Science.gov

Sample records for recombination repair pathway

  1. A comparative analysis of the DNA recombination repair pathway in mycobacterial genomes.

    PubMed

    Singh, Amandeep; Bhagavat, Raghu; Vijayan, M; Chandra, Nagasuma

    2016-07-01

    In prokaryotes, repair by homologous recombination provides a major means to reinstate the genetic information lost in DNA damage. Recombination repair pathway in mycobacteria has multiple differences as compared to that in Escherichia coli. Of about 20 proteins known to be involved in the pathway, a set of 9 proteins, namely, RecF, RecO, RecR, RecA, SSBa, RuvA, RuvB and RuvC was found to be indispensable among the 43 mycobacterial strains. A domain level analysis indicated that most domains involved in recombination repair are unique to these proteins and are present as single copies in the genomes. Synteny analysis reveals that the gene order of proteins involved in the pathway is not conserved, suggesting that they may be regulated differently in different species. Sequence conservation among the same protein from different strains suggests the importance of RecO-RecA and RecFOR-RecA presynaptic pathways in the repair of double strand-breaks and single strand-breaks respectively. New annotations obtained from the analysis, include identification of a protein with a probable Holliday junction binding role present in 41 mycobacterial genomes and that of a RecB-like nuclease, containing a cas4 domain, present in 42 genomes. New insights into the binding of small molecules to the relevant proteins are provided by binding pocket analysis using three dimensional structural models. Analysis of the various features of the recombination repair pathway, presented here, is likely to provide a framework for further exploring stress response and emergence of drug resistance in mycobacteria. PMID:27450012

  2. A ROS-Activatable Agent Elicits Homologous Recombination DNA Repair and Synergizes with Pathway Compounds.

    PubMed

    Thowfeik, Fathima Shazna; AbdulSalam, Safnas F; Wunderlich, Mark; Wyder, Michael; Greis, Kenneth D; Kadekaro, Ana L; Mulloy, James C; Merino, Edward J

    2015-11-01

    We designed ROS-activated cytotoxic agents (RACs) that are active against AML cancer cells. In this study, the mechanism of action and synergistic effects against cells coexpressing the AML oncogenes MLL-AF9 fusion and FLT3-ITD were investigated. One RAC (RAC1) had an IC50 value of 1.8±0.3 μm, with ninefold greater selectivity for transformed cells compared to untransformed cells. Treatment induced DNA strand breaks, apoptosis, and cell cycle arrest. Proteomics and transcriptomics revealed enhanced expression of the pentose phosphate pathway, DNA repair, and pathways common to cell stress. Western blotting confirmed repair by homologous recombination. Importantly, RAC1 treatment was synergistic in combination with multiple pathway-targeting therapies in AML cells but less so in untransformed cells. Together, these results demonstrate that RAC1 can selectively target poor prognosis AML and that it does so by creating DNA double-strand breaks that require homologous recombination.

  3. A ROS-Activatable Agent Elicits Homologous Recombination DNA Repair and Synergizes with Pathway Compounds

    PubMed Central

    Thowfeik, Fathima Shazna; AbdulSalam, Safnas F.; Wunderlich, Mark; Wyder, Michael; Greis, Kenneth D.; Kadekaro, Ana L.; Mulloy, James C.

    2016-01-01

    We designed ROS-activated cytotoxic agents (RACs) that are active against AML cancer cells. In this study, the mechanism of action and synergistic effects against cells coexpressing the AML oncogenes MLL-AF9 fusion and FLT3-ITD were investigated. One RAC (RAC1) had an IC50 value of 1.8 ± 0.3 µm, with ninefold greater selectivity for transformed cells compared to untransformed cells. Treatment induced DNA strand breaks, apoptosis, and cell cycle arrest. Proteomics and transcriptomics revealed enhanced expression of the pentose phosphate pathway, DNA repair, and pathways common to cell stress. Western blotting confirmed repair by homologous recombination. Importantly, RAC1 treatment was synergistic in combination with multiple pathway-targeting therapies in AML cells but less so in untransformed cells. Together, these results demonstrate that RAC1 can selectively target poor prognosis AML and that it does so by creating DNA double-strand breaks that require homologous recombination. PMID:26419938

  4. The Knowns Unknowns: Exploring the Homologous Recombination Repair Pathway in Toxoplasma gondii

    PubMed Central

    Fenoy, Ignacio M.; Bogado, Silvina S.; Contreras, Susana M.; Gottifredi, Vanesa; Angel, Sergio O.

    2016-01-01

    Toxoplasma gondii is an apicomplexan parasite of medical and veterinary importance which causes toxoplasmosis in humans. Great effort is currently being devoted toward the identification of novel drugs capable of targeting such illness. In this context, we believe that the thorough understanding of the life cycle of this model parasite will facilitate the identification of new druggable targets in T. gondii. It is important to exploit the available knowledge of pathways which could modulate the sensitivity of the parasite to DNA damaging agents. The homologous recombination repair (HRR) pathway may be of particular interest in this regard as its inactivation sensitizes other cellular models such as human cancer to targeted therapy. Herein we discuss the information available on T. gondii's HRR pathway from the perspective of its conservation with respect to yeast and humans. Special attention was devoted to BRCT domain-containing and end-resection associated proteins in T. gondii as in other experimental models such proteins have crucial roles in early/late steps or HRR and in the pathway choice for double strand break resolution. We conclude that T. gondii HRR pathway is a source of several lines of investigation that allow to to comprehend the extent of diversification of HRR in T. gondii. Such an effort will serve to determine if HRR could represent a potential targer for the treatment of toxoplasmosis. PMID:27199954

  5. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair.

    PubMed

    Mehr, I J; Seifert, H S

    1998-11-01

    Neisseria gonorrhoeae (Gc) pili undergo antigenic variation when the amino acid sequence of the pilin protein is changed, aiding in immune avoidance and altering pilus expression. Pilin antigenic variation occurs by RecA-dependent unidirectional transfer of DNA sequences from a silent pilin locus to the expressed pilin gene through high-frequency recombination events that occur at limited regions of homology. We show that the Gc recQ and recO genes are essential for pilin antigenic and phase variation and DNA repair but are not involved in natural DNA transformation. This suggests that a RecF-like pathway of recombination exists in Gc. In addition, mutations in the Gc recB, recC or recD genes revealed that a Gc RecBCD pathway also exists and is involved in DNA transformation and DNA repair but not in pilin antigenic variation. PMID:10094619

  6. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    SciTech Connect

    Henrique Barreta, Marcos; Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de; Ferreira, Rogerio; Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias; Bordignon, Vilceu

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  7. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells

    SciTech Connect

    Sekine-Suzuki, Emiko; Yu, Dong; Kubota, Nobuo; Okayasu, Ryuichi; Anzai, Kazunori

    2008-12-12

    Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and {gamma}-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may not be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.

  8. The RecRO pathway of DNA recombinational repair in Helicobacter pylori and its role in bacterial survival in the host.

    PubMed

    Wang, Ge; Lo, Leja F; Maier, Robert J

    2011-04-01

    Two pathways for DNA recombination, AddAB (RecBCD-like) and RecRO, were identified in Helicobacter pylori, a pathogenic bacterium that colonizes human stomachs resulting in a series of gastric diseases. In this study, we examined the physiological roles of H. pylori RecRO pathway in DNA recombinational repair. We characterized H. pylori single mutants in recR and in recO, genes in the putative gap repair recombination pathway, and an addA recO double mutant that is thus deficient in both pathways that initiate DNA recombinational repair. The recR or recO single mutants showed the same level of sensitivity to mitomycin C as the parent strain, suggesting that the RecRO pathway is not responsible for the repair of DNA double strand breaks. However, H. pylori recR and recO mutants are highly sensitive to oxidative stress and separately to acid stress, two major stress conditions that H. pylori encounters in its physiological niche. The complementation of the recR mutant restored the sensitivity to oxidative and acid stress to the wild type level. By measuring DNA transformation frequencies, the recR and recO single mutants were shown to have no effect on inter-genomic recombination, whereas the addA recO double mutant had a greatly (∼12-fold) reduced transformation frequency. On the other hand, the RecRO pathway was shown to play a significant role in intra-genomic recombination with direct repeat sequences. Whereas the recA strain had a deletion frequency 35-fold lower than that of background level, inactivation of recR resulted in a 4-fold decrease in deletion frequency. In a mouse infection model, the three mutant strains displayed a greatly reduced ability to colonize the host stomachs. The geometric means of colonization number for the wild type, recR, recO, and addA recO strains were 6 x 10⁵, 1.6 x 10⁴, 1.4 x 10⁴ and 4 x 10³ CFU/g stomach, respectively. H. pylori RecRO-mediated DNA recombinational repair (intra-genomic recombination) is thus involved in

  9. The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast.

    PubMed

    Blaikley, Elizabeth J; Tinline-Purvis, Helen; Kasparek, Torben R; Marguerat, Samuel; Sarkar, Sovan; Hulme, Lydia; Hussey, Sharon; Wee, Boon-Yu; Deegan, Rachel S; Walker, Carol A; Pai, Chen-Chun; Bähler, Jürg; Nakagawa, Takuro; Humphrey, Timothy C

    2014-05-01

    DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.

  10. The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast

    PubMed Central

    Blaikley, Elizabeth J.; Tinline-Purvis, Helen; Kasparek, Torben R.; Marguerat, Samuel; Sarkar, Sovan; Hulme, Lydia; Hussey, Sharon; Wee, Boon-Yu; Deegan, Rachel S.; Walker, Carol A.; Pai, Chen-Chun; Bähler, Jürg; Nakagawa, Takuro; Humphrey, Timothy C.

    2014-01-01

    DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3ATR, Rad26ATRIP, Crb253BP1 or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability. PMID:24623809

  11. The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast.

    PubMed

    Blaikley, Elizabeth J; Tinline-Purvis, Helen; Kasparek, Torben R; Marguerat, Samuel; Sarkar, Sovan; Hulme, Lydia; Hussey, Sharon; Wee, Boon-Yu; Deegan, Rachel S; Walker, Carol A; Pai, Chen-Chun; Bähler, Jürg; Nakagawa, Takuro; Humphrey, Timothy C

    2014-05-01

    DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability. PMID:24623809

  12. Replication-Associated Recombinational Repair: Lessons from Budding Yeast

    PubMed Central

    Bonner, Jaclyn N.; Zhao, Xiaolan

    2016-01-01

    Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms. PMID:27548223

  13. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations.

    PubMed

    Iliakis, George; Murmann, Tamara; Soni, Aashish

    2015-11-01

    DNA double strand breaks (DSB) are the most deleterious lesions for the integrity of the genome, as their misrepair can lead to the formation of chromosome translocations. Cells have evolved two main repair pathways to suppress the formation of these genotoxic lesions: homology-dependent, error-free homologous recombination repair (HRR), and potentially error-prone, classical, DNA-PK-dependent non-homologous end-joining (c-NHEJ). The most salient feature of c-NHEJ, speed, will largely suppress chromosome translocation formation, while sequence alterations at the junction remain possible. It is now widely accepted that when c-NHEJ is inactivated, globally or locally, an alternative form of end-joining (alt-EJ) removes DSBs. Alt-EJ operates with speed and fidelity markedly lower than c-NHEJ, causing thus with higher probability chromosome translocations, and generating more extensive sequence alterations at the junction. Our working hypothesis is that alt-EJ operates as a backup to c-NHEJ. Recent results show that alt-EJ can also backup abrogated HRR in G2 phase cells, again at the cost of elevated formation of chromosome translocations. These observations raise alt-EJ to a global rescuing mechanism operating on ends that have lost their chromatin context in ways that compromise processing by HRR or c-NHEJ. While responsible for eliminating from the genome highly cytotoxic DNA ends, alt-EJ provides this function at the price of increased translocation formation. Here, we analyze recent literature on the mechanisms of chromosome translocation formation and propose a functional hierarchy among DSB processing pathways that makes alt-EJ the global backup pathway. We discuss possible ramifications of this model in cellular DSB management and pathway choice, and analyze its implications in radiation carcinogenesis and the design of novel therapeutic approaches.

  14. Interaction between Mismatch Repair and Genetic Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Alani, E.; Reenan, RAG.; Kolodner, R. D.

    1994-01-01

    The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA. PMID:8056309

  15. Nuclear position dictates DNA repair pathway choice

    PubMed Central

    Lemaître, Charlène; Grabarz, Anastazja; Tsouroula, Katerina; Andronov, Leonid; Furst, Audrey; Pankotai, Tibor; Heyer, Vincent; Rogier, Mélanie; Attwood, Kathleen M.; Kessler, Pascal; Dellaire, Graham; Klaholz, Bruno; Reina-San-Martin, Bernardo; Soutoglou, Evi

    2014-01-01

    Faithful DNA repair is essential to avoid chromosomal rearrangements and promote genome integrity. Nuclear organization has emerged as a key parameter in the formation of chromosomal translocations, yet little is known as to whether DNA repair can efficiently occur throughout the nucleus and whether it is affected by the location of the lesion. Here, we induce DNA double-strand breaks (DSBs) at different nuclear compartments and follow their fate. We demonstrate that DSBs induced at the nuclear membrane (but not at nuclear pores or nuclear interior) fail to rapidly activate the DNA damage response (DDR) and repair by homologous recombination (HR). Real-time and superresolution imaging reveal that DNA DSBs within lamina-associated domains do not migrate to more permissive environments for HR, like the nuclear pores or the nuclear interior, but instead are repaired in situ by alternative end-joining. Our results are consistent with a model in which nuclear position dictates the choice of DNA repair pathway, thus revealing a new level of regulation in DSB repair controlled by spatial organization of DNA within the nucleus. PMID:25366693

  16. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  17. Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

    PubMed Central

    Yildiz, Ozlem; Kearney, Hutton; Kramer, Benjamin C; Sekelsky, Jeff J

    2004-01-01

    Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift. PMID:15166153

  18. Signaling Pathways in Cartilage Repair

    PubMed Central

    Mariani, Erminia; Pulsatelli, Lia; Facchini, Andrea

    2014-01-01

    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. PMID:24837833

  19. Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae

    PubMed Central

    Pâques, Frédéric; Haber, James E.

    1999-01-01

    The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination. PMID:10357855

  20. Regulators of homologous recombination repair as novel targets for cancer treatment

    PubMed Central

    Krajewska, Małgorzata; Fehrmann, Rudolf S. N.; de Vries, Elisabeth G. E.; van Vugt, Marcel A. T. M.

    2015-01-01

    To cope with DNA damage, cells possess a complex signaling network called the ‘DNA damage response’, which coordinates cell cycle control with DNA repair. The importance of this network is underscored by the cancer predisposition that frequently goes along with hereditary mutations in DNA repair genes. One especially important DNA repair pathway in this respect is homologous recombination (HR) repair. Defects in HR repair are observed in various cancers, including hereditary breast, and ovarian cancer. Intriguingly, tumor cells with defective HR repair show increased sensitivity to chemotherapeutic reagents, including platinum-containing agents. These observations suggest that HR-proficient tumor cells might be sensitized to chemotherapeutics if HR repair could be therapeutically inactivated. HR repair is an extensively regulated process, which depends strongly on the activity of various other pathways, including cell cycle pathways, protein-control pathways, and growth factor-activated receptor signaling pathways. In this review, we discuss how the mechanistic wiring of HR is controlled by cell-intrinsic or extracellular pathways. Furthermore, we have performed a meta-analysis on available genome-wide RNA interference studies to identify additional pathways that control HR repair. Finally, we discuss how these HR-regulatory pathways may provide therapeutic targets in the context of radio/chemosensitization. PMID:25852742

  1. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  2. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.

    PubMed

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L

    2012-11-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. PMID:23088412

  3. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.

    PubMed

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L

    2012-11-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior.

  4. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral

  5. Stress and DNA repair biology of the Fanconi anemia pathway

    PubMed Central

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  6. TOPBP1 takes RADical command in recombinational DNA repair.

    PubMed

    Liu, Yi; Smolka, Marcus B

    2016-02-01

    TOPBP1 is a key player in DNA replication and DNA damage signaling. In this issue, Moudry et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201507042) uncover a crucial role for TOPBP1 in DNA repair by revealing its requirement for RAD51 loading during repair of double strand breaks by homologous recombination. PMID:26811424

  7. Restriction-Stimulated Homologous Recombination of Plasmids by the Rece Pathway of Escherichia Coli

    PubMed Central

    Nussbaum, A.; Shalit, M.; Cohen, A.

    1992-01-01

    To test the double-strand break (DSB) repair model in recombination by the RecE pathway of Escherichia coli, we constructed chimeric phages that allow restriction-mediated release of linear plasmid substrates of the bioluminescence recombination assay in infected EcoRI(+) cells. Kinetics of DSB repair and expression of recombination products were followed by Southern hybridization and by the bioluminescence recombination assay, respectively. Plasmid recombinants were analyzed with restriction endonucleases. Our results indicate that a DSB can induce more than one type of RecE-mediated recombination. A DSB within the homology induced intermolecular recombination that followed the rules of the DSB repair model: (1) Recombination was enhanced by in vivo restriction. (2) Repair of the break depended on homologous sequences on the resident plasmid. (3) Break-repair was frequently associated with conversion of alleles that were cis to the break. (4) Conversion frequency decreased as the distance from the break increased. (5) Some clones contained a mixture of plasmid recombinants as expected by replication of a heteroduplex in the primary recombinant. The rules of the DSB repair model were not followed when recombination was induced by a DSB outside the homology. Both the cut and the uncut substrates were recipients in conversion events. Recombination events were associated with deletions that spanned the break site, but these deletions did not reach the homology. We propose that a break outside the homology may stimulate a RecE-mediated recombination pathway that does not involve direct participation of DNA ends in the homologous pairing reaction. PMID:1732167

  8. DNA Polymerase POLN Participates in Cross-Link Repair and Homologous Recombination ▿ †

    PubMed Central

    Moldovan, George-Lucian; Madhavan, Mahesh V.; Mirchandani, Kanchan D.; McCaffrey, Ryan M.; Vinciguerra, Patrizia; D'Andrea, Alan D.

    2010-01-01

    All cells rely on DNA polymerases to duplicate their genetic material and to repair or bypass DNA lesions. In humans, 16 polymerases have been identified, and each bears specific functions in genome maintenance. We identified here the recently discovered polymerase POLN to be involved in repair of DNA cross-links. Such DNA lesions are highly toxic and are believed to be repaired by the sequential activity of nucleotide excision repair, translesion synthesis, and homologous recombination mechanisms. By functionally assaying its role in these processes, we unraveled an unexpected involvement of POLN in homologous recombination. Moreover, we obtained evidence for physical and functional interaction of POLN with factors belonging to the Fanconi anemia pathway, a master regulator of cross-link repair. Finally, we show that POLN interacts and cooperates in DNA repair with the helicase HEL308, which shares a common origin with POLN in the Drosophila mus308 gene. Our data indicate that this novel polymerase-helicase complex participates in homologous recombination repair and is essential for cellular protection against DNA cross-links. PMID:19995904

  9. How SUMOylation Fine-Tunes the Fanconi Anemia DNA Repair Pathway.

    PubMed

    Coleman, Kate E; Huang, Tony T

    2016-01-01

    Fanconi anemia (FA) is a rare human genetic disorder characterized by developmental defects, bone marrow failure and cancer predisposition, primarily due to a deficiency in the repair of DNA interstrand crosslinks (ICLs). ICL repair through the FA DNA repair pathway is a complicated multi-step process, involving at least 19 FANC proteins and coordination of multiple DNA repair activities, including homologous recombination, nucleotide excision repair and translesion synthesis (TLS). SUMOylation is a critical regulator of several DNA repair pathways, however, the role of this modification in controlling the FA pathway is poorly understood. Here, we summarize recent advances in the fine-tuning of the FA pathway by small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) and other SUMO-related interactions, and discuss the implications of these findings in the design of novel therapeutics for alleviating FA-associated condition, including cancer. PMID:27148358

  10. Targeting Endogenous Repair Pathways after AKI.

    PubMed

    Humphreys, Benjamin D; Cantaluppi, Vincenzo; Portilla, Didier; Singbartl, Kai; Yang, Li; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-04-01

    AKI remains a highly prevalent disease associated with poor short- and long-term outcomes and high costs. Although significant advances in our understanding of repair after AKI have been made over the last 5 years, this knowledge has not yet been translated into new AKI therapies. A consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 and reviewed new evidence on successful kidney repair to identify the most promising pathways that could be translated into new treatments. In this paper, we provide a summary of current knowledge regarding successful kidney repair and offer a framework for conceptualizing the therapeutic targeting that may facilitate this process. We outline gaps in knowledge and suggest a research agenda to more efficiently bring new discoveries regarding repair after AKI to the clinic.

  11. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair.

    PubMed

    Ceccaldi, Raphael; Liu, Jessica C; Amunugama, Ravindra; Hajdu, Ildiko; Primack, Benjamin; Petalcorin, Mark I R; O'Connor, Kevin W; Konstantinopoulos, Panagiotis A; Elledge, Stephen J; Boulton, Simon J; Yusufzai, Timur; D'Andrea, Alan D

    2015-02-12

    Large-scale genomic studies have shown that half of epithelial ovarian cancers (EOCs) have alterations in genes regulating homologous recombination (HR) repair. Loss of HR accounts for the genomic instability of EOCs and for their cellular hyper-dependence on alternative poly-ADP ribose polymerase (PARP)-mediated DNA repair mechanisms. Previous studies have implicated the DNA polymerase θ (Polθ also known as POLQ, encoded by POLQ) in a pathway required for the repair of DNA double-strand breaks, referred to as the error-prone microhomology-mediated end-joining (MMEJ) pathway. Whether Polθ interacts with canonical DNA repair pathways to prevent genomic instability remains unknown. Here we report an inverse correlation between HR activity and Polθ expression in EOCs. Knockdown of Polθ in HR-proficient cells upregulates HR activity and RAD51 nucleofilament assembly, while knockdown of Polθ in HR-deficient EOCs enhances cell death. Consistent with these results, genetic inactivation of an HR gene (Fancd2) and Polq in mice results in embryonic lethality. Moreover, Polθ contains RAD51 binding motifs and it blocks RAD51-mediated recombination. Our results reveal a synthetic lethal relationship between the HR pathway and Polθ-mediated repair in EOCs, and identify Polθ as a novel druggable target for cancer therapy.

  12. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway

    PubMed Central

    Kim, Hyungjin; D'Andrea, Alan D.

    2012-01-01

    The maintenance of genome stability is critical for survival, and its failure is often associated with tumorigenesis. The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links (ICLs), and a germline defect in the pathway results in FA, a cancer predisposition syndrome driven by genome instability. Central to this pathway is the monoubiquitination of FANCD2, which coordinates multiple DNA repair activities required for the resolution of ICLs. Recent studies have demonstrated how the FA pathway coordinates three critical DNA repair processes, including nucleolytic incision, translesion DNA synthesis (TLS), and homologous recombination (HR). Here, we review recent advances in our understanding of the downstream ICL repair steps initiated by ubiquitin-mediated FA pathway activation. PMID:22751496

  13. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.

    PubMed

    Chambers, S R; Hunter, N; Louis, E J; Borts, R H

    1996-11-01

    Efficient genetic recombination requires near-perfect homology between participating molecules. Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. The effects of chromosomal divergence in diploids of Saccharomyces cerevisiae in which one copy of chromosome III is derived from a closely related species, Saccharomyces paradoxus, have been examined. Meiotic recombination between the diverged chromosomes is decreased by 25-fold. Spore viability is reduced with an observable increase in the number of tetrads with only two or three viable spores. Asci with only two viable spores are disomic for chromosome III, consistent with meiosis I nondisjunction of the homeologs. Asci with three viable spores are highly enriched for recombinants relative to tetrads with four viable spores. In 96% of the class with three viable spores, only one spore possesses a recombinant chromosome III, suggesting that the recombination process itself contributes to meiotic death. This phenomenon is dependent on the activities of the mismatch repair genes PMS1 and MSH2. A model of mismatch-stimulated chromosome loss is proposed to account for this observation. As expected, crossing over is increased in pms1 and msh2 mutants. Furthermore, genetic exchange in pms1 msh2 double mutants is affected to a greater extent than in either mutant alone, suggesting that the two proteins act independently to inhibit homeologous recombination. All mismatch repair-deficient strains exhibited reductions in the rate of chromosome III nondisjunction. PMID:8887641

  14. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    PubMed Central

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A.

    2015-01-01

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer. PMID:26197339

  15. Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

    PubMed Central

    Lee, Jae-Young; Kim, Dae-Kwan; Ko, Jeong-Jae; Kim, Keun Pil; Park, Kyung-Soon

    2016-01-01

    Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (γH2AX), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process. PMID:27660832

  16. Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway.

    PubMed

    Lee, Jae-Young; Kim, Dae-Kwan; Ko, Jeong-Jae; Kim, Keun Pil; Park, Kyung-Soon

    2016-06-01

    Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (γH2AX), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process. PMID:27660832

  17. Repair Pathway Choices and Consequences at the Double-Strand Break.

    PubMed

    Ceccaldi, Raphael; Rondinelli, Beatrice; D'Andrea, Alan D

    2016-01-01

    DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.

  18. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway

    PubMed Central

    Lieber, Michael R.

    2011-01-01

    Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759

  19. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed Central

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-01

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking. PMID:15065659

  20. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-29

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking.

  1. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways

    PubMed Central

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S.

    2013-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in E. coli and constitute the major pathway of error free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via nonhomologous end-joining (NHEJ) catalyzed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ, and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. PMID:21219454

  2. Genome-wide Transcriptome Profiling of Homologous Recombination DNA Repair

    PubMed Central

    Peng, Guang; Lin, Curtis Chun-Jen; Mo, Wei; Dai, Hui; Park, Yun-Yong; Kim, Soo-Mi; Peng, Yang; Mo, Qianxing; Siwko, Stefan; Hu, Ruozhen; Lee, Ju-Seog; Hennessy, Bryan; Hanash, Samir; Mills, Gordon B.; Lin, Shiaw-Yih

    2014-01-01

    Homologous recombination (HR) repair deficiency predisposes to cancer development, but also sensitizes cancer cells to DNA-damage-inducing therapeutics. Here we identify an HR-defect (HRD) gene signature, which can be used to functionally assess HR repair status without interrogating individual genetic alterations in cells. By using this HRD gene signature as a functional network analysis tool, we discover that simultaneous loss of two major tumor suppressors BRCA1 and PTEN extensively rewire the HR repair-deficient phenotype, which is found in cells with defects in either BRCA1 or PTEN alone. Moreover, the HRD gene signature serves as an effective drug discovery platform to identify agents targeting HR repair as potential chemo/radio-sensitizers. More importantly, this HRD gene signature is able to predict clinical outcomes across multiple cancer lineages. Our findings, therefore, provide a molecular profile of HR repair to assess its status at a functional network level, which can provide both biological insights and have clinical implications in cancer. PMID:24553445

  3. DNA double strand break repair pathway choice: a chromatin based decision?

    PubMed

    Clouaire, T; Legube, G

    2015-01-01

    DNA double-strand breaks (DSBs) are highly toxic lesions that can be rapidly repaired by 2 main pathways, namely Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). The choice between these pathways is a critical, yet not completely understood, aspect of DSB repair. We recently found that distinct DSBs induced across the genome are not repaired by the same pathway. Indeed, DSBs induced in active genes, naturally enriched in the trimethyl form of histone H3 lysine 36 (H3K36me3), are channeled to repair by HR, in a manner depending on SETD2, the major H3K36 trimethyltransferase. Here, we propose that these findings may be generalized to other types of histone modifications and repair machineries thus defining a "DSB repair choice histone code". This "decision making" function of preexisting chromatin structure in DSB repair could connect the repair pathway used to the type and function of the damaged region, not only contributing to genome stability but also to its diversity. PMID:25675367

  4. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    PubMed

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation.

  5. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination

    SciTech Connect

    Hoang, Margaret L.; Tan, Frederick J.; Lai, David C.; Celniker, Sue E.; Hoskins, Roger A.; Dunham, Maitreya J.; Zheng, Yixian; Koshland, Douglas

    2010-08-27

    Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.

  6. Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide.

    PubMed

    Stohl, Elizabeth A; Seifert, H Steven

    2006-11-01

    The strict human pathogen Neisseria gonorrhoeae is exposed to oxidative damage during infection. N. gonorrhoeae has many defenses that have been demonstrated to counteract oxidative damage. However, recN is the only DNA repair and recombination gene upregulated in response to hydrogen peroxide (H(2)O(2)) by microarray analysis and subsequently shown to be important for oxidative damage protection. We therefore tested the importance of RecA and DNA recombination and repair enzymes in conferring resistance to H(2)O(2) damage. recA mutants, as well as RecBCD (recB, recC, and recD) and RecF-like pathway mutants (recJ, recO, and recQ), all showed decreased resistance to H(2)O(2). Holliday junction processing mutants (ruvA, ruvC, and recG) showed decreased resistance to H(2)O(2) resistance as well. Finally, we show that RecA protein levels did not increase as a result of H(2)O(2) treatment. We propose that RecA, recombinational DNA repair, and branch migration are all important for H(2)O(2) resistance in N. gonorrhoeae but that constitutive levels of these enzymes are sufficient for providing protection against oxidative damage by H(2)O(2). PMID:16936020

  7. Nonhomologous end-joining repair plays a more important role than homologous recombination repair in defining radiosensitivity after exposure to high-LET radiation.

    PubMed

    Takahashi, Akihisa; Kubo, Makoto; Ma, Hongyu; Nakagawa, Akiko; Yoshida, Yukari; Isono, Mayu; Kanai, Tatsuaki; Ohno, Tatsuya; Furusawa, Yoshiya; Funayama, Tomoo; Kobayashi, Yasuhiko; Nakano, Takashi

    2014-09-01

    DNA double-strand breaks (DSBs) induced by ionizing radiation pose a major threat to cell survival. The cell can respond to the presence of DSBs through two major repair pathways: homologous recombination (HR) and nonhomologous end joining (NHEJ). Higher levels of cell death are induced by high-linear energy transfer (LET) radiation when compared to low-LET radiation, even at the same physical doses, due to less effective and efficient DNA repair. To clarify whether high-LET radiation inhibits all repair pathways or specifically one repair pathway, studies were designed to examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Embryonic fibroblasts bearing repair gene (NHEJ-related Lig4 and/or HR-related Rad54) knockouts (KO) were used and their responses were compared to wild-type cells. The cells were exposed to X rays, spread-out Bragg peak (SOBP) carbon ion beams as well as with carbon, iron, neon and argon ions. Cell survival was measured with colony-forming assays. The sensitization enhancement ratio (SER) values were calculated using the 10% survival dose of wild-type cells and repair-deficient cells. Cellular radiosensitivity was listed in descending order: double-KO cells > Lig4-KO cells > Rad54-KO cells > wild-type cells. Although Rad54-KO cells had an almost constant SER value, Lig4-KO cells showed a high-SER value when compared to Rad54-KO cells, even with increasing LET values. These results suggest that with carbon-ion therapy, targeting NHEJ repair yields higher radiosensitivity than targeting homologous recombination repair. PMID:25117625

  8. Drosophila brca2 Is Required for Mitotic and Meiotic DNA Repair and Efficient Activation of the Meiotic Recombination Checkpoint

    PubMed Central

    Klovstad, Martha; Abdu, Uri; Schüpbach, Trudi

    2008-01-01

    Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of homologous recombination, non-homologous end-joining, and single-strand annealing in the pre-meiotic germline of Drosophila males. We show that repair by homologous recombination is dramatically decreased in Drosophila brca2 mutants. Instead, large flanking deletions are formed, and repair by the non-conservative single-strand annealing pathway predominates. We further show that during meiosis, Drosophila Brca2 has a dual role in the repair of meiotic double-stranded breaks and the efficient activation of the meiotic recombination checkpoint. The eggshell patterning defects that result from activation of the meiotic recombination checkpoint in other meiotic DNA repair mutants can be strongly suppressed by mutations in brca2. In addition, Brca2 co-immunoprecipitates with the checkpoint protein Rad9, suggesting a direct role for Brca2 in the transduction of the meiotic recombination checkpoint signal. PMID:18266476

  9. In vivo Importance of Homologous Recombination DNA Repair for Mouse Neural Stem and Progenitor Cells

    PubMed Central

    Rousseau, Laure; Etienne, Olivier; Roque, Telma; Desmaze, Chantal; Haton, Céline; Mouthon, Marc-André; Bernardino-Sgherri, Jacqueline; Essers, Jeroen; Kanaar, Roland; Boussin, François D.

    2012-01-01

    We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways. PMID:22666344

  10. Targeting DNA repair pathways for cancer treatment: what's new?

    PubMed Central

    Kelley, Mark R; Logsdon, Derek; Fishel, Melissa L

    2014-01-01

    Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing body of evidence indicates that tumors accumulate progressively more mutations in DNA repair proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic treatments, so understanding those mechanisms and finding ways to turn dysregulated repair processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts. Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and challenge, as more intricacies of each repair pathway are discovered. In an era of increasing concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective stewardship of R&D resources and patient expenses. PMID:24947262

  11. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication

    PubMed Central

    Kuzminov, Andrei; Stahl, Franklin W.

    1999-01-01

    To study the relationship between homologous recombination and DNA replication in Escherichia coli, we monitored the behavior of phage λ chromosomes, repressed or not for λ gene activities. Recombination in our system is stimulated both by DNA replication and by experimentally introduced double-strand ends, supporting the idea that DNA replication generates occasional double-strand ends. We report that the RecBC recombinational pathway of E. coli uses double-strand ends to prime DNA synthesis, implying a circular relationship between DNA replication and recombination and suggesting that the primary role of recombination is in the repair of disintegrated replication forks arising during vegetative reproduction. PMID:9990858

  12. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  13. PriA mediates DNA replication pathway choice at recombination intermediates.

    PubMed

    Xu, Liewei; Marians, Kenneth J

    2003-03-01

    We report the reconstitution of the initial steps of the double-strand break-repair pathway where joint molecule formation between a duplex DNA fragment and a circular template by the combined action of RecA, RecBCD, and the single-stranded DNA binding protein provides the substrate for replication fork formation by the restart primosome and the DNA polymerase III holoenzyme. We show that PriA dictates the pathway of replication from the recombination intermediate by inhibiting a nonspecific, strand displacement DNA synthesis reaction and favoring the formation of a bona fide replication fork. Furthermore, we find that RecO and RecR significantly stimulate this recombination-directed DNA replication reaction, and that this stimulation is modulated by the presence of RecF, suggesting that the latter protein may also act as a regulator of the pathway of resolution of the recombination intermediate. PMID:12667462

  14. Analysis of BRCA1 Variants in Double-Strand Break Repair by Homologous Recombination and Single-Strand Annealing

    PubMed Central

    Towler, William I.; Zhang, Jie; Ransburgh, Derek J. R.; Toland, Amanda E.; Ishioka, Chikashi; Chiba, Natsuko; Parvin, Jeffrey D.

    2014-01-01

    Missense substitutions of uncertain clinical significance in the BRCA1 gene are a vexing problem in genetic counseling for women who have a family history of breast cancer. In this study, we evaluated the functions of 29 missense substitutions of BRCA1 in two DNA repair pathways. Repair of double-strand breaks by homology-directed recombination (HDR) had been previously analyzed for 16 of these BRCA1 variants, and 13 more variants were analyzed in this study. All 29 variants were also analyzed for function in double-strand break repair by the single-strand annealing (SSA) pathway. We found that among the pathogenic mutations in BRCA1, all were defective for DNA repair by either pathway. The HDR assay was accurate because all pathogenic mutants were defective for HDR, and all nonpathogenic variants were fully functional for HDR. Repair by SSA accurately identified pathogenic mutants, but several nonpathogenic variants were scored as defective or partially defective. These results indicated that specific amino acid residues of the BRCA1 protein have different effects in the two related DNA repair pathways, and these results validate the HDR assay as highly correlative with BRCA1-associated breast cancer. PMID:23161852

  15. DNA double-strand break repair pathway choice and cancer

    PubMed Central

    Aparicio, Tomas; Baer, Richard

    2014-01-01

    Summary Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB “mis-repair”, in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer. PMID:24746645

  16. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae.

    PubMed Central

    Milne, G T; Jin, S; Shannon, K B; Weaver, D T

    1996-01-01

    DNA double-strand break (DSB) repair in mammalian cells is dependent on the Ku DNA binding protein complex. However, the mechanism of Ku-mediated repair is not understood. We discovered a Saccharomyces cerevisiae gene (KU80) that is structurally similar to the 80-kDa mammalian Ku subunit. Ku8O associates with the product of the HDF1 gene, forming the major DNA end-binding complex of yeast cells. DNA end binding was absent in ku80delta, hdf1delta, or ku80delta hdf1delta strains. Antisera specific for epitope tags on Ku80 and Hdf1 were used in supershift and immunodepletion experiments to show that both proteins are directly involved in DNA end binding. In vivo, the efficiency of two DNA end-joining processes were reduced >10-fold in ku8Odelta, hdfldelta, or ku80delta hdf1delta strains: repair of linear plasmid DNA and repair of an HO endonuclease-induced chromosomal DSB. These DNA-joining defects correlated with DNA damage sensitivity, because ku80delta and hdf1delta strains were also sensitive to methylmethane sulfonate (MMS). Ku-dependent repair is distinct from homologous recombination, because deletion of KU80 and HDF1 increased the MMS sensitivity of rad52delta. Interestingly, rad5Odelta, also shown here to be defective in end joining, was epistatic with Ku mutations for MMS repair and end joining. Therefore, Ku and Rad50 participate in an end-joining pathway that is distinct from homologous recombinational repair. Yeast DNA end joining is functionally analogous to DSB repair and V(D)J recombination in mammalian cells. PMID:8754818

  17. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation

    PubMed Central

    Osipov, Andreyan N.; Grekhova, Anna; Pustovalova, Margarita; Ozerov, Ivan V.; Eremin, Petr; Vorobyeva, Natalia; Lazareva, Natalia; Pulin, Andrey; Zhavoronkov, Alex; Roumiantsev, Sergey; Klokov, Dmitry; Eremin, Ilya

    2015-01-01

    Molecular and cellular responses to protracted ionizing radiation exposures are poorly understood. Using immunofluorescence microscopy, we studied the kinetics of DNA repair foci formation in normal human fibroblasts exposed to X-rays at a dose rate of 4.5 mGy/min for up to 6 h. We showed that both the number of γH2AX foci and their integral fluorescence intensity grew linearly with time of irradiation up to 2 h. A plateau was observed between 2 and 6 h of exposure, indicating a state of balance between formation and repair of DNA double-strand breaks. In contrast, the number and intensity of foci formed by homologous recombination protein RAD51 demonstrated a continuous increase during 6 h of irradiation. We further showed that the enhancement of the homologous recombination repair was not due to redistribution of cell cycle phases. Our results indicate that continuous irradiation of normal human cells triggers DNA repair responses that are different from those elicited after acute irradiation. The observed activation of the error-free homologous recombination DNA double-strand break repair pathway suggests compensatory adaptive mechanisms that may help alleviate long-term biological consequences and could potentially be utilized both in radiation protection and medical practices. PMID:26337087

  18. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation.

    PubMed

    Osipov, Andreyan N; Grekhova, Anna; Pustovalova, Margarita; Ozerov, Ivan V; Eremin, Petr; Vorobyeva, Natalia; Lazareva, Natalia; Pulin, Andrey; Zhavoronkov, Alex; Roumiantsev, Sergey; Klokov, Dmitry; Eremin, Ilya

    2015-09-29

    Molecular and cellular responses to protracted ionizing radiation exposures are poorly understood. Using immunofluorescence microscopy, we studied the kinetics of DNA repair foci formation in normal human fibroblasts exposed to X-rays at a dose rate of 4.5 mGy/min for up to 6 h. We showed that both the number of γH2AX foci and their integral fluorescence intensity grew linearly with time of irradiation up to 2 h. A plateau was observed between 2 and 6 h of exposure, indicating a state of balance between formation and repair of DNA double-strand breaks. In contrast, the number and intensity of foci formed by homologous recombination protein RAD51 demonstrated a continuous increase during 6 h of irradiation. We further showed that the enhancement of the homologous recombination repair was not due to redistribution of cell cycle phases. Our results indicate that continuous irradiation of normal human cells triggers DNA repair responses that are different from those elicited after acute irradiation. The observed activation of the error-free homologous recombination DNA double-strand break repair pathway suggests compensatory adaptive mechanisms that may help alleviate long-term biological consequences and could potentially be utilized both in radiation protection and medical practices. PMID:26337087

  19. RAD6 Promotes Homologous Recombination Repair by Activating the Autophagy-Mediated Degradation of Heterochromatin Protein HP1

    PubMed Central

    Chen, Su; Wang, Chen; Sun, Luxi; Wang, Da-Liang; Chen, Lu; Huang, Zhuan; Yang, Qi; Gao, Jie; Yang, Xi-Bin; Chang, Jian-Feng; Chen, Ping; Lan, Li

    2014-01-01

    Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients. PMID:25384975

  20. A Dominant Mutation in Human RAD51 Reveals Its Function in DNA Interstrand Crosslink Repair Independent of Homologous Recombination.

    PubMed

    Wang, Anderson T; Kim, Taeho; Wagner, John E; Conti, Brooke A; Lach, Francis P; Huang, Athena L; Molina, Henrik; Sanborn, Erica M; Zierhut, Heather; Cornes, Belinda K; Abhyankar, Avinash; Sougnez, Carrie; Gabriel, Stacey B; Auerbach, Arleen D; Kowalczykowski, Stephen C; Smogorzewska, Agata

    2015-08-01

    Repair of DNA interstrand crosslinks requires action of multiple DNA repair pathways, including homologous recombination. Here, we report a de novo heterozygous T131P mutation in RAD51/FANCR, the key recombinase essential for homologous recombination, in a patient with Fanconi anemia-like phenotype. In vitro, RAD51-T131P displays DNA-independent ATPase activity, no DNA pairing capacity, and a co-dominant-negative effect on RAD51 recombinase function. However, the patient cells are homologous recombination proficient due to the low ratio of mutant to wild-type RAD51 in cells. Instead, patient cells are sensitive to crosslinking agents and display hyperphosphorylation of Replication Protein A due to increased activity of DNA2 and WRN at the DNA interstrand crosslinks. Thus, proper RAD51 function is important during DNA interstrand crosslink repair outside of homologous recombination. Our study provides a molecular basis for how RAD51 and its associated factors may operate in a homologous recombination-independent manner to maintain genomic integrity. PMID:26253028

  1. DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice

    PubMed Central

    2010-01-01

    Background The DNA repair and recombination (DRR) proteins protect organisms against genetic damage, caused by environmental agents and other genotoxic agents, by removal of DNA lesions or helping to abide them. Results We identified genes potentially involved in DRR mechanisms in Arabidopsis and rice using similarity searches and conserved domain analysis against proteins known to be involved in DRR in human, yeast and E. coli. As expected, many of DRR genes are very similar to those found in other eukaryotes. Beside these eukaryotes specific genes, several prokaryotes specific genes were also found to be well conserved in plants. In Arabidopsis, several functionally important DRR gene duplications are present, which do not occur in rice. Among DRR proteins, we found that proteins belonging to the nucleotide excision repair pathway were relatively more conserved than proteins needed for the other DRR pathways. Sub-cellular localization studies of DRR gene suggests that these proteins are mostly reside in nucleus while gene drain in between nucleus and cell organelles were also found in some cases. Conclusions The similarities and dissimilarities in between plants and other organisms' DRR pathways are discussed. The observed differences broaden our knowledge about DRR in the plants world, and raises the potential question of whether differentiated functions have evolved in some cases. These results, altogether, provide a useful framework for further experimental studies in these organisms. PMID:20646326

  2. Pre-Exposure to Ionizing Radiation Stimulates DNA Double Strand Break End Resection, Promoting the Use of Homologous Recombination Repair

    PubMed Central

    Oike, Takahiro; Okayasu, Ryuichi; Murakami, Takeshi; Nakano, Takashi; Shibata, Atsushi

    2015-01-01

    The choice of DNA double strand break (DSB) repair pathway is determined at the stage of DSB end resection. Resection was proposed to control the balance between the two major DSB repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Here, we examined the regulation of DSB repair pathway choice at two-ended DSBs following ionizing radiation (IR) in G2 phase of the cell cycle. We found that cells pre-exposed to low-dose IR preferred to undergo HR following challenge IR in G2, whereas NHEJ repair kinetics in G1 were not affected by pre-IR treatment. Consistent with the increase in HR usage, the challenge IR induced Replication protein A (RPA) foci formation and RPA phosphorylation, a marker of resection, were enhanced by pre-IR. However, neither major DNA damage signals nor the status of core NHEJ proteins, which influence the choice of repair pathway, was significantly altered in pre-IR treated cells. Moreover, the increase in usage of HR due to pre-IR exposure was prevented by treatment with ATM inhibitor during the incubation period between pre-IR and challenge IR. Taken together, the results of our study suggest that the ATM-dependent damage response after pre-IR changes the cellular environment, possibly by regulating gene expression or post-transcriptional modifications in a manner that promotes resection. PMID:25826455

  3. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis.

    PubMed

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia; Altmannova, Veronika; Sebesta, Marek; Pacesa, Martin; Fugger, Kasper; Sorensen, Claus Storgaard; Lee, Marietta Y W T; Haracska, Lajos; Krejci, Lumir

    2016-04-20

    Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.

  4. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells.

    PubMed Central

    Deng, W P; Nickoloff, J A

    1994-01-01

    Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication. Images PMID:8264607

  5. Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair

    PubMed Central

    Mehta, Anuja; Haber, James E.

    2014-01-01

    DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination. PMID:25104768

  6. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer

    PubMed Central

    Mosig, Gisela; Gewin, John; Luder, Andreas; Colowick, Nancy; Vo, Daniel

    2001-01-01

    Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses. PMID:11459968

  7. DNA damage tolerance by recombination: Molecular pathways and DNA structures.

    PubMed

    Branzei, Dana; Szakal, Barnabas

    2016-08-01

    Replication perturbations activate DNA damage tolerance (DDT) pathways, which are crucial to promote replication completion and to prevent fork breakage, a leading cause of genome instability. One mode of DDT uses translesion synthesis polymerases, which however can also introduce mutations. The other DDT mode involves recombination-mediated mechanisms, which are generally accurate. DDT occurs prevalently postreplicatively, but in certain situations homologous recombination is needed to restart forks. Fork reversal can function to stabilize stalled forks, but may also promote error-prone outcome when used for fork restart. Recent years have witnessed important advances in our understanding of the mechanisms and DNA structures that mediate recombination-mediated damage-bypass and highlighted principles that regulate DDT pathway choice locally and temporally. In this review we summarize the current knowledge and paradoxes on recombination-mediated DDT pathways and their workings, discuss how the intermediate DNA structures may influence genome integrity, and outline key open questions for future research. PMID:27236213

  8. Molecular recombination and the repair of DNA double-strand breaks in CHO cells.

    PubMed Central

    Resnick, M A; Moore, P D

    1979-01-01

    Molecular recombination and the repair of DNA double-strand breaks (DSB) have been examined in the G-0 and S phase of the cell cycle using a temperature-sensitive CHO cell line to test i) if there are cell cycle restrictions on the repair of DSB's' ii) the extent to which molecular recombination can be induced between either sister chromatids or homologous chromosomes and iii) whether repair of DSB's involves recombination (3). Mitomycin C (1-2 micrograms/ml) or ionizing radiation (50 krad) followed by incubation resulted in molecular recombination (hybrid DNA) in S phase cells. Approximately 0.03 to 0.10% of the molecules (number average molecular weight: 5.6 x 10(6) Daltons after shearing) had hybrid regions for more than 75% of their length. However, no recombination was detected in G-0 cells. Since the repair of DSB was observed in both stages with more than 50% of the breaks repaired in 5 hours, it appears that DSB repair in G-0 cells does not involve recombination between homologous chromosomes. The possibility is not excluded that repair in G-0 cells involves only small regions (less than 4 x 10(6) Daltons). PMID:493136

  9. DNA repair choice defines a common pathway for recruitment of chromatin regulators

    PubMed Central

    Bennett, Gwendolyn; Papamichos-Chronakis, Manolis; Peterson, Craig L.

    2013-01-01

    DNA double-strand break (DSB) repair is essential for maintenance of genome stability. Recent work has implicated a host of chromatin regulators in the DNA damage response, and although several functional roles have been defined, the mechanisms that control their recruitment to DNA lesions remain unclear. Here, we find that efficient DSB recruitment of the INO80, SWR-C, NuA4, SWI/SNF, and RSC enzymes is inhibited by the non-homologous end joining machinery, and that their recruitment is controlled by early steps of homologous recombination. Strikingly, we find no significant role for H2A.X phosphorylation (γH2AX) in the recruitment of chromatin regulators, but rather their recruitment coincides with reduced levels of γH2AX. Our work indicates that cell cycle position plays a key role in DNA repair pathway choice and that recruitment of chromatin regulators is tightly coupled to homologous recombination. PMID:23811932

  10. SOS induction by gamma-radiation in Escherichia coli strains defective in repair and/or recombination mechanisms.

    PubMed

    Breña-Valle, M; Serment-Guerrero, J

    1998-11-01

    Ionizing radiation causes several types of DNA lesions, mainly single- or double-strand breaks and base damage. By means of the chromotest, an assay that allows the level of the SOS response to be monitored via beta-galactosidase enzymatic activity, the roles of several repair (uvrA, recN and oxyR) and recombination (recB, recJ and recO) genes in the response of Escherichia coli to gamma-radiation were studied. The results indicate that all the repair- and recombination-deficient strains were more sensitive to the lethal effects of ionizing radiation. However, the SOS activation pattern was somewhat different. The minimal inducing dose in uvrA and recN mutants was lower than in the wild-type, whereas their SOS response was higher at all doses. Conversely, in the strains lacking an active recB, recJ or recO gene, the doubling dose was almost the same as in the wild-type but the level of induction remained stable over a wide dose range. These findings suggest that neither single- nor double-strand breaks are in themselves direct SOS inducers and that while uvrA, recN and oxyR take part in different repair or protective pathways, apparently recB, recJ and recO participate in damage processing leading to SOS induction, as well as in recombination repair. PMID:9862197

  11. The role of Drosophila mismatch repair in suppressing recombination between diverged sequences.

    PubMed

    Do, Anthony T; LaRocque, Jeannine R

    2015-11-30

    DNA double-strand breaks (DSBs) must be accurately repaired to maintain genomic integrity. DSBs can be repaired by homologous recombination (HR), which uses an identical sequence as a template to restore the genetic information lost at the break. Suppression of recombination between diverged sequences is essential to the repair of DSBs without aberrant and potentially mutagenic recombination between non-identical sequences, such as Alu repeats in the human genome. The mismatch repair (MMR) machinery has been found to suppress recombination between diverged sequences in murine cells. To test if this phenomenon is conserved in whole organisms, two DSB repair systems were utilized in Drosophila melanogaster. The DR-white and DR-white.mu assays provide a method of measuring DSB repair outcomes between identical and diverged sequences respectively. msh6(-/-) flies, deficient in MMR, were not capable of suppressing recombination between sequences with 1.4% divergence, and the average gene conversion tract length did not differ between msh6(-/+) and msh6(-/-)flies. These findings suggest that MMR has an early role in suppressing recombination between diverged sequences that is conserved in Drosophila.

  12. Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin.

    PubMed

    Tsouroula, Katerina; Furst, Audrey; Rogier, Melanie; Heyer, Vincent; Maglott-Roth, Anne; Ferrand, Alexia; Reina-San-Martin, Bernardo; Soutoglou, Evi

    2016-07-21

    Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position.

  13. DNA Double Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities

    PubMed Central

    Shibata, Atsushi; Moiani, Davide; Arvai, Andrew S.; Perry, J. Jefferson P.; Harding, Shane M.; Genois, Marie-Michelle; Maity, Ranjan; van Rossum-Fikkert, Sari; Kertokalio, Aryandi; Romoli, Filippo; Ismail, Amani; Ismalaj, Ermal; Petricci, Elena; Matthew, J Neale; Bristow, Robert G; Masson, Jean-Yves; Wyman, Claire; Jeggo, Penny; Tainer, John A.

    2014-01-01

    SUMMARY MRE11 within the MRE11-RAD50-NBS1 (MRN) complex acts in DNA double-strand break repair (DSBR), detection and signaling; yet, how its endo- and exonuclease activities regulate DSB repair by non-homologous end-joining (NHEJ) versus homologous recombination (HR) remains enigmatic. Here we employed structure-based design with a focused chemical library to discover specific MRE11 endo- or exonuclease inhibitors. With these inhibitors we examined repair pathway choice at DSBs generated in G2 following radiation exposure. Whilst endo- or exonuclease inhibition impairs radiation-induced RPA chromatin binding, suggesting diminished resection, the inhibitors surprisingly direct different repair outcomes. Endonuclease inhibition promotes NHEJ in lieu of HR, whilst exonuclease inhibition confers a repair defect. Collectively, the results describe nuclease-specific MRE11 inhibitors, define distinct nuclease roles in DSB repair, and support a mechanism whereby MRE11 endonuclease initiates resection, thereby licensing HR followed by MRE11 exo and EXO1/BLM bidirectional resection towards and away from the DNA end, which commits to HR. PMID:24316220

  14. Replication, recombination, and repair: going for the gold.

    PubMed

    Klein, Hannah L; Kreuzer, Kenneth N

    2002-03-01

    DNA recombination is now appreciated to be integral to DNA replication and cell survival. Recombination allows replication to successfully maneuver through the roadblocks of damaged or collapsed replication forks. The signals and controls that permit cells to transition between replication and recombination modes are now being identified.

  15. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae.

    PubMed

    Ivanov, E L; Haber, J E

    1995-04-01

    HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.

  16. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    PubMed

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    -branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3-8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants.

  17. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination.

    PubMed

    Zahn, Astrid; Eranki, Anil K; Patenaude, Anne-Marie; Methot, Stephen P; Fifield, Heather; Cortizas, Elena M; Foster, Paul; Imai, Kohsuke; Durandy, Anne; Larijani, Mani; Verdun, Ramiro E; Di Noia, Javier M

    2014-03-18

    Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR.

  18. Analysis of Meiotic Recombination Pathways in the Yeast Saccharomyces Cerevisiae

    PubMed Central

    Mao-Draayer, Y.; Galbraith, A. M.; Pittman, D. L.; Cool, M.; Malone, R. E.

    1996-01-01

    In the yeast, Saccharomyces cerevisiae, several genes appear to act early in meiotic recombination. HOP1 and RED1 have been classified as such early genes. The data in this paper demonstrate that neither a red1 nor a hop1 mutation can rescue the inviable spores produced by a rad52 spo13 strain; this phenotype helps to distinguish these two genes from other early meiotic recombination genes such as SPO11, REC104, or MEI4. In contrast, either a red1 or a hop1 mutation can rescue a rad50S spo13 strain; this phenotype is similar to that conferred by mutations in the other early recombination genes (e.g., REC104). These two different results can be explained because the data presented here indicate that a rad50S mutation does not diminish meiotic intrachromosomal recombination, similar to the mutant phenotypes conferred by red1 or hop1. Of course, RED1 and HOP1 do act in the normal meiotic interchromosomal recombination pathway; they reduce interchromosomal recombination to ~10% of normal levels. We demonstrate that a mutation in a gene (REC104) required for initiation of exchange is completely epistatic to a mutation in RED1. Finally, mutations in either HOP1 or RED1 reduce the number of double-strand breaks observed at the HIS2 meiotic recombination hotspot. PMID:8878674

  19. Involvement of homologous recombination repair after proton-induced DNA damage.

    PubMed

    Rostek, C; Turner, E L; Robbins, M; Rightnar, S; Xiao, W; Obenaus, A; Harkness, T A A

    2008-03-01

    Protection from chronic exposure to cosmic radiation, which is primarily composed of protons, in future manned missions to Mars and beyond is considered to be a key unresolved issue. To model the effects of cosmic radiation on a living cell, we used Saccharomyces cerevisiae cells harboring various deletions of DNA repair genes to investigate the response of cells to DNA strand breaks caused by exposure to 250 MeV proton irradiation (linear energy transfer of 0.41 keV/microm). In our study, DNA strand breaks induced by exposure to protons were predominantly repaired via the homologous recombination and postreplication repair pathways. We simulated chronic exposure to proton irradiation by treating cells from colonies that survived proton treatment, after several rounds of subculturing, to a second proton dose, as well as additional cell stressors. In general, cells cultured from proton surviving colonies were not more sensitive to secondary cell stressors. However, cells from rad52delta colonies that survived proton treatment showed increased resistance to secondary stressors, such as gamma-rays (1.17 and 1.33 MeV; 0.267 keV/microm), ultraviolet (UV) and proton irradiation and elevated temperatures. Resistance to secondary stressors was also observed in rad52delta cells that survived exposure to gamma-rays, rather than protons, but this was not observed to occur in rad52delta cells after UV irradiation. rad52delta cells that survived exposure to protons, followed by gamma-rays (proton surviving colonies were cultured prior to gamma-ray exposure), exhibited an additive effect, whereby these cells had a further increase in stress resistance. A genetic analysis indicated that increased stress resistance is most likely due to a second-site mutation that suppresses the rad52delta phenotype. We will discuss possible origins of these second-site mutations. PMID:18267950

  20. MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice

    PubMed Central

    Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.

    2014-01-01

    Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651

  1. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways

    PubMed Central

    Guirouilh Barbat, Josée; Bonnet, Marie-Elise; Illuzzi, Giuditta; Ronde, Philippe; Gauthier, Laurent R.; Magroun, Najat; Rajendran, Anbazhagan; Lopez, Bernard S.; Scully, Ralph; Boussin, François D.; Schreiber, Valérie; Dantzer, Françoise

    2014-01-01

    The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites and induces an imbalance between BRCA1 and 53BP1. Both events result in compromised accurate C-NHEJ and a concomitant increase in DNA end resection. Nevertheless, HR is significantly reduced upon PARP3 silencing while the enhanced end resection causes mutagenic deletions during A-EJ. As a result, the absence of PARP3 confers hypersensitivity to anti-tumoral drugs generating DSB. PMID:24598253

  2. The role and clinical significance of DNA damage response and repair pathways in primary brain tumors

    PubMed Central

    2013-01-01

    Primary brain tumors, in particular, glioblastoma multiforme (GBM), continue to have dismal survivability despite advances in treating other neoplasms. The goal of new anti-glioma therapy development is to increase their therapeutic ratios by enhancing tumor control and/or decreasing the severity and incidence of side effects. Because radiotherapy and most chemotherapy agents rely on DNA damage, the cell’s DNA damage repair and response (DRR) pathways may hold the key to new therapeutic strategies. DNA double-strand breaks (DSBs) generated by ionizing radiation and chemotherapeutic agents are the most lethal form of damage, and are repaired via either homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. Understanding and exploitation of the differences in the use of these repair pathways between tumor and normal brain cells will allow for an increase in tumor cell killing and decreased normal tissue damage. A literature review and discussion on new strategies which can improve the anti-glioma therapeutic ratio by differentially targeting HR and NHEJ function in tumor and normal neuronal tissues is the focus of this article. PMID:23388100

  3. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways

    PubMed Central

    2013-01-01

    Background Melatonin, a hormone-like substance involved in the regulation of the circadian rhythm, has been demonstrated to protect cells against oxidative DNA damage and to inhibit tumorigenesis. Results In the current study, we investigated the effect of melatonin on DNA strand breaks using the alkaline DNA comet assay in breast cancer (MCF-7) and colon cancer (HCT-15) cell lines. Our results demonstrated that cells pretreated with melatonin had significantly shorter Olive tail moments compared to non-melatonin treated cells upon mutagen (methyl methanesulfonate, MMS) exposure, indicating an increased DNA repair capacity after melatonin treatment. We further examined the genome-wide gene expression in melatonin pretreated MCF-7 cells upon carcinogen exposure and detected altered expression of many genes involved in multiple DNA damage responsive pathways. Genes exhibiting altered expression were further analyzed for functional interrelatedness using network- and pathway-based bioinformatics analysis. The top functional network was defined as having relevance for “DNA Replication, Recombination, and Repair, Gene Expression, [and] Cancer”. Conclusions These findings suggest that melatonin may enhance DNA repair capacity by affecting several key genes involved in DNA damage responsive pathways. PMID:23294620

  4. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation

    PubMed Central

    Grin, Inga; Ishchenko, Alexander A.

    2016-01-01

    Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM. PMID:26843430

  5. A link between double-strand break-related repair and V(D)J recombination: the scid mutation

    SciTech Connect

    Hendrickson, E.A.; Qin, X.Q.; Bump, E.A.; Schatz, D.G.; Oettinger, M.; Weaver, D.T. )

    1991-05-15

    We show here that mammalian site-specific recombination and DNA-repair pathways share a common factor. The effects of DNA-damaging agents on cell lines derived from mice homozygous for the scid (severe combined immune deficiency) mutation were studied. Surprisingly, all scid cell lines exhibited a profound hypersensitivity to DNA-damaging agents that caused double-strand breaks (x-irradiation and bleomycin) but not to other chemicals that caused single-strand breaks or cross-links. Neutral filter elution assays demonstrated that the x-irradiation hypersensitivity could be correlated with a deficiency in repairing double-strand breaks. These data suggest that the scid gene product is involved in two pathways: DNA repair of random double-strand breaks and the site-specific and lymphoid-restricted variable-(diversity)-joining (V(D)J) DNA rearrangement process. We propose that the scid gene product performs a similar function in both pathways and may be a ubiquitous protein.

  6. Genetic Recombination through Double-Strand Break Repair: Shift from Two-Progeny Mode to One-Progeny Mode by Heterologous Inserts

    PubMed Central

    Takahashi, N. K.; Sakagami, K.; Kusano, K.; Yamamoto, K.; Yoshikura, H.; Kobayashi, I.

    1997-01-01

    Double-strand break repair models of genetic recombination propose that a double-strand break is introduced into an otherwise intact DNA and that the break is then repaired by copying a homologous DNA segment. Evidence for these models has been found among lambdoid phages and during yeast meiosis. In an earlier report, we demonstrated such repair of a preformed double-strand break by the Escherichia coli RecE pathway. Here, our experiments with plasmids demonstrate that such reciprocal or conservative recombination (two parental DNAs resulting in two progeny DNAs) is frequent at a double-strand break even when there exists the alternative route of nonreciprocal or nonconservative recombination (two parental DNAs resulting in only one progeny DNA). The presence of a long heterologous DNA at the double-strand break, however, resulted in a shift from the conservative (two-progeny) mode to the nonconservative (one-progeny) mode. The product is a DNA free from the heterologous insert containing recombinant flanking sequences. The potential ability of the homology-dependent double-strand break repair reaction to detect and eliminate heterologous inserts may have contributed to the evolution of homologous recombination, meiosis and sexual reproduction. PMID:9135997

  7. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.

    PubMed

    Wu, Yuehan; Lee, Suk-Hee; Williamson, Elizabeth A; Reinert, Brian L; Cho, Ju Hwan; Xia, Fen; Jaiswal, Aruna Shanker; Srinivasan, Gayathri; Patel, Bhavita; Brantley, Alexis; Zhou, Daohong; Shao, Lijian; Pathak, Rupak; Hauer-Jensen, Martin; Singh, Sudha; Kong, Kimi; Wu, Xaiohua; Kim, Hyun-Suk; Beissbarth, Timothy; Gaedcke, Jochen; Burma, Sandeep; Nickoloff, Jac A; Hromas, Robert A

    2015-12-01

    Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fork junction, which permits 3' single strand invasion of a homologous template for fork restart. This 5' end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5' DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5' overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.

  8. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair

    PubMed Central

    Wu, Yuehan; Lee, Suk-Hee; Williamson, Elizabeth A.; Reinert, Brian L.; Cho, Ju Hwan; Xia, Fen; Jaiswal, Aruna Shanker; Srinivasan, Gayathri; Patel, Bhavita; Brantley, Alexis; Zhou, Daohong; Shao, Lijian; Pathak, Rupak; Hauer-Jensen, Martin; Singh, Sudha; Kong, Kimi; Wu, Xaiohua; Kim, Hyun-Suk; Beissbarth, Timothy; Gaedcke, Jochen; Burma, Sandeep; Nickoloff, Jac A.; Hromas, Robert A.

    2015-01-01

    Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5’ end resection near the fork junction, which permits 3’ single strand invasion of a homologous template for fork restart. This 5’ end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5’ DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5’ overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ. PMID:26684013

  9. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  10. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    SciTech Connect

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  11. Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising

    PubMed Central

    Jekimovs, Christian; Bolderson, Emma; Suraweera, Amila; Adams, Mark; O’Byrne, Kenneth J.; Richard, Derek J.

    2014-01-01

    The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process. PMID:24795863

  12. DNA Damage Response Factors from Diverse Pathways, Including DNA Crosslink Repair, Mediate Alternative End Joining

    PubMed Central

    Howard, Sean M.; Yanez, Diana A.; Stark, Jeremy M.

    2015-01-01

    Alternative end joining (Alt-EJ) chromosomal break repair involves bypassing classical non-homologous end joining (c-NHEJ), and such repair causes mutations often with microhomology at the repair junction. Since the mediators of Alt-EJ are not well understood, we have sought to identify DNA damage response (DDR) factors important for this repair event. Using chromosomal break reporter assays, we surveyed an RNAi library targeting known DDR factors for siRNAs that cause a specific decrease in Alt-EJ, relative to an EJ event that is a composite of Alt-EJ and c-NHEJ (Distal-EJ between two tandem breaks). From this analysis, we identified several DDR factors that are specifically important for Alt-EJ relative to Distal-EJ. While these factors are from diverse pathways, we also found that most of them also promote homologous recombination (HR), including factors important for DNA crosslink repair, such as the Fanconi Anemia factor, FANCA. Since bypass of c-NHEJ is likely important for both Alt-EJ and HR, we disrupted the c-NHEJ factor Ku70 in Fanca-deficient mouse cells and found that Ku70 loss significantly diminishes the influence of Fanca on Alt-EJ. In contrast, an inhibitor of poly ADP-ribose polymerase (PARP) causes a decrease in Alt-EJ that is enhanced by Ku70 loss. Additionally, the helicase/nuclease DNA2 appears to have distinct effects from FANCA and PARP on both Alt-EJ, as well as end resection. Finally, we found that the proteasome inhibitor Bortezomib, a cancer therapeutic that has been shown to disrupt FANC signaling, causes a significant reduction in both Alt-EJ and HR, relative to Distal-EJ, as well as a substantial loss of end resection. We suggest that several distinct DDR functions are important for Alt-EJ, which include promoting bypass of c-NHEJ and end resection. PMID:25629353

  13. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination.

    PubMed

    Marin-Vicente, Consuelo; Domingo-Prim, Judit; Eberle, Andrea B; Visa, Neus

    2015-03-15

    The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs.

  14. Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury

    PubMed Central

    Lin, Weiwei; Yuan, Na; Wang, Zhen; Cao, Yan; Fang, Yixuan; Li, Xin; Xu, Fei; Song, Lin; Wang, Jian; Zhang, Han; Yan, Lili; Xu, Li; Zhang, Xiaoying; Zhang, Suping; Wang, Jianrong

    2015-01-01

    Autophagy is essentially a metabolic process, but its in vivo role in nuclear radioprotection remains unexplored. We observed that ex vivo autophagy activation reversed the proliferation inhibition, apoptosis, and DNA damage in irradiated hematopoietic cells. In vivo autophagy activation improved bone marrow cellularity following nuclear radiation exposure. In contrast, defective autophagy in the hematopoietic conditional mouse model worsened the hematopoietic injury, reactive oxygen species (ROS) accumulation and DNA damage caused by nuclear radiation exposure. Strikingly, in vivo defective autophagy caused an absence or reduction in regulatory proteins critical to both homologous recombination (HR) and non-homologous end joining (NHEJ) DNA damage repair pathways, as well as a failure to induce these proteins in response to nuclear radiation. In contrast, in vivo autophagy activation increased most of these proteins in hematopoietic cells. DNA damage assays confirmed the role of in vivo autophagy in the resolution of double-stranded DNA breaks in total bone marrow cells as well as bone marrow stem and progenitor cells upon whole body irradiation. Hence, autophagy protects the hematopoietic system against nuclear radiation injury by conferring and intensifying the HR and NHEJ DNA damage repair pathways and by removing ROS and inhibiting apoptosis. PMID:26197097

  15. Bacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair

    PubMed Central

    Carrasco, Begoña; Yadav, Tribhuwan; Serrano, Ester; Alonso, Juan C.

    2015-01-01

    Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg2+ bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA and naked complementary circular single-stranded (ss) DNA. We showed that RecA·ATP could not nucleate and/or polymerize on SsbA·ssDNA or SsbB·ssDNA complexes. RecA·ATP nucleates and polymerizes on RecO·ssDNA·SsbA complexes more efficiently than on RecO·ssDNA·SsbB complexes. Limiting SsbA concentrations were sufficient to stimulate RecA·ATP assembly on the RecO·ssDNA·SsbB complexes. RecO and SsbA are necessary and sufficient to ‘activate’ RecA·ATP to catalyze DNA strand exchange, whereas the AddAB complex, RecO alone or in concert with SsbB was not sufficient. In presence of AddAB, RecO and SsbA are still necessary for efficient RecA·ATP-mediated three-strand exchange recombination. Based on genetic and biochemical data, we proposed that SsbA and RecO (or SsbA, RecO and RecR in vivo) are crucial for RecA activation for both, AddAB and RecJ–RecQ (RecS) recombinational repair pathways. PMID:26001966

  16. Bacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair.

    PubMed

    Carrasco, Begoña; Yadav, Tribhuwan; Serrano, Ester; Alonso, Juan C

    2015-07-13

    Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg(2+) bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA and naked complementary circular single-stranded (ss) DNA. We showed that RecA·ATP could not nucleate and/or polymerize on SsbA·ssDNA or SsbB·ssDNA complexes. RecA·ATP nucleates and polymerizes on RecO·ssDNA·SsbA complexes more efficiently than on RecO·ssDNA·SsbB complexes. Limiting SsbA concentrations were sufficient to stimulate RecA·ATP assembly on the RecO·ssDNA·SsbB complexes. RecO and SsbA are necessary and sufficient to 'activate' RecA·ATP to catalyze DNA strand exchange, whereas the AddAB complex, RecO alone or in concert with SsbB was not sufficient. In presence of AddAB, RecO and SsbA are still necessary for efficient RecA·ATP-mediated three-strand exchange recombination. Based on genetic and biochemical data, we proposed that SsbA and RecO (or SsbA, RecO and RecR in vivo) are crucial for RecA activation for both, AddAB and RecJ-RecQ (RecS) recombinational repair pathways. PMID:26001966

  17. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells

    PubMed Central

    Truong, Lan N.; Li, Yongjiang; Shi, Linda Z.; Hwang, Patty Yi-Hwa; He, Jing; Wang, Hailong; Razavian, Niema; Berns, Michael W.; Wu, Xiaohua

    2013-01-01

    Microhomology-mediated end joining (MMEJ) is a major pathway for Ku-independent alternative nonhomologous end joining, which contributes to chromosomal translocations and telomere fusions, but the underlying mechanism of MMEJ in mammalian cells is not well understood. In this study, we demonstrated that, distinct from Ku-dependent classical nonhomologous end joining, MMEJ—even with very limited end resection—requires cyclin-dependent kinase activities and increases significantly when cells enter S phase. We also showed that MMEJ shares the initial end resection step with homologous recombination (HR) by requiring meiotic recombination 11 homolog A (Mre11) nuclease activity, which is needed for subsequent recruitment of Bloom syndrome protein (BLM) and exonuclease 1 (Exo1) to DNA double-strand breaks (DSBs) to promote extended end resection and HR. MMEJ does not require S139-phosphorylated histone H2AX (γ-H2AX), suggesting that initial end resection likely occurs at DSB ends. Using a MMEJ and HR competition repair substrate, we demonstrated that MMEJ with short end resection is used in mammalian cells at the level of 10–20% of HR when both HR and nonhomologous end joining are available. Furthermore, MMEJ is used to repair DSBs generated at collapsed replication forks. These studies suggest that MMEJ not only is a backup repair pathway in mammalian cells, but also has important physiological roles in repairing DSBs to maintain cell viability, especially under genomic stress. PMID:23610439

  18. Genetic variants in DNA repair pathways are not associated with disease progression among multiple myeloma patients.

    PubMed

    Thyagarajan, Bharat; Arora, Mukta; Guan, Weihua; Barcelo, Helene; Jackson, Scott; Kumar, Shaji; Gertz, Morie

    2013-11-01

    DNA damage induced by high dose melphalan and autologous transplantation is repaired by the nucleotide excision repair (NER) and base excision repair (BER) pathways. We evaluated the association between single nucleotide polymorphisms (SNPs) (n=311) in the NER and BER pathways and disease progression in 695 multiple myeloma patients who underwent autologous transplantation. None of the SNPs were associated with disease progression. Pathway based analyses showed that the NER pathway had a borderline association with disease progression (p=0.09). These findings suggest that common variation in the NER and BER pathways do not substantially influence disease progression in multiple myeloma patients.

  19. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    SciTech Connect

    Noda, Taichi; Takahashi, Akihisa; Kondo, Natsuko; Mori, Eiichiro; Okamoto, Noritomo; Nakagawa, Yosuke; Ohnishi, Ken; Zdzienicka, Malgorzata Z.; Thompson, Larry H.; Helleday, Thomas; Asada, Hideo; and others

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-} cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.

  20. Chromodomain Helicase DNA-binding Protein 4 (CHD4) Regulates Homologous Recombination DNA Repair, and Its Deficiency Sensitizes Cells to Poly(ADP-ribose) Polymerase (PARP) Inhibitor Treatment*

    PubMed Central

    Pan, Mei-Ren; Hsieh, Hui-Ju; Dai, Hui; Hung, Wen-Chun; Li, Kaiyi; Peng, Guang; Lin, Shiaw-Yih

    2012-01-01

    To ensure genome stability, cells have evolved a robust defense mechanism to detect, signal, and repair damaged DNA that is generated by exogenous stressors such as ionizing radiation, endogenous stressors such as free radicals, or normal physiological processes such as DNA replication. Homologous recombination (HR) repair is a critical pathway of repairing DNA double strand breaks, and it plays an essential role in maintaining genomic integrity. Previous studies have shown that BRIT1, also known as MCPH1, is a key regulator of HR repair. Here, we report that chromodomain helicase DNA-binding protein 4 (CHD4) is a novel BRIT1 binding partner that regulates the HR repair process. The BRCA1 C-terminal domains of BRIT1 are required for its interaction with CHD4. Depletion of CHD4 and overexpression of the ATPase-dead form of CHD4 impairs the recruitment of BRIT1 to the DNA damage lesions. As a functional consequence, CHD4 deficiency sensitizes cells to double strand break-inducing agents, reduces the recruitment of HR repair factor BRCA1, and impairs HR repair efficiency. We further demonstrate that CHD4-depleted cells are more sensitive to poly(ADP-ribose) polymerase inhibitor treatment. In response to DNA damage induced by poly(ADP-ribose) polymerase inhibitors, CHD4 deficiency impairs the recruitment of DNA repair proteins BRIT1, BRCA1, and replication protein A at early steps of HR repair. Taken together, our findings identify an important role of CHD4 in controlling HR repair to maintain genome stability and establish the potential therapeutic implications of targeting CHD4 deficiency in tumors. PMID:22219182

  1. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli.

    PubMed

    Handa, Naofumi; Morimatsu, Katsumi; Lovett, Susan T; Kowalczykowski, Stephen C

    2009-05-15

    The RecF pathway of Escherichia coli is important for recombinational repair of DNA breaks and gaps. Here ;we reconstitute in vitro a seven-protein reaction that recapitulates early steps of dsDNA break repair using purified RecA, RecF, RecO, RecR, RecQ, RecJ, and SSB proteins, components of the RecF system. Their combined action results in processing of linear dsDNA and its homologous pairing with supercoiled DNA. RecA, RecO, RecR, and RecJ are essential for joint molecule formation, whereas SSB and RecF are stimulatory. This reconstituted system reveals an unexpected essential function for RecJ exonuclease: the capability to resect duplex DNA. RecQ helicase stimulates this processing, but also disrupts joint molecules. RecO and RecR have two indispensable functions: They mediate exchange of RecA for SSB to form the RecA nucleoprotein filament, and act with RecF to load RecA onto the SSB-ssDNA complex at processed ssDNA-dsDNA junctions. The RecF pathway has many parallels with recombinational repair in eukaryotes. PMID:19451222

  2. FIGNL1-containing protein complex is required for efficient homologous recombination repair

    PubMed Central

    Yuan, Jingsong; Chen, Junjie

    2013-01-01

    The RAD51 recombinase plays a central role in homologous recombination (HR), which is critical for repair of DNA double-strand breaks, maintenance of genomic stability, and prevention of developmental disorders and cancer. Here, we report the identification of an RAD51-binding protein fidgetin-like 1 (FIGNL1). FIGNL1 specifically interacts with RAD51 through its conserved RAD51 binding domain. Cells depleted of FIGNL1 show defective HR repair. Interestingly, FIGNL1 is recruited to sites of DNA damage in a manner that is independent of breast cancer 2, early onset, RAD51, and probably, RAD51 paralogs. Conversely, FIGNL1 depletion does not affect the loading of RAD51 onto ssDNA. Our additional analysis uncovered KIAA0146, also known as scaffolding protein involved in DNA repair (SPIDR), as a binding partner of FIGNL1 and established that KIAA0146/SPIDR acts with FIGNL1 in HR repair. Collectively, our study uncovers a protein complex, which consists of FIGNL1 and KIAA0146/SPIDR, in DNA repair and provides potential directions for cancer diagnosis and therapy. PMID:23754376

  3. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice

    PubMed Central

    Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J.; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C.

    2015-01-01

    DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice. PMID:24909977

  4. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice.

    PubMed

    Pai, Chen-Chun; Deegan, Rachel S; Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C

    2014-06-09

    DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.

  5. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice.

    PubMed

    Pai, Chen-Chun; Deegan, Rachel S; Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C

    2014-01-01

    DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice. PMID:24909977

  6. RecBC and RecF recombination pathways and the induced precise excision of Tn10 in Escherichia coli.

    PubMed

    Nagel, R; Chan, A

    1999-03-10

    Mitomycin C (MMC) treatment or mutations in uvrD enhance the frequency of Tn10 precise excision. We have shown previously that several repair-recombination genes, such as recA, ruv and recF are involved in the induced excision process. In this study, we find that other genes belonging to the RecBC and RecF sexual recombination pathways also participate in this process since mutations in recB, sbcB or recO diminish, though to different degrees, the frequency of Tn10 precise excision induced by MMC treatment or by uvrD mutants. Pairwise combinations of some of these mutations were also tested for Tn10 induced precise excision; most of these double mutants showed additive effects in reducing the frequency of the excision process. The results of these studies suggest that recombinational-repair genes, particularly recF, sbcB and recO have different roles in the induced excision of Tn10 than in recombinational mating. PMID:10102036

  7. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  8. Self-Organization of Meiotic Recombination Initiation: General Principles and Molecular Pathways

    PubMed Central

    Keeney, Scott; Lange, Julian; Mohibullah, Neeman

    2015-01-01

    Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error-correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system. PMID:25421598

  9. Self-organization of meiotic recombination initiation: general principles and molecular pathways.

    PubMed

    Keeney, Scott; Lange, Julian; Mohibullah, Neeman

    2014-01-01

    Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system.

  10. Positive Cofactor 4 (PC4) is critical for DNA repair pathway re-routing in DT40 cells

    PubMed Central

    Caldwell, Randolph B.; Braselmann, Herbert; Schoetz, Ulrike; Heuer, Steffen; Scherthan, Harry; Zitzelsberger, Horst

    2016-01-01

    PC4 is an abundant single-strand DNA binding protein that has been implicated in transcription and DNA repair. Here, we show that PC4 is involved in the cellular DNA damage response. To elucidate the role, we used the DT40 chicken B cell model, which produces clustered DNA lesions at Ig loci via the action of activation-induced deaminase. Our results help resolve key aspects of immunoglobulin diversification and suggest an essential role of PC4 in repair pathway choice. We show that PC4 ablation in gene conversion (GC)-active cells significantly disrupts GC but has little to no effect on targeted homologous recombination. In agreement, the global double-strand break repair response, as measured by γH2AX foci analysis, is unperturbed 16 hours post irradiation. In cells with the pseudo-genes removed (GC inactive), PC4 ablation reduced the overall mutation rate while simultaneously increasing the transversion mutation ratio. By tagging the N-terminus of PC4, gene conversion and somatic hypermutation are all but abolished even when native non-tagged PC4 is present, indicating a dominant negative effect. Our data point to a very early and deterministic role for PC4 in DNA repair pathway re-routing. PMID:27374870

  11. Positive Cofactor 4 (PC4) is critical for DNA repair pathway re-routing in DT40 cells.

    PubMed

    Caldwell, Randolph B; Braselmann, Herbert; Schoetz, Ulrike; Heuer, Steffen; Scherthan, Harry; Zitzelsberger, Horst

    2016-01-01

    PC4 is an abundant single-strand DNA binding protein that has been implicated in transcription and DNA repair. Here, we show that PC4 is involved in the cellular DNA damage response. To elucidate the role, we used the DT40 chicken B cell model, which produces clustered DNA lesions at Ig loci via the action of activation-induced deaminase. Our results help resolve key aspects of immunoglobulin diversification and suggest an essential role of PC4 in repair pathway choice. We show that PC4 ablation in gene conversion (GC)-active cells significantly disrupts GC but has little to no effect on targeted homologous recombination. In agreement, the global double-strand break repair response, as measured by γH2AX foci analysis, is unperturbed 16 hours post irradiation. In cells with the pseudo-genes removed (GC inactive), PC4 ablation reduced the overall mutation rate while simultaneously increasing the transversion mutation ratio. By tagging the N-terminus of PC4, gene conversion and somatic hypermutation are all but abolished even when native non-tagged PC4 is present, indicating a dominant negative effect. Our data point to a very early and deterministic role for PC4 in DNA repair pathway re-routing. PMID:27374870

  12. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection

    PubMed Central

    Westmoreland, James W.; Resnick, Michael A.

    2016-01-01

    Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5′-3′ resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced ‘dirty’ DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids. PMID:26503252

  13. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection.

    PubMed

    Westmoreland, James W; Resnick, Michael A

    2016-01-29

    Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5'-3' resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced 'dirty' DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids. PMID:26503252

  14. Genetic and Physical Analysis of Double-Strand Break Repair and Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Rudin, N.; Sugarman, E.; Haber, J. E.

    1989-01-01

    We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB. PMID:2668114

  15. A novel protein, Rsf1/Pxd1, is critical for the single-strand annealing pathway of double-strand break repair in Schizosaccharomyces pombe.

    PubMed

    Wang, Hanqian; Zhang, Zhanlu; Zhang, Lan; Zhang, Qiuxue; Zhang, Liang; Zhao, Yangmin; Wang, Weibu; Fan, Yunliu; Wang, Lei

    2015-06-01

    The process of single-strand annealing (SSA) repairs DNA double-strand breaks that are flanked by direct repeat sequences through the coordinated actions of a series of proteins implicated in recombination, mismatch repair and nucleotide excision repair (NER). Many of the molecular and mechanistic insights gained in SSA repair have principally come from studies in the budding yeast Saccharomyces cerevisiae. However, there is little molecular understanding of the SSA pathway in the fission yeast Schizosaccharomyces pombe. To further our understanding of this important process, we established a new chromosome-based SSA assay in fission yeast. Our genetic analyses showed that, although many homologous components participate in SSA repair in these species indicating that some evolutionary conservation, Saw1 and Slx4 are not principal agents in the SSA repair pathway in fission yeast. This is in marked contrast to the function of Saw1 and Slx4 in budding yeast. Additionally, a novel genus-specific protein, Rsf1/Pxd1, physically interacts with Rad16, Swi10 and Saw1 in vitro and in vivo. We find that Rsf1/Pxd1 is not required for NER and demonstrate that, in fission yeast, Rsf1/Pxd1, but not Saw1, plays a critical role in SSA recombination.

  16. TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway.

    PubMed

    Yu, Hong-Pei; Xie, Jia-Ming; Li, Bin; Sun, Yi-Hui; Gao, Quan-Geng; Ding, Zhi-Hui; Wu, Hao-Rong; Qin, Zheng-Hong

    2015-01-01

    Previous study revealed that the protective effect of TIGAR in cell survival is mediated through the increase in PPP (pentose phosphate pathway) flux. However, it remains unexplored if TIGAR plays an important role in DNA damage and repair. This study investigated the role of TIGAR in DNA damage response (DDR) induced by genotoxic drugs and hypoxia in tumor cells. Results showed that TIGAR was increased and relocated to the nucleus after epirubicin or hypoxia treatment in cancer cells. Knockdown of TIGAR exacerbated DNA damage and the effects were partly reversed by the supplementation of PPP products NADPH, ribose, or the ROS scavenger NAC. Further studies with pharmacological and genetic approaches revealed that TIGAR regulated the phosphorylation of ATM, a key protein in DDR, through Cdk5. The Cdk5-AMT signal pathway involved in regulation of DDR by TIGAR defines a new role of TIGAR in cancer cell survival and it suggests that TIGAR may be a therapeutic target for cancers. PMID:25928429

  17. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.

    PubMed

    Petermann, Eva; Orta, Manuel Luís; Issaeva, Natalia; Schultz, Niklas; Helleday, Thomas

    2010-02-26

    Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required for RAD51 foci formation, is also required for replication restart of HU-stalled forks, suggesting that RAD51-mediated strand invasion supports fork restart. In contrast, replication forks collapsed by prolonged replication blocks do not restart, and global replication is rescued by new origin firing. We find that RAD51-dependent HR is triggered for repair of collapsed replication forks, without apparent restart. In conclusion, our data suggest that restart of stalled replication forks and HR repair of collapsed replication forks require two distinct RAD51-mediated pathways.

  18. N-Nitrosocarbaryl-induced mutagenesis in Haemophilus influenzae strains deficient in repair and recombination.

    PubMed

    Beattie, K L

    1975-02-01

    Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicated that neither of these phenomena are caused by the smae repair mechanism that removes UV-induced pyrimidine dimers from the DNA. The recombination-deficient mutant recI is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (I) NC-induced mutagenesis is lower in the recI strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the recI strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about I/4 to I/3 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the recI strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 recI was followed at the permissive (36 degrees) and nonpermissive (41 degrees) temperatures, it became apparent that in the recI strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process. The recI strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuties present in DNA synthesized after treatment. The results are consistent with the idea that

  19. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all.

    PubMed

    Oei, Arlene L; Vriend, Lianne E M; Crezee, Johannes; Franken, Nicolaas A P; Krawczyk, Przemek M

    2015-01-01

    The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia - treatment at elevated temperature - considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents. PMID:26245485

  20. A Cross-Cancer Genetic Association Analysis of the DNA repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast and Colorectal Cancer

    PubMed Central

    Scarbrough, Peter M.; Weber, Rachel Palmieri; Iversen, Edwin S.; Brhane, Yonathan; Amos, Christopher I.; Kraft, Peter; Hung, Rayjean J.; Sellers, Thomas A.; Witte, John S.; Pharoah, Paul; Henderson, Brian E.; Gruber, Stephen B.; Hunter, David J.; Garber, Judy E.; Joshi, Amit D.; McDonnell, Kevin; Easton, Doug F.; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A.; Schildkraut, Joellen M.

    2015-01-01

    Background DNA damage is an established mediator of carcinogenesis, though GWAS have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. Methods We conducted a cross-cancer analysis of 60,297 SNPs, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. Results We identified three susceptibility DNA repair genes, RAD51B (p < 5.09 × 10−6), MSH5 (p < 5.09 × 10−6) and BRCA2 (p = 5.70 × 10−6). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Conclusions Only three susceptibility loci were identified which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Impact Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. PMID:26637267

  1. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination.

    PubMed

    Sutton, M D; Walker, G C

    2001-07-17

    Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.

  2. CYS3, a hotspot of meiotic recombination in Saccharomyces cerevisiae. Effects of heterozygosity and mismatch repair functions on gene conversion and recombination intermediates.

    PubMed Central

    Vedel, M; Nicolas, A

    1999-01-01

    We have examined meiotic recombination at the CYS3 locus. Genetic analysis indicates that CYS3 is a hotspot of meiotic gene conversion, with a putative 5'-3' polarity gradient of conversion frequencies. This gradient is relieved in the presence of msh2 and pms1 mutations, indicating an involvement of mismatch repair functions in meiotic recombination. To investigate the role of mismatch repair proteins in meiotic recombination, we performed a physical analysis of meiotic DNA in wild-type and msh2 pms1 strains in the presence or absence of allelic differences at CYS3. Neither the mutations in CYS3 nor the absence of mismatch repair functions affects the frequency and distribution of nearby recombination-initiating DNA double-strand breaks (DSBs). Processing of DSBs is also similar in msh2 pms1 and wild-type strains. We conclude that mismatch repair functions do not control the distribution of meiotic gene conversion events at the initiating steps. In the MSH2 PMS1 background, strains heteroallelic for frameshift mutations in CYS3 exhibit a frequency of gene conversion greater than that observed for either marker alone. Physical analysis revealed no modification in the formation of DSBs, suggesting that this marker effect results from subsequent processing events that are not yet understood. PMID:10101154

  3. DNA double strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ.

    PubMed

    Iliakis, George; Wu, Wenqi; Wang, Minli

    2008-02-01

    Heat shock is one of the most effective radiosensitizers known. As a result, combination of heat with ionizing radiation (IR) is considered a promising strategy in the management of human cancer. The mechanism of heat radiosensitization has been the subject of extensive work but a unifying mechanistic model is presently lacking. To understand the cause of excessive death in irradiated cells after heat exposure, it is necessary to characterize the lesion(s) underlying the effect and to determine which of the pathways processing this lesion are affected by heat. Since DNA double strand breaks (DSBs) are the main cause for IR-induced cell death, inhibition of DSB processing has long been considered a major candidate for heat radiosensitization. However, effective radiosensitization of mutants with defects in homologous recombination repair (HRR), or in DNA-PK dependent non-homologous end joining (D-NHEJ), the two primary pathways of DSB repair, has led to the formulation of models excluding DSBs as a cause for this phenomenon and attributing heat radiosensitization to inhibition of base damage processing. Since direct evidence for a major role of base damage in heat radiosensitization, or in IR-induced killing for that matter, is scarce and new insights in DSB repair allow alternative interpretations of existing data with repair mutants, we attempt here a re-evaluation of the role of DSBs and their repair in heat radiosensitization. First, we reanalyse data obtained with various DSB repair mutants on first principles and in the light of the recent recognition that alternative pathways of NHEJ, operating as backup (B-NHEJ), substantially contribute to DSB repair and thus probably also to heat radiosensitization. Second, we review aspects of combined action of heat and radiation, such as modulation in the cell-cycle-dependent variation in radiosensitivity to killing, as well as heat radiosensitization as a function of LET, and examine whether the observed effects are

  4. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories.

    PubMed

    Wu, Jiaxi; Starr, Shane

    2014-05-01

    The somatic mutation carcinogenesis theory has dominated for decades. The alternative theory, tissue organization field theory, argues that the development of cancer is determined by the surrounding microenvironment. However, neither theory can explain all features of cancer. As cancers share the features of uncontrolled proliferation and genomic instability, they are likely to have the same pathogenesis. It has been found that various DNA repair pathways within a cell crosstalk with one another, forming a DNA repair network. When one DNA repair pathways is defective, the others may work as compensatory backups. The latter pathways are explored for synthetic lethal anticancer therapy. In this article, we extend the concept of compensatory alternative DNA repair to unify the theories. We propose that the microenvironmental stress can activate low-fidelity compensatory alternative DNA repair, causing mutations. If the mutation occurs to a DNA repair gene, this secondarily mutated gene can lead to even more mutated genes, including those related to other DNA repair pathways, eventually destabilizing the genome. Therefore, the low-fidelity compensatory alternative DNA repair may mediate microenvironment-dependent carcinogenesis. The proposal seems consistent with the view of evolution: the environmental stress causes mutations to adapt to the changing environment.

  5. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    PubMed Central

    Ran, Qi-shan; Yu, Yun-hu; Fu, Xiao-hong; Wen, Yuan-chao

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma. PMID:26487853

  6. Real-time analysis of double-strand DNA break repair by homologous recombination.

    PubMed

    Hicks, Wade M; Yamaguchi, Miyuki; Haber, James E

    2011-02-22

    The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination--specifically, by gene conversion--using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion.

  7. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo

    PubMed Central

    Motamedi, Mohammad R.; Szigety, Susan K.; Rosenberg, Susan M.

    1999-01-01

    DNA double-strand-break repair (DSBR) is, in many organisms, accomplished by homologous recombination. In Escherichia coli DSBR was thought to result from breakage and reunion of parental DNA molecules, assisted by known endonucleases, the Holliday junction resolvases. Under special circumstances, for example, SOS induction, recombination forks were proposed to initiate replication. We provide physical evidence that this is a major alternative mechanism in which replication copies information from one chromosome to another generating recombinant chromosomes in normal cells in vivo. This alternative mechanism can occur independently of known Holliday junction cleaving proteins, requires DNA polymerase III, and produces recombined DNA molecules that carry newly replicated DNA. The replicational mechanism underlies about half the recombination of linear DNA in E. coli; the other half occurs by breakage and reunion, which we show requires resolvases, and is replication-independent. The data also indicate that accumulation of recombination intermediates promotes replication dramatically. PMID:10557215

  8. IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination

    PubMed Central

    Chitnis, Meenali M.; Lodhia, Kunal A.; Aleksic, Tamara; Gao, Shan; Protheroe, Andrew S.; Macaulay, Valentine M.

    2014-01-01

    Inhibition of type 1 insulin-like growth factor receptor (IGF-1R) enhances tumor cell sensitivity to ionizing radiation. It is not clear how this effect is mediated, nor whether this approach can be applied effectively in the clinic. We previously showed that IGF-1R depletion delays repair of radiation-induced DNA double-strand breaks (DSBs), unlikely to be explained entirely by reduction in homologous recombination (HR) repair. The current study tested the hypothesis that IGF-1R inhibition induces a repair defect that involves non-homologous end-joining (NHEJ). IGF-1R inhibitor AZ12253801 blocked cell survival and radiosensitized IGF-1R over-expressing murine fibroblasts but not isogenic IGF-1R null cells, supporting specificity for IGF-1R. IGF-1R inhibition enhanced radiosensitivity in DU145, PC3 and 22Rv1 prostate cancer cells, comparable to effects of ATM inhibition. AZ12253801-treated DU145 cells showed delayed resolution of γH2AX foci, apparent within 1hr of irradiation and persisting for 24hr. In contrast, IGF-1R inhibition did not influence radiosensitivity or γH2AX focus resolution in LNCaP-LN3 cells, suggesting that radiosensitization tracks with the ability of IGF-1R to influence DSB repair. To differentiate effects on repair from growth and cell survival responses, we tested AZ12253801 in DU145 cells at sub-SF50 concentrations that had no early (≤48hr) effects on cell cycle distribution or apoptosis induction. Irradiated cultures contained abnormal mitoses, and after 5 days IGF-1R inhibited cells showed enhanced radiation-induced polyploidy and nuclear fragmentation, consistent with the consequences of entry into mitosis with incompletely repaired DNA. AZ12253801 radiosensitized DNA-PK proficient but not DNA-PK deficient glioblastoma cells, and did not radiosensitize DNA-PK-inhibited DU145 cells, suggesting that in the context of DSB repair, IGF-1R functions in the same pathway as DNA-PK. Finally, IGF-1R inhibition attenuated repair by both NHEJ and

  9. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  10. Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway.

    PubMed

    Brissett, Nigel C; Doherty, Aidan J

    2009-06-01

    The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its eukaryotic counterpart, both pathways share a number of common mechanistic features. The relative simplicity of the prokaryotic NHEJ complex makes it a tractable model system for investigating the cellular and molecular mechanisms of DSB repair. The present review describes recent advances in our understanding of prokaryotic end-joining, focusing primarily on biochemical, structural and cellular aspects of the mycobacterial NHEJ repair pathway.

  11. Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair.

    PubMed

    Penttinen, Petri; Greco, Dario; Muntyan, Victoria; Terefework, Zewdu; De Lajudie, Philippe; Roumiantseva, Marina; Becker, Anke; Auvinen, Petri; Lindström, Kristina

    2016-06-01

    To serve as inoculants of legumes, nitrogen-fixing rhizobium strains should be competitive and tolerant of diverse environments. We hybridized the genomes of symbiotically efficient and salt tolerant Sinorhizobium inoculant strains onto the Sinorhizobium meliloti Rm1021 microarray. The number of variable genes, that is, divergent or putatively multiplied genes, ranged from 503 to 1556 for S. meliloti AK23, S. meliloti STM 1064 and S. arboris HAMBI 1552. The numbers of divergent genes affiliated with the symbiosis plasmid pSymA and related to DNA replication, recombination and repair were significantly higher than expected. The variation was mainly in the accessory genome, implying that it was important in shaping the adaptability of the strains.

  12. Emerging roles for centromere-associated proteins in DNA repair and genetic recombination.

    PubMed

    Osman, Fekret; Whitby, Matthew C

    2013-12-01

    Centromere proteins CENP-S and CENP-X are members of the constitutive centromere-associated network, which is a conserved group of proteins that are needed for the assembly and function of kinetochores at centromeres. Intriguingly CENP-S and CENP-X have alter egos going by the names of MHF1 (FANCM-associated histone-fold protein 1) and MHF2 respectively. In this guise they function with a DNA translocase called FANCM (Fanconi's anemia complementation group M) to promote DNA repair and homologous recombination. In the present review we discuss current knowledge of the biological roles of CENP-S and CENP-X and how their dual existence may be a common feature of CCAN (constitutive centromere-associated network) proteins.

  13. Detection of the early stage of recombinational DNA repair by silicon nanowire transistors.

    PubMed

    Chiesa, Marco; Cardenas, Paula P; Otón, Francisco; Martinez, Javier; Mas-Torrent, Marta; Garcia, Fernando; Alonso, Juan C; Rovira, Concepció; Garcia, Ricardo

    2012-03-14

    A silicon nanowire-based biosensor has been designed and applied for label-free and ultrasensitive detection of the early stage of recombinational DNA repair by RecA protein. Silicon nanowires transistors were fabricated by atomic force microscopy nanolithography and integrated into a microfluidic environment. The sensor operates by measuring the changes in the resistance of the nanowire as the biomolecular reactions proceed. We show that the nanoelectronic sensor can detect and differentiate several steps in the binding of RecA to a single-stranded DNA filament taking place on the nanowire-aqueous interface. We report relative changes in the resistance of 3.5% which are related to the interaction of 250 RecA·single-stranded DNA complexes. Spectroscopy data confirm the presence of the protein-DNA complexes on the functionalized silicon surfaces.

  14. The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the HR pathway is more relevant in carbon ions.

    PubMed

    Gerelchuluun, Ariungerel; Manabe, Eri; Ishikawa, Takaaki; Sun, Lue; Itoh, Kazuya; Sakae, Takeji; Suzuki, Kenshi; Hirayama, Ryoichi; Asaithamby, Aroumougame; Chen, David J; Tsuboi, Koji

    2015-03-01

    The purpose of this study was to identify the roles of non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways in repairing DNA double-strand breaks (DSBs) induced by exposure to high-energy protons and carbon ions (C ions) versus gamma rays in Chinese hamster cells. Two Chinese hamster cell lines, ovary AA8 and lung fibroblast V79, as well as various mutant sublines lacking DNA-PKcs (V3), X-ray repair cross-complementing protein-4 [XRCC4 (XR1), XRCC3 (irs1SF) and XRCC2 (irs1)] were exposed to gamma rays ((137)Cs), protons (200 MeV; 2.2 keV/μm) and C ions (290 MeV; 50 keV/μm). V3 and XR1 cells lack the NHEJ pathway, whereas irs1 and irs1SF cells lack the HR pathway. After each exposure, survival was measured using a clonogenic survival assay, in situ DSB induction was evaluated by immunocytochemical analysis of histone H2AX phosphorylation at serine 139 (γ-H2AX foci) and chromosome aberrations were examined using solid staining. The findings from this study showed that clonogenic survival clearly depended on the NHEJ and HR pathway statuses, and that the DNA-PKcs(-/-) cells (V3) were the most sensitive to all radiation types. While protons and γ rays yielded almost the same biological effects, C-ion exposure greatly enhanced the sensitivity of wild-type and HR-deficient cells. However, no significant enhancement of sensitivity in cell killing was seen after C-ion irradiation of NHEJ deficient cells. Decreases in the number of γ-H2AX foci after irradiation occurred more slowly in the NHEJ deficient cells. In particular, V3 cells had the highest number of residual γ-H2AX foci at 24 h after C-ion irradiation. Chromosomal aberrations were significantly higher in both the NHEJ- and HR-deficient cell lines than in wild-type cell lines in response to all radiation types. Protons and gamma rays induced the same aberration levels in each cell line, whereas C ions introduced higher but not significantly different aberration levels. Our results

  15. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair.

    PubMed

    Lieber, M R

    1997-03-01

    Unlike the most well-characterized prokaryotic polymerase, E. coli DNA pol l, none of the eukaryotic polymerases have their own 5' to 3' exonuclease domain for nick translation and Okazaki fragment processing. In eukaryotes, FEN-1 is an endo- and exonuclease that carries out this function independently of the polymerase molecules. Only seven nucleases have been cloned from multicellular eukaryotic cells. Among these, FEN-1 is intriguing because it has complex structural preferences; specifically, it cleaves at branched DNA structures. The cloning of FEN-1 permitted establishment of the first eukaryotic nuclease family, predicting that S. cerevisiae RAD2 (S. pombe Rad13) and its mammalian homolog, XPG, would have similar structural specificity. The FEN-1 nuclease family includes several similar enzymes encoded by bacteriophages. The crystal structures of two enzymes in the FEN-1 nuclease family have been solved and they provide a structural basis for the interesting steric requirements of FEN-1 substrates. Because of their unique structural specificities, FEN-1 and its family members have important roles in DNA replication, repair and, potentially, recombination. Recently, FEN-1 was found to specifically associate with PCNA, explaining some aspects of FEN-1 function during DNA replication and potentially in DNA repair.

  16. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  17. Marker Effects of G to C Transversions on Intragenic Recombination and Mismatch Repair in Schizosaccharomyces Pombe

    PubMed Central

    Schar, P.; Kohli, J.

    1993-01-01

    G to C transversion mutations show very strong allele-specific marker effects on the frequency of wild-type recombinants in intragenic two-factor crosses. Here we present a detailed study of the marker effect of one representative, the ade6-M387 mutation of Schizosaccharomyces pombe. Crosses of M387 with other mutations at varying distance reveal highly increased prototroph frequencies in comparison with the C to T transition mutation ade6-51 (control without any known marker effect) located four nucleotides from M387. The marker effect of M387 is strongest (>40-fold) for crosses with mutations less than 15 nucleotides from M387. It decreases to an intermediate level (5-10-fold) in crosses with mutations located 25-150 base pairs from M387/51 and is very low in crosses with mutations beyond 200 base pairs. On the basis of these results and the quantitation of the low efficiency of C/C mismatch repair presented in the accompanying publication we propose the existence of at least two different types of mechanisms for base mismatch repair in fission yeast. The major system is suggested to recognize all base mismatches except C/C with high efficiency and to generate long excision tracts (approximately 100 nucleotides unidirectionally). The minor system is proposed to recognize all base mismatches including C/C with low and variable efficiency and to have short excision tracts (approximately 10 nucleotides unidirectionally). We estimate from the M387 marker effect that the minor system accounts for approximately 1-8% repair of non-C/C mismatches (depending on the nature of the mutation) in fission yeast meiosis. PMID:8462844

  18. Role for the Mammalian Swi5-Sfr1 Complex in DNA Strand Break Repair through Homologous Recombination

    PubMed Central

    Akamatsu, Yufuko; Jasin, Maria

    2010-01-01

    In fission yeast, the Swi5-Sfr1 complex plays an important role in homologous recombination (HR), a pathway crucial for the maintenance of genomic integrity. Here we identify and characterize mammalian Swi5 and Sfr1 homologues. Mouse Swi5 and Sfr1 are nuclear proteins that form a complex in vivo and in vitro. Swi5 interacts in vitro with Rad51, the DNA strand-exchange protein which functions during HR. By generating Swi5−/− and Sfr1−/− embryonic stem cell lines, we found that both proteins are mutually interdependent for their stability. Importantly, the Swi5-Sfr1 complex plays a role in HR when Rad51 function is perturbed in vivo by expression of a BRC peptide from BRCA2. Swi5−/− and Sfr1−/− cells are selectively sensitive to agents that cause DNA strand breaks, in particular ionizing radiation, camptothecin, and the Parp inhibitor olaparib. Consistent with a role in HR, sister chromatid exchange induced by Parp inhibition is attenuated in Swi5−/− and Sfr1−/− cells, and chromosome aberrations are increased. Thus, Swi5-Sfr1 is a newly identified complex required for genomic integrity in mammalian cells with a specific role in the repair of DNA strand breaks. PMID:20976249

  19. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair.

    PubMed

    Lee, Byung Il; Kim, Kyoung Hoon; Park, Soo Jeong; Eom, Soo Hyun; Song, Hyun Kyu; Suh, Se Won

    2004-05-19

    RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes. The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix-hairpin-helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30-35 angstroms diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding. PMID:15116069

  20. Topoisomerase II-Mediated DNA Damage Is Differently Repaired during the Cell Cycle by Non-Homologous End Joining and Homologous Recombination

    PubMed Central

    de Campos-Nebel, Marcelo; Larripa, Irene; González-Cid, Marcela

    2010-01-01

    Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells. PMID:20824055

  1. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    PubMed

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  2. Escherichia Coli Mutator Mutd5 Is Defective in the Muthls Pathway of DNA Mismatch Repair

    PubMed Central

    Schaaper, R. M.

    1989-01-01

    We have previously reported that the Escherichia coli mutator strain mutD5 was defective in the correction of bacteriophage M13mp2 heteroduplex DNA containing a T·G mismatch. Here, this defect was further investigated with regard to its interaction with the mutHLS pathway of mismatch repair. A set of 15 different M13mp2 heteroduplexes was used to measure the mismatch-repair capability of wild-type, mutL and mutD5 cells. Throughout the series, the mutD5 strain proved as deficient in mismatch repair as the mutL strain, indicating that the repair defect is similar in the two strains in both extent and specificity. [One exception was noted in the case of a T·G mispair that was subject to VSP (Very Short Patch) repair. VSP repair was abolished by mutL but not by mutD.] Variation in the dam-methylation state of the heteroduplex molecules clearly affected repair in the wild-type strain but had no effect on either the mutD or mutL strain. Finally, mutDmutL or mutDmutS double-mutator strains were no more deficient in mismatch repair as were the single mutator strains. The combined results strongly argue that the mismatch-repair deficiency of mutD5 cells resides in the mutH,L,S-dependent pathway of mismatch repair and that the high mutation rate of mutD strains derives in part from this defect. PMID:2659431

  3. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway

    PubMed Central

    Zhang, Zhiwei; Cai, Cindy X

    2016-01-01

    The expression of kidney injury molecule-1 (KIM-1), a very promising sensitive and specific urinary biomarker for acute renal injury, is markedly upregulated in injured and regenerating renal proximal tubular epithelial cells following ischemic or toxic insults, suggesting a possible role for this molecule in renal repair process. In the present study we report that expression of KIM-1 facilitates renal tubular epithelial cell repair by promoting cell migration and proliferation. KIM-1 expression also enhances ERK MAPK activation, and the modulatory effect of KIM-1 on cellular repair process is likely mediated via ERK MAPK signaling pathway. PMID:27084535

  4. DNA mismatch repair pathway defects in the pathogenesis and evolution of myeloma.

    PubMed

    Velangi, Mark R; Matheson, Elizabeth C; Morgan, Gareth J; Jackson, Graham H; Taylor, Penelope R; Hall, Andrew G; Irving, Julie A E

    2004-10-01

    Genetic instability is a prominent feature in multiple myeloma and progression of this disease from monoclonal gammopathy of uncertain significance (MGUS) and smouldering myeloma (SMM) is associated with increasing molecular and chromosomal abnormalities. The DNA mismatch repair (MMR) pathway is a post-replicational DNA repair system that maintains genetic stability by repairing mismatched bases and insertion/deletion loops mistakenly incorporated during DNA replication. Deficiencies in proteins pivotal to this pathway result in a higher mutation rate, particularly at regions of microsatellite DNA. We have investigated the proficiency of the MMR pathway in clinical samples and myeloma cell lines. Microsatellite analysis showed instability at one or more of nine loci examined in 15 from 92 patients: 7.7% of MGUS/SMM, 20.7% of MM/plasma cell leukaemia (PCL) and 12.5% of relapsed MM/PCL. An in vitro heteroduplex G/T repair assay found reduced repair in two cell lines, JIM1 and JIM3, and in two of four PCL cases and was associated with aberrant expression of at least one mismatch repair protein. Thus we show that MMR defects are found in plasma cell dyscrasias and the increased frequency during more active stages of the disease suggests a contributory role in disease progression. PMID:15142887

  5. Genistein sensitizes sarcoma cells in vitro and in vivo by enhancing apoptosis and by inhibiting DSB repair pathways

    PubMed Central

    Liu, X.X.; Sun, C.; Jin, X.D.; Li, P.; Zheng, X.G.; Zhao, T.; Li, Q.

    2016-01-01

    The aim of this work was to investigate the radiosensitization effects of genistein on mice sarcoma cells and the corresponding biological mechanisms in vitro and in vivo. Using the non-toxic dosage of 10 μM genistein, the sensitizer enhancement ratios after exposure to X-rays at 50% cell survival (IC50) was 1.45 for S180 cells. For mice cotreated with genistein and X-rays, the excised tumor tissues had reduced blood vessels and decreased size and volume compared with the control and irradiation-only groups. Moreover, a significant increase in apoptosis was accompanied by upregulation of Bax and downregulation of Bcl-2 in the mitochondria, and lots of cytochrome c being transferred to the cytoplasm. Furthermore, X-rays combined with genistein inhibited the activity of DNA-PKcs, so DNA-injured sites were dominated by Ku70/80, leading to incompleteness of homologous recombination (HR) and non-homologous end-joining (NHEJ) repairs and the eventual occurrence of cell apoptosis. Our study, for the first time, demonstrated that genistein sensitized sarcoma cells to X-rays and that this radiosensitizing effect depended on induction of the mitochondrial apoptosis pathway and inhibition of the double-strand break (DSB) repair pathways. PMID:26922091

  6. How to Relate Complex DNA Repair Genotypes to Pathway Function and, Ultimately, Health Risk

    SciTech Connect

    Jones, IM

    2002-01-09

    Exposure to ionizing radiation increases the incidence of cancer. However, predicting which individuals are at most risk from radiation exposure is a distant goal. Predictive ability is needed to guide policies that regulate radiation exposure and ensure that medical treatments have maximum benefit and minimum risk. Differences between people in susceptibility to radiation are largely based on their genotype, the genes inherited from their parents. Among the important genes are those that produce proteins that repair DNA damaged by radiation. Base Excision Repair (BER) proteins repair single strand breaks and oxidized bases in DNA. Double Strand Break Repair proteins repair broken chromosomes. Using technologies and information from the Human Genome Project, we have previously determined that the DNA sequence of DNA repair genes varies within the human population. An average of 3-4 different variants were found that affect the protein for each of 37 genes studied. The average frequency of these variants is 5%. Given the many genes in each DNA repair pathway and their many variants, technical ability to determine an individual's repair genotype greatly exceeds ability to interpret the information. A long-term goal is to relate DNA repair genotypes to health risk from radiation. This study focused on the BER pathway. The BER genes are known, variants of the genes have been identified at LLNL, and LLNL had recently developed an assay for BER function using white blood cells. The goal of this initial effort was to begin developing data that could be used to test the hypothesis that many different genotypes have similar DNA repair capacity phenotypes (function). Relationships between genotype and phenotype could then be used to group genotypes with similar function and ultimately test the association of groups of genotypes with health risk from radiation. Genotypes with reduced repair function are expected to increase risk of radiation-induced health effects. The goal

  7. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair.

    PubMed

    Marceau, Aimee H

    2012-01-01

    Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea. As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance

  8. Two DNA repair and recombination genes in Saccharomyces cerevisiae, RAD52 and RAD54, are induced during meiosis

    SciTech Connect

    Cole, G.M.; Mortimer, R.K. ); Schild, D. )

    1989-07-01

    The DNA repair and recombination genes of Saccharomyces cerevisiae, RAD52 and RAD54, were transcriptionally induced approximately 10- to 15-fold in sporulating MATa/{alpha} cells. Congenic MATa/a cells, which did not sporulate, did not show similar increases. Assays of {beta}-galactosidase activity in strains harboring either a RAD52- or RAD54-lacZ gene fusion indicated that this induction occurred at a time concomitant with a commitment to meiotic recombination, as measured by prototroph formation from his1 heteroalleles.

  9. Hodgkin Lymphoma Risk: Role of Genetic Polymorphisms and Gene-Gene Interactions in DNA repair pathways

    PubMed Central

    Monroy, Claudia M.; Cortes, Andrea C.; Lopez, Mirtha; Rourke, Elizabeth; Etzel, Carol J.; Younes, Anas; Strom, Sara S.; El-Zein, Randa

    2011-01-01

    DNA repair variants may play a potentially important role in an individual’s susceptibility to developing cancer. Numerous studies have reported the association between genetic single nucleotide polymorphisms (SNPs) in DNA repair genes and different types of hematologic cancers. However, to date, the effects of such SNPs on modulating Hodgkin Lymphoma (HL) risk have not yet been investigated. We hypothesized that gene-gene interaction between candidate genes in Direct Reversal, Nucleotide excision repair (NER), Base excision repair (BER) and Double strand break (DSB) pathways may contribute to susceptibility to HL. To test this hypothesis, we conducted a study on 200 HL cases and 220 controls to assess associations between HL risk and 21 functional SNPs in DNA repair genes. We evaluated potential gene-gene interactions and the association of multiple polymorphisms in a chromosome region using a multi-analytic strategy combining logistic regression, multi-factor dimensionality reduction and classification and regression tree approaches. We observed that, in combination, allelic variants in the XPC Ala499Val, NBN Glu185Gln, XRCC3 Thr241Me, XRCC1 Arg194Trp and XRCC1 399Gln polymorphisms modify the risk for developing HL. Moreover, the cumulative genetic risk score revealed a significant trend where the risk for developing HL increases as the number of adverse alleles in BER and DSB genes increase. These findings suggest that DNA repair variants in BER and DSB pathways may play an important role in the development of HL. PMID:21374732

  10. Human RecQ helicases in DNA repair, recombination, and replication.

    PubMed

    Croteau, Deborah L; Popuri, Venkateswarlu; Opresko, Patricia L; Bohr, Vilhelm A

    2014-01-01

    RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.

  11. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

    PubMed

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.

  12. Incorporation of Human Recombinant Tropoelastin into Silk Fibroin Membranes with the View to Repairing Bruch's Membrane.

    PubMed

    Shadforth, Audra M A; Suzuki, Shuko; Alzonne, Raphaelle; Edwards, Grant A; Richardson, Neil A; Chirila, Traian V; Harkin, Damien G

    2015-09-16

    Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM) components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE) on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD). The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1) membranes prepared from blended solutions of fibroin and tropoelastin; and (2) layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR). In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01) when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin.

  13. The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated γH2AX Formation.

    PubMed

    Ramachandran, Shaliny; Haddad, Dania; Li, Conglei; Le, Michael X; Ling, Alexanda K; So, Clare C; Nepal, Rajeev M; Gommerman, Jennifer L; Yu, Kefei; Ketela, Troy; Moffat, Jason; Martin, Alberto

    2016-05-17

    Class switch recombination (CSR) requires activation-induced deaminase (AID) to instigate double-stranded DNA breaks at the immunoglobulin locus. DNA breaks activate the DNA damage response (DDR) by inducing phosphorylation of histone H2AX followed by non-homologous end joining (NHEJ) repair. We carried out a genome-wide screen to identify CSR factors. We found that Usp22, Eny2, and Atxn7, members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitination module, are required for deubiquitination of H2BK120ub following DNA damage, are critical for CSR, and function downstream of AID. The SAGA deubiquitinase activity was required for optimal irradiation-induced γH2AX formation, and failure to remove H2BK120ub inhibits ATM- and DNAPK-induced γH2AX formation. Consistent with this effect, these proteins were found to function upstream of various double-stranded DNA repair pathways. This report demonstrates that deubiquitination of histone H2B impacts the early stages of the DDR and is required for the DNA repair phase of CSR. PMID:27160905

  14. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways.

    PubMed

    Machado-Silva, Alice; Cerqueira, Paula Gonçalves; Grazielle-Silva, Viviane; Gadelha, Fernanda Ramos; Peloso, Eduardo de Figueiredo; Teixeira, Santuza Maria Ribeiro; Machado, Carlos Renato

    2016-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is an obligatory intracellular parasite with a digenetic life cycle. Due to the variety of host environments, it faces several sources of oxidative stress. In addition to reactive oxygen species (ROS) produced by its own metabolism, T. cruzi must deal with high ROS levels generated as part of the host's immune responses. Hence, the conclusion that T. cruzi has limited ability to deal with ROS (based on the lack of a few enzymes involved with oxidative stress responses) seems somewhat paradoxical. Actually, to withstand such variable sources of oxidative stress, T. cruzi has developed complex defence mechanisms. This includes ROS detoxification pathways that are distinct from the ones in the mammalian host, DNA repair pathways and specialized polymerases, which not only protect its genome from the resulting oxidative damage but also contribute to the generation of genetic diversity within the parasite population. Recent studies on T. cruzi's DNA repair pathways as mismatch repair (MMR) and GO system suggested that, besides a role associated with DNA repair, some proteins of these pathways may also be involved in signalling oxidative damage. Recent data also suggested that an oxidative environment might be beneficial for parasite survival within the host cell as it contributes to iron mobilization from the host's intracellular storages. Besides contributing to the understanding of basic aspects of T. cruzi biology, these studies are highly relevant since oxidative stress pathways are part of the poorly understood mechanisms behind the mode of action of drugs currently used against this parasite. By unveiling new peculiar aspects of T. cruzi biology, emerging data on DNA repair pathways and other antioxidant defences from this parasite have revealed potential new targets for a much needed boost in drug development efforts towards a better treatment for Chagas disease. PMID:27036062

  15. DNA Ligase IV and Artemis Act Cooperatively to Suppress Homologous Recombination in Human Cells: Implications for DNA Double-Strand Break Repair

    PubMed Central

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR. PMID:23967291

  16. Recent research in DNA repair, mutation and recombination: a report of the DNA Repair Network meeting, held at City University, London on 18 December 1995.

    PubMed

    Jones, N J; Strike, P

    1996-09-01

    The now traditional one day Christmas DNA Repair meeting was held at City University, London for the third year in succession. With over 130 participants and a programme consisting of a total of 24 pre-offered presentations the meeting reached record dimensions. Attendees were from 24 institutions throughout the United Kingdom, and with several distinct research groups contained within the large contingents from the ICRF Clare Hall Laboratories and the MRC Cell Mutation Unit in Brighton, this indicates the increasing interest and depth of UK research in DNA repair. One slight disappointment of the meeting was the fall in the numbers of non-UK participants. Although the meeting in 1994 (Strike, 1995) saw an increase in presentations from Continental Europe (six countries including France, Germany. The Netherlands and Switzerland), the trend did not continue this year, with only Denmark being represented. The 24 contributors consisted of approximately equal numbers of postgraduate students, postdoctoral researchers and more "established' scientists reflecting the continuing policy of encouraging younger members of the repair community to present their work. The mix of presenters was particularly well illustrated by two excellent and consecutive talks by Professor Bryn Bridges (MRC Cell Mutation Unit) and Alison Mitchell, a postgraduate student in Stephen West's laboratory (ICRF, Clare Hall). The organisms under study were as equally disparate and included Archaebacteria, Escherichia coli. Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus, mice and men. The range of topics was also varied and included bacterial mutagenesis, NMR studies of Ada protein, preferential DNA repair, cell cycle checkpoint genes, reconstitution of nucleotide excision repair and V(D)J recombination in vitro, creation of repair deficient transgenic mice and mismatch defects in human cells. The result was a very successful meeting which was characterized by the consistently high

  17. RecF and RecR Play Critical Roles in the Homologous Recombination and Single-Strand Annealing Pathways of Mycobacteria

    PubMed Central

    Gupta, Richa; Shuman, Stewart

    2015-01-01

    ABSTRACT Mycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation of adnAB or recO individually causes partial impairment of HR, but loss of adnAB and recO in combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNA in vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis of recF and recR in mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair. IMPORTANCE This study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284–2295, 2013, http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair. PMID:26195593

  18. RecF and RecR Play Critical Roles in the Homologous Recombination and Single-Strand Annealing Pathways of Mycobacteria.

    PubMed

    Gupta, Richa; Shuman, Stewart; Glickman, Michael S

    2015-10-01

    Mycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation of adnAB or recO individually causes partial impairment of HR, but loss of adnAB and recO in combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNA in vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis of recF and recR in mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair.IMPORTANCE This study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284-2295, 2013, http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair. PMID:26195593

  19. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study.

    PubMed

    Muhonen, Virpi; Salonius, Eve; Haaparanta, Anne-Marie; Järvinen, Elina; Paatela, Teemu; Meller, Anna; Hannula, Markus; Björkman, Mimmi; Pyhältö, Tuomo; Ellä, Ville; Vasara, Anna; Töyräs, Juha; Kellomäki, Minna; Kiviranta, Ilkka

    2016-05-01

    The purpose of this study was to investigate the potential of a novel recombinant human type II collagen/polylactide scaffold (rhCo-PLA) in the repair of full-thickness cartilage lesions with autologous chondrocyte implantation technique (ACI). The forming repair tissue was compared to spontaneous healing (spontaneous) and repair with a commercial porcine type I/III collagen membrane (pCo). Domestic pigs (4-month-old, n = 20) were randomized into three study groups and a circular full-thickness chondral lesion with a diameter of 8 mm was created in the right medial femoral condyle. After 3 weeks, the chondral lesions were repaired with either rhCo-PLA or pCo together with autologous chondrocytes, or the lesion was only debrided and left untreated for spontaneous repair. The repair tissue was evaluated 4 months after the second operation. Hyaline cartilage formed most frequently in the rhCo-PLA treatment group. Biomechanically, there was a trend that both treatment groups resulted in better repair tissue than spontaneous healing. Adverse subchondral bone reactions developed less frequently in the spontaneous group (40%) and the rhCo-PLA treated group (50%) than in the pCo control group (100%). However, no statistically significant differences were found between the groups. The novel rhCo-PLA biomaterial showed promising results in this proof-of-concept study, but further studies will be needed in order to determine its effectiveness in articular cartilage repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:745-753, 2016. PMID:26573959

  20. Mismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack nonhomologous end joining.

    PubMed

    Eccleston, Jennifer; Yan, Catherine; Yuan, Karen; Alt, Frederick W; Selsing, Erik

    2011-02-15

    In the absence of core nonhomologous end-joining (NHEJ) factors, Ab gene class-switch recombination (CSR) uses an alternative end-joining (A-EJ) pathway to recombine switch (S) region DNA breaks. Previous reports showing decreased S-junction microhomologies in MSH2-deficient mice and an exonuclease 1 (EXO1) role in yeast microhomology-mediated end joining suggest that mismatch repair (MMR) proteins might influence A-EJ-mediated CSR. We have directly investigated whether MMR proteins collectively or differentially influence the A-EJ mechanism of CSR by analyzing CSR in mice deficient in both XRCC4 and individual MMR proteins. We find CSR is reduced and that Igh locus chromosome breaks are reduced in the MMR/XRCC4 double-deficient B cells compared with B cells deficient in XRCC4 alone, suggesting MMR proteins function upstream of double-strand break formation to influence CSR efficiency in these cells. Our results show that MLH1, EXO1, and MSH2 are all important for efficient A-EJ-mediated CSR, and we propose that MMR proteins convert DNA nicks and point mutations into dsDNA breaks for both C-NHEJ and A-EJ pathways of CSR. We also find Mlh1-XRCC4(-) B cells have an increased frequency of direct S junctions, suggesting that MLH1 proteins may have additional functions that influence A-EJ-mediated CSR.

  1. Targeting the DNA Repair Pathway in Ewing Sarcoma

    PubMed Central

    Stewart, Elizabeth; Goshorn, Ross; Bradley, Cori; Griffiths, Lyra M.; Benavente, Claudia; Twarog, Nathaniel R.; Miller, Gregory M.; Caufield, William; Freeman, Burgess B.; Bahrami, Armita; Pappo, Alberto; Wu, Jianrong; Loh, Amos; Karlström, Åsa; Calabrese, Chris; Gordon, Brittney; Tsurkan, Lyudmila; Hatfield, M. Jason; Potter, Philip M.; Snyder, Scott; Thiagarajan, Suresh; Shirinifard, Abbas; Sablauer, Andras; Shelat, Anang A.; Dyer, Michael A.

    2015-01-01

    Ewing sarcoma (EWS) is a tumor of the bone and soft-tissue that primarily affects adolescents and young adults. With current therapies, 70% of patients with localized disease survive, but patients with metastatic or recurrent disease have a poor outcome. We found that EWS cell lines are defective in DNA break repair and are sensitive to PARP inhibitors (PARPis). PARPi-induced cytotoxicity in EWS cells was 10- to 1,000-fold higher after administration of the DNA-damaging agents irinotecan or temozolomide. We developed an orthotopic EWS mouse model and performed pharmacokinetic and pharmacodynamic studies using 3 different PARPis that are in clinical development for pediatric cancer. Irinotecan administered on a low-dose, protracted schedule previously optimized for pediatric patients was an effective DNA-damaging agent when combined with PARPis; it was also better tolerated than combinations with temozolomide. Combining PARPis with irinotecan and temozolomide gave complete and durable responses in more than 80% of the mice. PMID:25437539

  2. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans.

    PubMed

    Stergiou, L; Doukoumetzidis, K; Sendoel, A; Hengartner, M O

    2007-06-01

    Ultraviolet (UV) radiation is a mutagen of major clinical importance in humans. UV-induced damage activates multiple signaling pathways, which initiate DNA repair, cell cycle arrest and apoptosis. To better understand these pathways, we studied the responses to UV-C light (254 nm) of germ cells in Caenorhabditis elegans. We found that UV activates the same cellular responses in worms as in mammalian cells. Both UV-induced apoptosis and cell cycle arrest were completely dependent on the p53 homolog CEP-1, the checkpoint proteins HUS-1 and CLK-2, and the checkpoint kinases CHK-2 and ATL-1 (the C. elegans homolog of ataxia telangiectasia and Rad3-related); ATM-1 (ataxia telangiectasia mutated-1) was also required, but only at low irradiation doses. Importantly, mutation of genes encoding nucleotide excision repair pathway components severely disrupted both apoptosis and cell cycle arrest, suggesting that these genes not only participate in repair, but also signal the presence of damage to downstream components of the UV response pathway that we delineate here. Our study suggests that whereas DNA damage response pathways are conserved in metazoans in their general outline, there is significant evolution in the relative importance of individual checkpoint genes in the response to specific types of DNA damage.

  3. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia

    PubMed Central

    Gordon, William M.; Zeller, Michael D.; Klein, Rachel H.; Swindell, William R.; Ho, Hsiang; Espetia, Francisco; Gudjonsson, Johann E.; Baldi, Pierre F.; Andersen, Bogi

    2014-01-01

    Dermal infiltration of T cells is an important step in the onset and progression of immune-mediated skin diseases such as psoriasis; however, it is not known whether epidermal factors play a primary role in the development of these diseases. Here, we determined that the prodifferentiation transcription factor grainyhead-like 3 (GRHL3), which is essential during epidermal development, is dispensable for adult skin homeostasis, but required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we found that GRHL3 is upregulated in lesional skin and binds known epidermal differentiation gene targets. Using an imiquimod-induced model of immune-mediated epidermal hyperplasia, we found that mice lacking GRHL3 have an exacerbated epidermal damage response, greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti–IL-22 therapy compared with WT animals. ChIP-Seq and gene expression profiling of murine skin revealed that while GRHL3 regulates differentiation pathways both during development and during repair from immune-mediated damage, it targets distinct sets of genes in the 2 processes. In particular, GRHL3 suppressed a number of alarmin and other proinflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia. PMID:25347468

  4. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer

    PubMed Central

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-01-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC. PMID:27165003

  5. BRC-1 acts in the inter-sister pathway of meiotic double-strand break repair.

    PubMed

    Adamo, Adele; Montemauri, Paolo; Silva, Nicola; Ward, Jordan D; Boulton, Simon J; La Volpe, Adriana

    2008-03-01

    The breast and ovarian cancer susceptibility protein BRCA1 is evolutionarily conserved and functions in DNA double-strand break (DSB) repair through homologous recombination, but its role in meiosis is poorly understood. By using genetic analysis, we investigated the role of the Caenorhabditis elegans BRCA1 orthologue (brc-1) during meiotic prophase. The null mutant in the brc-1 gene is viable, fertile and shows the wild-type complement of six bivalents in most diakinetic nuclei, which is indicative of successful crossover recombination. However, brc-1 mutants show an abnormal increase in apoptosis and RAD-51 foci at pachytene that are abolished by loss of spo-11 function, suggesting a defect in meiosis rather than during premeiotic DNA replication. In genetic backgrounds in which chiasma formation is abrogated, such as him-14/MSH4 and syp-2, loss of brc-1 leads to chromosome fragmentation suggesting that brc-1 is dispensable for crossing over but essential for DSB repair through inter-sister recombination.

  6. Loss of CtIP disturbs homologous recombination repair and sensitizes breast cancer cells to PARP inhibitors

    PubMed Central

    Fujimori, Hiroaki; Motegi, Akira; Miki, Yoshio; Masutani, Mitsuko

    2016-01-01

    Breast cancer is one of the leading causes of death worldwide, and therefore, new and improved approaches for the treatment of breast cancer are desperately needed. CtIP (RBBP8) is a multifunctional protein that is involved in various cellular functions, including transcription, DNA replication, DNA repair and the G1 and G2 cell cycle checkpoints. CtIP plays an important role in homologous recombination repair by interacting with tumor suppressor protein BRCA1. Here, we analyzed the expression profile of CtIP by data mining using published microarray data sets. We found that CtIP expression is frequently decreased in breast cancer patients, and the patient group with low-expressing CtIP mRNA is associated with a significantly lower survival rate. The knockdown of CtIP in breast cancer MCF7 cells reduced Rad51 foci numbers and enhanced f H2AX foci formation after f-irradiation, suggesting that deficiency of CtIP decreases homologous recombination repair and delays DNA double strand break repair. To explore the effect of CtIP on PARP inhibitor therapy for breast cancer, CtIP-depleted MCF7 cells were treated with PARP inhibitor olaparib (AZD2281) or veliparib (ABT-888). As in BRCA mutated cells, PARP inhibitors showed cytotoxicity to CtIP-depleted cells by preventing cells from repairing DNA damage, leading to decreased cell viability. Further, a xenograft tumor model in mice with MCF7 cells demonstrated significantly increased sensitivity towards PARP inhibition under CtIP deficiency. In summary, this study shows that low level of CtIP expression is associated with poor prognosis in breast cancer, and provides a rationale for establishing CtIP expression as a biomarker of PARP inhibitor response, and consequently offers novel therapeutic options for a significant subset of patients. PMID:26713604

  7. A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae.

    PubMed

    Chakraborty, Ujani; George, Carolyn M; Lyndaker, Amy M; Alani, Eric

    2016-02-01

    Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker's yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker's yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3' tails. Thus 3' tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3' tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability. PMID:26680658

  8. Calcium influx-mediated translocation of m-calpain induces Ku80 cleavage and enhances the Ku80-related DNA repair pathway

    PubMed Central

    Baek, Kyung Hye; Yu, Han Vit; Kim, Eosu; Na, Younghwa; Kwon, Youngjoo

    2016-01-01

    Proteomic analysis of ionomycin-treated and untreated mammary epithelial MCF10A cells elucidated differences in Ku80 cleavage. Ku80, a subunit of the Ku protein complex, is an initiator of the non-homologous, end-joining (NHEJ), double-strand breaks (DSBs) repair pathway. The nuclear Ku80 was cleaved in a calcium concentration-dependent manner by m-calpain but not by m-calpain. The cleavage of nuclear Ku80 at its α/β domain was validated by Western blotting analysis using flag-tagged expression vectors of truncated versions of Ku80 and a flag antibody and was confirmed in m-calpain knock-down cells and in vitro cell-free evaluation with recombinant proteins of calpains, Ku70, and Ku80. In addition, the cleaved Ku80 still formed a Ku heterodimer and promoted DNA DSB repair activity. Taken together, these findings indicate that translocated m-calpain enhances the NHEJ pathway through the cleavage of Ku80. Based on the present study, m-calpain in DNA repair pathways might be a novel anticancer drug target, or its mechanism might be a possible route for resistance acquisition of DNA damage-inducing chemotherapeutics. PMID:27121057

  9. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair

    PubMed Central

    Kato, Akihiro; Komatsu, Kenshi

    2015-01-01

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair. PMID:26184323

  10. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression.

    PubMed

    Turner, Kristen M; Sun, Youting; Ji, Ping; Granberg, Kirsi J; Bernard, Brady; Hu, Limei; Cogdell, David E; Zhou, Xinhui; Yli-Harja, Olli; Nykter, Matti; Shmulevich, Ilya; Yung, W K Alfred; Fuller, Gregory N; Zhang, Wei

    2015-03-17

    Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.

  11. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression

    PubMed Central

    Turner, Kristen M.; Sun, Youting; Ji, Ping; Granberg, Kirsi J.; Bernard, Brady; Hu, Limei; Cogdell, David E.; Zhou, Xinhui; Yli-Harja, Olli; Nykter, Matti; Shmulevich, Ilya; Yung, W. K. Alfred; Fuller, Gregory N.; Zhang, Wei

    2015-01-01

    Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor. PMID:25737557

  12. Tousled kinase activator, gallic acid, promotes homologous recombinational repair and suppresses radiation cytotoxicity in salivary gland cells.

    PubMed

    Timiri Shanmugam, Prakash Srinivasan; Nair, Renjith Parameshwaran; De Benedetti, Arrigo; Caldito, Gloria; Abreo, Fleurette; Sunavala-Dossabhoy, Gulshan

    2016-04-01

    Accidental or medical radiation exposure of the salivary glands can gravely impact oral health. Previous studies have shown the importance of Tousled-like kinase 1 (TLK1) and its alternate start variant TLK1B in cell survival against genotoxic stresses. Through a high-throughput library screening of natural compounds, the phenolic phytochemical, gallic acid (GA), was identified as a modulator of TLK1/1B. This small molecule possesses anti-oxidant and free radical scavenging properties, but in this study, we report that in vitro it promotes survival of human salivary acinar cells, NS-SV-AC, through repair of ionizing radiation damage. Irradiated cells treated with GA show improved clonogenic survival compared to untreated controls. And, analyses of DNA repair kinetics by alkaline single-cell gel electrophoresis and γ-H2AX foci immunofluorescence indicate rapid resolution of DNA breaks in drug-treated cells. Study of DR-GFP transgene repair indicates GA facilitates homologous recombinational repair to establish a functional GFP gene. In contrast, inactivation of TLK1 or its shRNA knockdown suppressed resolution of radiation-induced DNA tails in NS-SV-AC, and homology directed repair in DR-GFP cells. Consistent with our results in culture, animals treated with GA after exposure to fractionated radiation showed better preservation of salivary function compared to saline-treated animals. Our results suggest that GA-mediated transient modulation of TLK1 activity promotes DNA repair and suppresses radiation cytoxicity in salivary gland cells.

  13. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway

    PubMed Central

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K.; Gairola, C. Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6–4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6–4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke. PMID:27391141

  14. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    PubMed

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K; Gairola, C Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke. PMID:27391141

  15. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    PubMed

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K; Gairola, C Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.

  16. Either Non-Homologous Ends Joining or Homologous Recombination Is Required to Repair Double-Strand Breaks in the Genome of Macrophage-Internalized Mycobacterium tuberculosis

    PubMed Central

    Klink, Magdalena; Brzezinska, Marta; Sulowska, Zofia; Dziadek, Jaroslaw

    2014-01-01

    The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA), NHEJ [Δ(ku,ligD)], or both DSB repair systems [Δ(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages. PMID:24658131

  17. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation.

    PubMed

    Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce

    2014-04-01

    Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation. PMID:24561002

  18. Increasing the efficiency of homologous recombination vector-mediated end joining repair by inhibition of Lig4 gene using siRNA in sheep embryo fibroblasts.

    PubMed

    Wei, Wang; Yushuang, Wang; Lanlan, Huang; Zijian, Jian; Xinhua, Wang; Shouren, Liu; Wenhui, Pi

    2016-09-01

    In animal cells, inhibition of non-homologous end joining (NHEJ) pathway improves the efficiency of homologous recombination (HR)-mediated double-strand brakes (DSBs) repair. To improve the efficiency of HR in sheep embryo fibroblasts, the NHEJ key molecule DNA ligase 4 (Lig4) was suppressed by siRNA interference. Four pairs of siRNA targeting Lig4 were designed and chemically synthesized. These siRNA were electro-transferred into sheep embryo fibroblasts respectively. Compared with the control groups, two pairs of siRNA were identified to effectively inhibit the expression of sheep Lig4 gene by qRT-PCR and Western blotting. The plasmid rejoining assay was adopted for examining the efficiency of HR-mediated DSB repair. I-SceⅠ endonuclease linearized vector and siRNA were co-transfected into sheep embryo fibroblasts. Flow cytometry analysis of cells after transfection for 72 h showed that suppression of Lig4 using siRNAs increased the rejoining efficiency of HR vector by 3-4 times compared with the control groups. Therefore, enhanced HR vector rejoining frequency by instant inhabition of Lig4 gene provides theoretical basis for improving gene targeting efficiency of sheep embryo fibroblasts. PMID:27644744

  19. Repair of deletions and double-strand gaps by homologous recombination in a mammalian in vitro system.

    PubMed Central

    Jessberger, R; Berg, P

    1991-01-01

    We have designed an in vitro system using mammalian nuclear extracts, or fractions derived from them, that can restore the sequences missing at double-strand breaks (gaps) or in deletions. The recombination substrates consist of (i) recipient DNA, pSV2neo with gaps or deletions ranging from 70 to 390 bp in the neo sequence, and (ii) donor DNAs with either complete homology to the recipient (pSV2neo) or plasmids whose homology with pSV2neo is limited to a 1.0- to 1.3-kbp neo segment spanning the gaps or deletions. Incubation of these substrates with various enzyme fractions results in repair of the recipient DNA's disrupted neo gene. The recombinational repair was monitored by transforming recA Escherichia coli to kanamycin resistance and by a new assay which measures the extent of DNA strand transfer from the donor substrate to the recipient DNA. Thus, either streptavidin- or antidigoxigenin-tagged beads are used to separate the biotinylated or digoxigeninylated recipient DNA, respectively, after incubation with the isotopically labeled donor DNA. In contrast to the transfection assay, the DNA strand transfer measurements are direct, quantitative, rapid, and easy, and they provide starting material for the characterization of the recombination products and intermediates. Accordingly, DNA bound to beads serves as a suitable template for the polymerase chain reaction. With appropriate pairs of oligonucleotide primers, we have confirmed that both gaps and deletions are fully repaired, that deletions can be transferred from the recipient DNA to the donor's intact neo sequence, and that cointegrant molecules containing donor and recipient DNA sequences are formed. Images PMID:1986239

  20. Mutations in the yeast SRB2 general transcription factor suppress hpr1-induced recombination and show defects in DNA repair.

    PubMed

    Piruat, J I; Aguilera, A

    1996-08-01

    We have obtained genetic and molecular evidence that the hrs2-1 mutation, isolated as a suppressor of the hyperrecombination phenotype of hpr1 delta, is in the SRB2 gene, which encodes a component of the RNA polII holoenzyme. A newly constructed srb2 delta allele restores the wild-type levels of deletions in hpr1 delta cells, indicating that the lack of a functional SRB2 transcription factor suppresses recombination between direct repeats. These results suggest a direct connection between transcription and recombination between DNA repeats. On the other hand, the hrs2-1 mutation (renamed srb2-101), in which Gly150 has been changed to Asp, makes cells sensitive to long MMS treatments, a phenotype observed for the srb2 delta null allele only in a hpr1 delta background. This indicates that mutations in the basal transcription factor SRB2 impair DNA repair of MMS-induced damage, which adds a new connection between transcription and DNA repair. We discuss the possibility that hpr1-induced deletions occurred as a consequence of a SRB2-dependent stalled or blocked transcription complex.

  1. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    SciTech Connect

    Zheng Zhiming; Wang Ping; Wang Hongyan; Zhang Xiangming; Wang Minli; Cucinotta, Francis A.; Wang Ya

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials: Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.

  2. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury.

    PubMed

    Bastakoty, Dikshya; Saraswati, Sarika; Cates, Justin; Lee, Ethan; Nanney, Lillian B; Young, Pampee P

    2015-12-01

    Wound healing in mammals is a fibrotic process. The mechanisms driving fibrotic (as opposed to regenerative) repair are poorly understood. Herein we report that therapeutic Wnt inhibition with topical application of small-molecule Wnt inhibitors can reduce fibrosis and promote regenerative cutaneous wound repair. In the naturally stented model of ear punch injury, we found that Wnt/β-catenin pathway is activated most notably in the dermis of the wound bed early (d 2) after injury and subsides to baseline levels by d10. Topical application of either of 2 mechanistically distinct small-molecule Wnt pathway inhibitors (a tankyrase inhibitor, XAV-939, and the U.S. Food and Drug Administration-approved casein kinase activator, pyrvinium) in C57Bl/6J mice resulted in significantly increased rates of wound closure (72.3 ± 14.7% with XAV-939; and 52.1 ± 20.9% with pyrvinium) compared with contralateral controls (38.1 ± 23.0 and 40.4.± 16.7%, respectively). Histologically, Wnt inhibition reduced fibrosis as measured by α-smooth muscle actin positive myofibroblasts and collagen type I α1 synthesis. Wnt inhibition also restored skin architecture including adnexal structures in ear wounds and dermal-epidermal junction with rete pegs in excisional wounds. Additionally, in ear punch injury Wnt inhibitor treatment enabled regeneration of auricular cartilage. Our study shows that pharmacologic Wnt inhibition holds therapeutic utility for regenerative repair of cutaneous wounds. PMID:26268926

  3. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    PubMed Central

    2012-01-01

    Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Conclusions Co

  4. The link between cell-cycle dependent radiosensitivity and repair pathways: a model based on the local, sister-chromatid conformation dependent switch between NHEJ and HR.

    PubMed

    Hufnagl, Antonia; Herr, Lisa; Friedrich, Thomas; Durante, Marco; Taucher-Scholz, Gisela; Scholz, Michael

    2015-03-01

    The different DNA damage repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ) have been linked to the variation of radiosensitivity throughout the cell cycle. However, no attempts have been made to test the various hypotheses derived from these studies in a quantitative way e.g. by using modeling approaches. Here we present the first modeling approach that allows predicting the cell cycle dependent radiosensitivity of repair proficient as well as of repair deficient cell lines after photon irradiation based on a small set of parameters and assumptions. A key element of the model is the classification of DNA damage according to its complexity on the level of chromatin loops of about 2Mbp size. Isolated DSB (iDSB), characterized by a single DSB within a chromatin loop, are distinguished from clustered DSB (cDSB), characterized by two or more DSB within a chromatin loop. The class of iDSB is further subdivided into two sub-classes, characterized by the replication status of the corresponding chromatin loop. For iDSB in replicated loops that are in close contact, error-free homologous recombination is assumed to be effective; in unreplicated loops or in replicated loops that have already been separated, iDSB are assumed to be repaired by error-prone non-homologous end joining. cDSB are assumed not to be repairable effectively by neither HR nor NHEJ. Assigning empirically derived lethalities to these three damage classes and pathways, we demonstrate that the model is able to accurately reproduce cell cycle dependent survival probabilities. Notably, the relevant parameters are derived solely from two survival curves for normal, repair proficient cells in G1 and late-S phase. Based on a comparison of model predictions with a large data set reported in the literature, we show that the lethality values for wild type cells are simultaneously predictive for the cell cycle dependent variation of sensitivity observed for HR-deficient and NHEJ

  5. 5-Fluorouracil sensitizes colorectal tumor cells towards double stranded DNA breaks by interfering with homologous recombination repair

    PubMed Central

    Srinivas, Upadhyayula Sai; Dyczkowski, Jerzy; Beißbarth, Tim; Gaedcke, Jochen; Mansour, Wael Y.; Borgmann, Kerstin; Dobbelstein, Matthias

    2015-01-01

    Malignant tumors of the rectum are treated by neoadjuvant radiochemotherapy. This involves a combination of 5-fluorouracil (5-FU) and double stranded DNA-break (DSB)-inducing radiotherapy. Here we explored how 5-FU cooperates with DSB-induction to achieve sustainable DNA damage in colorectal cancer (CRC) cells. After DSB induction by neocarzinostatin, phosphorylated histone 2AX (γ-H2AX) rapidly accumulated but then largely vanished within a few hours. In contrast, when CRC cells were pre-treated with 5-FU, gammaH2AX remained for at least 24 hours. GFP-reporter assays revealed that 5-FU decreases the efficiency of homologous recombination (HR) repair. However, 5-FU did not prevent the initial steps of HR repair, such as the accumulation of RPA and Rad51 at nuclear foci. Thus, we propose that 5-FU interferes with the continuation of HR repair, e. g. the synthesis of new DNA strands. Two key mediators of HR, Rad51 and BRCA2, were found upregulated in CRC biopsies as compared to normal mucosa. Inhibition of HR by targeting Rad51 enhanced DNA damage upon DSB-inducing treatment, outlining an alternative way of enhancing therapeutic efficacy. Taken together, our results strongly suggest that interfering with HR represents a key mechanism to enhance the efficacy when treating CRC with DNA-damaging therapy. PMID:25909291

  6. Self-inflicted wounds, template-directed gap repair and a recombination hotspot. Effects of the mariner transposase.

    PubMed Central

    Lohe, A R; Timmons, C; Beerman, I; Lozovskaya, E R; Hartl, D L

    2000-01-01

    Aberrant repair products of mariner transposition occur at a frequency of approximately 1/500 per target element per generation. Among 100 such mutations in the nonautonomous element peach, most had aberrations in the 5' end of peach (40 alleles), in the 3' end of peach (11 alleles), or a deletion of peach with or without deletion of flanking genomic DNA (29 alleles). Most mariner mutations can be explained by exonuclease "nibble" and host-mediated repair of the double-stranded gap created by the transposase, in contrast to analogous mutations in the P element. In mariner, mutations in the 5' inverted repeat are smaller and more frequent than those in the 3' inverted repeat, but secondary mutations in target elements with a 5' lesion usually had 3' lesions resembling those normally found at the 5' end. We suggest that the mariner transposase distinguishes between the 5' and 3' ends of the element, and that the 5' end is relatively more protected after strand scission. We also find: (1) that homolog-dependent gap repair is a frequent accompaniment to mariner excision, estimated as 30% of all excision events; and (2) that mariner is a hotspot of recombination in Drosophila females, but only in the presence of functional transposase. PMID:10655218

  7. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination.

    PubMed

    Sansam, Christopher L; Pezza, Roberto J

    2015-07-01

    During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1.

  8. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells

    PubMed Central

    Winkler, Sandra; Hempel, Madlen; Brückner, Sandra; Tautenhahn, Hans-Michael; Kaufmann, Roland; Christ, Bruno

    2016-01-01

    Background: The beneficial impact of mesenchymal stem cells (MSC) on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1) increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM) decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT) and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor) signalling pathways as relevant networks. Relationships to transforming growth factor β (TGF-β) and hypoxia-inducible factor 1-α (HIF1-α) signalling seemed also relevant. Conclusion: MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration. PMID:27409608

  9. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases

    PubMed Central

    Bettencourt, Conceição; Hensman‐Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas‐Gómez, Petra; García‐Velázquez, Lizbeth Esmeralda; Alonso‐Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J.

    2016-01-01

    Objective The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome‐wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. Methods We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single‐nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. Results In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10–5). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10–5) and all SCAs (p = 2.22 × 10–4) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10–5), all in the same direction as in the HD GWAS. Interpretation We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983–990 PMID:27044000

  10. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways.

  11. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model.

    PubMed Central

    Ferguson, D O; Holloman, W K

    1996-01-01

    Recombinational repair of double-stranded DNA gaps was investigated in Ustilago maydis. The experimental system was designed for analysis of repair of an autonomously replicating plasmid containing a cloned gene disabled by an internal deletion. It was discovered that crossing over rarely accompanied gap repair. The strong bias against crossing over was observed in three different genes regardless of gap size. These results indicate that gap repair in U. maydis is unlikely to proceed by the mechanism envisioned in the double-stranded break repair model of recombination, which was developed to account for recombination in Saccharomyces cerevisiae. Experiments aimed at exploring processing of DNA ends were performed to gain understanding of the mechanism responsible for the observed bias. A heterologous insert placed within a gap in the coding sequence of two different marker genes strongly inhibited repair if the DNA was cleaved at the promoter-proximal junction joining the insert and coding sequence but had little effect on repair if the DNA was cleaved at the promoter-distal junction. Gene conversion of plasmid restriction fragment length polymorphism markers engineered in sequences flanking both sides of a gap accompanied repair but was directionally biased. These results are interpreted to mean that the DNA ends flanking a gap are subject to different types of processing. A model featuring a single migrating D-loop is proposed to explain the bias in gap repair outcome based on the observed asymmetry in processing the DNA ends. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8643590

  12. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts

    SciTech Connect

    Mulari, Mika T.K. Nars, Martin; Laitala-Leinonen, Tiina; Kaisto, Tuula; Metsikkoe, Kalervo; Sun Yi; Vaeaenaenen, H. Kalervo

    2008-05-01

    Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-{beta}-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption.

  13. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells

    SciTech Connect

    Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa; Komatsu, Kenshi; Oda, Shoji; Mitani, Hiroshi

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. Black-Right-Pointing-Pointer A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. Black-Right-Pointing-Pointer DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. Black-Right-Pointing-Pointer DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. Black-Right-Pointing-Pointer DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after {gamma}-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of {gamma}H2AX foci after {gamma}-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of {gamma}H2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after {gamma}-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the

  14. Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway.

    PubMed

    Chen, Zhen; Tran, Mykim; Tang, Mengfan; Wang, Wenqi; Gong, Zihua; Chen, Junjie

    2016-04-01

    The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.

  15. Genetic Variation in DNA Repair Pathways and Risk of Non-Hodgkin's Lymphoma

    PubMed Central

    Rendleman, Justin; Antipin, Yevgeniy; Reva, Boris; Adaniel, Christina; Przybylo, Jennifer A.; Dutra-Clarke, Ana; Hansen, Nichole; Heguy, Adriana; Huberman, Kety; Borsu, Laetitia; Paltiel, Ora; Ben-Yehuda, Dina; Brown, Jennifer R.; Freedman, Arnold S.; Sander, Chris; Zelenetz, Andrew; Klein, Robert J.; Shao, Yongzhao; Lacher, Mortimer; Vijai, Joseph; Offit, Kenneth; Kirchhoff, Tomas

    2014-01-01

    Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their association with the risk of non-Hodgkin's lymphoma (NHL). With a population of 1,297 NHL cases and 1,946 controls, we have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs) tagging the genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for rs227060 (OR = 1.27, 95% CI: 1.13–1.43, p = 6.77×10−5), which remained significant after adjustment for multiple testing. In a subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas (DLBCL) and small lymphocytic lymphomas (SLL), however there was no association observed among follicular lymphomas (FL). In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated with NHL risk (OR = 0.51, 95% CI: 0.34–0.77, p = 0.0002). Finally, an imputation analysis using the 1,000 Genomes Project data combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the observed association signals. While the findings generated here warrant independent validation, the results of our large study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL. PMID:25010664

  16. Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli.

    PubMed

    Tong, Wenhua; Xu, Ying; Xian, Mo; Niu, Wei; Guo, Jiantao; Liu, Huizhou; Zhao, Guang

    2016-06-01

    Acrylic acid is an important industrial feedstock. In this study, a de novo acrylate biosynthetic pathway from inexpensive carbon source glycerol was constructed in Escherichia coli. The acrylic acid was produced from glycerol via 3-hydroxypropionaldehyde, 3-hydroxypropionyl-CoA, and acrylyl-CoA. The acrylate production was improved by screening and site-directed mutagenesis of key enzyme enoyl-CoA hydratase and chromosomal integration of some exogenous genes. Finally, our recombinant strain produced 37.7 mg/L acrylic acid under shaking flask conditions. Although the acrylate production is low, our study shows feasibility of engineering an acrylate biosynthetic pathway from inexpensive carbon source. Furthermore, the reasons for limited acrylate production and further strain optimization that should be performed in the future were also discussed. PMID:26782744

  17. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells

    PubMed Central

    Mao, Pingsu; Liu, Jingfan; Zhang, Zepeng; Zhang, Hong; Liu, Haiying; Gao, Song; Rong, Yikang S.; Zhao, Yong

    2016-01-01

    Telomeres prevent chromosome ends from being recognized as double-stranded breaks (DSBs). Meanwhile, G/C-rich repetitive telomeric DNA is susceptible to attack by DNA-damaging agents. How cells balance the need to protect DNA ends and the need to repair DNA lesions in telomeres is unknown. Here we show that telomeric DSBs are efficiently repaired in proliferating cells, but are irreparable in stress-induced and replicatively senescent cells. Using the CRISPR-Cas9 technique, we specifically induce DSBs at telomeric or subtelomeric regions. We find that DSB repair (DSBR) at subtelomeres occurs in an error-prone manner resulting in small deletions, suggestive of NHEJ. However, DSBR in telomeres involves ‘telomere-clustering', 3′-protruding C-rich telomeric ssDNA, and HR between sister-chromatid or interchromosomal telomeres. DSBR in telomeres is suppressed by deletion or inhibition of Rad51. These findings reveal proliferation-dependent DSBR in telomeres and suggest that telomeric HR, which is normally constitutively suppressed, is activated in the context of DSBR. PMID:27396625

  18. Real-time analysis of double-strand DNA break repair by homologous recombination

    PubMed Central

    Hicks, Wade M.; Yamaguchi, Miyuki; Haber, James E.

    2011-01-01

    The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination—specifically, by gene conversion—using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion. PMID:21292986

  19. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair.

    PubMed

    Morimatsu, Katsumi; Kowalczykowski, Stephen C

    2003-05-01

    Genetic evidence suggests that the RecF, RecO, and RecR (RecFOR) proteins participate in a common step of DNA recombination and repair, yet the biochemical event requiring collaboration of all three proteins is unknown. Here, we show that the concerted action of the RecFOR complex directs the loading of RecA protein specifically onto gapped DNA that is coated with single-stranded DNA binding (SSB) protein, thereby accelerating DNA strand exchange. The RecFOR complex recognizes the junction between the ssDNA and dsDNA regions and requires a base-paired 5' terminus at the junction. Thus, the RecFOR complex is a structure-specific mediator that targets recombinational repair to ssDNA-dsDNA junctions. This reaction reconstitutes the initial steps of recombinational gapped DNA repair and uncovers an event also common to the repair of ssDNA-tailed intermediates of dsDNA-break repair. We propose that the behavior of the RecFOR proteins is mimicked by functional counterparts that exist in all organisms. PMID:12769856

  20. S100A11 plays a role in homologous recombination and genome maintenance by influencing the persistence of RAD51 in DNA repair foci.

    PubMed

    Foertsch, Franziska; Szambowska, Anna; Weise, Anja; Zielinski, Alexandra; Schlott, Bernhard; Kraft, Florian; Mrasek, Kristin; Borgmann, Kerstin; Pospiech, Helmut; Grosse, Frank; Melle, Christian

    2016-10-17

    The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca(2+), a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11. PMID:27590262

  1. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks.

    PubMed

    Vriend, Lianne E M; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M

    2016-06-20

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of (nick)HR are largely unexplored. Here, we applied Cas9 nickases to study (nick)HR in mammalian cells. We find that (nick)HR is unaffected by inhibition of major damage signaling kinases and that it is not suppressed by nonhomologous end-joining (NHEJ) components, arguing that nick processing does not require a DSB intermediate to trigger HR. Relative to a single nick, nicking both strands enhances HR, consistent with a DSB intermediate, even when nicks are induced up to ∼1kb apart. Accordingly, HR and NHEJ compete for repair of these paired nicks, but, surprisingly, only when 5' overhangs or blunt ends can be generated. Our study advances the understanding of molecular mechanisms driving nick and paired-nick repair in mammalian cells and clarify phenomena associated with Cas9-mediated genome editing.

  2. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks

    PubMed Central

    Vriend, Lianne E.M.; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M.

    2016-01-01

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR (nickHR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of nickHR are largely unexplored. Here, we applied Cas9 nickases to study nickHR in mammalian cells. We find that nickHR is unaffected by inhibition of major damage signaling kinases and that it is not suppressed by nonhomologous end-joining (NHEJ) components, arguing that nick processing does not require a DSB intermediate to trigger HR. Relative to a single nick, nicking both strands enhances HR, consistent with a DSB intermediate, even when nicks are induced up to ∼1kb apart. Accordingly, HR and NHEJ compete for repair of these paired nicks, but, surprisingly, only when 5' overhangs or blunt ends can be generated. Our study advances the understanding of molecular mechanisms driving nick and paired-nick repair in mammalian cells and clarify phenomena associated with Cas9-mediated genome editing. PMID:27001513

  3. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway.

    PubMed

    Daviet, Stéphane; Couvé-Privat, Sophie; Gros, Laurent; Shinozuka, Kazuo; Ide, Hiroshi; Saparbaev, Murat; Ishchenko, Alexander A

    2007-01-01

    Most common point mutations occurring spontaneously or induced by ionizing radiation are C-->T transitions implicating cytosine as the target. Oxidative cytosine derivatives are the most abundant and mutagenic DNA damage induced by oxidative stress. Base excision repair (BER) pathway initiated by DNA glycosylases is thought to be the major pathway for the removal of these lesions. However, in alternative nucleotide incision repair (NIR) pathway the apurinic/apyrimidinic (AP) endonucleases incise DNA duplex 5' to an oxidatively damaged base in a DNA glycosylase-independent manner. Here, we characterized the substrate specificity of human major AP endonuclease, Ape1, towards 5-hydroxy-2'-deoxycytidine (5ohC) and alpha-anomeric 2'-deoxycytidine (alphadC) residues. The apparent kinetic parameters of the reactions suggest that Ape1 and the DNA glycosylases/AP lyases, hNth1 and hNeil1 repair 5ohC with a low efficiency. Nevertheless, due to the extremely high cellular concentration of Ape1, NIR was the major activity towards 5ohC in cell-free extracts. To address the physiological role of NIR function, we have characterized naturally occurring Ape1 variants including amino acids substitutions (E126A, E126D and D148E) and N-terminal truncated forms (NDelta31, NDelta35 and NDelta61). As expected, all Ape1 mutants had proficient AP endonuclease activity, however, truncated forms showed reduced NIR and 3'-->5' exonuclease activities indicating that these two functions are genetically linked and governed by the same amino acid residues. Furthermore, both Ape1-catalyzed NIR and 3'-->5' exonuclease activities generate a single-strand gap at the 5' side of a damaged base but not at an AP site in duplex DNA. We hypothesized that biochemical coupling of the nucleotide incision and exonuclease degradation may serve to remove clustered DNA damage. Our data suggest that NIR is a backup system for the BER pathway to remove oxidative damage to cytosines in vivo.

  4. Sensitization of Pancreatic Cancers to Gemcitabine Chemoradiation by WEE1 Kinase Inhibition Depends on Homologous Recombination Repair.

    PubMed

    Kausar, Tasneem; Schreiber, Jason S; Karnak, David; Parsels, Leslie A; Parsels, Joshua D; Davis, Mary A; Zhao, Lili; Maybaum, Jonathan; Lawrence, Theodore S; Morgan, Meredith A

    2015-10-01

    To improve the efficacy of chemoradiation therapy for locally advanced pancreatic cancer and begin to establish patient selection criteria, we investigated the combination of the WEE1 inhibitor AZD1775 with gemcitabine-radiation in homologous recombination (HR) repair proficient and deficient pancreatic cancers. Sensitization to gemcitabine-radiation by AZD1775 was assessed in pancreatic cancer cells by clonogenic survival and in patient-derived xenografts by tumor growth. The contributions of HR repair inhibition and G2 checkpoint abrogation to sensitization were assessed by γH2AX, BRCA2 manipulation, and RAD51 focus formation and pHistone H3 flow cytometry, respectively. We found that AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type but not BRCA2 mutant pancreatic cancer cells. In all cells, AZD1775 caused inhibition of CDK1 phosphorylation and G2 checkpoint abrogation. However, sensitization by AZD1775 was associated with persistent γH2AX and inhibition of RAD51 focus formation. In HR-proficient (BRCA2 wild-type) or -deficient (BRAC2 null) isogenic cells, AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type, but not in BRCA2 null cells, despite significant G2 checkpoint abrogation. In patient-derived pancreatic tumor xenografts, AZD1775 significantly inhibited tumor growth and impaired RAD51 focus formation in response to gemcitabine-radiation. In conclusion, WEE1 inhibition by AZD1775 is an effective strategy for sensitizing pancreatic cancers to gemcitabine chemoradiation. Although this sensitization is accompanied by inhibition of CDK1 phosphorylation and G2 checkpoint abrogation, this mechanism is not sufficient for sensitization. Our findings demonstrate that sensitization to chemoradiation by WEE1 inhibition results from inhibition of HR repair and suggest that patient tumors without underlying HR defects would benefit most from this therapy. PMID:26585231

  5. Dual inhibition of ATR and ATM potentiates the activity of trabectedin and lurbinectedin by perturbing the DNA damage response and homologous recombination repair

    PubMed Central

    Soares, Daniele G.; Selle, Frédéric; Morel, Claire; Galmarini, Carlos M.; Henriques, João A. P.; Larsen, Annette K.; Escargueil, Alexandre E.

    2016-01-01

    Trabectedin (Yondelis®, ecteinascidin-743, ET-743) is a marine-derived natural product approved for treatment of advanced soft tissue sarcoma and relapsed platinum-sensitive ovarian cancer. Lurbinectedin is a novel anticancer agent structurally related to trabectedin. Both ecteinascidins generate DNA double-strand breaks that are processed through homologous recombination repair (HRR), thereby rendering HRR-deficient cells particularly sensitive. We here characterize the DNA damage response (DDR) to trabectedin and lurbinectedin in HeLa cells. Our results show that both compounds activate the ATM/Chk2 (ataxia-telangiectasia mutated/checkpoint kinase 2) and ATR/Chk1 (ATM and RAD3-related/checkpoint kinase 1) pathways. Interestingly, pharmacological inhibition of Chk1/2, ATR or ATM is not accompanied by any significant improvement of the cytotoxic activity of the ecteinascidins while dual inhibition of ATM and ATR strongly potentiates it. Accordingly, concomitant inhibition of both ATR and ATM is an absolute requirement to efficiently block the formation of γ-H2AX, MDC1, BRCA1 and Rad51 foci following exposure to the ecteinascidins. These results are not restricted to HeLa cells, but are shared by cisplatin-sensitive and -resistant ovarian carcinoma cells. Together, our data identify ATR and ATM as central coordinators of the DDR to ecteinascidins and provide a mechanistic rationale for combining these compounds with ATR and ATM inhibitors. PMID:27029031

  6. The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis[OPEN

    PubMed Central

    Le Ret, Monique; Bergdoll, Marc; Bichara, Marc; Dietrich, André

    2015-01-01

    The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs. We found that Arabidopsis thaliana RECG1, an ortholog of the bacterial RecG translocase, is an organellar protein with multiple roles in mtDNA maintenance. RECG1 targets to mitochondria and plastids and can complement a bacterial recG mutant that shows defects in repair and replication control. Characterization of Arabidopsis recG1 mutants showed that RECG1 is required for recombination-dependent repair and for suppression of ectopic recombination in mitochondria, most likely because of its role in recovery of stalled replication forks. The analysis of alternative mitotypes present in a recG1 line and of their segregation following backcross allowed us to build a model to explain how a new stable mtDNA configuration, compatible with normal plant development, can be generated by stoichiometric shift. PMID:26462909

  7. Modulation of DNA repair and recombination by the bacteriophage lambda Orf function in Escherichia coli K-12.

    PubMed

    Poteete, Anthony R

    2004-05-01

    The orf gene of bacteriophage lambda, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Delta(recC ptr recB recD)::P(tac) gam bet exo pae cI DeltarecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants. PMID:15090511

  8. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. PMID:27417934

  9. Heteroduplex Chain Polarity in Recombination of Phage λ by the Red, Recbcd, Recbc(d(-)) and Recf Pathways

    PubMed Central

    Siddiqi, I.; Stahl, M. M.; Stahl, F. W.

    1991-01-01

    We have examined the chain polarity of heteroduplex DNA in unreplicated, bacteriophage λ splice recombinants when recombination was by the RecBCD, RecBC(D(-)), or RecF pathway of Escherichia coli or the Red pathway of λ. For each of these pathways, recombination is activated by the cutting of cos that accompanies chromosome packaging, and is effected by recombination enzymes acting at the right end created by that cutting. For exchanges occurring near cos, one parent makes a lesser physical and genetic contribution than does the other. For each pathway, when the phage carried standard cos, this minority contribution was predominantly on the r chain, ending 5' at the right end of λ. When standard cos was replaced by a cloned inverted cos located centrally on the standard λ genetic map, minority contribution was predominantly on the l chain. In each case, the polarity of the overlap was usually that formed by 3' overhangs of parental information and material. These results are discussed in the context of current models of recombination for the different pathways. PMID:1829428

  10. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients

    PubMed Central

    Obermeier, K; Sachsenweger, J; Friedl, T W P; Pospiech, H; Winqvist, R; Wiesmüller, L

    2016-01-01

    Hereditary heterozygous mutations in a variety of DNA double-strand break (DSB) repair genes have been associated with increased breast cancer risk. In the Finnish population, PALB2 (partner and localizer of BRCA2) represents a major susceptibility gene for female breast cancer, and so far, only one mutation has been described, c.1592delT, which leads to a sixfold increased disease risk. PALB2 is thought to participate in homologous recombination (HR). However, the effect of the Finnish founder mutation on DSB repair has not been investigated. In the current study, we used a panel of lymphoblastoid cell lines (LCLs) derived from seven heterozygous female PALB2 c.1592delT mutation carriers with variable health status and six wild-type matched controls. The results of our DSB repair analysis showed that the PALB2 mutation causes specific changes in pathway usage, namely increases in error-prone single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) compared with wild-type LCLs. These data indicated haploinsufficiency regarding the suppression of error-prone DSB repair in PALB2 mutation carriers. To the contrary, neither reduced HR activities, nor impaired RAD51 filament assembly, nor sensitization to PARP inhibition were consistently observed. Expression of truncated mutant versus wild-type PALB2 verified a causal role of PALB2 c.1592delT in the shift to error-prone repair. Discrimination between healthy and malignancy-presenting PALB2 mutation carriers revealed a pathway shift particularly in the breast cancer patients, suggesting interaction of PALB2 c.1592delT with additional genomic lesions. Interestingly, the studied PALB2 mutation was associated with 53BP1 accumulation in the healthy mutation carriers but not the patients, and 53BP1 was limiting for error-prone MMEJ in patients but not in healthy carriers. Our study identified a rise in error-prone DSB repair as a potential threat to genomic integrity in heterozygous PALB2 mutation carriers

  11. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients.

    PubMed

    Obermeier, K; Sachsenweger, J; Friedl, T W P; Pospiech, H; Winqvist, R; Wiesmüller, L

    2016-07-21

    Hereditary heterozygous mutations in a variety of DNA double-strand break (DSB) repair genes have been associated with increased breast cancer risk. In the Finnish population, PALB2 (partner and localizer of BRCA2) represents a major susceptibility gene for female breast cancer, and so far, only one mutation has been described, c.1592delT, which leads to a sixfold increased disease risk. PALB2 is thought to participate in homologous recombination (HR). However, the effect of the Finnish founder mutation on DSB repair has not been investigated. In the current study, we used a panel of lymphoblastoid cell lines (LCLs) derived from seven heterozygous female PALB2 c.1592delT mutation carriers with variable health status and six wild-type matched controls. The results of our DSB repair analysis showed that the PALB2 mutation causes specific changes in pathway usage, namely increases in error-prone single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) compared with wild-type LCLs. These data indicated haploinsufficiency regarding the suppression of error-prone DSB repair in PALB2 mutation carriers. To the contrary, neither reduced HR activities, nor impaired RAD51 filament assembly, nor sensitization to PARP inhibition were consistently observed. Expression of truncated mutant versus wild-type PALB2 verified a causal role of PALB2 c.1592delT in the shift to error-prone repair. Discrimination between healthy and malignancy-presenting PALB2 mutation carriers revealed a pathway shift particularly in the breast cancer patients, suggesting interaction of PALB2 c.1592delT with additional genomic lesions. Interestingly, the studied PALB2 mutation was associated with 53BP1 accumulation in the healthy mutation carriers but not the patients, and 53BP1 was limiting for error-prone MMEJ in patients but not in healthy carriers. Our study identified a rise in error-prone DSB repair as a potential threat to genomic integrity in heterozygous PALB2 mutation carriers

  12. Recombinant 1F9 spidroin microgels for murine full-thickness wound repairing.

    PubMed

    Moisenovich, M M; Malyuchenko, N V; Arkhipova, A Yu; Goncharenko, A V; Kotlyarova, M S; Davydova, L I; Vasil'eva, T V; Bogush, V G; Agapov, I I; Debabov, V G; Kirpichnikov, M P

    2016-01-01

    The study of the stimulating effect of the microgels (MGs) based on recombinant 1F9 spidroin on the regeneration of the deep skin wound in mice was carried out. The use of spidroin MGs was shown to increase significantly the quality of healing compared to the control. The introduction of the MG in the wound edges led to recovery of all the structural elements of the skin: the epidermis, the dermis, including vascular and nervous network, in the periphery of the wound underlying muscles, and skin appendages (sebaceous and sweat glands and hair follicles) was revealed. PMID:27025477

  13. Lambda Red Mediated Gap Repair Utilizes a Novel Replicative Intermediate in Escherichia coli

    PubMed Central

    Reddy, Thimma R.; Fevat, Léna M. S.; Munson, Sarah E.; Stewart, A. Francis; Cowley, Shaun M.

    2015-01-01

    The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction

  14. Human DNA repair genes.

    PubMed

    Wood, R D; Mitchell, M; Sgouros, J; Lindahl, T

    2001-02-16

    Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process. PMID:11181991

  15. Regulation and Disregulation of Mammalian Nucleotide Excision Repair: a Pathway to Non-germline Breast Carcinogenesis†

    PubMed Central

    Latimer, Jean J.; Majekwana, Vongai J.; Pabón-Padín, Yashira R.; Pimpley, Manasi R.; Grant, Stephen G.

    2015-01-01

    Nucleotide excision repair (NER) is important as a modulator of disease, especially in constitutive deficiencies, such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation of NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals, oxidative stress, etc. Since NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NER pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. Since NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic regulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially modulates response to therapy. In this paper, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer. PMID:25393451

  16. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe.

    PubMed Central

    al-Khodairy, F; Carr, A M

    1992-01-01

    We have tested mutants corresponding to 20 DNA repair genes of the fission yeast Schizosaccharomyces pombe for their ability to arrest in G2 after DNA damage. Of the mutants tested, four are profoundly defective in this damage dependent G2 arrest. In addition, these four mutants are highly sensitive to a transient inhibition of DNA synthesis by hydroxyurea. This suggests that the pathway responsible for the recognition of DNA damage and the subsequent mitotic arrest, shares many functions with the mechanism that controls the dependency of mitosis on the completion of S phase. The phenotype of these checkpoint rad mutants in wee mutant backgrounds indicate that the G2 arrest response is mediated either through, or in parallel with, the activity of the cdc2 gene product. Images PMID:1563350

  17. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    SciTech Connect

    Joo, Woo; Xu, Guozhou; Persky, Nicole S.; Smogorzewska, Agata; Rudge, Derek G.; Buzovetsky, Olga; Elledge, Stephen J.; Pavletich, Nikola P.

    2011-08-29

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  18. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    SciTech Connect

    W Joo; G Xu; n Persky; A Smogorzewska; D Rudge; O Buzovetsky; S Elledge; N Pavletich

    2011-12-31

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  19. LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair

    PubMed Central

    Liu, Xue-Song; Chandramouly, Gurushankar; Rass, Emilie; Guan, Yinghua; Wang, Guocan; Hobbs, Robin M.; Rajendran, Anbazhagan; Xie, Anyong; Shah, Jagesh V.; Davis, Anthony J.; Scully, Ralph; Lunardi, Andrea; Pandolfi, Pier Paolo

    2015-01-01

    Leukemia/lymphoma-related factor (LRF) is a POZ/BTB and Krüppel (POK) transcriptional repressor characterized by context-dependent key roles in cell fate decision and tumorigenesis. Here we demonstrate an unexpected transcription-independent function for LRF in the classical non-homologous end joining (cNHEJ) pathway of double-strand break (DSB) repair. We find that LRF loss in cell lines and mouse tissues results in defective cNHEJ, genomic instability and hypersensitivity to ionizing radiation. Mechanistically, we show that LRF binds and stabilizes DNA-PKcs on DSBs, in turn favouring DNA-PK activity. Importantly, LRF loss restores ionizing radiation sensitivity to p53 null cells, making LRF an attractive biomarker to direct p53-null LRF-deficient tumours towards therapeutic treatments based on genotoxic agents or PARP inhibitors following a synthetic lethal strategy. PMID:26446488

  20. Inhibition of homologous recombination repair with Pentoxifylline targets G2 cells generated by radiotherapy and induces major enhancements of the toxicity of cisplatin and melphalan given after irradiation

    PubMed Central

    Bohm, Lothar

    2006-01-01

    The presentation reviews the modus operandi of the dose modifying drug Pentoxifylline and the dose enhancement factors which can be achieved in different cell types. Preclinical and clinical data show that Pentoxifylline improves the oxygenation of hypoxic tumours and enhances tumour control by irradiation. In vitro experiments demonstrate that Pentoxifylline also operates when oxygen is not limiting and produces dose modifying factors in the region of 1.2 – 2.0. This oxygen independent effect is poorly understood. In p53 mutant cells irradiation induces a G2 block which is abrogated by Pentoxifylline. The enhancement of cell kill observed when Pentoxifylline and irradiation are given together could arise from rapid entry of damaged tumour cells into mitosis and propagation of DNA lesions as the result of curtailment of repair time. Recovery ratios and repair experiments using CFGE after high dose irradiation demonstrate that Pentoxifylline inhibits repair directly and that curtailment of repair time is not the explanation. Use of the repair defective xrs1 and the parental repair competent CHO-K1 cell line shows that Pentoxifylline inhibits homologous recombination repair which operates predominantly in the G2 phase of the cell cycle. When irradiated cells residing in G2 phase are exposed to very low doses of cisplatin at a toxic dose of 5 %. (TC: 0.05) massive toxicity enhancements up to a factor of 80 are observed in melanoma, squamous carcinoma and prostate tumour cell lines. Enhancements of radiotoxicity seen when Pentoxifylline and radiation are applied together are small and do not exceed a factor of 2.0. The capacity of Pentoxifyline to inhibit homologous recombination repair has not as yet been clinically utilized. A suitable application could be in the treatment of cervical carcinoma where irradiation and cisplatin are standard modality. In vitro data also strongly suggest that regimes where irradiation is used in combination with alkylating drugs may

  1. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering.

    PubMed

    Zhai, Yafei; Han, Donglei; Pan, Ying; Wang, Shuaishuai; Fang, Junqiang; Wang, Peng; Liu, Xian-wei

    2015-02-01

    Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.

  2. A novel bisindole-PBD conjugate causes DNA damage induced apoptosis via inhibition of DNA repair pathway

    PubMed Central

    Sarma, Pranjal; Ramaiah, M Janaki; Kamal, Ahmed; Bhadra, Utpal; Bhadra, Manika Pal

    2014-01-01

    DNA damage response (DDR) that includes cell cycle check points, DNA repair, apoptosis, and senescence is intimately linked with cancer. It shields an organism against cancer development when genomic integrity fails. DNA repair pathways protect the cells from tumor progression caused as a result of DNA damage induced by irradiation or due to chemotherapeutic treatment. Many promising anticancer agents have been identified that target specific DNA repair pathways in response to DNA damage thereby leading to apoptosis. Here we identified a novel bisindole-PBD conjugate that possess potent anticancer activity in breast cancer cells. Further studies aimed at understanding the mechanism of action of the molecule showed its role in DNA damage induced apoptosis via inhibition of DNA repair pathway. Trypan blue and BrdU assay exhibited a dose-dependent effect. Single-stranded DNA damage was observed by COMET assay. In addition DNA damage induced ROS generation with simultaneous activation of ATM and ATR upon compound treatment was observed. Further downregulation of Bcl-XL and activation of Bax showed DNA damage induced apoptosis in MCF-7 and MDAMB-231 cells. In conclusion, it can be summarized that bisindole-PBD conjugate induces DNA damage in a dose dependent (2, 4, and 8 μM) manner by inhibiting the DNA repair genes. PMID:25010292

  3. The study of the relation of DNA repair pathway genes SNPs and the sensitivity to radiotherapy and chemotherapy of NSCLC

    PubMed Central

    Wang, Chunbo; Nie, Huan; Li, Yiqun; Liu, Guiyou; Wang, Xu; Xing, Shijie; Zhang, Liping; Chen, Xin; Chen, Yue; Li, Yu

    2016-01-01

    To analyze the relation between SNPs in DNA repair pathway-related genes and sensitivity of tumor radio-chemotherapy, 26 SNPs in 20 DNA repair genes were genotyped on 176 patients of NSCLC undertaking radio-chemotherapy treatment. In squamous cell carcinoma (SCC), as the rs2228000, rs2228001 (XPC), rs2273953 (TP73), rs2279744 (MDM2), rs2299939 (PTEN) and rs8178085, rs12334811 (DNA-PKcs) affected the sensitivity to chemotherapy, so did the rs8178085, rs12334811 to radiotherapy. Moreover rs344781, rs2273953 and rs12334811 were related with the survival time of SCC. In general, the “good” genotype GG (rs12334811) showed greater efficacy of radio-chemotherapy and MSF (24 months) on SCC. In adenocarcinoma, as the rs2699887 (PIK3), rs12334811 (DNA-PKcs) influenced the sensitivity to chemotherapy, so did the rs2299939, rs2735343 (PTEN) to radiotherapy. And rs402710, rs80270, rs2279744 and rs2909430 impacted the survival time of the adenocarcinoma patients. Both GG (rs2279744) and AG (rs2909430) showed a shorter survival time (MFS = 6). Additionally, some SNPs such as rs2228000, rs2228001 and rs344781 were found to regulate the expression of DNA repair pathway genes through eQTLs dataset analysis. These results indicate that SNPs in DNA repair pathway genes might regulate the expression and affect the DNA damage repair, and thereby impact the efficacy of radio-chemotherapy and the survival time of NSCLC. PMID:27246533

  4. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.

    PubMed

    Nocon, Justyna; Steiger, Matthias; Mairinger, Teresa; Hohlweg, Jonas; Rußmayer, Hannes; Hann, Stephan; Gasser, Brigitte; Mattanovich, Diethard

    2016-07-01

    Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of (13)C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production.

  5. PTEN loss compromises homologous recombination repair in astrocytes: implications for GBM therapy with temozolomide or PARP inhibitors

    PubMed Central

    McEllin, Brian; Camacho, Cristel V.; Mukherjee, Bipasha; Hahm, Brandon; Tomimatsu, Nozomi; Bachoo, Robert M.; Burma, Sandeep

    2010-01-01

    Glioblastoma multiforme (GBM) are lethal brain tumors that are highly resistant to therapy. The only meaningful improvement in therapeutic response came from use of the SN1-type alkylating agent, temozolomide, in combination with ionizing radiation (IR). However, no genetic markers that might predict a better response to DNA alkylating agents have been identified in GBMs, except for loss of O6-methylguanine-DNA methyltransferase (MGMT) via promoter methylation. In this study, using genetically defined primary murine astrocytes as well as human glioma lines, we show that loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) confers sensitivity to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), a functional analog of temozolomide. We find that MNNG induces replication-associated DNA double-strand breaks (DSBs) that are inefficiently repaired in PTEN-deficient astrocytes and trigger apoptosis. Mechanistically, this is because PTEN-null astrocytes are compromised in homologous recombination (HR), which is important for the repair of replication-associated DSBs. Our results suggest that reduced levels of Rad51 paralogs in PTEN-null astrocytes might underlie the HR deficiency of these cells. Importantly, the HR deficiency of PTEN-null cells renders them sensitive to the poly(ADP-ribose) polymerase (PARP) inhibitor ABT-888 due to synthetic lethality. In sum, our results tentatively suggest that patients with PTEN-null GBMs (about 36%) may especially benefit from treatment with DNA alkylating agents such as temozolomide. Significantly, our results also provide a rational basis for treating the sub-group of patients who are PTEN deficient with PARP inhibitors in addition to the current treatment regimen of radiation and temozolomide. PMID:20530668

  6. Preventing Damage Limitation: Targeting DNA-PKcs and DNA Double-Strand Break Repair Pathways for Ovarian Cancer Therapy

    PubMed Central

    Dungl, Daniela A.; Maginn, Elaina N.; Stronach, Euan A.

    2015-01-01

    Platinum-based chemotherapy is the cornerstone of ovarian cancer treatment, and its efficacy is dependent on the generation of DNA damage, with subsequent induction of apoptosis. Inappropriate or aberrant activation of the DNA damage response network is associated with resistance to platinum, and defects in DNA repair pathways play critical roles in determining patient response to chemotherapy. In ovarian cancer, tumor cell defects in homologous recombination – a repair pathway activated in response to double-strand DNA breaks (DSB) – are most commonly associated with platinum-sensitive disease. However, despite initial sensitivity, the emergence of resistance is frequent. Here, we review strategies for directly interfering with DNA repair pathways, with particular focus on direct inhibition of non-homologous end joining (NHEJ), another DSB repair pathway. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a core component of NHEJ and it has shown considerable promise as a chemosensitization target in numerous cancer types, including ovarian cancer where it functions to promote platinum-induced survival signaling, via AKT activation. The development of pharmacological inhibitors of DNA-PKcs is on-going, and clinic-ready agents offer real hope to patients with chemoresistant disease. PMID:26579492

  7. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    PubMed

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. PMID:26445337

  8. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae.

    PubMed

    Patananan, Alexander N; Capri, Joseph; Whitelegge, Julian P; Clarke, Steven G

    2014-06-13

    The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.

  9. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    PubMed

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.

  10. Meiotic Recombination: The Essence of Heredity.

    PubMed

    Hunter, Neil

    2015-10-28

    The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.

  11. Pleiotropic effects of heterozygosity at the mating-type locus of the yeast Saccharomyces cerevisiae on repair, recombination and transformation.

    PubMed

    Durand, J; Birdsell, J; Wills, C

    1993-12-01

    Sexual (MAT a/alpha) and asexual (MAT a/a) strains of the yeast Saccharomyces cerevisiae, which are completely isogenic except at the MAT locus, were compared in their response to ultraviolet radiation. The effects of UV on survival, mitotic intragenic recombination, photoreactivation, and transformation efficiency with UV-irradiated plasmid DNA were examined. The sexual strain had enhanced survival and higher rates of mitotic intragenic recombination compared with the asexual strain. Exposure to visible light subsequent to irradiation increased the survival of both sexual and asexual strains, and decreased their rates of mitotic intragenic recombination. Similar results were obtained by Haladus and Zuk (1980) in their examination of sexual strains homozygous for rad6-1, and wild-type sexuals. Our sexual strain was also consistently more proficient at transforming plasmid DNA, whether that DNA had been irradiated or not. When pre-irradiated with 25 J/m2 of UV, MAT a/alpha cells transformed more efficiently than MAT a/a cells. When subsequently exposed to light, the ability of these pre-irradiated cells to transform decreased for both strains with increasing irradiation of the plasmid. A smaller decrease in transformation efficiency occurred when cells of both strains were kept in the dark. When pre-irradiated with 100 J/m2, the MAT a/alpha cells showed a 2-fold increase in their transformation efficiency of both irradiated and unirradiated plasmids by up to 2-fold, a phenomenon not seen in the MAT a/a cells even when pre-irradiated with much higher doses of UV. This increase in transformation efficiency was not, however, seen in the MAT a/alpha cells when they were exposed to visible light after UV irradiation. These results suggest that cells with the MAT a/alpha genotype have a UV-inducible system that increases the efficiency of transformation in the absence of visible light. This increase in transformation is not an induced increase in the repair of plasmid DNA

  12. Genetic analysis of delta helD and delta uvrD mutations in combination with other genes in the RecF recombination pathway in Escherichia coli: suppression of a ruvB mutation by a uvrD deletion.

    PubMed

    Mendonca, V M; Matson, S W

    1995-10-01

    Helicase II (uvrD gene product) and helicase IV (helD gene product) have been shown previously to be involved in the RecF pathway of recombination. To better understand the role of these two proteins in homologous recombination in the RecF pathway [recBCsbcB(C) background, we investigated the interactions between helD, uvrD and the following RecF pathway genes: recF, recO, recN and ruvAB. We observed synergistic interactions between uvrD ant the recF, recN, recO and recG genes in both conjugational recombination and the repair of methylmethane sulfonate (MMS)-induced DNA damage. No synergistic interactions were detected between helD and the recF, recO and regN genes when conjugational recombination was analyzed. We did, however, detect synergistic interactions between helD and recF/recO in recombinational repair. Surprisingly, the uvrD deletion completely suppressed the phenotype of a ruvB mutation in a recBCsbcB(C) background. Both conjugational recombination efficiency and MMS-damaged DNA repair proficiency returned to wild-type levels in the deltauvrDruvB9 double mutant. Suppression of the effects of the ruvB mutation by a uvrD deletion was dependent on the recG and recN genes and not dependent on the recF/O/R genes. These data are discussed in the context of two "RecF" homologous recombination pathways operating in a recBCsbcB(C) strain background. PMID:8647383

  13. Incorporation of Human Recombinant Tropoelastin into Silk Fibroin Membranes with the View to Repairing Bruch’s Membrane

    PubMed Central

    Shadforth, Audra M. A.; Suzuki, Shuko; Alzonne, Raphaelle; Edwards, Grant A.; Richardson, Neil A.; Chirila, Traian V.; Harkin, Damien G.

    2015-01-01

    Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM) components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE) on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD). The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1) membranes prepared from blended solutions of fibroin and tropoelastin; and (2) layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR). In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01) when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin. PMID:26389960

  14. XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis.

    PubMed

    Zhang, Bingwei; Wang, Mo; Tang, Ding; Li, Yafei; Xu, Meng; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-09-01

    RAD51 paralogues play important roles in the assembly and stabilization of RAD51 nucleoprotein filaments, which promote homologous pairing and strand exchange reactions in organisms ranging from yeast to vertebrates. XRCC3, a RAD51 paralogue, has been characterized in budding yeast, mouse, and Arabidopsis. In the present study, XRCC3 in rice was identified and characterized. The rice xrcc3 mutant exhibited normal vegetative growth but complete male and female sterility. Cytological investigations revealed that homologous pairing and synapsis were severely disrupted in the mutant. Meiotic chromosomes were frequently entangled from diplotene to metaphase I, resulting in chromosome fragmentation at anaphase I. The immunostaining signals from γH2AX were regular, implying that double-strand break (DSB) formation was normal in xrcc3 meiocytes. However, COM1 was not detected on early prophase I chromosomes, suggesting that the DSB end-processing system was destroyed in the mutant. Moreover, abnormal chromosome localization of RAD51C, DMC1, ZEP1, ZIP4, and MER3 was observed in xrcc3. Taken together, the results suggest that XRCC3 plays critical roles in both DSB repair and homologous chromosome recombination during rice meiosis. PMID:26034131

  15. XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis.

    PubMed

    Zhang, Bingwei; Wang, Mo; Tang, Ding; Li, Yafei; Xu, Meng; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-09-01

    RAD51 paralogues play important roles in the assembly and stabilization of RAD51 nucleoprotein filaments, which promote homologous pairing and strand exchange reactions in organisms ranging from yeast to vertebrates. XRCC3, a RAD51 paralogue, has been characterized in budding yeast, mouse, and Arabidopsis. In the present study, XRCC3 in rice was identified and characterized. The rice xrcc3 mutant exhibited normal vegetative growth but complete male and female sterility. Cytological investigations revealed that homologous pairing and synapsis were severely disrupted in the mutant. Meiotic chromosomes were frequently entangled from diplotene to metaphase I, resulting in chromosome fragmentation at anaphase I. The immunostaining signals from γH2AX were regular, implying that double-strand break (DSB) formation was normal in xrcc3 meiocytes. However, COM1 was not detected on early prophase I chromosomes, suggesting that the DSB end-processing system was destroyed in the mutant. Moreover, abnormal chromosome localization of RAD51C, DMC1, ZEP1, ZIP4, and MER3 was observed in xrcc3. Taken together, the results suggest that XRCC3 plays critical roles in both DSB repair and homologous chromosome recombination during rice meiosis.

  16. Endometrial stem cells repair injured endometrium and induce angiogenesis via AKT and ERK pathways.

    PubMed

    Zhang, Yanling; Lin, Xiaona; Dai, Yongdong; Hu, Xiaoxiao; Zhu, Haiyan; Jiang, Yinshen; Zhang, Songying

    2016-11-01

    Intrauterine adhesions are common acquired endometrial syndromes secondary to endometrial injury, with limited effective therapies. Recently, several studies have reported that bone marrow stem cells (BMSCs) could repair injured endometrium in animal experiments. However, the role of stem cells in endometrial injury repair and its therapeutic mechanisms remain unclear. Here, we established mouse endometrial injury model and examined the benefit of human endometrial mesenchymal stem cells derived from menstrual blood (MenSCs) in restoration of injured endometrium. Injured endometrium exhibited significantly accelerated restoration at Day 7 after MenSCs transplantation, with increased endometrial thickness and microvessel density. Moreover, the fertility of mice with injured endometrium was improved, with higher conception rate (53.57% vs 14.29%, P = 0.014) and larger embryo number (3.1 ± 0.6 vs 0.9 ± 0.7, P = 0.030) in MenSCs group than control group, while no difference was found in undamaged horns between two groups. Conditioned medium from MenSCs (MenSCs-CM) could decrease H2O2-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and promote proliferation, migration and angiogenesis. Angiogenesis effect of MenSCs-CM was also confirmed in Matrigel plug assay in mice. Furthermore, we discovered that MenSCs-CM could activate AKT and ERK pathways and induce the overexpression of eNOS, VEGFA, VEGFR1, VEGFR2 and TIE2 in HUVECs, which are critical in MenSCs-CM-induced angiogenesis. Angiogenesis induced by MenSCs-CM could be reversed by inhibitors of AKT and/or ERK. Taken together, we concluded that MenSCs could restore injured endometrium and improve the fertility of the endometrial injury mice, which was partially attributed to angiogenesis induced by MenSCs. PMID:27486270

  17. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae.

    PubMed

    Stein, Alexis; Kalifa, Lidza; Sia, Elaine A

    2015-11-01

    Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.

  18. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum.

    PubMed

    Yang, Jiangang; Zhu, Yueming; Li, Jitao; Men, Yan; Sun, Yuanxia; Ma, Yanhe

    2015-01-01

    Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars.

  19. Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization.

    PubMed

    Amundsen, Susan K; Fero, Jutta; Hansen, Lori M; Cromie, Gareth A; Solnick, Jay V; Smith, Gerald R; Salama, Nina R

    2008-08-01

    Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologues of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. coli recBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection. PMID:18573180

  20. Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins.

    PubMed

    Unrean, Pornkamol

    2014-01-01

    This research rationally analyzes metabolic pathways of Pichia pastoris to study the metabolic flux responses of this yeast under methanol metabolism. A metabolic model of P. pastoris was constructed and analyzed by elementary mode analysis (EMA). EMA was used to comprehensively identify the cell's metabolic flux profiles and its underlying regulation mechanisms for the production of recombinant proteins from methanol. Change in phenotypes and flux profiles during methanol adaptation with varying feed mixture of glycerol and methanol was examined. EMA identified increasing and decreasing fluxes during the glycerol-methanol metabolic shift, which well agreed with experimental observations supporting the validity of the metabolic network model. Analysis of all the identified pathways also led to the determination of the metabolic capacities as well as the optimum metabolic pathways for recombinant protein synthesis during methanol induction. The network sensitivity analysis revealed that the production of proteins can be improved by manipulating the flux ratios at the pyruvate branch point. In addition, EMA suggested that protein synthesis is optimum under hypoxic culture conditions. The metabolic modeling and analysis presented in this study could potentially form a valuable knowledge base for future research on rational design and optimization of P. pastoris by determining target genes, pathways, and culture conditions for enhanced recombinant protein synthesis. The metabolic pathway analysis is also of considerable value for production of therapeutic proteins by P. pastoris in biopharmaceutical applications.

  1. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans.

    PubMed

    Bentchikou, Esma; Servant, Pascale; Coste, Geneviève; Sommer, Suzanne

    2010-01-01

    In Deinococcus radiodurans, the extreme resistance to DNA-shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a DeltarecA mutant: DeltarecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to gamma-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, DeltauvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of DeltauvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA. PMID:20090937

  2. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.

    PubMed

    Fineberg, Jeffrey D; Ritter, David M; Covarrubias, Manuel

    2012-11-01

    A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  3. Regulation of axon regeneration by the RNA repair/splicing pathway

    PubMed Central

    Song, Yuanquan; Sretavan, David; Salegio, Ernesto A; Berg, Jim; Huang, Xi; Cheng, Tong; Xiong, Xin; Meltzer, Shan; Han, Chun; Nguyen, Trong-Tuong; Bresnahan, Jacqueline C.; Beattie, Michael S.; Jan, Lily Yeh; Jan, Yuh Nung

    2015-01-01

    Mechanisms governing a neuron’s regenerative ability are important but not well understood. We identified Rtca, RNA 3′-terminal phosphate cyclase, as an inhibitor for axon regeneration. Removal of dRtca cell-autonomously enhanced axon regrowth in the Drosophila central nervous system, whereas its overexpression reduced axon regeneration in the periphery. Rtca along with the RNA ligase Rtcb and its catalyst Archease operate in the RNA repair/splicing pathway important for stress induced mRNA splicing, including that of Xbp1, a cellular stress sensor. dRtca and dArchease had opposing effects on Xbp1 splicing, and deficiency of dArchease or Xbp1 impeded axon regeneration in Drosophila. Moreover, overexpressing mammalian Rtca in cultured rodent neurons reduced axonal complexity in vitro, whereas reducing its function promoted retinal ganglion cell axon regeneration after optic nerve crush in mice. Our study thus links axon regeneration to cellular stress and RNA metabolism, revealing new potential therapeutic targets for treating nervous system trauma. PMID:25961792

  4. Modulation of DNA Damage and Repair Pathways by Human Tumour Viruses

    PubMed Central

    Hollingworth, Robert; Grand, Roger J

    2015-01-01

    With between 10% and 15% of human cancers attributable to viral infection, there is great interest, from both a scientific and clinical viewpoint, as to how these pathogens modulate host cell functions. Seven human tumour viruses have been identified as being involved in the development of specific malignancies. It has long been known that the introduction of chromosomal aberrations is a common feature of viral infections. Intensive research over the past two decades has subsequently revealed that viruses specifically interact with cellular mechanisms responsible for the recognition and repair of DNA lesions, collectively known as the DNA damage response (DDR). These interactions can involve activation and deactivation of individual DDR pathways as well as the recruitment of specific proteins to sites of viral replication. Since the DDR has evolved to protect the genome from the accumulation of deleterious mutations, deregulation is inevitably associated with an increased risk of tumour formation. This review summarises the current literature regarding the complex relationship between known human tumour viruses and the DDR and aims to shed light on how these interactions can contribute to genomic instability and ultimately the development of human cancers. PMID:26008701

  5. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress.

  6. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. PMID:27021252

  7. Relative frequencies of homologous recombination between plasmids introduced into DNA repair-deficient and other mammalian somatic cell lines.

    PubMed

    Wahls, W P; Moore, P D

    1990-07-01

    Twelve mammalian somatic cell lines, some of them DNA damage-sensitive mutants paired with their respective wild-type parental lines, were assayed for their ability to catalyze extrachromosomal, intermolecular homologous recombination between pSV2neo plasmid recombination substrates. All of the somatic cell lines analyzed are capable of catalyzing homologous recombination; however, there is a wide range of efficiencies with which they do so. Five human cell lines display a fourfold range of recombination frequencies, and six hamster cell lines vary almost 20-fold. Linearizing one of the recombination substrates stimulates recombination in all but one of the cell lines. Two of the three paired mutant cell lines display a threefold reduction in their ability to catalyze homologous recombination when compared to their respective parental cell lines, indicating that the mutations that render them sensitive to DNA damaging agents might also play a role in homologous recombination. PMID:2218721

  8. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    PubMed Central

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway. PMID:26983989

  9. Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12.

    PubMed Central

    Al-Deib, A A; Mahdi, A A; Lloyd, R G

    1996-01-01

    The RecG protein of Escherichia coli is a structure-specific DNA helicase that targets strand exchange intermediates in genetic recombination and drives their branch migration along the DNA. Strains carrying null mutations in recG show reduced recombination and DNA repair. Suppressors of this phenotype, called srgA, were located close to metB and shown to be alleles of priA. Suppression depends on the RecA, RecBCD, RecF, RuvAB, and RuvC recombination proteins. Nine srgA mutations were sequenced and shown to specify mutant PriA proteins with single amino acid substitutions located in or close to one of the conserved helicase motifs. The mutant proteins retain the ability to catalyze primosome assembly, as judged by the viability of recG srgA and srgA strains and their ability to support replication of plasmids based on the ColE1 replicon. Multicopy priA+ plasmids increase substantially the recombination- and repair-deficient phenotype of recG strains and confer similar phenotypes on recG srgA double mutants but not on ruvAB or wild-type strains. The multicopy effect is eliminated by K230R, C446G, and C477G substitutions in PriA. It is concluded that the 3'-5' DNA helicase/translocase activity of PriA inhibits recombination and that this effect is normally countered by RecG. PMID:8955297

  10. Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination.

    PubMed

    Laffleur, B; Bardet, S M; Garot, A; Brousse, M; Baylet, A; Cogné, M

    2014-01-01

    Immunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for 'on-target' DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process.

  11. RecFOR function is required for DNA repair and recombination in a RecA loading-deficient recB mutant of Escherichia coli.

    PubMed

    Ivancić-Baće, Ivana; Peharec, Petra; Moslavac, Suncana; Skrobot, Nikolina; Salaj-Smic, Erika; Brcić-Kostić, Krunoslav

    2003-02-01

    The RecA loading activity of the RecBCD enzyme, together with its helicase and 5' --> 3' exonuclease activities, is essential for recombination in Escherichia coli. One particular mutant in the nuclease catalytic center of RecB, i.e., recB1080, produces an enzyme that does not have nuclease activity and is unable to load RecA protein onto single-stranded DNA. There are, however, previously published contradictory data on the recombination proficiency of this mutant. In a recF(-) background the recB1080 mutant is recombination deficient, whereas in a recF(+) genetic background it is recombination proficient. A possible explanation for these contrasting phenotypes may be that the RecFOR system promotes RecA-single-strand DNA filament formation and replaces the RecA loading defect of the RecB1080CD enzyme. We tested this hypothesis by using three in vivo assays. We compared the recombination proficiencies of recB1080, recO, recR, and recF single mutants and recB1080 recO, recB1080 recR, and recB1080 recF double mutants. We show that RecFOR functions rescue the repair and recombination deficiency of the recB1080 mutant and that RecA loading is independent of RecFOR in the recB1080 recD double mutant where this activity is provided by the RecB1080C(D(-)) enzyme. According to our results as well as previous data, three essential activities for the initiation of recombination in the recB1080 mutant are provided by different proteins, i.e., helicase activity by RecB1080CD, 5' --> 3' exonuclease by RecJ- and RecA-single-stranded DNA filament formation by RecFOR. PMID:12618388

  12. Case–control analysis of nucleotide excision repair pathway and the risk of renal cell carcinoma

    PubMed Central

    Lin, Jie; Pu, Xia; Wang, Wei; Matin, Surena; Tannir, Nizar M.; Wood, Christopher G.; Wu, Xifeng

    2008-01-01

    In this population-based case–control study with 325 Caucasian renal cell carcinoma (RCC) patients and 335 controls matched to cases by age, gender and county of residence, we evaluated the associations between 13 potential functional polymorphisms in nine major nucleotide excision repair (NER) genes and RCC risk. In individual single nucleotide polymorphism analysis, after adjustment for multiple comparisons, a significantly decreased RCC risk was observed for the heterozygous genotype of XPD Asp312Asn [odds ratio (OR) = 0.62; 95% confidence interval (CI): 0.43–0.90] and for the heterozygous and homozygous variant genotypes combined in a dominant model (OR = 0.64; 95% CI: 0.46–0.89). The heterozygous AG genotype of XPA 5′untranslated region was at 1.78-fold increased risk (95% CI: 1.18–2.69) and the risk reached 2.43-fold (95% CI: 1.57–3.75) for the homozygous variant GG genotype; the risk was significant both in the dominant model and in the recessive model. In joint analysis, compared with individuals with fewer than five adverse alleles, individuals with five (OR = 1.17; 95% CI: 0.71–1.93), six (OR = 1.66; 95% CI: 1.03–2.67), seven or more (OR = 1.85; 95% CI: 1.16–2.95) exhibited a progressively increased risk of RCC (P for trend = 0.004). Further, there were significant interactions between NER pathway genes and sex, hypertension and obesity (all P for interaction <0.05). Our results strongly support that common sequence variants of the NER pathway genes predispose susceptible individuals to increased risk of RCC and that the association may be modified by gender, history of hypertension and obesity. These results need to be replicated in larger studies. PMID:18711149

  13. Activation of Diverse Signaling Pathways by Ex-Vivo Delivery of Multiple Cytokines for Myocardial Repair

    PubMed Central

    Konoplyannikov, Mikhail; Haider, Khawaja Husnain; Lai, Vien Khach; Ahmed, Rafeeq P.H.; Jiang, Shujia

    2013-01-01

    , simultaneous activation of diverse signaling pathways by overexpression of multiple growth factors caused massive mobilization and homing of stem/progenitor cells from peripheral circulation, the bone marrow, and the heart for accelerated repair of the infarcted myocardium. PMID:22873203

  14. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations.

  16. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    NASA Astrophysics Data System (ADS)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing

  17. Mutations in the antiviral RNAi defense pathway modify Brome mosaic virus RNA recombinant profiles.

    PubMed

    Dzianott, Aleksandra; Sztuba-Solińska, Joanna; Bujarski, Jozef J

    2012-01-01

    RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers within the RNA3 segment. Single-cross RNA3-RNA1, RNA3-RNA2, and RNA3-RNA3 recombinants accumulated in both the wild-type (wt) and all knock-out lines at comparable frequencies. However, a reduced accumulation of novel 3' mosaic RNA3 recombinants was observed in ago1, dcl2, dcl4, and rdr6 lines but not in wt Col-0 or the dcl3 line. A BMV replicase mutant accumulated a low level of RNA3-RNA1 single-cross recombinants in Col-0 plants while, in a dcl2 dcl4 double mutant, the formation of both RNA3-RNA1 and mosaic recombinants was at a low level. A control infection in the cpr5-2 mutant, a more susceptible BMV Arabidopsis host, generated similar-to-Col-0 profiles of both single-cross and mosaic recombinants, indicating that recombinant profiles were, to some extent, independent of a viral replication rate. Also, the relative growth experiments revealed similar selection pressure for recombinants among the host lines. Thus, the altered recombinant RNA profiles have originated at the level of recombinant formation rather than because of altered selection. In conclusion, the viral replicase and the host RNAi gene products contribute in distinct ways to BMV RNA recombination. Our studies reveal that the antiviral RNAi mechanisms are utilized by plant RNA viruses to increase their variability, reminiscent of phenomena previously demonstrated in fungi. PMID:21936664

  18. The Fanconi Anaemia Components UBE2T and FANCM Are Functionally Linked to Nucleotide Excision Repair

    PubMed Central

    Kelsall, Ian R.; Langenick, Judith; MacKay, Craig; Patel, Ketan J.; Alpi, Arno F.

    2012-01-01

    The many proteins that function in the Fanconi anaemia (FA) monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes – UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair. PMID:22615860

  19. NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks

    PubMed Central

    Vidi, Pierre-Alexandre; Liu, Jing; Salles, Daniela; Jayaraman, Swaathi; Dorfman, George; Gray, Matthew; Abad, Patricia; Moghe, Prabhas V.; Irudayaraj, Joseph M.; Wiesmüller, Lisa; Lelièvre, Sophie A.

    2014-01-01

    Chromatin remodeling factors play an active role in the DNA damage response by shaping chromatin to facilitate the repair process. The spatiotemporal regulation of these factors is key to their function, yet poorly understood. We report that the structural nuclear protein NuMA accumulates at sites of DNA damage in a poly[ADP-ribose]ylation-dependent manner and functionally interacts with the ISWI ATPase SNF2h/SMARCA5, a chromatin remodeler that facilitates DNA repair. NuMA coimmunoprecipitates with SNF2h, regulates its diffusion in the nucleoplasm and controls its accumulation at DNA breaks. Consistent with NuMA enabling SNF2h function, cells with silenced NuMA exhibit reduced chromatin decompaction after DNA cleavage, lesser focal recruitment of homologous recombination repair factors, impaired DNA double-strand break repair in chromosomal (but not in episomal) contexts and increased sensitivity to DNA cross-linking agents. These findings reveal a structural basis for the orchestration of chromatin remodeling whereby a scaffold protein promotes genome maintenance by directing a remodeler to DNA breaks. PMID:24753406

  20. DNA repair in Chromobacterium violaceum.

    PubMed

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.

  1. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms.

    PubMed

    Kostyrko, Kaja; Mermod, Nicolas

    2016-04-01

    DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways.

  2. GENETIC AND MOLECULAR ANALYSIS OF DNA DAMAGE REPAIR AND TOLERANCE PATHWAYS.

    SciTech Connect

    SUTHERLAND, B.M.

    2001-07-26

    Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.

  3. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans.

    PubMed Central

    Daly, M J; Ling, O; Minton, K W

    1994-01-01

    Deinococcus radiodurans R1 and other members of the eubacterial family Deinococcaceae are extremely resistant to ionizing radiation and many other agents that damage DNA. For example, after irradiation, D. radiodurans can repair > 100 DNA double-strand breaks per chromosome without lethality or mutagenesis, while most other organisms can survive no more than 2 or 3 double-strand breaks. The unusual resistance of D. radiodurans is recA dependent, but the repair pathway(s) is not understood. Recently, we described how a plasmid present in D. radiodurans (plasmid copy number, approximately 6 per cell; chromosome copy number, approximately 4 per cell) during high-dose irradiation undergoes extreme damage like the chromosome and is retained by the cell without selection and fully repaired with the same efficiency as the chromosome. In the current work, we have investigated the repair of two similar plasmids within the same cell. These two plasmids were designed to provide both restriction fragment polymorphisms and a drug selection indicator of recombination. This study presents a novel system of analysis of in vivo damage and recombinational repair, exploiting the unique ability of D. radiodurans to survive extraordinarily high levels of DNA damage. We report that homologous recombination among plasmids following irradiation is extensive. For example, 2% of Tcs plasmids become Tcr as a result of productive recombination within a 929-bp region of the plasmids after repair. Our results suggest that each plasmid may participate in as many as 6.7 recombinational events during repair, a value that extrapolates to > 700 events per chromosome undergoing repair simultaneously. These results indicate that the study of plasmid recombination within D. radiodurans may serve as an accurate model system for simultaneously occurring repair in the chromosome. Images PMID:8002574

  4. Genetic variants in DNA repair pathways and risk of upper aerodigestive tract cancers: combined analysis of data from two genome-wide association studies in European populations.

    PubMed

    Babron, Marie-Claude; Kazma, Rémi; Gaborieau, Valérie; McKay, James; Brennan, Paul; Sarasin, Alain; Benhamou, Simone

    2014-07-01

    DNA repair pathways are good candidates for upper aerodigestive tract cancer susceptibility because of their critical role in maintaining genome integrity. We have selected 13 pathways involved in DNA repair representing 212 autosomal genes. To assess the role of these pathways and their associated genes, two European data sets from the International Head and Neck Cancer Epidemiology consortium were pooled, totaling 1954 cases and 3121 controls, with documented demographic, lifetime alcohol and tobacco consumption information. We applied an innovative approach that tests single nucleotide polymorphism (SNP)-sets within DNA repair pathways and then within genes belonging to the significant pathways. We showed an association between the polymerase pathway and oral cavity/pharynx cancers (P-corrected = 4.45 × 10(-) (2)), explained entirely by the association with one SNP, rs1494961 (P = 2.65 × 10(-) (4)), a missense mutation V306I in the second exon of HELQ gene. We also found an association between the cell cycle regulation pathway and esophagus cancer (P-corrected = 1.48 × 10(-) (2)), explained by three SNPs located within or near CSNK1E gene: rs1534891 (P = 1.27 × 10(-) (4)), rs7289981 (P = 3.37 × 10(-) (3)) and rs13054361 (P = 4.09 × 10(-) (3)). As a first attempt to investigate pathway-level associations, our results suggest a role of specific DNA repair genes/pathways in specific upper aerodigestive tract cancer sites. PMID:24658182

  5. Kinetic Evidence of Two Pathways for Charge Recombination in NiO-Based Dye-Sensitized Solar Cells.

    PubMed

    D'Amario, Luca; Antila, Liisa J; Pettersson Rimgard, Belinda; Boschloo, Gerrit; Hammarström, Leif

    2015-03-01

    Mesoporous nickel oxide has been used as electrode material for p-type dye-sensitized solar cells (DSCs) for many years but no high efficiency cells have yet been obtained. One of the main issues that lowers the efficiency is the poor fill factor, for which a clear reason is still missing. In this paper we present the first evidence for a relation between applied potential and the charge recombination rate of the NiO electrode. In particular, we find biphasic recombination kinetics: a fast (15 ns) pathway attributed to the reaction with the holes in the valence band and a slow (1 ms) pathway assigned to the holes in the trap states. The fast component is the most relevant at positive potentials, while the slow component becomes more important at negative potentials. This means that at the working condition of the cell, the fast recombination is the most important. This could explain the low fill factor of NiO-based DSCs.

  6. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    PubMed

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens.

  7. Participation of DNA repair in the response to 5-fluorouracil

    PubMed Central

    Wyatt, Michael D.; Wilson, David M.

    2008-01-01

    The anti-metabolite 5-fluorouracil (5-FU) is employed clinically to manage solid tumors including colorectal and breast cancer. Intracellular metabolites of 5-FU can exert cytotoxic effects via inhibition of thymidylate synthetase, or through incorporation into RNA and DNA, events that ultimately activate apoptosis. In this review, we cover the current data implicating DNA repair processes in cellular responsiveness to 5-FU treatment. Evidence points to roles for base excision repair (BER) and mismatch repair (MMR). However, mechanistic details remain unexplained, and other pathways have not been exhaustively interrogated. Homologous recombination is of particular interest, because it resolves unrepaired DNA intermediates not properly dealt with by BER or MMR. Furthermore, crosstalk among DNA repair pathways and S-phase checkpoint signaling has not been examined. Ongoing efforts aim to design approaches and reagents that (i) approximate repair capacity and (ii) mediate strategic regulation of DNA repair in order to improve the efficacy of current anti-cancer treatments. PMID:18979208

  8. Interplay between Target Sequences and Repair Pathways Determines Distinct Outcomes of AID-Initiated Lesions.

    PubMed

    Chen, Zhangguo; Eder, Maxwell D; Elos, Mihret T; Viboolsittiseri, Sawanee S; Chen, Xiaomi; Wang, Jing H

    2016-03-01

    Activation-induced deaminase (AID) functions by deaminating cytosines and causing U:G mismatches, a rate-limiting step of Ab gene diversification. However, precise mechanisms regulating AID deamination frequency remain incompletely understood. Moreover, it is not known whether different sequence contexts influence the preferential access of mismatch repair or uracil glycosylase (UNG) to AID-initiated U:G mismatches. In this study, we employed two knock-in models to directly compare the mutability of core Sμ and VDJ exon sequences and their ability to regulate AID deamination and subsequent repair process. We find that the switch (S) region is a much more efficient AID deamination target than the V region. Igh locus AID-initiated lesions are processed by error-free and error-prone repair. S region U:G mismatches are preferentially accessed by UNG, leading to more UNG-dependent deletions, enhanced by mismatch repair deficiency. V region mutation hotspots are largely determined by AID deamination. Recurrent and conserved S region motifs potentially function as spacers between AID deamination hotspots. We conclude that the pattern of mutation hotspots and DNA break generation is influenced by sequence-intrinsic properties, which regulate AID deamination and affect the preferential access of downstream repair. Our studies reveal an evolutionarily conserved role for substrate sequences in regulating Ab gene diversity and AID targeting specificity.

  9. Isolation of mammalian cell mutants that are X-ray sensitive, impaired in DNA double-strand break repair and defective for V(D)J recombination.

    PubMed

    Lee, S E; Pulaski, C R; He, D M; Benjamin, D M; Voss, M; Um, J; Hendrickson, E A

    1995-05-01

    The Chinese hamster lung V79-4 cell line was infected with a Moloney murine leukemia retrovirus and the infected cells were subsequently screened for mutants that were sensitive to X-rays using a toothpicking/96-well replica plating technique. Four independent mutants that were sensitive to X-irradiation (sxi-1 to sxi-4) were isolated from 9000 retrovirally infected colonies. A pulse-field gel electrophoresis (PFGE) assay demonstrated that all of the sxi mutants were impaired in DNA double-strand break (DSB) repair, thus providing a molecular explanation for the observed X-ray sensitivity. Interestingly, additional PFGE experiments demonstrated that for any given X-ray dose all of the mutants incurred more DNA DSBs than the parental V79-4 cell line indicating there may be some inherent fragility to sxi chromosomes. Cross-sensitivity to other DNA-damaging agents including bleomycin, mitomycin C and methyl methanesulfonate indicated that sxi-2, sxi-3 and sxi-4 appear to be specifically hypersensitive to genotoxic agents that cause DNA DSBs, whereas sxi-1 appeared to be hypersensitive to multiple types of DNA lesions. Lastly, in preliminary experiments all of the sxi mutants demonstrated an inability to carry out V(D)J recombination, a somatic DNA rearrangement process required for the assembly of lymphoid antigen receptor genes. Thus, the sxi cell lines have interesting phenotypes which should make them valuable tools for unraveling the mechanism(s) of DNA DSB repair and recombination in mammalian cells. PMID:7537861

  10. Crystallization of a member of the recFOR DNA repair pathway, RecO, with and without bound oligonucleotide.

    PubMed

    Aono, Shelly; Hartsch, Thomas; Schulze-Gahmen, Ursula

    2003-03-01

    RecFOR proteins are important for DNA repair by homologous recombination in bacteria. The RecO protein from Thermus thermophilus was cloned and purified, and its binding to oligonucleotides was characterized. The protein was crystallized alone and in complex with a 14-mer oligonucleotide. Both crystal forms grow under different crystallization conditions in the same space group, P3(1)21 or P3(2)21, with almost identical unit-cell parameters. Complete data sets were collected to 2.8 and 2.5 A for RecO alone and for the RecO-oligonucleotide complex, respectively. Visual comparison of the diffraction patterns between the two crystal forms and calculation of an R(merge) of 33.9% on F indicate that one of the crystal forms is indeed a complex of RecO with bound oligonucleotide. PMID:12595731

  11. DNA Mismatch Repair

    PubMed Central

    MARINUS, M. G.

    2014-01-01

    DNA mismatch repair functions to correct replication errors in newly synthesized DNA and to prevent recombination between related, but not identical (homeologous), DNA sequences. The mechanism of mismatch repair is best understood in Escherichia coli and is the main focus of this review. The early genetic studies of mismatch repair are described as a basis for the subsequent biochemical characterization of the system. The effects of mismatch repair on homologous and homeologous recombination are described. The relationship of mismatch repair to cell toxicity induced by various drugs is included. The VSP (Very Short Patch) repair system is described in detail. PMID:26442827

  12. Bone marrow cell transcripts from Fanconi anaemia patients reveal in vivo alterations in mitochondrial, redox and DNA repair pathways.

    PubMed

    Pagano, Giovanni; Talamanca, Annarita Aiello; Castello, Giuseppe; d'Ischia, Marco; Pallardó, Federico V; Petrović, Sandra; Porto, Beatriz; Tiano, Luca; Zatterale, Adriana

    2013-08-01

    Fanconi anaemia (FA) is a genetic cancer predisposition disorder associated with cytogenetic instability, bone marrow failure and a pleiotropic cellular phenotype, including low thresholds of responses to oxidative stress, cross-linking agents and selected cytokines. This study was aimed at defining the scope of abnormalities in gene expression using the publicly available FA Transcriptome Consortium (FTC) database (Gene Expression Omnibus, 2009 and publicly available as GSE16334). We evaluated the data set that included transcriptomal analyses on RNA obtained from low-density bone marrow cells (BMC) from 20 patients with FA and 11 healthy volunteers, by seeking to identify changes in expression of over 22,000 genes, including a set of genes involved in: (i) bioenergetic pathways; (ii) antioxidant activities; (iii) response to stress and metal-chelating proteins; (iv) inflammation-related cytokines and (v) DNA repair. Ontological analysis of genes expressed at magnitudes of 1.5-fold or greater demonstrated significant suppression of genes in the categories of (i) energy metabolism; (ii) antioxidant activities; and (iii) stress and chelating proteins. Enhanced expression was found for 16 of 26 genes encoding inflammatory cytokines. A set of 20 of 21 transcripts for DNA repair activities were down-regulated; four of these transcripts related to type II topoisomerase. The data provide evidence for alterations in gene regulation of bioenergetic activities, redox-related activities, stress and metal-chelating proteins, and of some selected DNA repair activities in patients with FA.

  13. New discoveries linking transcription to DNA repair and damage tolerance pathways.

    PubMed

    Cohen, Susan E; Walker, Graham C

    2011-01-01

    In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.

  14. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway.

    PubMed

    Kucukyildirim, Sibel; Long, Hongan; Sung, Way; Miller, Samuel F; Doak, Thomas G; Lynch, Michael

    2016-01-01

    Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10(-10) per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways. PMID:27194804

  15. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway

    PubMed Central

    Kucukyildirim, Sibel; Long, Hongan; Sung, Way; Miller, Samuel F.; Doak, Thomas G.; Lynch, Michael

    2016-01-01

    Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10−10 per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways. PMID:27194804

  16. Inhibition of Homologous Recombination and Promotion of Mutagenic Repair of DNA Double-Strand Breaks Underpins Arabinoside-Nucleoside Analogue Radiosensitization.

    PubMed

    Magin, Simon; Papaioannou, Maria; Saha, Janapriya; Staudt, Christian; Iliakis, George

    2015-06-01

    In concurrent chemoradiotherapy, drugs are used to sensitize tumors to ionizing radiation. Although a spectrum of indications for simultaneous treatment with drugs and radiation has been defined, the molecular mechanisms underpinning tumor radiosensitization remain incompletely characterized for several such combinations. Here, we investigate the mechanisms of radiosensitization by the arabinoside nucleoside analogue 9-β-D-arabinofuranosyladenine (araA) placing particular emphasis on the repair of DNA double-strand breaks (DSB), and compare the results to those obtained with fludarabine (F-araA) and cytarabine (araC). Postirradiation treatment with araA strongly sensitizes cells to ionizing radiation, but leaves unchanged DSB repair by NHEJ in logarithmically growing cells, in sorted G1 or G2 phase populations, as well as in cells in the plateau phase of growth. Notably, araA strongly inhibits DSB repair by homologous recombination (HRR), as assessed by scoring ionizing radiation-induced RAD51 foci, and in functional assays using integrated reporter constructs. Cells compromised in HRR by RNAi-mediated transient knockdown of RAD51 show markedly reduced radiosensitization after treatment with araA. Remarkably, mutagenic DSB repair compensates for HRR inhibition in araA-treated cells. Compared with araA, F-araA and araC are only modestly radiosensitizing under the conditions examined. We propose that the radiosensitizing potential of nucleoside analogues is linked to their ability to inhibit HRR and concomitantly promote the error-prone processing of DSBs. Our observations pave the way to treatment strategies harnessing the selective inhibitory potential of nucleoside analogues and the development of novel compounds specifically utilizing HRR inhibition as a means of tumor cell radiosensitization. PMID:25840584

  17. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks.

    PubMed

    Bourret, Travis J; Lawrence, Kevin A; Shaw, Jeff A; Lin, Tao; Norris, Steven J; Gherardini, Frank C

    2016-01-01

    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks. PMID:27656169

  18. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks

    PubMed Central

    Bourret, Travis J.; Lawrence, Kevin A.; Shaw, Jeff A.; Lin, Tao; Norris, Steven J.; Gherardini, Frank C.

    2016-01-01

    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks.

  19. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks

    PubMed Central

    Bourret, Travis J.; Lawrence, Kevin A.; Shaw, Jeff A.; Lin, Tao; Norris, Steven J.; Gherardini, Frank C.

    2016-01-01

    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks. PMID:27656169

  20. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  1. Resection is a major repair pathway of heavy ion-induced DNA lesions

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Averbeck, Nicole; Taucher-Scholz, Gisela

    Space radiation include densely ionizing heavy ions, which can produce clustered DNA damage with high frequency in human cells. Repair of these complex lesions is generally assumed to be more difficult than for simple double-strand breaks. We show here that human cells use break resection with increasing frequency after exposure to heavy ions. Resection can lead to misrepair of the DNA lesion, via microhomology mediated end-joining. Resection can therefore be responsible for the increased effectiveness of heavy ions in the induction of mutations and genetic late effects.

  2. Spontaneous mitotic recombination and evidence for an x-ray-inducible system for the repair of DNA damage in Drosophila melanogaster

    SciTech Connect

    Kennison, J.A.; Ripoll, P.

    1981-05-01

    Spontaneous mitotic recombination in the left arm of chromosome 3 was examined in both unirradiated control flies and sibs irradiated early in development by determining the sizes and frequencies of multiple-wing-hair (mwh) clones in the wing blade of heterozygous mwh/+ flies. Approximately 16% of the spontaneous mwh clones arise from events generating cells with an average cell division rate one-third that of the surrounding cells;these are thought to result from events that generate aneuploid cells. Such clones probably arise from a failure correctly to repair spontaneous DNA damage. The frequency of spontaneous events late in development decreases significantly after irradiation as much as 150 hours earlier in development. The suppression of spontaneous events decreases with a longer period of time between irradiation and the final cell divisions in the wing blade. These results suggest the existence of a repair system for DNA damage in Drosophila that is induced by irradiation. The decrease in effect with time following irradiation could result from slow degradation or dilution by subsequent cell growth and division.

  3. Fixation stability dictates the differentiation pathway of periosteal progenitor cells in fracture repair.

    PubMed

    Hagiwara, Yusuke; Dyment, Nathaniel A; Jiang, Xi; Jiang Ping, Huang; Ackert-Bicknell, Cheryl; Adams, Douglas J; Rowe, David W

    2015-07-01

    This study compared fracture repair stabilized by intramedullary pin (IMP) or external fixation (EF) in GFP reporter mice. A modified IMP was used as control while EF utilized six needles inserted transversely through the tibia and into a segment of a syringe barrel. X-rays taken at days 0, 14, and 35 showed that IMP resulted in significant three-dimensional deformity with a large callus while EF showed minimal deformity and callus formation. Cryohistological analysis of IMP at day 14 confirmed a large ColX-RFPchry+ callus surrounded by woven bone (Col3.6-GFPcyan) and TRAP+ osteoclasts with mature bone (hOC-GFPtpz) at the base. By day 35, cartilaginous components had been resorbed and an outer cortical shell (OCS) showed evidence of inward modeling. In contrast, the EF at day 14 showed no evidence of cartilage formation. Instead, periosteal-derived osteoblasts (Col3.6-GFPcyan) entered the fracture cleft and formed woven bone that spanned the marrow space. By day 35, mature bone had formed that was contiguous with the opposing cortical bone. Fracture site stability greatly affects the cellular response during repair and must be considered in the preclinical models that test therapies for improving fracture healing. PMID:25639792

  4. Tests of the Double-Strand-Break Repair Model for Red-Mediated Recombination of Phage λ and Plasmid λdv

    PubMed Central

    Thaler, David S.; Stahl, Mary M.; Stahl, Franklin W.

    1987-01-01

    The double-strand-break repair (DSBR) model was formulated to account for various aspects of yeast mitotic and meiotic recombination. In this study three features of the DSBR model are tested for Red-mediated recombination between phage λ and λdv, a plasmid that is perfectly homologous to about 10% of λ. The results support the applicability of the DSBR model to λ's Red system: (1) Creating a double-strand-break (DSB) within the region of homology shared by phage and plasmid increases their genetic interaction by about 20-fold. A DSB outside the region of shared homology has no such effect. (2) Both patches, i.e., simple marker rescue, and splices, i.e., co-integration of the phage and plasmid, are stimulated by a DSB in the region of shared homology. (3) Co-integrants harbor a duplication of the region of shared homology. Among co-integrants that were formed by the creation of a DSB, there is a preferential loss of whichever allele was in cis to a utilized cut site. The DSBR model as originally formulated involves the isomerization and cleavage of Holliday junctions to resolve the canonical intermediate. We propose as an alternative mechanism that a topoisomerase can resolve the canonical DSBR intermediate. PMID:2957271

  5. Would Dissociative Recombination of DNA+ be a Possible Pathway of DNA Damage?

    NASA Astrophysics Data System (ADS)

    Kwon, H. C.; Chen, Z. P.; Strom, R. A.; Andrianarijaona, V. M.

    2015-05-01

    It is known that dissociative recombination (DR) is one of the very efficient processes of destruction of molecular cations into neutral particles. During the past few years, the focus of DR has been expanded from small inorganic molecules to macromolecular cation. We are probing the possibility of the DR of DNA+ after ionization of DNA, for example due to ionizing radiation. Therefore we are investigating the existence of autoionization states within nucleotide bases (Guanine, Adenine, Cytosine, and Thymine). Our results from computational analysis using the modern electronic structure program ORCA will be presented. Authors wish to give special thanks to Pacific Union College Student Senate for their financial support.

  6. Meta-analyses identify 13 novel loci associated with age at menopause and highlights DNA repair and immune pathways

    PubMed Central

    Stolk, Lisette; Perry, John RB; Chasman, Daniel I; He, Chunyan; Mangino, Massimo; Sulem, Patrick; Barbalic, Maja; Broer, Linda; Byrne, Enda M; Ernst, Florian; Esko, Tõnu; Franceschini, Nora; Gudbjartsson, Daniel F; Hottenga, Jouke-Jan; Kraft, Peter; McArdle, Patick F; Porcu, Eleonora; Shin, So-Youn; Smith, Albert V; van Wingerden, Sophie; Zhai, Guangju; Zhuang, Wei V; Albrecht, Eva; Alizadeh, Behrooz Z; Aspelund, Thor; Bandinelli, Stefania; Lauc, Lovorka Barac; Beckmann, Jacques S; Boban, Mladen; Boerwinkle, Eric; Broekmans, Frank J; Burri, Andrea; Campbell, Harry; Chanock, Stephen J; Chen, Constance; Cornelis, Marilyn C; Corre, Tanguy; Coviello, Andrea D; d’Adamo, Pio; Davies, Gail; de Faire, Ulf; de Geus, Eco JC; Deary, Ian J; Dedoussis, George VZ; Deloukas, Panagiotis; Ebrahim, Shah; Eiriksdottir, Gudny; Emilsson, Valur; Eriksson, Johan G; Fauser, Bart CJM; Ferreli, Liana; Ferrucci, Luigi; Fischer, Krista; Folsom, Aaron R; Garcia, Melissa E; Gasparini, Paolo; Gieger, Christian; Glazer, Nicole; Grobbee, Diederick E; Hall, Per; Haller, Toomas; Hankinson, Susan E; Hass, Merli; Hayward, Caroline; Heath, Andrew C; Hofman, Albert; Ingelsson, Erik; Janssens, A Cecile JW; Johnson, Andrew D; Karasik, David; Kardia, Sharon LR; Keyzer, Jules; Kiel, Douglas P; Kolcic, Ivana; Kutalik, Zoltán; Lahti, Jari; Lai, Sandra; Laisk, Triin; Laven, Joop SE; Lawlor, Debbie A; Liu, Jianjun; Lopez, Lorna M; Louwers, Yvonne V; Magnusson, Patrik KE; Marongiu, Mara; Martin, Nicholas G; Klaric, Irena Martinovic; Masciullo, Corrado; McKnight, Barbara; Medland, Sarah E; Melzer, David; Mooser, Vincent; Navarro, Pau; Newman, Anne B; Nyholt, Dale R; Onland-Moret, N. Charlotte; Palotie, Aarno; Paré, Guillaume; Parker, Alex N; Pedersen, Nancy L; Peeters, Petra HM; Pistis, Giorgio; Plump, Andrew S; Polasek, Ozren; Pop, Victor JM; Psaty, Bruce M; Räikkönen, Katri; Rehnberg, Emil; Rotter, Jerome I; Rudan, Igor; Sala, Cinzia; Salumets, Andres; Scuteri, Angelo; Singleton, Andrew; Smith, Jennifer A; Snieder, Harold; Soranzo, Nicole; Stacey, Simon N; Starr, John M; Stathopoulou, Maria G; Stirrups, Kathleen; Stolk, Ronald P; Styrkarsdottir, Unnur; Sun, Yan V; Tenesa, Albert; Thorand, Barbara; Toniolo, Daniela; Tryggvadottir, Laufey; Tsui, Kim; Ulivi, Sheila; van Dam, Rob M; van der Schouw, Yvonne T; van Gils, Carla H; van Nierop, Peter; Vink, Jacqueline M; Visscher, Peter M; Voorhuis, Marlies; Waeber, Gérard; Wallaschofski, Henri; Wichmann, H Erich; Widen, Elisabeth; Gent, Colette JM Wijnands-van; Willemsen, Gonneke; Wilson, James F; Wolffenbuttel, Bruce HR; Wright, Alan F; Yerges-Armstrong, Laura M; Zemunik, Tatijana; Zgaga, Lina; Zillikens, M. Carola; Zygmunt, Marek; Arnold, Alice M; Boomsma, Dorret I; Buring, Julie E.; Crisponi, Laura; Demerath, Ellen W; Gudnason, Vilmundur; Harris, Tamara B; Hu, Frank B; Hunter, David J; Launer, Lenore J; Metspalu, Andres; Montgomery, Grant W; Oostra, Ben A; Ridker, Paul M; Sanna, Serena; Schlessinger, David; Spector, Tim D; Stefansson, Kari; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; Uda, Manuela; Uitterlinden, André G; van Duijn, Cornelia M; Völzke, Henry; Murray, Anna; Murabito, Joanne M; Visser, Jenny A; Lunetta, Kathryn L

    2011-01-01

    To identify novel loci for age at natural menopause, we performed a meta-analysis of 22 genome-wide association studies in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 new age at natural menopause loci (P < 5 × 10−8). The new loci included genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG, PRIM1) and immune function (IL11, NLRP11, BAT2). Gene-set enrichment pathway analyses using the full GWAS dataset identified exodeoxyribonuclease, NFκB signalling and mitochondrial dysfunction as biological processes related to timing of menopause. PMID:22267201

  7. RIP4 is a target of multiple signal transduction pathways in keratinocytes: Implications for epidermal differentiation and cutaneous wound repair

    SciTech Connect

    Adams, Stephanie; Munz, Barbara

    2010-01-01

    Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-{kappa}B) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury and might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.

  8. Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining.

    PubMed

    Pears, Catherine J; Lakin, Nicholas D

    2014-05-01

    DNA double strand breaks (DSBs) are a particularly cytotoxic variety of DNA lesion that can be repaired by homologous recombination (HR) or nonhomologous end-joining (NHEJ). HR utilises sequences homologous to the damage DNA template to facilitate repair. In contrast, NHEJ does not require homologous sequences for repair but instead functions by directly re-joining DNA ends. These pathways are critical to resolve DSBs generated intentionally during processes such as meiotic and site-specific recombination. However, they are also utilised to resolve potentially pathological DSBs generated by mutagens and errors during DNA replication. The importance of DSB repair is underscored by the findings that defects in these pathways results in chromosome instability that contributes to a variety of disease states including malignancy. The general principles of NHEJ are conserved in eukaryotes. As such, relatively simple model organisms have been instrumental in identifying components of these pathways and providing a mechanistic understanding of repair that has subsequently been applied to vertebrates. However, certain components of the NHEJ pathway are absent or show limited conservation in the most commonly used invertebrate models exploited to study DNA repair. Recently, however, it has become apparent that vertebrate DNA repair pathway components, including those involved in NHEJ, are unusually conserved in the amoeba Dictyostelium discoideum. Traditionally, this genetically tractable organism has been exploited to study the molecular basis of cell type specification, cell motility and chemotaxis. Here we discuss the use of this organism as an additional model to study DNA repair, with specific reference to NHEJ.

  9. A role for topoisomerase III in a recombination pathway alternative to RuvABC.

    PubMed

    Lopez, Christopher R; Yang, Shirley; Deibler, Richard W; Ray, Starlight A; Pennington, Jeanine M; Digate, Russell J; Hastings, P J; Rosenberg, Susan M; Zechiedrich, E Lynn

    2005-10-01

    The physiological role of topoisomerase III is unclear for any organism. We show here that the removal of topoisomerase III in temperature sensitive topoisomerase IV mutants in Escherichia coli results in inviability at the permissive temperature. The removal of topoisomerase III has no effect on the accumulation of catenated intermediates of DNA replication, even when topoisomerase IV activity is removed. Either recQ or recA null mutations, but not helD null or lexA3, partially rescued the synthetic lethality of the double topoisomerase III/IV mutant, indicating a role for topoisomerase III in recombination. We find a bias against deleting the gene encoding topoisomerase III in ruvC53 or DeltaruvABC backgrounds compared with the isogenic wild-type strains. The topoisomerase III RuvC double mutants that can be constructed are five- to 10-fold more sensitive to UV irradiation and mitomycin C treatment and are twofold less efficient in transduction efficiency than ruvC53 mutants. The overexpression of ruvABC allows the construction of the topoisomerase III/IV double mutant. These data are consistent with a role for topoisomerase III in disentangling recombination intermediates as an alternative to RuvABC to maintain the stability of the genome.

  10. DNA repair mechanisms in eukaryotes: Special focus in Entamoeba histolytica and related protozoan parasites.

    PubMed

    López-Camarillo, César; Lopez-Casamichana, Mavil; Weber, Christian; Guillen, Nancy; Orozco, Esther; Marchat, Laurence A

    2009-12-01

    Eukaryotic cell viability highly relies on genome stability and DNA integrity maintenance. The cellular response to DNA damage mainly consists of six biological conserved pathways known as homologous recombination repair (HRR), non-homologous end-joining (NHEJ), base excision repair (BER), mismatch repair (MMR), nucleotide excision repair (NER), and methyltransferase repair that operate in a concerted way to minimize genetic information loss due to a DNA lesion. Particularly, protozoan parasites survival depends on DNA repair mechanisms that constantly supervise chromosomes to correct damaged nucleotides generated by cytotoxic agents, host immune pressure or cellular processes. Here we reviewed the current knowledge about DNA repair mechanisms in the most relevant human protozoan pathogens. Additionally, we described the recent advances to understand DNA repair mechanisms in Entamoeba histolytica with special emphasis in the use of genomic approaches based on bioinformatic analysis of parasite genome sequence and microarrays technology.

  11. The MCM-binding protein ETG1 aids sister chromatid cohesion required for postreplicative homologous recombination repair.

    PubMed

    Takahashi, Naoki; Quimbaya, Mauricio; Schubert, Veit; Lammens, Tim; Vandepoele, Klaas; Schubert, Ingo; Matsui, Minami; Inzé, Dirk; Berx, Geert; De Veylder, Lieven

    2010-01-01

    The DNA replication process represents a source of DNA stress that causes potentially spontaneous genome damage. This effect might be strengthened by mutations in crucial replication factors, requiring the activation of DNA damage checkpoints to enable DNA repair before anaphase onset. Here, we demonstrate that depletion of the evolutionarily conserved minichromosome maintenance helicase-binding protein ETG1 of Arabidopsis thaliana resulted in a stringent late G2 cell cycle arrest. This arrest correlated with a partial loss of sister chromatid cohesion. The lack-of-cohesion phenotype was intensified in plants without functional CTF18, a replication fork factor needed for cohesion establishment. The synergistic effect of the etg1 and ctf18 mutants on sister chromatid cohesion strengthened the impact on plant growth of the replication stress caused by ETG1 deficiency because of inefficient DNA repair. We conclude that the ETG1 replication factor is required for efficient cohesion and that cohesion establishment is essential for proper development of plants suffering from endogenous DNA stress. Cohesion defects observed upon knockdown of its human counterpart suggest an equally important developmental role for the orthologous mammalian ETG1 protein. PMID:20090939

  12. A high throughput screening strategy to identify protein-protein interaction inhibitors that block the Fanconi anemia DNA repair pathway

    PubMed Central

    Voter, Andrew F.; Manthei, Kelly A.

    2016-01-01

    Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for re-sensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol. PMID:26962873

  13. The mechanism of recA polA lethality: Suppression by RecA-independent recombination repair activated by the lexA(Def) mutation in Escherichia coli

    SciTech Connect

    Cao, Yang; Kogoma, Tokio

    1995-04-01

    The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5{prime} {yields} 3{prime} exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF{sup +} is essential for this suppression pathway, recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by {Delta}recA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of {Delta}recA polA25::spc cells to UV damage by {approximately}10{sup 4}-fold. lexA(Def) also restores P1 transduction proficiency to the {Delta}recA polA25::spc mutant to a level that is 7.3% of the recA{sup +} wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants. 52 refs., 7 figs., 5 tabs.

  14. A recombinant two-module form of human properdin is an inhibitor of the complement alternative pathway.

    PubMed

    Kouser, Lubna; Abdul-Aziz, Munirah; Tsolaki, Anthony G; Singhal, Dipti; Schwaeble, Wilhelm J; Urban, Britta C; Khan, Haseeb A; Sim, Robert B; Kishore, Uday

    2016-05-01

    Properdin upregulates the alternative complement pathway by binding and stabilising the C3 convertase complex (C3bBb). Properdin is a soluble glycoprotein and its flexible rod-like 53kDa monomers form cyclic polymers (dimers, trimers, tetramers and pentamers). The properdin monomer consists of seven thrombospondin type I repeats (TSR 0-6), which are similar and homologous to domains found in circumsporozoite and thrombospondin-related anonymous proteins of Plasmodium species, ETP100 of Eimeria tenella, various complement components C6-C9, and thrombospondin I and II. Using deletion constructs, TSR4 and TSR5 of human properdin were implicated in C3b binding and stabilising C3 convertase. However, individually expressed TSR4 or TSR5 failed to bind properdin ligands. Here, we have expressed and characterized biologically active TSR4 and TSR5 together (TSR4+5) in tandem in Escherichia coli, fused to maltose-binding protein. MBP-TSR4+5 bind solid-phase C3b, sulfatides and glycosaminoglycans. In addition, functionally active recombinant TSR4+5 modules inhibit the alternative pathway of complement. PMID:27060503

  15. Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background Overexpression of the PGM2 gene encoding phosphoglucomutase (Pgm2p) has been shown to improve galactose utilization both under aerobic and under anaerobic conditions. Similarly, xylose utilization has been improved by overexpression of genes encoding xylulokinase (XK), enzymes from the non-oxidative pentose phosphate pathway (non-ox PPP) and deletion of the endogenous aldose reductase GRE3 gene in engineered Saccharomyces cerevisiae strains carrying either fungal or bacterial xylose pathways. In the present study, we investigated how the combination of these traits affect xylose and galactose utilization in the presence or absence of glucose in S. cerevisiae strains engineered with the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway. Results In the absence of PGM2 overexpression, the combined overexpression of XK, the non-ox PPP and deletion of the GRE3 gene significantly delayed aerobic growth on galactose, whereas no difference was observed between the control strain and the xylose-engineered strain when the PGM2 gene was overexpressed. Under anaerobic conditions, the overexpression of the PGM2 gene increased the ethanol yield and the xylose consumption rate in medium containing xylose as the only carbon source. The possibility of Pgm2p acting as a xylose isomerase (XI) could be excluded by measuring the XI activity in both strains. The additional copy of the PGM2 gene also resulted in a shorter fermentation time during the co-consumption of galactose and xylose. However, the effect was lost upon addition of glucose to the growth medium. Conclusions PGM2 overexpression was shown to benefit xylose and galactose fermentation, alone and in combination. In contrast, galactose fermentation was impaired in the engineered xylose-utilizing strain harbouring extra copies of the non-ox PPP genes and a deletion of the GRE3 gene, unless PGM2 was overexpressed. These cross-reactions are of particular relevance for the fermentation of mixed sugars from

  16. Inhibition of the classical and lectin pathway of the complement system by recombinant LAIR-2.

    PubMed

    Olde Nordkamp, Marloes J M; Boross, Peter; Yildiz, Cafer; Jansen, J H Marco; Leusen, Jeanette H W; Wouters, Diana; Urbanus, Rolf T; Hack, C Erik; Meyaard, Linde

    2014-01-01

    Activation of complement may cause severe tissue damage in antibody-mediated allograft rejection and other antibody-mediated clinical conditions; therefore, novel potent complement inhibitors are needed. Previously, we described binding of the inhibitory receptor LAIR-1 and its soluble family member LAIR-2 to collagen. Here, we investigated binding of LAIR-1 and LAIR-2 to the complement proteins C1q and MBL, which both have collagen-like domains, and evaluated the effect of this binding on complement function. We demonstrate specific binding of recombinant LAIR proteins to both C1q and MBL. Surface plasmon resonance experiments showed that LAIR-2-Fc protein bound C1q and MBL with the highest affinity compared to LAIR-2-HIS. We, therefore, hypothesized that LAIR-2-Fc is a potent complement inhibitor. Indeed, LAIR-2-Fc inhibited C4 fixation to IgG or mannan, reduced activation of C4 by aggregated IgG in plasma and inhibited iC3b deposition on cells. Finally, LAIR-2-Fc inhibited complement-mediated lysis of cells sensitized with anti-HLA antibodies in an ex vivo model for antibody-mediated transplant rejection. Thus, LAIR-2-Fc is an effective novel complement inhibitor for the treatment and prevention of antibody-mediated allograft rejection and antibody-mediated clinical conditions.

  17. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate.

    PubMed

    McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A

    2015-01-01

    Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents.

  18. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate.

    PubMed

    McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A

    2015-01-01

    Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. PMID:25023848

  19. Association of nucleotide excision repair pathway gene polymorphisms with gastric cancer and atrophic gastritis risks.

    PubMed

    Liu, Jingwei; Sun, Liping; Xu, Qian; Tu, Huakang; He, Caiyun; Xing, Chengzhong; Yuan, Yuan

    2016-02-01

    Polymorphisms of NER genes could change NER ability, thereby altering individual susceptibility to GC. We systematically analyzed 39 SNPs of 8 key genes of NER pathway in 2686 subjects including 898 gastric cancer (GC), 851 atrophic gastritis (AG) and 937 controls (CON) in northern Chinese. SNP genotyping were performed using Sequenom MassARRAY platform. The results demonstrated that DDB2 rs830083 GG genotype was significantly associated with increased GC risk compared with wild-type CC (OR=2.32, P= 6.62 × 10-9); XPC rs2607775 CG genotype conferred a 1.73 increased odds of GC risk than non-cancer subjects compared with wild-type CC (OR=1.73, P= 3.04 × 10-4). The combined detection of these two polymorphisms demonstrated even higher GC risk (OR=3.05). Haplotype analysis suggested that DDB2 rs2029298-rs326222-rs3781619-rs830083 GTAG haplotype was significantly associated with disease risk in each step of CON→AG→GC development (AG vs. CON: OR=2.88, P= 7.51 × 10-7; GC vs. AG: OR=2.90, P=5.68 × 10-15; GC vs. CON: OR=8.42, P=2.22 × 10-15); DDB2 GTAC haplotype was associated with reduced risk of GC compared with CON (OR=0.63, P= 8.31 × 10-12). XPC rs1870134-rs2228000-rs2228001-rs2470352-rs2607775 GCAAG haplotype conferred increased risk of GC compared with AG (OR=1.88, P= 6.98 × 10-4). XPA rs2808668 and drinking, DDB2 rs326222, rs3781619, rs830083 and smoking demonstrated significant interactions in AG; XPC rs2607775 had significant interaction with smoking in GC. In conclusion, NER pathway polymorphisms especially in "damage incision" step were significantly associated with GC risk and had interactions with environment factors. The detection of NER pathway polymorphisms such as DDB2 and XPC might be applied in the prediction of GC risk and personalized prevention in the future. NER pathway polymorphisms especially in "damage incision" step were significantly associated with GC risk and had interactions with environment factors, which might be applied in the

  20. Break-induced replication and recombinational telomere elongation in yeast.

    PubMed

    McEachern, Michael J; Haber, James E

    2006-01-01

    When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.

  1. Hyperthermia adds to trabectedin effectiveness and thermal enhancement is associated with BRCA2 degradation and impairment of DNA homologous recombination repair.

    PubMed

    Harnicek, Dominique; Kampmann, Eric; Lauber, Kirsten; Hennel, Roman; Cardoso Martins, Ana Sofia; Guo, Yang; Belka, Claus; Mörtl, Simone; Gallmeier, Eike; Kanaar, Roland; Mansmann, Ulrich; Hucl, Tomas; Lindner, Lars H; Hiddemann, Wolfgang; Issels, Rolf D

    2016-07-15

    The tetrahydroisoquinoline trabectedin is a marine compound with approved activity against human soft-tissue sarcoma. It exerts antiproliferative activity mainly by specific binding to the DNA and inducing DNA double-strand breaks (DSB). As homologous recombination repair (HRR)-deficient tumors are more susceptible to trabectedin, hyperthermia-mediated on-demand induction of HRR deficiency represents a novel and promising strategy to boost trabectedin treatment. For the first time, we demonstrate enhancement of trabectedin effectiveness in human sarcoma cell lines by heat and characterize cellular events and molecular mechanisms related to heat-induced effects. Hyperthermic temperatures (41.8 or 43°C) enhanced significantly trabectedin-related clonogenic cell death and G2/M cell cycle arrest followed by cell type-dependent induction of apoptosis or senescence. Heat combination increased accumulation of γH2AX foci as key marker of DSBs. Expression of BRCA2 protein, an integral protein of the HRR machinery, was significantly decreased by heat. Consequently, recruitment of downstream RAD51 to γH2AX-positive repair foci was almost abolished indicating relevant impairment of HRR by heat. Accordingly, enhancement of trabectedin effectiveness was significantly augmented in BRCA2-proficient cells by hyperthermia and alleviated in BRCA2 knockout or siRNA-transfected BRCA2 knockdown cells. In peripheral blood mononuclear cells isolated from sarcoma patients, increased numbers of nuclear γH2AX foci were detected after systemic treatment with trabectedin and hyperthermia of the tumor region. The findings establish BRCA2 degradation by heat as a key factor for a novel treatment strategy that allows targeted chemosensitization to trabectedin and other DNA damaging antitumor drugs by on-demand induction of HRR deficiency.

  2. Mapping Recombination Initiation Sites Using Chromatin Immunoprecipitation.

    PubMed

    He, Yan; Wang, Minghui; Sun, Qi; Pawlowski, Wojciech P

    2016-01-01

    Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi. PMID:27511175

  3. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis.

    PubMed

    Papini, Marta; Nookaew, Intawat; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Several bacterial species and filamentous fungi utilize the phosphoketolase pathway (PHK) for glucose dissimilation as an alternative to the Embden-Meyerhof-Parnas pathway. In Aspergillus nidulans, the utilization of this metabolic pathway leads to increased carbon flow towards acetate and acetyl CoA. In the first step of the PHK, the pentose phosphate pathway intermediate xylulose-5-phosphate is converted into acetylphosphate and glyceraldehyde-3-phosphate through the action of xylulose-5-phosphate phosphoketolase, and successively acetylphosphate is converted into acetate by the action of acetate kinase. In the present work, we describe a metabolic engineering strategy used to express the fungal genes of the phosphoketolase pathway in Saccharomyces cerevisiae and the effects of the expression of this recombinant route in yeast. The phenotype of the engineered yeast strain MP003 was studied during batch and chemostat cultivations, showing a reduced biomass yield and an increased acetate yield during batch cultures. To establish whether the observed effects in the recombinant strain MP003 were due directly or indirectly to the expression of the phosphoketolase pathway, we resolved the intracellular flux distribution based on (13)C labeling during chemostat cultivations. From flux analysis it is possible to conclude that yeast is able to use the recombinant pathway. Our work indicates that the utilization of the phosphoketolase pathway does not interfere with glucose assimilation through the Embden-Meyerhof-Parnas pathway and that the expression of this route can contribute to increase the acetyl CoA supply, therefore holding potential for future metabolic engineering strategies having acetyl CoA as precursor for the biosynthesis of industrially relevant compounds.

  4. Calmodulin Mediates DNA Repair Pathways Involving H2AX in Response to Low-Dose Radiation Exposure of RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Lopez Ferrer, Daniel; Eberlein, P. Elis; Watson, David J.; Squier, Thomas C.

    2009-02-05

    Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance metastasis. In this respect, we have identified a dose-dependent increase in the abundance of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose exposures. Increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX protein complexes associated with DNA repair following macrophage irradiation, with no change in the extent of double-stranded DNA damage. In comparison, when NFκB-dependent pathways are inhibited, through the expression of a dominant-negative IκB construct, there is no significant increase in phosphorylated H2AX upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX mediated DNA-repair pathways is not the result of nonspecific NFκB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation to enhance macrophage radioresistance through processes that include the upregulation of DNA repair pathways involving histone protein H2AX phosphorylation.

  5. The improved L-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway.

    PubMed

    Gu, Pengfei; Kang, Junhua; Yang, Fan; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2013-05-01

    Polyhydroxybutyrate (PHB), the best known polyhydroxyalkanoates (PHA) has been believed to change intracellular metabolic flow and oxidation/reduction state, as well as enhance stress resistance of the host. In this study, a PHB biosynthesis pathway, which contains phaCAB operon genes from Ralstonia eutropha, was introduced into an L-tryptophan producing Escherichia coli strain GPT1002. The expression of the PHB biosynthesis genes resulted in PHB accumulation inside the cells and improved the L-tryptophan production. Quantitative real-time PCR analysis showed that the transcription of tryptophan operon genes in GPT2000 increased by 1.9 to 4.3 times compared with the control, indicating that PHB biosynthesis in engineered E. coli changed the physiological state of the host. Xylose was added into the medium as co-substrate to enhance the precursor supply for PHB biosynthesis. The addition of xylose improved both extracellular L-tryptophan production and intracellular PHB accumulation. Moreover, we obtained 14.4 g l(-1) L-tryptophan production and 9.7 % PHB (w/w) accumulation in GPT2000 via fed-batch cultivation. PMID:23321909

  6. Telomere stability and development of ctc1 mutants are rescued by inhibition of EJ recombination pathways in a telomerase-dependent manner.

    PubMed

    Amiard, Simon; Olivier, Margaux; Allain, Elisabeth; Choi, Kyuha; Smith-Unna, Richard; Henderson, Ian R; White, Charles I; Gallego, Maria Eugenia

    2014-10-29

    The telomeres of linear eukaryotic chromosomes are protected by caps consisting of evolutionarily conserved nucleoprotein complexes. Telomere dysfunction leads to recombination of chromosome ends and this can result in fusions which initiate chromosomal breakage-fusion-bridge cycles, causing genomic instability and potentially cell death or cancer. We hypothesize that in the absence of the recombination pathways implicated in these fusions, deprotected chromosome ends will instead be eroded by nucleases, also leading to the loss of genes and cell death. In this work, we set out to specifically test this hypothesis in the plant, Arabidopsis. Telomere protection in Arabidopsis implicates KU and CST and their absence leads to chromosome fusions, severe genomic instability and dramatic developmental defects. We have analysed the involvement of end-joining recombination pathways in telomere fusions and the consequences of this on genomic instability and growth. Strikingly, the absence of the multiple end-joining pathways eliminates chromosome fusion and restores normal growth and development to cst ku80 mutant plants. It is thus the chromosomal fusions, per se, which are the underlying cause of the severe developmental defects. This rescue is mediated by telomerase-dependent telomere extension, revealing a competition between telomerase and end-joining recombination proteins for access to deprotected telomeres.

  7. Mechanics and Single-Molecule Interrogation of DNA Recombination.

    PubMed

    Bell, Jason C; Kowalczykowski, Stephen C

    2016-06-01

    The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.

  8. UV-induced DNA damage and repair: a review.

    PubMed

    Sinha, Rajeshwar P; Häder, Donat P

    2002-04-01

    Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) and their Dewar valence Isomers. However, cells have developed a number of repair or tolerance mechanism to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

  9. Genetic variations in base excision repair pathway and risk of bladder cancer: a case-control study in the United States.

    PubMed

    Xie, Hui; Gong, Yilei; Dai, Jingyao; Wu, Xifeng; Gu, Jian

    2015-01-01

    Base excision repair (BER) is one of the major cellular DNA repair pathways that repairs small isolated foci of DNA damage including reduced or oxidized single bases or fragments and small, non-bulky adducts. Genetic variations in BER genes may affect DNA repair capacity and increase susceptibility to bladder cancer. In a case-control study of 801 bladder cancer patients and 801 matched controls, we evaluated the associations of 167 single nucleotide polymorphisms (SNPs) from 19 genes of the BER pathway with the risk of bladder cancer. In individual SNP analysis, 13 SNPs in 10 BER pathway genes were significantly associated with bladder cancer risk. The most significant SNP was rs2029167 in the SMUG1 gene. The homozygous variant GG genotype was associated with a 1.42-fold increased risk of bladder cancer (95% confidence interval [CI], 1.11-1.82, P=0.005). Cumulative effect analysis showed joint effects of increased risk of bladder cancer with increasing number of unfavorable genotypes in patients. Classification and regression tree analysis further revealed high-order gene-gene interactions and categorized the study subjects into low-, medium-low-, medium-high-, and high-risk groups. Compared with the low-risk group, the odds ratio for medium-low-, medium-high-, and high-risk group was 1.83 (95% CI: 1.23-2.72), 2.61 (95% CI: 1.79-3.80), and 3.05 (95% CI: 2.08-4.46), respectively (P for trend<0.001). Our results suggest that genetic variations in BER pathway genes modulate the risk of bladder cancer individually and jointly.

  10. Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.

    1995-01-01

    Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281

  11. Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells.

    PubMed Central

    Puchta, H

    1999-01-01

    Homologous recombination between ectopic sites is rare in higher eukaryotes. To test whether double-strand breaks (DSBs) can induce ectopic recombination, transgenic tobacco plants harboring two unlinked, nonfunctional homologous parts of a kanamycin resistance gene were produced. To induce homologous recombination between the recipient locus (containing an I-SceI site within homologous sequences) and the donor locus, the rare cutting restriction enzyme I-SceI was transiently expressed via Agrobacterium in these plants. Whereas without I-SceI expression no recombination events were detectable, four independent recombinants could be isolated after transient I-SceI expression, corresponding to approximately one event in 10(5) transformations. After regeneration, the F1 generation of all recombinants showed Mendelian segregation of kanamycin resistance. Molecular analysis of the recombinants revealed that the resistance gene was indeed restored via homologous recombination. Three different kinds of reaction products could be identified. In one recombinant a classical gene conversion without exchange of flanking markers occurred. In the three other cases homologous sequences were transferred only to one end of the break. Whereas in three cases the ectopic donor sequence remained unchanged, in one case rearrangements were found in recipient and donor loci. Thus, ectopic homologous recombination, which seems to be a minor repair pathway for DSBs in plants, is described best by recombination models that postulate independent roles for the break ends during the repair process. PMID:10388832

  12. Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group.

    PubMed

    Yan, Y X; Schiestl, R H; Prakash, L

    1995-06-01

    The RAD6 gene of Saccharomyces cerevisiae is required for post-replication repair of UV-damaged DNA, UV mutagenesis, and sporulation. Here, we show that the radiation sensitivity of a MATa rad6 delta strain can be suppressed by the MAT alpha 2 gene carried on a multicopy plasmid. The a1-alpha 2 suppression is specific to the RAD6 pathway, as mutations in genes required for nucleotide excision repair or for recombinational repair do not show such mating-type suppression. The a1-alpha 2 suppression of the rad6 delta mutation requires the activity of the RAD52 group of genes, suggesting that suppression occurs by channelling of post-replication gaps present in the rad6 delta mutant into the RAD52 recombinational repair pathway. The a1-alpha 2 repressor could mediate this suppression via an enhancement in the expression, or the activity, of recombination genes.

  13. Production of 3-Hydroxypropionic Acid via the Propionyl-CoA Pathway Using Recombinant Escherichia coli Strains.

    PubMed

    Luo, Hui; Zhou, Dafeng; Liu, Xiaohui; Nie, Zhihua; Quiroga-Sánchez, Diego Leandro; Chang, Yanhong

    2016-01-01

    Our study aimed to produce the commercially promising platform chemical 3-hydroxypropionic acid (3-HP) via the propionyl-CoA pathway in genetically engineered Escherichia coli. Recombinant E. coli Ec-P overexpressing propionyl-CoA dehydrogenase (PACD, encoded by the pacd gene from Candida rugosa) under the T7 promoter produced 1.33 mM of 3-HP in a shake flask culture supplemented with 0.5% propionate. When propionate CoA-transferase (PCT, encoded by the pct gene from Megasphaera elsdenii) and 3-hydroxypropionyl-CoA dehydratase (HPCD, encoded by the hpcd gene from Chloroflexus aurantiacus) were expressed along with PACD, the 3-HP titer of the resulting E. coli Ec-PPH strain was improved by 6-fold. The effect of the cultivation conditions on the 3-HP yield from propionate in the Ec-PPH strain was also investigated. When cultured at 30°C with 1% glucose in addition to propionate, 3-HP production by Ec-PPH increased 2-fold and 12-fold compared to the cultivation at 37°C (4.23 mM) or without glucose (0.68 mM). Deletion of the ygfH gene encoding propionyl-CoA: succinate CoA-transferase from Ec-PPH (resulting in the strain Ec-△Y-PPH) led to increase of 3-HP production in shake flask experiments (15.04 mM), whereas the strain Ec-△Y-PPH with deletion of the prpC gene (encoding methylcitrate synthase in the methylcitrate cycle) produced 17.76 mM of 3-HP. The strain Ec-△Y-△P-PPH with both ygfH and prpC genes deleted produced 24.14 mM of 3-HP, thus showing an 18-fold increase in the 3-HP titer in compare to the strain Ec-P. PMID:27227837

  14. Production of 3-Hydroxypropionic Acid via the Propionyl-CoA Pathway Using Recombinant Escherichia coli Strains

    PubMed Central

    Luo, Hui; Zhou, Dafeng; Liu, Xiaohui; Nie, Zhihua; Quiroga-Sánchez, Diego Leandro; Chang, Yanhong

    2016-01-01

    Our study aimed to produce the commercially promising platform chemical 3-hydroxypropionic acid (3-HP) via the propionyl-CoA pathway in genetically engineered Escherichia coli. Recombinant E. coli Ec-P overexpressing propionyl-CoA dehydrogenase (PACD, encoded by the pacd gene from Candida rugosa) under the T7 promoter produced 1.33 mM of 3-HP in a shake flask culture supplemented with 0.5% propionate. When propionate CoA-transferase (PCT, encoded by the pct gene from Megasphaera elsdenii) and 3-hydroxypropionyl-CoA dehydratase (HPCD, encoded by the hpcd gene from Chloroflexus aurantiacus) were expressed along with PACD, the 3-HP titer of the resulting E. coli Ec-PPH strain was improved by 6-fold. The effect of the cultivation conditions on the 3-HP yield from propionate in the Ec-PPH strain was also investigated. When cultured at 30°C with 1% glucose in addition to propionate, 3-HP production by Ec-PPH increased 2-fold and 12-fold compared to the cultivation at 37°C (4.23 mM) or without glucose (0.68 mM). Deletion of the ygfH gene encoding propionyl-CoA: succinate CoA-transferase from Ec-PPH (resulting in the strain Ec-△Y-PPH) led to increase of 3-HP production in shake flask experiments (15.04 mM), whereas the strain Ec-△Y-PPH with deletion of the prpC gene (encoding methylcitrate synthase in the methylcitrate cycle) produced 17.76 mM of 3-HP. The strain Ec-△Y-△P-PPH with both ygfH and prpC genes deleted produced 24.14 mM of 3-HP, thus showing an 18-fold increase in the 3-HP titer in compare to the strain Ec-P. PMID:27227837

  15. Recombinant Human Endostatin Suppresses Mouse Osteoclast Formation by Inhibiting the NF-κB and MAPKs Signaling Pathways

    PubMed Central

    Chen, Nong; Gao, Ru-Feng; Yuan, Feng-Lai; Zhao, Ming-Dong

    2016-01-01

    Rheumatoid arthritis is an autoimmune disease characterized by synovial hyperplasia and progressive joint destruction. As reported previously, recombinant human endostatin (rhEndostatin) is associated with inhibition of joint bone destruction present in rat adjuvant-induced arthritis; however, the effect of rhEndostatin on bone destruction is not known. This study was designed to assess the inhibitory effect and mechanisms of rhEndostatin on formation and function of osteoclasts in vitro, and to gain insight into the mechanism underlying the inhibitory effect of bone destruction. Bone marrow-derived macrophages isolated from BALB/c mice were stimulated with receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor to establish osteoclast formation. Osteoclast formation was determined by TRAP staining. Cell viability of BMMs affected by rhEndostatin was determined using a MTT assay. Bone resorption was examined with a bone resorption pits assay. The expression of osteoclast-specific markers was analyzed using quantitative real-time PCR. The related signaling pathways were examined using a Luciferase reporter assay and western blot analysis. Indeed, rhEndostatin showed a significant reduction in the number of osteoclast-like cells and early-stage bone resorption. Moreover, molecular analysis demonstrated that rhEndostatin attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation of IκBα and NF-κB p65 nuclear translocation. Furthermore, rhEndostatin significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases, such as ERK1/2, JNK, and p38. Hence, we demonstrated for the first time that preventing the formation and function of osteoclasts is an important anti-bone destruction mechanism of rhEndostatin, which might be useful in the prevention and treatment of bone destruction in RA. PMID:27313530

  16. Recombinant Human Endostatin Suppresses Mouse Osteoclast Formation by Inhibiting the NF-κB and MAPKs Signaling Pathways.

    PubMed

    Chen, Nong; Gao, Ru-Feng; Yuan, Feng-Lai; Zhao, Ming-Dong

    2016-01-01

    Rheumatoid arthritis is an autoimmune disease characterized by synovial hyperplasia and progressive joint destruction. As reported previously, recombinant human endostatin (rhEndostatin) is associated with inhibition of joint bone destruction present in rat adjuvant-induced arthritis; however, the effect of rhEndostatin on bone destruction is not known. This study was designed to assess the inhibitory effect and mechanisms of rhEndostatin on formation and function of osteoclasts in vitro, and to gain insight into the mechanism underlying the inhibitory effect of bone destruction. Bone marrow-derived macrophages isolated from BALB/c mice were stimulated with receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor to establish osteoclast formation. Osteoclast formation was determined by TRAP staining. Cell viability of BMMs affected by rhEndostatin was determined using a MTT assay. Bone resorption was examined with a bone resorption pits assay. The expression of osteoclast-specific markers was analyzed using quantitative real-time PCR. The related signaling pathways were examined using a Luciferase reporter assay and western blot analysis. Indeed, rhEndostatin showed a significant reduction in the number of osteoclast-like cells and early-stage bone resorption. Moreover, molecular analysis demonstrated that rhEndostatin attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation of IκBα and NF-κB p65 nuclear translocation. Furthermore, rhEndostatin significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases, such as ERK1/2, JNK, and p38. Hence, we demonstrated for the first time that preventing the formation and function of osteoclasts is an important anti-bone destruction mechanism of rhEndostatin, which might be useful in the prevention and treatment of bone destruction in RA. PMID:27313530

  17. FcRn Rescues Recombinant Factor VIII Fc Fusion Protein from a VWF Independent FVIII Clearance Pathway in Mouse Hepatocytes

    PubMed Central

    van der Flier, Arjan; Liu, Zhan; Tan, Siyuan; Chen, Kai; Drager, Douglas; Liu, Tongyao; Patarroyo-White, Susannah; Jiang, Haiyan; Light, David R.

    2015-01-01

    We recently developed a longer lasting recombinant factor VIII-Fc fusion protein, rFVIIIFc, to extend the half-life of replacement FVIII for the treatment of people with hemophilia A. In order to elucidate the biological mechanism for the elongated half-life of rFVIIIFc at a cellular level we delineated the roles of VWF and the tissue-specific expression of the neonatal Fc receptor (FcRn) in the biodistribution, clearance and cycling of rFVIIIFc. We find the tissue biodistribution is similar for rFVIIIFc and rFVIII and that liver is the major clearance organ for both molecules. VWF reduces the clearance and the initial liver uptake of rFVIIIFc. Pharmacokinetic studies in FcRn chimeric mice show that FcRn expressed in somatic cells (hepatocytes or liver sinusoidal endothelial cells) mediates the decreased clearance of rFVIIIFc, but FcRn in hematopoietic cells (Kupffer cells) does not affect clearance. Immunohistochemical studies show that when rFVIII or rFVIIIFc is in dynamic equilibrium binding with VWF, they mostly co localize with VWF in Kupffer cells and macrophages, confirming a major role for liver macrophages in the internalization and clearance of the VWF-FVIII complex. In the absence of VWF a clear difference in cellular localization of VWF-free rFVIII and rFVIIIFc is observed and neither molecule is detected in Kupffer cells. Instead, rFVIII is observed in hepatocytes, indicating that free rFVIII is cleared by hepatocytes, while rFVIIIFc is observed as a diffuse liver sinusoidal staining, suggesting recycling of free-rFVIIIFc out of hepatocytes. These studies reveal two parallel linked clearance pathways, with a dominant pathway in which both rFVIIIFc and rFVIII complexed with VWF are cleared mainly by Kupffer cells without FcRn cycling. In contrast, the free fraction of rFVIII or rFVIIIFc unbound by VWF enters hepatocytes, where FcRn reduces the degradation and clearance of rFVIIIFc relative to rFVIII by cycling rFVIIIFc back to the liver sinusoid and

  18. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations

    SciTech Connect

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu; Yang, Qiaoyun; Zhao, Yuxia; Li, Ran; Ge, Jie; Qiu, Xinghua; Li, Guang

    2015-02-15

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log 2 ratio >1 or <−1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. - Highlights:

  19. Triple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes

    PubMed Central

    Andreis, Daniele; Bertoni, Ramona; Giardini, Roberto; Fox, Stephen B.; Broggini, Massimo; Bottini, Alberto; Zanoni, Vanessa; Bazzola, Letizia; Foroni, Chiara; Generali, Daniele; Damia, Giovanna

    2013-01-01

    DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compared to luminal A breast cancer (LABC). Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects. PMID:23825533

  20. Plants Possess a Cyclic Mitochondrial Metabolic Pathway similar to the Mammalian Metabolic Repair Mechanism Involving Malate Dehydrogenase and l-2-Hydroxyglutarate Dehydrogenase.

    PubMed

    Hüdig, Meike; Maier, Alexander; Scherrers, Isabell; Seidel, Laura; Jansen, Erwin E W; Mettler-Altmann, Tabea; Engqvist, Martin K M; Maurino, Veronica G

    2015-09-01

    Enzymatic side reactions can give rise to the formation of wasteful and toxic products that are removed by metabolite repair pathways. In this work, we identify and characterize a mitochondrial metabolic repair mechanism in Arabidopsis thaliana involving malate dehydrogenase (mMDH) and l-2-hydroxyglutarate dehydrogenase (l-2HGDH). We analyze the kinetic properties of both A. thaliana mMDH isoforms, and show that they produce l-2-hydroxyglutarate (l-2HG) from 2-ketoglutarate (2-KG) at low rates in side reactions. We identify A. thaliana l-2HGDH as a mitochondrial FAD-containing oxidase that converts l-2HG back to 2-KG. Using loss-of-function mutants, we show that the electrons produced in the l-2HGDH reaction are transferred to the mitochondrial electron transport chain through the electron transfer protein (ETF). Thus, plants possess the biochemical components of an l-2HG metabolic repair system identical to that found in mammals. While deficiencies in the metabolism of l-2HG result in fatal disorders in mammals, accumulation of l-2HG in plants does not adversely affect their development under a range of tested conditions. However, orthologs of l-2HGDH are found in all examined genomes of viridiplantae, indicating that the repair reaction we identified makes an essential contribution to plant fitness in as yet unidentified conditions in the wild. PMID:26203119

  1. Cancer TARGETases: DSB repair as a pharmacological target.

    PubMed

    Samadder, Pounami; Aithal, Rakesh; Belan, Ondrej; Krejci, Lumir

    2016-05-01

    Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy. PMID:26899499

  2. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    PubMed

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. PMID:26149689

  3. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells

    PubMed Central

    Choi, Young Eun; Battelli, Chiara; Watson, Jacqueline; Liu, Joyce; Curtis, Jennifer; Morse, Alexander N.; Matulonis, Ursula A.; Chowdhury, Dipanjan; Konstantinopoulos, Panagiotis A.

    2014-01-01

    The promise of PARP-inhibitors(PARPis) in the management of epithelial ovarian cancer(EOC) is tempered by the fact that approximately 50% of patients with homologous recombination (HR)-proficient tumors do not respond well to these agents. Combination of PARPis with agents that inhibit HR may represent an effective strategy to enhance their activity in HR-proficient tumors. Using a bioinformatics approach, we identified that heat shock protein 90 inhibitors(HSP90i) may suppress HR and thus revert HR-proficient to HR-deficient tumors. Analysis of publicly available gene expression data showed that exposure of HR-proficient breast cancer cell lines to HSP90i 17-AAG(17-allylamino-17-demethoxygeldanamycin) downregulated HR, ATM and Fanconi Anemia pathways. In HR-proficient EOC cells, 17-AAG suppressed HR as assessed using the RAD51 foci formation assay and this was further confirmed using the Direct Repeat-GFP reporter assay. Furthermore, 17-AAG downregulated BRCA1 and/or RAD51 protein levels, and induced significantly more γH2AX activation in combination with olaparib compared to olaparib alone. Finally, sublethal concentrations of 17-AAG sensitized HR-proficient EOC lines to olaparib and carboplatin but did not affect sensitivity of the HR-deficient OVCAR8 line arguing that the 17-AAG mediated sensitization is dependent on suppression of HR. These results provide a preclinical rationale for using a combination of olaparib/17-AAG in HR-proficient EOC. PMID:24798692

  4. hSSB1 (NABP2/ OBFC2B) is required for the repair of 8-oxo-guanine by the hOGG1-mediated base excision repair pathway

    PubMed Central

    Paquet, Nicolas; Adams, Mark N.; Leong, Vincent; Ashton, Nicholas W.; Touma, Christine; Gamsjaeger, Roland; Cubeddu, Liza; Beard, Sam; Burgess, Joshua T.; Bolderson, Emma; O'Byrne, Ken J.; Richard, Derek J.

    2015-01-01

    The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome. PMID:26261212

  5. A Two-tiered compensatory response to loss of DNA repair modulates aging and stress response pathways

    PubMed Central

    Fensgård, Øyvind; Kassahun, Henok; Bombik, Izabela; Rognes, Torbjørn; Lindvall, Jessica Margareta; Nilsen, Hilde

    2010-01-01

    Activation of oxidative stress-responses and downregulation of insulin-like signaling (ILS) is seen in Nucleotide Excision Repair (NER) deficient segmental progeroid mice. Evidence suggests that this is a survival response to persistent transcription-blocking DNA damage, although the relevant lesions have not been identified. Here we show that loss of NTH-1, the only Base Excision Repair (BER) enzyme known to initiate repair of oxidative DNA damage inC. elegans, restores normal lifespan of the short-lived NER deficient xpa-1 mutant. Loss of NTH-1 leads to oxidative stress and global expression profile changes that involve upregulation of genes responding to endogenous stress and downregulation of ILS. A similar, but more extensive, transcriptomic shift is observed in the xpa-1 mutant whereas loss of both NTH-1 and XPA-1 elicits a different profile with downregulation of Aurora-B and Polo-like kinase 1 signaling networks as well as DNA repair and DNA damage response genes. The restoration of normal lifespan and absence oxidative stress responses in nth-1;xpa-1 indicate that BER contributes to generate transcription blocking lesions from oxidative DNA damage. Hence, our data strongly suggests that the DNA lesions relevant for aging are repair intermediates resulting from aberrant or attempted processing by BER of lesions normally repaired by NER. PMID:20382984

  6. Simple sequence repeats together with mismatch repair deficiency can bias mutagenic pathways in Pseudomonas aeruginosa during chronic lung infection.

    PubMed

    Moyano, Alejandro J; Feliziani, Sofía; Di Rienzo, Julio A; Smania, Andrea M

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the airways of cystic fibrosis (CF) patients and undergoes a process of genetic adaptation based on mutagenesis. We evaluated the role of mononucleotide G:C and A:T simple sequence repeats (SSRs) in this adaptive process. An in silico survey of the genome sequences of 7 P. aeruginosa strains showed that mononucleotide G:C SSRs but not A:T SSRs were greatly under-represented in coding regions, suggesting a strong counterselection process for G:C SSRs with lengths >5 bp but not for A:T SSRs. A meta-analysis of published whole genome sequence data for a P. aeruginosa strain from a CF patient with chronic airway infection showed that G:C SSRs but not A:T SSRs were frequently mutated during the infection process through the insertion or deletion of one or more SSR subunits. The mutation tendency of G:C SSRs was length-dependent and increased exponentially as a function of SSR length. When this strain naturally became a stable Mismatch Repair System (MRS)-deficient mutator, the degree of increase of G:C SSRs mutations (5-fold) was much higher than that of other types of mutation (2.2-fold or less). Sequence analysis of several mutated genes reported for two different collections, both containing mutator and non-mutator strains of P. aeruginosa from CF chronic infections, showed that the proportion of G:C SSR mutations was significantly higher in mutators than in non-mutators, whereas no such difference was observed for A:T SSR mutations. Our findings, taken together, provide genome-scale evidences that under a MRS-deficient background, long G:C SSRs are able to stochastically bias mutagenic pathways by making the genes in which they are harbored more prone to mutation. The combination of MRS deficiency and virulence-related genes that contain long G:C SSRs is therefore a matter of concern in P. aeruginosa CF chronic infection.

  7. Comet assay analysis of repair of DNA strand breaks in normal and deficient human cells exposed to radiations and chemicals. Evidence for a repair pathway specificity of DNA ligation

    SciTech Connect

    Nocentini, S.

    1995-11-01

    The induction and resealing of DNA strand breaks in a cell line with a proven defect in DNA ligase I, 46BR, and in two Bloom`s syndrome cell lines. YBL6 and GM 1492, were compared to those observed in normal human 1BR/3 fibroblasts after treatment with a variety of genotoxic agents whose lesions are processed by different repair pathways. This analysis was performed using the single-cell gel electrophoresis assay. The three types of cells were found to have similar capabilities to recognize and incise ultraviolet photoproducts and also demonstrated similar amounts of DNA breaks immediately after {gamma} irradiation. During post-treatment incubation, 46BR cells showed a marked DNA re-ligation defect after ultraviolet radiation damage, GM 1492 cells demonstrated a highly reduced DNA joining ability after relatively high doses of ultraviolet radiation, and YBL6 cells were particularly affected in DNA re-ligation after damage by 4-nitroquinoline-1-oxide. The two Bloom`s syndrome cell lines and 46BR cells had a nearly normal ability to reseal breaks resulting from {gamma} irradiation or treatment with xanthine plus xanthine oxidase. These findings suggest that different DNA ligases may be involved in different DNA repair pathways in human cells. 60 refs., 7 figs.

  8. Meiotic recombination hotspots: shaping the genome and insights into hypervariable minisatellite DNA change.

    PubMed

    Wahls, W P

    1998-01-01

    Meiotic homologous recombination serves three principal roles. First, recombination reassorts the linkages between newly-arising alleles to provide genetic diversity upon which natural selection can act. Second, recombination is used to repair certain types of DNA damage to provide a mechanism of genomic homeostasis. Third, with few exceptions homologous recombination is required for the appropriate segregation of homologous chromosomes during meiosis. Recombination rates are elevated near DNA sites called "recombination hotspots." These sites influence the distribution of recombination along chromosomes and the timing of recombination during the life cycle. Recent advances have revealed biochemical steps of hotspot activation and have suggested that hotspots may regulate when and where recombination occurs. Two models for hotspot activation, one in which hotspots act early in the recombination pathway and one in which hotspots act late in the recombination pathway, are presented. The latter model can account for changes at hypervariable minisatellite DNA in metazoan genomes by invoking resolution of Holliday junctions at minisatellite DNA repeats. PMID:9352183

  9. ΔNp63 activates the Fanconi anemia DNA repair pathway and limits the efficacy of cisplatin treatment in squamous cell carcinoma

    PubMed Central

    Bretz, Anne Catherine; Gittler, Miriam P.; Charles, Joël P.; Gremke, Niklas; Eckhardt, Ines; Mernberger, Marco; Mandic, Robert; Thomale, Jürgen; Nist, Andrea; Wanzel, Michael; Stiewe, Thorsten

    2016-01-01

    TP63, a member of the p53 gene family gene, encodes the ΔNp63 protein and is one of the most frequently amplified genes in squamous cell carcinomas (SCC) of the head and neck (HNSCC) and lungs (LUSC). Using an epiallelic series of siRNAs with intrinsically different knockdown abilities, we show that the complete loss of ΔNp63 strongly impaired cell proliferation, whereas partial ΔNp63 depletion rendered cells hypersensitive to cisplatin accompanied by an accumulation of DNA damage. Expression profiling revealed wide-spread transcriptional regulation of DNA repair genes and in particular Fanconi anemia (FA) pathway components such as FANCD2 and RAD18 - known to be crucial for the repair of cisplatin-induced interstrand crosslinks. In SCC patients ΔNp63 levels significantly correlate with FANCD2 and RAD18 expression confirming ΔNp63 as a key activator of the FA pathway in vivo. Mechanistically, ΔNp63 bound an upstream enhancer of FANCD2 inactive in primary keratinocytes but aberrantly activated by ΔNp63 in SCC. Consistently, depletion of FANCD2 sensitized to cisplatin similar to depletion of ΔNp63. Together, our results demonstrate that ΔNp63 directly activates the FA pathway in SCC and limits the efficacy of cisplatin treatment. Targeting ΔNp63 therefore would not only inhibit SCC proliferation but also sensitize tumors to chemotherapy. PMID:26819410

  10. Association between single nucleotide polymorphisms (SNPs) of XRCC2 and XRCC3 homologous recombination repair genes and ovarian cancer in Polish women.

    PubMed

    Michalska, Magdalena M; Samulak, Dariusz; Romanowicz, Hanna; Jabłoński, Filip; Smolarz, Beata

    2016-04-01

    The variability, perceived in DNA repair genes, may be of clinical importance for evaluation of the risk of occurrence of a given type of cancer, its prophylactics and therapy. The aim of the present work was to evaluate associations between the risk of ovarian cancer and polymorphisms in the genes, encoding for two key proteins of homologous recombination: XRCC2 Arg188His (c. 563 G>A; rs3218536) and XRCC3 Thr241Met (c. 722 C>T; rs861539). The study consisted of 700 patients with ovarian cancer and 700 healthy subjects. Analysis of the gene polymorphisms was performed using PCR-RFLP (restriction length fragment polymorphism). We found a statistically significant increase of the 188His allele frequency (OR=4.01; 95% CI=3.40-4.72; p<.0001) of XRCC2 in ovarian cancer compared to healthy controls. There were no differences in the genotype and allele distributions and odds ratios of the XRCC3 Thr241Met polymorphism between patient and control groups. Association of these genetic polymorphisms with histological grading showed increased XRCC2 188Arg/His (OR=33.0; 95% CI=14.51-75.05; p<.0001) and 188His/His genotypes (OR=9.37; 95% CI=4.79-18.32; p<.0001) and XRCC3 241Thr/Met (OR=24.28; 95% CI=12.38-47.61; p<.0001) and 241Met/Met genotype frequencies (OR=17.00; 95% CI=8.42-34.28; p<.0001) in grading 1 (G1) as well as 188His (OR=2.78; 95% CI=2.11-3.69; p<.0001) and 241Met allele overrepresentation (OR=2.59; 95% CI=2.08-3.22; p<.0001) in G1 ovarian patients. Finally, with clinical FIGO staging under evaluation, an increase in XRCC2 188His/His homozygote and 188Arg/His heterozygote frequencies in staging I (SI) and XRCC3 Thr/Met heterozygote frequencies in SI was observed. The obtained results indicate that XRCC2 Arg188His and XRCC3 Thr241Met polymorphisms may be positively associated with the incidence of ovarian carcinoma in the population of Polish women.

  11. Protein phosphatases pph3, ptc2, and ptc3 play redundant roles in DNA double-strand break repair by homologous recombination.

    PubMed

    Kim, Jung-Ae; Hicks, Wade M; Li, Jin; Tay, Sue Yen; Haber, James E

    2011-02-01

    In response to a DNA double-strand break (DSB), cells undergo a transient cell cycle arrest prior to mitosis until the break is repaired. In budding yeast (Saccharomyces cerevisiae), the DNA damage checkpoint is regulated by a signaling cascade of protein kinases, including Mec1 and Rad53. When DSB repair is complete, cells resume cell cycle progression (a process called "recovery") by turning off the checkpoint. Recovery involves two members of the protein phosphatase 2C (PP2C) family, Ptc2 and Ptc3, as well as the protein phosphatase 4 (PP4) enzyme, Pph3. Here, we demonstrate a new function of these three phosphatases in DSB repair. Cells lacking all three phosphatases Pph3, Ptc2, and Ptc3 exhibit synergistic sensitivities to the DNA-damaging agents camptothecin and methyl methanesulfonate, as well as hydroxyurea but not to UV light. Moreover, the simultaneous absence of Pph3, Ptc2, and Ptc3 results in defects in completing DSB repair, whereas neither single nor double deletion of the phosphatases causes a repair defect. Specifically, cells lacking all three phosphatases are defective in the repair-mediated DNA synthesis. Interestingly, the repair defect caused by the triple deletion of Pph3, Ptc2, and Ptc3 is most prominent when a DSB is slowly repaired and the DNA damage checkpoint is fully activated.

  12. Deficient DNA repair in the human progeroid disorder, Werner syndrome.

    PubMed

    Bohr, Vilhelm A

    2005-09-01

    The study of how DNA repair mechanisms change with aging is central to our understanding of the aging process. Here, I review the molecular functions of a key aging protein, Werner protein (WRN), which is deficient in the premature aging disorder, Werner syndrome (WS). This protein plays a significant role in DNA repair, particularly in base excision repair and in recombination. WRN may be a key regulatory factor in these processes and may also play a role in coordinating them. WRN belongs to the RecQ helicase family of proteins, often referred to as the guardians of the genome. These proteins appear to integrate with the more classic DNA repair pathways and proteins.

  13. Bridge-Enhanced ACL Repair: A Review of the Science and the Pathway through FDA Investigational Device Approval

    PubMed Central

    Proffen, Benedikt L.; Perrone, Gabriel S.; Roberts, Gordon; Murray, Martha M.

    2016-01-01

    Injuries to the anterior cruciate ligament (ACL) are currently treated with replacement of the torn ligament with a graft of tendon harvested from elsewhere in the knee. This procedure, called "ACL reconstruction," is excellent for restoring gross stability to the knee; however, there are relatively high graft failure rates in adolescent patients,4, 12, 60 and the ACL reconstruction procedure does not prevent the premature osteoarthritis seen in patients after an ACL injury.1, 46, 52 Thus, new solutions are needed for ACL injuries. Researchers have been investigating the use of scaffolds, growth factors and cells to supplement a suture repair of the ACL (bio-enhanced repair). In this paper, we will review the varied approaches, which have been investigated for stimulating ACL healing and repair in preclinical models and how one of these technologies was able to move from promising preclinical results to FDA acceptance of an Investigational Device Exemption (IDE) application for a first-in-human study. PMID:25631206

  14. The role of AtMSH2 in homologous recombination in Arabidopsis thaliana

    PubMed Central

    Emmanuel, Eyal; Yehuda, Elizabeth; Melamed-Bessudo, Cathy; Avivi-Ragolsky, Naomi; Levy, Avraham A

    2006-01-01

    During homologous recombination (HR), a heteroduplex DNA is formed as a consequence of strand invasion. When the two homologous strands differ in sequence, a mismatch is generated. Earlier studies showed that mismatched heteroduplex often triggers abortion of recombination and that a pivotal component of this pathway is the mismatch repair Msh2 protein. In this study, we analysed the roles of AtMSH2 in suppression of recombination in Arabidopsis. We report that AtMSH2 has a broad range of anti-recombination effects: it suppresses recombination between divergent direct repeats in somatic cells or between homologues from different ecotypes during meiosis. This is the first example of a plant gene that affects HR as a function of sequence divergence and that has an anti-recombination meiotic effect. We discuss the implications of these results for plant improvement by gene transfer across species. PMID:16311517

  15. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways.

    PubMed

    Osaki, Juliana H; Espinha, Gisele; Magalhaes, Yuli T; Forti, Fabio L

    2016-01-01

    Radiotherapy with γ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses of γ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ). These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity.

  16. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways

    PubMed Central

    Osaki, Juliana H.; Espinha, Gisele; Magalhaes, Yuli T.; Forti, Fabio L.

    2016-01-01

    Radiotherapy with γ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses of γ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ). These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity. PMID:26649141

  17. Molecular Pathways: Targeting PARP in Cancer Treatment

    PubMed Central

    Do, Khanh; Chen, Alice P.

    2013-01-01

    Poly (ADP-ribose) polymerases (PARPs) are a family of nuclear protein enzymes involved in the DNA damage response. The role of PARP-1 in base excisional repair has been extensively characterized. More recent in vitro studies additionally implicate a role for PARP-1 in facilitating homologous recombination and non-homologous end-joining. The more faithful process of homologous recombination repair of double-stranded DNA breaks, involves localization of BRCA-1 and BRCA-2 to sites of DNA damage, resection of the double-stranded break, and gap-filling DNA synthesis using the homologous sister chromatid as a template. Simultaneous dysfunction of both DNA repair pathways decreases the ability of cells to compensate, and forms the basis for the concept of synthetic lethality. Treatment strategies thus far have focused on two main principals: 1) exploitation of the concept of synthetic lethality in homologous recombination deficient tumors, primarily in breast and ovarian cancer patients with BRCA mutation, and 2) as radio-sensitizers and chemo-sensitizers. BRCA deficiency accounts for only a fraction of dysfunction in homologous recombination repair. Epigenetic alterations of BRCA function and defects within the Fanconi anemia pathway also result in defective DNA repair. Rational therapeutic combinations exploiting alternate mechanisms of defective DNA repair, abrogation of cell cycle checkpoints, and additional functions of PARP-1, present novel opportunities for further clinical development of PARP inhibitors. Based on the results of clinical studies of PARP inhibitors thus far, it is imperative that future development of PARP inhibitors take a more refined approach, identifying the unique subset of patients that would most benefit from these agents, determining the optimal time for use, and identifying the optimal combination partner in any particular setting. PMID:23269547

  18. Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms

    PubMed Central

    Bezine, Elisabeth; Malaisé, Yann; Loeuillet, Aurore; Chevalier, Marianne; Boutet-Robinet, Elisa; Salles, Bernard; Mirey, Gladys; Vignard, Julien

    2016-01-01

    The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance. To address this question, we developed a proliferation assay using human cell lines specifically depleted in each of the main DNA repair pathways. Here, we validate the involvement of the two major DSB repair mechanisms, Homologous Recombination and Non Homologous End Joining, in the management of CDT-induced lesions. We show that impairment of single-strand break repair (SSBR), but not nucleotide excision repair, sensitizes cells to CDT, and we explore the interplay of SSBR with the DSB repair mechanisms. Finally, we document the role of the replicative stress response and demonstrate the involvement of the Fanconi Anemia repair pathway in response to CDT. In conclusion, our work indicates that cellular survival to CDT-induced DNA damage involves different repair pathways, in particular SSBR. This reinforces a model where CDT-related genotoxicity primarily involves SSBs rather than DSBs, underlining the importance of cell proliferation during CDT intoxication and pathogenicity. PMID:27775089

  19. Identification, characterisation and molecular modelling of two AP endonucleases from base excision repair pathway in sugarcane provide insights on the early evolution of green plants.

    PubMed

    Maira, N; Torres, T M; de Oliveira, A L; de Medeiros, S R B; Agnez-Lima, L F; Lima, J P M S; Scortecci, K C

    2014-05-01

    Unlike bacteria and mammals, plant DNA repair pathways are not well characterised, especially in monocots. The understanding of these processes in the plant cell is of major importance, since they may be directly involved in plant acclimation and adaptation to stressful environments. Hence, two sugarcane ESTs were identified as homologues of AP endonuclease from the base-excision repair pathway: ScARP1 and ScARP3. In order to understand their probable function and evolutionary origin, structural and phylogenetic studies were performed using bioinformatics approaches. The two predicted proteins present a considerable amino acid sequence similarity, and molecular modelling procedures indicate that both are functional, since the main structural motifs remain conserved. However, inspection of the sort signal regions on the full-length cDNAs indicated that these proteins have a distinct organelle target. Furthermore, variances in their promoter cis-element motifs were also found. Although the mRNA expression pattern was similar, there were significant differences in their expression levels. Taken together, these data raise the hypothesis that the ScARP is an example of a probable gene duplication event that occurred before monocotyledon/dicotyledon segregation, followed by a sub-functionalisation event in the Poaceae, leading to new intracellular targeting and different expression levels.

  20. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51

    PubMed Central

    Qi, Wenjing; Wang, Ruoxi; Chen, Hongyu; Wang, Xiaolin; Xiao, Ting; Boldogh, Istvan; Ba, Xueqing; Han, Liping; Zeng, Xianlu

    2015-01-01

    ABSTRACT DNA double-strand breaks (DSBs) are a type of lethal DNA damage. The repair of DSBs requires tight coordination between the factors modulating chromatin structure and the DNA repair machinery. BRG1, the ATPase subunit of the chromatin remodelling complex Switch/Sucrose non-fermentable (SWI/SNF), is often linked to tumorigenesis and genome instability, and its role in DSB repair remains largely unclear. In the present study, we show that BRG1 is recruited to DSB sites and enhances DSB repair. Using DR-GFP and EJ5-GFP reporter systems, we demonstrate that BRG1 facilitates homologous recombination repair rather than nonhomologous end-joining (NHEJ) repair. Moreover, the BRG1–RAD52 complex mediates the replacement of RPA with RAD51 on single-stranded DNA (ssDNA) to initiate DNA strand invasion. Loss of BRG1 results in a failure of RAD51 loading onto ssDNA, abnormal homologous recombination repair and enhanced DSB-induced lethality. Our present study provides a mechanistic insight into how BRG1, which is known to be involved in chromatin remodelling, plays a substantial role in the homologous recombination repair pathway in mammalian cells. PMID:25395584

  1. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells.

    PubMed

    Qin, Qin; Xie, Hong; Wise, Sandra S; Browning, Cynthia L; Thompson, Kelsey N; Holmes, Amie L; Wise, John Pierce

    2014-11-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  2. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes.

    PubMed

    Vlcek, Daniel; Sevcovicová, Andrea; Sviezená, Barbara; Gálová, Eliska; Miadoková, Eva

    2008-01-01

    The green alga Chlamydomonas reinhardtii is a convenient model organism for the study of basic biological processes, including DNA repair investigations. This review is focused on the studies of DNA repair pathways in C. reinhardtii. Emphasis is given to the connection of DNA repair with other cellular functions, namely the regulation of the cell cycle. Comparison with the results of repair investigations that are already available revealed the presence of all basic repair pathways in C. reinhardtii as well as special features characteristic of this alga. Among others, the involvement of UVSE1 gene in recombinational repair and uniparental inheritance of chloroplast genome, the specific role of TRXH1 gene in strand break repair, the requirement of PHR1 gene for full activity of PHR2 gene, or encoding of two excision repair proteins by the single REX1 gene. Contrary to yeast, mammals and higher plants, C. reinhardtii does not appear to contain the ortholog of RAD6 gene, which plays an important role in DNA translesion synthesis and mutagenesis. Completed genome sequences will be a basis for molecular analyses allowing to explain the differences that have been observed in DNA repair of this alga in comparison with other model organisms.

  3. Cdc14A and Cdc14B Redundantly Regulate DNA Double-Strand Break Repair

    PubMed Central

    Lin, Han; Ha, Kyungsoo; Lu, Guojun; Fang, Xiao; Cheng, Ranran; Zuo, Qiuhong

    2015-01-01

    Cdc14 is a phosphatase that controls mitotic exit and cytokinesis in budding yeast. In mammals, the two Cdc14 homologues, Cdc14A and Cdc14B, have been proposed to regulate DNA damage repair, whereas the mitotic exit and cytokinesis rely on another phosphatase, PP2A-B55α. It is unclear if the two Cdc14s work redundantly in DNA repair and which repair pathways they participate in. More importantly, their target(s) in DNA repair remains elusive. Here we report that Cdc14B knockout (Cdc14B−/−) mouse embryonic fibroblasts (MEFs) showed defects in repairing ionizing radiation (IR)-induced DNA double-strand breaks (DSBs), which occurred only at late passages when Cdc14A levels were low. This repair defect could occur at early passages if Cdc14A levels were also compromised. These results indicate redundancy between Cdc14B and Cdc14A in DSB repair. Further, we found that Cdc14B deficiency impaired both homologous recombination (HR) and nonhomologous end joining (NHEJ), the two major DSB repair pathways. We also provide evidence that Cdh1 is a downstream target of Cdc14B in DSB repair. PMID:26283732

  4. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors.

    PubMed

    Tan, Janice G L; Lee, Yih Yean; Wang, Tianhua; Yap, Miranda G S; Tan, Tin Wee; Ng, Say Kong

    2015-05-01

    CHO cells are major production hosts for recombinant biologics including the rapidly expanding recombinant monoclonal antibodies (mAbs). Heat shock protein 27 (HSP27) expression was observed to be down-regulated towards the late-exponential and stationary phase of CHO fed-batch bioreactor cultures, whereas HSP27 was found to be highly expressed in human pathological cells and reported to have anti-apoptotic functions. These phenotypes suggest that overexpression of HSP27 is a potential cell line engineering strategy for improving robustness of CHO cells. In this work, HSP27 was stably overexpressed in CHO cells producing recombinant mAb and the effects of HSP27 on cell growth, volumetric production titer and product quality were assessed. Concomitantly, HSP27 anti-apoptosis functions in CHO cells were investigated. Stably transfected clones cultured in fed-batch bioreactors displayed 2.2-fold higher peak viable cell density, delayed loss of culture viability by two days and 2.3-fold increase in mAb titer without affecting the N-glycosylation profile, as compared to clones stably transfected with the vector backbone. Co-immunoprecipitation studies revealed HSP27 interactions with Akt, pro-caspase 3 and Daxx and caspase activity profiling showed delayed increase in caspase 2, 3, 8 and 9 activities. These results suggest that HSP27 modulates apoptosis signaling pathways and delays caspase activities to improve performance of CHO fed-batch bioreactor cultures.

  5. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    PubMed

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  6. Biochemical analysis of the human ENA/VASP-family proteins, MENA, VASP and EVL, in homologous recombination.

    PubMed

    Takaku, Motoki; Ueno, Hiroyuki; Kurumizaka, Hitoshi

    2011-06-01

    MENA, VASP and EVL are members of the ENA/VASP family of proteins and are involved in cytoplasmic actin remodeling. Previously, we found that EVL directly interacts with RAD51, an essential protein in the homologous recombinational repair of double-strand breaks (DSBs) and stimulates the RAD51-mediated recombination reactions in vitro. The EVL-knockdown MCF7 cells exhibited a clear reduction in RAD51-foci formation, suggesting that EVL may function in the DSB repair pathway through RAD51-mediated homologous recombination. However, the DSB repair defects were less significant in the EVL-knockdown cells, implying that two EVL paralogues, MENA and VASP, may complement the EVL function in human cells. Therefore, in the present study, we purified human MENA, VASP and EVL as recombinant proteins, and compared their biochemical activities in vitro. We found that all three proteins commonly exhibited the RAD51 binding, DNA binding and DNA-annealing activities. Stimulation of the RAD51-mediated homologous pairing was also observed with all three proteins. In addition, surface plasmon resonance analyses revealed that MENA, VASP and EVL mutually interacted. These results support the ideas that the ENA/VASP-family proteins are functionally redundant in homologous recombination, and that all three may be involved in the DSB repair pathway in humans.

  7. How homologous recombination maintains telomere integrity.

    PubMed

    Tacconi, Eliana M C; Tarsounas, Madalena

    2015-06-01

    Telomeres protect the ends of linear chromosomes against loss of genetic information and inappropriate processing as damaged DNA and are therefore crucial to the maintenance of chromosome integrity. In addition to providing a pathway for genome-wide DNA repair, homologous recombination (HR) plays a key role in telomere replication and capping. Consistent with this, the genomic instability characteristic of HR-deficient cells and tumours is driven in part by telomere dysfunction. Here, we discuss the mechanisms by which HR modulates the response to intrinsic cellular challenges that arise during telomere replication, as well as its impact on the assembly of telomere protective structures. How normal and tumour cells differ in their ability to maintain telomeres is deeply relevant to the search for treatments that would selectively eliminate cells whose capacity for HR-mediated repair has been compromised.

  8. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae.

    PubMed

    Meyer, Damon; Fu, Becky Xu Hua; Heyer, Wolf-Dietrich

    2015-12-15

    Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ. PMID:26607450

  9. p53 suppresses hyper-recombination by modulating BRCA1 function.

    PubMed

    Dong, Chao; Zhang, Fengmei; Luo, Yue; Wang, Hui; Zhao, Xipeng; Guo, Gongshe; Powell, Simon N; Feng, Zhihui

    2015-09-01

    Both p53 and BRCA1 are tumor suppressors and are involved in a number of cellular processes including cell cycle arrest, apoptosis, transcriptional regulation, and DNA damage repair. Some studies have suggested that the association of BRCA1 and p53 is required for transcriptional regulation of genes involved in cell replication and DNA repair pathways. However, the relationship between the two proteins in molecular mechanisms of DNA repair is still not clear. Therefore, we sought to determine whether there is a functional link between p53 and BRCA1 in DNA repair. Firstly, using a plasmid recombination substrate, pDR-GFP, integrated into the genome of breast cancer cell line MCF7, we have demonstrated that p53 suppressed Rad51-mediated hyper-recombinational repair by two independent cell models of HPV-E6 induced p53 inactivation and p53 knockdown assay. Our study further indicated that p53 mediated homologous recombination (HR) through inhibiting BRCA1 over-function via mechanism of transcription regulation in response to DNA repair. Since it was found p53 and BRCA1 existed in a protein complex, indicating both proteins may be associated at post-transcriptional level. Moreover, defective p53-induced hyper-recombination was associated with cell radioresistance and chromosomal stability, strongly supporting the involvement of p53 in the inhibition of hyper-recombination, which led to genetic stability and cellular function in response to DNA damage. In addition, it was found that p53 loss rescued BRCA1 deficiency via recovering HR and chromosomal stability, suggesting that p53 is also involved in the HR-inhibition independently of BRCA1. Thus, our data indicated that p53 was involved in inhibiting recombination by both BRCA1-dependent and -independent mechanisms, and there is a functional link between p53-suppression and BRCA1-promotion in regulation of HR activity at transcription level and possible post-transcription level.

  10. Modification of radiation-induced DNA double strand break repair pathways by chemicals extracted from Podophyllum hexandrum: an in vitro study in human blood leukocytes.

    PubMed

    Srivastava, Nitya N; Shukla, Sandeep K; Yashavarddhan, M H; Devi, Memita; Tripathi, Rajendra P; Gupta, Manju L

    2014-06-01

    Radiation exposure is a serious threat to biomolecules, particularly DNA, proteins and lipids. Various exogenous substances have been reported to protect these biomolecules. In this study we explored the effect of pre-treatment with G-002M, a mixture of three active derivatives isolated from the rhizomes of Podophyllum hexandrum, on DNA damage response in irradiated human blood leukocytes. Blood was collected from healthy male volunteers, preincubated with G-002M and then irradiated with various doses of radiation. Samples were analyzed using flow cytometry to quantify DNA double strand break (DSB) biomarkers including γ-H2AX, P53BP1 and levels of ligase IV. Blood samples were irradiated in vitro and processed to determine time and dose-dependent kinetics. Semiquantitative RT-PCR was performed at various time points to measure gene expression of DNA-PKcs, Ku80, ATM, and 53BP1; each of these genes is involved in DNA repair signaling. Pre-treatment of blood with G-002M resulted in reduction of γ-H2AX and P53BP1 biomarkers levels and elevated ligase IV levels relative to non-G-002M-treated irradiated cells. These results confirm suppression in radiation-induced DNA DSBs. Samples pre-treated with G-002M and then irradiated also showed significant up-regulation of DNA-PKcs and Ku80 and downregulation of ATM and 53BP1 gene expressions, suggesting that G-002M plays a protective role against DNA damage. The protective effect of G-002M may be due to its ability to scavange radiation-induced free radicals or assist in DNA repair. Further studies are needed to decipher the role of G-002M on signaling molecules involved in radiation-induced DNA damage repair pathways.

  11. Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination.

    PubMed

    Keller, K L; Overbeck-Carrick, T L; Beck, D J

    2001-06-01

    Resistance of tumors to drugs such as cisplatin and mitomycin C (MMC) is an important factor limiting their usefulness in cancer chemotherapy. The antitumor effects of these drugs are due to the formation of bifunctional adducts in DNA, with cisplatin causing predominantly intrastrand-crosslinks and MMC causing interstrand-crosslinks. The SOS chromotest was used to study the cellular mechanisms that process DNA damage in Escherichia coli exposed to cisplatin, ultraviolet irradiation (UV) and MMC and subsequently facilitate the production of a molecular signal for induction of the SOS response. Strains used in the SOS chromotest have a fusion of lacZ with the sfiA (sulA) gene so that the amount of SOS inducing signal, which is modulated by the ability of the cell to repair DNA, is measured by assaying beta-galactosidase activity. SOS induction in a strain proficient in homologous recombination (HR) was compared with that in isogenic strains deficient in HR due to a blocked RecBC pathway caused by a recB mutation or a blocked RecFOR pathway caused by a recO mutation. The effect of cisplatin treatment in a uvrA mutant strain blocked at the first step of NER was compared with that in an isogenic strain proficient in NER. Cellular resistance was measured as percent colony forming units (cfu) for cells treated with increasing doses of cisplatin, MMC and UV relative to that in untreated control cultures. The importance of both HR pathways for resistance to these treatments was demonstrated by decreased survival in mutants with the recB mutant being more sensitive than the recO mutant. SOS induction levels were elevated in the sensitive recB strain relative to the HR proficient strain possibly due to stalled and/or distorted replication forks at crosslinks in DNA. In contrast, induction of SOS was dependent on RecFOR activity that is thought to act at daughter strand gaps in newly synthesized DNA to mediate production of the signal for SOS induction. Proficiency in NER was

  12. HTLV-I Tax-Mediated Inactivation of Cell Cycle Checkpoints and DNA Repair Pathways Contribute to Cellular Transformation: “A Random Mutagenesis Model”

    PubMed Central

    Nicot, Christophe

    2015-01-01

    To achieve cellular transformation, most oncogenic retroviruses use transduction by proto-oncogene capture or insertional mutagenesis, whereby provirus integration disrupts expression of tumor suppressors or proto-oncogenes. In contrast, the Human T-cell leukemia virus type 1 (HTLV-I) has been classified in a separate class referred to as “transactivating retroviruses”. Current views suggest that the viral encoded Tax protein transactivates expression of cellular genes leading to deregulated growth and transformation. However, if Tax-mediated transactivation was indeed sufficient for cellular transformation, a fairly high frequency of infected cells would eventually become transformed. In contrast, the frequency of transformation by HTLV-I is very low, likely less than 5%. This review will discuss the current understanding and recent discoveries highlighting critical functions of Tax in cellular transformation. HTLV-I Tax carries out essential functions in order to override cell cycle checkpoints and deregulate cellular division. In addition, Tax expression is associated with increased DNA damage and genome instability. Since Tax can inhibit multiple DNA repair pathways and stimulate unfaithful DNA repair or bypass checkpoints, these processes allow accumulation of genetic mutations in the host genome. Given this, a “Random Mutagenesis” transformation model seems more suitable to characterize the oncogenic activities of HTLV-I. PMID:26835512

  13. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes

    PubMed Central

    Chakraborty, Anirban; Tapryal, Nisha; Venkova, Tatiana; Horikoshi, Nobuo; Pandita, Raj K.; Sarker, Altaf H.; Sarkar, Partha S.; Pandita, Tej K.; Hazra, Tapas K.

    2016-01-01

    DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. PMID:27703167

  14. Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion.

    PubMed

    Al-Dimassi, Saleh; Salloum, Gilbert; Saykali, Bechara; Khoury, Oula; Liu, Shihui; Leppla, Stephen H; Abi-Habib, Ralph; El-Sibai, Mirvat

    2016-05-01

    Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Understanding and targeting cancer cell invasion is an important therapeutic approach. Cell invasion is a complex process that replies on many signaling pathways including the mitogen-activated protein (MAP) kinase (MAPK). In many cell lines, the use of MAPK-targeted drugs proved to be a potential method to inhibit cancer cell motility. In the present study, we use a recombinant anthrax lethal toxin (LeTx), which selectively inhibits the MAPK pathway, in order to target invasion. LeTx proved ineffective on cell survival in astrocytoma (as well as normal cells). However, astrocytoma cells that were treated with LeTx showed a significant decrease in cell motility as seen by wound healing as well as random 2D motility in serum. The cells also showed a decrease in invasion across a collagen matrix. The effect of LeTx on cell migration was mediated though the deregulation of Rho GTPases, which play a role in cell motility. Finally, the effect of LeTx on cell migration and Rho GTPases was mimicked by the inhibition of the MAPK pathway. In this study, we describe for the first time the effect of the LeTx on cancer cell motility and invasion not cell survival making it a potentially selective brain tumor invasion inhibitor. PMID:26984023

  15. Gene conversion causing human inherited disease: evidence for involvement of non-B-DNA-forming sequences and recombination-promoting motifs in DNA breakage and repair

    PubMed Central

    Chuzhanova, Nadia; Chen, Jian-Min; Bacolla, Albino; Patrinos, George P.; Férec, Claude; Wells, Robert D.; Cooper, David N.

    2009-01-01

    A variety of DNA sequence motifs including inverted repeats, minisatellites, and the χ recombination hotspot, have been reported in association with gene conversion in human genes causing inherited disease. However, no methodical statistically-based analysis has been performed to formalize these observations. We have performed an in silico analysis of the DNA sequence tracts involved in 27 non-overlapping gene conversion events in 19 different genes reported in the context of inherited disease. We found that gene conversion events tend to occur within (C+G)- and CpG-rich regions and that sequences with the potential to form non-B-DNA structures, and which may be involved in the generation of double-strand breaks that could in turn serve to promote gene conversion, occur disproportionately within maximal converted tracts and/or short flanking regions. Maximal converted tracts were also found to be enriched (p<0.01) in a truncated version of the χ-element (a TGGTGG motif), immunoglobulin heavy chain class switch repeats, translin target sites and several novel motifs including (or overlapping) the classical meiotic recombination hotspot, CCTCCCCT. Finally, gene conversions tend to occur in genomic regions that have the potential to fold into stable hairpin conformations. These findings support the concept that recombination-inducing motifs, in association with alternative DNA conformations, can promote recombination in the human genome. PMID:19431182

  16. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice.

    PubMed

    Farrar, Christine; Houser, Carolyn R; Clarke, Steven

    2005-02-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues.

  17. Recombination at the DNA level. Abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts of papers in the following areas are presented: (1) chromosome mechanics; (2) yeast systems; (3) mammalian homologous recombination; (4) transposons; (5) Mu; (6) plant transposons/T4 recombination; (7) topoisomerase, resolvase, and gyrase; (8) Escherichia coli general recombination; (9) recA; (10) repair; (11) eucaryotic enzymes; (12) integration and excision of bacteriophage; (13) site-specific recombination; and (14) recombination in vitro. (ACR)

  18. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  19. A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.

    PubMed

    Voter, Andrew F; Manthei, Kelly A; Keck, James L

    2016-07-01

    Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for resensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay, and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol.

  20. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    PubMed Central

    Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans

    2012-01-01

    Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801

  1. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  2. Recombinant adeno-associated virus-delivered anginex inhibits angiogenesis and growth of HUVECs by regulating the Akt, JNK and NF-κB signaling pathways.

    PubMed

    Ma, Ke; Wang, Chuying; Geng, Qianqian; Fan, Yangwei; Ning, Jing; Yang, Haixia; Dong, Xuyuan; Dong, Danfeng; Guo, Yuyan; Wei, Xin; Li, Enxiao; Wu, Yinying

    2016-06-01

    Anginex is an artificial synthetic small molecule β-sheet-forming peptide shown to have anti-angiogenesis and antitumor effects in various solid tumors. However, its molecular mechanism remains largely unclear and efficient delivery methods for anginex remains to be developed. We report on the development of recombinant adeno-associated virus (rAAV2)-delivered anginex and the underlying mechanism of anti-angiogenesis and antitumor effects of anginex. We have successfully developed the rAAV2 vector to efficiently express anginex (rAAV2‑anginex). Transduction of rAAV2-anginex significantly induced apoptosis, and inhibited the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells in vitro. Western blot analysis revealed that rAAV2‑anginex inhibited the phosphorylation of Akt, while inducing the phosphorylation of JNK and activation of the NF-κB signaling pathway. In an in vivo CAM assay and xenograft model of SKOV3, rAAV2-anginex significantly reduced microvessel density (MVD) and vascular endothelial growth factor 165 (VEGF165), as demonstrated by immunohistochemistry analysis. Importantly, rAAV2-anginex inhibited tumor growth in an ovarian cancer SKOV3 cell nude mouse xenograft model. Our results suggest that rAAV2-anginex may inhibit tumor angiogenesis and growth through regulating Akt, JNK and NF-κB signaling pathways. PMID:27035232

  3. Recombinant factor VIIa enhances platelet deposition from flowing haemophilic blood but requires the contact pathway to promote fibrin deposition.

    PubMed

    Li, R; Panckeri, K A; Fogarty, P F; Diamond, S L

    2015-03-01

    In prior microfluidic studies with haemophilic blood perfused over collagen, we found that a severe deficiency (<1% factor level) reduced platelet and fibrin deposition, while a moderate deficiency (1-5%) only reduced fibrin deposition. We investigated: (i) the differential effect of rFVIIa (0.04-20 nm) on platelet and fibrin deposition, and (ii) the contribution of the contact pathway to rFVIIa-induced haemophilic blood clotting. Haemophilic or healthy blood with low and high corn trypsin inhibitor (CTI, 4 or 40 μg mL(-1) ) was perfused over collagen at an initial venous wall shear rate of 100 s(-1) . At 100 s(-1) wall shear rate, where FXIIa leads to thrombin production without added tissue factor, FXI-deficient blood (3%) or severely FVIII-deficient blood (<1%) produced no fibrin at either CTI level. Whereas rFVIIa potently enhanced platelet deposition, fibrin generation was not rescued. Distinct from the high CTI condition, engagement of the contact pathway (low CTI) in moderately FVIII-deficient (3%) or moderately FIX-deficient blood (5%) resulted in enhanced platelet and fibrin deposition following 4 nm rFVIIa supplementation. In mildly FVIII-deficient blood (15%) at <24 h since haemostatic therapy, rFVIIa enhanced both platelet and fibrin generation in either CTI condition although fibrin was produced more quickly and abundantly in low CTI. For tissue factor-free conditions of severe haemophilic blood clotting, we conclude that rFVIIa reliably generates low levels of 'signaling' thrombin sufficient to enhance platelet deposition on collagen, but is insufficient to drive fibrin polymerization unless potentiated by the contact pathway.

  4. Fuel ethanol production from mixed office paper using recombinant Klebsiella oxytoca P2 containing the Zymomonas mobilis ethanol pathway

    SciTech Connect

    Ingram, L.O.; Brooks, T.A.

    1995-12-01

    Mixed Office Waste Paper (MOWP) is an excellent substrate for repulsing or for conversion into fuel ethanol. We have developed a recombinant strain of K. oxytoca which ferments cellobiose and cellotriose to ethanol at near theoretical yield (pH 5-5.2, 35{degrees}C), eliminating the need for external {beta}-glucosidase. This organism was tested with commercial fungal cellulose in optimized simultaneous saccharification and fermentation experiments using autoclaved MOWP and dilute acid hydrolyzed-MOWT (hydrolyzes hemicellulose and starch) as substrates. Essentially identical rates and yields were obtained with both substrates on a dry weight basis, although initial mixing was easier after acid pretreatment. Under optimal conditions, 5 % ethanol (v/v) was produced in 72 h with low levels of cellulose (5 FPU cellulose average/g paper) during 4 successive fermentations in which cellulose enzymes were recycled. The estimated yield for this process is 0.42 g ethanol/gram dry wt of paper, 538 liters ethanol/ metric ton, 125 gallons/U.S. ton. An adaptation of this process may also be useful as a treatment for sludges from paper recycling.

  5. Purification of mammalian DNA repair protein XRCC1

    SciTech Connect

    Chen, I.

    1995-11-01

    Malfunctioning DNA repair systems lead to cancer mutations, and cell death. XRCC1 (X-ray Repair Cross Complementing) is a human DNA repair gene that has been found to fully correct the x-ray repair defect in Chinese hamster ovary (CHO) cell mutant EM9. The corresponding protein (XRCC1) encoded by this gene has been linked to a DNA repair pathway known as base excision repair, and affects the activity of DNA ligase III. Previously, an XRCC1 cDNA minigene (consisting of the uninterrupted coding sequence for XRCC1 protein followed by a decahistidine tag) was constructed and cloned into vector pET-16b for the purpose of: (1) overproduction of XRCC1 in both prokaryotic and eukaryotic cells; and (2) to facilitate rapid purification of XRCC1 from these systems. A vector is basically a DNA carrier that allows recombinant protein to be cloned and overexpressed in host cells. In this study, XRCC1 protein was overexpressed in E. coli and purified by immobilized metal affinity chromatography. Currently, the XRCC1 minigene is being inserted into a new vector [pET-26b(+)] in hopes to increase overexpression and improve purification. Once purified XRCC1 can be crystallized for structural studies, or studied in vitro for its biological function.

  6. DNA repair in reduced genome: the Mycoplasma model.

    PubMed

    Carvalho, Fabíola Marques; Fonseca, Marbella Maria; Batistuzzo De Medeiros, Sílvia; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella

    2005-11-01

    The occurrence of bacteria with a reduced genome, such as that found in Mycoplasmas, raises the question as to which genes should be enough to guarantee the genomic stability indispensable for the maintenance of life. The aim of this work was to compare nine Mycoplasma genomes in regard to DNA repair genes. An in silico analysis was done using six Mycoplasma species, whose genomes are accessible at GenBank, and M. synoviae, and two strains of M. hyopneumoniae, whose genomes were recently sequenced by The Brazilian National Genome Project Consortium and Southern Genome Investigation Program (Brazil) respectively. Considering this reduced genome model, our comparative analysis suggests that the DNA integrity necessary for life can be primarily maintained by nucleotide excision repair (NER), which is the only complete repair pathway. Furthermore, some enzymes involved with base excision repair (BER) and recombination are also present and can complement the NER activity. The absence of RecR and RecO-like ORFs was observed only in M. genitalium and M. pneumoniae, which can be involved with the conservation of gene order observed between these two species. We also obtained phylogenetic evidence for the recent acquisition of the ogt gene in M. pulmonis and M. penetrans by a lateral transference event. In general, the presence or nonexistence of repair genes is shared by all species analyzed, suggesting that the loss of the majority of repair genes was an ancestral event, which occurred before the divergence of the Mycoplasma species. PMID:16153783

  7. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae.

    PubMed

    Tang, Hongting; Wang, Shenghuan; Wang, Jiajing; Song, Meihui; Xu, Mengyang; Zhang, Mengying; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2016-01-01

    Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three heterologous proteins, β-glucosidase, endoglucanase and cellobiohydrolase, was found to be N-hyperglycosylated in S. cerevisiae. To block the formation of hypermannose glycan, these proteins were expressed in strains with deletions in key Golgi mannosyltransferases (Och1p, Mnn9p and Mnn1p), respectively. Their extracellular activities improved markedly in the OCH1 and MNN9 deletion strains. Interestingly, truncation of the N-hypermannose glycan did not increase the specific activity of these proteins, but improved the secretion yield. Further analysis showed OCH1 and MNN9 deletion up-regulated genes in the secretory pathway, such as protein folding and vesicular trafficking, but did not induce the unfolded protein response. The cell wall integrity was also affected by OCH1 and MNN9 deletion, which contributed to the release of secretory protein extracellularly. This study demonstrated that mannosyltransferases disruption improved protein secretion through up-regulating secretory pathway and affecting cell wall integrity and provided new insights into glycosylation engineering for protein secretion. PMID:27156860

  8. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae

    PubMed Central

    Tang, Hongting; Wang, Shenghuan; Wang, Jiajing; Song, Meihui; Xu, Mengyang; Zhang, Mengying; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2016-01-01

    Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three heterologous proteins, β-glucosidase, endoglucanase and cellobiohydrolase, was found to be N-hyperglycosylated in S. cerevisiae. To block the formation of hypermannose glycan, these proteins were expressed in strains with deletions in key Golgi mannosyltransferases (Och1p, Mnn9p and Mnn1p), respectively. Their extracellular activities improved markedly in the OCH1 and MNN9 deletion strains. Interestingly, truncation of the N-hypermannose glycan did not increase the specific activity of these proteins, but improved the secretion yield. Further analysis showed OCH1 and MNN9 deletion up-regulated genes in the secretory pathway, such as protein folding and vesicular trafficking, but did not induce the unfolded protein response. The cell wall integrity was also affected by OCH1 and MNN9 deletion, which contributed to the release of secretory protein extracellularly. This study demonstrated that mannosyltransferases disruption improved protein secretion through up-regulating secretory pathway and affecting cell wall integrity and provided new insights into glycosylation engineering for protein secretion. PMID:27156860

  9. The Fanconi anemia pathway is required for efficient repair of stress-induced DNA damage in haematopoietic stem cells.

    PubMed

    Kaschutnig, Paul; Bogeska, Ruzhica; Walter, Dagmar; Lier, Amelie; Huntscha, Sina; Milsom, Michael D

    2015-01-01

    Within regenerating tissues, aging is characterized by a progressive general deterioration of organ function, thought to be driven by the gradual depletion of functional adult stem cells. Although there are probably multifactorial mechanisms that result in compromized stem cell functionality with advancing age, the accumulation of DNA damage within the stem cell compartment is likely to make a major contribution to this process. However, the physiologic source of DNA damage within the different tissue specific stem cell compartments remains to be determined, as does the fate of stem cells exposed to such damage. Using the haematopoietic system as a model organ, we have recently shown that certain forms of physiologic stress, such as infection-associated inflammation and extensive blood loss, leads to the induction of biologically relevant levels of DNA damage in haematopoietic stem cells (HSCs) by dramatically increasing the proliferative index of this normally quiescent cell population. (1) We were also able to demonstrate that such stress-associated DNA damage was sufficient to completely deplete HSCs and promote severe aplastic anemia (SAA) in the Fanconi anemia (FA) knockout mouse model, which has compromized replication-associated DNA repair. In this "Extra Views" article, we extend this previous work to show that FA mice do not spontaneously develop a haematopoietic phenotype consistent with SAA, even at extreme old age. This suggests that HSC quiescence restricts the acquisition of DNA damage during aging and preserves the functional integrity of the stem cell pool. In line with this hypothesis, we provide an extended time course analysis of the response of FA knockout mice to chronic inflammatory stress and show that enforced HSC proliferation leads to a highly penetrant SAA phenotype, which closely resembles the progression of the disease in FA patients. PMID:26178207

  10. Fractional CO2 laser: a novel therapeutic device upon photobiomodulation of tissue remodeling and cytokine pathway of tissue repair.

    PubMed

    Prignano, F; Campolmi, P; Bonan, P; Ricceri, F; Cannarozzo, G; Troiano, M; Lotti, T

    2009-11-01

    Minimally ablative fractional laser devices have gained acceptance as a preferred method for skin resurfacing. Notable improvements in facial rhytides, photodamage, acne scarring, and skin laxity have been reported. The aim of the present work was to compare how different CO(2) laser fluences, by modulating the secretory pathway of cytokines, are able to influence the wound-healing process, and how these fluences are associated with different clinical results. Eighteen patients, all with photodamaged skin, were treated using a fractional CO(2) laser (SmartXide DOT, Deka M.E.L.A., Florence, Italy) with varying laser fluences (2.07, 2.77, and 4.15 J/cm(2)). An immunocytochemical study was performed at defined end points in order to obtain information about specific cytokines of the microenvironment before and after treatment. The secretory pathway of cytokines changed depending on the re-epithelization and the different laser fluences. Different but significant improvements in wrinkles, skin texture, and hyperpigmentation were definitely obtained when using 2.07, 2.77, and 4.15 J/cm(2), indicating fractional CO(2) laser as a valuable tool in photorejuvenation with good clinical results, rapid downtime, and an excellent safety profile.

  11. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin.

    PubMed

    Janssen, Aniek; Breuer, Gregory A; Brinkman, Eva K; van der Meulen, Annelot I; Borden, Sean V; van Steensel, Bas; Bindra, Ranjit S; LaRocque, Jeannine R; Karpen, Gary H

    2016-07-15

    Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context.Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here, we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains. PMID:27474442

  12. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF.

    PubMed

    Tian, Ming; Shinkura, Reiko; Shinkura, Nobuhiko; Alt, Frederick W

    2004-02-01

    Xeroderma pigmentosum (XP) is a human genetic disease which is caused by defects in nucleotide excision repair. Since this repair pathway is responsible for removing UV irradiation-induced damage to DNA, XP patients are hypersensitive to sunlight and are prone to develop skin cancer. Based on the underlying genetic defect, the disease can be divided into the seven complementation groups XPA through XPG. XPF, in association with ERCC1, constitutes a structure-specific endonuclease that makes an incision 5' to the photodamage. XPF-ERCC1 has also been implicated in both removal of interstrand DNA cross-links and homology-mediated recombination and in immunoglobulin class switch recombination (CSR). To study the function of XPF in vivo, we inactivated the XPF gene in mice. XPF-deficient mice showed a severe postnatal growth defect and died approximately 3 weeks after birth. Histological examination revealed that the liver of mutant animals contained abnormal cells with enlarged nuclei. Furthermore, embryonic fibroblasts defective in XPF are hypersensitive to UV irradiation and mitomycin C treatment. No defect in CSR was detected, suggesting that the nuclease is dispensable for this recombination process. These phenotypes are identical to those exhibited by the ERCC1-deficient mice, consistent with the functional association of the two proteins. The complex phenotype suggests that XPF-ERCC1 is involved in multiple DNA repair processes.

  13. β2-spectrin depletion impairs DNA damage repair

    PubMed Central

    Horikoshi, Nobuo; Pandita, Raj K.; Mujoo, Kalpana; Hambarde, Shashank; Sharma, Dharmendra; Mattoo, Abid R.; Chakraborty, Sharmistha; Charaka, Vijaya; Hunt, Clayton R.; Pandita, Tej K.

    2016-01-01

    β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination. PMID:27248179

  14. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.

    PubMed Central

    Lewis, L K; Westmoreland, J W; Resnick, M A

    1999-01-01

    Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid cell killing. Endonuclease synthesis also produced moderate cell killing in sir4 strains. In contrast, EcoRI caused prolonged cell-cycle arrest of recombination-defective rad51, rad52, rad54, rad55, and rad57 mutants, but cells remained viable. Cell-cycle progression was inhibited in excision repair-defective rad1 mutants, but not in rad2 cells, indicating a role for Rad1 processing of the DSB ends. Phenotypic responses of additional mutants, including exo1, srs2, rad5, and rdh54 strains, suggest roles in recombinational repair, but not in NHEJ. Interestingly, the rapid cell killing in haploid rad50 and mre11 strains was largely eliminated in diploids, suggesting that the cohesive-ended DSBs could be efficiently repaired by homologous recombination throughout the cell cycle in the diploid mutants. These results demonstrate essential but separable roles for NHEJ pathway genes in the repair of chromosomal DSBs that are structurally similar to those occurring during cellular development. PMID:10430580

  15. Wnt Signaling During Fracture Repair

    PubMed Central

    Secreto, Frank J.; Hoeppner, Luke H.; Westendorf, Jennifer J.

    2010-01-01

    Bone is one of the few tissues in the body with the capacity to regenerate and repair itself. In most cases, fractures are completely repaired in a relatively short period of time; however, in a small percentage of cases, healing never occurs and non-union is the result. Fracture repair and bone regeneration require the localized re-activation of signaling cascades that are crucial for skeletal development. The Wnt/β-catenin signaling pathway is one such developmental pathway whose role in bone formation and regeneration has been recently appreciated. During the last decade, much has learned about how Wnt pathways regulate bone mass. Small molecules and biologics aimed at this pathway are now being tested as potential new anabolic agents. Here we review recent data demonstrating that Wnt pathways are active during fracture repair and that increasing the activities of Wnt pathway components accelerates bone regeneration. PMID:19631031

  16. DNA ligases in the repair and replication of DNA.

    PubMed

    Timson, D J; Singleton, M R; Wigley, D B

    2000-08-30

    DNA ligases are critical enzymes of DNA metabolism. The reaction they catalyse (the joining of nicked DNA) is required in DNA replication and in DNA repair pathways that require the re-synthesis of DNA. Most organisms express DNA ligases powered by ATP, but eubacteria appear to be unique in having ligases driven by NAD(+). Interestingly, despite protein sequence and biochemical differences between the two classes of ligase, the structure of the adenylation domain is remarkably similar. Higher organisms express a variety of different ligases, which appear to be targetted to specific functions. DNA ligase I is required for Okazaki fragment joining and some repair pathways; DNA ligase II appears to be a degradation product of ligase III; DNA ligase III has several isoforms, which are involved in repair and recombination and DNA ligase IV is necessary for V(D)J recombination and non-homologous end-joining. Sequence and structural analysis of DNA ligases has shown that these enzymes are built around a common catalytic core, which is likely to be similar in three-dimensional structure to that of T7-bacteriophage ligase. The differences between the various ligases are likely to be mediated by regions outside of this common core, the structures of which are not known. Therefore, the determination of these structures, along with the structures of ligases bound to substrate DNAs and partner proteins ought to be seen as a priority.

  17. The Slx5-Slx8 Complex Affects Sumoylation of DNA Repair Proteins and Negatively Regulates Recombination▿ †

    PubMed Central

    Burgess, Rebecca C.; Rahman, Sadia; Lisby, Michael; Rothstein, Rodney; Zhao, Xiaolan

    2007-01-01

    Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized to replication centers. In addition, like SUMO E2 mutants, slx8Δ mutants exhibited clonal lethality, which was due to the overamplification of 2μm, an extrachromosomal plasmid. Interestingly, in both SUMO E2 and slx8Δ mutants, clonal lethality was rescued by deleting genes required for Rad51-independent recombination but not those involved in Rad51-dependent events. These results suggest that sumoylation negatively regulates Rad51-independent recombination, and indeed, the Slx5-Slx8 complex affected the sumoylation of several enzymes involved in early steps of Rad51-independent recombination. We propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins. PMID:17591698

  18. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. II. Differential Sensitivity to Gamma Rays

    PubMed Central

    Laurencon, A.; Bregliano, J. C.

    1995-01-01

    In a previous paper, we reported that the reactivity level, which regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, is enhanced by the same agents that induce the SOS response in Escherichia coli. In this report, we describe experimental evidence that, for identical genotypes, the reactivity levels correlate with the sensitivity of oogenesis to gamma rays, measured by the number of eggs laid and by frequency of dominant lethals. This strongly supports the hypothesis that the reactivity level is one manifestation of an inducible DNA repair system taking place in the female germ line of Drosophila melanogaster. The implications of this finding for the understanding of the regulation of I factor are discussed and some other possible biological roles of this system are outlined. PMID:8647394

  19. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps.

    PubMed

    Webb, B L; Cox, M M; Inman, R B

    1997-10-31

    In the presence of both the RecF and RecR proteins, RecA filament extension from a single strand gap into adjoining duplex DNA is attenuated. RecR protein alone has no effect, and RecF protein alone has a reduced activity. The RecFR complexes bind randomly, primarily to the duplex regions of the DNA, and the extension of the RecA filament is halted at the first complex encountered. A very slow lengthening of RecA filaments observed in the presence of RecFR is virtually eliminated when RecF is replaced with an RecF mutant protein that does not hydrolyze ATP. These observations are incorporated into an expanded model for the functions of RecF, RecO, and RecR proteins in the early stages of postreplication DNA repair. PMID:9363943

  20. A novel recombinant cell fluorescence biosensor based on toxicity of pathway for rapid and simple evaluation of DON and ZEN

    PubMed Central

    Ji, Jian; Gu, Wenshu; Sun, Chao; Sun, Jiadi; Jiang, Hui; Zhang, Yinzhi; Sun, Xiulan

    2016-01-01

    During an exposure, humans and animals are most often exposed to a mixture rather than individual mycotoxins. In this study, a Human Embryonic Kidney 293 cell (HEK-293) fluorescence sensor was developed to detect and evaluate mycotoxins, deoxynivalenol (DON) and zearalenone (ZEN) compounds, produced by Fusarium culmorum that are common food contaminants. TRE-copGFP (green fluorescent protein) and ERE-TagRFP (red fluorescent protein) plasmids were constructed and cotransfected into HEK-293 cells through a highly efficient, lipid-mediated, DNA-transfection procedure. Results show that fluorescence intensity was proportional to DON and ZEN concentrations, ranging from 2 to 40 ng/mL and 10 to 100 ng/mL respectively, with a detection limit of 0.75 ng/mL and 3.2 ng/mL respectively. The EC50 of DON and ZEN are 30.13 ng/mL and 76.63 ng/mL respectively. Additionally, ZEN may have a synergistic effect on enhancing AP-1 activity of the toxicity pathway of DON. These data indicate the high sensitivity and effectiveness of our biosensor system in the evaluation of the combined toxicity of ZEN, DON and their derivatives. In addition, this approach is suitable for an early warning method for the detection of ZEN and DON family mycotoxins contamination without higher-priced, conventional analytical chemistry methods. PMID:27498557

  1. A novel recombinant cell fluorescence biosensor based on toxicity of pathway for rapid and simple evaluation of DON and ZEN.

    PubMed

    Ji, Jian; Gu, Wenshu; Sun, Chao; Sun, Jiadi; Jiang, Hui; Zhang, Yinzhi; Sun, Xiulan

    2016-01-01

    During an exposure, humans and animals are most often exposed to a mixture rather than individual mycotoxins. In this study, a Human Embryonic Kidney 293 cell (HEK-293) fluorescence sensor was developed to detect and evaluate mycotoxins, deoxynivalenol (DON) and zearalenone (ZEN) compounds, produced by Fusarium culmorum that are common food contaminants. TRE-copGFP (green fluorescent protein) and ERE-TagRFP (red fluorescent protein) plasmids were constructed and cotransfected into HEK-293 cells through a highly efficient, lipid-mediated, DNA-transfection procedure. Results show that fluorescence intensity was proportional to DON and ZEN concentrations, ranging from 2 to 40 ng/mL and 10 to 100 ng/mL respectively, with a detection limit of 0.75 ng/mL and 3.2 ng/mL respectively. The EC50 of DON and ZEN are 30.13 ng/mL and 76.63 ng/mL respectively. Additionally, ZEN may have a synergistic effect on enhancing AP-1 activity of the toxicity pathway of DON. These data indicate the high sensitivity and effectiveness of our biosensor system in the evaluation of the combined toxicity of ZEN, DON and their derivatives. In addition, this approach is suitable for an early warning method for the detection of ZEN and DON family mycotoxins contamination without higher-priced, conventional analytical chemistry methods. PMID:27498557

  2. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    PubMed

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy. PMID:26689352

  3. Replication of an Autonomous Human Parvovirus in Non-dividing Human Airway Epithelium Is Facilitated through the DNA Damage and Repair Pathways

    PubMed Central

    Deng, Xuefeng; Yan, Ziying; Cheng, Fang; Engelhardt, John F.; Qiu, Jianming

    2016-01-01

    Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae family, and is an emerging human pathogenic respiratory virus. In vitro, HBoV1 infects well-differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). Although it is well known that autonomous parvovirus replication depends on the S phase of the host cells, we demonstrate here that the HBoV1 genome amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Analysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its ssDNA genome following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably, HBoV1 infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three phosphatidylinositol 3-kinase–related kinases (PI3KKs). We found that the activation of the three PI3KKs is required for HBoV1 genome amplification; and, more importantly, we identified that two Y-family DNA polymerases, Pol η and Pol κ, are involved in HBoV1 genome amplification. Overall, we have provided an example of de novo DNA synthesis (genome amplification) of an autonomous parvovirus in non-dividing cells, which is dependent on the cellular DNA damage and repair pathways. PMID:26765330

  4. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    PubMed

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy.

  5. Replication Protein A: Single-stranded DNA's first responder : Dynamic DNA-interactions allow Replication Protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair

    PubMed Central

    Chen, Ran; Wold, Marc S.

    2015-01-01

    Summary Replication Protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis. PMID:25171654

  6. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Soustelle, Christine; Vedel, Michèle; Kolodner, Richard; Nicolas, Alain

    2002-01-01

    In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis. PMID:12072452

  7. Single Nucleotide Polymorphisms (SNPs) of RAD51-G172T and XRCC2-41657C/T Homologous Recombination Repair Genes and the Risk of Triple- Negative Breast Cancer in Polish Women.

    PubMed

    Michalska, Magdalena M; Samulak, Dariusz; Romanowicz, Hanna; Smolarz, Beata

    2015-09-01

    Double strand DNA breaks are the most dangerous DNA damage which, if non-repaired or misrepaired, may result in genomic instability, cancer transformation or cell death. RAD51 and XRCC2 encode proteins that are important for the repair of double-strand DNA breaks by homologous recombination. Therefore, genetic variability in these genes may contribute to the occurrence and progression of triple-negative breast cancer. The polymorphisms of the XRCC2 gene -41657C/T (rs718282) and of the RAD51 gene, -172G/T (rs1801321), were investigated by PCR-RFLP in 70 patients with triple-negative breast cancer and 70 age- and sex matched non-cancer controls. The obtained results demonstrated a significant positive association between the RAD51 T/T genotype and TNBC, with an adjusted odds ratio (OR) of 4.94 (p = 0.001). The homozygous T/T genotype was found in 60 % of TNBC cases and in 14 % of the used controls. Variant 172 T allele of RAD51 increased cancer risk (OR = 2.81 (1.72-4.58), p < .0001). No significant associations were observed between -41657C/T genotype of XRCC2 and the incidence of TNBC. There were no significant differences between the distribution of XRCC2 -41657C/T genotypes in the subgroups assigned to histological grades. The obtained results indicate that the polymorphism of RAD51, but not of XRCC2 gene, may be positively associated with the incidence of triple-negative breast carcinoma in the population of Polish women.

  8. Recombinant Human Erythropoietin Protects Myocardial Cells from Apoptosis via the Janus-Activated Kinase 2/Signal Transducer and Activator of Transcription 5 Pathway in Rats with Epilepsy

    PubMed Central

    Ma, Bao-Xin; Li, Jie; Li, Hua; Wu, Sui-Sheng

    2015-01-01

    Objective To investigate the potential mechanisms underlying the protective effects of recombinant human erythropoietin (rhEPO) and carbamylated EPO (CEPO) against myocardial cell apoptosis in epilepsy. Methods Rats were given an intra-amygdala injection of kainic acid to induce epilepsy. Groups of rats were treated with rhEPO or CEPO before induction of epilepsy, whereas additional rats were given a caudal vein injection of AG490, a selective inhibitor of Janus kinase 2 (JAK2). At different time points after seizure onset, electroencephalogram changes were recorded, and myocardium samples were taken for the detection of myocardial cell apoptosis and expression of JAK2, signal transducer and activator of transcription 5 (STAT5), caspase-3, and bcl-xl mRNAs and proteins. Results Induction of epilepsy significantly enhanced myocardial cell apoptosis and upregulated the expression of caspase-3 and bcl-xl proteins and JAK2 and STAT5a at both the mRNA and protein levels. Pretreatment with either rhEPO or CEPO reduced the number of apoptotic cells, upregulated bcl-xl expression, and downregulated caspase-3 expression in the myocardium of epileptic rats. Both myocardial JAK2 and STAT5a mRNAs, as well as phosphorylated species of JAK2 and STAT5a, were upregulated in epileptic rats in response to rhEPO—but not to CEPO—pretreatment. AG490 treatment increased apoptosis, upregulated caspase-3 protein expression, and downregulated bcl-xl protein expression in the myocardium of epileptic rats. Conclusions These results indicate that myocardial cell apoptosis may contribute to myocardial injury in epilepsy. EPO protects myocardial cells from apoptosis via the JAK2/STAT5 pathway in rats with experimental epilepsy, whereas CEPO exerts antiapoptotic activity perhaps via a pathway independent of JAK2/STAT5 signaling. PMID:26649078

  9. Immunoglobulin class-switch recombination deficiencies.

    PubMed

    Durandy, Anne; Kracker, Sven

    2012-01-01

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches. PMID:22894609

  10. Introduction of protein or DNA delivered via recombinant Salmonella typhimurium into the major histocompatibility complex class I presentation pathway of macrophages.

    PubMed

    Catic, A; Dietrich, G; Gentschev, I; Goebel, W; Kaufmann, S H; Hess, J

    1999-02-01

    Recombinant (r) Salmonella typhimurium aroA strains which display the hen egg ovalbumin OVA(257-264) peptide SIINFEKL in secreted form were constructed. In addition, attenuated rS. typhimurium pcDNA-OVA constructs harbouring a eukaryotic expression plasmid encoding complete OVA were used to introduce the immunodominant OVA(257-264) epitope into the major histocompatibility complex (MHC) class I presentation pathway. Both modes of antigen delivery (DNA and protein) by Salmonella vaccine carriers stimulated OVA(257-264)-specific CD8 T-cell hybridomas. An in vitro infection system was established that allowed both rSalmonella carrier devices to facilitate MHC class I delivery of OVA(257-264) by coexpression of listeriolysin (Hly) or by coinfection with rS. typhimurium Hlys (Hess J., Gentschev I., Miko D., Welzel M., Ladel C., Goebel W., Kaufmann S.H.E., Proc. Natl. Acad. Sci. USA 93 (1996) 1458-1463). Coexpression of Hly and coinfection with rS. typhimurium Hlys slightly improved MHC class I processing of OVA. Our data provide further evidence for the feasibility of attenuated, Hly-expressing rS. typhimurium carriers secreting heterologous antigens or harbouring heterologous DNA as effective vaccines for stimulating CD8 T cells in addition to CD4 T cells. PMID:10594975

  11. Introduction of protein or DNA delivered via recombinant Salmonella typhimurium into the major histocompatibility complex class I presentation pathway of macrophages.

    PubMed

    Catic, A; Dietrich, G; Gentschev, I; Goebel, W; Kaufmann, S H; Hess, J

    1999-02-01

    Recombinant (r) Salmonella typhimurium aroA strains which display the hen egg ovalbumin OVA(257-264) peptide SIINFEKL in secreted form were constructed. In addition, attenuated rS. typhimurium pcDNA-OVA constructs harbouring a eukaryotic expression plasmid encoding complete OVA were used to introduce the immunodominant OVA(257-264) epitope into the major histocompatibility complex (MHC) class I presentation pathway. Both modes of antigen delivery (DNA and protein) by Salmonella vaccine carriers stimulated OVA(257-264)-specific CD8 T-cell hybridomas. An in vitro infection system was established that allowed both rSalmonella carrier devices to facilitate MHC class I delivery of OVA(257-264) by coexpression of listeriolysin (Hly) or by coinfection with rS. typhimurium Hlys (Hess J., Gentschev I., Miko D., Welzel M., Ladel C., Goebel W., Kaufmann S.H.E., Proc. Natl. Acad. Sci. USA 93 (1996) 1458-1463). Coexpression of Hly and coinfection with rS. typhimurium Hlys slightly improved MHC class I processing of OVA. Our data provide further evidence for the feasibility of attenuated, Hly-expressing rS. typhimurium carriers secreting heterologous antigens or harbouring heterologous DNA as effective vaccines for stimulating CD8 T cells in addition to CD4 T cells.

  12. Feasibility and Safety of Local Treatment with Recombinant Human Tissue Factor Pathway Inhibitor in a Rat Model of Streptococcus pneumoniae Pneumonia

    PubMed Central

    van den Boogaard, Florry E.; Hofstra, Jorrit J.; van ‘t Veer, Cornelis; Levi, Marcel M.; Roelofs, Joris J. T. H.; van der Poll, Tom; Schultz, Marcus J.

    2015-01-01

    Pulmonary coagulopathy is intrinsic to pulmonary injury including pneumonia. Anticoagulant strategies could benefit patients with pneumonia, but systemic administration of anticoagulant agents may lead to suboptimal local levels and may cause systemic hemorrhage. We hypothesized nebulization to provide a safer and more effective route for local administration of anticoagulants. Therefore, we aimed to examine feasibility and safety of nebulization of recombinant human tissue factor pathway inhibitor (rh-TFPI) in a well-established rat model of Streptococcus (S.) pneumoniae pneumonia. Thirty minutes before and every 6 hours after intratracheal instillation of S. pneumonia causing pneumonia, rats were subjected to local treatment with rh-TFPI or placebo, and sacrificed after 42 hours. Pneumonia was associated with local as well as systemic activation of coagulation. Nebulization of rh-TFPI resulted in high levels of rh-TFPI in bronchoalveolar lavage fluid, which was accompanied by an attenuation of pulmonary coagulation. Systemic rh-TFPI levels remained undetectable, and systemic TFPI activity and systemic coagulation were not affected. Histopathology revealed no bleeding in the lungs. We conclude that nebulization of rh-TFPI seems feasible and safe; local anticoagulant treatment with rh-TFPI attenuates pulmonary coagulation, while not affecting systemic coagulation in a rat model of S. pneumoniae pneumonia. PMID:25992779

  13. AtPolλ, a homolog of mammalian DNA polymerase λ in Arabidopsis thaliana, is involved in the repair of UV-B induced DNA damage through the dark repair pathway.

    PubMed

    Roy, Sujit; Choudhury, Swarup Roy; Singh, Sanjay Kumar; Das, Kali Pada

    2011-02-01

    Plants are constantly exposed to a wide range of environmental genotoxic stress factors including obligatory exposure to UV radiation in sunlight. Here, we report the functional characterization of a DNA repair protein, AtPolλ, a homolog of mammalian DNA polymerase λ in Arabidopsis, in relation to its role in repair of UV-B-induced DNA damage during early stages of seedling development. The abundance of the AtPolλ transcript and the protein levels were distinctly increased in response to UV-B irradiation in 6-day-old wild-type seedlings. Growth of atpolλ mutant seedlings, deficient in AtPolλ expression, was more sensitive to UV-B radiation compared with wild-type plants when seeds were exposed to UV-B radiation before germination. The atpolλ mutants showed accumulation of relatively higher amounts of DNA lesions than wild-type plants following UV-B exposure and were less proficient in repair of UV-induced DNA damage. Increased accumulation of AtPolλ protein in UV-B-irradiated 6-day-old wild-type seedlings during the dark recovery period has indicated a possible role for the protein in repair of UV-B-induced lesions in the dark. Overexpression of AtPolλ in the atpolλ mutant line partially complemented the repair proficiency of UV-B-induced DNA damage. In vitro repair synthesis assays using whole-cell extracts from the wild-type and atpolλ mutant line have further demonstrated the role of AtPolλ in repair synthesis of UV-B-damaged DNA in the dark through an excision repair mechanism. Overall, our results have indicated the possible involvement of AtPolλ in a plant's response for repair of UV-B-mediated DNA damage during seedling development.

  14. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer

    PubMed Central

    Konstantinopoulos, Panagiotis A.; Ceccaldi, Raphael; Shapiro, Geoffrey I.; D’Andrea, Alan D.

    2015-01-01

    Approximately 50% of epithelial ovarian cancers (EOCs) exhibit defective DNA repair via homologous recombination (HR) due to genetic and epigenetic alterations of HR pathway genes. Defective HR is an important therapeutic target in EOC as exemplified by the efficacy of platinum analogues in this disease, as well as the advent of poly-ADP ribose polymerase inhibitors which exhibit synthetic lethality when applied to HR deficient cells. Here, we describe the genotypic and phenotypic characteristics of HR deficient EOCs, discuss current and emerging approaches for targeting these tumors, and present challenges associated with these approaches focusing on development and overcoming resistance. PMID:26463832

  15. Genetic variation in DNA-repair pathways and response to radiochemotherapy in esophageal adenocarcinoma: a retrospective cohort study of the Eastern Cooperative Oncology Group

    PubMed Central

    2011-01-01

    Background Recent data in esophageal cancer suggests the variant allele of a single-nucleotide polymorphism (SNP) in XRCC1 may be associated with resistance to radiochemotherapy. However, this SNP has not been assessed in a histologically homogeneous clinical trial cohort that has been treated with a uniform approach. In addition, whether germline DNA may serve as a surrogate for tumor genotype at this locus is unknown in this disease. Our objective was to assess this SNP in relation to the pathologic complete response (pCR) rate in subjects with esophageal adenocarcinoma who received cisplatin-based preoperative radiochemotherapy in a multicenter clinical trial (Eastern Cooperative Oncology Group 1201). As a secondary aim, we investigated the rate of allelic imbalance between germline and tumor DNA. Methods Eighty-one eligible treatment-naïve subjects with newly diagnosed resectable esophageal adenocarcinoma received radiotherapy (45 Gy) concurrent with cisplatin-based chemotherapy, with planned subsequent surgical resection. The primary endpoint was pCR, defined as complete absence of tumor in the surgical specimen after radiochemotherapy. Using germline DNA from 60 subjects, we examined the base-excision repair SNP, XRCC1 Arg399Gln, and 4 other SNPs in nucleotide excision (XPD Lys751Gln and Asp312Asn, ERCC1 3' flank) and double-stranded break (XRCC2 5' flank) repair pathways, and correlated genotype with pCR rate. Paired tumor tissue was used to estimate the frequency of allelic imbalance at the XRCC1 SNP. Results The variant allele of the XRCC1 SNP (399Gln) was detected in 52% of subjects. Only 6% of subjects with the variant allele experienced a pCR, compared to 28% of subjects without the variant allele (odds ratio 5.37 for failing to achieve pCR, p = 0.062). Allelic imbalance at this locus was found in only 10% of informative subjects, suggesting that germline genotype may reflect tumor genotype at this locus. No significant association with pCR was noted

  16. Recovery of arrested replication forks by homologous recombination is error-prone.

    PubMed

    Iraqui, Ismail; Chekkal, Yasmina; Jmari, Nada; Pietrobon, Violena; Fréon, Karine; Costes, Audrey; Lambert, Sarah A E

    2012-01-01

    Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.

  17. Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli.

    PubMed

    López, Elena; Elez, Marina; Matic, Ivan; Blázquez, Jesús

    2007-04-01

    The widespread use and abuse of antibiotics as therapeutic agents has produced a major challenge for bacteria, leading to the selection and spread of antibiotic resistant variants. However, antibiotics do not seem to be mere selectors of these variants. Here we show that the fluoroquinolone antibiotic ciprofloxacin, an inhibitor of type II DNA topoisomerases, stimulates intrachromosomal recombination of DNA sequences. The stimulation of recombination between divergent sequences occurs via either the RecBCD or RecFOR pathways and is, surprisingly, independent of SOS induction. Additionally, this stimulation also occurs in a hyperrecombinogenic mismatch repair mutS mutant. It is worth noting that ciprofloxacin also stimulates the conjugational recombination of an antibiotic resistance gene. Finally, we demonstrate that Escherichia coli is able to recover from treatments with recombination-stimulating concentrations of the antibiotic. Thus, fluoroquinolones can increase genetic variation by the stimulation of the recombinogenic capability of treated bacteria (via an SOS-independent mechanism) and consequently may favour the acquisition, evolution and spread of antibiotic resistance determinants. PMID:17376074

  18. Influence of low-level laser associated with osteogenic proteins recombinant human BMP-2 and Hevea brasiliensis on bone repair in Wistar rats.

    PubMed

    Iyomasa, Mamie Mizusaki; Issa, João Paulo Mardegan; de Queiróz Tavares, Mirella Lemos; Pereira, Yamba Carla Lara; Stuani, Maria Bernadete Sasso; Mishima, Fabíola; Coutinho-Netto, Joaquim; Sebald, Walter

    2012-02-01

    This study analyzed the newly formed bone tissue after application of recombinant human BMP-2 (rhBMP-2) and P-1 (extracted from Hevea brasiliensis) proteins, 2 weeks after the creation of a critical bone defect in male Wistar rats treated or not with a low-intensity laser (GaAlAs 780 nm, 60 mW of power, and energy density dose of 30 J/cm(2)). The animals were divided into two major groups: (1) bone defect plus low-intensity laser treatment and (2) bone defect without laser irradiation. The following subgroups were also analyzed: (a) 5 μg of pure rhBMP-2; (b) 5 μg of pure P-1 fraction; (c) 5 μg of rhBMP-2/monoolein gel; (d) 5 μg of P-1 fraction/monoolein gel; (e) pure monoolein gel. Comparisons of the groups receiving laser treatment with those that did not receive laser irradiation show differences in the areas of new bone tissue. The group treated with 5 μg of rhBMP-2 and laser irradiation was not significantly different (P >0.05) than the nonirradiated group that received the same treatment. The irradiated, rhBMP-2/monoolein gel treatment group showed a lower area of bone formation than the nonirradiated, rhBMP-2/gel monoolein treatment group (P < 0.001). The area of new bone tissue in the other nonirradiated and irradiated groups was not significantly different (P > 0.05). Furthermore, the group that received the 5 μg of rhBMP-2 application showed the greatest bone formation. We conclude that the laser treatment did not interfere with the area of new bone tissue growth and that the greatest stimulus for bone formation involved application of the rhBMP-2 protein. PMID:21761492

  19. Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis

    PubMed Central

    Cromie, Gareth; Smith, Gerald R.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe is especially well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ~50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages – chromosome alignment accompanying nuclear “horsetail” movement, formation of DNA breaks, and repair of those breaks – and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts. PMID:20157622

  20. The RecQ DNA helicase Rqh1 constrains Exonuclease 1-dependent recombination at stalled replication forks

    PubMed Central

    Osman, Fekret; Ahn, Jong Sook; Lorenz, Alexander; Whitby, Matthew C.

    2016-01-01

    DNA double-strand break (DSB) repair by homologous recombination (HR) involves resection of the break to expose a 3′ single-stranded DNA tail. In budding yeast, resection occurs in two steps: initial short-range resection, performed by Mre11-Rad50-Xrs2 and Sae2; and long-range resection catalysed by either Exo1 or Sgs1-Dna2. Here we use genetic assays to investigate the importance of Exo1 and the Sgs1 homologue Rqh1 for DNA repair and promotion of direct repeat recombination in the fission yeast Schizosaccharomyces pombe. We find that Exo1 and Rqh1 function in alternative redundant pathways for promoting survival following replication fork breakage. Exo1 promotes replication fork barrier-induced direct repeat recombination but intriguingly limits recombination induced by fork breakage. Direct repeat recombination induced by ultraviolet light depends on either Exo1 or Rqh1. Finally, we show that Rqh1 plays a major role in limiting Exo1-dependent direct repeat recombination induced by replication fork stalling but only a minor role in constraining recombination induced by fork breakage. The implications of our findings are discussed in the context of the benefits that long-range resection may bring to processing perturbed replication forks. PMID:26957021

  1. The association of six polymorphisms of five genes involved in three steps of nucleotide excision repair pathways with hepatocellular cancer risk

    PubMed Central

    Yang, Huai-wei; Sun, Li-ping; Yuan, Yuan

    2016-01-01

    Background Hundreds of single nucleotide polymorphisms (SNPs) of the genes encoding nucleotide excision repair (NER) proteins are involved in every step of the DNA recognition–unwinding–incision process, which may affect cancer risk. However, only a limited number of studies have examined the association of NER SNPs with hepatocellular cancer (HCC) risk. Results In screening stage, single-locus analysis showed that six SNPs in five genes were associated with HCC risk, including three risk SNPs (XPA rs10817938, XPC rs1870134 and ERCC2 rs238417) and three protective SNPs (ERCC1 rs2298881 and rs3212961, and ERCC5 rs873601). In verification stage, only XPC rs1870134 was verified to be associated with HCC risk (P = 4.7 × 10−4). Furthermore, multivariate logistic regression and MDR analysis consistently revealed a gene–gene interaction among ERCC1 rs2298881 and XPC rs1870134 SNPs associated with HCC risk (Pinteraction = 0.023). When analyzing the effect of the positive SNP on the mRNA expression, we found XPC rs1870134 GG genotype which was associated with an increased HCC risk showed lower XPC mRNA expression. Methods This study designed as “screening-verification” experiments and included a total of 1472 participants (570 HCC patients vs. 902 controls). We explored 39 SNPs in eight genes involved in NER Pathways, including XPA, XPC, DDB2, ERCC3, ERCC2, ERCC1, ERCC4 and ERCC5, using Sequenom MassARRAY and KASPar platform. Eighty-six cases of HCC and the neighboring noncancerous tissues were subjected to the measurement of mRNA expression level of the promising gene. Conclusions XPC promoter rs1870134 SNP and SNP-SNP interaction were associated with HCC risk. PMID:26967386

  2. Recombination between homologous chromosomes induced by unrepaired UV-generated DNA damage requires Mus81p and is suppressed by Mms2p.

    PubMed

    Yin, Yi; Petes, Thomas D

    2015-03-01

    DNA lesions caused by UV radiation are highly recombinogenic. In wild-type cells, the recombinogenic effect of UV partially reflects the processing of UV-induced pyrimidine dimers into DNA gaps or breaks by the enzymes of the nucleotide excision repair (NER) pathway. In this study, we show that unprocessed pyrimidine dimers also potently induce recombination between homologs. In NER-deficient rad14 diploid strains, we demonstrate that unexcised pyrimidine dimers stimulate crossovers, noncrossovers, and break-induced replication events. The same dose of UV is about six-fold more recombinogenic in a repair-deficient strain than in a repair-proficient strain. We also examined the roles of several genes involved in the processing of UV-induced damage in NER-deficient cells. We found that the resolvase Mus81p is required for most of the UV-induced inter-homolog recombination events. This requirement likely reflects the Mus81p-associated cleavage of dimer-blocked replication forks. The error-free post-replication repair pathway mediated by Mms2p suppresses dimer-induced recombination between homologs, possibly by channeling replication-blocking lesions into recombination between sister chromatids.

  3. DNA Repair and Cytokines: TGF-β, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance

    PubMed Central

    Centurione, Lucia; Aiello, Francesca B.

    2016-01-01

    Double strand breaks (DSBs) induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. Ataxia-telangiectasia-mutated (ATM)-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors, which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interleukin-6. Recently, the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell (HSC) homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of HSCs. PMID:27500125

  4. DNA Repair and Cytokines: TGF-β, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance.

    PubMed

    Centurione, Lucia; Aiello, Francesca B

    2016-01-01

    Double strand breaks (DSBs) induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. Ataxia-telangiectasia-mutated (ATM)-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors, which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interleukin-6. Recently, the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell (HSC) homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of HSCs. PMID:27500125

  5. Differential repair responses in the coronal and radicular areas of the exposed rat molar pulp induced by recombinant human bone morphogenetic protein 7 (osteogenic protein 1).

    PubMed

    Six, Ngampis; Lasfargues, Jean-Jacques; Goldberg, Michel

    2002-03-01

    Bone morphogenetic protein 7 (BMP 7), also termed osteogenic protein 1, a member of the transforming growth-factor superfamily, was examined for its efficacy in inducing reparative dentinogenesis in the exposed pulps of rat molars. To determine if the reaction was dose-dependent, collagen pellets containing 1, 3 or 10 microgram of recombinant BMP 7 were inserted in intentionally perforated pulps (10-12 pulps per group) in the deepest part of half-moon class V-like cavities cut in the mesial aspect of upper first molars. As controls, the collagen carrier (CC group) alone and calcium hydroxide (Ca group) were used as capping agents. All cavities were then restored with a glass-ionomer cement. Half of the animals were killed after 8 days and the other half after 28 days, by intracardiac perfusion of fixative. The molars were processed for histological evaluation by light microscopy. No difference in effect could be detected between the three concentrations of BMP 7 groups at either time interval. After 8 days, all groups showed varying inflammation, from mild of severe, and the Ca group demonstrated early formation of a reparative dentine bridge. At 28 days the CC group displayed irregular osteodentine formation, leaving some unmineralized areas at the exposure site and interglobular unmineralized areas containing pulp remnants. In the Ca-treated pulps, the initial formation of thick reparative osteodentine bridges that sealed more or less completely the pulp perforation was followed, in the deeper part, by irregular tubular dentine. In most BMP 7-treated specimens, the initial inflammation has resolved at 8 days and at 28 days heterogeneous mineralization or osteodentine filled the mesial coronal pulp. They also had complete filling of the radicular pulp by homogenous mineralization in the mesial root; this reaction was found in 11 teeth in the BMP 7 group, one tooth in the CC group an none of the Ca group. These results emphasize the biological differences the

  6. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  7. Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast. Kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway.

    PubMed

    Urban, P; Werck-Reichhart, D; Teutsch, H G; Durst, F; Regnier, S; Kazmaier, M; Pompon, D

    1994-06-15

    Helianthus tuberosus cinnamate 4-hydroxylase (CYP73 or CA4H), a member of the P450 superfamily which catalyses the first oxidative step of the phenylpropanoid pathway in higher plants by transforming cinnamate into p-coumarate, was expressed in the yeast Saccharomyces cerevisiae. The PCR-amplified CA4H open reading frame was inserted into pYeDP60 under the transcriptional control of a galactose-inducible artificial promoter. Engineered S. cerevisiae strains producing human P450 reductase or normal or overproduced amounts of yeast P450 reductase were transformed to express recombinant CA4H. When grown on galactose, yeast cells produced CA4H holoprotein bound to the endoplasmic reticulum membrane as judged from the reduced iron/carbon monoxide difference spectrum centered at 452 nm and from typical cinnamate 4-hydroxylase activity upon coupling with the different P450 reductases and NADPH. Some CA4H protein was found also addressed to the yeast mitochondria but as a low-activity form. The spectral and kinetic characterizations of the yeast-produced CA4H in different redox protein environments are presented using both assays on yeast microsomal fractions and bioconversions on living cells. Results indicate that the microsomal system constituted by the overexpressed yeast P450 reductase and CA4H is characterized by a 1:1 coupling between NADPH oxidation and cinnamate hydroxylation and by one of the highest turnover numbers reported for an NADPH-dependent P450 reaction. Based on spectral perturbation and inhibition studies, coumarate appeared to have no detectable affinity for the enzyme. A possible geometry of the substrate recognition pocket is discussed in the light of these data. PMID:8026495

  8. Recombinant rat CC16 protein inhibits LPS-induced MMP-9 expression via NF-κB pathway in rat tracheal epithelial cells

    PubMed Central

    Pang, Min; Wang, Hailong; Bai, Ji-Zhong; Cao, Dawei; Jiang, Yi; Zhang, Caiping; Liu, Zhihong; Zhang, Xinri; Hu, Xiaoyun; Xu, Jianying

    2015-01-01

    Clara cell protein (CC16) is a well-known anti-inflammatory protein secreted by the epithelial Clara cells of the airways. It is involved in the development of airway inflammatory diseases such as chronic obstructive pulmonary disease and asthma. Previous studies suggest that CC16 gene transfer suppresses expression of interleukin (IL)-8 in bronchial epithelial cells. However, its role in the function of these cells during inflammation is not well understood. In this study, we evaluated the effect of CC16 on the expression of matrix metalloproteinase (MMP)-9 in lipopolysaccharide (LPS)-stimulated rat tracheal epithelial cells and its underlying molecular mechanisms. We generated recombinant rat CC16 protein (rCC16) which was bioactive in inhibiting the activity of phospholipase A2. rCC16 inhibited LPS-induced MMP-9 expression at both mRNA and protein levels in a concentration-dependent (0–2 µg/mL) manner, as demonstrated by real time RT-PCR, ELISA, and zymography assays. Gene transcription and DNA binding studies demonstrated that rCC16 suppressed LPS-induced NF-κB activation and its binding of gene promoters as identified by luciferase reporter and gel mobility shift assays, respectively. Western blotting and immunofluorescence staining analyses further revealed that rCC16 concentration dependently inhibited the effects of LPS on nuclear increase and cytosol reduction of NF-κB, on the phosphorylation and reduction of NF-κB inhibitory IκBα, and on p38 MAPK-dependent NF-κB activation by phosphorylation at Ser276 of its p65 subunit. These data indicate that inhibition of LPS-mediated NF-κB activation by rCC16 involves both translocation- and phosphorylation-dependent signaling pathways. When the tracheal epithelial cells were pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, cellular uptake of rCC16 and its inhibition of LPS-induced NF-κB nuclear translocation and also MMP-9 production were significantly abolished. Taken

  9. DNA repair: Dynamic defenders against cancer and aging

    SciTech Connect

    Fuss, Jill O.; Cooper, Priscilla K.

    2006-04-01

    You probably weren't thinking about your body's cellular DNA repair systems the last time you sat on the beach in the bright sunshine. Fortunately, however, while you were subjecting your DNA to the harmful effects of ultraviolet light, your cells were busy repairing the damage. The idea that our genetic material could be damaged by the sun was not appreciated in the early days of molecular biology. When Watson and Crick discovered the structure of DNA in 1953 [1], it was assumed that DNA is fundamentally stable since it carries the blueprint of life. However, over 50 years of research have revealed that our DNA is under constant assault by sunlight, oxygen, radiation, various chemicals, and even our own cellular processes. Cleverly, evolution has provided our cells with a diverse set of tools to repair the damage that Mother Nature causes. DNA repair processes restore the normal nucleotide sequence and DNA structure of the genome after damage [2]. These responses are highly varied and exquisitely regulated. DNA repair mechanisms are traditionally characterized by the type of damage repaired. A large variety of chemical modifications can alter normal DNA bases and either lead to mutations or block transcription if not repaired, and three distinct pathways exist to remove base damage. Base excision repair (BER) corrects DNA base alterations that do not distort the overall structure of the DNA helix such as bases damaged by oxidation resulting from normal cellular metabolism. While BER removes single damaged bases, nucleotide excision repair (NER) removes short segments of nucleotides (called oligonucleotides) containing damaged bases. NER responds to any alteration that distorts the DNA helix and is the mechanism responsible for repairing bulky base damage caused by carcinogenic chemicals such as benzo [a]pyrene (found in cigarette smoke and automobile exhaust) as well as covalent linkages between adjacent pyrimidine bases resulting from the ultraviolet (UV

  10. Clubfoot repair

    MedlinePlus

    ... release; Talipes equinovarus - repair; Tibialis anterior tendon transfer Images Clubfoot repair - series References Kelly DM. Congenital Anomalies ... provided herein should not be used during any medical emergency or for the diagnosis or treatment of ...

  11. Tendon repair

    MedlinePlus

    Repair of tendon ... Tendon repair can be performed using: Local anesthesia (the immediate area of the surgery is pain-free) ... a cut on the skin over the injured tendon. The damaged or torn ends of the tendon ...

  12. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

    SciTech Connect

    Grosse, Nicole; Fontana, Andrea O.; Hug, Eugen B.; Lomax, Antony; Coray, Adolf; Augsburger, Marc; Paganetti, Harald; Sartori, Alessandro A.; Pruschy, Martin

    2014-01-01

    Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. Methods and Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual γH2AX foci after irradiation. Conclusion: Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

  13. The role of Deinococcus radiodurans RecFOR proteins in homologous recombination.

    PubMed

    Satoh, Katsuya; Kikuchi, Masahiro; Ishaque, Abu M; Ohba, Hirofumi; Yamada, Mitsugu; Tejima, Kouhei; Onodera, Takefumi; Narumi, Issay

    2012-04-01

    Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed. PMID:22321371

  14. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs

    PubMed Central

    Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-01-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  15. CDK-mediated RNF4 phosphorylation regulates homologous recombination in S-phase

    PubMed Central

    Luo, Kuntian; Deng, Min; Li, Yunhui; Wu, Chenming; Xu, Ziwen; Yuan, Jian; Lou, Zhenkun

    2015-01-01

    There are the two major pathways responsible for the repair of DNA double-strand breaks (DSBs): non-homologous end-joining (NHEJ) and homologous recombination (HR). NHEJ operates throughout the cell-cycle, while HR is primarily active in the S/G2 phases suggesting that there are cell cycle-specific mechanisms that regulate the balance between NHEJ and HR. Here we reported that CDK2 could phosphorylate RNF4 on T26 and T112 and enhance RNF4 E3 ligase activity, which is important for MDC1 degradation and proper HR repair during S phase. Mutation of the RNF4 phosphorylation sites results in MDC1 stabilization, which in turn compromised HR during S-phase. These results suggest that in addition to drive cell cycle progression, CDK also targets RNF4, which is involved in the regulatory network of DSBs repair. PMID:25948581

  16. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    PubMed

    Nagy, Zita; Kalousi, Alkmini; Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-02-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  17. Nuclear compartmentalization of DNA repair.

    PubMed

    Kalousi, Alkmini; Soutoglou, Evi

    2016-04-01

    The continuous threats on genome integrity by endogenous and exogenous sources have rendered cells competent to overcome these challenges by activating DNA repair pathways. A complex network of proteins and their modifications participate in orchestrated signaling cascades, which are induced in response to DNA damage and may determine the choice of repair pathway. In this review, we summarize recent findings in the field of DNA Double Strand Break repair with regard to the positioning of the break in the highly compartmentalized nucleus. We aim to highlight the importance of chromatin state along with the nuclear position of the DNA lesions on the choice of DNA repair pathway and maintenance of genome integrity. PMID:27266837

  18. Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves.

    PubMed

    Zhang, Li-Tao; Zhang, Zi-Shan; Gao, Hui-Yuan; Xue, Zhong-Cai; Yang, Cheng; Meng, Xiang-Long; Meng, Qing-Wei

    2011-12-01

    The purpose of this study was to explore how the mitochondrial AOX (alternative oxidase) pathway alleviates photoinhibition in Rumex K-1 leaves. Inhibition of the AOX pathway decreased the initial activity of NADP-malate dehydrogenase (EC 1.1.1.82, NADP-MDH) and the pool size of photosynthetic end electron acceptors, resulting in an over-reduction of the photosystem I (PSI) acceptor side. The over-reduction of the PSI acceptor side further inhibited electron transport from the photosystem II (PSII) reaction centers to the PSII acceptor side as indicated by an increase in V(J) (the relative variable fluorescence at J-step), causing an imbalance between photosynthetic light absorption and energy utilization per active reaction center (RC) under high light, which led to the over-excitation of the PSII reaction centers. The over-reduction of the PSI acceptor side and the over-excitation of the PSII reaction centers enhanced the accumulation of reactive oxygen species (ROS), which inhibited the repair of the photodamaged PSII. However, the inhibition of the AOX pathway did not change the level of photoinhibition under high light in the presence of the chloroplast D1 protein synthesis inhibitor chloramphenicol, indicating that the inhibition of the AOX pathway did not accelerate the photodamage to PSII directly. All these results suggest that the AOX pathway plays an important role in the protection of plants against photoinhibition by minimizing the inhibition of the repair of the photodamaged PSII through preventing the over-production of ROS.

  19. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation.

    PubMed

    Zelensky, Alex N; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E; Essers, Jeroen; Wyman, Claire; Kanaar, Roland

    2013-07-01

    Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair.

  20. Effects of recJ, recQ, and recFOR mutations on recombination in nuclease-deficient recB recD double mutants of Escherichia coli.

    PubMed

    Ivancic-Bace, Ivana; Salaj-Smic, Erika; Brcic-Kostic, Krunoslav

    2005-02-01

    The two main recombination pathways in Escherichia coli (RecBCD and RecF) have different recombination machineries that act independently in the initiation of recombination. Three essential enzymatic activities are required for early recombinational processing of double-stranded DNA ends and breaks: a helicase, a 5'-->3' exonuclease, and loading of RecA protein onto single-stranded DNA tails. The RecBCD enzyme performs all of these activities, whereas the recombination machinery of the RecF pathway consists of RecQ (helicase), RecJ (5'-->3' exonuclease), and RecFOR (RecA-single-stranded DNA filament formation). The recombination pathway operating in recB (nuclease-deficient) mutants is a hybrid because it includes elements of both the RecBCD and RecF recombination machineries. In this study, genetic analysis of recombination in a recB (nuclease-deficient) recD double mutant was performed. We show that conjugational recombination and DNA repair after UV and gamma irradiation in this mutant are highly dependent on recJ, partially dependent on recFOR, and independent of recQ. These results suggest that the recombination pathway operating in a nuclease-deficient recB recD double mutant is also a hybrid. We propose that the helicase and RecA loading activities belong to the RecBCD recombination machinery, while the RecJ-mediated 5'-->3' exonuclease is an element of the RecF recombination machinery. PMID:15687199

  1. DNA recombination: the replication connection.

    PubMed

    Haber, J E

    1999-07-01

    Chromosomal double-strand breaks (DSBs) arise after exposure to ionizing radiation or enzymatic cleavage, but especially during the process of DNA replication itself. Homologous recombination plays a critical role in repair of such DSBs. There has been significant progress in our understanding of two processes that occur in DSB repair: gene conversion and recombination-dependent DNA replication. Recent evidence suggests that gene conversion and break-induced replication are related processes that both begin with the establishment of a replication fork in which both leading- and lagging-strand synthesis occur. There has also been much progress in characterization of the biochemical roles of recombination proteins that are highly conserved from yeast to humans.

  2. Incomplete complementation of the DNA repair defect in cockayne syndrome cells by the denV gene from bacteriophage T4 suggests a deficiency in base excision repair.

    PubMed

    Francis, M A; Bagga, P S; Athwal, R S; Rainbow, A J

    1997-10-01

    Endonuclease V (denV) from bacteriophage T4 has been examined for its ability to complement the repair defect in Cockayne syndrome (CS) cells of complementation groups A and B. CS is an autosomal recessive disorder characterized by hypersensitivity to UV light and a defect in the preferential repair of UV-induced lesions in transcriptionally active DNA by the nucleotide excision repair (NER) pathway. The denV gene was introduced into non-transformed normal and CS fibroblasts transiently via a recombinant adenovirus (Ad) vector and into SV40-transformed normal and CS cells via a retroviral vector. Expression of denV in CS-A cells resulted in partial correction of the UV-sensitive phenotype in assays of gene-specific repair and cell viability, while correction of CS-B cells by expression of denV in the same assays was minimal or non-existent. In contrast, denV expression led to enhanced host cell reactivation (HCR) of viral DNA synthesis in both CS complementation groups to near normal levels. DenV is a glycosylase which is specific for cyclobutane-pyrimidine dimers (CPDs) but does not recognize other UV-induced lesions. Previous work has indicated that CS cells can efficiently repair all non-CPD UV-induced transcription blocking lesions (S.F. Barrett et al.. Mutation Res. 255 (1991) 281-291 [1]) and that denV incised lesions are believed to be processed via the base excision repair (BER) pathway. The inability of denV to complement the NER defect in CS cells to normal levels implies an impaired ability to process denV incised lesions by the BER pathway, and suggests a role for the CS genes, particularly the CS-B gene, in BER. PMID:9372849

  3. A defect in homologous recombination leads to increased translesion synthesis in E. coli

    PubMed Central

    Naiman, Karel; Pagès, Vincent; Fuchs, Robert P.

    2016-01-01

    DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In contrast, HDGR pathways are essentially error-free as they rely on the recovery of missing information from the sister chromatid by RecA-mediated homologous recombination. We have investigated the genetic control of pathway choice between TLS and HDGR in vivo in Escherichia coli. In a strain with wild type RecA activity, the extent of TLS across replication blocking lesions is generally low while HDGR is used extensively. Interestingly, recA alleles that are partially impaired in D-loop formation confer a decrease in HDGR and a concomitant increase in TLS. Thus, partial defect of RecA's capacity to invade the homologous sister chromatid increases the lifetime of the ssDNA.RecA filament, i.e. the ‘SOS signal’. This increase favors TLS by increasing both the TLS polymerase concentration and the lifetime of the TLS substrate, before it becomes sequestered by homologous recombination. In conclusion, the pathway choice between error-prone TLS and error-free HDGR is controlled by the efficiency of homologous recombination. PMID:27257075

  4. Mutations of the Huntington's disease protein impact on the ATM-dependent signaling and repair pathways of the radiation-induced DNA double-strand breaks: corrective effect of statins and bisphosphonates.

    PubMed

    Ferlazzo, Mélanie L; Sonzogni, Laurène; Granzotto, Adeline; Bodgi, Larry; Lartin, Océane; Devic, Clément; Vogin, Guillaume; Pereira, Sandrine; Foray, Nicolas

    2014-06-01

    Huntington's disease (HD) is a neurodegenerative syndrome caused by mutations of the IT15 gene encoding for the huntingtin protein. Some research groups have previously shown that HD is associated with cellular radiosensitivity in quiescent cells. However, there is still no mechanistic model explaining such specific clinical feature. Here, we examined the ATM-dependent signaling and repair pathways of the DNA double-strand breaks (DSB), the key damage induced by ionizing radiation, in human HD skin fibroblasts. Early after irradiation, quiescent HD fibroblasts showed an abnormally low rate of recognized DSB managed by non-homologous end-joining reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones and by 53BP1 protein. Furthermore, HD cells elicited a significant but moderate yield of unrepaired DSB 24 h after irradiation. Irradiated HD cells also presented a delayed nucleo-shuttling of phosphorylated forms of the ATM kinase, potentially due to a specific binding of ATM to mutated huntingtin in the cytoplasm. Our results suggest that HD belongs to the group of syndromes associated with a low but significant defect of DSB signaling and repair defect associated with radiosensitivity. A combination of biphosphonates and statins complements these impairments by facilitating the nucleo-shuttling of ATM, increasing the yield of recognized and repaired DSB. PMID:24277524

  5. Delineating the requirements for spontaneous DNA damage resistance pathways in genome maintenance and viability in Saccharomyces cerevisiae.

    PubMed Central

    Morey, Natalie J; Doetsch, Paul W; Jinks-Robertson, Sue

    2003-01-01

    Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can process a common spontaneous lesion(s), with mutational inactivation of any pathway increasing the burden on the remaining pathways. In this study, we examine the consequences of simultaneously compromising three or more of these pathways. Although the presence of a functional BER pathway alone is able to support haploid growth, retention of the NER, REC, or PRR pathway alone is not, indicating that BER is the key damage resistance pathway in yeast and may be responsible for the removal of the majority of either spontaneous DNA damage or specifically those lesions that are potentially lethal. In the diploid state, functional BER, NER, or REC alone can support growth, while PRR alone is insufficient for growth. In diploids, the presence of PRR alone may confer a lethal mutation load or, alternatively, PRR alone may be insufficient to deal with potentially lethal, replication-blocking lesions. PMID:12807766

  6. A Genetic Analysis of the Drosophila mcm5 Gene Defines a Domain Specifically Required for Meiotic Recombination

    PubMed Central

    Lake, Cathleen M.; Teeter, Kathy; Page, Scott L.; Nielsen, Rachel; Hawley, R. Scott

    2007-01-01

    Members of the minichromosome maintenance (MCM) family have pivotal roles in many biological processes. Although originally studied for their role in DNA replication, it is becoming increasingly apparent that certain members of this family are multifunctional and also play roles in transcription, cohesion, condensation, and recombination. Here we provide a genetic dissection of the mcm5 gene in Drosophila that demonstrates an unexpected function for this protein. First, we show that homozygotes for a null allele of mcm5 die as third instar larvae, apparently as a result of blocking those replication events that lead to mitotic divisions without impairing endo-reduplication. However, we have also recovered a viable and fertile allele of mcm5 (denoted mcm5A7) that specifically impairs the meiotic recombination process. We demonstrate that the decrease in recombination observed in females homozygous for mcm5A7 is not due to a failure to create or repair meiotically induced double strand breaks (DSBs), but rather to a failure to resolve those DSBs into meiotic crossovers. Consistent with their ability to repair meiotically induced DSBs, flies homozygous for mcm5A7 are fully proficient in somatic DNA repair. These results strengthen the observation that members of the prereplicative complex have multiple functions and provide evidence that mcm5 plays a critical role in the meiotic recombination pathway. PMID:17565942

  7. A novel structure of DNA repair protein RecO from Deinococcus radiodurans.

    PubMed

    Makharashvili, Nodar; Koroleva, Olga; Bera, Sibes; Grandgenett, Duane P; Korolev, Sergey

    2004-10-01

    Recovery of arrested replication requires coordinated action of DNA repair, replication, and recombination machineries. Bacterial RecO protein is a member of RecF recombination repair pathway important for replication recovery. RecO possesses two distinct activities in vitro, closely resembling those of eukaryotic protein Rad52: DNA annealing and RecA-mediated DNA recombination. Here we present the crystal structure of the RecO protein from the extremely radiation resistant bacteria Deinococcus radiodurans (DrRecO) and characterize its DNA binding and strand annealing properties. The RecO structure is totally different from the Rad52 structure. DrRecO is comprised of three structural domains: an N-terminal domain which adopts an OB-fold, a novel alpha-helical domain, and an unusual zinc-binding domain. Sequence alignments suggest that the multidomain architecture is conserved between RecO proteins from other bacterial species and is suitable to elucidate sites of protein-protein and DNA-protein interactions necessary for RecO functions during the replication recovery and DNA repair. PMID:15458636

  8. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects.

    PubMed

    Machado, Eduardo Gomes; Issa, João Paulo Mardegan; Figueiredo, Fellipe Augusto Tocchini de; Santos, Geovane Ribeiro Dos; Galdeano, Ewerton Alexandre; Alves, Mariana Carla; Chacon, Erivelto Luis; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Cunha, Marcelo Rodrigues da

    2015-04-01

    Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p<0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p>0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery. PMID:25825118

  9. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    PubMed

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases.

  10. DNA-PKcs Is Involved in Ig Class Switch Recombination in Human B Cells.

    PubMed

    Björkman, Andrea; Du, Likun; Felgentreff, Kerstin; Rosner, Cornelia; Pankaj Kamdar, Radhika; Kokaraki, Georgia; Matsumoto, Yoshihisa; Davies, E Graham; van der Burg, Mirjam; Notarangelo, Luigi D; Hammarström, Lennart; Pan-Hammarström, Qiang

    2015-12-15

    Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break repair pathways in mammalian cells and is required for both V(D)J recombination and class switch recombination (CSR), two Ig gene-diversification processes occurring during B cell development. DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) is a component of the classical NHEJ machinery and has a critical function during V(D)J recombination. However, its role in CSR has been controversial. In this study, we examined the pattern of recombination junctions from in vivo-switched B cells from two DNA-PKcs-deficient patients. One of them harbored mutations that did not affect DNA-PKcs kinase activity but caused impaired Artemis activation; the second patient had mutations resulting in diminished DNA-PKcs protein expression and kinase activity. These results were compared with those from DNA-PKcs-deficient mouse B cells. A shift toward the microhomology-based alternative end-joining at the recombination junctions was observed in both human and mouse B cells, suggesting that the classical NHEJ pathway is impaired during CSR when DNA-PKcs is defective. Furthermore, cells from the second patient showed additional or more severe alterations in CSR and/or NHEJ, which may suggest that DNA-PKcs and/or its kinase activity have additional, Artemis-independent functions during these processes. PMID:26546606

  11. Stalled replication fork repair and misrepair during thymineless death in Escherichia coli

    PubMed Central

    Kuong, Kawai J; Kuzminov, Andrei

    2014-01-01

    Starvation for DNA precursor dTTP, known as ‘thymineless death’ (TLD), kills bacterial and eukaryotic cells alike. Despite numerous investigations, toxic mechanisms behind TLD remain unknown, although wrong nucleotide incorporation with subsequent excision dominates the explanations. We show that kinetics of TLD in Escherichia coli is not affected by mutations in DNA repair, ruling out excision after massive misincorporation as the cause of TLD. We found that the rate of DNA synthesis in thymine-starved cells decreases exponentially, indicating replication fork stalling. Processing of stalled replication forks by recombinational repair is known to fragment the chromosome, and we detect significant chromosomal fragmentation during TLD. Moreover, we report that, out of major recombinational repair functions, only inactivation of recF and recO relieves TLD, identifying the poisoning mechanism. Inactivation of recJ and rep has slight effect, while the recA, recBC, ruvABC, recG and uvrD mutations all accelerate TLD, identifying the protection mechanisms. Our epistatic analysis argues for two distinct pathways protecting against TLD: RecABCD/Ruv repairs the double-strand breaks, whereas UvrD counteracts RecAFO-catalyzed toxic single-strand gap processing. PMID:20465561

  12. Stalled replication fork repair and misrepair during thymineless death in Escherichia coli.

    PubMed

    Kuong, Kawai J; Kuzminov, Andrei

    2010-06-01

    Starvation for DNA precursor dTTP, known as 'thymineless death' (TLD), kills bacterial and eukaryotic cells alike. Despite numerous investigations, toxic mechanisms behind TLD remain unknown, although wrong nucleotide incorporation with subsequent excision dominates the explanations. We show that kinetics of TLD in Escherichia coli is not affected by mutations in DNA repair, ruling out excision after massive misincorporation as the cause of TLD. We found that the rate of DNA synthesis in thymine-starved cells decreases exponentially, indicating replication fork stalling. Processing of stalled replication forks by recombinational repair is known to fragment the chromosome, and we detect significant chromosomal fragmentation during TLD. Moreover, we report that, out of major recombinational repair functions, only inactivation of recF and recO relieves TLD, identifying the poisoning mechanism. Inactivation of recJ and rep has slight effect, while the recA, recBC, ruvABC, recG and uvrD mutations all accelerate TLD, identifying the protection mechanisms. Our epistatic analysis argues for two distinct pathways protecting against TLD: RecABCD/Ruv repairs the double-strand breaks, whereas UvrD counteracts RecAFO-catalyzed toxic single-strand gap processing. PMID:20465561

  13. a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects.

    PubMed

    Heude, M; Fabre, F

    1993-03-01

    It has long been known that diploid strains of yeast are more resistant to gamma-rays than haploid cells, and that this is in part due to heterozygosity at the mating type (MAT) locus. It is shown here that the genetic control exerted by the MAT genes on DNA repair involves the a1 and alpha 2 genes, in a RME1-independent way. In rad18 diploids, affected in the error-prone repair, the a/alpha effects are of a very large amplitude, after both UV and gamma-rays, and also depends on a1 and alpha 2. The coexpression of a and alpha in rad18 haploids suppresses the sensitivity of a subpopulation corresponding to the G2 phase cells. Related to this, the coexpression of a and alpha in RAD+ haploids depresses UV-induced mutagenesis in G2 cells. For srs2 null diploids, also affected in the error-prone repair pathway, we show that their G1 UV sensitivity, likely due to lethal recombination events, is partly suppressed by MAT homozygosity. Taken together, these results led to the proposal that a1-alpha 2 promotes a channeling of some DNA structures from the mutagenic into the recombinational repair process.

  14. Chromatin dynamics during repair of chromosomal DNA double-strand breaks

    PubMed Central

    Sinha, Manisha; Peterson, Craig L

    2010-01-01

    The integrity of a eukaryotic genome is often challenged by DNA double-strand breaks (DSBs). Even a single, unrepaired DSB can be a lethal event, or such unrepaired damage can result in chromosomal instability and loss of genetic information. Furthermore, defects in the pathways that respond to and repair DSBs can lead to the onset of several human pathologic disorders with pleiotropic clinical features, including age-related diseases and cancer. For decades, studies have focused on elucidating the enzymatic mechanisms involved in recognizing, signaling and repairing DSBs within eukaryotic cells. The majority of biochemical and genetic studies have used simple, DNA substrates, whereas only recently efforts have been geared towards understanding how the repair machinery deals with DSBs within chromatin fibers, the nucleoprotein complex that packages DNA within the eukaryotic nucleus. The aim of this review is to discuss our recent understanding of the relationship between chromatin structure and the repair of DSBs by homologous recombination. In particular, we discuss recent studies implicating specialized roles for several, distinct ATP-dependent chromatin remodeling enzymes in facilitating multiple steps within the homologous recombination process. PMID:20495614

  15. Role of AtMSH7 in UV-B-induced DNA damage recognition and recombination.

    PubMed

    Lario, Luciana Daniela; Botta, Pablo; Casati, Paula; Spampinato, Claudia Patricia

    2015-06-01

    The mismatch repair (MMR) system maintains genome integrity by correcting replication-associated errors and inhibiting recombination between divergent DNA sequences. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in this DNA repair system vary among organisms. Plants have an extra mismatch recognition protein, MutSγ, which is a heterodimer: MSH2-MSH7. To further understand the role of MSH7 in vivo, we present data from this protein in Arabidopsis thaliana. First, we generated transgenic plants that express β-glucuronidase (GUS) under the control of the MSH7 promoter. Histochemical staining of the transgenic plants indicated that MSH7 is preferentially expressed in proliferating tissues. Then, we identified msh7 T-DNA insertion mutants. Plants deficient in MSH7 show increased levels of UV-B-induced cyclobutane pyrimidine dimers relative to wild-type (WT) plants. Consistent with the patterns of MSH7 expression, we next analysed the role of the protein during somatic and meiotic recombination. The frequency of somatic recombination between homologous or homeologous repeats (divergence level of 1.6%) was monitored using a previously described GUS recombination reporter assay. Disruption of MSH7 has no effect on the rates of somatic homologous or homeologous recombination under control conditions or after UV-B exposure. However, the rate of meiotic recombination between two genetically linked seed-specific fluorescent markers was 97% higher in msh7 than in WT plants. Taken together, these results suggest that MSH7 is involved in UV-B-induced DNA damage recognition and in controlling meiotic recombination.

  16. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing.

    PubMed

    Gupta, Richa; Ryzhikov, Mikhail; Koroleva, Olga; Unciuleac, Mihaela; Shuman, Stewart; Korolev, Sergey; Glickman, Michael S

    2013-02-01

    Mycobacteria have two genetically distinct pathways for the homology-directed repair of DNA double-strand breaks: homologous recombination (HR) and single-strand annealing (SSA). HR is abolished by deletion of RecA and reduced in the absence of the AdnAB helicase/nuclease. By contrast, SSA is RecA-independent and requires RecBCD. Here we examine the function of RecO in mycobacterial DNA recombination and repair. Loss of RecO elicits hypersensitivity to DNA damaging agents similar to that caused by deletion of RecA. We show that RecO participates in RecA-dependent HR in a pathway parallel to the AdnAB pathway. We also find that RecO plays a role in the RecA-independent SSA pathway. The mycobacterial RecO protein displays a zinc-dependent DNA binding activity in vitro and accelerates the annealing of SSB-coated single-stranded DNA. These findings establish a role for RecO in two pathways of mycobacterial DNA double-strand break repair and suggest an in vivo function for the DNA annealing activity of RecO proteins, thereby underscoring their similarity to eukaryal Rad52. PMID:23295671

  17. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing

    PubMed Central

    Gupta, Richa; Ryzhikov, Mikhail; Koroleva, Olga; Unciuleac, Mihaela; Shuman, Stewart; Korolev, Sergey; Glickman, Michael S.

    2013-01-01

    Mycobacteria have two genetically distinct pathways for the homology-directed repair of DNA double-strand breaks: homologous recombination (HR) and single-strand annealing (SSA). HR is abolished by deletion of RecA and reduced in the absence of the AdnAB helicase/nuclease. By contrast, SSA is RecA-independent and requires RecBCD. Here we examine the function of RecO in mycobacterial DNA recombination and repair. Loss of RecO elicits hypersensitivity to DNA damaging agents similar to that caused by deletion of RecA. We show that RecO participates in RecA-dependent HR in a pathway parallel to the AdnAB pathway. We also find that RecO plays a role in the RecA-independent SSA pathway. The mycobacterial RecO protein displays a zinc-dependent DNA binding activity in vitro and accelerates the annealing of SSB-coated single-stranded DNA. These findings establish a role for RecO in two pathways of mycobacterial DNA double-strand break repair and suggest an in vivo function for the DNA annealing activity of RecO proteins, thereby underscoring their similarity to eukaryal Rad52. PMID:23295671

  18. The key residue for SSB-RecO interaction is dispensable for Deinococcus radiodurans DNA repair in vivo.

    PubMed

    Cheng, Kaiying; Xu, Xin; Zhao, Ye; Wang, Liangyan; Xu, Guangzhi; Hua, Yuejin

    2014-05-01

    The RecFOR DNA repair pathway is one of the major RecA-dependent recombinatorial repair pathways in bacteria and plays an important role in double-strand breaks repair. RecO, one of the major recombination mediator proteins in the RecFOR pathway, has been shown to assist RecA loading onto single-stranded binding protein (SSB) coated single-stranded DNA (ssDNA). However, it has not been characterized whether the protein-protein interaction between RecO and SSB contributes to that process in vivo. Here, we identified the residue arginine-121 of Deinococcus radiodurans RecO (drRecO-R121) as the key residue for RecO-SSB interaction. The substitution of drRecO-R121 with alanine greatly abolished the binding of RecO to SSB but not the binding to RecR. Meanwhile, SSB-coated ssDNA annealing activity was also compromised by the mutation of the residue of drRecO. However, the drRecO-R121A strain showed only modest sensitivity to DNA damaging agents. Taking these data together, arginine-121 of drRecO is the key residue for SSB-RecO interaction, which may not play a vital role in the SSB displacement and RecA loading process of RecFOR DNA repair pathway in vivo. PMID:24681881

  19. The key residue for SSB-RecO interaction is dispensable for Deinococcus radiodurans DNA repair in vivo.

    PubMed

    Cheng, Kaiying; Xu, Xin; Zhao, Ye; Wang, Liangyan; Xu, Guangzhi; Hua, Yuejin

    2014-05-01

    The RecFOR DNA repair pathway is one of the major RecA-dependent recombinatorial repair pathways in bacteria and plays an important role in double-strand breaks repair. RecO, one of the major recombination mediator proteins in the RecFOR pathway, has been shown to assist RecA loading onto single-stranded binding protein (SSB) coated single-stranded DNA (ssDNA). However, it has not been characterized whether the protein-protein interaction between RecO and SSB contributes to that process in vivo. Here, we identified the residue arginine-121 of Deinococcus radiodurans RecO (drRecO-R121) as the key residue for RecO-SSB interaction. The substitution of drRecO-R121 with alanine greatly abolished the binding of RecO to SSB but not the binding to RecR. Meanwhile, SSB-coated ssDNA annealing activity was also compromised by the mutation of the residue of drRecO. However, the drRecO-R121A strain showed only modest sensitivity to DNA damaging agents. Taking these data together, arginine-121 of drRecO is the key residue for SSB-RecO interaction, which may not play a vital role in the SSB displacement and RecA loading process of RecFOR DNA repair pathway in vivo.

  20. Heritable Cancer Syndromes Related to the Hypoxia Pathway

    PubMed Central

    Henegan, John Clark; Gomez, Christian R.

    2016-01-01

    Families of tumor-suppressor genes, such as those involved in homologous recombination or mismatch repair, contain individual genes implicated in hereditary cancer syndromes. Collectively, such groupings establish that inactivating germline changes in genes within pathways related to genomic repair can promote carcinogenesis. The hypoxia pathway, whose activation is associated with aggressive and resistant sporadic tumors, is another pathway in which tumor-suppressor genes have been identified. von Hippel–Lindau disease, some of the hereditary paraganglioma–pheochromocytoma (PGL/PCC) syndromes, and the syndrome of hereditary leiomyomatosis and renal cell carcinoma are heritable conditions associated with genes involved or associated with the hypoxia pathway. This review links these heritable cancer syndromes to the hypoxia pathway while also comparing the relative aggression and treatment resistance of syndrome-associated tumors to similar, sporadic tumors. The reader will become aware of shared phenotypes (e.g., PGL/PCC, renal cell carcinoma) among these three hypoxia-pathway-associated heritable cancer syndromes as well as the known associations of tumor aggressiveness and treatment resistance within these pathways. PMID:27047799

  1. A fine-scale dissection of the DNA double-strand break repair machinery and its implications for breast cancer therapy

    PubMed Central

    Liu, Chao; Srihari, Sriganesh; Cao, Kim-Anh Lê; Chenevix-Trench, Georgia; Simpson, Peter T.; Ragan, Mark A.; Khanna, Kum Kum

    2014-01-01

    DNA-damage response machinery is crucial to maintain the genomic integrity of cells, by enabling effective repair of even highly lethal lesions such as DNA double-strand breaks (DSBs). Defects in specific genes acquired through mutations, copy-number alterations or epigenetic changes can alter the balance of these pathways, triggering cancerous potential in cells. Selective killing of cancer cells by sensitizing them to further DNA damage, especially by induction of DSBs, therefore requires careful modulation of DSB-repair pathways. Here, we review the latest knowledge on the two DSB-repair pathways, homologous recombination and non-homologous end joining in human, describing in detail the functions of their components and the key mechanisms contributing to the repair. Such an in-depth characterization of these pathways enables a more mechanistic understanding of how cells respond to therapies, and suggests molecules and processes that can be explored as potential therapeutic targets. One such avenue that has shown immense promise is via the exploitation of synthetic lethal relationships, for which the BRCA1–PARP1 relationship is particularly notable. Here, we describe how this relationship functions and the manner in which cancer cells acquire therapy resistance by restoring their DSB repair potential. PMID:24792170

  2. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    SciTech Connect

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  3. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  4. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    PubMed

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection.

  5. Repair of DNA Damage Induced by the Cytidine Analog Zebularine Requires ATR and ATM in Arabidopsis[OPEN

    PubMed Central

    Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales

    2015-01-01

    DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162

  6. IgH chain class switch recombination: mechanism and regulation.

    PubMed

    Stavnezer, Janet; Schrader, Carol E

    2014-12-01

    IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.

  7. Nonsense-mediated decay regulates key components of homologous recombination

    PubMed Central

    Janke, Ryan; Kong, Jeremy; Braberg, Hannes; Cantin, Greg; Yates, John R.; Krogan, Nevan J.; Heyer, Wolf-Dietrich

    2016-01-01

    Cells frequently experience DNA damage that requires repair by homologous recombination (HR). Proteins involved in HR are carefully coordinated to ensure proper and efficient repair without interfering with normal cellular processes. In Saccharomyces cerevisiae, Rad55 functions in the early steps of HR and is regulated in response to DNA damage through phosphorylation by the Mec1 and Rad53 kinases of the DNA damage response. To further identify regulatory processes that target HR, we performed a high-throughput genetic interaction screen with RAD55 phosphorylation site mutants. Genes involved in the mRNA quality control process, nonsense-mediated decay (NMD), were found to genetically interact with rad55 phospho-site mutants. Further characterization revealed that RAD55 transcript and protein levels are regulated by NMD. Regulation of HR by NMD extends to multiple targets beyond RAD55, including RAD51, RAD54 and RAD57. Finally, we demonstrate that loss of NMD results in an increase in recombination rates and resistance to the DNA damaging agent methyl methanesulfonate, suggesting this pathway negatively regulates HR under normal growth conditions. PMID:27001511

  8. Correlated structural-optical study of single nanocrystals in a gap-bar antenna: effects of plasmonics on excitonic recombination pathways.

    PubMed

    Wang, Feng; Karan, Niladri S; Nguyen, Hue Minh; Ghosh, Yagnaseni; Sheehan, Chris J; Hollingsworth, Jennifer A; Htoon, Han

    2015-06-01

    We performed time-correlated single-photon counting experiments on individual silica coated CdSe/CdS core/thick-shell nanocrystal quantum dots (a.k.a., giant NQDs [g-NQDs]), placed on the plasmonic gap-bar antennas. Optical properties were directly correlated with the scanning electron microscopy (SEM) images of g-NQD-plasmonic antenna coupled structures. The structures, in which the g-NQDs are located in the gap of the antenna, afford a coupling with up to 9.6 fold enhancement of radiative recombination rates. These coupled g-NQDs are also characterized by a strong enhancement of bi-exciton emission efficiency that increases with their radiative enhancement factor. By analysing these findings with a simple model, we show that the plasmonic field of the antenna does not alter the Auger recombination processes of the bi-exciton states. As a result, enhancements of the single and bi-exciton radiative recombination rates lead directly to bi-exciton emission enhancement. These findings suggest that a plasmonic field can be utilized effectively in achieving a strong bi-exciton emission that is needed for photon pair generation and plasmon-assisted lasing.

  9. Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

    PubMed Central

    Cho, Hong-Rae; Kong, Yoon-Ju; Hong, Soo-Gil; Kim, Keun Pil

    2016-01-01

    During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the hop2Δ or sae3Δ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation. PMID:27329041

  10. Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis.

    PubMed

    Cho, Hong-Rae; Kong, Yoon-Ju; Hong, Soo-Gil; Kim, Keun Pil

    2016-07-01

    During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the hop2Δ or sae3Δ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

  11. GENETIC MANIPULATION OF HOMOLOGOUS RECOMBINATION IN VIVO ATTENUATES INTESTINAL TUMORIGENESIS

    PubMed Central

    McIlhatton, Michael A.; Murnan, Kevin; Carson, Daniel; Boivin, Gregory P.; Croce, Carlo M.; Groden, Joanna

    2015-01-01

    Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast to loss-of-function mutations, attenuated the intestinal tumor phenotypes of ApcMin/+ and ApcMin/+;Msh2-/- mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our ApcMin/+ model of FAP, although levels of GIN were unaffected, and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in ApcMin/+;Msh2-/- mice. We used the pink-eyed unstable (pun) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by two-fold. Our data suggests that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggests that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP. PMID:25908507

  12. Craniosynostosis repair

    MedlinePlus

    ... will be asleep and will not feel pain. Traditional surgery is called open repair. It includes these ... helps keep the swelling down. Talking, singing, playing music, and telling stories may help soothe your child. ...

  13. REV7/MAD2L2: the multitasking maestro emerges as a barrier to recombination

    PubMed Central

    Sale, Julian E

    2015-01-01

    REV7/MAD2L2 plays important roles in translesion DNA synthesis and mitotic control. Two new papers extend its gamut by revealing its unexpected participation in pathway choice during DNA double-strand break repair. By inhibiting 5′ DNA end resection downstream of 53BP1 and RIF1, REV7/MAD2L2 promotes non-homologous end joining at the expense of homologous recombination. Importantly, loss of REV7/MAD2L2 renders PARP inhibitors ineffective in BRCA1-deficient tumours, suggesting another possible mechanism for the acquisition of resistance to this important new class of drug. PMID:25896508

  14. IL-1β stimulation of CCD-18co myofibroblasts enhances repair of epithelial monolayers through Wnt-5a.

    PubMed

    Raymond, Meera; Marchbank, Tania; Moyer, Mary P; Playford, Raymond J; Sanderson, Ian R; Kruidenier, Laurens

    2012-12-01

    Subepithelial myofibroblasts are involved in the initiation and coordination of intestinal epithelial repair, but the molecular signaling pathways are largely unknown. The cellular adaptations that occur during repair range from dedifferentiation and migration to proliferation and redifferentiation, in a way that is strongly reminiscent of normal crypt-to-villus epithelial maturation. We therefore hypothesized that Wnt/β-catenin signaling may have a pivotal role in intestinal epithelial wound repair. We used the established scratch wound method in Caco-2 cells and in nontransformed NCM460 cells to monitor the effects of IL-1β-stimulated colonic myofibroblasts (CCD-18co) on intestinal epithelial repair, with immunoblotting and immunodepletion to examine the conditioned media. Conditioned media from IL-1β-stimulated, but not -untreated, myofibroblasts increased Caco-2 wound closure twofold over 24 h. IL-1β-stimulated myofibroblasts downregulated the differentiation marker sucrase-isomaltase in the Caco-2 cells, whereas the proliferation marker c-myc was upregulated. Array expression profiling identified Wnt-5a as the Wnt-related gene that was most upregulated (28-fold) by IL-1β stimulation of CCDs. Recombinant Wnt-5a enhanced proliferation of Caco-2 and NCM460 cells. In scratch assays, it increased migration of the leading edge in both cell lines. Wnt-5a immunodepletion of the IL-1β-CCD conditioned media abrogated the ability to enhance the repair. Wnt-5a often acts through a noncanonical signal transduction pathway. Further experiments supported this pathway in epithelial wound healing: IL-1β-CCD-mediated repair was not affected by the addition of the canonical Wnt antagonist Dickkopf-1. Furthermore, media from stimulated myofibroblasts (but not Wnt-5a-depleted media) increased c-jun in Caco-2 cell nuclear extracts. Myofibroblast-mediated noncanonical Wnt-5a signaling is therefore important in the dedifferentiation and migration stages of epithelial wound

  15. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  16. Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity

    SciTech Connect

    Oorschot, Bregje van; Hovingh, Suzanne E.; Moerland, Perry D.; Medema, Jan Paul; Stalpers, Lukas J.A.; Vrieling, Harry; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. Methods and Materials: Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. Results: Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. Conclusions: Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.

  17. Membrane Repair: Mechanisms and Pathophysiology

    PubMed Central

    Cooper, Sandra T.; McNeil, Paul L.

    2015-01-01

    Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body. PMID:26336031

  18. Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Intersister DNA Repair during Meiosis in Arabidopsis[W

    PubMed Central

    Uanschou, Clemens; Ronceret, Arnaud; Von Harder, Mona; De Muyt, Arnaud; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; Kobayashi, Wataru; Kurumizaka, Hitoshi; Schlögelhofer, Peter; Grelon, Mathilde

    2013-01-01

    During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein ma