dan; Wang, Tian-yan; Zhang, Liping; Zheng, Gang; Gao, Zhi-liang; He, Cheng-Yi; Zhou, Boping; Chen, Zhi-Ying

    2016-01-01

    HBV covalently closed circular DNA (cccDNA) is drug-resistant and responsible for viral persistence. To facilitate the development of anti-cccDNA drugs, we developed a minicircle DNA vector (MC)-based technology to produce large quantity of recombined cccDNA (rcccDNA) resembling closely to its wild-type counterpart both in structure and function. The rcccDNA differed to the wild-type cccDNA (wtcccDNA) only in that it carried an extra 36-bp DNA recombinant product attR upstream of the preC/C gene. Using a procedure similar to standard plasmid production, milligrams of rcccDNA can be generated in common laboratories conveniently. The rcccDNA demonstrated many essential biological features of wtcccDNA, including: (1) undergoing nucleation upon nucleus entry; (2) serving as template for production of all HBV RNAs and proteins; (3) deriving virions capable of infecting tree shrew, and subsequently producing viral mRNAs, proteins, rcccDNA and infectious virions. As an example to develop anti-cccDNA drugs, we used the Crispr/Cas9 system to provide clear-cut evidence that rcccDNA was cleaved by this DNA editing tool in vitro. In summary, we have developed a convenient technology to produce large quantity of rcccDNA as a surrogate of wtcccDNA for investigating HBV biology and developing treatment to eradicate this most wide-spreading virus. PMID:27174254

  9. The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely.

    PubMed

    Guo, Xiaoyan; Chen, Ping; Hou, Xiaohu; Xu, Wenjuan; Wang, Dan; Wang, Tian-Yan; Zhang, Liping; Zheng, Gang; Gao, Zhi-Liang; He, Cheng-Yi; Zhou, Boping; Chen, Zhi-Ying

    2016-01-01

    HBV covalently closed circular DNA (cccDNA) is drug-resistant and responsible for viral persistence. To facilitate the development of anti-cccDNA drugs, we developed a minicircle DNA vector (MC)-based technology to produce large quantity of recombined cccDNA (rcccDNA) resembling closely to its wild-type counterpart both in structure and function. The rcccDNA differed to the wild-type cccDNA (wtcccDNA) only in that it carried an extra 36-bp DNA recombinant product attR upstream of the preC/C gene. Using a procedure similar to standard plasmid production, milligrams of rcccDNA can be generated in common laboratories conveniently. The rcccDNA demonstrated many essential biological features of wtcccDNA, including: (1) undergoing nucleation upon nucleus entry; (2) serving as template for production of all HBV RNAs and proteins; (3) deriving virions capable of infecting tree shrew, and subsequently producing viral mRNAs, proteins, rcccDNA and infectious virions. As an example to develop anti-cccDNA drugs, we used the Crispr/Cas9 system to provide clear-cut evidence that rcccDNA was cleaved by this DNA editing tool in vitro. In summary, we have developed a convenient technology to produce large quantity of rcccDNA as a surrogate of wtcccDNA for investigating HBV biology and developing treatment to eradicate this most wide-spreading virus. PMID:27174254

  10. Transient Glyco-Engineering to Produce Recombinant IgA1 with Defined N- and O-Glycans in Plants.

    PubMed

    Dicker, Martina; Tschofen, Marc; Maresch, Daniel; König, Julia; Juarez, Paloma; Orzaez, Diego; Altmann, Friedrich; Steinkellner, Herta; Strasser, Richard

    2016-01-01

    The production of therapeutic antibodies to combat pathogens and treat diseases, such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG), less effort has been undertaken to express immunoglobulin A (IgA), which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumor activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered ΔXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that ΔXT/FT N. benthamiana plants can be engineered toward the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  11. Transient Glyco-Engineering to Produce Recombinant IgA1 with Defined N- and O-Glycans in Plants

    PubMed Central

    Dicker, Martina; Tschofen, Marc; Maresch, Daniel; König, Julia; Juarez, Paloma; Orzaez, Diego; Altmann, Friedrich; Steinkellner, Herta; Strasser, Richard

    2016-01-01

    The production of therapeutic antibodies to combat pathogens and treat diseases, such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG), less effort has been undertaken to express immunoglobulin A (IgA), which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumor activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered ΔXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that ΔXT/FT N. benthamiana plants can be engineered toward the production of recombinant IgA1 with defined human-type N- and O-linked glycans. PMID:26858738

  12. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview

    PubMed Central

    Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; Porro, Danilo; Ferrer, Pau; Tutino, Maria Luisa; Mattanovich, Diethard; Villaverde, Antonio

    2008-01-01

    Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes. PMID:18394160

  13. Prokaryotic High-Level Expression System in Producing Adhesin Recombinant Protein E of Nontypeable Haemophilus influenzae

    PubMed Central

    Tavakoli, Minoo; Bouzari, Saeed; Siadat, Seyed Davar; Najar Peerayeh, Shahin; Jafari, Anis

    2015-01-01

    Background: Adhesion protein E (PE) of Haemophilus influenzae is a 16 - 18 kDa protein with 160 amino acids which causes adhesion to epithelial cells and acts as a major factor in pathogenesis. Objectives: In this study, we performed cloning, expression and purification of PE as a candidate antigen for vaccine design upon further study. Materials and Methods: At first, the pe gene of NTHi ATCC 49766 strain (483 bp) was amplified by PCR. Then, to sequence the resulted amplicon, it was cloned into TA vector (pTZ57R/T). In the next step, the sequenced gene was sub-cloned in pBAD/gIII A vector and transformed into competent Escherichia coli TOP10. For overexpression, the recombinant bacteria were grown in broth medium containing arabinose and the recombinant protein was purified using metal affinity chromatography (Ni-nitrilotriacetic acid) (Ni-NTA agarose). Finally, the protein was detected using sodium dodecyl sulfate polyacrylamide gel electrophores (SDS-PAG) and confirmed by western blotting. Results: The cloned gene was confirmed by PCR, restriction digestion and sequencing. The sequenced gene was searched for homology in GenBank and 99% similarity was found to the already deposited genes in GenBank. Then we obtained PE using Ni-NTA agarose with up to 7 mg/mL concentration. Conclusions: The pe gene was successfully cloned and confirmed by sequencing. Finally, PE was obtained with high concentration. Due to high homology and similarity among the pe gene from NTHi ATCC 49766 and other NTHi strains in GenBank, we believe that the protein is a universal antigen to be used as a vaccine design candidate and further studies to evaluate its immunogenicity is underway. PMID:26034537

  14. Use of Escherichia coli Nissle 1917 producing recombinant colicins for treatment of IBD patients.

    PubMed

    Kotłowski, Roman

    2016-08-01

    Patients with Crohn's Disease and Ulcerative Colitis infected with Adherent-Invasive Escherichia coli strains constitute the largest group among Inflammatory Bowel Disease subjects, when taking into account all known etiological agents of the disease. A possible link between these pathogenic bacteria and inflammation process has gained the confidence in recently published papers. Observed enteric neuroglial cells apoptosis and epithelial gaps of ileum are probably the key manifestations of inflammation, which has been shown in IBD patients in contrary to the samples taken from healthy individuals. The cascade of consecutive events from bacterial infection via inflammation to excessive apoptosis in IBD patients leads up to the aim of our hypothesis about designing of new therapeutic strategy directed to Adherent-Invasive E. coli strains. The main advantage of biological method, which will rely on application of E. coli Nissle 1917 strain as a carrier for specific recombinant colicins against AIEC strains, could probably cause a long-lasting remission of inflammation in CD and UC patients. PMID:27372848

  15. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli.

    PubMed

    Einsfeldt, Karen; Baptista, Isis Cavalcante; Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; Costa, Elaine Sobral da; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells.

  16. Complete solubilization and purification of recombinant human growth hormone produced in Escherichia coli.

    PubMed

    Kim, Min-Ji; Park, Hyun Soo; Seo, Kyung Hye; Yang, Hyo-Jin; Kim, Sook-Kyung; Choi, Jun-Hyuk

    2013-01-01

    High-level expression of recombinant human growth hormone (hGH) in Escherichia coli (E. coli) leads to the formation of insoluble aggregates as inclusion bodies devoid of biological activity. Until recently, significant efforts have been made to improve the recovery of active hGH from inclusion bodies. Here, we developed an efficient procedure for the production of completely soluble hGH by minimizing the formation of inclusion bodies and optimizing protein purification conditions. Under the newly established conditions we were able to obtain most of the total hGH in the soluble fraction. We show that the soluble protein can be efficiently purified in high yield by a series of chromatographic procedures. We analyzed the resulting hGH using various analytical techniques such as reversed-phase high-performance liquid chromatography (RP-HPLC), size-exclusion chromatography (SEC), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and circular dichroism (CD). These multiple analyses support the conclusion that we obtained highly pure hGH with the expected molecular mass and intact secondary structure. The biological activity of purified hGH was also confirmed by evaluating its growth-promoting effect using a cell proliferation assay. Taken together, we describe a straightforward strategy for the production of completely soluble and biologically active hGH in E. coli.

  17. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli

    PubMed Central

    Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; da Costa, Elaine Sobral; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  18. Sequence analysis of the gene for a novel superantigen produced by Yersinia pseudotuberculosis and expression of the recombinant protein

    SciTech Connect

    Yasuhiko, Ito; Abe, Jun; Kohsaka, Takao

    1995-06-01

    We previously reported that the Gram-negative bacterium Yersinia pseudotuberculosis produces a superantigen (YPM, Y. pseudotuberculosis-derived mitogen) that expands T cells bearing V{beta}s 3, 9, 13.1, and 13.2 in an MHC class II-dependent manner. Based on the previously determined N-terminal 23 amino acids of YPM (T-D-Y-D-N-T-L-N-S-I-P-S-L-R-I-P-N-I-A-T-Y-T-G- (one-letter code)), we cloned the ypm gene and analyzed the nucleotide sequence. The gene encodes a 151-amino acid protein with a 20-amino acid signal peptide at its N terminus. The recombinant YPM expressed by the cloned gene exerted a mitogenic activity on human PBMC at a concentration of approximately 1 pg/ml. T cells bearing V{beta} 13.3 were preferentially expanded as well as T cells bearing the same V{beta} repertoires stimulated by native YPM. T cells were stimulated by the recombinant YPM in the presence of either fixed or unfixed HLA class II-transfected mouse fibroblasts. Furthermore, sequence diversity in the junctional region of the TCR {beta}-chain containing the V{beta}3 element could be observed after stimulation by the recombinant YPM. These results indicate that YPM belongs to the category of superantigens and should be included as a novel member. The amino acid sequence of the mature protein showed no significant homology to other superantigens derived from Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. This observation, together with the substantially smaller m.w. suggest that ypm must have evolved from a different ancestral gene. 67 refs., 7 figs., 5 tabs.

  19. Recombinant glycoprotein E produced in mammalian cells in large-scale as an antigen for varicella-zoster-virus serology.

    PubMed

    Thomsson, Elisabeth; Persson, Linn; Grahn, Anna; Snäll, Johanna; Ekblad, Maria; Brunhage, Eva; Svensson, Frida; Jern, Christina; Hansson, Gunnar C; Bäckström, Malin; Bergström, Tomas

    2011-07-01

    A recombinant glycoprotein E (gE) from varicella-zoster virus (VZV) was generated and produced in Chinese Hamster Ovary (CHO) cells, in the development of a specific antigen for analysis of IgG antibodies to VZV. Several stable gE-secreting clones were established and one clone was adapted to growth in serum-free suspension culture. When the cells were cultured in a perfusion bioreactor, gE was secreted into the medium, from where it could be easily purified. The recombinant gE was then evaluated as a serological antigen in ELISA. When compared to a conventional whole virus antigen, the VZV gE showed similar results in ELISA-based seroprevalence studies of 854 samples derived from blood donors, students, ischemic stroke patients and their controls, including samples with border-line results in previous analyses. Eight samples (0.9%) were discordant, all being IgG-negative by the VZV gE ELISA and positive by the whole virus ELISA. The sensitivity and specificity of the VZV gE ELISA were 99.9% and 100%, respectively, compared to 100% and 88.9% for the VZV whole virus ELISA. The elderly subjects showed similar reactivities to both antigens, while VZV gE gave lower signals in the younger cohorts, suggesting that antibodies to gE may increase with age. It was concluded that the recombinant VZV gE from CHO cells was suitable as a serological antigen for the detection of IgG antibodies specific for VZV.

  20. Localization of Cladosporium fulvum hydrophobins reveals a role for HCf-6 in adhesion.

    PubMed

    Lacroix, Hélène; Whiteford, James R; Spanu, Pietro D

    2008-09-01

    Hydrophobins are amphipathic molecules which form part of fungal cell walls and extracellular matrices and perform a variety of roles in fungal growth and development. The tomato pathogen Cladosporium fulvum has six hydrophobin genes, HCf-1 to -6. We have devised an epitope tagging approach for establishing hydrophobin localization during growth in culture and in plants. In this paper we localize HCf-2, -3, -4 and -5 and compare the data to our previous observations for HCf-1 and -6. In culture, HCf-1, -2, -3 and 4 localize to conidia and also appear on aerial hyphae. HCf-4 is unique in that it appears on submerged hyphae. HCf-5 expression is tightly regulated and appears on aerial hyphae early on during growth. Only HCf-1, -3 and -6 were observed during infection; HCf-3 appears on both conidia and emerging germ tubes. We also show that HCf-6 is secreted and coats surfaces under and around growing hyphae and demonstrate the effect of deleting HCf-6 on the adhesion of germinating C. fulvum conidia to glass slides.

  1. Purification and characterization of recombinant human soluble guanylate cyclase produced from baculovirus-infected insect cells.

    PubMed

    Emmons, Thomas L; Mathis, Karl J; Shuck, Mary E; Reitz, Beverly A; Curran, Daniel F; Walker, Mark C; Leone, Joseph W; Day, Jacqueline E; Bienkowski, Michael J; Fischer, H David; Tomasselli, Alfredo G

    2009-06-01

    Soluble guanylate cyclase (sGC) has been purified from 100 L cell culture infected by baculovirus using the newer and highly effective titerless infected-cells preservation and scale-up (TIPS) method. Successive passage of the enzyme through DEAE, Ni(2+)-NTA, and POROS Q columns obtained approximately 100mg of protein. The sGC obtained by this procedure was already about 90% pure and suitable for various studies which include high throughput screening (HTS) and hit follow-up. However, in order to obtain enzyme of greater homogeneity and purity for crystallographic and high precision spectroscopic and kinetic studies of sGC with select stimulators, the sGC solution after the POROS Q step was further purified by GTP-agarose affinity chromatography. This additional step led to the generation of 26 mg of enzyme that was about 99% pure. This highly pure and active enzyme exhibited a M(r)=144,933 by static light scattering supportive of a dimeric structure. It migrated as a two-band protein, each of equal intensity, on SDS-PAGE corresponding to the alpha (M(r) approximately 77,000) and beta (M(r) approximately 70,000) sGC subunits. It showed an A(430)/A(280)=1.01, indicating one heme per heterodimer, and a maximum of the Soret band at 430 nm indicative of a penta-coordinated ferrous heme with a histidine as the axial ligand. The Soret band shifted to 398 nm in the presence of an NO donor as expected for the formation of a penta-coordinated nitrosyl-heme complex. Non-stimulated sGC had k(cat)/K(m)=1.7 x 10(-3)s(-1)microM(-1) that increased to 5.8 x 10(-1)s(-1)microM(-1) upon stimulation with an NO donor which represents a 340-fold increase due to stimulation. The novel combination of using the TIPS method for co-expression of a heterodimeric heme-containing enzyme, along with the application of a reproducible ligand affinity purification method, has enabled us to obtain recombinant human sGC of both the quality and quantity needed to study structure-function relationships

  2. SIV/HIV Nef recombinant virus (SHIVnef) produces simian AIDS in rhesus macaques.

    PubMed

    Mandell, C P; Reyes, R A; Cho, K; Sawai, E T; Fang, A L; Schmidt, K A; Luciw, P A

    1999-12-20

    The simian immunodeficiency virus (SIV) nef gene is an important determinant of viral load and acquired immunodeficiency syndrome (AIDS) in macaques. A role(s) for the HIV-1 nef gene in infection and pathogenesis was investigated by constructing recombinant viruses in which the nef gene of the pathogenic molecular clone SIVmac239 nef was replaced with either HIV-1sf2nef or HIV-1sf33nef. These chimeras, designated SHIV-2nef and SHIV-33nef, expressed HIV-1 Nef protein and replicated efficiently in cultures of rhesus macaque lymphoid cells. In two SHIV-2nef-infected juvenile rhesus macaques and in one of two SHIV-33nef-infected juvenile macaques, virus loads remained at low levels in both peripheral blood and lymph nodes in acute and chronic phases of infection (for >83 weeks). In striking contrast, the second SHIV-33nef-infected macaque showed high virus loads during the chronic stage of infection (after 24 weeks). CD4+ T-cell numbers declined dramatically in this latter animal, which developed simian AIDS (SAIDS) at 47-53 weeks after inoculation; virus was recovered at necropsy at 53 weeks and designated SHIV-33Anef. Sequence analysis of the HIV-1sf33 nef gene in SHIV-33Anef revealed four consistent amino acid changes acquired during passage in vivo. Interestingly, one of these consensus mutations generated a tyr-x-x-leu (Y-X-X-L) motif in the HIV-1sf33 Nef protein. This motif is characteristic of certain endocytic targeting sequences and also resembles a src-homology region-2 (SH-2) motif found in many cellular signaling proteins. Four additional macaques infected with SHIV-33Anef contained high virus loads, and three of these animals progressed to fatal SAIDS. Several of the consensus amino acid changes in Nef, including Y-X-X-L motif, were retained in these recipient animals exhibiting high virus load and disease. In summary, these findings indicate that the SHIV-33Anef chimera is pathogenic in rhesus macaques and that this approach, i.e., construction of

  3. Soft sensor control of metabolic fluxes in a recombinant Escherichia coli fed-batch cultivation producing green fluorescence protein.

    PubMed

    Gustavsson, Robert; Mandenius, Carl-Fredrik

    2013-10-01

    A soft sensor approach is described for controlling metabolic overflow from mixed-acid fermentation and glucose overflow metabolism in a fed-batch cultivation for production of recombinant green fluorescence protein (GFP) in Escherichia coli. The hardware part of the sensor consisted of a near-infrared in situ probe that monitored the E. coli biomass and an HPLC analyzer equipped with a filtration unit that measured the overflow metabolites. The computational part of the soft sensor used basic kinetic equations and summations for estimation of specific rates and total metabolite concentrations. Two control strategies for media feeding of the fed-batch cultivation were evaluated: (1) controlling the specific rates of overflow metabolism and mixed-acid fermentation metabolites at a fixed pre-set target values, and (2) controlling the concentration of the sum of these metabolites at a set level. The results indicate that the latter strategy was more efficient for maintaining a high titer and low variability of the produced recombinant GFP protein.

  4. Yeast-produced recombinant virus-like particles of coxsackievirus A6 elicited protective antibodies in mice.

    PubMed

    Zhou, Yu; Shen, Chaoyun; Zhang, Chao; Zhang, Wei; Wang, Lili; Lan, Ke; Liu, Qingwei; Huang, Zhong

    2016-08-01

    Coxsackievirus A6 (CA6) has recently emerged as the predominant pathogen of hand, foot and mouth disease (HFMD), causing significant morbidity in children and adults. The increasing prevalence of CA6 infection and its associated disease burden underscore the need for effective CA6 vaccines. However, CA6 grows poorly in cultured cells, making it difficult to develop inactivated whole-virus or live attenuated vaccines. Here we report the development of a recombinant virus-like particle (VLP) based CA6 vaccine. CA6 VLPs were produced in Pichia pastoris yeast transformed with a vector encoding both P1 and 3CD proteins of CA6. Immunization with CA6 VLPs elicited CA6-specific serum antibodies in mice. Passive transfer of anti-VLP antisera protected recipient mice against lethal CA6 challenge. Collectively, these results demonstrate that CA6 VLPs represent a viable CA6 vaccine candidate which warrants further preclinical and clinical development. PMID:27315772

  5. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  6. Co-expression of ferrochelatase allows for complete heme incorporation into recombinant proteins produced in E. coli

    PubMed Central

    Sudhamsu, Jawahar; Kabir, Mariam; Airola, Michael V.; Patel, Bhumit A.; Yeh, Syun-Ru; Rousseau, Dennis L.; Crane, Brian R.

    2010-01-01

    Over-expression of heme binding proteins in E. coli often results in sub-optimal heme incorporation and the amount of heme-bound protein produced usually varies with the protein of interest. Complete heme incorporation is important for biochemical characterization, spectroscopy, structural studies, and for the production of homogeneous commercial proteins with high activity. We have determined that recombinant proteins expressed in E. coli often contain less than a full complement of heme because they rather are partially incorporated with free-base porphyrin. Porphyrin-incorporated proteins have similar spectral characteristics as the desired heme-loaded targets, and thus are difficult to detect, even in purified samples. We present a straightforward and inexpensive solution to this problem that involves the co-expression of native ferrochelatase with the protein of interest. The method is shown to be effective for proteins that contain either Cys- or His- ligated hemes. PMID:20303407

  7. Spontaneous surface self-assembly in protein-surfactant mixtures: interactions between hydrophobin and ethoxylated polysorbate surfactants.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Cox, Andrew R; Hedges, Nick; Webster, John R P

    2014-05-01

    The synergistic interactions between certain ethoxylated polysorbate nonionic surfactants and the protein hydrophobin result in spontaneous self-assembly at the air-water interface to form layered surface structures. The surface structures are characterized using neutron reflectivity. The formation of the layered surface structures is promoted by the hydrophobic interaction between the polysorbate alkyl chain and the hydrophobic patch on the surface of the globular hydrophobin and the interaction between the ethoxylated sorbitan headgroup and hydrophilic regions of the protein. The range of the ethoxylated polysorbate concentrations over which the surface ordering occurs is a maximum for the more hydrophobic surfactant polyoxyethylene(8) sorbitan monostearate. The structures at the air-water interface are accompanied by a profound change in the wetting properties of the solution on hydrophobic substrates. In the absence of the polysorbate surfactant, hydrophobin wets a hydrophobic surface, whereas the hydrophobin/ethoxylated polysorbate mixtures where multilayer formation occurs result in a significant dewetting of hydrophobic surfaces. The spontaneous surface self-assembly for hydrophobin/ethoxylated polysorbate surfactant mixtures and the changes in surface wetting properties provide a different insight into protein-surfactant interactions and potential for manipulating surface and interfacial properties and protein surface behavior.

  8. High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli

    PubMed Central

    Saez, Natalie J.; Nozach, Hervé; Blemont, Marilyne; Vincentelli, Renaud

    2014-01-01

    Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive

  9. High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli.

    PubMed

    Saez, Natalie J; Nozach, Hervé; Blemont, Marilyne; Vincentelli, Renaud

    2014-07-30

    Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive

  10. Quantitative Determination of Bandpasses for Producing Vegetation Indices from Recombined NEON Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2015-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. However, as each spectral return from these systems is a vector with several hundred elements, they can be very difficult to process and analyze, and problemeatic to compare within, across, and between datasets over time and space. Vegetation indices (e.g. NDVI, ARVI, EVI, et al) attempt to combine spectral features in to single-value scores. When derived from calibrated and atmospherically compensated reflectance data, these indices can be quantitatively compared. Historically, these indices have been calculated from multispectral sensor data. These sensors have a handful (4 to 16 or so) of bandbasses ranging from 20 nm to 200 nm FWHM covering specific spectral regions for a variety of reasons, including both intended applications and system limitations. Hyperspectral sensors, however, cover the spectrum with many, many narrow (5 to 10 nm) bandpasses. This allows for analyses using the full, detailed spectral curve, or combination of the bands in to regions by averaging or in to composites using transforms or other techniques. This raises the question of exactly which bands should be used and combined in what manner for ideally deriving well-known vegetation indices typically made from multispectral data. In this study we use derivatives and other curve and signal analysis techniques to analyze vegetation reflectance spectra to quantitatively define optimal bandpasses for several vegetation indices and combine the 5 nm hypserspectral bandpasses of the NEON Imaging Spectrometer to synthesize them.

  11. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein.

    PubMed

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-07-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc.

  12. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system

    PubMed Central

    Buclez, Pierre-Olivier; Dias Florencio, Gabriella; Relizani, Karima; Beley, Cyriaque; Garcia, Luis; Benchaouir, Rachid

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology. PMID:27226971

  13. High-level expression and purification of recombinant human growth hormone produced in soluble form in Escherichia coli.

    PubMed

    Levarski, Zdenko; Šoltýsová, Andrea; Krahulec, Ján; Stuchlík, Stanislav; Turňa, Ján

    2014-08-01

    Human growth hormone (hGH) was one of the first recombinant proteins approved for the treatment of human growth disorders. Its small size (191 amino acids), possession of only 2 disulphide bonds and absence of posttranslational modifications make Escherichia coli the host of choice for its production on any scale. In this work, we have utilized an efficient T7 based expression system to produce high levels of soluble thioredoxin-hGH (Trx-hGH) fusion protein. We outline a relatively simple three step purification process employing two immobilized metal-affinity chromatography and one anion-exchange steps and removal of fusion partner by enterokinase cleavage yielding native hGH. The ability of cell populations to produce quantities of up to 1 g/L of the soluble Trx-hGH fusion protein has been tested in flask cultivations as well as in batch and fed-batch bioreactor runs. The sequence and structure of derived hGH were confirmed by mass spectrometry and circular dichroism and its native function, to induce cell proliferation, was confirmed by employing a Nb2 cell line proliferation assay.

  14. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity.

    PubMed

    Fernandez-del-Carmen, Asun; Juárez, Paloma; Presa, Silvia; Granell, Antonio; Orzáez, Diego

    2013-02-20

    The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins.

  15. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    SciTech Connect

    Nguyen, Minh Vu Chuong; Zhang, Leilei; Lhomme, Stanislas; Mouz, Nicolas

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  16. Recombinant human C1-inhibitor produced in Pichia pastoris has the same inhibitory capacity as plasma C1-inhibitor.

    PubMed

    Bos, Ineke G A; de Bruin, Eric C; Karuntu, Yani A; Modderman, Piet W; Eldering, Eric; Hack, C Erik

    2003-05-30

    Therapeutic application of the serpin C1-inhibitor (C1-Inh) in inflammatory diseases like sepsis, acute myocardial infarction and vascular leakage syndrome seems promising, but large doses may be required. Therefore, a high-yield recombinant expression system for C1-Inh is very interesting. Earlier attempts to produce high levels of C1-Inh resulted in predominantly inactive C1-Inh. We describe the high yield expression of rhC1-Inh in Pichia pastoris, with 180 mg/l active C1-Inh at maximum. On average, 30 mg/l of 80-100% active C1-Inh was obtained. Progress curves were used to study the interaction with C1s, kallikrein, coagulation factor XIIa and XIa, and demonstrated that rhC1-Inh had the same inhibitory capacity as plasma C1-Inh. Structural integrity, as monitored via heat stability, was comparable despite differences in extent and nature of glycosylation. We conclude that the P. pastoris system is capable of high-level production of functionally and structurally intact human C1 inhibitor.

  17. Growth of recombinant Drosophila melanogaster Schneider 2 cells producing rabies virus glycoprotein in bioreactor employing serum-free medium

    PubMed Central

    Galesi, Adriana L. L.; Aguiar, Marcelo A.; Astray, Renato M.; Augusto, Elisabeth F. P.

    2008-01-01

    Drosophila melanogaster Schneider 2 (S2) cells have been increasingly used as a suitable expression system for the production of different recombinant proteins, and the employment of bioreactors for large-scale culture is an important tool for this purpose. In this work, Drosophila S2 cells producing the rabies virus glycoprotein RVGP were cultivated in bioreactor, employing a serum-free medium, aiming an improvement in cell growth and in glycoprotein production. To overcome cell growth limitation commonly observed in stirred flasks, different experiments in bioreactor were performed, in which some system modifications were carried out to attain the desired goal. The study showed that this cell line is considerably sensitive to hydrodynamic forces, and a high cell density (about 16.0 × 106 cells mL−1) was only obtained when Pluronic F68® percentage was increased to 0.6% (w/v). Despite ammonium concentration affected RVGP production, and also cell growth, an elevated amount of the target protein was obtained, attaining 563 ng 10−7 cells. PMID:19003175

  18. Characterization of rabbit polyclonal sera against recombinant Shiga toxin and its subunits for detection of Stx-producing E. coli.

    PubMed

    Oloomi, Mana; Bouzari, Saeid

    2011-03-01

    Shiga toxin (Stx) is the principal virulence factor of Shigatoxigenic Escherichia coli (STEC), a food-born pathogen associated disease with uncomplicated diarrhea or the hemolytic-uremic syndrome. In this study, rabbit polyclonal anti recombinant A, B subunits of Shiga toxin and holotoxin antisera were raised and employed for immunological purpose. By immunoblotting, these antisera recognized respective subunit and the holotoxin antiserum recognized both subunits, equally. The raised antisera could also neutralize the cytotoxicity of the shiga toxin on vero cells. The neutralizing ability of the prepared sera was compared for different subunits. The neutralization of toxicity was observed by incubation of raised sera with the rStx or Shiga toxin from wild type strains. The inhibition of cell toxicity was shown by anti-A, anit-B and anti-AB antisera, separately. It was shown that anti-A antibody, more significantly recognized Stx producing strains, comparing to anti-B antibody. These sera from immunized rabbits were also used as specific antibodies in Enzyme-Linked Immunosorbant Assay (ELISA) for detection of Shiga toxin. It was demonstrated that the raised antibodies especially antibody against A subunit could be a useful tool for immunological diagnosis of STEC induced infection.

  19. Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell.

    PubMed

    Gazzera, Lara; Milani, Roberto; Pirrie, Lisa; Schmutz, Marc; Blanck, Christian; Resnati, Giuseppe; Metrangolo, Pierangelo; Krafft, Marie Pierre

    2016-08-22

    Dispersing hydrophobin HFBII under air saturated with perfluorohexane gas limits HFBII aggregation to nanometer-sizes. Critical basic findings include an unusual co-adsorption effect caused by the fluorocarbon gas, a strong acceleration of HFBII adsorption at the air/water interface, the incorporation of perfluorohexane into the interfacial film, the suppression of the fluid-to-solid 2D phase transition exhibited by HFBII monolayers under air, and a drastic change in film elasticity of both Gibbs and Langmuir films. As a result, perfluorohexane allows the formation of homogenous populations of spherical, narrowly dispersed, exceptionally stable, and echogenic microbubbles. PMID:27461549

  20. Differences in N-glycan structures found on recombinant IgA1 and IgA2 produced in murine myeloma and CHO cell lines.

    PubMed

    Yoo, Esther M; Yu, Li J; Wims, Letitia A; Goldberg, David; Morrison, Sherie L

    2010-01-01

    The development and production of recombinant monoclonal antibodies is well established. Although most of these are IgGs, there is also great interest in producing recombinant IgAs since this isotype plays a critical role in providing immunologic protection at mucosal surfaces. The choice of expression system for production of recombinant antibodies is crucial because they are glycoproteins containing at least one N-linked carbohydrate. These glycans have been shown to contribute to the stability, pharmacokinetics and biologic function of antibodies. We have produced recombinant human IgA1 and all three allotypes of IgA2 in murine myeloma and CHO cell lines to systematically characterize and compare the N-linked glycans. Recombinant IgAs produced in murine myelomas differ significantly from IgA found in humans in that they contain the highly immunogenic Galalpha(1,3)Gal epitope and N-glycolylneuraminic acid residues, indicating that murine myeloma is not the optimal expression system for the production of human IgA. In contrast, IgAs produced in CHO cells contained glycans that were more similar to those found on human IgA. Expression of IgA1 and IgA2 in Lec2 and Lec8 cell lines that are defective in glycan processing resulted in a less complex pool of N-glycans. In addition, the level of sialylation of rIgAs produced in murine and CHO cells was significantly lower than that previously reported for serum IgA1. These data underscore the importance of choosing the appropriate cell line for the production of glycoproteins with therapeutic potential.

  1. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures.

    PubMed

    Riveros G, D; Cordova, K; Michiels, C; Verachtert, H; Derdelinckx, G

    2016-11-01

    Hydrophobins are one of the most active surface active proteins in nature, with an amphiphilic nature and the ability to self-assembly in elastic monolayers, the possible applications in industry are continuously increasing. However, production and purification of these proteins still remains a tedious process. We introduce here the use of polydopamine as imprinter polymer to create specific magnetic nanoparticles for the recognition of Hydrophobin HFBII from Trichoderma reesei. The protein was molecularly imprinted to magnetic nanoparticles to facilitate its specific detection and purification from liquids or carbonated beverages in the presence of other proteins. The resulting magnetic nanoparticles were successfully imprinted adsorbing till 77,4µg of HFBII hydrophobin per miligram of nanoparticles. The adsorption capacity of the imprinted nanoparticles was also tested for specificity using a mixture of five different proteins and peptides. A slight cross interaction was observed when proteins of similar molecular weight to HFBII were used. With larger proteins and peptides the interaction was very low. with other class II Hydrophobins the interaction was very similar as to HFBII. PMID:27591673

  2. Anti-loxoscelic horse serum produced against a recombinant dermonecrotic protein of Brazilian Loxosceles intermedia spider neutralize lethal effects of Loxosceles laeta venom from Peru.

    PubMed

    Duarte, C G; Bonilla, C; Guimarães, G; Machado de Avila, R A; Mendes, T M; Silva, W; Tintaya, B; Yarleque, A; Chávez-Olórtegui, C

    2015-01-01

    In this work, an anti-loxoscelic serum was produced by immunizing horses with a recombinant dermonecrotic protein from Loxosceles intermedia (rLiD1). Anti-rLiD1 antibodies were able to recognize different species of Loxosceles venoms by Western Blot and ELISA. The efficacy of anti-rLiD1 serum against the toxic effects of Loxosceles laeta (Peru) venom was tested, showing that anti-rLiD1 serum can neutralize those effects. This study confirms that recombinant proteins can be good candidates to replace crude venoms for antivenom production.

  3. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    PubMed

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium.

  4. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.

    PubMed

    Li, Ting; Liu, Bo; Chen, Chih Ying; Yang, Bing

    2016-05-20

    Over the last decades, much endeavor has been made to advance genome editing technology due to its promising role in both basic and synthetic biology. The breakthrough has been made in recent years with the advent of sequence-specific endonucleases, especially zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) guided nucleases (e.g., Cas9). In higher eukaryotic organisms, site-directed mutagenesis usually can be achieved through non-homologous end-joining (NHEJ) repair to the DNA double-strand breaks (DSBs) caused by the exogenously applied nucleases. However, site-specific gene replacement or genuine genome editing through homologous recombination (HR) repair to DSBs remains a challenge. As a proof of concept gene replacement through TALEN-based HR in rice (Oryza sativa), we successfully produced double point mutations in rice acetolactate synthase gene (OsALS) and generated herbicide resistant rice lines by using TALENs and donor DNA carrying the desired mutations. After ballistic delivery into rice calli of TALEN construct and donor DNA, nine HR events with different genotypes of OsALS were obtained in T0 generation at the efficiency of 1.4%-6.3% from three experiments. The HR-mediated gene edits were heritable to the progeny of T1 generation. The edited T1 plants were as morphologically normal as the control plants while displayed strong herbicide resistance. The results demonstrate the feasibility of TALEN-mediated genome editing in rice and provide useful information for further genome editing by other nuclease-based genome editing platforms. PMID:27180265

  5. Molecular simulation of hydrophobin adsorption at an oil-water interface.

    PubMed

    Cheung, David L

    2012-06-12

    Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein. PMID:22591377

  6. A simple MALDI plate functionalization by Vmh2 hydrophobin for serial multi-enzymatic protein digestions.

    PubMed

    Longobardi, Sara; Gravagnuolo, Alfredo Maria; Funari, Riccardo; Della Ventura, Bartolomeo; Pane, Francesca; Galano, Eugenio; Amoresano, Angela; Marino, Gennaro; Giardina, Paola

    2015-01-01

    The development of efficient and rapid methods for the identification with high sequence coverage of proteins is one of the most important goals of proteomic strategies today. The on-plate digestion of proteins is a very attractive approach, due to the possibility of coupling immobilized-enzymatic digestion with direct matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS) analysis. The crucial step in the development of on-plate immobilization is however the functionalization of the solid surface. Fungal self-assembling proteins, the hydrophobins, are able to efficiently functionalize surfaces. We have recently shown that such modified plates are able to absorb either peptides or proteins and are amenable to MALDI-TOF-MS analysis. In this paper, the hydrophobin-coated MALDI sample plates were exploited as a lab-on-plate for noncovalent immobilization of enzymes commonly used in protein identification/characterization, such as trypsin, V8 protease, PNGaseF, and alkaline phosphatase. Rapid and efficient on-plate reactions were performed to achieve high sequence coverage of model proteins, particularly when performing multiple enzyme digestions. The possibility of exploiting this direct on-plate MALDI-TOF/TOF analysis has been investigated on model proteins and, as proof of concept, on entire whey milk proteome. PMID:25395204

  7. Molecular simulation of hydrophobin adsorption at an oil-water interface.

    PubMed

    Cheung, David L

    2012-06-12

    Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein.

  8. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    PubMed Central

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M. F.; Stanley-Wall, Nicola R.

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demonstrates that BslA can self-assemble at interfaces, forming an elastic film. Molecular function is revealed from analysis of the crystal structure of BslA, which consists of an Ig-type fold with the addition of an unusual, extremely hydrophobic “cap” region. A combination of in vivo biofilm formation and in vitro biophysical analysis demonstrates that the central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein. The hydrophobic cap exhibits physiochemical properties remarkably similar to the hydrophobic surface found in fungal hydrophobins; thus, BslA is a structurally defined bacterial hydrophobin. We suggest that biofilms formed by other species of bacteria may have evolved similar mechanisms to provide protection to the resident bacterial community. PMID:23904481

  9. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex.

    PubMed

    Degenkolb, Thomas; Fog Nielsen, Kristian; Dieckmann, Ralf; Branco-Rocha, Fabiano; Chaverri, Priscila; Samuels, Gary J; Thrane, Ulf; von Döhren, Hans; Vilcinskas, Andreas; Brückner, Hans

    2015-04-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics in plant-protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna(®) , Trichosan(®) , Vitalin(®) , Promot(®) WP, and TrichoMax(®) , formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well-established, HPLC/MS-based peptaibiomics approach, it could unequivocally be demonstrated that all of these formulations contained new and recurrent peptaibols, i.e., peptaibiotics carrying an acetylated N-terminus, the C-terminus of which is reduced to a 1,2-amino alcohol. Their chain lengths, including the amino alcohol, were 11, 14, and 18 residues, respectively. Peptaibols were also to be the dominating secondary metabolites in plate cultures of the four strains obtained from four of the Trichoderma- based BCAs, contributing 95% of the UHPLC-UV/VIS peak areas and 99% of the total ion count MS peak area from solid media. Furthermore, species-specific hydrophobins, as well as non-peptaibiotic secondary metabolites, were detected, the latter being known for their antifungal, siderophore, or plant-growth-promoting activities. Notably, none of the isolates produced low-molecular weight mycotoxins. PMID:25879509

  10. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex.

    PubMed

    Degenkolb, Thomas; Fog Nielsen, Kristian; Dieckmann, Ralf; Branco-Rocha, Fabiano; Chaverri, Priscila; Samuels, Gary J; Thrane, Ulf; von Döhren, Hans; Vilcinskas, Andreas; Brückner, Hans

    2015-04-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics in plant-protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna(®) , Trichosan(®) , Vitalin(®) , Promot(®) WP, and TrichoMax(®) , formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well-established, HPLC/MS-based peptaibiomics approach, it could unequivocally be demonstrated that all of these formulations contained new and recurrent peptaibols, i.e., peptaibiotics carrying an acetylated N-terminus, the C-terminus of which is reduced to a 1,2-amino alcohol. Their chain lengths, including the amino alcohol, were 11, 14, and 18 residues, respectively. Peptaibols were also to be the dominating secondary metabolites in plate cultures of the four strains obtained from four of the Trichoderma- based BCAs, contributing 95% of the UHPLC-UV/VIS peak areas and 99% of the total ion count MS peak area from solid media. Furthermore, species-specific hydrophobins, as well as non-peptaibiotic secondary metabolites, were detected, the latter being known for their antifungal, siderophore, or plant-growth-promoting activities. Notably, none of the isolates produced low-molecular weight mycotoxins.

  11. Mesenchymal Stromal Cells Engineered to Produce IGF-I by Recombinant Adenovirus Ameliorate Liver Fibrosis in Mice

    PubMed Central

    Fiore, Esteban J.; Bayo, Juan M.; Garcia, Mariana G.; Malvicini, Mariana; Lloyd, Rodrigo; Piccioni, Flavia; Rizzo, Manglio; Peixoto, Estanislao; Sola, M. Beatriz; Atorrasagasti, Catalina; Alaniz, Laura; Camilletti, María A.; Enguita, Mónica; Prieto, Jesús; Aquino, Jorge B.

    2015-01-01

    Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis. PMID:25315017

  12. Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice.

    PubMed

    Fiore, Esteban J; Bayo, Juan M; Garcia, Mariana G; Malvicini, Mariana; Lloyd, Rodrigo; Piccioni, Flavia; Rizzo, Manglio; Peixoto, Estanislao; Sola, M Beatriz; Atorrasagasti, Catalina; Alaniz, Laura; Camilletti, María A; Enguita, Mónica; Prieto, Jesús; Aquino, Jorge B; Mazzolini, Guillermo

    2015-03-15

    Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis.

  13. Dissolved carbon dioxide determines the productivity of a recombinant hemagglutinin component of an influenza vaccine produced by insect cells.

    PubMed

    Meghrous, Jamal; Khramtsov, Nikolai; Buckland, Barry C; Cox, Manon M J; Palomares, Laura A; Srivastava, Indresh K

    2015-11-01

    Dissolved carbon dioxide (dCO2 ) accumulation during cell culture has been recognized as an important parameter that needs to be controlled for successful scale-up of animal cell culture because above a certain concentration there are adverse effects on cell growth performance and protein production. We investigated the effect of accumulation of dCO2 in bioreactor cultures of expresSF+(®) insect cells infected with recombinant baculoviruses expressing recombinant influenza virus hemagglutinins (rHA). Different strategies for bioreactor cultures were used to obtain various ranges of concentrations of dCO2 (<50, 50-100, 100-200, and >200 mmHg) and to determine their effects on recombinant protein production and cell metabolic activity. We show that the accumulation of dCO2 at levels > 100 mmHg resulted in reduced metabolic activity, slowed cell growth, prolonged culture viability after infection, and decreased infection kinetics. The reduced rHA yields were not caused by the decrease in the extracellular pH that resulted from dCO2 accumulation, but were most likely due to the effect of dCO2 accumulation in cells. The results obtained here at the 2 L scale have been used for the design of large-scale processes to manufacture the rHA based recombinant vaccine Flublok™ at the 2500 L scale Biotechnol. Bioeng. 2015;112: 2267-2275. © 2015 Wiley Periodicals, Inc.

  14. Origin of the CMS gene locus in rapeseed cybrid mitochondria: active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae.

    PubMed

    Oshima, Masao; Kikuchi, Rie; Imamura, Jun; Handa, Hirokazu

    2010-01-01

    CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.

  15. Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins.

    PubMed

    da Cunha, Nicolau B; Vianna, Giovanni R; da Almeida Lima, Thaina; Rech, Elíbio

    2014-01-01

    Plants have emerged as an attractive alternative to the traditional mammalian cell cultures or microbial cell-based systems system for the production of valuable recombinant proteins. Through recombinant DNA technology, plants can be engineered to produce large quantities of pharmaceuticals and industrial proteins of high quality at low costs. The recombinant production, by transgenic plants, of therapeutic proteins normally present in human plasma, such as cytokines, coagulation factors, anticoagulants, and immunoglobulins, represents a response to the ongoing challenges in meeting the demand for therapeutic proteins to treat serious inherited or acquired bleeding and immunological diseases. As the clinical utilization of fractionated plasma molecules is limited by high production costs, using recombinant biopharmaceuticals derived from plants represents a feasible alternative to provide efficient treatment. Plant-derived pharmaceuticals also reduce the potential risks to patients of infection with pathogens or unwanted immune responses due to immunogenic antigens. In this review, we summarize the recent advances in molecular farming of cytokines. We also examine the technological basis, upcoming challenges, and perspectives for the biosynthesis and detection of these molecules in different plant production platforms. PMID:24376137

  16. One-pot synthesis of a gold nanoparticle-Vmh2 hydrophobin nanobiocomplex for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Politi, Jane; De Stefano, Luca; Rea, Ilaria; Gravagnuolo, Alfredo Maria; Giardina, Paola; Methivier, Christophe; Casale, Sandra; Spadavecchia, Jolanda

    2016-05-01

    HydrophobinVmh2 is a small amphiphilic protein, which self-assembles on different surfaces and naturally interacts with glucose. Here, we report on the synthesis of a nanobiocomplex made of polyethylene glycol, Vmh2 and gold nanoparticles by a one-step process and on its ability to recognise glucose in an aqueous solution at 0.3-0.6-1.2 mg ml-1 concentrations. Even though the Vmh2 proteins are intrinsically bonded to the gold core, effective glucose interaction monitoring was demonstrated by using dynamic light scattering, ultraviolet-visible, polarization-modulated infrared reflection-absorption and x-ray photoelectron spectroscopies. Experimental results highlighted an affinity constant of 7.3 ± 0.3 mg ml-1 between the nanobiosystem and the sugar, and a detection sensitivity of 0.13 ± 0.06 a.u./mg ml-1.

  17. Recombinant pronapin precursor produced in Pichia pastoris displays structural and immunologic equivalent properties to its mature product isolated from rapeseed.

    PubMed

    Palomares, Oscar; Monsalve, Rafael I; Rodríguez, Rosalía; Villalba, Mayte

    2002-05-01

    2S albumin storage proteins from rapeseed (Brassica napus), called napins, consist of two different polypeptide chains linked by disulphide bridges, which are derived by proteolytic cleavage from a single precursor. The precursor form of the napin BnIb (proBnIb) has been cloned using a PCR strategy and sequenced. The amino-acid sequence deduced from the clone includes 31 residues of the small chain and 75 of the large chain, which are connected by the peptide Ser-Glu-Asn. Expression of the cDNA encoding proBnIb has been carried out in the methylotrophic yeast Pichia pastoris. The induced protein was secreted to the extracellular medium at a yield of 80 mg.L(-1) of culture and was purified by means of size-exclusion chromatography and reverse phase-HPLC. Recombinant proBnIb appeared properly folded as its molecular and spectroscopic properties were equivalent to those of the mature heterodimeric protein. As 2S albumin storage proteins from Brassicaceae have been shown to be type I allergy inducers, the immunological activity of the recombinant proBnIb was analysed as a measure of its structural integrity. The immunological properties of the recombinant precursor and the natural napin were indistinguishable by immunoblotting and ELISA inhibition using polyclonal antisera and sera of patients allergic to mustard and rapeseed. In conclusion, the recombinant expression of napin precursors in P. pastoris has been shown to be a successful method for high yield production of homogeneous and properly folded proteins whose polymorphism and complex maturation process limited hitherto their availability.

  18. A fluorescent assay amenable to measuring production of beta-D-glucuronides produced from recombinant UDP-glycosyl transferase enzymes.

    PubMed

    Trubetskoy, O V; Shaw, P M

    1999-05-01

    Beta-glucuronidase cleavage of 4-methylumbelliferyl beta-D-glucuronide generates the highly fluorescent compound, 4-methylumbelliferone. We show that other beta-D-glucuronide compounds act as competitors in this assay. The 4-methylumbelliferyl beta-D-glucuronide cleavage assay can easily be adapted to high throughput formats to detect the presence of beta-D glucuronides generated using recombinant glycosyl transferase preparations.

  19. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System

    PubMed Central

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B.

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H – referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner – diflavin reductase – by fusing both enzymes individually to the hydrophobin HFBI – a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution. PMID:27458582

  20. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System.

    PubMed

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H - referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner - diflavin reductase - by fusing both enzymes individually to the hydrophobin HFBI - a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution. PMID:27458582

  1. Inactivation of recombinant plasmid DNA from a human erythropoietin-producing mouse cell line grown on a large scale.

    PubMed

    Fibi, M R; Bröker, M; Schulz, R; Johannsen, R; Zettlmeissl, G

    1991-08-01

    Experiments were carried out to assess the survival of recombinant plasmid DNA during large-scale production of recombinant human erythropoietin (rhuEPO) in a fermentation pilot plant. The analyses revealed DNA-degrading activities in the fermentation broth and in the waste-water, leading to rapid destruction of plasmid DNA added to medium or waste-water. The capability of the plasmid-DNA-spiked samples to transform competent bacteria was drastically reduced. The DNA-degrading activity in the waste-waters could be blocked by addition of EDTA or by boiling, indicating the presence of DNA-degrading enzymes (DNases). No plasmid-specific DNA sequences were detected in waste-water samples by in-vitro amplification with Taq-polymerase. Genomic DNA preparations of cell debris collected from waste-water samples only contained degraded plasmid DNA. Furthermore, it was shown that intact plasmid DNA could be degraded to fragments of less than 1000 bp by incubation at 121 degrees C for 20 min, leading to a decrease in the plasmid-specific transforming capacity by a factor of 10(3) per minute. Thus, DNA from the rhuEPO production pilot plant was efficiently inactivated at three different levels: (i) in the fermentation medium (DNase), (ii) in the waste-water container (DNase), and (iii) by heat inactivation for 20 min at 120 degrees C. These results indicate that the probability of delivery of recombinant DNA into the environment is extremely low in such biotechnological production processes.

  2. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production.

    PubMed

    Noguchi, Chiemi; Araki, Yoshio; Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.

  3. Fusion of the Dhfr/Mtx and IR/MAR Gene Amplification Methods Produces a Rapid and Efficient Method for Stable Recombinant Protein Production

    PubMed Central

    Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone. PMID:23300841

  4. Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin

    PubMed Central

    Ley, Kamron; Christofferson, Andrew; Penna, Matthew; Winkler, Dave; Maclaughlin, Shane; Yarovsky, Irene

    2015-01-01

    The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin. PMID:26636091

  5. TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization.

    PubMed

    Viterbo, Ada; Chet, Ilan

    2006-07-01

    SUMMARY A hydrophobin-like clone (TasHyd1) was isolated during a PCR differential mRNA display analysis conducted on Trichoderma asperellum mycelia interacting with plant roots. The open reading frame encodes a 145-amino-acid protein showing similarity to Pbhyd1, a Class I hydrophobin from the dimorphic fungus Paracoccidioides brasiliensis. TasHyd1 expression was detected in planta up to 5 days after Trichoderma root inoculation. TasHyd1 is constitutively expressed at low levels in mycelia in young cultures but gene expression is not detected in sporulating hyphae or in non-germinating spores. Carbon limitation stimulates expression of TasHyd1 whereas nitrogen or phosphate starvation down-regulate expression. TasHyd1 fused to an HA tag was over-expressed in Trichoderma and the protein was detected with an anti-HA antibody in the trifluoroacetic-acid-soluble fraction of mycelial cell walls. Over-expressor mutants were not affected in their mycoparasitic activity when tested in vitro against the plant pathogen Rhizoctonia solani and retained root colonization capacity comparable with that of the wild-type. TasHyd1 deletion mutants had no significant reduction in in vitro mycoparasitic activity but were altered in their wettability and were severely impaired in root attachment and colonization. These phenotypes were recovered by complementation of TasHyd1, indicating that the protein is a new hydrophobin that contributes to Trichoderma interaction with the plant. PMID:20507444

  6. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    PubMed

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  7. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    PubMed

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  8. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

    PubMed Central

    Lima, Matheus S.; Damasio, André R. de L.; Crnkovic, Paula M.; Pinto, Marcelo R.; da Silva, Ana M.; da Silva, Jean C. R.; Segato, Fernando; de Lucas, Rosymar C.; Jorge, João A.; Polizeli, Maria de L. T. de M.

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60–80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  9. Recombinant Adenovirus Delivery of Calreticulin–ESAT-6 Produces an Antigen-Specific Immune Response but no Protection Against a Mycobacterium Tuberculosis Challenge

    PubMed Central

    Esparza-González, S. C.; Troy, A.; Troudt, J.; Loera-Arias, M. J.; Villatoro-Hernández, J.; Torres-López, E.; Ancer-Rodríguez, J.; Gutiérrez-Puente, Y.; Muñoz-Maldonado, G.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.; Izzo, A.

    2015-01-01

    Bacillus Calmette–Guerin (BCG) has failed to efficaciously control the worldwide spread of the disease. New vaccine development targets virulence antigens of Mycobacterium tuberculosis that are deleted in Mycobacterium bovis BCG. Immunization with ESAT-6 and CFP10 provides protection against M. tuberculosis in a murine infection model. Further, previous studies have shown that calreticulin increases the cell-mediated immune responses to antigens. Therefore, to test whether calreticulin enhances the immune response against M. tuberculosis antigens, we fused ESAT-6 to calreticulin and constructed a recombinant replication-deficient adenovirus to express the resulting fusion protein (AdCRT–ESAT-6). The adjuvant effect of calreticulin was assayed by measuring cytokine responses specific to ESAT-6. Recombinant adenovirus expressing the fusion protein produced higher levels of interferon-γ and tumour necrosis factor-α in response to ESAT-6. This immune response was not improved by the addition of CFP-10 to the CRT-ESAT-6 fusion protein (AdCRT–ESAT-6–CFP10). Mice immunized with these recombinant adenoviruses did not decrease the mycobacterial burden after low-dose aerosol infection with M. tuberculosis. We conclude that calreticulin can be used as an adjuvant to enhance the immune response against mycobacterial antigens, but it is not enough to protect against tuberculosis. PMID:22010821

  10. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro.

    PubMed

    Zhang, Chao; He, Xinlong; Gu, Yaping; Zhou, Huayun; Cao, Jun; Gao, Qi

    2014-01-01

    Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA) resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future. PMID:25068263

  11. Expression and purification of biologically active rat bone morphogenetic protein-4 produced as inclusion bodies in recombinant Escherichia coli.

    PubMed

    Klösch, Burkhard; Fürst, Walter; Kneidinger, Rudolf; Schuller, Monika; Rupp, Barbara; Banerjee, Asmita; Redl, Heinz

    2005-10-01

    Rat bone morphogenetic protein-4 (rBMP-4) cDNA was cloned from rat osteoblasts by RT-PCR and expressed in E. coli. Monomeric, dimeric and polymeric forms of recombinant rat BMP-4 (rrBMP-4) were obtained from inclusion bodies after solubilization with urea. The dimer was separated from the remaining polymer and host cell contaminants using size exclusion chromatography. Furthermore, purified rrBMP-4 was stabilized at low urea concentration (40 mM) and at pH 8.5 through the addition of bovine serum albumin. Both, rrBMP-4 dimer and polymer were biologically active as tested by the induction of alkaline phosphatase activity in MC3T3-E1 cells.

  12. Transgenic Cows That Produce Recombinant Human Lactoferrin in Milk Are Not Protected from Experimental Escherichia coli Intramammary Infection▿

    PubMed Central

    Hyvönen, P.; Suojala, L.; Orro, T.; Haaranen, J.; Simola, O.; Røntved, C.; Pyörälä, S.

    2006-01-01

    This is the first study describing an experimental mastitis model using transgenic cows expressing recombinant human lactoferrin (rhLf) in their milk. The aim of the study was to investigate the concentrations in milk and protective effects of bovine and recombinant human lactoferrin in experimental Escherichia coli mastitis. Experimental intramammary infection was induced in one udder quarter of seven first-lactating rhLf-transgenic cows and six normal cows, using an E. coli strain isolated from cows with clinical mastitis and known to be susceptible to Lf in vitro. Clinical signs were recorded during the experimental period, concentrations of human and bovine Lf and indicators of inflammation and bacterial counts were determined for milk, and concentrations of acute-phase proteins and tumor necrosis factor alpha were determined for sera and milk. Serum cortisol and blood hematological and biochemical parameters were also determined. Expression levels of rhLf in the milk of transgenic cows remained constant throughout the experiment (mean, 2.9 mg/ml). The high Lf concentrations in the milk of transgenic cows did not protect them from intramammary infection. All cows became infected and developed clinical mastitis. The rhLf-transgenic cows showed milder systemic signs and lower serum cortisol and haptoglobin concentrations than did controls. This may be explained by lipopolysaccharide-neutralizing and immunomodulatory effects of the high Lf concentrations in their milk. However, Lf does not seem to be a very efficient protein for genetic engineering to enhance the mastitis resistance of dairy cows. PMID:16954396

  13. Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells.

    PubMed Central

    Bäckström, Malin; Link, Thomas; Olson, Fredrik J; Karlsson, Hasse; Graham, Rosalind; Picco, Gianfranco; Burchell, Joy; Taylor-Papadimitriou, Joyce; Noll, Thomas; Hansson, Gunnar C

    2003-01-01

    We have developed an expression system for the production of large quantities of recombinant MUC1 mucin in CHO-K1 (Chinese-hamster ovary K1) cells. The extracellular part of human MUC1, including 16 MUC1 tandem repeats, was produced as a fusion protein with murine IgG Fc, with an intervening enterokinase cleavage site for the removal of the Fc tail. Stable MUC1-IgG-producing CHO-K1 clones were generated and were found to secrete MUC1-IgG into the culture medium. After adaptation to suspension culture in protein-free medium in a bioreactor, the fusion protein was secreted in large quantities (100 mg/l per day) into the culture supernatant. From there, MUC1 could be purified to homogeneity using a two-step procedure including enterokinase cleavage and ion-exchange chromatography. Capillary liquid chromatography MS of released oligosaccharides from CHO-K1-produced MUC1 identified the main O-glycans as Galbeta1-3GalNAc (core 1) and mono- and di-sialylated core 1. The glycans occupied on average 4.3 of the five potential O-glycosylation sites in the tandem repeats, as determined by nano-liquid chromatography MS of partially deglycosylated Clostripain-digested protein. A very similar O-glycan profile and site occupancy was found in MUC1-IgG produced in the breast carcinoma cell line T47D, which has O-glycosylation typical for breast cancer. In contrast, MUC1-IgG produced in another breast cancer cell line, MCF-7, showed a more complex pattern with both core 1- and core 2-based O-glycans. This is the first reported production of large quantities of recombinant MUC1 with a breast cancer-like O-glycosylation that could be used for the immunotherapy of breast cancer. PMID:12950230

  14. Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins

    PubMed Central

    2012-01-01

    After publication we discovered an error in the identification of the origin of the cell line reported in our article in BMC Biotechnology (2010, 10:50), entitled "Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins". Upon analysis of primary A. odorata cultures, we found that they were contaminated with cells of Trichoplusia ni origin. The origin of the Ao38 cell line was determined as T. ni using three marker genes and the Ao38 cell line was renamed BTI-Tnao38. References to the origin of the cell line as Ascalapha odorata should be replaced with "a cell line of Trichoplusia ni origin". The absence of TNCL virus detection in the BTI-Tnao38 (Ao38) cell line was confirmed using a highly sensitive RT-PCR protocol capable of detecting TNCL virus RNA at approximately 0.018 copies/cell. Because of these observations, we have revised the title of the original article to "Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins" and two additional authors were added to reflect their contributions to the analysis of this cell line. PMID:22531032

  15. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli

    PubMed Central

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  16. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa).

    PubMed

    Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija

    2013-10-01

    Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality.

  17. Partition separation and characterization of the polyhydroxyalkanoates synthase produced from recombinant Escherichia coli using an aqueous two-phase system.

    PubMed

    Lan, John Chi-Wei; Yeh, Chun-Yi; Wang, Chih-Chi; Yang, Yu-Hsuan; Wu, Ho-Shing

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are renewable and biodegradable polyesters which can be synthesized either by numerous of microorganisms in vivo or synthase in vitro. The synthesis of PHAs in vitro requires an efficient separation for high yield of purified enzyme. The recombinant Escherichia coli harboring phaC gene derived from Ralstonia eutropha H16 was cultivated in the chemically defined medium for overexpression of synthase in the present work. The purification and characteristics of PHA synthase from clarified feedstock by using aqueous two-phase systems (ATPS) was investigated. The optimized concentration of ATPS for partitioning PHA synthase contained polyethylene glycol 6000 (30%, w/w) and potassium phosphate (8%, w/w) with 3.25 volume ratio in the absence of NaCl at pH 8.7 and 4°C. The results showed that the partition coefficient of enzyme activity and protein content are 6.07 and 0.22, respectively. The specific activity, selectivity, purification fold and recovery of phaC(Re) achieved 1.76 U mg⁻¹, 29.05, 16.23 and 95.32%, respectively. Several metal ions demonstrated a significant effect on activity of purified enzyme. The purified enzyme displayed maximum relative activity as operating condition at pH value of 7.5 and 37°C. As compared to conventional purification processes, ATPS can be a promising technique applied for rapid recovery of PHA synthase and preparation of large quantity of PHA synthase on synthesis of P(3HB) in vitro.

  18. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV

    PubMed Central

    Paul, Matthew; Reljic, Rajko; Klein, Katja; Drake, Pascal MW; van Dolleweerd, Craig; Pabst, Martin; Windwarder, Markus; Arcalis, Elsa; Stoger, Eva; Altmann, Friedrich; Cosgrove, Catherine; Bartolf, Angela; Baden, Susan; Ma, Julian K-C

    2014-01-01

    Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb. PMID:25484063

  19. Development and Characterization of Recombinant Antibody Fragments That Recognize and Neutralize In Vitro Stx2 Toxin from Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Luz, Daniela; Chen, Gang; Maranhão, Andrea Q.; Rocha, Leticia B.; Sidhu, Sachdev; Piazza, Roxane M. F.

    2015-01-01

    Background Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB) bind to globotria(tetra)osylceramide receptors (Gb3/Gb4) on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC) may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes. Methods and Findings In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA. Conclusion In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro. PMID:25790467

  20. Enhanced activation of T lymphocytes by urease-deficient recombinant bacillus Calmette-Guérin producing heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2010-11-15

    To activate naive T cells convincingly using Mycobacterium bovis bacillus Calmette-Guérin (BCG), recombinant BCG (BCG-D70M) that was deficient in urease, expressed with gene encoding the fusion of BCG-derived heat shock protein (HSP) 70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed. BCG-D70M was more potent in activation of both CD4(+) and CD8(+) subsets of naive T cells than recombinant BCGs including urease-deficient BCG and BCG-70M secreting HSP70-MMP-II fusion protein. BCG-D70M efficiently activated dendritic cells (DCs) to induce cytokine production and phenotypic changes and activated CD4(+) T cells even when macrophages were used as APCs. The activation of both subsets of T cells was MHC and CD86 dependent. Pretreatment of DCs with chloroquine inhibited both surface expression of MMP-II on DCs and the activation of T cells by BCG-D70M-infected APCs. The naive CD8(+) T cell activation was inhibited by treatment of DCs with brefeldin A and lactacystin so that the T cell was activated by TAP- and proteosome-dependent cytosolic cross-priming pathway. From naive CD8(+) T cells, effector T cells producing perforin and memory T cells having migration markers were produced by BCG-D70M stimulation. BCG-D70M primary infection in C57BL/6 mice produced T cells responsive to in vitro secondary stimulation with MMP-II and HSP70 and more efficiently inhibited the multiplication of subsequently challenged M. leprae than vector control BCG. These results indicate that the triple combination of HSP70, MMP-II, and urease depletion may provide a useful tool for inducing better activation of naive T cells.

  1. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems.

    PubMed

    Sarparanta, Mirkka P; Bimbo, Luis M; Mäkilä, Ermei M; Salonen, Jarno J; Laaksonen, Päivi H; Helariutta, A M Kerttuli; Linder, Markus B; Hirvonen, Jouni T; Laaksonen, Timo J; Santos, Hélder A; Airaksinen, Anu J

    2012-04-01

    Impediments to intestinal absorption, such as poor solubility and instability in the variable conditions of the gastrointestinal (GI) tract plague many of the current drugs restricting their oral bioavailability. Particulate drug delivery systems hold great promise in solving these problems, but their effectiveness might be limited by their often rapid transit through the GI tract. Here we describe a bioadhesive oral drug delivery system based on thermally-hydrocarbonized porous silicon (THCPSi) functionalized with a self-assembled amphiphilic protein coating consisting of a class II hydrophobin (HFBII) from Trichoderma reesei. The HFBII-THCPSi nanoparticles were found to be non-cytotoxic and mucoadhesive in AGS cells, prompting their use in a biodistribution study in rats after oral administration. The passage of HFBII-THCPSi nanoparticles in the rat GI tract was significantly slower than that of uncoated THCPSi, and the nanoparticles were retained in stomach by gastric mucoadhesion up to 3 h after administration. Upon entry to the small intestine, the mucoadhesive properties were lost, resulting in the rapid transit of the nanoparticles through the remainder of the GI tract. The gastroretentive drug delivery system with a dual function presented here is a viable alternative for improving drug bioavailability in the oral route.

  2. Spontaneous hybrids between native and exotic Rubus in the Western United States produce offspring both by apomixis and by sexual recombination.

    PubMed

    Clark, L V; Jasieniuk, M

    2012-11-01

    Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species.

  3. Spontaneous hybrids between native and exotic Rubus in the Western United States produce offspring both by apomixis and by sexual recombination

    PubMed Central

    Clark, L V; Jasieniuk, M

    2012-01-01

    Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species. PMID:22850699

  4. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells.

    PubMed

    Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf; Brakhage, Axel A

    2012-05-01

    Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypA(C)). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited "easily wettable" mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA.

  5. The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein-gold nanoparticles.

    PubMed

    Politi, Jane; De Stefano, Luca; Longobardi, Sara; Giardina, Paola; Rea, Ilaria; Methivier, Christophe; Pradier, Claire-Marie; Casale, Sandra; Spadavecchia, Jolanda

    2015-12-01

    We report a simple and original method to synthesize gold nanoparticles in which a fungal protein, the hydrophobin Vmh2 from Pleurotus ostreatus and dicarboxylic acid-terminated polyethylene-glycol (PEG) has been used as additional components in a one step process, leading to hybrid protein-metal nanoparticles (NPs). The nanoparticles have been characterized by ultra-violet/visible, infrared and X-ray photoelectron spectroscopies, dynamic light scattering and also by electron microscopy imaging. The results of these analytical techniques highlight nanometric sized, stable, hybrid complexes of about 12 nm, with outer surface rich in functional chemical groups. Interaction with protein and antibodies has also been exploited. PMID:26402419

  6. Purification and crystallization of the entire recombinant subunit E of the energy producer A(1)A(o) ATP synthase.

    PubMed

    Balakrishna, Asha Manikkoth; Hunke, Cornelia; Grüber, Gerhard

    2010-03-01

    A(1)A(o) ATP synthases are the major energy producers in archaea. Subunit E of the stator domain of the ATP synthase from Pyrococcus horikoshii OT3 was cloned, expressed and purified to homogeneity. The monodispersed protein was crystallized by vapour diffusion. A complete diffraction data set was collected to 3.3 A resolution with 99.4% completeness using a synchrotron-radiation source. The crystals belonged to space group I4, with unit-cell parameters a = 112.51, b = 112.51, c = 96.25 A, and contained three molecules in the asymmetric unit.

  7. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines.

    PubMed

    Khurana, Surender; Larkin, Christopher; Verma, Swati; Joshi, Manju B; Fontana, Juan; Steven, Alasdair C; King, Lisa R; Manischewitz, Jody; McCormick, William; Gupta, Rajesh K; Golding, Hana

    2011-08-01

    Vaccine production and initiation of mass vaccination is a key factor in rapid response to new influenza pandemic. During the 2009-2010 H1N1 pandemic, several bottlenecks were identified, including the delayed availability of vaccine potency reagents. Currently, antisera for the single-radial immunodiffusion (SRID) potency assay are generated in sheep immunized repeatedly with HA released and purified after bromelain-treatment of influenza virus grown in eggs. This approach was a major bottleneck for pandemic H1N1 (H1N1pdm09) potency reagent development in 2009. Alternative approaches are needed to make HA immunogens for generation of SRID reagents in the shortest possible time. In this study, we found that properly folded recombinant HA1 globular domain (rHA1) from several type A viruses including H1N1pdm09 and two H5N1 viruses could be produced efficiently using a bacterial expression system and subsequent purification. The rHA1 proteins were shown to form functional oligomers of trimers, similar to virus derived HA, and elicited high titer of neutralizing antibodies in rabbits and sheep. Importantly, the immune sera formed precipitation rings with reference antigens in the SRID assay in a dose-dependent manner. The HA contents in multiple H1N1 vaccine products from different manufacturers (and in several lots) as determined with the rHA1-generated sheep sera were similar to the values obtained with a traditionally generated sheep serum from NIBSC. We conclude that bacterially expressed recombinant HA1 proteins can be produced rapidly and used to generate SRID potency reagents shortly after new influenza strains with pandemic potential are identified.

  8. Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase.

    PubMed

    Hong, Soo-Jeong; Kim, Hyo Jin; Kim, Jin-Woo; Lee, Dae-Hee; Seo, Jin-Ho

    2015-02-01

    Inulin is a polyfructan that is abundant in plants such as Jerusalem artichoke, chicory and dahlia. Inulinase can easily hydrolyze inulin to fructose, which is consumed by microorganisms. Generally, Saccharomyces cerevisiae, an industrial workhorse strain for bioethanol production, is known for not having inulinase activity. The inulinase gene from Kluyveromyces marxianus (KmINU), with the ability of converting inulin to fructose, was introduced into S. cerevisiae D452-2. The inulinase gene was fused to three different types of promoter (GPD, PGK1, truncated HXT7) and secretory signal sequence (KmINU, MFα1, SUC2) to generate nine expression cassettes. The inulin fermentation performance of the nine transformants containing different promoter and signal sequence combinations for inulinase production were compared to select an optimized expression system for efficient inulin fermentation. Among the nine inulinase-producing transformants, the S. cerevisiae carrying the PGK1 promoter and MFα1 signal sequence (S. cerevisiae D452-2/p426PM) showed not only the highest specific KmINU activity, but also the best inulin fermentation capability. Finally, a batch fermentation of the selected S. cerevisiae D452-2/p426PM in a bioreactor with 188.2 g/L inulin was performed to produce 80.2 g/L ethanol with 0.43 g ethanol/g inulin of ethanol yield and 1.22 g/L h of ethanol productivity.

  9. Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase.

    PubMed

    Hong, Soo-Jeong; Kim, Hyo Jin; Kim, Jin-Woo; Lee, Dae-Hee; Seo, Jin-Ho

    2015-02-01

    Inulin is a polyfructan that is abundant in plants such as Jerusalem artichoke, chicory and dahlia. Inulinase can easily hydrolyze inulin to fructose, which is consumed by microorganisms. Generally, Saccharomyces cerevisiae, an industrial workhorse strain for bioethanol production, is known for not having inulinase activity. The inulinase gene from Kluyveromyces marxianus (KmINU), with the ability of converting inulin to fructose, was introduced into S. cerevisiae D452-2. The inulinase gene was fused to three different types of promoter (GPD, PGK1, truncated HXT7) and secretory signal sequence (KmINU, MFα1, SUC2) to generate nine expression cassettes. The inulin fermentation performance of the nine transformants containing different promoter and signal sequence combinations for inulinase production were compared to select an optimized expression system for efficient inulin fermentation. Among the nine inulinase-producing transformants, the S. cerevisiae carrying the PGK1 promoter and MFα1 signal sequence (S. cerevisiae D452-2/p426PM) showed not only the highest specific KmINU activity, but also the best inulin fermentation capability. Finally, a batch fermentation of the selected S. cerevisiae D452-2/p426PM in a bioreactor with 188.2 g/L inulin was performed to produce 80.2 g/L ethanol with 0.43 g ethanol/g inulin of ethanol yield and 1.22 g/L h of ethanol productivity. PMID:25142154

  10. Reproducible High Yields of Recombinant Adeno-Associated Virus Produced Using Invertebrate Cells in 0.02- to 200-Liter Cultures

    PubMed Central

    Cecchini, Sylvain; Virag, Tamas

    2011-01-01

    Abstract The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 106 cells/ml, ≥1016 purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned. PMID:21381980

  11. Human anti-varicella-zoster virus (VZV) recombinant monoclonal antibody produced after Zostavax immunization recognizes the gH/gL complex and neutralizes VZV infection.

    PubMed

    Birlea, Marius; Owens, Gregory P; Eshleman, Emily M; Ritchie, Alanna; Traktinskiy, Igor; Bos, Nathan; Seitz, Scott; Azarkh, Yevgeniy; Mahalingam, Ravi; Gilden, Don; Cohrs, Randall J

    2013-01-01

    Varicella-zoster virus (VZV) is a ubiquitous, highly cell-associated, and exclusively human neurotropic alphaherpesvirus. VZV infection is initiated by membrane fusion, an event dependent in part on VZV glycoproteins gH and gL. Consistent with its location on the virus envelope, the gH/gL complex is a target of neutralizing antibodies produced after virus infection. One week after immunizing a 59-year-old VZV-seropositive man with Zostavax, we sorted his circulating blood plasma blasts and amplified expressed immunoglobulin variable domain sequences by single-cell PCR. Sequence analysis identified two plasma blast clones, one of which was used to construct a recombinant monoclonal antibody (rec-RC IgG). The rec-RC IgG colocalized with VZV gE on the membranes of VZV-infected cells and neutralized VZV infection in tissue culture. Mass spectrometric analysis of proteins immunoprecipitated by rec-RC IgG identified both VZV gH and gL. Transfection experiments showed that rec-RC IgG recognized a VZV gH/gL protein complex but not individual gH or gL proteins. Overall, our recombinant monoclonal anti-VZV antibody effectively neutralizes VZV and recognizes a conformational epitope within the VZV gH/L protein complex. An unlimited supply of this antibody provides the opportunity to analyze membrane fusion events that follow virus attachment and to identify multiple epitopes on VZV-specific proteins.

  12. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    PubMed

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  13. Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast. Kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway.

    PubMed

    Urban, P; Werck-Reichhart, D; Teutsch, H G; Durst, F; Regnier, S; Kazmaier, M; Pompon, D

    1994-06-15

    Helianthus tuberosus cinnamate 4-hydroxylase (CYP73 or CA4H), a member of the P450 superfamily which catalyses the first oxidative step of the phenylpropanoid pathway in higher plants by transforming cinnamate into p-coumarate, was expressed in the yeast Saccharomyces cerevisiae. The PCR-amplified CA4H open reading frame was inserted into pYeDP60 under the transcriptional control of a galactose-inducible artificial promoter. Engineered S. cerevisiae strains producing human P450 reductase or normal or overproduced amounts of yeast P450 reductase were transformed to express recombinant CA4H. When grown on galactose, yeast cells produced CA4H holoprotein bound to the endoplasmic reticulum membrane as judged from the reduced iron/carbon monoxide difference spectrum centered at 452 nm and from typical cinnamate 4-hydroxylase activity upon coupling with the different P450 reductases and NADPH. Some CA4H protein was found also addressed to the yeast mitochondria but as a low-activity form. The spectral and kinetic characterizations of the yeast-produced CA4H in different redox protein environments are presented using both assays on yeast microsomal fractions and bioconversions on living cells. Results indicate that the microsomal system constituted by the overexpressed yeast P450 reductase and CA4H is characterized by a 1:1 coupling between NADPH oxidation and cinnamate hydroxylation and by one of the highest turnover numbers reported for an NADPH-dependent P450 reaction. Based on spectral perturbation and inhibition studies, coumarate appeared to have no detectable affinity for the enzyme. A possible geometry of the substrate recognition pocket is discussed in the light of these data. PMID:8026495

  14. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris.

    PubMed

    Jansson, Ronnie; Lau, Cheuk H; Ishida, Takuya; Ramström, Margareta; Sandgren, Mats; Hedhammar, My

    2016-05-01

    Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation. PMID:26814048

  15. Characterization of N-linked glycosylation on recombinant glycoproteins produced in Pichia pastoris using ESI-MS and MALDI-TOF.

    PubMed

    Gong, Bing; Cukan, Michael; Fisher, Richard; Li, Huijuan; Stadheim, Terrance A; Gerngross, Tillman

    2009-01-01

    The production of recombinant therapeutic glycoproteins is an active area of research and drug development. Typically, improvements in therapeutic glycoprotein efficacy have focused on engineering additional N-glycosylation sites into the primary amino acid sequence or attempting to control a particular glycoform profile on a protein through process improvements. Recently, a number of alternative expression systems have appeared that are challenging the dominance of mammalian cell culture. Our laboratory has focused on the re-engineering of the secretory pathway in the yeast Pichia pastoris to perform glycosylation reactions that mimic processing of N-glycans in humans. We have demonstrated that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms. In this chapter we provide detailed protocols for the analysis of glycosylation on intact glycoproteins by MALDI-TOF and site specific N-glycan occupancy on digested glycoprotein using ESI-MS.

  16. Noncovalently functionalized multi-wall carbon nanotubes in aqueous solution using the hydrophobin HFBI and their electroanalytical application.

    PubMed

    Wang, Xinsheng; Wang, Huicai; Huang, Yujian; Zhao, Zixia; Qin, Xia; Wang, Yanyan; Miao, Zhiying; Chen, Qiang; Qiao, Mingqiang

    2010-11-15

    A novel noncovalent approach was developed for the functionalization of multi-wall carbon nanotubes (MWNTs) using the hydrophobin, HFBI. Owing to the amphipathic nature, HFBI can be adopted onto the surface of MWNTs to form HFBI-MWNTs nanocomposite with good dispersion in water. The HFBI-MWNTs nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle measurements (WCA). Furthermore, a glucose biosensor was developed based on HFBI-MWNTs by a one-step casting method. The resulting biosensor displayed high sensitivity, wider linear range, low detection limit, and fast response for glucose detection, which implicated that the HFBI-MWNTs nanocomposite film holds great promise in the design of electrochemical devices, such as sensors and biosensors.

  17. Improvement in the stability and functionality of Nicotiana tabacum produced recombinant TRAIL through employment of endoplasmic reticulum expression and ascorbate buffer mediated extraction strategies

    PubMed Central

    Heidari, Hamid Reza; Bandehpour, Mojgan; Vahidi, Hossein; Barar, Jaleh; Kazemi, Bahram; Naderi-Manesh, Hossein

    2014-01-01

    Introduction: In order to employ Nicotiana tabacum cells as a profitable natural bioreactor for production of bio-functional "Soluble human TRAIL" (ShTRAIL), endoplasmic reticulum (ER) targeted expression and innovative extraction procedures were exploited. Methods: At first, the ShTRAIL encoding gene was sub-cloned into designed H2 helper vector to equip it with potent TMV omega leader sequences, ER sorting signal peptide, poly-histidine tag and ER retention signal peptide (KDEL). Then, the ER targeted ShTRAIL cassette was sequentially sub-cloned into "CaMV-35S" helper and "pGreen-0179" final expression vectors. Afterward, Agrobacterium mediated transformation method was adopted to express the ShTRAIL in the ER of N. tabacum . Next, the ShTRAIL protein was extracted through both phosphate and innovative ascorbate extraction buffers. Subsequently, oligomerization state of the ShTRAIL was evaluated through cross-linking assay and western blot analysis. Then, semi-quantitative western blot analysis was performed to estimate the ShTRAIL production. Finally, biological activity of the ShTRAIL was evaluated through MTT assay. Results: The phosphate buffer extracted ShTRAIL was produced in dimmer form, whereas the ShTRAIL extracted with ascorbate buffer generated trimer form. The ER targeted ShTRAIL strategy increased the ShTRAIL’s production level up to about 20 μg/g of fresh weight of N. tabacum . MTT assay indicated that ascorbate buffer extracted ShTRAIL could prohibit proliferation of A549 cell line. Conclusion: Endoplasmic reticulum expression and reductive ascorbate buffer extraction procedure can be employed to enhance the stability and overall production level of bio-functional recombinant ShTRAIL from transgenic N. tabacum cells. PMID:25337465

  18. Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein

    PubMed Central

    Bäckström, B Thomas; Brockelbank, Jane A; Rehm, Bernd HA

    2007-01-01

    Background Fluorescence activated cell sorting (FACS) is a powerful technique for the qualitative and quantitative detection of biomolecules used widely in both basic research and clinical diagnostic applications. Beads displaying a specific antigen are used to bind antibodies which are then fluorescently labelled using secondary antibodies. As the individual suspension bead passes through the sensing region of the FACS machine, fluorescent signals are acquired and analysed. Currently, antigens are tediously purified and chemically cross-linked to preformed beads. Purification and coupling of proteins often renders them inactive and they will not be displayed in its native configuration. As an alternative, we genetically engineered Escherichia coli to produce biopolyester (polyhdroxyalkanoate=PHA) granules displaying diagnostically relevant antigens in their native conformation and suitable for FACS analysis. Results Hybrid genes were constructed, which encode either the mouse interleukin-2 (IL2) or the myelin oligodendrocyte glycoprotein (MOG) fused via an enterokinase site providing linker region to the C terminus of the PHA granule associated protein PhaP, respectively. The hybrid genes were expressed in PHA-accumulating recombinant E. coli. MOG and IL2 fusion proteins were abundantly attached to PHA granules and were identified by MALDI-TOF/MS analysis and N terminal sequencing. A more abundant second fusion protein of either MOG or IL2 resulted from an additional N terminal fusion, which did surprisingly not interfere with attachment to PHA granule. PHA granules displaying either IL2 or MOG were used for FACS using monoclonal anti-IL2 or anti-MOG antibodies conjugated to a fluorescent dye. FACS analysis showed significant and specific binding of respective antibodies. Enterokinase treatment of IL2 displaying PHA granules enabled removal of IL2 as monitored by FACS analysis. Mice were immunized with either MOG or OVA (ovalbumin) and the respective sera were

  19. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging.

    PubMed

    Stanimirova, Rumyana D; Gurkov, Theodor D; Kralchevsky, Peter A; Balashev, Konstantin T; Stoyanov, Simeon D; Pelan, Eddie G

    2013-05-21

    Here, we combine experiments with Langmuir trough and atomic force microscopy (AFM) to investigate the reasons for the special properties of layers from the protein HFBII hydrophobin spread on the air-water interface. The hydrophobin interfacial layers possess the highest surface dilatational and shear elastic moduli among all investigated proteins. The AFM images show that the spread HFBII layers are rather inhomogeneous, (i.e., they contain voids, monolayer and multilayer domains). A continuous compression of the layer leads to filling the voids and transformation of a part of the monolayer into a trilayer. The trilayer appears in the form of large surface domains, which can be formed by folding and subduction of parts from the initial monolayer. The trilayer appears also in the form of numerous submicrometer spots, which can be obtained by forcing protein molecules out of the monolayer and their self-assembly into adjacent pimples. Such structures are formed because not only the hydrophobic parts, but also the hydrophilic parts of the HFBII molecules can adhere to each other in the water medium. If a hydrophobin layer is subjected to oscillations, its elasticity considerably increases, up to 500 mN/m, which can be explained with compaction. The relaxation of the layer's tension after expansion or compression follows the same relatively simple law, which refers to two-dimensional diffusion of protein aggregates within the layer. The characteristic diffusion time after compression is longer than after expansion, which can be explained with the impedence of diffusion in the more compact interfacial layer. The results shed light on the relation between the mesoscopic structure of hydrophobin interfacial layers and their unique mechanical properties that find applications for the production of foams and emulsions of extraordinary stability; for the immobilization of functional molecules at surfaces, and as coating agents for surface modification.

  20. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism

    PubMed Central

    Pham, Chi L. L.; Rey, Anthony; Lo, Victor; Soulès, Margaux; Ren, Qin; Meisl, Georg; Knowles, Tuomas P. J.; Kwan, Ann H.; Sunde, Margaret

    2016-01-01

    Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface. PMID:27142249

  1. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism.

    PubMed

    Pham, Chi L L; Rey, Anthony; Lo, Victor; Soulès, Margaux; Ren, Qin; Meisl, Georg; Knowles, Tuomas P J; Kwan, Ann H; Sunde, Margaret

    2016-01-01

    Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface. PMID:27142249

  2. Green biofactories: recombinant protein production in plants.

    PubMed

    Ahmad, Adil; Pereira, Eridan O; Conley, Andrew J; Richman, Alex S; Menassa, Rima

    2010-11-01

    Until recently, low accumulation levels have been the major bottleneck for plant-made recombinant protein production. However, several breakthroughs have been described in the past few years allowing for very high accumulation levels, mainly through chloroplast transformation and transient expression, coupled with subcellular targeting and protein fusions. Another important factor influencing our ability to use plants for the production of recombinant proteins is the availability of quick and simple purification strategies. Recent developments using oleosin, zein, ELP and hydrophobin fusion tags have shown promise as efficient and cost-effective methods for non-chromatographic separation. Furthermore, plant glycosylation is a major barrier to the parenteral administration of plant-made biopharmaceuticals because of potential immunogenicity concerns. A major effort has been invested in humanizing plant glycosylation, and several groups have been able to reduce or eliminate immunogenic glycans while introducing mammalian-specific glycans. Finally, biosafety issues and public perception are essential for the acceptance of plants as bioreactors for the production of proteins. Over recent years, it has become clear that food and feed plants carry an inherent risk of contaminating our food supply, and thus much effort has focused on the use of non-food plants. Presently, Nicotiana benthamiana has emerged as the preferred host for transient expression, while tobacco is most frequently used for chloroplast transformation. In this review, we focus on the main issues hindering the economical production of recombinant proteins in plants, describing the current efforts for addressing these limitations, and we include an extensive list of recent patents generated with the intention of solving these limitations. PMID:21171961

  3. Immunosorbent Assay Based on Recombinant Hemagglutinin Protein Produced in a High-Efficiency Mammalian Expression System for Surveillance of Measles Immunity

    PubMed Central

    Bouche, Fabienne; Ammerlaan, Wim; Berthet, Francoise; Houard, Sophie; Schneider, Francois; Muller, Claude P.

    1998-01-01

    Recombinant hemagglutinin (H) protein of the measles virus (MV) was produced in mammalian cells with a high-yield expression system based on the Semliki Forest virus replicon. Crude membrane preparations of H protein-transfected BHK-21 cells were used to coat microtiter plates to measure specific immunoglobulin G antibodies in 228 serologically defined serum samples mainly from measles late-convalescent adults. The titers by the enzyme-linked immunosorbent assay for the H protein (H-ELISA) closely correlated with neutralization test (NT) titers (R2 = 0.66), hemagglutination inhibition test (HI) titers (R2 = 0.64), with the titers from a certified commercial ELISA based on whole MV-infected cells (MV-ELISA; R2 = 0.45). The correlations described above were better than those of the commercial MV-ELISA titers with the NT (R2 = 0.52) or HI (R2 = 0.48) titers. By using the 2nd International Standard for anti-measles serum, the detection level of the assay corresponds to 215 mIU/ml for undiluted serum, which corresponds to the estimated threshold for protective immunity. The specificity, accuracy, and positive predictive value were, in general, better for the H-ELISA than for a commercial MV-ELISA, independent of whether HI, NT, or HI and NT were used as “gold standards.” In contrast, the H-ELISA proved to be slightly less sensitive than the MV-ELISA (sensitivities, 98.6 versus 99.5%, respectively; P was not significant). The assays did not differ significantly in the number of serum samples with positive HI and NT results (n = 212) which measured false negative (H-ELISA, 2 of 212 [0.94%]; MV-ELISA, 1 of 212 [0.47%]), but the H-ELISA detected significantly more measles-susceptible individuals than the MV-ELISA (10 of 11 versus 3 of 11, respectively; P < 0.05) among the individuals whose sera had negative HI and NT results. Our data demonstrate that the H-protein preparation that we describe could be a cost-effective alternative to current whole-virus-based ELISAs for

  4. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Ge, Hengtao; Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90-111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5-10.5, 21.8-23.0 and 17.3-18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×10(3) and 95.4×10(3) CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×10(5) and 622.2×10(5) cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.

  5. Reconstitution of R-spondin:LGR4:ZNRF3 adult stem cell growth factor signaling complexes with recombinant proteins produced in Escherichia coli.

    PubMed

    Moad, Heather E; Pioszak, Augen A

    2013-10-15

    R-Spondins are secreted glycoproteins (RSPO1-RSPO4) that have proliferative effects on adult stem cells by potentiating Wnt signaling. RSPO actions are mediated by the leucine-rich repeat (LRR)-containing seven-transmembrane receptors LGR4-LGR6 and the transmembrane E3 ubiquitin ligases ZNRF3 and RNF43. Here, we present a methodology for the bacterial expression and purification of the signaling competent, cysteine-rich Fu1-Fu2 domains of the four human RSPOs, a fragment of the human LGR4 extracellular domain (ECD) containing LRR1-14, and the human ZNRF3 ECD. In a cell-based signaling assay, the nonglycosylated RSPOs enhanced low-dose Wnt3a signaling with potencies comparable to those of mammalian cell-produced RSPOs and RSPO2 and -3 were more potent than RSPO1 and -4. LGR4 LRR1-14 and ZNRF3 ECD inhibited RSPO2-enhanced Wnt3a signaling. The RSPOs bound LGR4 LRR1-14 with nanomolar affinities that decreased in the following order in a time-resolved fluorescence resonance energy transfer (TR-FRET) assay: RSPO4 > RSPO2 > RSPO3 > RSPO1. RSPO-receptor interactions were further characterized with a native gel electrophoretic mobility shift assay, which corroborated the RSPO-LGR4 TR-FRET results and indicated that RSPOs weakly bound ZNRF3 with affinities that decreased in the following order: RSPO2 > RSPO3 > RSPO1. RSPO4:ZNRF3 complexes were not detected. Lastly, ternary RSPO:LGR4:ZNRF3 complexes were detected for RSPO2 and -3. Our results indicate that RSPO and LGR4 N-glycans are dispensable for function, demonstrate RSPO-mediated ternary complex formation, and suggest that the stronger signaling potencies of RSPO2 and -3 result from their strong binding of both receptors. Our unique protein production methodology may provide a cost-effective source of recombinant RSPOs for regenerative medicine applications.

  6. Anti-Bacterial Activity of Recombinant Human β-Defensin-3 Secreted in the Milk of Transgenic Goats Produced by Somatic Cell Nuclear Transfer

    PubMed Central

    Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90–111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5–10.5, 21.8–23.0 and 17.3–18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×103 and 95.4×103 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×105 and 622.2×105 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals. PMID:23799010

  7. Purifying Selection and Birth-and-Death Evolution in the Class II Hydrophobin Gene Families of the Ascomycete Trichoderma/Hypocrea

    SciTech Connect

    kubicek, Christian P.; Baker, Scott E.; Gamauf, Christian; Kenerley, Chuck; Druzhinina, Irina S.

    2008-01-10

    Hydrophobins are proteins containing eight conserved cysteine residues that occur uniquely in mycelial fungi, where their main function is to confer hydrophobicity to fungal surfaces in contact with air and during attachment of hyphae to hydrophobic surfaces of hosts, symbiotic partners or of themselves resulting in morphogenetic signals. Based on their hydropathy patterns and their solubility characteristics, they are classified in class I and class II hydrophobins, the latter being found only in ascomycetes. Here we have investigated the mechanisms driving the evolution of the class II hydrophobins in nine species of the mycoparasitic ascomycetous genus Trichoderma/Hypocrea, using three fully sequenced genomes (H. jecorina=T. reesei, H. atroviridis=T. atroviride; H. virens=T. virens) and a total of 14.000 ESTs of six others (T. asperellum, H. lixii=T. harzianum, T. aggressivum var. europeae, T. longibrachiatum, T. cf. viride). The former three contained six, ten and nine members, which is the highest number found in any other ascomycete so far. They all showed the conserved four beta-strands/one helix structure, which is stabilized by four disulfide bonds. In addition, a small number of these HFBs contained an extended N-terminus rich in either praline and aspartate, or glycine-asparagine. Phylogenetic analysis reveals a mosaic of terminal clades contain duplicated genes and shows only three reasonably supported clades. Calculation of the ratio of differences in synonymous vs. non-synonymous nucleotide substitutions provides evidence for strong purifying selection (KS/Ka >> 1). A genome database search for class II HFBs from other ascomycetes retrieved a much smaller number of hydrophobins (2-4) from each species, and most of them were from Pyrenomycetes. A combined phylogeny of these sequences with those of Trichoderma showed that the Trichoderma HFBs mostly formed their own clades, whereas those of other pyrenomycetes occured in shared clades. Our study shows

  8. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  9. Activated recombinant adenovirus proteinases

    SciTech Connect

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  10. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  11. Vmh2 hydrophobin layer entraps glucose: A quantitative characterization by label-free optical and gravimetric methods

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Rea, I.; Caliò, A.; Giardina, P.; Gravagnuolo, A. M.; Funari, R.; Altucci, C.; Velotta, R.; De Stefano, L.

    2016-02-01

    Hydrophobins (HFBs) are peculiar proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes, and some of them (class I HFB) are able to form much more stable amyloid-like layers. This feature makes them suitable for many purposes, particularly when stable surface functionalization is required, also in view of their versatility in binding different kinds of molecules. For instance, it has been shown that Vmh2 from Pleurotus ostreatus (a class I HFB) is able to bind molecules like glucose, thus offering the perspective of using Vmh2 as a surface functionalization tool in bio-hybrid devices. In this paper a quantitative analysis of glucose interaction with the Vmh2 layer is reported; in particular, it is shown that Vmh2 layer swells by almost doubling its thickness as a result of glucose diffusion and each Vmh2 monomer is able to bind approximately 30 glucose molecules. These results have been achieved by self-assembling multi-layers of Vmh2 on a gold substrate and, subsequently, measuring both the mass of the bound glucose and the thickness of the resulting layer through two different and complementary techniques: quartz crystal-microbalance and ellipsometry. The data provided by the two techniques are in a satisfactory agreement and offer a plausible description of the mechanisms underlying the interaction of glucose with Vmh2 layer. This facile and versatile coating is of interest for biomedical applications of gold surfaces and particles.

  12. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  13. Application of Recombinant Human Leukemia Inhibitory Factor (LIF) Produced in Rice (Oryza sativa L.) for Maintenance of Mouse Embryonic Stem Cells

    PubMed Central

    Youngblood, Bradford A.; Alfano, Randall; Pettit, Steve C.; Zhang, Deshui; Dallmann, H. Garry; Huang, Ning; MacDonald, Clinton C.

    2014-01-01

    Embryonic and induced pluripotent stem cells have the ability to differentiate into any somatic cell type, and thus have potential to treat a number of diseases that are currently incurable. Application of these cells for clinical or industrial uses would require an increase in production to yield adequate numbers of viable cells. However, the relatively high costs of cytokines and growth factors required for maintenance of stem cells in the undifferentiated state have the potential to limit translational research. Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, is a key regulator in the maintenance of naïve states for both human and mouse stem cells. In this study, we describe a new recombinant human LIF (rhLIF) using a plant-based (rice) expression system. We found that rice-derived rhLIF possessed the same specific activity as commercial E. coli-derived LIF and was capable of supporting mouse embryonic stem cell proliferation in the undifferentiated state as evidenced from pluripotency marker level analysis. Retention of the pluripotent state was found to be indistinguishable between rice-derived rhLIF and other recombinant LIF proteins currently on the market. PMID:24380819

  14. Evaluation of an enzyme-linked immunosorbent assay for detection of West Nile virus infection based on a recombinant envelope protein produced in Trichoplusia ni larvae.

    PubMed

    Alonso-Padilla, Julio; Jiménez de Oya, Nereida; Blázquez, Ana-Belén; Loza-Rubio, Elizabeth; Escribano, José M; Saiz, Juan-Carlos; Escribano-Romero, Estela

    2010-06-01

    West Nile virus (WNV), a Flavivirus distributed most widely, is presenting lately variable epidemiological and ecological patterns, including an increasing virulence that has already caused over 1000 human deaths in USA. Currently, diagnosis of WNV is achieved mainly by enzyme-linked immunoassays (ELISAs) based on the use of inactivated whole WNV (iWNV) as antigen, although results have to be confirmed by plaque reduction neutralization tests (PRNTs). Expression of WNV envelope recombinant E (rE) protein and its usefulness as ELISA antigen are described. Production of rE was achieved upon infection of Trichoplusia ni insect larvae with a recombinant baculovirus. Once optimized, the rE-based ELISA was validated with a battery of mouse and equine sera characterized previously. Concordance with the iWNV-based ELISA used routinely was good (95%), as it was with the reference PRNT (90%), with specificity of 94.4% and sensitivity of 88.1%. Production of rE protein in insect larvae allows for an easy, low cost and quite large-scale yield of partially purified antigen which is suitable for serological diagnosis of WNV, without the need for manipulation of large quantities of infective virus.

  15. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    SciTech Connect

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce an immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.

  16. The recombination of genetic material

    SciTech Connect

    Low, K.B.

    1988-01-01

    Genetic recombination is the major mechanism by which new arrangements of genetic elements are produced in all living organisms, from the simplest bacterial viruses to humans. This volume presents an overview of the types of recombination found in prokaryotes and eukaryotes.

  17. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity

    PubMed Central

    Karakostis, Kostantinos; Costa, Caterina; Zito, Francesca; Matranga, Valeria

    2015-01-01

    Galectin family members specifically bind beta-galactoside derivatives and are involved in different cellular events, including cell communication, signalling, apoptosis, and immune responses. Here, we report a tandem-repeat type galectin from the Paracentrotus lividus sea urchin embryo, referred to as Pl-GAL-8. The 933nt sequence encodes a protein of 34.73 kDa, containing the conserved HFNPRF and WGxExR motifs in the two highly similar carbohydrate-recognition domains (CRD). The three-dimensional protein structure model of the N-CRD confirms the high evolutionary conservation of carbohydrate binding sites. The temporal gene expression is regulated during development and transcripts localize at the tip of the archenteron at gastrula stage, in a subset of the secondary mesenchyme cells that differentiate into blastocoelar (immune) cells. Functional studies using a recombinant Pl-GAL-8 expressed in bacteria demonstrate its hemo-agglutinating activity on human red blood cells through the binding to lactose, as well as its ability in inhibiting the adhesion of human Hep-G2 cells to the substrate. The recent implications in autoimmune diseases and inflammatory disorders make Gal-8 an attractive candidate for therapeutic purposes. Our results offer a solid basis for addressing the use of the new Pl-GAL-8 in functional and applicative studies, respectively in the developmental and biomedical fields. PMID:26640155

  18. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.

    PubMed

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2014-08-01

    Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention. PMID:24862324

  19. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.

    PubMed

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2014-08-01

    Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention.

  20. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  1. [Enhanced activation of T lymphocytes by urease-deficient recombinant bacillus Calmette-Guérin producing heat shock protein 70-major membrane protein-II fusion protein].

    PubMed

    Makino, Masahiko; Mukai, Tetsu

    2012-09-01

    To activate naïve T cells convincingly using Mycobacterium bovis BCG (BCG), rBCG (BCG-D70M) that was deficient in urease, expressed with gene encoding the fusion of BCG-derived heat shock protein (HSP) 70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed. BCG-D70M was more potent in activation of both CD4+ and CD8+ subsets of naïve T cells than rBCGs including urease-deficient BCG and BCG-70M secreting HSP70-MMP-II fusion protein. BCG-D70M efficiently activated dendritic cells (DC) to induce cytokine production and phenotypic changes, and activated CD4+ T cells even when macrophages were used as APCs. The activation of both subsets of T cells was MHC and CD86 dependent. Pre-treatment of DC with chloroquine inhibited both surface expression of MMP-II on DC and the activation of T cells by BCG-D70M-infected APCs. The naïve CD8+ T cell activation was inhibited by treatment of DC with brefeldin A and lactacystin so that the T cells was activated by TAP- and proteosome-dependent cytosolic cross-priming pathway. From naïve CD8+ T cells, effector T cells producing perforin and memory T cells having migration markers, were produced by BCG-D70M stimulation. BCG-D70M primary infection in C57BL/6 mice produced T cells responsive to in vitro secondary stimulation with MMP-II and HSP70, and more efficiently inhibited the multiplication of subsequently challenged M. leprae than vector control BCG. These results indicate that the triple combination of HSP70, MMP-II and urease depletion may provide useful tool for inducing better activation of naïve T cells.

  2. Identification, Characterization, and Recombinant Expression of Epidermicin NI01, a Novel Unmodified Bacteriocin Produced by Staphylococcus epidermidis That Displays Potent Activity against Staphylococci

    PubMed Central

    Sandiford, Stephanie

    2012-01-01

    We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide. PMID:22155816

  3. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci.

    PubMed

    Sandiford, Stephanie; Upton, Mathew

    2012-03-01

    We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide.

  4. 'Super-perfect' enzymes: Structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli.

    PubMed

    Sharma, Prerna; Guptasarma, Purnananda

    2015-05-01

    Triose phosphate isomerases (TIMs) are considered to be 'kinetically perfect' enzymes, limited in their activity only by the rates of diffusion of substrate and product molecules. Most studies conducted thus far have been on mesophile-derived TIMs. Here, we report studies of two extremophile-derived TIMs produced in Escherichia coli: (i) TonTIM, sourced from the genome of the thermophile archaeon, Thermococcus onnurineus, and (ii) PfuTIM, sourced from the genome of the hyperthermophile archaeon, Pyrococcus furiosus (PfuTIM). Although these enzymes are presumed to have evolved to function optimally at temperatures close to the boiling point of water, we find that TonTIM and PfuTIM display second-order rate-constants of activity (k(cat)/K(m) values) comparable to mesophile-derived TIMs, at 25 °C. At 90 °C, TonTIM and PfuTIM reach maximum velocities of reaction of ∼ 10(6)-10(7) μmol/s/mg, and display k(cat)/K(m) values in the range of ∼ 10(10)-10(11) M(-1) s(-1), which are three orders of magnitude higher than those reported for mesophile TIMs. Further, the two enzymes display no signs of having undergone any structural unfolding at 90 °C. Such enzymes could thus probably be called 'super-perfect' enzymes. PMID:25824038

  5. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  6. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  7. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  8. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  9. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  10. [Plant-Producers Of Recombinant Cytokines (Review)].

    PubMed

    Burlakovskii, M S; Yemel'yanov, V V; Lutova, L A

    2016-01-01

    Cytokines are a family of signaling polypeptides involved in cell-cell interactions in the process of the immune response, as well as in the regulation of a number of normal physiological functions. Cytokines are used in medicine for the treatment of cancer, immune disorders, viral infections, and other socially significant diseases, but the extent of their use is limited by the high production cost of the active agent. The development of this area of pharmacology is associated with the success of genetic engineering, which allows the production of significant amounts of protein by transgenic organisms. The review discusses the latest advances in the production of various cytokines with the use of genetically modified plants. PMID:27266244

  11. Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting enzyme-inhibitory activity (ACE-IA).

    PubMed

    Gútiez, Loreto; Borrero, Juan; Jiménez, Juan J; Gómez-Sala, Beatriz; Recio, Isidra; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2014-06-18

    In this work, genes encoding gelatinase (gelE) and serine proteinase (sprE), two extracellular proteases produced by Enterococcus faecalis DBH18, were cloned in the protein expression vector pMG36c, containing the constitutive P32 promoter, generating the recombinant plasmids pCG, pCSP, and pCGSP encoding gelE, sprE, and gelE-sprE, respectively. Transformation of noncaseinolytic E. faecalis P36, E. faecalis JH2-2, E. faecium AR24, and E. hirae AR14 strains with these plasmids permitted detection of caseinolytic activity only in the strains transformed with pCG or pCGSP. Complementation of a deletion (knockout) mutant of E. faecalis V583 for production of gelatinase (GelE) with pCG unequivocally supported that gelE is responsible for the caseinolytic activity of the transformed strain grown in bovine skim milk (BSM). RP-HPLC-MS/MS analysis of hydrolysates of transformed Enterococcus spp. strains grown in BSM permitted the identification of 38 major peptide fragments including peptides with previously reported angiotensin converting enzyme-inhibitory activity (ACE-IA), antihypertensive activity, and antioxidant activity.

  12. The recombination epoch revisited

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons.

  13. Innovation by homologous recombination.

    PubMed

    Trudeau, Devin L; Smith, Matthew A; Arnold, Frances H

    2013-12-01

    Swapping fragments among protein homologs can produce chimeric proteins with a wide range of properties, including properties not exhibited by the parents. Computational methods that use information from structures and sequence alignments have been used to design highly functional chimeras and chimera libraries. Recombination has generated proteins with diverse thermostability and mechanical stability, enzyme substrate specificity, and optogenetic properties. Linear regression, Gaussian processes, and support vector machine learning have been used to model sequence-function relationships and predict useful chimeras. These approaches enable engineering of protein chimeras with desired functions, as well as elucidation of the structural basis for these functions.

  14. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  15. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  16. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  17. Recombinant Salmonella typhimurium outer membrane protein A is recognized by synovial fluid CD8 cells and stimulates synovial fluid mononuclear cells to produce interleukin (IL)-17/IL-23 in patients with reactive arthritis and undifferentiated spondyloarthropathy.

    PubMed

    Chaurasia, S; Shasany, A K; Aggarwal, A; Misra, R

    2016-08-01

    In developing countries, one-third of patients with reactive arthritis (ReA) and undifferentiated spondyloarthropathy (uSpA) are triggered by Salmonella typhimurium. Synovial fluid mononuclear cells (SFMCs) of patients with ReA and uSpA proliferate to low molecular weight fractions (lmwf) of outer membrane proteins (Omp) of S. typhimurium. To characterize further the immunity of Omp of Salmonella, cellular immune response to two recombinant proteins of lmwf, OmpA and OmpD of S. typhimurium (rOmpA/D-sal) was assessed in 30 patients with ReA/uSpA. Using flow cytometry, 17 of 30 patients' SF CD8(+) T cells showed significant intracellular interferon (IFN)-γ to Omp crude lysate of S. typhimurium. Of these 17, 11 showed significantly more CD8(+) CD69(+) IFN-γ T cells to rOmpA-sal, whereas only four showed reactivity to rOmpD-sal. The mean stimulation index was significantly greater in rOmpA-sal than rOmpD-sal [3·0 (1·5-6·5) versus 1·5 (1·0-2·75), P < 0·005]. Similarly, using enzyme-linked immunospot (ELISPOT) in these 17 patients, the mean spots of IFN-γ-producing SFMCs were significantly greater in rOmpA-sal than rOmpD-sal [44·9 (3·5-130·7) versus 19·25 (6-41), P < 0·05]. SFMCs stimulated by rOmpA-sal produced significantly more proinflammatory cytokines than rOmpD-sal: IFN-γ [1·44 (0·39-20·42) versus 0·72 (0·048-9·15) ng/ml, P < 0·05], interleukin (IL)-17 [28·60 (6·15-510·86) versus 11·84 (6·83-252·62) pg/ml, P < 0·05], IL-23 [70·19 (15-1161·16) versus 28·25 (> 15-241·52) pg/ml, P < 0·05] and IL-6 [59·78 (2·03-273·36) versus 10·17 (0·004-190·19) ng/ml, P < 0·05]. The rOmpA-sal-specific CD8(+) T cell response correlated with duration of current synovitis (r = 0·53, P < 0·05). Thus, OmpA of S. typhimurium is a target of SF CD8(+) T cells and drives SFMC to produce increased cytokines of the IL-17/IL-23 axis which contribute to the pathogenesis of Salmonella-triggered ReA. PMID:27060348

  18. Current Drive in Recombining Plasma

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2012-05-15

    The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

  19. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  20. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  1. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  2. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  3. Initiation of meiotic recombination in Ustilago maydis.

    PubMed

    Kojic, Milorad; Sutherland, Jeanette H; Pérez-Martín, José; Holloman, William K

    2013-12-01

    A central feature of meiosis is the pairing and recombination of homologous chromosomes. Ustilago maydis, a biotrophic fungus that parasitizes maize, has long been utilized as an experimental system for studying recombination, but it has not been clear when in the life cycle meiotic recombination initiates. U. maydis forms dormant diploid teliospores as the end product of the infection process. Upon germination, teliospores complete meiosis to produce four haploid basidiospores. Here we asked whether the meiotic process begins when teliospores germinate or at an earlier stage in development. When teliospores homozygous for a cdc45 mutation temperature sensitive for DNA synthesis were germinated at the restrictive temperature, four nuclei became visible. This implies that teliospores have already undergone premeiotic DNA synthesis and suggests that meiotic recombination initiates at a stage of infection before teliospores mature. Determination of homologous recombination in plant tissue infected with U. maydis strains heteroallelic for the nar1 gene revealed that Nar(+) recombinants were produced at a stage before teliospore maturation. Teliospores obtained from a spo11Δ cross were still able to germinate but the process was highly disturbed and the meiotic products were imbalanced in chromosomal complement. These results show that in U. maydis, homologous recombination initiates during the infection process and that meiosis can proceed even in the absence of Spo11, but with loss of genomic integrity.

  4. Genetic recombination and molecular evolution.

    PubMed

    Charlesworth, B; Betancourt, A J; Kaiser, V B; Gordo, I

    2009-01-01

    Reduced rates of genetic recombination are often associated with reduced genetic variability and levels of adaptation. Several different evolutionary processes, collectively known as Hill-Robertson (HR) effects, have been proposed as causes of these correlates of recombination. Here, we use DNA sequence polymorphism and divergence data from the noncrossing over dot chromosome of Drosophila to discriminate between two of the major forms of HR effects: selective sweeps and background selection. This chromosome shows reduced levels of silent variability and reduced effectiveness of selection. We show that neither model fits the data on variability. We propose that, in large genomic regions with restricted recombination, HR effects among nonsynonymous mutations undermine the effective strength of selection, so that their background selection effects are weakened. This modified model fits the data on variability and also explains why variability in very large nonrecombining genomes is not completely wiped out. We also show that HR effects of this type can produce an individual selection advantage to recombination, as well as greatly reduce the mean fitness of nonrecombining genomes and genomic regions.

  5. Co-factor activated recombinant adenovirus proteinases

    SciTech Connect

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  6. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  7. A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella

    PubMed Central

    Miletic, Sean; Simpson, David J.; Szymanski, Christine M.; Deyholos, Michael K.; Menassa, Rima

    2016-01-01

    The receptor binding domain of the tailspike protein Gp9 from the P22 bacteriophage was recently shown to reduce Salmonella colonization in the chicken gut. In this study, we transiently expressed the receptor binding domain of the Gp9 tailspike protein in Nicotiana benthamiana, and targeted it to the endoplasmic reticulum (ER) or to the chloroplasts. Gp9 was also fused to either an elastin-like polypeptide (ELP) or hydrophobin I tag, which were previously described to improve accumulation levels of recombinant proteins. The highest levels of recombinant protein accumulation occurred when unfused Gp9 was targeted to the ER. Lower levels of chloroplast-targeted Gp9 were also detected. ELP-fused Gp9 was purified and demonstrated to bind to Salmonella enterica serovar Typhimurium in vitro. Upon oral administration of lyophilized leaves expressing Gp9-ELP to newly hatched chickens, we found that this tailspike protein has the potential to be used as a therapeutic to control Salmonella contamination in chickens. PMID:26779243

  8. A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella.

    PubMed

    Miletic, Sean; Simpson, David J; Szymanski, Christine M; Deyholos, Michael K; Menassa, Rima

    2015-01-01

    The receptor binding domain of the tailspike protein Gp9 from the P22 bacteriophage was recently shown to reduce Salmonella colonization in the chicken gut. In this study, we transiently expressed the receptor binding domain of the Gp9 tailspike protein in Nicotiana benthamiana, and targeted it to the endoplasmic reticulum (ER) or to the chloroplasts. Gp9 was also fused to either an elastin-like polypeptide (ELP) or hydrophobin I tag, which were previously described to improve accumulation levels of recombinant proteins. The highest levels of recombinant protein accumulation occurred when unfused Gp9 was targeted to the ER. Lower levels of chloroplast-targeted Gp9 were also detected. ELP-fused Gp9 was purified and demonstrated to bind to Salmonella enterica serovar Typhimurium in vitro. Upon oral administration of lyophilized leaves expressing Gp9-ELP to newly hatched chickens, we found that this tailspike protein has the potential to be used as a therapeutic to control Salmonella contamination in chickens. PMID:26779243

  9. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  10. Recombination and assortment in the macronucleus of Tetrahymena thermophila: a theoretical study by computer simulation.

    PubMed

    Doerder, F P; Diblasi, S L

    1984-12-01

    The compound nature of the macronucleus of Tetrahymena thermophila presents multiple opportunities for recombination between genes on the same macronuclear chromosome. Such recombinants should be detectable through their assortment at subsequent amitotic macronuclear divisions. Thus, a macronucleus that is initially AB/ab should produce recombinant assortees of the genotypes Ab/aB. Computer simulation shows that, when the recombination frequency is two or fewer times per cell cycle, recombinant assortees are produced at experimentally measurable frequencies of less than 40%. At higher recombination frequencies, linked genes appear to assort independently. The simulations also show that recombination during macronuclear development can be distinguished from recombination in subsequent cell cycles only if the first appearance of recombinant assortees is 100 or more fissions after conjugation. The use of macronuclear recombination and assortment as a means of mapping macronuclear genes is severely constrained by the large variances in assortment outcomes; with experimentally small sample sizes, such mapping is impossible.

  11. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    PubMed

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-01

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. PMID:23306362

  12. Electron Recombination in a Dense Hydrogen Plasma

    SciTech Connect

    Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; Leonova, M.A.; Schwarz, T.A.; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic

    2012-05-01

    A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced plasma inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized electrons load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized electrons and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of electrons in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of electron recombination grows for larger clusters of hydrogen and so at the equilibrium of electron production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.

  13. Recombinant baculovirus isolation.

    PubMed

    King, Linda A; Hitchman, Richard; Possee, Robert D

    2007-01-01

    Although there are several different methods available of making recombinant baculovirus expression vectors (reviewed in Chapter 3), all require a stage in which insect cells are transfected with either the virus genome alone (Bac-to-Bac or BaculoDirect, Invitrogen) or virus genome and transfer vector. In the latter case, this allows the natural process of homologous recombination to transfer the foreign gene, under control of the polyhedrin or other baculovirus gene promoter, from the transfer vector to the virus genome to create the recombinant virus. Additionally, many systems require a plaque-assay to separate parental and recombinant virus prior to amplification and use of the recombinant virus. This chapter provides an overview of the historical development of increasingly more efficient systems for the isolation of recombinant baculoviruses (Chapter 3 provides a full account of the different systems and transfer vectors available). The practical details cover: transfection of insect cells with either virus DNA or virus DNA and plasmid transfer vector; a reliable plaque-assay method that can be used to separate recombinant virus from parental (nonrecombinant) virus where this is necessary; methods for the small-scale amplification of recombinant virus; and subsequent titration by plaque-assay. Methods unique to the Bac-to-Bac system are also covered and include the transformation of bacterial cells and isolation of bacmid DNA ready for transfection of insect cells.

  14. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  15. Aspergillus: sex and recombination.

    PubMed

    Varga, János; Szigeti, Gyöngyi; Baranyi, Nikolett; Kocsubé, Sándor; O'Gorman, Céline M; Dyer, Paul S

    2014-12-01

    The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300-350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli. Where sexual reproduction is present, species exhibit either homothallic (self fertile) or heterothallic (obligate outcrossing) breeding systems. A parasexual cycle has also been described in some Aspergillus species. As in other fungi, sexual reproduction is governed by mating-type (MAT) genes, which determine sexual identity and are involved in regulating later stages of sexual development. Previous population genetic studies have indicated that some supposedly asexual aspergilli exhibit evidence of a recombining population structure, suggesting the presence of a cryptic sexual cycle. In addition, genome analyses have revealed networks of genes necessary for sexual reproduction in several Aspergillus species, again consistent with latent sexuality in these fungi. Knowledge of MAT gene presence has then successfully been applied to induce sexual reproduction between MAT1-1 and MAT1-2 isolates of certain supposedly asexual aspergilli. Recent progress in understanding the extent and significance of sexual reproduction is described here, with special emphasis on findings that are relevant to clinically important aspergilli.

  16. Aspergillus: sex and recombination.

    PubMed

    Varga, János; Szigeti, Gyöngyi; Baranyi, Nikolett; Kocsubé, Sándor; O'Gorman, Céline M; Dyer, Paul S

    2014-12-01

    The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300-350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli. Where sexual reproduction is present, species exhibit either homothallic (self fertile) or heterothallic (obligate outcrossing) breeding systems. A parasexual cycle has also been described in some Aspergillus species. As in other fungi, sexual reproduction is governed by mating-type (MAT) genes, which determine sexual identity and are involved in regulating later stages of sexual development. Previous population genetic studies have indicated that some supposedly asexual aspergilli exhibit evidence of a recombining population structure, suggesting the presence of a cryptic sexual cycle. In addition, genome analyses have revealed networks of genes necessary for sexual reproduction in several Aspergillus species, again consistent with latent sexuality in these fungi. Knowledge of MAT gene presence has then successfully been applied to induce sexual reproduction between MAT1-1 and MAT1-2 isolates of certain supposedly asexual aspergilli. Recent progress in understanding the extent and significance of sexual reproduction is described here, with special emphasis on findings that are relevant to clinically important aspergilli. PMID:25118872

  17. Recombinant clostridia that fix CO2 and CO and uses thereof

    DOEpatents

    Papoutsakis, Eleftherios T.; Al-Hinai, Mohab Ali; Jones, Shawn Williams; Indurthi, Dinesh Chanukya; Mitchell, Daniel Knox; Fast, Alan

    2014-06-24

    The present invention relates a recombinant Clostridium expressing one or more heterologous Wood-Ljungdahl (WL) genes. In particular, the recombinant Clostridium produces a metabolite at an increased level. The present invention also relates to a method for producing a metabolite by the recombinant Clostridium.

  18. Recombinant allergens: what does the future hold?

    PubMed

    Valenta, Rudolf; Niespodziana, Katarzyna; Focke-Tejkl, Margit; Marth, Katharina; Huber, Hans; Neubauer, Angela; Niederberger, Verena

    2011-04-01

    This year we are celebrating not only the centenary of allergen-specific immunotherapy but also the 10-year anniversary of the first administration of recombinant allergen-based vaccines to allergic patients. By using recombinant DNA technology, defined and safe allergy vaccines can be produced that allow us to overcome many, if not all, of the problems associated with the use of natural allergen extracts, such as insufficient quality, allergenic activity, and poor immunogenicity. Here we provide an update of clinical studies with recombinant allergen-based vaccines, showing that some of these vaccines have undergone successful clinical evaluation up to phase III studies. Furthermore, we introduce a strategy for allergen-specific immunotherapy based on recombinant fusion proteins consisting of viral carrier proteins and allergen-derived peptides without allergenic activity, which holds the promise of being free of side effects and eventually being useful for prophylactic vaccination.

  19. Patents in therapeutic recombinant protein production using mammalian cells.

    PubMed

    Picanco-Castro, Virginia; de Freitas, Marcela Cristina Correa; Bomfim, Aline de Sousa; de Sousa Russo, Elisa Maria

    2014-01-01

    The industrial production of recombinant proteins preferentially requires the generation of stable cell lines expressing proteins in a quick, relatively facile, and a reproducible manner. Different methods are used to insert exogenous DNA into the host cell, and choosing the appropriate producing cell is of paramount importance for the efficient production and quality of the recombinant protein. This review addresses the advances in recombinant protein production in mammalian cell lines, according to key patents from the last 30 years.

  20. Evolution of Resistance in Culex quinquefasciatus (Say) Selected With a Recombinant Bacillus thuringiensis Strain-Producing Cyt1Aa and Cry11Ba, and the Binary Toxin, Bin, From Lysinibacillus sphaericus

    PubMed Central

    Wirth, Margaret C.; Walton, William E.; Federici, Brian A.

    2015-01-01

    Fourth instars of Culex quinquefasciatus (Say) (Diptera: Culicidae) were selected with a recombinant bacterial strain synthesizing the mosquitocidal proteins from Lysinibacillus sphaericus (Bin) and Cry11Ba and Cyt1Aa from Bacillus thuringiensis. Selection was initiated in Generation 1 with a concentration of 0.04 μg/ml, which rose to a maximum selection concentration of 8.0 μg/ml in Generation 14, followed by an unexpected, rapid increase in mortality in Generation 15. Subsequently, a selection concentration of 0.8 μg/ml was determined to be survivable. During this same period, resistance rose to nearly 1,000-fold (by Generation 12) and declined to 18.8-fold in Generation 19. Resistance remained low and fluctuated between 5.3 and 7.3 up to Generation 66. The cross-resistance patterns and interactions among the component proteins were analyzed to identify possible causes of this unusual pattern of evolution. Poor activity in the mid-range concentrations and lower-than-expected synergistic interactions were identified as potential sources of the early resistance. These findings should be considered in the development of genetically engineered strains intended to control nuisance and vector mosquitoes. PMID:26336254

  1. Recombination and Replication

    PubMed Central

    Syeda, Aisha H.; Hawkins, Michelle; McGlynn, Peter

    2014-01-01

    The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA. PMID:25341919

  2. Recombination Pattern Reanalysis of Some HIV-1 Circulating Recombination Forms Suggest the Necessity and Difficulty of Revision

    PubMed Central

    Jia, Lei; Li, Lin; Li, Hanping; Liu, Siyang; Wang, Xiaolin; Bao, Zuoyi; Li, Tianyi; Zhuang, Daomin; Liu, Yongjian; Li, Jingyun

    2014-01-01

    Background Recombination is one of the major mechanisms underlying the generation of HIV-1 variability. Currently 61 circulating recombinant forms of HIV-1 have been identified. With the development of recombination detection techniques and accumulation of HIV-1 reference stains, more accurate mosaic structures of circulating recombinant forms (CRFs), like CRF04 and CRF06, have undergone repeated analysis and upgrades. Such revisions may also be necessary for other CRFs. Unlike previous studies, whose results are based primarily on a single recombination detection program, the current study was based on multiple recombination analysis, which may have produced more impartial results. Methods Representative references of 3 categories of intersubtype recombinants were selected, including BC recombinants (CRF07 and CRF08), BG recombinants (CRF23 and CRF24), and BF recombinants (CRF38 and CRF44). They were reanalyzed in detail using both the jumping profile hidden Markov model and RDP3. Results The results indicate that revisions and upgrades are very necessary and the entire re-analysis suggested 2 types of revision: (i) length of inserted fragments; and (ii) number of inserted fragments. The reanalysis also indicated that determination of small regions of about 200 bases or fewer should be performed with more caution. Conclusion Results indicated that the involvement of multiple recombination detection programs is very necessary. Additionally, results suggested two major challenges, one involving the difficulty of accurately determining the locations of breakpoints and the second involving identification of small regions of about 200 bases or fewer with greater caution. Both indicate the complexity of HIV-1 recombination. The resolution would depend critically on development of a recombination analysis algorithm, accumulation of HIV-1 stains, and a higher sequencing quality. With the changes in recombination pattern, phylogenetic relationships of some CRFs may also

  3. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  4. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  5. Utilization of Site-Specific Recombination in Biopharmaceutical Production.

    PubMed

    Ahmadi, Maryam; Damavandi, Narges; Akbari Eidgahi, Mohammad Reza; Davami, Fatemeh

    2016-01-01

    Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and process development, expression level is unpredictable and unstable because of the random location of integration in the genome. Site-specific recombination techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant protein production by specifically inserting a vector at a locus with specific expression trait. The present review focused on the latest developments in site-specific recombination techniques, their specific features and comparisons.

  6. Utilization of Site-Specific Recombination in Biopharmaceutical Production

    PubMed Central

    Ahmadi, Maryam; Damavandi, Narges; Akbari, Mohammad Reza; Davami, Fatemeh

    2016-01-01

    Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and process development, expression level is unpredictable and unstable because of the random location of integration in the genome. Site-specific recombination techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant protein production by specifically inserting a vector at a locus with specific expression trait. The present review focused on the latest developments in site-specific recombination techniques, their specific features and comparisons. PMID:26602035

  7. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  8. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  9. Meiotic recombination mechanisms.

    PubMed

    Grelon, Mathilde

    2016-01-01

    Meiosis is a specialized cell division at the origin of the haploid cells that eventually develop into the gametes. It therefore lies at the heart of Mendelian heredity. Recombination and redistribution of the homologous chromosomes arising during meiosis constitute an important source of genetic diversity, conferring to meiosis a particularly important place in the evolution and the diversification of the species. Our understanding of the molecular mechanisms governing meiotic recombination has considerably progressed these last decades, benefiting from complementary approaches led on various model species. An overview of these mechanisms will be provided as well as a discussion on the implications of these recent discoveries. PMID:27180110

  10. Fundamental Studies of Recombinant Hydrogenases

    SciTech Connect

    Adams, Michael W

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  11. Recombinant allergen-based provocation testing☆

    PubMed Central

    Niederberger, Verena; Eckl-Dorna, Julia; Pauli, Gabrielle

    2014-01-01

    Over the last 25 years, recombinant allergens from all important allergen sources have been cloned and are now available as recombinant proteins. These molecules can be produced in practically unlimited amounts without biological or batch-to-batch variability. It has been shown in provocation tests that recombinant allergens have similar clinical effects as their natural counterparts. With the help of these tools it is possible to reveal the precise reactivity profiles of patients and to uncover and differentiate cross-reactivity from genuine sensitization to an allergen source. Although it has been shown some time ago that it would be possible to replace crude allergen extracts with recombinant allergens for skin prick testing, and even though the use of allergen components can improve routine diagnosis, these tools are still not available for clinical routine applications. The use of provocation tests is a crucial step in the development of new, hypoallergenic vaccines for therapy of allergic disease. Here we describe important provocation methods (skin prick test, intradermal test, atopy patch test, nasal provocation, colonoscopic provocation test) and give an overview of the clinical provocation studies which have been performed with recombinant allergens so far. PMID:23920475

  12. Recombinant bacteria for mosquito control.

    PubMed

    Federici, B A; Park, H-W; Bideshi, D K; Wirth, M C; Johnson, J J

    2003-11-01

    Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensis with the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria. PMID:14506223

  13. Dissociative recombination in planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1993-01-01

    Ionization in planetary atmospheres can be produced by solar photoionization, photoelectron impact ionization, and, in auroral regions, by impact of precipitating particles. This ionization is lost mainly in dissociative recombination (DR) of molecular ions. Although atomic ions cannot undergo DR, they can be transformed locally through ion-molecule reactions into molecular ions, or they may be transported vertically or horizontally to regions of the atmosphere where such transformations are possible. Because DR reactions tend to be very exothermic, they can be an important source of kinetically or internally excited fragments. In interplanetary thermospheres, the neutral densities decrease exponentially with altitude. Below the homopause (or turbopause), the atmosphere is assumed to be throughly mixed by convection and/or turbulence. Above the homopause, diffusion is the major transport mechanism, and each species is distributed according to its mass, with the logarithmic derivative of the density with repect to altitude given approximately by -1/H, where H = kT/mg is the scale height. In this expression, T is the neutral temperature, g is the local acceleratiion of gravity, and m is the mass of the species. Thus lighter species become relatively more abundant, and heavier species less abundant, as the altitude increases. This variation of the neutral composition can lead to changes in the ion composition; furthermore, as the neutral densities decrease, dissociative recombination becomes more important relative to ion-neutral reactions as a loss mechanism for molecular ions.

  14. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  15. Recombineering Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  16. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  17. QA-RecombineIt: a server for quality assessment and recombination of protein models

    PubMed Central

    Pawlowski, Marcin; Bogdanowicz, Albert; Bujnicki, Janusz M.

    2013-01-01

    QA-RecombineIt provides a web interface to assess the quality of protein 3D structure models and to improve the accuracy of models by merging fragments of multiple input models. QA-RecombineIt has been developed for protein modelers who are working on difficult problems, have a set of different homology models and/or de novo models (from methods such as I-TASSER or ROSETTA) and would like to obtain one consensus model that incorporates the best parts into one structure that is internally coherent. An advanced mode is also available, in which one can modify the operation of the fragment recombination algorithm by manually identifying individual fragments or entire models to recombine. Our method produces up to 100 models that are expected to be on the average more accurate than the starting models. Therefore, our server may be useful for crystallographic protein structure determination, where protein models are used for Molecular Replacement to solve the phase problem. To address the latter possibility, a special feature was added to the QA-RecombineIt server. The QA-RecombineIt server can be freely accessed at http://iimcb.genesilico.pl/qarecombineit/. PMID:23700309

  18. Caenorhabditis briggsae Recombinant Inbred Line Genotypes Reveal Inter-Strain Incompatibility and the Evolution of Recombination

    PubMed Central

    Ross, Joseph A.; Koboldt, Daniel C.; Staisch, Julia E.; Chamberlin, Helen M.; Gupta, Bhagwati P.; Baird, Scott E.; Haag, Eric S.

    2011-01-01

    The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes. PMID:21779179

  19. Conjugational Recombination in Escherichia Coli: Genetic Analysis of Recombinant Formation in Hfr X F(-) Crosses

    PubMed Central

    Lloyd, R. G.; Buckman, C.

    1995-01-01

    The formation of recombinants during conjugation between Hfr and F(-) strains of Escherichia coli was investigated using unselected markers to monitor integration of Hfr DNA into the circular recipient chromosome. In crosses selecting a marker located ~500 kb from the Hfr origin, 60-70% of the recombinants appeared to inherit the Hfr DNA in a single segment, with the proximal exchange located >300 kb from the selected marker. The proportion of recombinants showing multiple exchanges increased in matings selecting more distal markers located 700-2200 kb from the origin, but they were always in the minority. This effect was associated with decreased linkage of unselected proximal markers. Mutation of recB, or recD plus recJ, in the recipient reduced the efficiency of recombination and shifted the location of the proximal exchange (s) closer to the selected marker. Mutation of recF, recO or recQ produced recombinants in which this exchange tended to be closer to the origin, though the effect observed was rather small. Up to 25% of recombinant colonies in rec(+) crosses showed segregation of both donor and recipient alleles at a proximal unselected locus. Their frequency varied with the distance between the selected and unselected markers and was also related directly to the efficiency of recombination. Mutation of recD increased their number by twofold in certain crosses to a value of 19%, a feature associated with an increase in the survival of linear DNA in the absence of RecBCD exonuclease. Mutation of recN reduced sectored recombinants in these crosses to ~1% in all the strains examined, including recD. A model for conjugational recombination is proposed in which recombinant chromosomes are formed initially by two exchanges that integrate a single piece of duplex Hfr DNA into the recipient chromosome. Additional pairs of exchanges involving the excised recipient DNA, RecBCD enzyme and RecN protein, can subsequently modify the initial product to generate the

  20. Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins.

    PubMed

    Vallin, Carlos; Ramos, Astrid; Pimienta, Elsa; Rodríguez, Caridad; Hernández, Tairí; Hernández, Ivones; Del Sol, Ricardo; Rosabal, Grisel; Van Mellaert, Lieve; Anné, Jozef

    2006-01-01

    The 45/47 kDa APA protein (Rv1860) of Mycobacterium tuberculosis was produced by Streptomyces lividans. The recombinant protein could be recovered from the culture medium of an S. lividans clone containing the apa gene under control of the promoter and signal sequence of the Streptomyces coelicolor agarase gene. The recombinant protein production was further scaled-up using fermentation conditions. The APA protein was subsequently purified from the culture supernatant by means of immunochromatography. About 80 mg of recombinant protein were obtained per liter of culture media. In vivo tests with the APA protein purified from S. lividans TK24/pRGAPA1 revealed that the recombinant protein was antigenic and could induce high titers of specific antibodies in the mouse biological model. Results obtained concerning heterologous production of APA, its immunogenic and antigenic capacity, demonstrated the potential of S. lividans as a valuable host for the production of recombinant proteins from M. tuberculosis.

  1. Sex recombination, and reproductive fitness: an experimental study using Paramecium

    SciTech Connect

    Nyberg, D.

    1982-08-01

    The effect of sex and recombination on reproductive fitness are measured using five wild stocks of Paramecium primaurelia. Among the wild stocks there were highly significant differences in growth rates. No hybrid had as low a fitness as the least fit parental stock. Recombination produced genotypes of higher fitness than those of either parent only in the cross between the two stocks of lowest fitness. The increase in variance of fitness as a result of recombination was almost exclusively attributable to the generation lines with low fitness. The fitness consequences of sexuality and mate choice were stock specific; some individuals leaving the most descendants by inbreeding, others by outcrossing. For most crosses the short-term advantage of sex, if any, accrue from the fusion of different gametes (hybrid vigor) and not from recombination. Since the homozygous genotype with the highest fitnes left the most progeny by inbreeding (no recombination), the persistence of conjugation in P. primaurelia is paradoxical. (JMT)

  2. Colony mutants of compatible nocardiae displaying variations in recombining capacity.

    PubMed

    Brownell, G H; Walsh, R S

    1972-03-01

    Colonial morphology mutants of Nocardia erythropolis were isolated following ultraviolet (UV) irradiation. The alleles rou-1/smo-1 were located by recombinant analysis and found to be linked to previously mapped characters. On the basis of recombinant class type patterns obtained from various selective characters it was postulated that the rou-1 allele may span a region of unique nucleotides in the Mat-Ce genome. Recombination frequencies of rou-1 and smo-2 bearing mutants of the Mat-Ce mating type were found to differ by over 1000 fold. Attempts to demonstrate that low recombination frequencies produced by the Smo mutants were due to Rec(-) genes were unsuccessful. No increased sensitivity to either UV or X irradiation was observed by the Smo mutants. Acriflavine treatment of either Rou or Smo colony mutants failed to accelerate reversion or to alter the recombining potentials of the mutants.

  3. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  4. Expression and Purification of Recombinant Hemoglobin in Escherichia coli

    PubMed Central

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E.; Moriyama, Hideaki; Storz, Jay F.

    2011-01-01

    Background Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. Methodology/Principal Findings As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Conclusion/Significance Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis. PMID:21625463

  5. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  6. Construction and characterization of a recombinant invertebrate iridovirus.

    PubMed

    Ozgen, Arzu; Muratoglu, Hacer; Demirbag, Zihni; Vlak, Just M; van Oers, Monique M; Nalcacioglu, Remziye

    2014-08-30

    Chilo iridescent virus (CIV), officially named Insect iridescent virus 6 (IIV6), is the type species of the genus Iridovirus (family Iridoviridae). In this paper we constructed a recombinant CIV, encoding the green fluorescent protein (GFP). This recombinant can be used to investigate viral replication dynamics. We showed that homologous recombination is a valid method to make CIV gene knockouts and to insert foreign genes. The CIV 157L gene, putatively encoding a non-functional inhibitor of apoptosis (IAP), was chosen as target for foreign gene insertion. The gfp open reading frame preceded by the viral mcp promoter was inserted into the 157L locus by homologous recombination in Anthonomus grandis BRL-AG-3A cells. Recombinant virus (rCIV-Δ157L-gfp) was purified by successive rounds of plaque purification. All plaques produced by the purified recombinant virus emitted green fluorescence due to the presence of GFP. One-step growth curves for recombinant and wild-type CIV were similar and the recombinant was fully infectious in vivo. Hence, CIV157L can be inactivated without altering the replication kinetics of the virus. Consequently, the CIV 157L locus can be used as a site for insertion of foreign DNA, e.g. to modify viral properties for insect biocontrol.

  7. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  8. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF. PMID:22808513

  9. Green factory: plants as bioproduction platforms for recombinant proteins.

    PubMed

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success. PMID:21924345

  10. Green factory: plants as bioproduction platforms for recombinant proteins.

    PubMed

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success.

  11. Method for producing aldehyde from CO.sub.2

    DOEpatents

    Liao, James C.; Atsumi, Shota

    2015-09-29

    The invention provides recombinant microorganisms capable of producing isobutyraldehyde using CO.sub.2 as a carbon source. The invention further provides methods of preparing and using such microorganisms to produce isobutyraldehyde.

  12. Dielectronic recombination theory

    SciTech Connect

    LaGattuta, K.J.

    1991-12-31

    A theory now in wide use for the calculation of dielectronic recombination cross sections ({sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of {sigma}{sup DR} have been described by Fano and by Seaton. We will not consider those theories here. Calculations of {alpha}{sup DR} have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of {sigma}{sup DR}. While the measurements of {sigma}{sup DR} for {delta}n {ne} 0 excitations have tended to agree very well with calculations, the case of {delta}n = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain.

  13. Recombinant Protein Production by In Vivo Polymer Inclusion Display ▿

    PubMed Central

    Grage, Katrin; Peters, Verena; Rehm, Bernd H. A.

    2011-01-01

    A novel approach to produce purified recombinant proteins was established. The target protein is produced as polyhydroxyalkanoate (PHA) synthase fusion protein, which mediates intracellular formation of PHA inclusions displaying the target protein. After isolation of the PHA inclusions, the pure target protein was released by simple enterokinase digestion. PMID:21803888

  14. Recombinant electric storage battery

    SciTech Connect

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  15. Homologous recombination in rat germline stem cells.

    PubMed

    Kanatsu-Shinohara, Mito; Kato-Itoh, Megumi; Ikawa, Masahito; Takehashi, Masanori; Sanbo, Makoto; Morioka, Yuka; Tanaka, Takashi; Morimoto, Hiroko; Hirabayashi, Masumi; Shinohara, Takashi

    2011-07-01

    Spermatogonial stem cells (SSCs) are the only stem cells in the body with germline potential, which makes them an attractive target for germline modification. We previously showed the feasibility of homologous recombination in mouse SSCs and produced knockout (KO) mice by exploiting germline stem (GS) cells, i.e., cultured spermatogonia with SSC activity. In this study, we report the successful homologous recombination in rat GS cells, which can be readily established by their ability to form germ cell colonies on culture plates whose surfaces are hydrophilic and neutrally charged and thus limit somatic cell binding. We established a drug selection protocol for GS cells under hypoxic conditions. The frequency of the homologous recombination of the Ocln gene was 4.2% (2 out of 48 clones). However, these GS cell lines failed to produce offspring following xenogeneic transplantation into mouse testes and microinsemination, suggesting that long-term culture and drug selection have a negative effect on GS cells. Nevertheless, our results demonstrate the feasibility of gene targeting in rat GS cells and pave the way toward the generation of KO rats.

  16. Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens.

    PubMed

    Valenta, Rudolf; Linhart, B; Swoboda, I; Niederberger, V

    2011-06-01

    The broad applicability of allergen-specific immunotherapy for the treatment and eventually prevention of IgE-mediated allergy is limited by the poor quality and allergenic activity of natural allergen extracts that are used for the production of current allergy vaccines. Today, the genetic code of the most important allergens has been deciphered; recombinant allergens equalling their natural counterparts have been produced for diagnosis and immunotherapy, and a large panel of genetically modified allergens with reduced allergenic activity has been characterized to improve safety of immunotherapy and explore allergen-specific prevention strategies. Successful immunotherapy studies have been performed with recombinant allergens and hypoallergenic allergen derivatives and will lead to the registration of the first recombinant allergen-based vaccines in the near future. There is no doubt that recombinant allergen-based vaccination strategies will be generally applicable to most allergen sources, including respiratory, food and venom allergens and allow to produce safe allergy vaccines for the treatment of the most common forms of IgE-mediated allergies.

  17. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  18. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  19. Unraveling recombination rate evolution using ancestral recombination maps

    PubMed Central

    Munch, Kasper; Schierup, Mikkel H; Mailund, Thomas

    2014-01-01

    Recombination maps of ancestral species can be constructed from comparative analyses of genomes from closely related species, exemplified by a recently published map of the human-chimpanzee ancestor. Such maps resolve differences in recombination rate between species into changes along individual branches in the speciation tree, and allow identification of associated changes in the genomic sequences. We describe how coalescent hidden Markov models are able to call individual recombination events in ancestral species through inference of incomplete lineage sorting along a genomic alignment. In the great apes, speciation events are sufficiently close in time that a map can be inferred for the ancestral species at each internal branch - allowing evolution of recombination rate to be tracked over evolutionary time scales from speciation event to speciation event. We see this approach as a way of characterizing the evolution of recombination rate and the genomic properties that influence it. PMID:25043668

  20. Three-Body Recombination of Oxygen Atoms

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Kalogerakis, K. S.

    2002-05-01

    Dayside photodissociation of O2 and CO2 in the atmospheres of Earth, Venus, and Mars produces oxygen atoms that eventually undergo three-body recombination O + O + M -> O2* + M The variety of electronic states produced is observable as nightglow emissions, which have been the subject of many laboratory and interpretive investigations. Here we review the current understanding of the overall temperature-dependent rate coefficient for three-body recombination of oxygen atoms and describe a strategy for its measurement. The most recent measurement [1] is almost 30 years old. The most comprehensive review [2] is more than 25 years old and shows that the absolute rate coefficients for recombination and the reverse process, collision-induced dissociation, as well as the dependence on temperature and collider, are poorly determined, in spite of the relatively narrow error bars reported in the various studies. The most recent high-temperature dissociation study [3] actually increases the divergence. We plan experiments with a commercial F2 laser, providing roughly 50 mJ of 157 nm radiation in a 3-4 mm beam, to achieve greater than 80% dissociation of molecular oxygen, in the range from 0.5 to 5 torr. In a high-pressure N2 background (30-200 torr) the oxygen atoms will recombine in a time scale from 0.1 to 10 ms, as monitored by 845 nm fluorescence excited by two photons at 226 nm. [1] I. M. Campbell and C. N. Gray, Chem. Phys. Lett. 18, 607 (1973). [2] D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions Vol. 3 ``Homogeneous Gas Phase Reactions of the O2--O3 System, the CO--O2--H2 System, and of Sulphur-Containing Species," (Butterworths, London, 1976). [3] V. Naudet, S. Abid, and C. E. Paillard, J. Chim. Phys. 96, 1123 (1999).

  1. Analysis of Meiotic Recombination Pathways in the Yeast Saccharomyces Cerevisiae

    PubMed Central

    Mao-Draayer, Y.; Galbraith, A. M.; Pittman, D. L.; Cool, M.; Malone, R. E.

    1996-01-01

    In the yeast, Saccharomyces cerevisiae, several genes appear to act early in meiotic recombination. HOP1 and RED1 have been classified as such early genes. The data in this paper demonstrate that neither a red1 nor a hop1 mutation can rescue the inviable spores produced by a rad52 spo13 strain; this phenotype helps to distinguish these two genes from other early meiotic recombination genes such as SPO11, REC104, or MEI4. In contrast, either a red1 or a hop1 mutation can rescue a rad50S spo13 strain; this phenotype is similar to that conferred by mutations in the other early recombination genes (e.g., REC104). These two different results can be explained because the data presented here indicate that a rad50S mutation does not diminish meiotic intrachromosomal recombination, similar to the mutant phenotypes conferred by red1 or hop1. Of course, RED1 and HOP1 do act in the normal meiotic interchromosomal recombination pathway; they reduce interchromosomal recombination to ~10% of normal levels. We demonstrate that a mutation in a gene (REC104) required for initiation of exchange is completely epistatic to a mutation in RED1. Finally, mutations in either HOP1 or RED1 reduce the number of double-strand breaks observed at the HIS2 meiotic recombination hotspot. PMID:8878674

  2. Primordial magnetogenesis before recombination

    NASA Astrophysics Data System (ADS)

    Fabre, Ophélia; Shankaranarayanan, S.

    2016-04-01

    The origin of large magnetic fields in the Universe remains currently unknown. We investigate here a mechanism before recombination based on known physics. The source of the vorticity is due to the changes in the photon distribution function caused by the fluctuations in the background photons. We show that the magnetic field generated in the MHD limit, due to the Coulomb scattering, is of the order 10-49 G on a coherence scale of 10 kpc. We explicitly show that the magnetic fields generated from this process are sustainable and are not erased by resistive diffusion. We compare the results with current observations and discuss the implications. Our seed magnetic fields are generated on small scales whereas the main mechanisms studied in the literature are on scale bigger than 1 Mpc. However, compared to more exotic theories generating seed magnetic fields on similar scales, the strength of our fields are generally smaller.

  3. Recombinant Human Erythropoietin

    PubMed Central

    Bartels, Claudia; Späte, Kira; Krampe, Henning

    2008-01-01

    Treatment of multiple sclerosis (MS) is still unsatisfactory and essentially non-existing for the progressive course of the disease. Recombinant human erythropoietin (EPO) may be a promising neuroprotective/neuroregenerative treatment of MS. In the nervous system, EPO acts anti-apoptotic, antioxidative, anti-inflammatory, neurotrophic and plasticity-modulating. Beneficial effects have been shown in animal models of various neurological and psychiatric diseases, including different models of experimental autoimmune encephalomyelitis. EPO is also effective in human brain disease, as shown in double-blind placebo-controlled clinical studies on ischemic stroke and chronic schizophrenia. An exploratory study on chronic progressive MS yielded lasting improvement in motor and cognitive performance upon high-dose long-term EPO treatment. PMID:21180577

  4. Photodissociation of alkyl iodides in helium nanodroplets. III. Recombination

    SciTech Connect

    Braun, Andreas; Drabbels, Marcel

    2007-09-21

    The recombination of fragments resulting from the photodissociation of (fluorinated) alkyl iodides in helium nanodroplets at a wavelength of 266 nm has been investigated by means of ion imaging techniques. It is found that in the case of CH{sub 3}I an appreciable fraction of the fragments recombine in the aftermath of the photolysis. The proposed mechanism involves a complete translational relaxation of both photofragments inside the nanodroplets followed by geminate recombination of the fragments. In contrast with CH{sub 3}I, no recombination is observed for CF{sub 3}I. This is attributed to the larger masses and the different initial kinetic energies of the fragments produced by the photolysis of CF{sub 3}I, which strongly diminishes the fragment thermalization efficiency.

  5. Break-induced replication and recombinational telomere elongation in yeast.

    PubMed

    McEachern, Michael J; Haber, James E

    2006-01-01

    When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.

  6. Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli.

    PubMed

    Upadhyay, Vaibhav; Singh, Anupam; Panda, Amulya K

    2016-01-01

    Recombinant ovalbumin expressed in bacterial host is essentially free from post-translational modifications and can be useful in understanding the structure-function relationship of the protein. In this study, ovalbumin was expressed in Escherichia coli in the form of inclusion bodies. Ovalbumin inclusion bodies were solubilized using urea and refolded by decreasing the urea concentration by dilution. Refolded protein was purified by anion exchange chromatography. Overall recovery of purified recombinant ovalbumin from inclusion bodies was about 30% with 98% purity. Purified recombinant ovalbumin was characterized by mass spectrometry, circular dichroism and fluorescence spectroscopy. Recombinant ovalbumin was shown to be resistant to trypsin using protease resistance assay. This indicated proper refolding of ovalbumin from inclusion bodies of E. coli. This method provides a simple way of producing ovalbumin free of post-translational modifications.

  7. Bimolecular recombination in organic photovoltaics.

    PubMed

    Lakhwani, Girish; Rao, Akshay; Friend, Richard H

    2014-01-01

    The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.

  8. Retroviral recombination during reverse transcription.

    PubMed

    Goodrich, D W; Duesberg, P H

    1990-03-01

    After mixed infection, up to half of related retroviruses are recombinants. During infection, retroviral RNA genomes are first converted to complementary DNA (cDNA) and then to double-stranded DNA. Thus recombination could occur during reverse transcription, by RNA template switching, or after reverse transcription, by breakage and reunion of DNA. It has not been possible to distinguish between these two potential mechanisms of recombination because both single-stranded cDNA and double-stranded proviral DNA exist in infected cells during the eclipse period. Therefore we have analyzed for recombinant molecules among cDNA products transcribed in vitro from RNA of disrupted virions. Since recombinants from allelic parents can only be distinguished from parental genomes by point mutations, we have examined the cDNAs from virions with distinct genetic structures for recombinant-specific size and sequence markers. The parents share a common internal allele that allows homology-directed recombination, but each contains specific flanking sequences. One parent is a synthetically altered Harvey murine sarcoma virus RNA that lacks a retroviral 3' terminus but carries a Moloney murine retrovirus-derived envelope gene (env) fragment 3' of its transforming ras gene. The other parent is intact Moloney virus. Using a Harvey-specific 5' primer and a Moloney-specific 3' primer, we have found recombinant cDNAs with the polymerase chain reaction, proving directly that retroviruses can recombine during reverse transcription unassisted by cellular enzymes, probably by template switching during cDNA synthesis. The recombinants that were obtained in vitro were identical with those obtained in parallel experiments in vivo.

  9. Oligomeric Recombinant H5 HA1 Vaccine Produced in Bacteria Protects Ferrets from Homologous and Heterologous Wild-Type H5N1 Influenza Challenge and Controls Viral Loads Better than Subunit H5N1 Vaccine by Eliciting High-Affinity Antibodies

    PubMed Central

    Verma, Swati; Dimitrova, Milena; Munjal, Ashok; Fontana, Juan; Crevar, Corey J.; Carter, Donald M.; Ross, Ted M.

    2012-01-01

    Recombinant hemagglutinin from influenza viruses with pandemic potential can be produced rapidly in various cell substrates. In this study, we compared the functionality and immunogenicity of bacterially produced oligomeric or monomeric HA1 proteins from H5N1 (A/Vietnam/1203/04) with those of the egg-based licensed subunit H5N1 (SU-H5N1) vaccine in ferrets challenged with homologous or heterologous H5N1 highly pathogenic influenza strains. Ferrets were vaccinated twice with the oligomeric or monomeric rHA1 or with SU-H5N1 (Sanofi Pasteur) emulsified with Titermax adjuvant and were challenged with wild-type homologous (A/Vietnam/1203/04; clade 1) or heterologous (A/Whooperswan/Mongolia/244/2005; clade 2.2) virus. Only the oligomeric rHA1 (not the monomeric rHA1) immunogen and the SU-H5N1 vaccine provided protection against the lethality and morbidity of homologous and heterologous highly pathogenic H5N1. Oligomeric rHA1 generated more cross-neutralizing antibodies and higher levels of serum antibody binding to HA1, with stronger avidity and a better IgG/IgM ratio, than monomeric HA1 and SU-H5N1 vaccines, as determined by surface plasmon resonance (SPR). Importantly, viral loads after heterologous H5N1 challenge were more efficiently controlled in ferrets vaccinated with the oligomeric rHA1 immunogen than in SU-H5N1-vaccinated ferrets. The reduction of viral loads in the nasal washes correlated strongly with higher-avidity antibodies to oligomeric rHA1 derived from H5N1 clade 1 and clade 2.2 viruses, as measured by SPR. This is the first study to show the role of antibody avidity for the HA1 globular head domain in reduction of viral loads in the upper respiratory tract, which could significantly reduce viral transmission. PMID:22951833

  10. Extensive recombination-induced disruption of genetic interactions is highly deleterious but can be partially reversed by small numbers of secondary recombination events.

    PubMed

    Monjane, Adérito L; Martin, Darren P; Lakay, Francisco; Muhire, Brejnev M; Pande, Daniel; Varsani, Arvind; Harkins, Gordon; Shepherd, Dionne N; Rybicki, Edward P

    2014-07-01

    of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.

  11. Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli.

    PubMed

    López, Elena; Elez, Marina; Matic, Ivan; Blázquez, Jesús

    2007-04-01

    The widespread use and abuse of antibiotics as therapeutic agents has produced a major challenge for bacteria, leading to the selection and spread of antibiotic resistant variants. However, antibiotics do not seem to be mere selectors of these variants. Here we show that the fluoroquinolone antibiotic ciprofloxacin, an inhibitor of type II DNA topoisomerases, stimulates intrachromosomal recombination of DNA sequences. The stimulation of recombination between divergent sequences occurs via either the RecBCD or RecFOR pathways and is, surprisingly, independent of SOS induction. Additionally, this stimulation also occurs in a hyperrecombinogenic mismatch repair mutS mutant. It is worth noting that ciprofloxacin also stimulates the conjugational recombination of an antibiotic resistance gene. Finally, we demonstrate that Escherichia coli is able to recover from treatments with recombination-stimulating concentrations of the antibiotic. Thus, fluoroquinolones can increase genetic variation by the stimulation of the recombinogenic capability of treated bacteria (via an SOS-independent mechanism) and consequently may favour the acquisition, evolution and spread of antibiotic resistance determinants. PMID:17376074

  12. Delayed recombination and standard rulers

    SciTech Connect

    De Bernardis, Francesco; Melchiorri, Alessandro; Bean, Rachel; Galli, Silvia; Silk, Joseph I.; Verde, Licia

    2009-02-15

    Measurements of baryonic acoustic oscillations (BAOs) in galaxy surveys have been recognized as a powerful tool for constraining dark energy. However, this method relies on the knowledge of the size of the acoustic horizon at recombination derived from cosmic microwave background (CMB) anisotropy measurements. This estimate is typically derived assuming a standard recombination scheme; additional radiation sources can delay recombination altering the cosmic ionization history and the cosmological inferences drawn from CMB and BAO data. In this paper we quantify the effect of delayed recombination on the determination of dark energy parameters from future BAO surveys such as the Baryon Oscillation Spectroscopic Survey and the Wide-Field Multi-Object Spectrograph. We find the impact to be small but still not negligible. In particular, if recombination is nonstandard (to a level still allowed by CMB data), but this is ignored, future surveys may incorrectly suggest the presence of a redshift-dependent dark energy component. On the other hand, in the case of delayed recombination, adding to the analysis one extra parameter describing deviations from standard recombination does not significantly degrade the error bars on dark energy parameters and yields unbiased estimates. This is due to the CMB-BAO complementarity.

  13. Analysis of interchromosomal mitotic recombination.

    PubMed

    McGill, C B; Shafer, B K; Higgins, D R; Strathern, J N

    1990-07-01

    A novel synthetic locus is described that provides a simple assay system for characterizing mitotic recombinants. The locus consists of the TRP1 and HIS3 genes inserted into chromosome III of S. cerevisiae between the CRY1 and MAT loci. Defined trp1 and his3 alleles have been generated that allow the selection of interchromosomal recombinants in this interval. Trp+ or His+ recombinants can be divided into several classes based on coupling of the other alleles in the interval. The tight linkage of the CRY1 and MAT loci, combined with the drug resistance and cell type phenotypes that they respectively control, facilitates the classification of the recombinants without resorting to tetrad dissection. We present the distribution of spontaneous recombinants among the classes defined by this analysis. The data suggest that the recombination intermediate can have regions of symmetric strand exchange and that co-conversion tracts can extend over 1-3 kb. Continuous conversion tracts are favored over discontinuous tracts. The distribution among the classes defined by this analysis is altered in recombinants induced by UV irradiation.

  14. Identification of natural recombinants derived from PCV2a and PCV2b.

    PubMed

    Hu, J; Zhai, S L; Zeng, S Y; Sun, B B; Deng, S F; Chen, H L; Zheng, Y; Wang, H X; Li, X P; Liu, J K; Cheng, S; Zhou, X; Zhai, J Q; Luo, M L

    2015-01-01

    Porcine circovirus type 2 (PCV2) is considered to be the main pathogen in PC-associated diseases, and significantly affects the global pig-producing industry. PCV2 continuously evolves by point mutations and genome recombinations. In the present study, we aimed to further identify recombinant PCV2 strains. We used polymerase chain reaction to detect PCV2 in the carcasses of pigs with suspected infections from different regions of Guangdong Province in China. DNA was extracted from samples with confirmed infection and full- genome amplification, sequencing, phylogenetic tree construction, gene recombination detection, and sequence alignment were performed in gene recombination analysis. Our results show that recombination occurred between the strains SHC (DQ104421) and ZhuJi2003 (AY579893). The recombination resulted in three recombinants: GD003 (KM503044), GD005 (KM487708), and GD008 (KM487709). Further analyses revealed that these novel recombinants appeared to result from recombination between the PCV2a and PCV2b strains, with crossover regions located in ORF2. This study was a comprehensive analysis that used several different methods, which demonstrated that a cluster of PCV2 strains resulted from the same type of inter-genotypic recombination pattern, with a breakpoint in the structural protein coding region. The results of our study provide both information on the recombination mechanism and disease pathogenesis and useful data for the prevention of PCV2 in the swine industry. PMID:26436503

  15. Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells.

    PubMed Central

    Puchta, H

    1999-01-01

    Homologous recombination between ectopic sites is rare in higher eukaryotes. To test whether double-strand breaks (DSBs) can induce ectopic recombination, transgenic tobacco plants harboring two unlinked, nonfunctional homologous parts of a kanamycin resistance gene were produced. To induce homologous recombination between the recipient locus (containing an I-SceI site within homologous sequences) and the donor locus, the rare cutting restriction enzyme I-SceI was transiently expressed via Agrobacterium in these plants. Whereas without I-SceI expression no recombination events were detectable, four independent recombinants could be isolated after transient I-SceI expression, corresponding to approximately one event in 10(5) transformations. After regeneration, the F1 generation of all recombinants showed Mendelian segregation of kanamycin resistance. Molecular analysis of the recombinants revealed that the resistance gene was indeed restored via homologous recombination. Three different kinds of reaction products could be identified. In one recombinant a classical gene conversion without exchange of flanking markers occurred. In the three other cases homologous sequences were transferred only to one end of the break. Whereas in three cases the ectopic donor sequence remained unchanged, in one case rearrangements were found in recipient and donor loci. Thus, ectopic homologous recombination, which seems to be a minor repair pathway for DSBs in plants, is described best by recombination models that postulate independent roles for the break ends during the repair process. PMID:10388832

  16. Fine mapping of epitopes by intradomain Kd/Dd recombinants

    PubMed Central

    1987-01-01

    11 intradomain recombinants between H-2Kd and H-2Dd were produced using an original technique based on in vivo recombination in Escherichia coli. After transfection into mouse L cells, all these recombinants were expressed at high levels on the cell surface. The specificities of 77 mAbs were examined on these cell lines. mAbs could be organized in 12 groups. In each group, a small number of amino acids participating in the recognized epitope(s) were identified. In a few instances, noncontinuous epitopes comprising amino acids belonging to different domains of the antigen were found. The data thus obtained are compatible with those produced in previous exon-shuffling experiments, but permit a much more precise definition of recognized epitope(s). PMID:2439641

  17. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  18. Controlled release from recombinant polymers.

    PubMed

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  19. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  20. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  1. Recombinant DNA means and method

    SciTech Connect

    Alford, B.L.; Mao, J.I.; Moir, D.T.; Taunton-Rigby, A.; Vovis, G.F.

    1987-05-19

    This patent describes a transformed living cell selected from the group consisting of fungi, yeast and bacteria, and containing genetic material derived from recombinant DNA material and coding for bovine rennin.

  2. Recombination system for storage batteries

    SciTech Connect

    Bopp, B.; Ledjeff, K.; Winsel, A.

    1983-03-29

    A recombination system for catalytic oxidation of hydrogen in storage battery gases includes a gas supply duct which makes it possible for the combustible gas flowing through it to aspirate from the ambient the necessary combustion air, following the principle of a bunsen burner, and to entrain it to the recombination catalyst. In case of over-supply of gas, an acid separator positioned in the gas supply pipe counteracts the gas aspiration by means of its flow impedance and thereby makes the recombination system safe from overload. It can also be connected following a conventional recombiner, thereby increasing its effectiveness, by receiving the excess hydrogen from same and reacting it with the aid of the air aspiration.

  3. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  4. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  5. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  6. Utilizing Protein-lean Co-products from Corn Containing Recombinant Pharmaceutical Proteins for Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were used to produce fuel ethanol and residual r-proteins in the co-product, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein ...

  7. Fermentations with new recombinant organisms

    SciTech Connect

    Bothast, R.J.; Nichols, N.N.; Dien, B.S.

    1999-10-01

    US fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharomyces cerevisiae and Zymomonas mobilis for pentose utilization. The authors have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21--34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different industrially hardened strains may find separate applications in the fermentation of specific feedstocks.

  8. Delayed recombination and cosmic parameters

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-09-15

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  9. Delayed recombination and cosmic parameters

    NASA Astrophysics Data System (ADS)

    Galli, Silvia; Bean, Rachel; Melchiorri, Alessandro; Silk, Joseph

    2008-09-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, ns, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z*=1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: γα<0.39 and γi<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  10. Rescuing Recombinant Proteins by Sequestration Into the P22 VLP

    PubMed Central

    Patterson, Dustin P.; LaFrance, Benjamin; Douglas, Trevor

    2013-01-01

    Here we report the use of a self-assembling protein cage to sequester and solubilize recombinant proteins which are usually trafficked to insoluble inclusion bodies. Our results suggest that protein cages can be used as novel vehicles to rescue and produce soluble proteins that are otherwise difficult to obtain using conventional methods. PMID:24079011

  11. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  12. Directional recombination is initiated at a double strand break in human nuclear extracts.

    PubMed Central

    Lopez, B S; Corteggiani, E; Bertrand-Mercat, P; Coppey, J

    1992-01-01

    The involvement of a double strand break in the initiation of homologous recombination was examined in human nuclear extracts. M13 duplex derivatives, containing inserts in the LacZ' region (producing white plaques), were cleaved by restriction enzymes and coincubated in the extracts with a circular plasmid containing the LacZ' region without insert, and unable to produce plaques. Repair was estimated by the ability to produce plaques after transfection into JM109 (recA1) bacteria. Recombination with the plasmid enhances the number of plaques and also the frequency of M13 producing blue plaques. Heterologous insertions in the region surrounding the break were analyzed for their effects on initiation of recombination. The extent of repair by recombination (number of plaques) was compared with the number of blue plaques among the repaired population. Initiation of recombination is inhibited when heterologous insertions are located at 7bp from the break, on the right side as well as on the left side. A low level of recombination is measurable for 27 bp of homology but the maximum efficiency of recombination occurred with homologies of 165 or 320 bp from the break to the heterologous insertion. At 320 bp, the extent of recombinational repair remained at a plateau level but the frequency of blue plaques progressively decreases. We have also analyzed the effect of different sizes of inserts. With longer inserts, a longer length of homology adjacent to the break is required for optimum recombination. However, the size of the insert does not affect the low level of recombination that occurred with a short homology (27 bp). The results indicate that the process is initiated at or near the break, requires homology on both sides of the break and is followed by an elongation from the double strand break to the distal regions of the DNA. Our data provide some support to the double-strand-break repair model established for meiotic recombination in yeast. PMID:1311076

  13. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in the carp industry, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open...

  14. Recombinant production of spider silk proteins.

    PubMed

    Heidebrecht, Aniela; Scheibel, Thomas

    2013-01-01

    Natural spider silk fibers combine extraordinary properties such as stability and flexibility which results in a toughness superseding that of all other fiber materials. As the spider's aggressive territorial behavior renders their farming not feasible, the biotechnological production of spider silk proteins (spidroins) is essential in order to investigate and employ them for applications. In order to accomplish this task, two approaches have been tested: firstly, the expression of partial cDNAs, and secondly, the expression of synthetic genes in several host organisms, including bacteria, yeast, plants, insect cells, mammalian cells, and transgenic animals. The experienced problems include genetic instability, limitations of the translational and transcriptional machinery, and low solubility of the produced proteins. Here, an overview of attempts to recombinantly produce spidroins will be given, and advantages and disadvantages of the different approaches and host organisms will be discussed. PMID:23415154

  15. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells.

    PubMed Central

    Deng, W P; Nickoloff, J A

    1994-01-01

    Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication. Images PMID:8264607

  16. Recombination at the DNA level. Abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts of papers in the following areas are presented: (1) chromosome mechanics; (2) yeast systems; (3) mammalian homologous recombination; (4) transposons; (5) Mu; (6) plant transposons/T4 recombination; (7) topoisomerase, resolvase, and gyrase; (8) Escherichia coli general recombination; (9) recA; (10) repair; (11) eucaryotic enzymes; (12) integration and excision of bacteriophage; (13) site-specific recombination; and (14) recombination in vitro. (ACR)

  17. Making recombinant proteins in animals--different systems, different applications.

    PubMed

    Dyck, Michael K; Lacroix, Dan; Pothier, François; Sirard, Marc-André

    2003-09-01

    Transgenic animal bioreactors represent a powerful tool to address the growing need for therapeutic recombinant proteins. The ability of transgenic animals to produce complex, biologically active recombinant proteins in an efficient and economic manner has stimulated a great deal of interest in this area. As a result, genetically modified animals of several species, expressing foreign proteins in various tissues, are currently being developed. However, the generation of transgenic animals is a cumbersome process and remains problematic in the application of this technology. The advantages and disadvantages of different transgenic systems in relation to other bioreactor systems are discussed.

  18. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  19. Progenitors of Recombining Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  20. Electron-Beam Recombination Lasers

    NASA Astrophysics Data System (ADS)

    Rhoades, Robert Lewis

    1992-01-01

    The first known instance of electron-beam pumping of the 546.1 nm mercury laser is reported. This has been achieved using high-energy electrons to create intense ionization in a coaxial diode chamber containing a mixture of noble gases with a small amount of mercury vapor. Also reported are the results of a study of the 585.3 nm neon laser in He:Ne:Ar mixtures under similar experimental conditions. Both of these lasers are believed to be predominantly pumped by recombination. For the mercury laser, kinetic processes in the partially ionized plasma following the excitation pulse of high-energy electrons should favor the production of atomic mercury ions and molecular ions containing mercury. Subsequent recombination with electrons heavily favors the production of the 7^3S and 6^3 D states of Hg, of which 7^3S is the upper level of the reported laser. For the neon laser, the dominant recombining ion has been previously shown to be Ne_2^{+}. One of the dominant roles of helium in recombination lasers is inferred from the data for the neon laser at low helium concentrations. Helium appears to be necessary for the rapid relaxation of the electron energy which then increases the reaction rates for all known recombination processes thus increasing the pump rate into the upper state.

  1. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  2. Gene delivery into plant cells for recombinant protein production.

    PubMed

    Chen, Qiang; Lai, Huafang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  3. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  4. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  5. DNA recombination: the replication connection.

    PubMed

    Haber, J E

    1999-07-01

    Chromosomal double-strand breaks (DSBs) arise after exposure to ionizing radiation or enzymatic cleavage, but especially during the process of DNA replication itself. Homologous recombination plays a critical role in repair of such DSBs. There has been significant progress in our understanding of two processes that occur in DSB repair: gene conversion and recombination-dependent DNA replication. Recent evidence suggests that gene conversion and break-induced replication are related processes that both begin with the establishment of a replication fork in which both leading- and lagging-strand synthesis occur. There has also been much progress in characterization of the biochemical roles of recombination proteins that are highly conserved from yeast to humans.

  6. The Dissociative Recombination of OH(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1995-01-01

    Theoretical quantum chemical calculations of the cross sections and rates for the dissociative recombination of the upsilon = 0 level of the ground state of OH(+) show that recombination occurs primarily along the 2 (2)Pi diabatic route. The products are 0((1)D) and a hot H atom with 6.1 eV kinetic energy. The coupling to the resonances is very small and the indirect recombination mechanism plays only a minor role. The recommended value for the rate coefficient is (6.3 +/- 0.7) x 10(exp -9)x (T(e)/1300)(exp -0.48) cu.cm/s for 10 less than T(e) less than 1000 K.

  7. Recombinant snake venom prothrombin activators.

    PubMed

    Lövgren, Ann

    2013-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need for additional cofactors, but does not discriminate non-carboxylated prothrombin from biologically active γ-carboxylated prothrombin. Here we report that recombinant trocarin and oscutarin could not efficiently generate thrombin without additional protein co-factors. We confirm that both trocarin and oscutarin are similar to human coagulation Factor X (FX), explaining the need for additional cofactors. Sequencing of a genomic fragment containing 7 out of the 8 exons coding for oscutarin further confirmed the similarity to human FX. PMID:23111318

  8. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  9. Selenium incorporation using recombinant techniques

    SciTech Connect

    Walden, Helen

    2010-04-01

    An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  10. Efficient generation and rapid isolation via stoplight recombination of Herpes simplex viruses expressing model antigenic and immunological epitopes.

    PubMed

    Sanchez, Rebecca L; Ramsay, Alistair J; Foster, Timothy P

    2012-01-01

    Generation and isolation of recombinant herpesviruses by traditional homologous recombination methods can be a tedious, time-consuming process. Therefore, a novel stoplight recombination selection method was developed that facilitated rapid identification and purification of recombinant viruses expressing fusions of immunological epitopes with EGFP. This "traffic-light" approach provided a visual indication of the presence and purity of recombinant HSV-1 isolates by producing three identifying signals: (1) red fluorescence indicates non-recombinant viruses that should be avoided; (2) yellow fluorescence indicates cells co-infected with non-recombinant and recombinant viruses that are chosen with caution; (3) green fluorescence indicates pure recombinant isolates and to proceed with preparation of viral stocks. Adaptability of this system was demonstrated by creating three recombinant viruses that expressed model immunological epitopes. Diagnostic PCR established that the fluorescent stoplight indicators were effective at differentiating between the presence of background virus contamination and pure recombinant viruses specifying immunological epitopes. This enabled isolation of pure recombinant viral stocks that exhibited wildtype-like viral replication and cell-to-cell spread following three rounds of plaque purification. Expression of specific immunological epitopes was confirmed by western analysis, and the utility of these viruses for examining host immune responses to HSV-1 was determined by a functional T cell assay.

  11. Biochemical and immunological characterization of recombinant allergen Lol p 1.

    PubMed

    Tamborini, E; Faccini, S; Lidholm, J; Svensson, M; Brandazza, A; Longhi, R; Groenlund, H; Sidoli, A; Arosio, P

    1997-11-01

    Pollen from perennial rye grass (Lolium perenne), a major cause of type-I allergy worldwide, contains a complex mixture of allergenic proteins among which Lol p 1 is one of the most important. We describe the expression, purification and characterization of a recombinant Lol p 1 overproduced in Escherichia coli. The recombinant allergen, expressed in high yields and purified in milligram amounts, bound to specific IgE antibodies from human sera, induced histamine release from sensitized human basophils, and elicited rabbit antisera that recognize specifically recombinant Lol p 1 and natural Lol p 1 of pollen extract. Recombinant Lol p 1 was used to develop ImmunoCAP assays for analysis of 150 sera that were Radioallergosorbent test positive to L. perenne pollen. In 130 of them (87%) the assay detected a significant level of IgE antibodies to Lol p 1, reaching on average 37% of the level obtained with a test for IgE to the whole grass pollen extract. To map epitopes on Lol p 1, we produced three deletion mutants [des-(116-240)-Lol p 1, des-(1-88)-Lol p 1 and des-(133-189)-Lol p 1], which were efficiently expressed in bacteria. These all showed a strong reactivity with the specific rabbit IgG antibodies, but lacked most or all the allergenic properties of recombinant Lol p 1. A study of the antigenic structure of Lol p 1 was performed using the three deletion mutants and a set of 17-18-residue overlapping synthetic peptides covering the whole allergen sequence. The results indicate that human IgE and rabbit IgG antibodies bind to distinct regions of Lol p 1, and that at least some important IgE epitopes are mainly conformational. The findings suggest that recombinant allergens constitute useful reagents for further development of serological diagnosis of allergy, and that it should be possible to produce immunogenic fragments of allergenic proteins without allergenic properties.

  12. Recombinant production of mecasermin in E. coli expression system

    PubMed Central

    Jafari, S.; Babaeipour, V.; Seyedi, H.A. Eslampanah; Rahaie, M.; Mofid, M.R.; Haddad, L.; Namvaran, M.M.; Fallah, J.

    2014-01-01

    Human Insulin-like growth factor 1 (hIGF-1) consists of 70 amino acids in a single chain with three intermolecular disulfide bridges possessing valuable therapeutic effects. To date, numerous variants of specifically engineered hIGF-1 have been produced so as to improve hIGF-1 biological activity, stability and stronger binding to IGF-1 receptor. Mecasermin is one of the modified variants with one amino acid substitution near the N-terminal (T4I) approved for the treatment of growth failure diabetes, wound healing, amyotrophic lateral sclerosis and severe primary IGF-1 deficiency. No scientific report for recombinant production of mecasermin in Escherichia coli (E. coli) expression system has been sofar reported. In the present study, we therefore investigated the overexpression of mecasermin in two different E. coli strains in order to obtain higher yield of recombinant protein. To achieve this goal, mecasermin DNA encoding sequence was designed based on polypeptide sequence, optimized according to E. coli codon preference, and cloned in pET15b. Recombinant vector, pET15-mecasermin, transferred into two E. coli strains rigami B (DE3) and BL21 (DE3) and induced for expression in a small scale. Results revealed the E. coli Origami B (DE3) expression system was a preferable host for mecasermin production due to its high expression level being around twice as much as BL21 (DE3). Large scale mecasermin production was performed in batch culture and produced recombinant protein specifically confirmed by western blotting and mass spectroscopy. Since major part of recombinant mecasermin was expressed as inclusion body, isolation and refolding was accomplished through developed purification procedure, and finally recombinant protein was successfully purified by gel filtration chromatography. PMID:26339260

  13. On the evolutionary advantage of fitness-associated recombination.

    PubMed Central

    Hadany, Lilach; Beker, Tuvik

    2003-01-01

    The adaptive value of recombination remains something of a puzzle. One of the basic problems is that recombination not only creates new and advantageous genetic combinations, but also breaks down existing good ones. A negative correlation between the fitness of an individual and its recombination rate would result in prolonged integrity of fitter genetic combinations while enabling less fit ones to produce new combinations. Such a correlation could be mediated by various factors, including stress responses, age, or direct DNA damage. For haploid population models, we show that an allele for such fitness-associated recombination (FAR) can spread both in asexual populations and in populations reproducing sexually at any uniform recombination rate. FAR also carries an advantage for the population as a whole, resulting in a higher average fitness at mutation-selection balance. These results are demonstrated in populations adapting to new environments as well as in well-adapted populations coping with deleterious mutations. Current experimental results providing evidence for the existence of FAR in nature are discussed. PMID:14704195

  14. Recombinant host cells and media for ethanol production

    DOEpatents

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  15. Classifications and comparisons of multilocus recombination distributions

    PubMed Central

    Karlin, Samuel; Liberman, Uri

    1978-01-01

    Various classifications and representations of multilocus recombination structures are delineated based on generalized notions of linkage values and recombination rates. An important class of recombination distributions (called the count-location chiasma process) is parameterized by a distribution of the number of crossover events and, for each such crossover count, by a conditional distribution of crossover locations. A number of properties of this recombination structure are developed. A multilocus definition of a “natural” recombination range is set forth. Orderings among recombination distributions in the multilocus setting are also discussed. Comparisons are made in terms of complete linkage, free assortment and noninterference schemes serving as standards. PMID:16592601

  16. Photoexcited charge pair escape and recombination

    SciTech Connect

    Braun, C.L.

    1991-11-15

    We report photocurrent transients arising from the pulsed laser excitation of the dipolar first excited singlet sate S{sub 1} of trans 4-dimethyl-amino-4{prime}-nitrostilbene (DMANS) in toluene solution. The currents arise from rotational reorientation of DMANS dipoles with respect to the axis of an applied electric field. The method appears to offer a simple and general approach to the measurement of the change in dipole moment upon electronic excitation of a molecule. In another experiment, durene (1,2,4,5-tetramethylbenzene) dissolved in n-hexane was photoionized by 35 psec pulses at 266 nm. Transient absorption at 1064 nm arising chiefly from geminate electrons was detected and used to monitor the recombination of the electron-cation pairs produced by two-photon ionization. An excellent fit to the recombination kinetics was obtained by assuming that the distribution of initial electron-cation separations was of the form r{sup 2}EXP = r{sup 2}/(2L{sup 3})exp({minus}r/L) with a mean radius 3L = 5.7 nm.

  17. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    NASA Technical Reports Server (NTRS)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  18. Within-host dynamics of the emergence of Tomato yellow leaf curl virus recombinants.

    PubMed

    Urbino, Cica; Gutiérrez, Serafin; Antolik, Anna; Bouazza, Nabila; Doumayrou, Juliette; Granier, Martine; Martin, Darren P; Peterschmitt, Michel

    2013-01-01

    Tomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection-a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results

  19. Recombinant pharmaceuticals from microbial cells: a 2015 update.

    PubMed

    Sanchez-Garcia, Laura; Martín, Lucas; Mangues, Ramon; Ferrer-Miralles, Neus; Vázquez, Esther; Villaverde, Antonio

    2016-01-01

    Diabetes, growth or clotting disorders are among the spectrum of human diseases related to protein absence or malfunction. Since these pathologies cannot be yet regularly treated by gene therapy, the administration of functional proteins produced ex vivo is required. As both protein extraction from natural producers and chemical synthesis undergo inherent constraints that limit regular large-scale production, recombinant DNA technologies have rapidly become a choice for therapeutic protein production. The spectrum of organisms exploited as recombinant cell factories has expanded from the early predominating Escherichia coli to alternative bacteria, yeasts, insect cells and especially mammalian cells, which benefit from metabolic and protein processing pathways similar to those in human cells. Up to date, around 650 protein drugs have been worldwide approved, among which about 400 are obtained by recombinant technologies. Other 1300 recombinant pharmaceuticals are under development, with a clear tendency towards engineered versions with improved performance and new functionalities regarding the conventional, plain protein species. This trend is exemplified by the examination of the contemporary protein-based drugs developed for cancer treatment. PMID:26861699

  20. Recombinant pharmaceuticals from microbial cells: a 2015 update.

    PubMed

    Sanchez-Garcia, Laura; Martín, Lucas; Mangues, Ramon; Ferrer-Miralles, Neus; Vázquez, Esther; Villaverde, Antonio

    2016-02-09

    Diabetes, growth or clotting disorders are among the spectrum of human diseases related to protein absence or malfunction. Since these pathologies cannot be yet regularly treated by gene therapy, the administration of functional proteins produced ex vivo is required. As both protein extraction from natural producers and chemical synthesis undergo inherent constraints that limit regular large-scale production, recombinant DNA technologies have rapidly become a choice for therapeutic protein production. The spectrum of organisms exploited as recombinant cell factories has expanded from the early predominating Escherichia coli to alternative bacteria, yeasts, insect cells and especially mammalian cells, which benefit from metabolic and protein processing pathways similar to those in human cells. Up to date, around 650 protein drugs have been worldwide approved, among which about 400 are obtained by recombinant technologies. Other 1300 recombinant pharmaceuticals are under development, with a clear tendency towards engineered versions with improved performance and new functionalities regarding the conventional, plain protein species. This trend is exemplified by the examination of the contemporary protein-based drugs developed for cancer treatment.

  1. Recombinant DNA: History of the Controversy.

    ERIC Educational Resources Information Center

    Vigue, Charles L.; Stanziale, William G.

    1979-01-01

    The hazards associated with recombinant DNA research are presented along with some social implications and the development of recombinant DNA research guidelines by the National Institutes of Health. (SA)

  2. Meiotic Recombination: The Essence of Heredity.

    PubMed

    Hunter, Neil

    2015-10-28

    The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.

  3. Soluble variants of human recombinant glutaminyl cyclase.

    PubMed

    Castaldo, Cristiana; Ciambellotti, Silvia; de Pablo-Latorre, Raquel; Lalli, Daniela; Porcari, Valentina; Turano, Paola

    2013-01-01

    Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of (1)H-(15)N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer's disease. PMID:23977104

  4. Soluble Variants of Human Recombinant Glutaminyl Cyclase

    PubMed Central

    Castaldo, Cristiana; Ciambellotti, Silvia; de Pablo-Latorre, Raquel; Lalli, Daniela; Porcari, Valentina; Turano, Paola

    2013-01-01

    Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of 1H-15N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer’s disease. PMID:23977104

  5. Recombinant protein materials for bioengineering and nanomedicine.

    PubMed

    Corchero, José Luis; Vázquez, Esther; García-Fruitós, Elena; Ferrer-Miralles, Neus; Villaverde, Antonio

    2014-12-01

    Proteins are essential macromolecules supporting life. Being efficient catalyzers and offering specific cross-molecular contacts, proteins are largely exploited in biotechnology and biomedicine as therapeutics, in industrial catalysis or as molecular reagents. Recombinant enzymes, hormones, immunogens and antibodies are produced aiming to different applications, on the basis of their ability to interact with or modify substrates or biological targets. In nature, proteins also perform task-specific architectonic roles, and they can organize in supramolecular complexes with intriguing physical properties such as elasticity and adhesiveness, and with regulatable stiffness, flexibility and mechanical strength. Proteins have recently gained interest as materials for bioengineering and nanomedicine as they can combine these features with functionality, biocompatibility and degradability in unusually versatile composites. We revise here the fundamental properties of the diverse categories of emerging protein materials resulting from biological synthesis and how they can be genetically re-designed to engineer the interplay between mechanical and biological properties in a medically oriented exploitable way.

  6. Recombinant bacterial lipoproteins as vaccine candidates.

    PubMed

    Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei; Chong, Pele

    2015-01-01

    Recombinant bacterial lipoproteins (RLP) with built-in immuno-stimulating properties for novel subunit vaccine development are reviewed. This platform technology offers the following advantages: easily converts antigens into highly immunogenic RLP using a fusion sequence containing lipobox; the lipid moiety of RLP is recognized as the danger signals in the immune system through the Toll-like receptor 2, so both innate and adaptive immune responses can be induced by RLP; serves as an efficient and cost-effective bioprocess for producing RLP in Escherichia coli and the feasibility and safety of this core platform technology has been successfully demonstrated in animal model studies including meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases and HPV-based immunotherapeutic vaccines. PMID:26420467

  7. Elastomeric Recombinant Protein-based Biomaterials

    PubMed Central

    Annabi, Nasim; Mithieux, Suzanne M.; Camci-Unal, Gulden; Dokmeci, Mehmet R.; Weiss, Anthony S.; Khademhosseini, Ali

    2013-01-01

    Elastomeric protein-based biomaterials, produced from elastin derivatives, are widely investigated as promising tissue engineering scaffolds due to their remarkable properties including substantial extensibility, long-term stability, self-assembly, high resilience upon stretching, low energy loss, and excellent biological activity. These elastomers are processed from different sources of soluble elastin such as animal-derived soluble elastin, recombinant human tropoelastin, and elastin-like polypeptides into various forms including three dimensional (3D) porous hydrogels, elastomeric films, and fibrous electrospun scaffolds. Elastin-based biomaterials have shown great potential for the engineering of elastic tissues such as skin, lung and vasculature. In this review, the synthesis and properties of various elastin-based elastomers with their applications in tissue engineering are described. PMID:23935392

  8. Nondisjunction of chromosome 15: origin and recombination.

    PubMed Central

    Robinson, W P; Bernasconi, F; Mutirangura, A; Ledbetter, D H; Langlois, S; Malcolm, S; Morris, M A; Schinzel, A A

    1993-01-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N = 27) and Angelman syndrome patients (N = 5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination are utilized. Standard methods of centromere mapping are employed to determine the level of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, most paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. PMID:8352279

  9. Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system.

    PubMed

    Hirai, Tadayoshi; Fukukawa, Go; Kakuta, Hideo; Fukuda, Naoya; Ezura, Hiroshi

    2010-05-26

    We constructed a cultivation system with a controlled light period, light intensity, temperature, and CO(2) concentration for mass production of the taste-modifying protein miraculin from transgenic tomatoes. The tomato plants exhibited normal growth and produced over 270 g of fresh weight (FW) fruit per plant, with the recombinant miraculin concentration reaching up to 90 microg per g FW of tomatoes. The recombinant miraculin content of transgenic tomatoes was compared to that of plants grown in a netted greenhouse. The recombinant miraculin content of transgenic tomatoes grown in a closed cultivation system was more stable than that of tomatoes grown in a netted greenhouse, suggesting that the closed cultivation system is suitable for the production of recombinant miraculin. We estimate that 45 tFW of tomatoes and 4 kg of recombinant miraculin per 1,000 m(2) of cultivation area can be harvested per year. PMID:20426470

  10. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  11. Human immunodeficiency virus superinfection and recombination: current state of knowledge and potential clinical consequences.

    PubMed

    Blackard, Jason T; Cohen, Daniel E; Mayer, Kenneth H

    2002-04-15

    Superinfection with multiple strains or subtypes of the human and simian immunodeficiency viruses has been documented. Recent increases in the prevalences of both unprotected anal intercourse and sexually transmitted diseases among men who have sex with men indicate that these men continue to practice unsafe sex and, therefore, are at risk for superinfection with the human immunodeficiency virus (HIV). Recurrent exposure to HIV among seropositive individuals who engage in high-risk behaviors can have serious consequences, because superinfection is a necessary first step for viral recombination to occur. Recombination may produce more virulent viruses, drug-resistant viruses, or viruses with altered cell tropism. Additionally, recombinant viruses and superinfection can accelerate disease progression and increase the likelihood of sexual transmission by increasing virus load in the blood and genital tract. The extent of superinfection and recombination in persons living with HIV is unknown. The implications of HIV superinfection and the generation of recombinant viruses are discussed. PMID:11915000

  12. Recombinant transfer in the basic genome of Escherichia coli.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Studier, F William; Maslov, Sergei

    2015-07-21

    An approximation to the ∼4-Mbp basic genome shared by 32 strains of Escherichia coli representing six evolutionary groups has been derived and analyzed computationally. A multiple alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ∼90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single base-pair mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly between genomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome pairs have one or two recombinant transfers of length ∼40-115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.4-1% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kilobase pairs. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. Most recombinant transfers seem likely to be due to generalized transduction by coevolving populations of phages, which could efficiently distribute variability throughout bacterial genomes.

  13. Recombinant transfer in the basic genome of Escherichia coli

    PubMed Central

    Dixit, Purushottam D.; Pang, Tin Yau; Studier, F. William; Maslov, Sergei

    2015-01-01

    An approximation to the ∼4-Mbp basic genome shared by 32 strains of Escherichia coli representing six evolutionary groups has been derived and analyzed computationally. A multiple alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ∼90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single base-pair mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly between genomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome pairs have one or two recombinant transfers of length ∼40–115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.4–1% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kilobase pairs. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. Most recombinant transfers seem likely to be due to generalized transduction by coevolving populations of phages, which could efficiently distribute variability throughout bacterial genomes. PMID:26153419

  14. Recombinant protein polymers in biomaterials.

    PubMed

    Kim, Wookhyun

    2013-01-01

    Naturally occurring protein-based materials have been found that function as critical components in biomechanical response, fibers and adhesives. A relatively small but growing number of recombinant protein-based materials that mimic the desired features of their natural sources, such as collagens, elastins and silks, are considered as an alternative to conventional synthetic polymers. Advances in genetic engineering have facilitated the synthesis of repetitive protein polymers with precise control of molecular weights which are designed by using synthetic genes encoding tandem repeats of oligopeptide originating from a modular domain of natural proteins. Many repeat sequences as protein polymer building blocks adopt a well-defined secondary structure and undergo self-assembly to result in physically cross-linked networks or with chemical cross-linking so that further form three-dimensional architectures similar to natural counterparts. In this review, recombinant protein polymers currently developed will be presented that have emerged as promising class of next generation biomaterials. PMID:23276922

  15. Recombinant bacteriophage lysins as antibacterials

    PubMed Central

    Fenton, Mark; Ross, Paul; McAuliffe, Olivia; O'Mahony, Jim

    2010-01-01

    With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential. PMID:21327123

  16. Recombination Catalysts for Hypersonic Fuels

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  17. Chemical kinetics of geminal recombination

    SciTech Connect

    Levin, P.P.; Khudyakov, I.V.; Brin, E.F.; Kuz'min, V.A.

    1988-09-01

    The kinetics of geminal recombination of triplet radical pairs formed in photoreduction of benzophenone by p-cresol in glycerin solution was studied by pulsed laser photolysis. The experiments were conducted at several temperatures and in a constant magnetic field of H = 0.34 T. The parameters in six kinetic equations describing geminal recombination were determined with a computer. The values of the sums of the squares of the residual deviations of the approximation were obtained. It was found that the kinetics are best described by the functions proposed by Noyes and Shushin. It was shown that it is necessary to use the mutual diffusion coefficient of the radicals, which is significantly smaller than the sum of the estimations of the experimental values of the radical diffusion coefficients, for describing the kinetics due to the correlations of the molecular motions of the radicals in the cage.

  18. Recombinant vector and eukaryotic host transformed thereby

    SciTech Connect

    Sugden, W.M.

    1987-08-11

    A recombinant plasmid is described comprising: a segment from a first plasmid which is not a lymphotrophic herpes virus segment and which facilitates the replication of the recombinant plasmid in a prokaryotic host; a segment from a lymphotrophic herpes virus which is linked to the first plasmid segment such that is a capable of assisting in maintaining the recombinant plasmid as a plasmid if the recombinant plasmid is inserted into a eukaryotic host that has been transformed by the lymphotrophic herpes virus; and a foreign eukaryotic gene component linked as part of the recombinant plasmid.

  19. Expression, purification, and immobilization of recombinant tamavidin 2 fusion proteins.

    PubMed

    Takakura, Yoshimitsu; Oka, Naomi; Tsunashima, Masako

    2014-01-01

    Tamavidin 2 is a fungal avidin-like protein that binds biotin with high affinity. Unlike avidin or streptavidin, tamavidin 2 in soluble form is produced at high levels in Escherichia coli. In this chapter, we describe a method for immobilization and purification of recombinant proteins with the use of tamavidin 2 as an affinity tag. The protein fused to tamavidin 2 is tightly immobilized and simultaneously purified on biotinylated magnetic microbeads without loss of activity. PMID:24943317

  20. Nondisjunction of chromosome 15: Origin and recombination

    SciTech Connect

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A.; Mutirangura, A.; Ledbetter, D.H. ); Langlois, S. ); Morris, M.A.; Malcolm, S.

    1993-09-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N=27) and Angelman syndrome patients (N-5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, more paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. 33 refs., 1 fig., 7 tabs.

  1. Effect of gamma radiation on retroviral recombination.

    PubMed

    Hu, W S; Temin, H M

    1992-07-01

    To elucidate the mechanism(s) of retroviral recombination, we exposed virions to gamma radiation prior to infecting target cells. By using previously described spleen necrosis virus-based vectors containing multiple markers, recombinant proviruses were studied after a single round of retrovirus replication. The current models of retroviral recombination predict that breaking virion RNA should promote minus-strand recombination (forced copy-choice model), decrease or not affect plus-strand recombination (strand displacement/assimilation model), and shift plus-strand recombination towards the 3' end of the genome. However, we found that while gamma irradiation of virions reduced the amount of recoverable viral RNA, it did not primarily cause breaks. Thus, the frequency of selected recombinants was not significantly altered with greater doses of radiation. In spite of this, the irradiation did decrease the number of recombinants with only one internal template switch. As a result, the average number of additional internal template switches in the recombinant proviruses increased from 0.7 to 1.4 as infectivity decreased to 6%. The unselected internal template switches tended to be 5' of the selected crossover even in the recombinants from irradiated viruses, inconsistent with a plus-strand recombination mechanism.

  2. Mating-induced recombination in fruit flies.

    PubMed

    Priest, Nicholas K; Roach, Deborah A; Galloway, Laura F

    2007-01-01

    In traditional deterministic models the conditions for the evolution of sex and sexual behavior are limited because their benefits are context dependent. In novel and adverse environments both multiple mating and recombination can help generate gene combinations that allow for rapid adaptation. Mating frequency often increases in conditions in which recombination might be beneficial; therefore, increased sexual behavior might evolve to act as a cue that stimulates recombination. We conducted two experiments in the fruit fly, Drosophila melanogaster, using linked phenotypic markers to determine how recent bouts of additional mating affect female recombination rate. The first experiment examined the effect of additional mating, mating history, and age on female recombination rate. The second experiment assessed the effect of recent mating events on recombination rate. Together, the experiments suggest that each additional bout of mating temporarily increases female recombination rate. These findings imply that the conditions favoring the evolution of sexual reproduction and multiple mating behaviors are broader than currently appreciated.

  3. Bounds on the minimum number of recombination events in a sample history.

    PubMed Central

    Myers, Simon R; Griffiths, Robert C

    2003-01-01

    Recombination is an important evolutionary factor in many organisms, including humans, and understanding its effects is an important task facing geneticists. Detecting past recombination events is thus important; this article introduces statistics that give a lower bound on the number of recombination events in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds are appropriate, since many recombination events in the history are typically undetectable, so the true number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer and improve upon the earlier bound of Hudson and Kaplan 1985. A method is developed to combine bounds on local regions in the data to produce more powerful improved bounds. The method is flexible to different models of recombination occurrence. The approach gives recombination event bounds between all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier method (of up to a factor of 2) in the expected number of recombination events detected by one of the new minima, across a wide range of parameter values. The method is applied to data from a region within the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further, there is strong clustering of detected recombination events in an area near the center of the region. A program implementing these statistics, which was used for this article, is available from http://www.stats.ox.ac.uk/mathgen/programs.html. PMID:12586723

  4. Contribution of near threshold states to dielectronic recombination in recombining plasma with Li-like Al ions

    NASA Astrophysics Data System (ADS)

    Stancalie, V.

    2012-05-01

    The dielectronic recombination of Li-like into Be-like aluminum ions, in laser-produced plasmas with Li-like ions, is re-visited with respect to the contribution of near-threshold states. Results are shown for recombining laser-produced plasma regime. The relativistic Dirac R-matrix calculation is performed to output resonance energy levels and rates. The target energies, and orbitals, are calculated with the extended average level multi-configurational Dirac-Fock method in the general-purpose relativistic atomic structure package (GRASP), while for determining the plasma population densities distribution over the excited Rydberg states, the Atomic Data Analysis System (ADAS) package programs is used.

  5. The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori.

    PubMed

    Xu, Hanfu

    2014-10-01

    The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.

  6. Production of recombinant proteins in microalgae at pilot greenhouse scale.

    PubMed

    Gimpel, Javier A; Hyun, James S; Schoepp, Nathan G; Mayfield, Stephen P

    2015-02-01

    Recombinant protein production in microalgae chloroplasts can provide correctly folded proteins in significant quantities and potentially inexpensive costs compared to other heterologous protein production platforms. The best results have been achieved by using the psbA promoter and 5' untranslated region (UTR) to drive the expression of heterologous genes in a psbA-deficient, non-photosynthetic, algal host. Unfortunately, using such a strategy makes the system unviable for large scale cultivation using natural sunlight for photosynthetic growth. In this study we characterized eight different combinations of 5' regulatory regions and psbA coding sequences for their ability to restore photosynthesis in a psbA-deficient Chlamydomonas reinhardtii, while maintaining robust accumulation of a commercially viable recombinant protein driven by the psbA promoter/5'UTR. The recombinant protein corresponded to bovine Milk Amyloid A (MAA), which is present in milk colostrum and could be used to prevent infectious diarrhea in mammals. This approach allowed us to identify photosynthetic strains that achieved constitutive production of MAA when grown photosynthetically in 100 L bags in a greenhouse. Under these conditions, the maximum MAA expression achieved was 1.86% of total protein, which corresponded to 3.28 mg/L of culture medium. Within our knowledge, this is the first report of a recombinant protein being produced this way in microalgae. PMID:25116083

  7. The insecticidal activity of recombinant garlic lectins towards aphids.

    PubMed

    Fitches, Elaine; Wiles, Duncan; Douglas, Angela E; Hinchliffe, Gareth; Audsley, Neil; Gatehouse, John A

    2008-10-01

    The heterodimeric and homodimeric garlic lectins ASAI and ASAII were produced as recombinant proteins in the yeast Pichia pastoris. The proteins were purified as functional dimeric lectins, but underwent post-translational proteolysis. Recombinant ASAII was a single homogenous polypeptide which had undergone C-terminal processing similar to that occurring in planta. The recombinant ASAI was glycosylated and subject to variable and heterogenous proteolysis. Both lectins showed insecticidal effects when fed to pea aphids (Acyrthosiphon pisum) in artificial diet, ASAII being more toxic than ASAI at the same concentration. Acute toxicity (mortality at < or =48 h exposure; similar timescale to starvation) was only apparent at the highest lectin concentrations tested (2.0 mg ml(-)1), but dose-dependent chronic toxicity (mortality at >3d exposure) was observed over the concentration range 0.125-2.0 mg ml(-1). The recombinant lectins caused mortality in both symbiotic and antibiotic-treated aphids, showing that toxicity is not dependent on the presence of the bacterial symbiont (Buchnera aphidicola), or on interaction with symbiont proteins, such as the previously identified lectin "receptor" symbionin. A pull-down assay coupled with peptide mass fingerprinting identified two abundant membrane-associated aphid gut proteins, alanyl aminopeptidase N and sucrase, as "receptors" for lectin binding. PMID:18707000

  8. Structural characterization of recombinant therapeutic proteins by circular dichroism.

    PubMed

    Bertucci, Carlo; Pistolozzi, Marco; De Simone, Angela

    2011-10-01

    Most of the protein therapeutics are now produced by recombinant DNA technology. The advantages of recombinant proteins are related to their higher specificity and to their safety as exposure to animal or human diseases. However, several problems are still present in development of recombinant proteins as therapeutics, such as low bioavailability, short serum half-life, and immune response. Their successful application hinges on the protein stereochemical stability, and on the folding and the tendency to aggregate induced by purification steps and storage. All these aspects determine the failure of many potential protein therapies, and limitations in the development of the formulation. The application of multiple analytical techniques is important in order to obtain a detailed product profile and to understand how manufacturing can influence product structure and activity. Surely the protein conformation is a key aspect to be assessed, because a specific conformation is often essential for the biological function of the protein. Thus, there is a growing need to perform structural studies under the conditions in which the proteins operate, and to monitor the structural changes of the protein. Circular dichroism has been increasingly recognised as a valuable and reliable technique to get this information. In particular, examples will be here reported on the use of circular dichroism spectroscopy in the structural characterization of free and formulated recombinant proteins, looking at the prediction of the secondary structure, propensity to conformational changes, stability, and tendency to aggregate.

  9. Expression and characterisation of recombinant molecules in transgenic soybean.

    PubMed

    da Cunha, Nicolau B; Murad, Andre M; Vianna, Giovanni R; Coelho, Cintia; Rech, Elibio L

    2013-01-01

    Seeds are organs specialised in accumulating proteins, and they may provide a potential economically viable platform for the large-scale production and storage of many molecules for pharmaceutical and other productive sectors. Soybean [Glycine max (L.) Merrill] has a high seed protein content and represents an excellent source of abundant and cheap biomass. Under greenhouse conditions and a daily photoperiod of 23 h of light, the soybean plant's vegetative growth can be significantly extended by inducing more than a tenfold increase in seed production when compared with plants cultivated under field conditions. Some factors involved in the production of different recombinant proteins in soybean seeds are discussed in this review. These include transgenic system, regulatory sequences and the use of Mass Spectrometry as a new tool for molecular characterisation of seed produced recombinant proteins. The important intrinsic characteristics and possibility of genetically engineering soybean seeds, using current advances in recombinant DNA technology including metabolic engineering and synthetic biology, should form the foundation for large-scale and more precise genome modification, making this crop an important candidate as bioreactor for production of recombinant molecules.

  10. Recombinant 8 syndrome: the pool of Hispanic pericentric inversion 8 carriers expands numerically and geographically.

    PubMed

    Izquierdo, L A; McConnell, T S; Curet, L B; Sarto, G E

    1991-11-01

    Recombinant 8 syndrome is a well-established syndrome with mental and developmental retardation and usually severe cardiac anomalies. A carrier parent will produce affected offspring in 6% of pregnancies and carrier offspring in 53% of such pregnancies. Four New Mexican kindres ascertained by the discovery of four apparently unrelated probands with cytogenetically confirmed recombinant 8 syndrome were studied. We found that (1) recombinant 8 syndrome will soon no longer be confined to New Mexico and southern Colorado, (2) the number of persons at risk may be higher than previously considered, and (3) through proper pedigree techniques and increased professional education, most carriers can be identified.

  11. Comparative Evaluation of Recombinant Protein Production in Different Biofactories: The Green Perspective

    PubMed Central

    Capaldi, Stefano

    2014-01-01

    In recent years, the production of recombinant pharmaceutical proteins in heterologous systems has increased significantly. Most applications involve complex proteins and glycoproteins that are difficult to produce, thus promoting the development and improvement of a wide range of production platforms. No individual system is optimal for the production of all recombinant proteins, so the diversity of platforms based on plants offers a significant advantage. Here, we discuss the production of four recombinant pharmaceutical proteins using different platforms, highlighting from these examples the unique advantages of plant-based systems over traditional fermenter-based expression platforms. PMID:24745008

  12. Generation of pure spin currents via Auger recombination in quantum wells with Rashba splitting

    SciTech Connect

    Afanasiev, A. N. Greshnov, A. A. Greshnov, A. A.

    2015-10-15

    We propose a nonoptical mechanism for generating spin current via Auger recombination in semiconductor quantum wells (QWs) with spin–orbit splitting associated with structural QW asymmetry. It is shown that Auger recombination in narrow-bandgap semiconductors makes it possible to produce spin currents that exceed those that are obtained in the case of intraband as well as interband optical excitation. Analysis shows that the interference term in the expression for the Auger-recombination rate is responsible for the generation of spin currents.

  13. Gene Disruption by Homologous Recombination in the Xylella fastidiosa Citrus Variegated Chlorosis Strain

    PubMed Central

    Gaurivaud, Patrice; Souza, Leonardo C. A.; Virgílio, Andrea C. D.; Mariano, Anelise G.; Palma, Renê R.; Monteiro, Patrícia B.

    2002-01-01

    Mutagenesis by homologous recombination was evaluated in Xylella fastidiosa by using the bga gene, coding for β-galactosidase, as a model. Integration of replicative plasmids by homologous recombination between the cloned truncated copy of bga and the endogenous gene was produced by one or two crossover events leading to β-galactosidase mutants. A promoterless chloramphenicol acetyltransferase gene was used to monitor the expression of the target gene and to select a cvaB mutant. PMID:12200328

  14. Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi

    NASA Astrophysics Data System (ADS)

    Okita, Ichiro; Tsuchida, Koji

    2016-04-01

    In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.

  15. Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi.

    PubMed

    Okita, Ichiro; Tsuchida, Koji

    2016-04-01

    In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.

  16. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed. PMID:24442504

  17. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  18. Developing recombinant antibodies for biomarker detection

    SciTech Connect

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  19. Production of a recombinant Fab in Pichia pastoris from a Monocistronic expression vector.

    PubMed

    Burtet, Rafael Trindade; Santos-Silva, Marcos Antônio; Buss, Guilherme Antônio Marques; Moraes, Lidia Maria Pepe; Maranhão, Andrea Queiroz; Brigido, Marcelo Macedo

    2007-12-01

    Recombinant Fab is usually expressed using dicistronic vectors producing the heavy and light chains separately. We developed an improved vector for Fab fragment expression in Pichia pastoris, which allows a stoichiometric expression of both chains based on a monocistronic arrangement. The protein is produced as a unique polypeptide harbouring a KEX2 processing site between both chains. After KEX cleavage, a correctly folded mature Fab is formed. The produced recombinant protein is characterized as a heterodimeric functional Fab. The vector described is a new tool for the proper expression of antibody fragments or any heterodimeric polypeptides.

  20. Targeted mutagenesis by homologous recombination in D. melanogaster

    PubMed Central

    Rong, Yikang S.; Titen, Simon W.; Xie, Heng B.; Golic, Mary M.; Bastiani, Michael; Bandyopadhyay, Pradip; Olivera, Baldomero M.; Brodsky, Michael; Rubin, Gerald M.; Golic, Kent G.

    2002-01-01

    We used a recently developed method to produce mutant alleles of five endogenous Drosophila genes, including the homolog of the p53 tumor suppressor. Transgenic expression of the FLP site-specific recombinase and the I-SceI endonuclease generates extrachromosomal linear DNA molecules in vivo. These molecules undergo homologous recombination with the corresponding chromosomal locus to generate targeted alterations of the host genome. The results address several questions about the general utility of this technique. We show that genes not near telomeres can be efficiently targeted; that no knowledge of the mutant phenotype is needed for targeting; and that insertional mutations and allelic substitutions can be easily produced. PMID:12080094

  1. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    PubMed

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail. PMID:26614293

  2. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo

    PubMed Central

    Motamedi, Mohammad R.; Szigety, Susan K.; Rosenberg, Susan M.

    1999-01-01

    DNA double-strand-break repair (DSBR) is, in many organisms, accomplished by homologous recombination. In Escherichia coli DSBR was thought to result from breakage and reunion of parental DNA molecules, assisted by known endonucleases, the Holliday junction resolvases. Under special circumstances, for example, SOS induction, recombination forks were proposed to initiate replication. We provide physical evidence that this is a major alternative mechanism in which replication copies information from one chromosome to another generating recombinant chromosomes in normal cells in vivo. This alternative mechanism can occur independently of known Holliday junction cleaving proteins, requires DNA polymerase III, and produces recombined DNA molecules that carry newly replicated DNA. The replicational mechanism underlies about half the recombination of linear DNA in E. coli; the other half occurs by breakage and reunion, which we show requires resolvases, and is replication-independent. The data also indicate that accumulation of recombination intermediates promotes replication dramatically. PMID:10557215

  3. Reciprocal and nonreciprocal recombination in diploid clones from Bacillus subtilis protoplast fusion: Association with the replication origin and terminus

    PubMed Central

    Gabor, Magda H.; Hotchkiss, Rollin D.

    1983-01-01

    The primary heterodiploid bacteria regenerated after Bacillus subtilis fusion, although generally noncomplementing diploids, behave in pedigree analysis as multipotential systems. Individual diploid colonies yielding complete reciprocal recombinant (RR) progeny—often accompanied by one or both parents—constitute 10-30% of the total recombinant-forming units. The RR (reciprocal for 8-11 genes) usually occur in equivalent numbers both among and within individual colonies. Novel for bacteria, they demonstrate that entire parental genomes brought together within a diploid protoplast are retained as two independent replicons able to undergo classical recombination characteristic of eukaryotic gametogenesis. Parental or recombinant genomes are also subject to multiple rounds of recombination without obligate segregation and often not reciprocal. Diploid recombinant clones, sharing streptomycin resistance but reciprocal for auxotrophic markers, have displayed a partial ability to make a facultative shift in chromosome expression. They have also produced two types of prototrophs: a stable one (presumably haploid and recombinant) and an unstable one, (diploid and temporarily complementing at low frequency). It follows that chromosome extinction may affect both parental and recombinant chromosomes and does not interfere with recombination. Analysis of the number and chromosomal distribution of crossovers in all recombinants and those from single diploid clones shows increased frequency of exchange in the regions of the replication origin and terminus, possibly a result of the association of these sites with the cell wall or membrane. PMID:16593292

  4. Recombinant erythropoietin in clinical practice

    PubMed Central

    Ng, T; Marx, G; Littlewood, T; Macdougall, I

    2003-01-01

    The introduction of recombinant human erythropoietin (RHuEPO) has revolutionised the treatment of patients with anaemia of chronic renal disease. Clinical studies have demonstrated that RHuEPO is also useful in various non-uraemic conditions including haematological and oncological disorders, prematurity, HIV infection, and perioperative therapies. Besides highlighting both the historical and functional aspects of RHuEPO, this review discusses the applications of RHuEPO in clinical practice and the potential problems of RHuEPO treatment. PMID:12897214

  5. Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System (Presentation)

    SciTech Connect

    Xu, Q.; Smith, H. O.; Maness, P.-C.

    2007-05-01

    The objective of this report is to develop an O{sub 2}-tolerant cyanobacterial system for continuous light-driven H{sub 2} production from water. The overall goal is to produce a cyanobacterial recombinant to produce H{sub 2} continuously.

  6. Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Mackett, Michael; Moss, Bernard

    1983-04-01

    Potential live vaccines against hepatitis B virus have been produced. The coding sequence for hepatitis B virus surface antigen (HBsAg) has been inserted into the vaccinia virus genome under control of vaccinia virus early promoters. Cells infected with these vaccinia virus recombinants synthesize and excrete HBsAg and vaccinated rabbits rapidly produce antibodies to HBsAg.

  7. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana.

    PubMed

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L; Arzola, Lucas; Lebrilla, Carlito B; Dandekar, Abhaya M; Falk, Bryce W; Nandi, Somen; Rodriguez, Raymond L; McDonald, Karen A

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  8. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana

    PubMed Central

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M.; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L.; Arzola, Lucas; Lebrilla, Carlito B.; Dandekar, Abhaya M.; Falk, Bryce W.; Nandi, Somen; Rodriguez, Raymond L.; McDonald, Karen A.

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  9. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    PubMed

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution. PMID:27189569

  10. Experimental study of particle formation by ion-ion recombination.

    PubMed

    Nagato, Kenkichi; Nakauchi, Masataka

    2014-10-28

    Particle formation by ion-ion recombination has been studied using an ion-ion recombination drift tube (IIR-DT). IIR-DT uses two DC corona ionizers to produce positive and negative ions at the ends of the drift tube. The ions of different polarity move in opposite directions along the electric field in the drift tube. We observed significant particle formation using ions generated in purified air containing H2O, SO2, and NH3. Particle formation was suppressed when no drift field was applied. We also observed few particles when we used a single discharge (positive or negative only). These results clearly show that particle formation observed in the IIR-DT was caused by nucleation by ion-ion recombination. Positive and negative ion species produced by corona ionizers were investigated using an atmospheric pressure ionization mass spectrometer. The ions involved in the particle formation were suggested to include H3O(+)(H2O)n and NH4(+)(H2O)n for positive ions and sulfur-based ions such as SO5(-), SO5(-)NO2, and HSO4(-) for negative ions. PMID:25362301

  11. Multiple biological activities of human recombinant interleukin 1.

    PubMed Central

    Dinarello, C A; Cannon, J G; Mier, J W; Bernheim, H A; LoPreste, G; Lynn, D L; Love, R N; Webb, A C; Auron, P E; Reuben, R C

    1986-01-01

    Complementary DNA coding for human monocyte interleukin 1 (IL-1), pI 7 form, was expressed in Escherichia coli. During purification, IL-1 activity on murine T cells was associated with the recombinant protein. Homogeneous human recombinant IL-1 (hrIL-1) was tested in several assays to demonstrate the immunological and inflammatory properties attributed to this molecule. hrIL-1 induced proliferative responses in a cloned murine T cell in the presence of suboptimal concentrations of mitogen, whereas no effect was observed with hrIL-1 alone. At concentrations of 0.05 ng/ml, hrIL-1 doubled the response to mitogen (5 X 10(6) half maximal units/mg). Human peripheral blood T cells depleted of adherent cells underwent a blastogenic response and released interleukin 2 in the presence of hrIL-1 and mitogen. hrIL-1 was a potent inflammatory agent by its ability to induce human dermal fibroblast prostaglandin E2 production in vitro and to produce monophasic (endogenous pyrogen) fever when injected into rabbits or endotoxin-resistant mice. These studies establish that the dominant pI 7 form of recombinant human IL-1 possesses immunological and inflammatory properties and acts on the central nervous system to produce fever. Images PMID:3519678

  12. Recombinant Botulinum Toxoids: A Practical Guide for Production.

    PubMed

    Moreira, Gustavo Marçal S G; Moreira, Clóvis; da Cunha, Carlos Eduardo P; Mendonça, Marcelo; Conceição, Fabricio R

    2016-01-01

    Clostridium botulinum is a Gram-positive, spore-forming, anaerobic bacillus that produces a potent neurotoxin. Botulinum neurotoxins (BoNTs) are classified from serotypes A to H, and even though they have similar mechanisms of action, they show preferential hosts. In veterinary medicine, BoNT serotypes C and D are the most important, once several animal species are susceptible to them. Since BoNTs are the most potent toxins known in nature, the best way to control botulism in animals is through vaccination. However, current commercial vaccines are based on inactivated toxins (toxoids) and cells (bacterins) and present many drawbacks, such as a time-consuming production with variable antigen yield and biosafety risks. Recombinant vaccines, especially those produced by Escherichia coli expression system, have proved to be an interesting alternative to overcome these problems. E. coli is a very well-known microorganism that allows the production of large amounts of nontoxic recombinant antigens in a short period using simple culture medium reducing the production complexity and decreasing most of the biosafety risks involved in the process. We describe herein a method for the production of recombinant vaccines for veterinary medicine application, involving initial steps of gene design up to vaccine formulation and evaluation itself. PMID:27076326

  13. Effects of recombination on densovirus phylogeny.

    PubMed

    Martynova, Elena U; Schal, Coby; Mukha, Dmitry V

    2016-01-01

    Densoviruses are a group of arthropod-infecting viruses with a small single-stranded linear DNA genome. These viruses constitute the subfamily Densovirinae of the family Parvoviridae. While recombination in between vertebrate-infecting parvoviruses has been investigated, to date, no systematic analysis of recombination has been carried out for densoviruses. The aim of the present work was to study possible recombination events in the evolutionary history of densoviruses and to assess possible effects of recombination on phylogenies inferred using amino acid sequences of nonstructural (NS) and capsid (viral protein, VP) proteins. For this purpose, the complete or nearly complete genome nucleotide sequences of 40 densoviruses from the GenBank database were used to construct a phylogenetic cladogram. The viruses under study clustered into five distinct groups corresponding to the five currently accepted genera. Recombination within each group was studied independently. The RDP4 software revealed three statistically highly credible recombination events, two of which involved viruses of the genus Ambidensovirus, and the other, viruses from the genus Iteradensovirus. These recombination events led to mismatches between phylogenetic trees constructed using comparison of amino acid sequences of proteins encoded by genome regions of recombinant and non-recombinant origin (regulatory NS1 and NS3 proteins and capsid VP protein).

  14. Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources.

    PubMed

    Noda, Shuhei; Miyazaki, Takaya; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-01-01

    Transglutaminase from Streptoverticillium cinnamoneum (StvcMTG) was produced using recombinant Streptomyces lividans. When grown on glycerol and xylose as sole carbon sources, S. lividans/StvcMTG produced 360 and 530 mg of StvcMTG per liter, respectively. With starch and xylan, the strain produced 230 and 400mg of StvcMTG per liter, respectively. Recombinant S. lividans/encP, which expresses phenylalanine ammonia lyase from Streptomyces maritimus, produced 160 mg/L of cinnamic acid from cellulose. These results show that S. lividans can assimilate various carbon sources and produce useful compounds in desirable quantities.

  15. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  16. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  17. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  18. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  19. Soluble recombinant protein production in Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Giuliani, Maria; Parrilli, Ermenegilda; Sannino, Filomena; Apuzzo, Gennaro; Marino, Gennaro; Tutino, Maria Luisa

    2015-01-01

    Solubility/activity issues are often experienced when immunoglobulin fragments are produced in conventional microbial cell factories. Although several experimental approaches have been followed to solve, or at least minimize, the accumulation of the recombinant proteins into insoluble aggregates, sometimes the only alternative strategy is changing the protein production platform. In this chapter we describe the use of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 as host of choice for the production of the heavy-chain antibody fragment VHHD6.1. Combining the use of a regulated psychrophilic gene expression system with an optimized fermentation process in defined growth medium, we obtained the recombinant VHHD6.1 in fully soluble form and correctly translocated into host periplasmic space.

  20. Cell lines used for the selection of recombinant baculovirus.

    PubMed

    Maruniak, J E; Garcia-Canedo, A; Rodrigues, J J

    1994-04-01

    Four insect cell lines were used to isolate two recombinant baculoviruses which had the beta-galactosidase (beta-gal) gene for colorimetric assay purposes. Plaque assays were performed using two Trichoplusia ni cell lines: BTI-TN-5B1-4 and TN-368, and two Spodptera frugiperda cell lines: IPLB-SF-21AE and SF9. The number of plaques (occlusion positive and blue beta-gal+ recombinants) formed in the Trichoplusia cells was higher than in the Spodoptera cells. The appearance of Autographa californica NPV polyhedra was also faster in the T. ni cell lines. The effect of cell passage on the plaque formation proved to be critical when two different passages of the SF9 cells were tested. The higher passage produced a lower viral titration. The size and time of appearance of the plaques was also different.

  1. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  2. [Advances of consolidated bioprocessing based on recombinant strategy].

    PubMed

    Zheng, Zongbao; Zhao, Meina; Chen, Tao; Zhao, Xueming

    2013-10-01

    Lignocellulosic biomass represents an abundant, low-cost and renewable source of potentially fermentable sugars. It is acandidate besides petroleum as feedstock for fuel and chemical production. Recent researches on utilizing lignocellulosicsas feedstock boost development of numerous-promising processes for a variety of fuels and chemicals, such as biodiesel, biohydrogen and ethanol. However, high cost in depolymerization is a primary obstacle preventing the use of lignocellulosic biomass as feedstock. Consolidated bioprocessing (CBP), refers to the bioprocess without any exogenous cellulolyotic enzymes added, converting the lignocellulosic material into biochemicals directly, which could potentially avoid the cost of the dedicated enzyme generation step by incorporating enzyme-generating, biomass-degrading and bioproduct-producing capabilities into a single organism through genetic engineering. There are two CBP strategies, native strategy and recombinant strategy. We mainly introduce the recombinant strategy, including its principle, the two responding styles, the contributions of synthetic biology and metabolic engineering and the future challenges. PMID:24432651

  3. A new recombinant factor VIII: from genetics to clinical use

    PubMed Central

    Santagostino, Elena

    2014-01-01

    Advances in recombinant technology and knowledge about coagulation factor VIII (FVIII) are building a platform for new therapeutic options in patients with hemophilia A. The development of turoctocog alfa, a novel, high-purity, third-generation, B-domain truncated recombinant FVIII, has been produced and formulated without the use of animal-derived or human serum-derived components, in the wake of understanding of the new biochemical characteristics of FVIII, namely its protein structure, and glycosylation and sulfating patterns. Culture conditions and a five-step purification process have been developed to optimize the safety of turoctocog alfa. The results of two pilot clinical trials using turoctocog alfa confirmed high safety levels, with no patient developing inhibitors during the period of observation. The purpose of this review is to describe briefly the molecular and biological properties of turoctocog alfa, together with details of its clinical development, with emphasis on the needs of patients with hemophilia A. PMID:25548513

  4. Production of Recombinant Chemokines and Validation of Refolding.

    PubMed

    Veldkamp, Christopher T; Koplinski, Chad A; Jensen, Davin R; Peterson, Francis C; Smits, Kaitlin M; Smith, Brittney L; Johnson, Scott K; Lettieri, Christina; Buchholz, Wallace G; Solheim, Joyce C; Volkman, Brian F

    2016-01-01

    The diverse roles of chemokines in normal immune function and many human diseases have motivated numerous investigations into the structure and function of this family of proteins. Recombinant chemokines are often used to study how chemokines coordinate the trafficking of immune cells in various biological contexts. A reliable source of biologically active protein is vital for any in vitro or in vivo functional analysis. In this chapter, we describe a general method for the production of recombinant chemokines and robust techniques for efficient refolding that ensure consistently high biological activity. Considerations for initiating development of protocols consistent with Current Good Manufacturing Practices (cGMPs) to produce biologically active chemokines suitable for use in clinical trials are also discussed. PMID:26921961

  5. [Advances of consolidated bioprocessing based on recombinant strategy].

    PubMed

    Zheng, Zongbao; Zhao, Meina; Chen, Tao; Zhao, Xueming

    2013-10-01

    Lignocellulosic biomass represents an abundant, low-cost and renewable source of potentially fermentable sugars. It is acandidate besides petroleum as feedstock for fuel and chemical production. Recent researches on utilizing lignocellulosicsas feedstock boost development of numerous-promising processes for a variety of fuels and chemicals, such as biodiesel, biohydrogen and ethanol. However, high cost in depolymerization is a primary obstacle preventing the use of lignocellulosic biomass as feedstock. Consolidated bioprocessing (CBP), refers to the bioprocess without any exogenous cellulolyotic enzymes added, converting the lignocellulosic material into biochemicals directly, which could potentially avoid the cost of the dedicated enzyme generation step by incorporating enzyme-generating, biomass-degrading and bioproduct-producing capabilities into a single organism through genetic engineering. There are two CBP strategies, native strategy and recombinant strategy. We mainly introduce the recombinant strategy, including its principle, the two responding styles, the contributions of synthetic biology and metabolic engineering and the future challenges.

  6. Expression and Purification of Chaperone-Active Recombinant Clusterin

    PubMed Central

    Dabbs, Rebecca A.; Wilson, Mark R.

    2014-01-01

    Clusterin was the first described secreted mammalian chaperone and is implicated as being a key player in both intra- and extracellular proteostasis. Its unique combination of structural features and biological chaperone activity has, however, previously made it very challenging to express and purify the protein in a correctly processed and chaperone-active form. While there are multiple reports in the literature describing the use of recombinant clusterin, all of these reports suffer from one or more of the following shortcomings: details of the methods used to produce the protein are poorly described, the product is incompletely (if at all) characterised, and purity (if shown) is in many cases inadequate. The current report provides the first well validated method to economically produce pure chaperone-active recombinant clusterin. The method was developed after trialling expression in cultured bacterial, yeast, insect and mammalian cells, and involves the expression of recombinant clusterin from stably transfected HEK293 cells in protein-free medium. The product is expressed at between 7.5 and 10 µg/ml of culture, and is readily purified by a combination of immunoaffinity, cation exchange and size exclusion chromatography. The purified product was shown to be glycosylated, correctly proteolytically cleaved into α- and β-subunits, and have chaperone activity similar to that of human plasma clusterin. This new method creates the opportunity to use mutagenesis and metabolic labelling approaches in future studies to delineate functionally important sites within clusterin, and also provides a theoretically unlimited supply of recombinant clusterin which may in the future find applications in the development of therapeutics. PMID:24466307

  7. The effects of protein solubility on the RNA Integrity Number (RIN) for recombinant Escherichia coli

    PubMed Central

    Baig, Faraz; Harcum, Sarah W.

    2013-01-01

    High quality, intact messenger RNA (mRNA) is required for DNA microarray and reverse transcriptase polymerase chain reaction analysis and is generally obtained from total RNA isolations. The most widely recognized measure of RNA integrity is the RNA Integrity Number (RIN) obtained from the Agilent Bioanalyzer, as it provides sizing, quantification, and quality control measures. This work describes comparisons of the RIN values obtained for recombinant E. coli. Uninduced recombinant E. coli cultures were examined, as well as induced cultures that produced either a soluble or insoluble recombinant protein. The uninduced cultures and the induced cultures producing soluble protein had higher RIN values than the induced cultures producing insoluble protein. These lower RIN values for E. coli producing the insoluble protein indicate that cellular degradation of the ribosomal RNA species is the likely cause of the lower RIN values. As the use of DNA microarrays and other gene expression tools increase in usage in the industrial recombinant protein production community, these results suggest the need for further studies to determine acceptable RIN ranges for gene expression analysis and effects of various culture conditions on RIN values for recombinant E. coli. PMID:24151430

  8. Nonrandom homolog segregation at meiosis I in Schizosaccharomyces pombe mutants lacking recombination.

    PubMed Central

    Davis, Luther; Smith, Gerald R

    2003-01-01

    Physical connection between homologous chromosomes is normally required for their proper segregation to opposite poles at the first meiotic division (MI). This connection is generally provided by the combination of reciprocal recombination and sister-chromatid cohesion. In the absence of meiotic recombination, homologs are predicted to segregate randomly at MI. Here we demonstrate that in rec12 mutants of the fission yeast Schizosaccharomyces pombe, which are devoid of meiosis-induced recombination, homologs segregate to opposite poles at MI 63% of the time. Residual, Rec12-independent recombination appears insufficient to account for the observed nonrandom homolog segregation. Dyad asci are frequently produced by rec12 mutants. More than half of these dyad asci contain two viable homozygous-diploid spores, the products of a single reductional division. This set of phenotypes is shared by other S. pombe mutants that lack meiotic recombination, suggesting that nonrandom MI segregation and dyad formation are a general feature of meiosis in the absence of recombination and are not peculiar to rec12 mutants. Rec8, a meiosis-specific sister-chromatid cohesin, is required for the segregation phenotypes displayed by rec12 mutants. We propose that S. pombe possesses a system independent of recombination that promotes homolog segregation and discuss possible mechanisms. PMID:12663528

  9. The effect of the unfolded protein response on the production of recombinant proteins in plants.

    PubMed

    Thomas, David Rhys; Walmsley, Amanda Maree

    2015-02-01

    Recombinant proteins are currently produced through a wide variety of host systems, including yeast, E. coli, insect and mammalian cells. One of the most recent systems developed uses plant cells. While considerable advances have been made in the yields and fidelity of plant-made recombinant proteins, many of these gains have arisen from the development of recombinant factors. This includes elements such as highly effective promoters and untranslated regions, deconstructed viral vectors, silencing inhibitors, and improved DNA delivery techniques. However, unlike other host systems, much of the work on recombinant protein production in plants uses wild-type hosts that have not been modified to facilitate recombinant protein expression. As such, there are still endogenous mechanisms functioning to maintain the health of the cell. The result is that these pathways, such as the unfolded protein response, can actively work to reduce recombinant protein production to maintain the integrity of the cell. This review examines how issues arising from the unfolded protein response have been addressed in other systems, and how these methods may be transferable to plant systems. We further identify several areas of host plant biology that present attractive targets for modification to facilitate recombinant protein production.

  10. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus.

    PubMed

    Lin, Chia-Chi; Yang, Zhi-Wei; Iang, Shan-Bei; Chao, Mei

    2015-01-01

    Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV.

  11. Deleterious background selection with recombination

    SciTech Connect

    Hudson, R.R.; Kaplan, N.L.

    1995-12-01

    An analytic expression for the expected nucleotide diversity is obtained for a neutral locus in a region with deleterious mutation and recombination. Our analytic results are used to predict levels of variation for the entire third chromosome of Drosophila melanogaster. The predictions are consistent with the low levels of variation that have been observed at loci near the centromeres of the third chromosome of D. melanogaster. However, the low levels of variation observed near the tips of this chromosome are not predicted using currently available estimates of the deleterious mutation rate and of selection coefficients. If considerably smaller selection coefficients are assumed, the low observed levels of variation at the tips of the third chromosome are consistent with the background selection model. 33 refs., 4 figs., 1 tab.

  12. Dielectronic recombination of tungsten ions

    NASA Astrophysics Data System (ADS)

    Li, Bowen; O'Sullivan, Gerry; Dong, Chenzhong; Chen, Ximeng

    2016-08-01

    Ab initio calculations of dielectronic recombination rate coefficients of Ne-, Pd- and Ag-like tungsten have been performed. Energy levels, radiative transition probabilities and autoionization rates were calculated using the Flexible Atomic Code. The contributions from different channels to the total rate coefficients are discussed. The present calculated rate coefficients are compared with other calculations where available. Excellent agreement has been found for Ne-like W while a large discrepancy was found for Pd-like W, which implies that more ab initio calculations and experimental measurements are badly needed. Further calculations demonstrated that the influence of configuration interaction is small while nonresonant radiative stabilizing (NRS) contribution to doubly excited non-autoionizing states are vital. The data obtained are expected to be useful for modeling plasmas for fusion applications, especially for the ITER community, which makes experimental verification even more essential.

  13. Recombinant zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark

    1996-01-01

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  14. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.

    1996-05-07

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 2 figs.

  15. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    PubMed

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.

  16. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  17. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  18. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  19. Dielectronic recombination lines of C{sup +}

    SciTech Connect

    Sochi, Taha Storey, Peter J.

    2013-11-15

    The present paper presents atomic data generated to investigate the recombination lines of C II in the spectra of planetary nebulae. These data include energies of bound and autoionizing states, oscillator strengths and radiative transition probabilities, autoionization probabilities, and recombination coefficients. The R-matrix method of electron scattering theory was used to describe the C{sup 2+} plus electron system.

  20. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  1. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-05-26

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  2. Development of recombinant vaccines for botulinum neurotoxin.

    PubMed

    Smith, L A

    1998-11-01

    Synthetic genes encoding non-toxic, carboxyl-terminal regions (approximately 50 kDa) of botulinum neurotoxin (BoNT) serotypes A and B (referred to as fragment C or HC) were constructed and cloned into the methylotropic yeast, Pichia pastoris. Genes specifying BoNTA(HC) and BoNTB(HC) were expressed as both intracellular and secreted products. Recombinants, expressed intracellularly, yielded products with the expected molecular weight as judged by SDS PAGE and Western blot (immunoblot) analysis, while secreted products were larger due to glycosylation. Gene products were used to vaccinate mice and evaluated for their ability to elicit protective antibody titers in vivo. Mice given three intramuscular vaccinations with yeast supernatant containing glycosylated BoNTA(HC) were protected against an intraperitoneal challenge of 10(6) 50% mouse lethal doses (MLD50) of serotype A neurotoxin, a result not duplicated by its BoNTB(HC) counterpart. Vaccinating mice with cytoplasmically produced BoNTA(HC) and BoNTB(HC) protected animals from a challenge of 10(6) MLD50 of serotype A and B toxins, respectively. Because of the glycosylation encountered with secreted BoNT(HC), our efforts focused on the production and purification of products from intracellular expression. PMID:9792170

  3. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  4. Genetic Recombination in Bacteriophage T4: Single-Burst Analysis of Cosegregants and Evidence in Favor of a Splice/Patch Coupling Model

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Nesheva, M. A.

    1992-01-01

    To reveal the structure of penultimate DNA intermediates in T4 bacteriophage recombination, resolution of which produces free recombinant molecules, a single-burst analysis of the recombinant progeny was made in multifactor crosses, enabling one to determine quantitatively the different recombinants generated by one or two exchanges within the same chromosome segment. It was found that double and single exchanges are highly correlated in T4 recombination. These results were interpreted as evidence for simultaneous formation of a splice/patch pair as the primary recombination products. A recombination model called here the ``splice/patch coupling model'' is presented according to which resolution of a single DNA intermediate results in two linear heterozygous molecules containing a patch and a splice, respectively, in homologous positions. PMID:1516814

  5. Biomimetic production of silk-like recombinant squid sucker ring teeth proteins.

    PubMed

    Ding, Dawei; Guerette, Paul A; Hoon, Shawn; Kong, Kiat Whye; Cornvik, Tobias; Nilsson, Martina; Kumar, Akshita; Lescar, Julien; Miserez, Ali

    2014-09-01

    The sucker ring teeth (SRT) of Humboldt squid exhibit mechanical properties that rival those of robust engineered synthetic polymers. Remarkably, these properties are achieved without a mineral phase or covalent cross-links. Instead, SRT are exclusively made of silk-like proteins called "suckerins", which assemble into nanoconfined β-sheet reinforced supramolecular networks. In this study, three streamlined strategies for full-length recombinant suckerin protein production and purification were developed. Recombinant suckerin exhibited high solubility and colloidal stability in aqueous-based solvents. In addition, the colloidal suspensions exhibited a concentration-dependent conformational switch, from random coil to β-sheet enriched structures. Our results demonstrate that recombinant suckerin can be produced in a facile manner in E. coli and processed from mild aqueous solutions into materials enriched in β-sheets. We suggest that recombinant suckerin-based materials offer potential for a range of biomedical and engineering applications.

  6. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    The theoretical analysis presented indicates that Auger recombination can reduce charge collection from very dense ion tracks in silicon devices. It is of marginal importance for tracks produced by 270-MeV krypton, and therefore it is of major importance for ions exhibiting a significantly larger loss. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a nonzero limiting value as t approaches infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  7. The basic chemistry of gas recombination in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Nelson, Robert

    2001-01-01

    Oxygen-recombination chemistry has been wedded to traditional lead-acid battery technology to produce so-called sealed, or valve-regulated, lead-acid products. Early attempts to incorporate recombination into lead-acid batteries were unsuccessful because of excessive cost, size, and/or complexity, and none were effectively commercialized. Over the past 20 years, recombination systems have been developed and are under going an extensive program of definition and refinement at many battery companies. This paper presents the basic chemistry of oxygen recombination in lead-acid cells and briefly compares it with the more highly developed nickel-cadmium system, which also operates on the oxygen cycle. Aspects of gas and thermal management relevant to valve-regulated lead-acid batteries are discussed in some detail.

  8. Production of antigens in Chlamydomonas reinhardtii: green microalgae as a novel source of recombinant proteins.

    PubMed

    Fuhrmann, Markus

    2004-01-01

    Recombinant small-scale proteins are produced in a number of systems, from bacteria like Escherichia coli, through lower eukaryotes like baker's yeast, up to mammalian cell cultures. However, the need for safe and cheap sources of large amounts of recombinant proteins for different purposes, including material sciences, diagnostics, and, of course, medical therapy, has forced the development of alternative production systems. Green microalgae are cheap and easily grown and offer a high protein content, which would seem to make them ideal hosts for the large-scale sustainable production of recombinant proteins in the future. In selected species, recombinant DNA can be introduced into the genomes of the nucleus, the chloroplast, and even the mitochondria, and thus the system offers both prokaryotic (chloroplast, mitochondria) and eukaryotic translation systems for a tailored expression of virtually any protein.

  9. Chi Enhances Heteroduplex DNA Levels during Recombination

    PubMed Central

    Holbeck, S. L.; Smith, G. R.

    1992-01-01

    The major pathway of homologous recombination in Escherichia coli, the RecBCD pathway, is stimulated by Chi sites. To determine whether Chi enhances an early or late step in recombination, we measured formation of heteroduplex DNA (hDNA) in extracts of lambda-infected E. coli. Chi elevated hDNA levels in these extracts, supporting a role for Chi early (before hDNA formation) in recombination. RecA protein and RecBCD enzyme were both necessary for detection of hDNA, indicating that they, too, act early. Analysis of a panel of recBCD mutants indicated that Chi-nicking activity was needed for Chi's stimulation of hDNA formation. These results support a previously proposed model of recombination. Further results suggested that RecBCD enzyme has an additional role late in recombination. PMID:1459441

  10. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles.

    PubMed

    Hitchman, Richard B; Siaterli, Evangelia A; Nixon, Clare P; King, Linda A

    2007-03-01

    We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.

  11. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  12. Antipyretic actions of human recombinant lipocortin-1.

    PubMed

    Davidson, J; Flower, R J; Milton, A S; Peers, S H; Rotondo, D

    1991-01-01

    The effect of human recombinant lipocortin-1 (hrLC-1) on the pyrogenic actions of the synthetic polyribonucleotide polyinosinic:polycytidylic acid (poly I:C) has been studied in conscious rabbits. Poly I:C (2.5 micrograms kg-1) given i.v. produced a biphasic fever with a first peak after 90-105 min and a second peak between 225-240 min. hrLC-1 (50 micrograms kg-1) given i.v. simultaneously with the poly I:C produced a significant reduction in the febrile response but without complete suppression. The thermal response index over 5 h (TRI5) was 4.69 +/- 0.51 for poly I:C given with saline and the TRI5 for poly I:C given with hrLC-1 was 2.66 +/- 0.45 (values are for n = 5 +/- s.e. mean, P less than 0.05). hrLC-1 administered alone had no effect on body temperature and its antipyretic activity was lost on heating. In a separate series of experiments 1 h pretreatment with dexamethasone (1 mg kg-1) given i.v. reduced the pyrogenic response (TRI5) to poly I:C (2.5 micrograms kg-1) from 4.87 +/- 0.54 without dexamethasone to 2.00 +/- 0.25 (n = 5, P less than 0.05) and dexamethasone given alone had no effect on body temperature. These data demonstrate that LC-1 possesses antipyretic actions and raises the possibility that the antipyretic actions of dexamethasone are mediated through the induction of LC-1.

  13. An Examination of the Effects of Double-Strand Breaks on Extrachromosomal Recombination in Mammalian Cells

    PubMed Central

    Yang, D.; Waldman, A. S.

    1992-01-01

    We studied the effects of double-strand breaks on intramolecular extrachromosomal homologous recombination in mammalian cells. Pairs of defective herpes thymidine kinase (tk) sequences were introduced into mouse Ltk(-) cells on a DNA molecule that also contained a neo gene under control of the SV40 early promoter/enhancer. With the majority of the constructs used, gene conversions or double crossovers, but not single crossovers, were recoverable. DNA was linearized with various restriction enzymes prior to transfection. Recombination events producing a functional tk gene were monitored by selecting for tk-positive colonies. For double-strand breaks placed outside of the region of homology, maximal recombination frequencies were measured when a break placed the two tk sequences downstream from the SV40 early promoter/enhancer. We observed no relationship between recombination frequency and either the distance between a break and the tk sequences or the distance between the tk sequences. The quantitative effects of the breaks appeared to depend on the degree of homology between the tk sequences. We also observed that inverted repeats recombined as efficiently as direct repeats. The data indicated that the breaks influenced recombination indirectly, perhaps by affecting the binding of a factor(s) to the SV40 promoter region which in turn stimulated or inhibited recombination of the tk sequences. Taken together, we believe that our results provide strong evidence for the existence of a pathway for extrachromosomal homologous recombination in mammalian cells that is distinct from single-strand annealing. We discuss the possibility that intrachromosomal and extrachromosomal recombination have mechanisms in common. PMID:1459429

  14. Expression of human recombinant granzyme A zymogen and its activation by the cysteine proteinase cathepsin C.

    PubMed

    Kummer, J A; Kamp, A M; Citarella, F; Horrevoets, A J; Hack, C E

    1996-04-19

    Human granzyme A is one of the serine proteinases present in the granules of cytotoxic T lymphocytes and natural killer cells. Granzymes are synthesized as inactive proenzymes with an amino-terminal prodipeptide, which is processed during transport of granzymes to the cytotoxic granules, where they are stored as active proteinases. In this study, we explored the possibility of producing recombinant granzymes. Recombinant human granzyme A zymogen was expressed in several eukaryotic cell lines (HepG2, Jurkat, and COS-1) after infection with a recombinant vaccinia virus containing full-length granzyme A cDNA. Immunoblot analysis of cell lysates showed that all infected cells produced a disulfide-linked homodimer of identical molecular weight as natural granzyme A. Infected HepG2 cells produced the largest amount of this protease (approximately 160 times more than lymphokine activated killer (LAK) cells). The recombinant protein only had high mannose type oligosaccharides as did the natural protein. Although infected HepG2 and COS cells contained high granzyme A antigen levels, lysates from these cells did not show any granzyme A proteolytic activity. However, the inactive proenzyme could be converted into active granzyme A by incubation with the thiol proteinase cathepsin C (dipeptidyl peptidase I). This study is the first to demonstrate expression of an active recombinant human cytotoxic lymphocyte proteinase and conversion of inactive progranzyme A into an active enzyme by cathepsin C. We suggest that a similar approach can be used for the production of other granzymes and related proteinases.

  15. Radiative and interfacial recombination in CdTe heterostructures

    SciTech Connect

    Swartz, C. H. Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H.; Zaunbrecher, K. N.

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  16. Pentose fermentation by recombinant zymomonas

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark; Mohagheghi, Ali; Newman, Mildred M.; McMillan, James D.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  17. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Min Zhang; Eddy, C.K.; Deanda, K.A.

    1998-03-10

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  18. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  19. Pentose fermentation by recombinant Zymomonas

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.; Mohagheghi, A.; Newman, M.M.; McMillan, J.D.

    1998-01-27

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  20. Products of Dissociative Recombination in the Ionosphere

    NASA Technical Reports Server (NTRS)

    Cosby, Philip

    1996-01-01

    SRI International undertook a novel experimental measurement of the product states formed by dissociative recombination (DR) of O2(+), NO(+), and N2(+) as a function of both electron energy and reactant ion vibrational level. For these measurements we used a recently developed experimental technique for measuring dissociation product distributions that allows both the branching ratios to be accurately determined and the electronic and rovibrational state composition of the reactant ions to be specified. DR is the dominant electron loss mechanism in all regions of the ionosphere. In this process, electron attachment to the molecular ion produces an unstable neutral molecule that rapidly dissociates. For a molecular ion such as O2(+), the dissociation recombination reaction is (1) O2(+) + e yields O + O + W. The atomic products of this reaction, in this case two oxygen atoms, can be produced in a variety of excited states and with a variety of kinetic energies, as represented by W in Eq. (1). These atoms are not only active in the neutral chemistry of the ionosphere, but are also especially important because their optical emissions are often used to infer in situ concentrations of the parent molecular ion and ambient electron densities. Many laboratory measurements have been made of DR reaction rates under a wide range of electron temperatures, but very little is known about the actual distributions among the final states of the atomic products. This lack of knowledge seriously limits the validity and effectiveness of efforts to model both natural and man-made ionospheric disturbances. Bates recently identified major deficiencies in the currently accepted branching ratios for O2(+) as they relate to blue and green line emission measurements in the nocturnal F-region. During our two-year effort, we partially satisfied our ambitious goals. We constructed and operated a variable pressure, electron-impact ion source and a high pressure, hollow-cathode discharge ion

  1. Electron-ion recombination rates for merged-beams experiments

    SciTech Connect

    Pajek, M.

    1994-12-31

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed.

  2. Intraspecific variation of recombination rate in maize

    PubMed Central

    2013-01-01

    Background In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation. Results Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between recombination rate and interference strength. Conclusions To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms. PMID:24050704

  3. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  4. Staphylococcus simulans Recombinant Lysostaphin: Production, Purification, and Determination of Antistaphylococcal Activity.

    PubMed

    Boksha, I S; Lavrova, N V; Grishin, A V; Demidenko, A V; Lyashchuk, A M; Galushkina, Z M; Ovchinnikov, R S; Umyarov, A M; Avetisian, L R; Chernukha, M Iu; Shaginian, I A; Lunin, V G; Karyagina, A S

    2016-05-01

    Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by Sigma-Aldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity. PMID:27297900

  5. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    PubMed

    Froissart, Remy; Roze, Denis; Uzest, Marilyne; Galibert, Lionel; Blanc, Stephane; Michalakis, Yannis

    2005-03-01

    Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5) to 4 x 10(-5). This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus. PMID:15737066

  6. Ultrafast effective multilevel atom method for primordial hydrogen recombination

    SciTech Connect

    Ali-Haiemoud, Yacine; Hirata, Christopher M.

    2010-09-15

    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n > or approx. 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multilevel atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multilevel atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of 'interface' states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pretabulating the effective rates, we can reduce the recurring cost of multilevel atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.

  7. Advances in recombinant antibody manufacturing.

    PubMed

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.

  8. Dissociative recombination of CH4(+).

    PubMed

    Thomas, Richard D; Kashperka, Iryna; Vigren, E; Geppert, Wolf D; Hamberg, Mathias; Larsson, Mats; af Ugglas, Magnus; Zhaunerchyk, Vitali

    2013-10-01

    CH4(+) is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres. However, the rate of one of the common destruction mechanisms for molecular ions in these regions, dissociative recombination (DR), is somewhat uncertain. Here, we present absolute measurements for the DR of CH4(+) made using the heavy ion storage ring CRYRING in Stockholm, Sweden. From our collision-energy dependent cross-sections, we infer a thermal rate constant of k(Te) = 1.71(±0.02) × 10(–6)(Te/300)(−0.66(±0.02)) cm3 s(–1) over the region of electron temperatures 10 ≤ Te ≤ 1000 K. At low collision energies, we have measured the branching fractions of the DR products to be CH4 (0.00 ± 0.00); CH3 + H (0.18 ± 0.03); CH2 + 2H (0.51 ± 0.03); CH2 + H2 (0.06 ± 0.01); CH + H2 + H (0.23 ± 0.01); and CH + 2H2 (0.02 ± 0.01), indicating that two or more C–H bonds are broken in 80% of all collisions.

  9. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  10. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes.

  11. Copy-choice illegitimate DNA recombination revisited.

    PubMed Central

    d'Alençon, E; Petranovic, M; Michel, B; Noirot, P; Aucouturier, A; Uzest, M; Ehrlich, S D

    1994-01-01

    Nearly precise excision of a transposon related to Tn10 from an Escherichia coli plasmid was used as a model to study illegitimate DNA recombination between short direct repeats. The excision was stimulated 100-1000 times by induction of plasmid single-stranded DNA synthesis and did not involve transfer of DNA from the parental to the progeny molecule. We conclude that it occurred by copy-choice DNA recombination, and propose that other events of recombination between short direct repeats might be a result of the same process. Images PMID:8013470

  12. Development of recombinant baculoviruses for insect control.

    PubMed

    Bonning, B C; Hammock, B D

    1996-01-01

    In this review, we provide an overview of the current status of recombinant baculoviruses, describe the development of genetically engineered baculoviruses for use as rapid-action biological insecticides, and provide more detailed information on one particular set of recombinant viruses. The advantages and disadvantages of recombinant baculovirus insecticides, and the importance of risk-assessment studies of these genetically modified organisms, are reviewed. Finally the importance of sensible regulatory strategies to the success and future prospects of this technology is discussed. PMID:8546446

  13. Spacecraft thermal energy accommodation from atomic recombination

    NASA Technical Reports Server (NTRS)

    Carleton, Karen L.; Marinelli, William J.

    1991-01-01

    Measurements of atomic recombination probabilities important in determining energy release to reusable spacecraft thermal protection surfaces during reentry are presented. An experimental apparatus constructed to examine recombination of atomic oxygen from thermal protection and reference materials at reentry temperatures is described. The materials are examined under ultrahigh vacuum conditions to develop and maintain well characterized surface conditions that are free of contamination. When compared with stagnation point heat transfer measurements performed in arc jet facilities, these measurements indicate that a significant fraction of the excess energy available from atom recombination is removed from the surface as metastable O2.

  14. Dissociative Recombination without a Curve Crossing

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1994-01-01

    Ab initio calculations show that a curve crossing is not always needed for a high dissociative- recombination cross section. For HeH(+), in which no neutral states cross the ion potential curve, dissociative recombination is driven by the nuclear kinetic-energy operator on adiabatic potential curves. The kinetic-energy derivative operator allows for capture into repulsive curves that are outside of the classical turning points for the nuclear motion. The dominant dissociative route is the C (2)Sigma(+) state leading to H(n = 2) atoms. An analogous mechanism is proposed for the dissociative recombination of H3(+).

  15. Recombination of N4(+) ions with electrons

    NASA Technical Reports Server (NTRS)

    Cao, Y. S.; Johnsen, R.

    1991-01-01

    Using a modified high-pressure-afterglow/mass spectrometer apparatus similar to that described by Lee and Johnsen (1989), spectroscopic observations of afterglow helium plasmas, with N2 as a minor additive, were carried out in order to verify the mechanism suggested by Bates (1991) for dissociative recombination of electrons with N4(+) ions. It was found that dissociative recombination of electrons with N4(+) ions results in the formation of N2 molecules in the C 3Pi(u) (v = 0,1) state, with the recombination rate coefficient of (2.6 +/- 0.3) x 10 exp -6 cu cm/sec at 300 K.

  16. Method for producing electrodes using microscale or nanoscale materials obtained from hydrogendriven metallurgical reactions

    DOEpatents

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2003-09-02

    A method is provided for producing electrodes using microscale and nanoscale metal materials formed from hydrogen driven metallurgical processes; such a the HD (hydriding, dehydriding) process, the HDDR (hydriding, dehydriding, disproportionation, and recombination) process, and variants thereof.

  17. Quantitative measurement of bitagged recombinant proteins using an immunometric assay: application to an anti-substance P recombinant antibody.

    PubMed

    Boquet, D; Créminon, C; Clément, G; Frobert, Y; Nevers, M C; Essono, S; Grassi, J

    2000-09-10

    We have developed two different immunometric assays to directly quantify both the total and the active fractions of a recombinant antibody (single chain fragment variable, or ScFv) as obtained in a crude extract from an Escherichia coli expression system. For total determination, the assay is based on the simultaneous recognition of two different peptide Tag sequences (Ha-Tag and Myc-Tag) at each of the N- and C-terminal extremities of the recombinant protein. A monoclonal antibody (mAb 12CA5, directed against Ha-Tag), coated on microtiter plates, is used for capture, and the mAb 9E10 (directed against Myc-Tag), labeled with acetylcholinesterase (AChE, EC 3.1.1.7), acts as tracer. In parallel, for the determination of the active fraction, the capture is performed using microtiter plates coated with the antigen, while solid-phase-immobilized ScFv is measured using the same 9E10 tracer mAb. A synthetic peptide in which the two Tag sequences were joined was used as a standard, thus avoiding the laborious purification of a recombinant protein as reference. The method was applied to the direct measurement, in periplasmic extracts, of the total and active fractions of an ScFv produced at different induction temperatures.

  18. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein. PMID:24293828

  19. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein.

  20. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.

    PubMed

    Kuo, Ting-Chun; Shaw, Jei-Fu; Lee, Guan-Chiun

    2015-09-01

    The versatile Candida rugosa lipase (CRL) has been widely used in biotechnological applications. However, there have not been feasibility reports on the transesterification of non-edible oils to produce biodiesel using the commercial CRL preparations, mixtures of isozymes. In the present study, four liquid recombinant CRL isozymes (CRL1-CRL4) were investigated to convert various non-edible oils into biodiesel. The results showed that recombinant CRL2 and CRL4 exhibited superior catalytic efficiencies for producing fatty acid methyl ester (FAME) from Jatropha curcas seed oil. A maximum 95.3% FAME yield was achieved using CRL2 under the optimal conditions (50 wt% water, an initial 1 equivalent of methanol feeding, and an additional 0.5 equivalents of methanol feeding at 24h for a total reaction time of 48 h at 37 °C). We concluded that specific recombinant CRL isozymes could be excellent biocatalysts for the biodiesel production from low-cost crude Jatropha oil.

  1. Excitation of emission lines by fluorescence and recombination in IC 418

    NASA Astrophysics Data System (ADS)

    Escalante, Vladimir; Morisset, Cristophe; Georgiev, Leonid

    2012-08-01

    We predict intensities of lines of CII, NI, NII, OI and OII and compare them with a deep spectroscopic survey of IC 418 to test the effect of excitation of nebular emission lines by continuum fluorescence of starlight. Our calculations use a nebular model and a synthetic spectrum of its central star to take into account excitation of the lines by continuum fluorescence and recombination. The NII spectrum is mostly produced by fluorescence due to the low excitation conditions of the nebula, but many CII and OII lines have more excitation by fluorescence than recombination. In the neutral envelope, the NI permitted lines are excited by fluorescence, and almost all the OI lines are excited by recombination. Electron excitation produces the forbidden optical lines of OI, but continuum fluorescence excites most of the NI forbidden line intensities. Lines excited by fluorescence of light below the Lyman limit thus suggest a new diagnostic to explore the photodissociation region of a nebula.

  2. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains.

    PubMed

    Kawakatsu, Taiji; Takaiwa, Fumio

    2010-12-01

    Cereal seeds provide an ideal production platform for high-value products such as pharmaceuticals and industrial materials because seeds have ample and stable space for the deposition of recombinant products without loss of activity at room. Seed storage proteins (SSPs) are predominantly synthesized and stably accumulated in maturing endosperm tissue. Therefore, understanding the molecular mechanisms regulating SSP expression and accumulation is expected to provide valuable information for producing higher amounts of recombinant products. SSP levels are regulated by several steps at the transcriptional (promoters, transcription factors), translational and post-translational levels (modification, processing trafficking, and deposition). Our objective is to develop a seed production platform capable of producing very high yields of recombinant product. Towards this goal, we review here the individual regulatory steps controlling SSP synthesis and accumulation.

  3. Synthesizing a Cellulase like Chimeric Protein by Recombinant Molecular Biology Techniques

    PubMed Central

    Banerjee, Hirendra Nath; Krauss, Christopher; Smith, Valerie; Mahaffey, Kelly; Boston, Ava

    2016-01-01

    In order to meet the Renewable Fuels Standard demands for 30 billion gallons of biofuels by the end of 2020, new technologies for generation of cellulosic ethanol must be exploited. Breaking down cellulose by cellulase enzyme is very important for this purpose but this is not thermostable and degrades at higher temperatures in bioreactors. Towards creation of a more ecologically friendly method of rendering bioethanol from cellulosic waste, we attempted to produce recombinant higher temperature resistant cellulases for use in bioreactors. The project involved molecular cloning of genes for cellulose-degrading enzymes based on bacterial source, expressing the recombinant proteins in E. coli and optimizing enzymatic activity. We were able to generate in vitro bacterial expression systems to produce recombinant His-tag purified protein which showed cellulase like activity. PMID:27468362

  4. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. PMID:26021569

  5. Recombination can partially substitute for SPO13 in regulating meiosis I in budding yeast.

    PubMed Central

    Rutkowski, L H; Esposito, R E

    2000-01-01

    Recombination and chromosome synapsis bring homologous chromosomes together, creating chiasmata that ensure accurate disjunction during reductional division. SPO13 is a key gene required for meiosis I (MI) reductional segregation, but dispensable for recombination, in Saccharomyces cerevisiae. Absence of SPO13 leads to single-division meiosis where reductional segregation is largely eliminated, but other meiotic events occur relatively normally. This phenotype allows haploids to produce viable meiotic products. Spo13p is thought to act by delaying nuclear division until sister centromeres/chromatids undergo proper cohesion for segregation to the same pole at MI. In the present study, a search for new spo13-like mutations that allow haploid meiosis recovered only new spo13 alleles. Unexpectedly, an unusual reduced-expression allele (spo13-23) was recovered that behaves similarly to a null mutant in haploids but to a wild-type allele in diploids, dependent on the presence of recombining homologs rather than on a diploid genome. This finding demonstrates that in addition to promoting accurate homolog disjunction, recombination can also function to partially substitute for SPO13 in promoting sister cohesion. Analysis of various recombination-defective mutants indicates that this contribution of recombination to reductional segregation requires full levels of crossing over. The implications of these results regarding SPO13 function are discussed. PMID:10924460

  6. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces.

    PubMed

    Park, Young-Shin; Bae, Wan Ki; Baker, Thomas; Lim, Jaehoon; Klimov, Victor I

    2015-11-11

    Nanocrystal quantum dots (QDs) are attractive materials for applications as laser media because of their bright, size-tunable emission and the flexibility afforded by colloidal synthesis. Nonradiative Auger recombination, however, hampers optical amplification in QDs by rapidly depleting the population of gain-active multiexciton states. In order to elucidate the role of Auger recombination in QD lasing and isolate its influence from other factors that might affect optical gain, we study two types of CdSe/CdS core/shell QDs with the same core radii and the same total sizes but different properties of the core/shell interface ("sharp" vs "smooth"). These samples exhibit distinctly different biexciton Auger lifetimes but are otherwise virtually identical. The suppression of Auger recombination in the sample with a smooth (alloyed) interface results in a notable improvement in the optical gain performance manifested in the reduction of the threshold for amplified spontaneous emission and the ability to produce dual-color lasing involving both the band-edge (1S) and the higher-energy (1P) electronic states. We develop a model, which explicitly accounts for the multiexciton nature of optical gain in QDs, and use it to analyze the competition between stimulated emission from multiexcitons and their decay via Auger recombination. These studies re-emphasize the importance of Auger recombination control for the realization of real-life QD-based lasing technologies and offer practical strategies for suppression of Auger recombination via "interface engineering" in core/shell structures. PMID:26397312

  7. Protection of gerbils from amebic liver abscess by immunization with a recombinant Entamoeba histolytica antigen.

    PubMed Central

    Zhang, T; Cieslak, P R; Stanley, S L

    1994-01-01

    Amebiasis, infection by the intestinal protozoan parasite Entamoeba histolytica, is a leading parasitic cause of death. As a step in the development of a recombinant antigen vaccine to prevent E. histolytica infection, we looked at the ability of a recombinant version of the serine-rich E. histolytica protein (SREHP) to elicit a protective immune response against invasive amebic disease. Gerbils, a standard model for amebic liver abscess, were immunized with either a recombinant SREHP/maltose-binding protein (MBP) fusion, recombinant MBP alone, or phosphate-buffered saline (PBS), all combined with complete Freund's adjuvant. In the first trial (group 1), gerbils received a primary and two booster immunizations intraperitoneally; in the second trial (group 2), gerbils were immunized by a single intradermal injection. SREHP/MBP-immunized gerbils in both groups produced antibody to native SHEHP and developed delayed-type hypersensitivity responses to recombinant SREHP. All gerbils were challenged by an intrahepatic injection with 5 x 10(4) virulent E. histolytica HM1-IMSS trophozoites. Complete protection from amebic liver abscess was seen in 64% of the SHEHP/MBP-immunized gerbils in group 1 and in 100% of the SREHP/MBP-immunized gerbils in group 2. There was no protection observed in MBP- or PBS-immunized gerbils in either group. Our results indicate that the SREHP molecule has potential as a vaccine to prevent amebic infection and demonstrate that successful vaccination of animals with recombinant E. histolytica antigen vaccines is possible. Images PMID:8132322

  8. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  9. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  10. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  11. Mapping Recombination Initiation Sites Using Chromatin Immunoprecipitation.

    PubMed

    He, Yan; Wang, Minghui; Sun, Qi; Pawlowski, Wojciech P

    2016-01-01

    Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi. PMID:27511175

  12. The homologous recombination system of Ustilago maydis

    PubMed Central

    Holloman, William K.; Schirawski, Jan; Holliday, Robin

    2008-01-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of Ustilago maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins. PMID:18502156

  13. The Kinetics of Nitrogen Atom Recombination

    ERIC Educational Resources Information Center

    Brown, G. Ronald; Winkler, C. A.

    1977-01-01

    Describes a study of the kinetics of the recombination of nitrogen atoms in which concentration-time relations are determined directly by utilizing visual observations of emissions to make gas phase titrations of N atoms with NO. (MLH)

  14. Chemical recombination in an expansion tube

    NASA Technical Reports Server (NTRS)

    Bakos, Robert J.; Morgan, Richard G.

    1994-01-01

    The note describes the theoretical basis of chemical recombination in an expansion tube which simulates energy, Reynolds number, and stream chemistry at near-orbital velocities. Expansion tubes can satisfy ground-based hypersonic propulsion and aerothermal testing requirements.

  15. Stabilized pigment and method for producing the same

    NASA Technical Reports Server (NTRS)

    Morrison, Stanley Roy (Inventor); Freund, Thomas (Inventor)

    1976-01-01

    A chemical species, present in two oxidation states which differ from one another by one equivalent, is added to pigment materials to serve as a recombination center for alternately capturing electrons and holes produced by the pigment materials when they are subjected to ultraviolet light exposure.

  16. Recombination-deficient mutant of Streptococcus faecalis

    SciTech Connect

    Yagi, Y.; Clewell, D.B.

    1980-08-01

    An ultraviolet radiation-sensitive derivative of Streptococcus faecalis strain JH2-2 was isolated and found to be deficient in recombination, using a plasmid-plasmid recombination system. The strain was sensitive to chemical agents which interact with deoxyribonucleic acid and also underwent deoxyribonucleic acid degradation after ultraviolet irradiation. Thus, the mutant has properties similar to those of recA strains of Escherichia coli.

  17. Recombination-generation currents in degenerate semiconductors

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1978-01-01

    The classical Shockley-Read-Hall theory of free carrier recombination and generation via traps is extended to degenerate semiconductors. A concise and simple expression is found which avoids completely the concept of a Fermi level, a concept which is alien to nonequilibrium situations. Assumptions made in deriving the recombination generation current are carefully delineated and are found to be basically identical to those made in the original theory applicable to nondegenerate semiconductors.

  18. Fine-resolution analysis of products of intrachromosomal homeologous recombination in mammalian cells.

    PubMed Central

    Yang, D; Waldman, A S

    1997-01-01

    Mouse Ltk- cell lines that contained a herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene with a 16-bp insertion mutation linked to either a defective HSV-2 tk gene or a hybrid tk sequence comprised of HSV-1 and HSV-2 tk sequences were constructed. HSV-1 and HSV-2 tk genes have 81% nucleotide identity and hence are homeologous. Correction of the insertion mutant HSV-1 tk gene via recombination with the hybrid tk sequence required an exchange between homeologous tk sequences, although recombination could initiate within a region of significant sequence identity. Seven cell lines containing linked HSV-1 and HSV-1-HSV-2 hybrid tk sequences gave rise to tk+ segregants at an average rate of 10(-8) events per cell division. DNA sequencing revealed that each recombinant from these lines displayed an apparent gene conversion which involved an accurate transfer of an uninterrupted block of information between homeologous tk sequences. Conversion tract lengths ranged from 35 to >330 bp. In contrast, cell lines containing linked HSV-1 and HSV-2 tk sequences with no significant stretches of sequence identity had an overall rate of homeologous recombination of <10(-9). One such cell line produced homeologous recombinants at a rate of 10(-8). Strikingly, all homeologous recombinants from this latter cell line were due to crossovers between the HSV-1 and HSV-2 tk genes. Our results, which provide the first detailed analysis of homeologous recombination within a mammalian genome, suggest that rearrangements in mammalian genomes are regulated by the degree of sequence divergence located at the site of recombination initiation. PMID:9199296

  19. Targeted recombination with single-stranded DNA vectors in mammalian cells.

    PubMed Central

    Fujioka, K; Aratani, Y; Kusano, K; Koyama, H

    1993-01-01

    We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells. Images PMID:8441653

  20. Investigating the dynamics of recombinant protein secretion from a microalgal host.

    PubMed

    Lauersen, Kyle J; Huber, Isabel; Wichmann, Julian; Baier, Thomas; Leiter, Andreas; Gaukel, Volker; Kartushin, Viktor; Rattenholl, Anke; Steinweg, Christian; von Riesen, Lena; Posten, Clemens; Gudermann, Frank; Lütkemeyer, Dirk; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    Production of recombinant proteins with microalgae represents an alternative platform over plant- or bacterial-based expression systems for certain target proteins. Secretion of recombinant proteins allows accumulation of the target product physically separate from the valuable algal biomass. To date, there has been little investigation into the dynamics of recombinant protein secretion from microalgal hosts-the culture parameters that encourage secreted product accumulation and stability, while encouraging biomass production. In this work, the efficiency of recombinant protein production was optimized by adjusting cultivation parameters for a strain of Chlamydomonas reinhardtii previously engineered to secrete a functional recombinant Lolium perenne ice binding protein (LpIBP), which has applications as a frozen food texturing and cryopreservation additive, into its culture medium. Three media and several cultivation styles were investigated for effects on secreted LpIBP titres and culture growth. A combination of acetate and carbon dioxide feeding with illumination resulted in the highest overall biomass and recombinant protein titres up to 10mgL(-1) in the culture medium. Pure photoautotrophic production was possible using two media types, with recombinant protein accumulation in all cultivations correlating to culture cell density. Two different cultivation systems were used for scale-up to 10L cultivations, one of which produced yields of secreted recombinant protein up to 12mgL(-1) within six cultivation days. Functional ice recrystallization inhibition (IRI) of the LpIBP from total concentrated extracellular protein extracts was demonstrated in a sucrose solution used as a simplified ice cream model. IRI lasted up to 7 days, demonstrating the potential of secreted products from microalgae for use as food additives. PMID:25975624